WorldWideScience

Sample records for cell biological study

  1. Studying cell biology in the skin

    Science.gov (United States)

    Morrow, Angel; Lechler, Terry

    2015-01-01

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. PMID:26564861

  2. Studying cell biology in the skin.

    Science.gov (United States)

    Morrow, Angel; Lechler, Terry

    2015-11-15

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists.

  3. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  4. Peroxisystem: harnessing systems cell biology to study peroxisomes.

    Science.gov (United States)

    Schuldiner, Maya; Zalckvar, Einat

    2015-04-01

    In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works.

  5. Cell biology perspectives in phage biology.

    Science.gov (United States)

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  6. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc.

  7. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  8. Cell biological study in multiple myeloma among atomic bomb survivors

    International Nuclear Information System (INIS)

    The study was undertaken to determine differences in the expression of cell surface antigens in normal plasma cells and mature myeloma cells. The subjects were 20 patients with multiple myeloma, including 5 A-bomb survivors. Seven normal persons, four with chronic tonsillitis, one with idiopathic thrombocytopenic purpura, and two with chronic lymphadenitis served as controls. In the group of myeloma cells, 12 showed mature myeloma cells of VLA-4+/VLA-5+/MPC-1+, and the other 8 showed precursor myeloma cells of VLA-4+/VLA-5-/MPC-1-. In terms of CD56 and CD19, CD56+/CD19- were seen in 13 patients, CD56-/CD19- in 5, and CD56+/CD19+ in 2; none of the patients showed phenotype of CD56-/CD19+. In the control group, all showed VLA-4+/VLA-5+/MPC-1+/CD44+/CD56-/CD19+; phenotype of normal plasma cells was CD38++/CD56-/CD19+ alone, which was not seen in the group of mature myeloma cells. Thus, this type is considered characteristic to normal plasma cells. These findings revealed that the difference in the expression of CD56 and CD19 aids in the identification of myeloma cells from normal plasma cells. (N.K.)

  9. Lung Stem cell biology

    OpenAIRE

    Ardhanareeswaran, Karthikeyan; Mirotsou, Maria

    2013-01-01

    Over the past few years new insights have been added to the study of stem cells in the adult lung. The exploration of the endogenous lung progenitors as well as the study of exogenously delivered stem cell populations holds promise for advancing our understanding of the biology of lung repair mechanisms. Moreover, it opens new possibilities for the use of stem cell therapy for the development of regenerative medicine approaches for the treatment of lung disease. Here, we discuss the main type...

  10. A multiwell platform for studying stiffness-dependent cell biology.

    Directory of Open Access Journals (Sweden)

    Justin D Mih

    Full Text Available Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.

  11. Applications of PIXE analysis to studies in cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Shinji; Furuse, Masako; Kitao, Kensuke [National Inst. of Radiological Sciences, Chiba (Japan); Ishihara, Toyoyuki; Shima, Kunihiro; Chiba, Ren

    1992-12-31

    PIXE application to the measurement of cellular elements is outlined on characteristic variations of the contents of yeast, CHO, V79 and MM46 cultured mammalian cells according to environmental changes. Cellular elements from P to Br were successfully analyzed at these cells after cautious preparation of samples in filtration steps with as possible as less deterioration. We confirmed linear relationships between the X-ray yields and these element contents. The experiment was extended to an analysis of cellular substances at molecular level by scanning of specimens. Preliminary results were included. (author).

  12. Study on biological characters of SGC7901 gastric cancer cell-dendritic cell fusion vaccines

    Institute of Scientific and Technical Information of China (English)

    Kun Zhang; Peng-Fen Gao; Pei-Wu Yu; Yun Rao; Li-Xin Zhou

    2006-01-01

    AIM: To detect the biological characters of the SGC7901 gastric cancer cell-dendritic cell fusion vaccines.METHODS: The suspending living SGC7901 gastric cancer cells and dendritic cells were induced to be fusioned by polyethylene glycol. Pure fusion cells were obtained by selective culture with the HAT/HT culture systems.The fusion cells were counted at different time points of culture and their growth curves were drawn to reflect their proliferative activities. The fusion cells were also cultured in culture medium to investigate whether they could grow into cell clones. MTT method was used to test the stimulating abilities of the fusion cells on T lymphocytes' proliferations. Moreover, the fusion cells were planted into nude mice to observe whether they could grow into new planted tumors in this kind of immunodeficiency animals.RESULTS: The fusion cells had weaker proliferative activity and clone abilities than their parental cells. When they were cultured, the counts of cells did not increase remarkably, nor could they grow into cell clones in culture medium. The fusion cells could not grow into new planted tumors after planted into nude mice. The stimulating abilities of the fusion cells on T lymphocytes' proliferations were remarkably increased than their parental dendritic cells.CONCLUSION: The SGC7901 gastric cancer cell-dendritic cell fusion vaccines have much weaker proliferative abilities than their parental cells, but they keep strong abilities to irritate the T lymphocytes and have no abilities to grow into new planted tumors in immunodeficiency animals. These are the biological basis for their antitumor biotherapies.

  13. Using Femtosecond Laser Subcellular Surgery as a Tool to Study Cell Biology

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N; Colvin, M E; Huser, T

    2007-02-27

    Research on cellular function and regulation would be greatly advanced by new instrumentation using methods to alter cellular processes with spatial discrimination on the nanometer-scale. We present a novel technique for targeting submicrometer sized organelles or other biologically important regions in living cells using femtosecond laser pulses. By tightly focusing these pulses beneath the cell membrane, we can vaporize cellular material inside the cell through nonlinear optical processes. This technique enables non-invasive manipulation of the physical structure of a cell with sub-micrometer resolution. We propose to study the role mitochondria play in cell proliferation and apoptosis. Our technique provides a unique tool for the study of cell biology.

  14. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  15. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology.

  16. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  17. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  18. Mammalian cell biology

    International Nuclear Information System (INIS)

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  19. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs.

  20. Use of colloidal gold cytochemistry in the study of the basic cell biology of cancer.

    Science.gov (United States)

    Willingham, M C

    1989-01-01

    We are currently investigating the morphologic aspects of two areas of the basic cell biology of cancer: tumor-specific surface antigens as targets for immunotoxins, and the phenomenon of multidrug resistance in chemotherapy of human tumors. Colloidal gold cytochemistry has provided a useful method for the electron-microscopic cytochemical detection of materials endocytosed by cells in culture. This technique has been used to study the internalization pathway of ligands bound to the surface of cancer cells, particularly antibodies for use as immunologic targeting reagents for the construction of immunotoxins. These colloidal gold conjugates with monoclonal antibodies have demonstrated the internalization of these immunologic reagents through coated pits and receptosomes, which is a necessary step in the delivery of immunotoxins into the cell where they can mediate their cell-killing functions. Morphologic methods have been employed for the screening and selection of monoclonal antibodies reactive with the surface of human ovarian cancer cells for use as immunotoxins and have demonstrated the in vivo activity of immunotoxins made with these antibodies and Pseudomonas exotoxin in a nude mouse model system. In other studies, we have employed such reagents for the immunocytochemical detection of the surface expression of P170, the cell-surface efflux pump protein responsible for the phenotype of multidrug resistance in tumor cells, and to investigate the distribution of this protein by using immunocytochemistry in normal human tissues. These results have suggested a role for P170 in normal cell membrane transport of metabolites in various organ systems.

  1. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies

    Science.gov (United States)

    Shevchuk, A. I.; Novak, P.; Velazquez, M. A.; Fleming, T. P.; Korchev, Y. E.

    2013-09-01

    Optical visualization of nanoscale morphological changes taking place in living biological cells during such important processes as endo- and exocytosis is challenging due to the low refractive index of lipid membranes. In this paper we summarize and discuss advances in the powerful combination of two complementary live imaging techniques, ion conductance and fluorescence confocal microscopy, that allows cell membrane topography to be related with molecular-specific fluorescence at high spatial and temporal resolution. We demonstrate the feasibility of the use of ion conductance microscopy to image apical plasma membrane of mouse embryo trophoblast outgrowth cells at a resolution sufficient to depict single endocytic pits. This opens the possibility to study individual endocytic events in embryo trophoblast outgrowth cells where endocytosis plays a crucial role during early stages of embryo development.

  2. Atomic force microscopy in cell biology

    Institute of Scientific and Technical Information of China (English)

    LU Zhexue; ZHANG Zhiling; PANG Daiwen

    2005-01-01

    The history, characteristic, operation modes and coupling techniques of atomic force microscopy (AFM) are introduced. Then the application in cell biology is reviewed in four aspects: cell immobilization methods, cell imaging, force spectrum study and cell manipulation. And the prospect of AFM application in cell biology is discussed.

  3. Lipidomics Investigations in Cell Biology

    OpenAIRE

    YU, Yang

    2014-01-01

    Cell membrane is the biological barrier serving as both territorial defense and the communication hinge for the interior of cell from its surroundings. As building blocks of cellular membranes and also precursor for second messengers, a variety of lipids play essential roles in cellular membrane dynamics as well as important functions such as cell proliferation, apoptosis, signal transduction and membrane trafficking modulation. Lipidomics, representing the systematic and integrative studies ...

  4. Recent progress in histochemistry and cell biology.

    Science.gov (United States)

    Hübner, Stefan; Efthymiadis, Athina

    2012-04-01

    Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.

  5. The Biological Study of the Cultured Human Lens Epithelial Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The human lens epithelial cells (HLE) cultured in vitro was established in normal and cataractous lenses. The biological feature, histological characteristics and the ultrastructure of the cultured HLE cells were investigated. The results reveal that the proliferative capacity of the culutured HLE cells is reversely proportional to the donour age; the cultured HLE cells has the limited proliferative capacity in vitro. The relieve of the contact inhibition is the effective trigger of the HLE cell prolife...

  6. Study on the biological characteristics of pancreatic cancer vascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    李雷

    2012-01-01

    Objective To explore the biological characteristics of pancreatic cancer vascular endothelial cells,including the aspects of morphology,species,genetics,vascular formation ability,and proliferation ability in vitro. Methods The human pancreatic cancer cells were inoculated in nude mice pancreas to get pancreatic cancer

  7. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.

    Science.gov (United States)

    Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan

    2014-12-01

    Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.

  8. Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells

    OpenAIRE

    Miklavčič, Damijan; Towhidi, Leila

    2010-01-01

    Background In order to reduce the side-effects of chemotherapy, combined chemotherapy-electroporation (electrochemotherapy) has been suggested. Electroporation, application of appropriate electric pulses to biological cells, can significantly enhance molecular uptake of cells due to formation of transient pores in the cell membrane. It was experimentally demonstrated that the efficiency of electroporation is under the control of electric pulse parameters. However, the theoretical basis for th...

  9. Mammalian cell biology

    International Nuclear Information System (INIS)

    Studies of the action of N-ethylmaleimide (NEM), as an inhibitor of repair of x radioinduced injuries were extended from synchronous Chinese hamster cells to synchronous human HeLa cells. These studies showed a similar mode of action in both cell types lending support to the notion that conclusions may be extracted from such observations that are of fairly general applicability to mammalian cells. Radiation studies with NEM are being extended to hypoxic cells to inquire if NEM is effective relative to oxygen-independent damage. Observations relative to survival, DNA synthesis, and DNA strand elongation resulting from the addition products to DNA when cells were exposed to near uv in the presence of psoralen were extended. (U.S.)

  10. Preliminary Study on Biological Properties of Adult Human Bone Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    WU Tao; BAI Hai; WANG Jingchang; SHI Jingyun; WANG Cunbang; LU Jihong; OU Jianfeng; WANG Qian

    2006-01-01

    Objective: To establish a method of culture and expansion of adult human bone marrow-derived MSCs in vitro and to explore their biological properties. Methods: Mononuclear cells were obtained from 5 mL adult human bone marrow by density gradient centrifugation with Percoll solution. Adult human MSCs were cultured in Dulbecco's Modified Eagle's Medium with low glucose (LG-DMEM) containing 10% fetal calf serum at a density of 2× 105 cell/cm2. The morphocytology was observed under phase-contrast microscope. The cell growth was measured by MTT method. The flow cytometer was performed to examine the expression of cell surface molecules and cell cycle. The ultrastructure of MSCs was observed under transmission electron microscope. The immunomodulatory functions of MSCs were measured by MTT method. The effects of MSCs on the growth of K562 cells and the dynamic change of HA, Ⅳ-C, LN concentration in the culture supernatant of MSCs was also observed. Results: The MSCs harvested in this study were homogenous population and exhibited a spindle-shaped fibroblastic morphology. The cell growth curve showed that MSCs had a strong ability of proliferation. The cells were positive for CD44,while negative for hematopoietic cell surface marker such as CD3, CD4, CD7, CD13, CD14, CD15, CD19,CD22, CD33, CD34, CD45 and HLA-DR, which was closely related to graft versus host disease. Above 90% cells of MSCs were found at G0/G1 phase. The ultrastructure of MSCs indicated that there were plenty of cytoplasmic organelles. Allogeneic peripheral blood lymphocytes proliferation was suppressed by MSCs and the inhibition ratio was 60.68% (P<0.01). The suppressive effect was also existed in the culture supernatant of MSCs and the inhibition ratio was 9.00% (P<0.05). When lymphocytes were stimulated by PHA, the suppression effects of the culture supernatant were even stronger and the inhibition ratio was 20.91%(P<0.01). Compared with the cell growth curve of the K562 cells alone, the K562

  11. A small molecule (pluripotin as a tool for studying cancer stem cell biology: proof of concept.

    Directory of Open Access Journals (Sweden)

    Susan D Mertins

    Full Text Available BACKGROUND: Cancer stem cells (CSC are thought to be responsible for tumor maintenance and heterogeneity. Bona fide CSC purified from tumor biopsies are limited in supply and this hampers study of CSC biology. Furthermore, purified stem-like CSC subpopulations from existing tumor lines are unstable in culture. Finding a means to overcome these technical challenges would be a useful goal. In a first effort towards this, we examined whether a chemical probe that promotes survival of murine embryonic stem cells without added exogenous factors can alter functional characteristics in extant tumor lines in a fashion consistent with a CSC phenotype. METHODOLOGY/PRINCIPAL FINDINGS: The seven tumor lines of the NCI60 colon subpanel were exposed to SC-1 (pluripotin, a dual kinase and GTPase inhibitor that promotes self-renewal, and then examined for tumorigenicity under limiting dilution conditions and clonogenic activity in soft agar. A statistically significant increase in tumor formation following SC-1 treatment was observed (p<0.04. Cloning efficiencies and expression of putative CSC surface antigens (CD133 and CD44 were also increased. SC-1 treatment led to sphere formation in some colon tumor lines. Finally, SC-1 inhibited in vitro kinase activity of RSK2, and another RSK2 inhibitor increased colony formation implicating a role for this kinase in eliciting a CSC phenotype. CONCLUSIONS/SIGNIFICANCE: These findings validate a proof of concept study exposure of extant tumor lines to a small molecule may provide a tractable in vitro model for understanding CSC biology.

  12. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  13. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  14. The cell biology of aging

    Science.gov (United States)

    DiLoreto, Race; Murphy, Coleen T.

    2015-01-01

    One of the original hypotheses of organismal longevity posits that aging is the natural result of entropy on the cells, tissues, and organs of the animal—a slow, inexorable slide into nonfunctionality caused by stochastic degradation of its parts. We now have evidence that aging is instead at least in part genetically regulated. Many mutations have been discovered to extend lifespan in organisms of all complexities, from yeast to mammals. The study of metazoan model organisms, such as Caenorhabditis elegans, has been instrumental in understanding the role of genetics in the cell biology of aging. Longevity mutants across the spectrum of model organisms demonstrate that rates of aging are regulated through genetic control of cellular processes. The regulation and subsequent breakdown of cellular processes represent a programmatic decision by the cell to either continue or abandon maintenance procedures with age. Our understanding of cell biological processes involved in regulating aging have been particularly informed by longevity mutants and treatments, such as reduced insulin/IGF-1 signaling and dietary restriction, which are critical in determining the distinction between causes of and responses to aging and have revealed a set of downstream targets that participate in a range of cell biological activities. Here we briefly review some of these important cellular processes. PMID:26668170

  15. Clinico-biologic profile of Langerhans cell histiocytosis: A single institutional study

    Directory of Open Access Journals (Sweden)

    Narula G

    2007-01-01

    Full Text Available Context: Langerhans cell histiocytosis (LCH is a rare atypical cellular disorder characterized by clonal proliferation of Langerhans cells leading to myriad clinical presentations and highly variable outcomes. There is a paucity of Indian studies on this subject. Aim: To present the experience of management of LCH at a single institution. Settings and Design: This is a retrospective observational study of patients with LCH who presented at the Tata Memorial Hospital between January 1987 and December 2002. Materials and Methods: Fifty-two patients with LCH were treated in the study period. Due to the long observation period and variability in diagnostic and therapeutic protocols, the patients were risk-stratified based on present criteria. The disease pattern, management approaches and treatment outcomes of patients were recorded. Statistical Analysis Used: Statistical analyses were done using Student′s ′t′ test, test for proportion and survival estimates based on the Kaplan-Meier method. Results: The median age at presentation was 3 years and more than 48% of the patients had Group I disease. Skeleton, skin and lymphoreticular system were the commonly involved organs. Majority (80% required some form of therapy. The projected overall survival is 63% at 10 years and mean survival is 118 months. Seventeen percent of surviving patients developed long-term sequelae. Conclusions: The clinico-biologic profile of LCH patients in India is largely similar to international patterns except a higher incidence of lymphoreticular involvement. Majority of the patients respond favorably to therapy and have a good outcome, except a subset of Group I patients who warrant enrolment in clinical trials with innovative therapeutic strategies to improve outcome.

  16. Systems Biology of cancer: Moving toward the Integrative Study of the metabolic alterations in cancer cells.

    Directory of Open Access Journals (Sweden)

    Claudia Erika Hernández Patiño

    2013-01-01

    Full Text Available One of the main objectives in systems biology is to understand the biological mechanisms that give rise to the phenotype of a microorganism by using high-throughput technologies and genome-scale mathematical modeling. The computational modeling of genome-scale metabolic reconstructions is one systemic and quantitative strategy for characterizing the metabolic phenotype associated with human diseases and potentially for designing drugs with optimal clinical effects. The purpose of this short review is to describe how computational modeling, including the specific case of constraint-based modeling, can be used to explore, characterize and predict the metabolic capacities that distinguish the metabolic phenotype of cancer cell lines. As we show herein, this computational framework is far from a pure theoretical description, and to ensure proper biological interpretation, it is necessary to integrate high-throughput data and generate predictions for later experimental assessment. Hence, genome-scale modeling serves as a platform for the following: 1 the integration of data from high-throughput technologies, 2 the assessment of how metabolic activity is related to phenotype in cancer cell lines and 3 the design of new experiments to evaluate the outcomes of the in silico analysis. By combining the functions described above, we show that computational modeling is a useful methodology to construct an integrative, systemic and quantitative scheme for understanding the metabolic profiles of cancer cell lines, a first step to determine the metabolic mechanism by which cancer cells maintain and support their malignant phenotype in human tissues.

  17. Systems biology of cancer: moving toward the integrative study of the metabolic alterations in cancer cells.

    Science.gov (United States)

    Hernández Patiño, Claudia E; Jaime-Muñoz, Gustavo; Resendis-Antonio, Osbaldo

    2012-01-01

    One of the main objectives in systems biology is to understand the biological mechanisms that give rise to the phenotype of a microorganism by using high-throughput technologies (HTs) and genome-scale mathematical modeling. The computational modeling of genome-scale metabolic reconstructions is one systemic and quantitative strategy for characterizing the metabolic phenotype associated with human diseases and potentially for designing drugs with optimal clinical effects. The purpose of this short review is to describe how computational modeling, including the specific case of constraint-based modeling, can be used to explore, characterize, and predict the metabolic capacities that distinguish the metabolic phenotype of cancer cell lines. As we show herein, this computational framework is far from a pure theoretical description, and to ensure proper biological interpretation, it is necessary to integrate high-throughput data and generate predictions for later experimental assessment. Hence, genome-scale modeling serves as a platform for the following: (1) the integration of data from HTs, (2) the assessment of how metabolic activity is related to phenotype in cancer cell lines, and (3) the design of new experiments to evaluate the outcomes of the in silico analysis. By combining the functions described above, we show that computational modeling is a useful methodology to construct an integrative, systemic, and quantitative scheme for understanding the metabolic profiles of cancer cell lines, a first step to determine the metabolic mechanism by which cancer cells maintain and support their malignant phenotype in human tissues.

  18. Learning of Biochemistry and Cell Biology: Case Study of the School of Physiotherapy from ONCE

    Directory of Open Access Journals (Sweden)

    N.T.L.P. Gonçalves,

    2014-08-01

    Full Text Available Introduction: Teaching biomedical disciplines for students with disabilities in highereducation is considered a major challenge, especially when it comes to the curriculum, themethods and the resources. In Brazil there are few reports on how the processes ofteaching and learning biomedical disciplines in higher education are conducted. In Spain,since the 70’s the School of Physiotherapy from the National Organization of Spanish blindpeople (ONCE offers exclusively for students with disabilities undergraduate degree inPhysiotherapy, as well as many post graduation courses in biomedicine. Thus, the aim ofthis study was to verify in situ what were the resources and methods used by theprofessors of biochemistry and cell biology to teach their students with visual impairments.Material and Methods: Technical visits were conducted using the following instruments tocollect the data: Unstructured interviews with teachers, students and staff (audio-recordedand later transcribed and classroom observation using photographs and reports. Thedata generated by the interviews were analyzed by the discourse analysis.Discussion and results: Reports indicated that the main methodological resources are:embossed boards made with Swell paper and with the help of an oven called Ricohfuser®; commercially sold models of cells and body structures; the technique of descriptivediscourse where the professor describes an image to be studied, individual touchtechniques where the professor shows an image using the touch of the student. It wasobserved that certain sectors inside the school are especially distinguished. Overall, theschool does not present any other routine different from a regular school, and according tothe professors, it happens intentionally, so that the future professionals are able to work inenvironments not adapted for their needs.Conclusion: The observed adjustments in the school of physiotherapy at ONCE could beseen as an example for Brazilian

  19. Label-Free Biosensors for Cell Biology

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2011-01-01

    Full Text Available Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.

  20. Label-Free Biosensors for Cell Biology

    OpenAIRE

    Ye Fang

    2011-01-01

    Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applicat...

  1. Biological properties of different type carbon particles in vitro study on primary culture of endothelial cells.

    Science.gov (United States)

    Czerniak-Reczulska, M; Niedzielski, P; Balcerczyk, A; Bartosz, G; Karowicz-Bilińska, A; Mitura, K

    2010-02-01

    Carbon powders have extended surface of carbon layers, which is of significant biomedical importance since the powders are employed to cover implants material. Carbon Powder Particles are produced by different methods: by a detonation method, by RF PACVD (Radio Frequency Plasma Activated Chemical Vapour Deposition) or MW/RF PCVD (Microwave/Radio Frequency Plasma Activated Chemical Vapour Deposition) and others. Our previous data showed that Carbon Powder Particles may act as antioxidant and/or anti-inflammatory factor. However the mechanism of such behavior has been not fully understood. The aim of the work was tested influence carbon powders manufactured by Radio Frequency Plasma Activated Chemical Vapour Deposition RFPACVD method and detonation method on selected parameters of human endothelial cells, which play a crucial role in the regulation of the circulation and vascular wall homeostasis. Graphite powder was used as a control substance. Endothelial cells are actively involved in a wide variety of processes e.g., inflammatory responses to a different type of stimuli (ILs, TNF-alpha) or regulating vasomotor tone via production of vasorelaxants and vasocontrictors. Biological activation is dependent on the type and quantity of chemical bonds on the surface of the powders. The effect of powders on the proliferation of HUVECs (Human Umbilical Vein Endothelial Cells) was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction assay. We found decreased cell proliferation after 72 h treatment with graphite as well as Carbon Powder Particles. PMID:20352757

  2. Biologically active monoiodinated alpha-MSH derivatives for receptor binding studies using human melanoma cells

    International Nuclear Information System (INIS)

    Three different monoiodinated radioligands of alpha-MSH (alpha-melanocyte-stimulating hormone) were compared in a binding assay with human D10 melanoma cells: [Tyr(125I)2]-alpha-MSH, [Tyr(125I)2,NIe4]-alpha-MSH, and [Tyr(125I)2,NIe4,D-Phe7]-alpha-MSH. They were prepared either by the classical chloramine T method or by the Enzymobead method. A simple and rapid purification scheme was developed consisting of a primary separation on reversed-phase C18 silica cartridges immediately after the iodination, followed by HPLC purification before each binding experiment. Biological testing of the three radioligands showed that they all retained high melanotropic activity in the B16 melanin assay and the Anolis melanophore assay. However, in human D10 melanoma cells, [Tyr(125I)2,NIe4]-alpha-MSH led to a high degree of non-specific binding to the cells which could not be displaced by excess alpha-MSH and only partially by [NIe4]-alpha-MSH. The [Tyr(125I)2,NIe4,D-Phe7]-alpha-MSH tracer gave similar results but with a much lower proportion of non-specific binding. On the other hand, [Tyr(125I)2]-alpha-MSH proved to be an excellent radioligand whose non-specific binding to the D10 cells was not higher than 20% of the total binding

  3. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  4. Prostate cancer stem cell biology

    OpenAIRE

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of s...

  5. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    Science.gov (United States)

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  6. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  7. When cell biology meets theory

    Science.gov (United States)

    Gonzalez-Gaitan, Marcos

    2015-01-01

    Cell biologists now have tools and knowledge to generate useful quantitative data. But how can we make sense of these data, and are we measuring the correct parameters? Moreover, how can we test hypotheses quantitatively? To answer these questions, the theory of physics is required and is essential to the future of quantitative cell biology. PMID:26416957

  8. When cell biology meets theory.

    Science.gov (United States)

    Gonzalez-Gaitan, Marcos; Roux, Aurélien

    2015-09-28

    Cell biologists now have tools and knowledge to generate useful quantitative data. But how can we make sense of these data, and are we measuring the correct parameters? Moreover, how can we test hypotheses quantitatively? To answer these questions, the theory of physics is required and is essential to the future of quantitative cell biology.

  9. Cell biology: More than skin deep

    Science.gov (United States)

    Fuchs, Elaine

    2015-01-01

    In studying how stem cells make and maintain tissues, nearly every chapter of a cell biology textbook is of interest. The field even allows us to venture where no chapters have yet been written. In studying this basic problem, we are continually bombarded by nature’s surprises and challenges. PMID:26056136

  10. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    Science.gov (United States)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  11. Rhomboids, signalling and cell biology.

    Science.gov (United States)

    Freeman, Matthew

    2016-06-15

    Here, I take a somewhat personal perspective on signalling control, focusing on the rhomboid-like superfamily of proteins that my group has worked on for almost 20 years. As well as describing some of the key and recent advances, I attempt to draw out signalling themes that emerge. One important message is that the genetic and biochemical perspective on signalling has tended to underplay the importance of cell biology. There is clear evidence that signalling pathways exploit the control of intracellular trafficking, protein quality control and degradation and other cell biological phenomena, as important regulatory opportunities.

  12. Cell biological study in multiple myeloma among atomic bomb survivors, 3

    International Nuclear Information System (INIS)

    To determine how quantitative changes and qualitative abnormalities of IL-6R receptor (IL-6R) is involved in proliferation promotion of myeloma cells, the expression of IL-6R and recomposition of IL-6R genes were examined in myeloma cells obtained from a total of 37 patients with multiple myeloma (MM) or plasma cell leukemia, including 6 A-bomb survivors. Among 6 A-bomb survivors, 4 had been directly exposed and the other two had entered the city after A-bombing. Binding assay performed in 10 patients revealed binding ability in all of them; the number of bound IL-6R was 31-2440/cell and Kd value was 1.2-3.7 x 10-10 M. Northern blot test revealed noticeable IL-6R mRNA expression in only one MM patient. Nor was definitive IL-6R expression observed by flow cytometry. There was no recomposition of IL-6R genes in any of 20 MM patients, including A-bomb survivors. This may deny extensively structural abnormality in the genetic area that activates IL-6R genes. Regarding the expression of IL-6R of myeloma cells, such as the number of IL-6R, Kd value, the expression of IL-6R mRNA, and the recomposition of IL-6R genes, there was no difference between the exposed and non-exposed groups. In elucidating the occurrence of M protenemia in A-bomb survivors, further studies are required concerning IL-6 and IL-6R involved in proliferation mechanism of myeloma cells. (N.K.)

  13. The new stem cell biology.

    OpenAIRE

    Quesenberry, Peter J.; Colvin, Gerald A; Lambert, Jean-Francois; Frimberger, Angela E.; Dooner, Mark S.; Mcauliffe, Christina I.; Miller, Caroline; Becker, Pamela; Badiavas, Evangelis; Falanga, Vincent J.; Elfenbein, Gerald; Lum, Lawrence G.

    2002-01-01

    Recent studies have indicated that bone marrow stem cells are capable of generating muscle, cardiac, hepatic, renal, and bone cells. Purified hematopoietic stem cells have generated cardiac and hepatic cells and reversed disease manifestations in these tissues. Hematopoietic stem cells also alter phenotype with cell cycle transit or circadian phase. During a cytokine stimulated cell cycle transit, reversible alterations of differentiation and engraftment occur. Primitive hematopoietic stem ce...

  14. Teaching Cell Biology in Primary Schools

    Directory of Open Access Journals (Sweden)

    Francele de Abreu Carlan

    2014-01-01

    Full Text Available Basic concepts of cell biology are essential for scientific literacy. However, because many aspects of cell theory and cell functioning are quite abstract, students experience difficulties understanding them. In this study, we investigated whether diverse teaching resources such as the use of replicas of Leeuwenhoek’s microscope, visualization of cells using an optical microscope, construction of three-dimensional cell models, and reading of a comic book about cells could mitigate the difficulties encountered when teaching cell biology to 8th-grade primary school students. The results suggest that these didactic activities improve students’ ability to learn concrete concepts about cell biology, such as the composition of living beings, growth, and cicatrization. Also, the development of skills was observed, as, for example, the notion of cell size. However, no significant improvements were observed in students’ ability to learn about abstract topics, such as the structures of subcellular organelles and their functions. These results suggest that many students in this age have not yet concluded Piaget’s concrete operational stage, indicating that the concepts required for the significant learning of abstract subjects need to be explored more thoroughly in the process of designing programs that introduce primary school students to cell biology.

  15. A microfluidic flow-cell for the study of the ultrafast dynamics of biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Chauvet, Adrien, E-mail: adrien.chauvet@epfl.ch; Chergui, Majed [Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, 1015 Lausanne (Switzerland); Tibiletti, Tania; Caffarri, Stefano [Aix Marseille Université, CNRS, CEA, UMR 7265 Biologie Végétale et Microbiologie Environnementales, 13009 Marseille (France)

    2014-10-01

    The study of biochemical dynamics by ultrafast spectroscopic methods is often restricted by the limited amount of liquid sample available, while the high repetition rate of light sources can induce photodamage. In order to overcome these limitations, we designed a high flux, sub-ml, capillary flow-cell. While the 0.1 mm thin window of the 0.5 mm cross-section capillary ensures an optimal temporal resolution and a steady beam deviation, the cell-pump generates flows up to ~0.35 ml/s that are suitable to pump laser repetition rates up to ~14 kHz, assuming a focal spot-diameter of 100 μm. In addition, a decantation chamber efficiently removes bubbles and allows, via septum, for the addition of chemicals while preserving the closed atmosphere. The minimal useable amount of sample is ~250 μl.

  16. Visualizing Single Cell Biology: Nanosims Studies of Carbon and Nitrogen Metabolism in Diazotrophic Cyanobacteria

    Science.gov (United States)

    Pett-Ridge, J.; Finzi, J. A.; Capone, D. G.; Popa, R.; Nealson, K. H.; Ng, W.; Spormann, A. M.; Hutcheon, I. D.; Weber, P. K.

    2007-12-01

    , inter-species transfers (with Rhizobium epibionts), and within-cell depth profiles. Spatial enrichment patterns were correlated with morphological features evidenced in TEM images of microtomed filaments. These features indicate how 15N and 13C "hotspots" are dispersed throughout individual cells in different species, and may indicate isolated locations of increased N2 fixation, sites of amino acid/protein synthesis, or cyanophycin storage granules. This combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis and high resolution microscopy allows isotopic analysis to be linked to morphological features and holds great promise for fine-scale studies of bacteria metabolism.

  17. Cell biological study in multiple myeloma among atomic bomb survivors, 1

    International Nuclear Information System (INIS)

    The aim of this study was to determine whether IL-6 production from myeloma cells is influenced by A-bombing. Subjects were 20 patients with multiple myeloma, consisting of 9 A-bomb exposed patients and 11 non-exposed patients. According to disease types, 8 had IgG and one had BJ in the exposed group; 4 had IgG, 4 had IgA, and 3 had BJ in the non-exposed group. In the exposed group, two were clinically staged as Stage I, 3 as Stage II, and 4 as Stage III; and one was staged as Stage I, 4 as Stage II, and 6 as Stage III in the non-exposed group. In both exposed and non-exposed groups, IL-6 production was observed in myeloma cells. There was no definitive difference in IL-6 production from myeloma cells between the groups. These findings suggest that IL-6 production is influenced by other factors than A-bombing. There is much to be done before promotion mechanism of multiple myeloma may be elucidated among A-bomb survivors. (N.K.)

  18. Postnatal development of the bronchiolar club cells of distal airways in the mouse lung: stereological and molecular biological studies.

    Science.gov (United States)

    Karnati, Srikanth; Graulich, Tilman; Oruqaj, Gani; Pfreimer, Susanne; Seimetz, Michael; Stamme, Cordula; Mariani, Thomas J; Weissmann, Norbert; Mühlfeld, Christian; Baumgart-Vogt, Eveline

    2016-06-01

    Club (Clara) cells are nonciliated secretory epithelial cells present in bronchioles of distal pulmonary airways. So far, no information is available on the postnatal differentiation of club cells by a combination of molecular biological, biochemical, and stereological approaches in the murine lung. Therefore, the present study was designed to investigate the changes in the club cell secretory proteins (CC10, surfactant proteins A, B and D) and club cell abundance within the epithelium of bronchioles of distal airways during the postnatal development of the mouse lung. Perfusion-fixed murine lungs of three developmental stages (newborn, 15-day-old and adult) were used. Frozen, unfixed lungs were used for cryosectioning and subsequent laser-assisted microdissection of bronchiolar epithelial cells and RT-PCR analyses. High resolution analyses of the three-dimensional structures and composition of lung airways were obtained by scanning electron microscopy. Finally, using design-based stereology, the total and average club cell volume and the volume of secretory granules were quantified by light and transmission electron microscopy. Our results reveal that murine club cells are immature at birth and differentiate postnatally. Further, increase of the club cell volume and number of intracellular granules are closely correlated to the total lung volume enlargement. However, secretory granule density was only increased within the first 15 days of postnatal development. The differentiation is accompanied by a decrease in glycogen content, and a close positive relationship between CC10 expression and secretory granule abundance. Taken together, our data are consistent with the concept that the morphological and functional differentiation of club cells is a postnatal phenomenon. PMID:26796206

  19. Cell biology of fat storage.

    Science.gov (United States)

    Cohen, Paul; Spiegelman, Bruce M

    2016-08-15

    The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development.

  20. Cell biology of fat storage.

    Science.gov (United States)

    Cohen, Paul; Spiegelman, Bruce M

    2016-08-15

    The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development. PMID:27528697

  1. Study on the Dynamic Biological Characteristics of Sca-1+ Hematopoietic Stem and Progenitor Cell Senescence

    Directory of Open Access Journals (Sweden)

    Shan Geng

    2015-01-01

    Full Text Available The researches in the dynamic changes of the progress of HSCs aging are very limited and necessary. In this study, male C57BL/6 mice were divided into 5 groups by age. We found that the superoxide damage of HSPCs started to increase from the middle age (6 months old, with notably reduced antioxidation ability. In accordance with that, the senescence of HSPCs also started from the middle age, since the self-renewal and differentiation ability remarkably decreased, and senescence-associated markers SA-β-GAL increased in the 6-month-old and the older groups. Interestingly, the telomere length and telomerase activity increased to a certain degree in the 6-month-old group. It suggested an intrinsic spontaneous ability of HSPCs against aging. It may provide a theoretical and experimental foundation for better understanding the senescence progress of HSPCs. And the dynamic biological characteristics of HSPCs senescence may also contribute to the clinical optimal time for antiaging drug intervention.

  2. Stem cell biology meets systems biology

    OpenAIRE

    Roeder, I.; Radtke, F.

    2009-01-01

    Stem cells and their descendents are the building blocks of life. How stem cell populations guarantee their maintenance and/or self-renewal, and how individual stem cells decide to transit from one cell stage to another to generate different cell types are long-standing and fascinating questions in the field. Here, we review the discussions that took place at a recent EMBO conference in Cambridge, UK, in which these questions were placed in the context of the latest advances in stem cell biol...

  3. Biological studies using mammalian cell lines and the current status of the microbeam irradiation system, SPICE

    Science.gov (United States)

    Konishi, T.; Ishikawa, T.; Iso, H.; Yasuda, N.; Oikawa, M.; Higuchi, Y.; Kato, T.; Hafer, K.; Kodama, K.; Hamano, T.; Suya, N.; Imaseki, H.

    2009-06-01

    The development of SPICE (single-particle irradiation system to cell), a microbeam irradiation system, has been completed at the National Institute of Radiological Sciences (NIRS). The beam size has been improved to approximately 5 μm in diameter, and the cell targeting system can irradiate up to 400-500 cells per minute. Two cell dishes have been specially designed: one a Si 3N 4 plate (2.5 mm × 2.5 mm area with 1 μm thickness) supported by a 7.5 mm × 7.5 mm frame of 200 μm thickness, and the other a Mylar film stretched by pressing with a metal ring. Both dish types may be placed on a voice coil stage equipped on the cell targeting system, which includes a fluorescent microscope and a CCD camera for capturing cell images. This microscope system captures images of dyed cell nuclei, computes the location coordinates of individual cells, and synchronizes this with the voice coil motor stage and single-particle irradiation system consisting of a scintillation counter and a beam deflector. Irradiation of selected cells with a programmable number of protons is now automatable. We employed the simultaneous detection method for visualizing the position of mammalian cells and proton traversal through CR-39 to determine whether the targeted cells are actually irradiated. An immuno-assay was also performed against γ-H2AX, to confirm the induction of DNA double-strand breaks in the target cells.

  4. Cell biology experiments conducted in space

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  5. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A.

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  6. Three-Dimensional Printing of Human Skeletal Muscle Cells: An Interdisciplinary Approach for Studying Biological Systems

    Science.gov (United States)

    Bagley, James R.; Galpin, Andrew J.

    2015-01-01

    Interdisciplinary exploration is vital to education in the 21st century. This manuscript outlines an innovative laboratory-based teaching method that combines elements of biochemistry/molecular biology, kinesiology/health science, computer science, and manufacturing engineering to give students the ability to better conceptualize complex…

  7. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  8. Cell biology solves mysteries of reproduction.

    Science.gov (United States)

    Sutovsky, Peter

    2012-09-01

    Reproduction and fertility have been objects of keen inquiry since the dawn of humanity. Medieval anatomists provided the first accurate depictions of the female reproductive system, and early microscopists were fascinated by the magnified sight of sperm cells. Initial successes were achieved in the in vitro fertilization of frogs and the artificial insemination of dogs. Gamete and embryo research was in the cradle of modern cell biology, providing the first evidence of the multi-cellular composition of living beings and pointing out the importance of chromosomes for heredity. In the 20th century, reproductive research paved the way for the study of the cytoskeleton, cell signaling, and the cell cycle. In the last three decades, the advent of reproductive cell biology has brought us human in vitro fertilization, animal cloning, and human and animal embryonic stem cells. It has contributed to the development of transgenesis, proteomics, genomics, and epigenetics. This Special Issue represents a sample of the various areas of reproductive biology, with emphasis on molecular and cell biological aspects. Advances in spermatology, ovarian function, fertilization, and maternal-fetal interactions are discussed within the framework of fertility and diseases such as endometriosis and diabetes.

  9. The biology of hematopoietic stem cells.

    Science.gov (United States)

    Szilvassy, Stephen J

    2003-01-01

    Rarely has so much interest from the lay public, government, biotechnology industry, and special interest groups been focused on the biology and clinical applications of a single type of human cell as is today on stem cells, the founder cells that sustain many, if not all, tissues and organs in the body. Granting organizations have increasingly targeted stem cells as high priority for funding, and it appears clear that the evolving field of tissue engineering and regenerative medicine will require as its underpinning a thorough understanding of the molecular regulation of stem cell proliferation, differentiation, self-renewal, and aging. Despite evidence suggesting that embryonic stem (ES) cells might represent a more potent regenerative reservoir than stem cells collected from adult tissues, ethical considerations have redirected attention upon primitive cells residing in the bone marrow, blood, brain, liver, muscle, and skin, from where they can be harvested with relative sociological impunity. Among these, it is arguably the stem and progenitor cells of the mammalian hematopoietic system that we know most about today, and their intense study in rodents and humans over the past 50 years has culminated in the identification of phenotypic and molecular genetic markers of lineage commitment and the development of functional assays that facilitate their quantitation and prospective isolation. This review focuses exclusively on the biology of hematopoietic stem cells (HSCs) and their immediate progeny. Nevertheless, many of the concepts established from their study can be considered fundamental tenets of an evolving stem cell paradigm applicable to many regenerating cellular systems. PMID:14734085

  10. Basic statistics in cell biology.

    Science.gov (United States)

    Vaux, David L

    2014-01-01

    The physicist Ernest Rutherford said, "If your experiment needs statistics, you ought to have done a better experiment." Although this aphorism remains true for much of today's research in cell biology, a basic understanding of statistics can be useful to cell biologists to help in monitoring the conduct of their experiments, in interpreting the results, in presenting them in publications, and when critically evaluating research by others. However, training in statistics is often focused on the sophisticated needs of clinical researchers, psychologists, and epidemiologists, whose conclusions depend wholly on statistics, rather than the practical needs of cell biologists, whose experiments often provide evidence that is not statistical in nature. This review describes some of the basic statistical principles that may be of use to experimental biologists, but it does not cover the sophisticated statistics needed for papers that contain evidence of no other kind.

  11. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  12. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    OpenAIRE

    Nicola Bernabò; Barbara Barboni; Mauro Maccarrone

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to ma...

  13. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  14. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    International Nuclear Information System (INIS)

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H2O2. This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma. (paper)

  15. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    Science.gov (United States)

    Ki, S. H.; Park, J. K.; Sung, C.; Lee, C. B.; Uhm, H.; Choi, E. H.; Baik, K. Y.

    2016-03-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H2O2. This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma.

  16. Seeing Cells: Teaching the Visual/Verbal Rhetoric of Biology

    Science.gov (United States)

    Dinolfo, John; Heifferon, Barbara; Temesvari, Lesly A.

    2007-01-01

    This pilot study obtained baseline information on verbal and visual rhetorics to teach microscopy techniques to college biology majors. We presented cell images to students in cell biology and biology writing classes and then asked them to identify textual, verbal, and visual cues that support microscopy learning. Survey responses suggest that…

  17. Nanotechnologies and chemical tools for cell biology

    Science.gov (United States)

    Chen, Xing

    This dissertation describes several nanotechnologies and chemical tools that I have developed to probe living cells. Chapter one gives a brief overview on the current status of biomedical and biotechnological applications of carbon nanotubes (CNTs). In this chapter, strategies for functionalization of CNTs with emphasis on biological applications are reviewed. Representative developments in biosensing, bioimaging, intracellular delivery, and tissue engineering are presented. Recent studies on toxicity of CNTs are also discussed. Chapter two describes the development of a nanoscale cell injector for delivery of cargo to the interior of living cells without physiological harm. A CNT attached to an atomic force microscope tip was functionalized with cargo via a disulfide linker. Penetration of cell membranes with this "nanoneedle", followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. Chapter three presents a biomimetic functionalization strategy for interfacing CNTs with biological systems. The potential biological applications of CNTs have been limited by their insolubility in aqueous environment and their intrinsic toxicity. We developed a biomimetic surface modification of CNTs using glycosylated polymers designed to mimic natural cell surface mucin glycoproteins interactions. Chapter four further extends the biomimetic strategy for functionalization of CNTs to glycosylated dendrimers. We developed a new class of amphiphilic bifunctional glycodendrimers that comprised carbohydrate units displayed in the periphery and a pyrene tail that bound to SWNT surface via pi-pi interactions. The glycodendrimer-coated CNTs were soluble in water, and noncytotoxic. We also demonstrated that the coated CNTs could interface with biological systems including proteins and cells. Chapter five presents a biosensing application of glycodenderimer-coated CNTs. SWNTN-FETs coated with glycodendrimers were

  18. Nutrient control of eukaryote cell growth: a systems biology study in yeast

    Directory of Open Access Journals (Sweden)

    Lilley Kathryn S

    2010-05-01

    Full Text Available Abstract Background To elucidate the biological processes affected by changes in growth rate and nutrient availability, we have performed a comprehensive analysis of the transcriptome, proteome and metabolome responses of chemostat cultures of the yeast, Saccharomyces cerevisiae, growing at a range of growth rates and in four different nutrient-limiting conditions. Results We find significant changes in expression for many genes in each of the four nutrient-limited conditions tested. We also observe several processes that respond differently to changes in growth rate and are specific to each nutrient-limiting condition. These include carbohydrate storage, mitochondrial function, ribosome synthesis, and phosphate transport. Integrating transcriptome data with proteome measurements allows us to identify previously unrecognized examples of post-transcriptional regulation in response to both nutrient and growth-rate signals. Conclusions Our results emphasize the unique properties of carbon metabolism and the carbon substrate, the limitation of which induces significant changes in gene regulation at the transcriptional and post-transcriptional level, as well as altering how many genes respond to growth rate. By comparison, the responses to growth limitation by other nutrients involve a smaller set of genes that participate in specific pathways. See associated commentary http://www.biomedcentral.com/1741-7007/8/62

  19. Biologic characteristic studies of DNA mismatch—repair enzyme hMSH2—deficient cell strain

    Institute of Scientific and Technical Information of China (English)

    HeY; ZhuaZX

    2002-01-01

    The effect of hMSH2 enzyme-deficiency on the cell growing phenotypes,cell ultrastructure,growth character and cell cycle were observed with electronic microscopy examination,cell counting and flow cytometry.hMSH2-deficient cell strain was constructed by transfecting hMSH2 recombination plasmid of antisense RNA into human embryo lung fibroblasts(HLF).In hMSH2-deficient cells,there were a lot of morphological changes under electronic microscopy,such as irregular shape,a lot of protuberances on the surface of cell,the enlarged nuclei.The average time of double increment of HLF and hMSH2-deficient cells were 1.0d and 0.78d,respectively.This suggested that the cell proliferation of hMSH2-deficient cells was greater than that of HLF.The distribution of HLF and hMSH2-deficient cells in G1,G2 and S phases was different.A large part of hMSH2-deficient cells was blocked in G1 phase.hMSH2-deficient cells increased,but it is still not a typical malignant cells.Thus,this cell strain could be used as biologic material to detect mutagenesis of environmental chemicals.

  20. Electron Tomography in Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review focuses on the contribution of electron tomography-based techniques to our understanding of cellular processes in plant cells. Electron microscopy techniques have evolved to provide better three-dimensional resolution and improved preservation of the subcellular components. In particular, the combination of cryofixation/freeze substitution and electron tomography have allowed plant cell biologists to image organelles and macromolecular complexes in their native cellular context with unprecedented three-dimensional resolution (4-7 nm). Until now, electron tomography has been applied in plant cell biology for the study of cytokinesis, Golgi structure and trafficking, formation of plant endosome/prevacuolar compartments, and organization of photosynthetic membranes. We discuss in this review the new insights that these tomographic studies have brought to the plant biology field.

  1. Approaches to systems biology. Four methods to study single-cell gene expression, cell motility, antibody reactivity, and respiratory metabolism

    DEFF Research Database (Denmark)

    Hagedorn, Peter

    To understand how complex systems, such as cells, function, comprehensive Measurements of their constituent parts must be made. This can be achieved by combining methods that are each optimized to measure specific parts of the system. Four such methods,each covering a different area, are presented......: Transcript profiling of one cell type extracted from a complex tissue containing several cell types; observation and recording of cell motility; measurement of antibody reactivities using microarrays; and invivo measurement of free and bound NADH in mitochondria. Detailed statistical analysis of the data...... from such measurements allows models of the system to be developed and tested. For each of the methods, such analysis and modelling approaches have beenapplied and are presented: Differentially regulated genes are identified and classified according to function; cell-specfic motility models...

  2. FTIR spectroscopic imaging and mapping with correcting lenses for studies of biological cells and tissues.

    Science.gov (United States)

    Kimber, James A; Foreman, Liberty; Turner, Benjamin; Rich, Peter; Kazarian, Sergei G

    2016-06-23

    Histopathology of tissue samples is used to determine the progression of cancer usually by staining and visual analysis. It is recognised that disease progression from healthy tissue to cancerous is accompanied by spectral signature changes in the mid-infrared range. In this work, FTIR spectroscopic imaging in transmission mode using a focal plane array (96 × 96 pixels) has been applied to the characterisation of Barrett's oesophageal adenocarcinoma. To correct optical aberrations, infrared transparent lenses were used of the same material (CaF2) as the slide on which biopsies were fixed. The lenses acted as an immersion objective, reducing scattering and improving spatial resolution. A novel mapping approach using a sliding lens is presented where spectral images obtained with added lenses are stitched together such that the dataset contained a representative section of the oesophageal tissue. Images were also acquired in transmission mode using high-magnification optics for enhanced spatial resolution, as well as with a germanium micro-ATR objective. The reduction of scattering was assessed using k-means clustering. The same tissue section map, which contained a region of high grade dysplasia, was analysed using hierarchical clustering analysis. A reduction of the trough at 1077 cm(-1) in the second derivative spectra was identified as an indicator of high grade dysplasia. In addition, the spatial resolution obtained with the lens using high-magnification optics was assessed by measurements of a sharp interface of polymer laminate, which was also compared with that achieved with micro ATR-FTIR imaging. In transmission mode using the lens, it was determined to be 8.5 μm and using micro-ATR imaging, the resolution was 3 μm for the band at a wavelength of ca. 3 μm. The spatial resolution was also assessed with and without the added lens, in normal and high-magnification modes using a USAF target. Spectroscopic images of cells in transmission mode using two

  3. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship.

  4. Optimization of fluorescent tools for cell biology studies in Gram-positive bacteria.

    Science.gov (United States)

    Catalão, Maria João; Figueiredo, Joana; Henriques, Mafalda X; Gomes, João Paulo; Filipe, Sérgio R

    2014-01-01

    The understanding of how Gram-positive bacteria divide and ensure the correct localization of different molecular machineries, such as those involved in the synthesis of the bacterial cell surface, is crucial to design strategies to fight bacterial infections. In order to determine the correct subcellular localization of fluorescent proteins in Streptococcus pneumoniae, we have previously described tools to express derivatives of four fluorescent proteins, mCherry, Citrine, CFP and GFP, to levels that allow visualization by fluorescence microscopy, by fusing the first ten amino acids of the S. pneumoniae protein Wze (the i-tag), upstream of the fluorescent protein. Here, we report that these tools can also be used in other Gram-positive bacteria, namely Lactococcus lactis, Staphylococcus aureus and Bacillus subtilis, possibly due to optimized translation rates. Additionally, we have optimized the i-tag by testing the effect of the first ten amino acids of other pneumococcal proteins in the increased expression of the fluorescent protein Citrine. We found that manipulating the structure and stability of the 5' end of the mRNA molecule, which may influence the accessibility of the ribosome, is determinant to ensure the expression of a strong fluorescent signal.

  5. From cell biology to the microbiome: An intentional infinite loop.

    Science.gov (United States)

    Garrett, Wendy S

    2015-07-01

    Cell biology is the study of the structure and function of the unit or units of living organisms. Enabled by current and evolving technologies, cell biologists today are embracing new scientific challenges that span many disciplines. The eclectic nature of cell biology is core to its future and remains its enduring legacy.

  6. Biological impact of human embryonic stem cells.

    Science.gov (United States)

    Martín, Miguel; Menéndez, Pablo

    2012-01-01

    Research on human embryonic stem cells (hESCs) and induced pluripotent (iPS) stem cells is currently a field of great potential in biomedicine. These cells represent a highly valuable tool for developmental biology studies, disease models, and drug screening and toxicity. The ultimate goal of hESCs and iPS cell research is the treatment of diseases or disorders for which there is currently no treatment or existing therapies are only partially effective. Despite the disproportionate short-term hopes generated, which are putting too much pressure on scientists, the international scientific community is making rapid progress in understanding hESCs and iPS cells. Nonetheless, great efforts have to be made to provide an answer to still quite basic questions concerning their biology. Moreover, translation to clinical applications in cell replacement therapy requires prior solution to ethical barriers. The recent development of iPS cells has provided a strong alternative to overcome ethical issues concerning hESCs. However, an in-depth characterization of their genetic and epigenetic features, as well as their differentiation potential still remains to be undertaken. This chapter will describe, precisely, what the critical issues are, where scientific and ethical barriers stand, and how we are to overcome them. Only then, we shall finally discover whether hESCs and iPS cells will allow building reproducible disease models, and whether they really are a safe tool, with great potential for regenerative medicine.

  7. Stem cells - biological update and cell therapy progress.

    Science.gov (United States)

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.

  8. Dictyostelium discoideum: Molecular approaches to cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, J.A.

    1987-01-01

    The central point of this book is to present Dictyostelium as a valuable eukaryotic organism for those interested in molecular studies that require a combined biochemical, structural, and genetic approach. The book is not meant to be a comprehensive compilation of all methods involving Dictyostelium, but instead is a selective set of chapters that demonstrates the utility of the organism for molecular approaches to interesting cell biological problems.

  9. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-01

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology. PMID:25404324

  10. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-01

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  11. Cell Biology and Microbiology: A Continuous Cross-Feeding.

    Science.gov (United States)

    Pizarro-Cerdá, Javier; Cossart, Pascale

    2016-07-01

    Microbiology and cell biology both involve the study of cells, albeit at different levels of complexity and scale. Interactions between both fields during the past 25 years have led to major conceptual and technological advances that have reshaped the whole biology landscape and its biomedical applications. PMID:27161870

  12. Cell Biology and Microbiology: A Continuous Cross-Feeding.

    Science.gov (United States)

    Pizarro-Cerdá, Javier; Cossart, Pascale

    2016-07-01

    Microbiology and cell biology both involve the study of cells, albeit at different levels of complexity and scale. Interactions between both fields during the past 25 years have led to major conceptual and technological advances that have reshaped the whole biology landscape and its biomedical applications.

  13. Microsystems for biological cell characterization

    OpenAIRE

    Rissanen, Anna

    2012-01-01

    This thesis describes three techniques for the characterization of living cells using micro-electro-mechanical systems (MEMS) based devices. The study of cellular function and structure is essential for bioprocess control, disease diagnosis, patient treatment and drug discovery. Microsystem technology enables characterization of very small samples, minimal use of expensive reagents, testing of multiple samples in parallel, and point-of-care testing, all of which increase throughput and reduce...

  14. Micro and nanoplatforms for biological cell analysis

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Castillo, Jaime; Moresco, Jacob Lange;

    2010-01-01

    In this paper some of the technological platforms developed in our group for biological cell analysis will be highlighted. The paper first presents a short introduction pinpointing the advantages of using micro and nano technology in cellular studies. The issues of requiring transient analysis...... studies mimicking the in vivo situation is presented and an example of surface modification for cellular growth is described. Then novel electronic sensor platforms are discussed and an example of a nanosensor with electronic readout is given utilizing both micro- and nanotechnology. Finally an example...

  15. Applying appropriates methods for teaching cell biology

    OpenAIRE

    Stavreva Veselinovska, Snezana; Koleva Gudeva, Liljana; Djokic, Milena

    2011-01-01

    Cell biology is an important basic subject of modern life sciences, consisting of fundamental life activities of the cell at the microscopic, sub microscopic and molecular levels. The cell is the basic unit of living things, with all of the activities of life taking place in the cell and with is eases also due to abnormal changes of cells. With the current framework of teaching quality reform in higher education, this paper will review the current curriculum of a cell biology course and the w...

  16. Glycan Engineering for Cell and Developmental Biology

    Science.gov (United States)

    Griffin, Matthew E.; Hsieh-Wilson, Linda C.

    2016-01-01

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. PMID:26933739

  17. Lipid Rafts in Mast Cell Biology

    Directory of Open Access Journals (Sweden)

    Adriana Maria Mariano Silveira e Souza

    2011-01-01

    Full Text Available Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization.

  18. Open source bioimage informatics for cell biology.

    Science.gov (United States)

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  19. Experimental study on the adhesion, migration and three-dimensional growth of Schwann cells on absorbable biological materials

    Institute of Scientific and Technical Information of China (English)

    王光林; 林卫; 杨志明; 裴福兴; 刘雷

    2003-01-01

    Objective: To study the adhesion, migration and three-dimentional growth of Schwann cells on PLA (polylactic acid) nonspinning fibre cloth and polyglycolic/polylactic acid (PLGA) fibres.Methods: Schwann cells/ECM gel solution and PLA nonspinning fibre cloth and PLGA fibres pretreated by collagen, polylysine and ECM were co-cultured. Then the migration and three-dimensional growth of Schwann cells on the fibres were observed under phase contrast microscope and laser scanning confocal microscope.Conclusions: ECM gel can facilitate the adhesion, growth and migration of Schwann cells on the seteroframe. It is a good integrating material for tissue engineering bioartificial nerve.

  20. Biological cell morphology studies by scanning electrochemical microscopy imagery at constant height: Contrast enhancement using biocompatible conductive substrates

    International Nuclear Information System (INIS)

    Scanning ElectroChemical Microscopy (SECM) has emerged as a very attractive method to image living cells activity due to its non invasive character and to the possibility of concomitant electro- and physico-chemical measurements. One of the difficulties when studying morphology of living cells in real time by SECM, using classical constant height mode, is the low contrast of the obtained images due to the insulating character of both the cells and of the underlying substrates. We propose here a technical approach to improve the contrast of SECM imagery obtained at constant height in the feedback mode without the need of Faraday cage. To this aim, a piece of biocompatible transparent conductive substrate (indium tin oxide, ITO coated PET) was attached into the bottom of cell culture well over which the cells were cultured. The transparency of ITO is intended to perform simultaneously SECM and optical microscopy measurements. The concept was applied to the study of endothelial cells, EA.hy926, whose morphology may be altered via an antivascular treatment. Our results show that the differences in the conductivity of the substrate and of the cells enhance the contrast of SECM image in feedback mode at constant height using highly charged redox mediator. In addition, differences in cell morphology are significantly observed by SECM after cell treatment with Combretastatin A4 antivascular agent

  1. The retinoblastoma tumor suppressor and stem cell biology

    OpenAIRE

    Sage, Julien

    2012-01-01

    Stem cells play a critical role during embryonic development and in the maintenance of homeostasis in adult individuals. The retinoblastoma tumor suppressor RB controls the proliferation, differentiation, and survival of cells, and accumulating evidence points to a central role for RB activity in the biology of stem and progenitor cells. In this review by Sage, recent studies investigating the role of RB in embryonic stem cells, adult stem cells, and progenitor cells in plants and mammals is ...

  2. Case Studies in Biology.

    Science.gov (United States)

    Zeakes, Samuel J.

    1989-01-01

    A case study writing exercise used in a course on parasitology was found to be a powerful learning experience for students because it involved discipline-based technical writing and terminology, brought the students in as evaluators, applied current learning, caused interaction among all students, and simulated real professional activities. (MSE)

  3. Chemistry and biology of the compounds that modulate cell migration.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  4. Building a path in cell biology.

    Science.gov (United States)

    Voeltz, Gia; Cheeseman, Iain

    2012-11-01

    Setting up a new lab is an exciting but challenging prospect. We discuss our experiences in finding a path to tackle some of the key current questions in cell biology and the hurdles that we have encountered along the way.

  5. A chemist building paths to cell biology.

    Science.gov (United States)

    Weibel, Douglas B

    2013-11-01

    Galileo is reported to have stated, "Measure what is measurable and make measurable what is not so." My group's trajectory in cell biology has closely followed this philosophy, although it took some searching to find this path.

  6. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  7. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...

  8. A brief history of the Japan Society for Cell Biology.

    Science.gov (United States)

    Tashiro, Y; Okigaki, T

    2001-02-01

    The Japan Society for Cell Biology (JSCB) was first founded in 1950 as the Japan Society for Cellular Chemistry under the vigorous leadership of Seizo Katsunuma, in collaboration with Shigeyasu Amano and Satimaru Seno. The Society was provisionally named as above simply because cell biology had not yet been coined at that time in Japan, although in prospect and reality the Society was in fact for the purpose of pursuing cell biology. Later in 1964, the Society was properly renamed as the Japan Society for Cell Biology. After this renaming, the JSCB made great efforts to adapt itself to the rapid progress being made in cell biology. For this purpose the Society's constitution was created in 1966 and revised in 1969. According to the revised constitution, the President, Executive Committee and Councils were to be determined by ballot vote. The style of the annual meetings was gradually modified to incorporate general oral and poster presentations in addition to Symposia (1969-1974). The publication of annual periodicals in Japanese called Symposia of the Japan Society for Cellular Chemistry (1951-1967) and later Symposia of the Japan Society for Cell Biology (1968-1974) was replaced by a new international journal called Cell Structure and Function initiated in 1975. This reformation made it possible for the Society to participate in the Science Council of Japan in 1975 and finally in 1993 to acquire its own study section of Cell Biology with grants-in-aid from the Ministry of Education and Science, Japan. The JSCB hosted the 3rd International Congress on Cell Biology (ICCB) in 1984 and the 3rd Asian-Pacific Organization for Cell Biology (APOCB) Congress in 1998, thus contributing to the international advancement of cell biology. Now the membership of JSCB stands at approximately 1,800 and the number of presentations per meeting is 300 to 400 annually. Although a good number of interesting and important findings in cell biology have been reported from Japan, the

  9. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  10. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.

  11. Modeling human liver biology using stem cell-derived hepatocytes

    OpenAIRE

    Sun, Pingnan; Zhou, XiaoLing; Farnworth, Sarah; Arvind H Patel; Hay, David C.

    2013-01-01

    Stem cell-derived hepatocytes represent promising models to study human liver biology and disease. This concise review discusses the recent progresses in the field, with a focus on human liver disease, drug metabolism and virus infection.

  12. Modeling Human Liver Biology Using Stem Cell-Derived Hepatocytes

    OpenAIRE

    Arvind H Patel; Hay, David C.; Farnworth, Sarah L.; Pingnan Sun; Xiaoling Zhou

    2013-01-01

    Stem cell-derived hepatocytes represent promising models to study human liver biology and disease. This concise review discusses the recent progresses in the field, with a focus on human liver disease, drug metabolism and virus infection.

  13. Toward cell therapy using placenta-derived cells: Disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table

    OpenAIRE

    Parolini, O.; Alviano, F; Bergwerf, I; Boraschi, D.; De Bari, C; De Waele, P; Dominici, M; Evangelista, M; Falk, W; Hennerbichler, S; Hess, D C; G. Lanzoni; B. Liu; Marongiu, F; Mc Guckin, C

    2010-01-01

    Among the many cell types which may prove useful to regenerative medicine, mounting evidence suggests that human term placenta-derived cells will join the list of significant contributors. In making new cell therapy-based strategies a clinical reality, it is fundamental that no a priori claims are made regarding which cell source is preferable for a particular therapeutic application. Rather, ongoing comparisons of the potentiality and characteristics of cells from different sources should be...

  14. The cell biology of touch

    OpenAIRE

    Lumpkin, Ellen A.; Marshall, Kara L.; Nelson, Aislyn M.

    2010-01-01

    The sense of touch detects forces that bombard the body’s surface. In metazoans, an assortment of morphologically and functionally distinct mechanosensory cell types are tuned to selectively respond to diverse mechanical stimuli, such as vibration, stretch, and pressure. A comparative evolutionary approach across mechanosensory cell types and genetically tractable species is beginning to uncover the cellular logic of touch reception.

  15. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    made recently in the field of stem cell biology, researchers now have improved tools to define novel populations of stem cells, examine them ex vivo using conditions that promote self-renewal, track them into recipients, and determine whether they can contribute to the repair of damaged tissues......PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...

  16. Interfacing nanostructures to biological cells

    Science.gov (United States)

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  17. Evaluation of the Redesign of an Undergraduate Cell Biology Course

    Science.gov (United States)

    McEwen, Laura April; Harris, dik; Schmid, Richard F.; Vogel, Jackie; Western, Tamara; Harrison, Paul

    2009-01-01

    This article offers a case study of the evaluation of a redesigned and redeveloped laboratory-based cell biology course. The course was a compulsory element of the biology program, but the laboratory had become outdated and was inadequately equipped. With the support of a faculty-based teaching improvement project, the teaching team redesigned the…

  18. An Audiovisual Program in Cell Biology

    Science.gov (United States)

    Fedoroff, Sergey; Opel, William

    1978-01-01

    A subtopic of cell biology, the structure and function of cell membranes, has been developed as a series of seven self-instructional slide-tape units and tested in five medical schools. Organization of advisers, analysis and definition of objectives and content, and development and evaluation of scripts and storyboards are discussed. (Author/LBH)

  19. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...

  20. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as w...

  1. Measuring cell identity in noisy biological systems

    OpenAIRE

    Birnbaum, Kenneth D; Kussell, Edo

    2011-01-01

    Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty me...

  2. The biology of circulating tumor cells.

    Science.gov (United States)

    Pantel, K; Speicher, M R

    2016-03-10

    Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice.

  3. Quantum fluctuations of mesoscopic biological cell at finite temperature

    Institute of Scientific and Technical Information of China (English)

    LI Hong-qi; XU Xing-lei

    2005-01-01

    On the basis of the quantization of mesoscopic biological cell equivalent circuit,we studied the quantum fluctuations of voltage and current of mesoscopic biological cell equivalent circuit as finite temperature by Bogoliuov transformation.The result shows that the quantum fluctuations of voltage and current not only relate with the parameters of equivalent circuit,temperature,but also decay with time.This result may have significant value on the design and application of the bio-electronic apparatus.

  4. Progeria: translational insights from cell biology.

    Science.gov (United States)

    Gordon, Leslie B; Cao, Kan; Collins, Francis S

    2012-10-01

    Cell biologists love to think outside the box, pursuing many surprising twists and unexpected turns in their quest to unravel the mysteries of how cells work. But can cell biologists think outside the bench? We are certain that they can, and clearly some already do. To encourage more cell biologists to venture into the realm of translational research on a regular basis, we would like to share a handful of the many lessons that we have learned in our effort to develop experimental treatments for Hutchinson-Gilford progeria syndrome (HGPS), an endeavor that many view as a "poster child" for how basic cell biology can be translated to the clinic.

  5. Embryonic stem cells: prospects for developmental biology and cell therapy.

    Science.gov (United States)

    Wobus, Anna M; Boheler, Kenneth R

    2005-04-01

    Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.

  6. Biological and clinical significance of NAC1 expression in cervical carcinomas: a comparative study between squamous cell carcinomas and adenocarcinomas/adenosquamous carcinomas.

    Science.gov (United States)

    Yeasmin, Shamima; Nakayama, Kentaro; Rahman, Mohammed Tanjimur; Rahman, Munmun; Ishikawa, Masako; Katagiri, Atsuko; Iida, Kouji; Nakayama, Naomi; Otuski, Yoshiro; Kobayashi, Hiroshi; Nakayama, Satoru; Miyazaki, Kohji

    2012-04-01

    This study examined the biological and clinical significance of NAC1 (nucleus accumbens associated 1) expression in both cervical squamous cell carcinomas and adenocarcinomas/adenosquamous carcinomas. Using immunohistochemistry, the frequency of positive NAC1 expression in adenocarcinomas/adenosquamous carcinomas (31.0%; 18/58) was significantly higher than that in squamous cell carcinomas (16.2%; 12/74) (P = .043). NAC1 gene amplification was identified by fluorescence in situ hybridization in 5 (7.2%) of 69 squamous cell carcinomas. NAC1 amplification was not identified in the adenocarcinomas (0%; 0/58). Positive NAC1 expression was significantly correlated with shorter overall survival in squamous cell carcinomas (P NAC1 expression in squamous cell carcinomas was an independent prognostic factor for overall survival after standard radiotherapy (P = .0003). In contrast to squamous cell carcinomas, positive NAC1 expression did not correlate with shorter overall survival in adenocarcinomas/adenosquamous carcinomas (P = .317). Profound growth inhibition, increased apoptosis, decreased cell proliferation, and decreased cell migration and invasion were observed in silencing RNA-treated cancer cells with NAC1 overexpression compared with cancer cells without NAC1 expression. NAC1 overexpression stimulated proliferation, migration, and invasion in the cervical cancer cell lines TCS and Hela P3, which normally lack NAC1 expression. These findings indicate that NAC1 overexpression is critical to the growth and survival of cervical carcinomas irrespective of histologic type. Furthermore, they suggest that NAC1 silencing RNA-induced phenotypes depend on the expression status of the targeted cell line. Therefore, cervical carcinoma patients with NAC1 expression may benefit from a targeted therapy irrespective of histologic type.

  7. Review of studies validating the protective efficacy of a new technology designed to compensate adverse biological effects caused by vdu and GSM cell phone radiation

    International Nuclear Information System (INIS)

    A total of 13 studies were initiated and coordinated by Technolab Research Center in 6 laboratories from 3 countries (France, UK, Japan). These studies were aimed at: 1) investigating potential adverse biological effects associated with exposure to non ionizing radiation emitted by two types of communication devices, video display units and cell phones; 2) assessing the efficacy of a compensation magnetic oscillating technology designed to protect from non ionizing radiation. Five types of biological systems including chicken embryos, young chickens, healthy mice, mice suffering from cancer and humans were used. A set of 10 biological parameters were assessed, including embryonic mortality, hormones, antibodies, haematological parameters, stress, mood, ocular damage, neurogenesis, micronuclei formation and intracellular calcium. Overall endpoints were affected by irradiation, in terms of increased embryonic mortality, immune depression, depletion of hormones crucial for the regulation of the immune system, changes in haematological parameters, increased stress, mood alteration, induction of ophthalmologic disorders, inhibition of the neurogenesis in brain areas associated with memory processes, induction of symptoms of cell dysfunction, apoptosis or cancer, and disruption of trans-membrane fluxes of calcium. On the other hand, the compensation magnetic oscillation technology tested allowed significant correction of altered physiological parameters, as well as improvement or disappearance of observed pathological symptoms (author)

  8. Tritium and Autoradiography in Cell Biology

    International Nuclear Information System (INIS)

    Because tritium emits low energy beta radiation, it is the most useful isotope for high resolution autoradiography. The relative abundance of hydrogen in most biologically important substances combined with a relatively short half-life allows the labelling of cellular components at specific activities that can often be detected at intracellular dimensions by the use of nuclear emulsions. The cells are attached to glass by various cytological procedures and after fixation a -wet or fluid photographic emulsion is applied directly to the cell surface and allowed to dry. After exposure the emulsion is developed while still in contact with the biological specimen. The preparation, an autoradiogram, when viewed under the light microscope shows the cellular structures and the location of the isotope with a resolution of less than 1 pm. In this way the distribution of tritium-labelled deoxyribonucleic acid (DNA) of individual chromosomes has been traced through two to three cell divisions. These studies were made possible by the preparation of tritiated thymidine which is a highly selective label for DNA and is quickly depleted when the cell is removed from the environment containing the labelled thymidine. The technique has yielded information on the mechanism of DNA replication, structure and reproduction of chromosomes, kinetics of cell division and more recently on the patterns and time sequence in the reproduction of different chromosomes in the same nucleus and the different parts of a single chromosome. All chromosomes studied so far contain two functional sub-units of DNA which are distributed in a semi-conservative fashion during reproduction. The two sub-units are unlike in some structural sense that limits the type of exchanges that may occur among the four sub-units of a reproducing chromosome. Present evidence on sequences leads to the hypothesis that chromosomes reproduce in a genetically controlled sequence. Further evidence on the patterns and mechanism of

  9. Human pluripotent stem cells: an emerging model in developmental biology

    OpenAIRE

    Zhu, Zengrong; Huangfu, Danwei

    2013-01-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development ‘in a dish’. We also...

  10. Cell Biology: Scaling and the Emergence of Evolutionary Cell Biology

    Science.gov (United States)

    Phillips, Patrick C.; Bowerman, Bruce

    2015-01-01

    A new study investigating the origins of diversity in the structure of the mitotic spindle in nematode embryos, at timescales spanning a few generations to hundreds of millions of years, finds that most features of the spindle evolve via a scaling relationship generated by natural selection acting directly upon embryo size. PMID:25784038

  11. Cell biology: scaling and the emergence of evolutionary cell biology.

    Science.gov (United States)

    Phillips, Patrick C; Bowerman, Bruce

    2015-03-16

    A new study investigating the origins of diversity in the structure of the mitotic spindle in nematode embryos, at timescales spanning a few generations to hundreds of millions of years, finds that most features of the spindle evolve via a scaling relationship generated by natural selection acting directly upon embryo size.

  12. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  13. Histochemical, Biochemical and Cell Biological aspects of tail regeneration in lizard, an amniote model for studies on tissue regeneration.

    Science.gov (United States)

    Alibardi, Lorenzo

    2014-01-01

    and inflammatory course, an inspiring model for understanding failure of tissue regeneration in higher vertebrates and humans. The participation of 5-Bromo-deoxyuridine (5BrdU) long retention cells, indicated as putative stem cells, for the following regeneration is analyzed and it shows that different tissue sites of the original tail contain putative stem cells that are likely activated from the wounding signal. In particular, the permanence of stem cells in the central canal of the spinal cord can explain the limited but important neurogenesis present in the caudal but also in the lumbar-thoracic spinal cord. In the latter, the limited number of glial and neurons regenerated is however sufficient to recover some limited hind limb movement after injury or spinal transection. Finally, the presence of stem cells in the spinal cord, in the regenerative blastema and skin allow to use these organs as a source of cells for studies on gene activation during cell differentiation in the new spinal cord, tail and in the epidermis. The above information form the basic knowledge for the future molecular studies on the specific gene activation capable to determine tail regeneration in lizards, and more in general genes involved in the reactivation of regeneration process in amniotes and humans.

  14. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry. PMID:23502560

  15. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  16. Wnt Signaling in Cancer Stem Cell Biology

    Science.gov (United States)

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  17. Countercurrent distribution of biological cells

    Science.gov (United States)

    1982-01-01

    It is known that the addition of phosphate buffer to two polymer aqueous phase systems has a strong effect on the partition behavior of cells and other particles in such mixtures. The addition of sodium phosphate to aqueous poly(ethylene glycol) dextran phase systems causes a concentration-dependent shift in binodial on the phase diagram, progressively lowering the critical conditions for phase separation as the phosphate concentration is increased. Sodium chloride produces no significant shift in the critical point relative to the salt-free case. Accurate determinations of the phase diagram require measurements of the density of the phases; data is presented which allows this parameter to be calculated from polarimetric measurements of the dextran concentrations of both phases. Increasing polymer concentrations in the phase systems produce increasing preference of the phosphate for the dextran-rich bottom phase. Equilibrium dialysis experiments showed that poly(ethylene glycol) effectively rejected phosphate, and to a lesser extent chloride, but that dextran had little effect on the distribution of either salt. Increasing ionic strength via addition of 0.15 M NaCl to phase systems containing 0.01 M phosphate produces an increased concentration of phosphate ions in the bottom dextran-rich phase, the expected effect in this type of Donnan distribution.

  18. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  19. II. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1948-05-24

    With the completion of the 184 inch cyclotron in Berkeley and the successful construction of a deflector system, it was possible to bring the 190 Mev deuteron and the 380 Mev alpha beams out into the air and to begin a study of the effects of high-energy deuteron beams by direct irradiation of biological specimens. The direct biological use of deuteron beams was attempted earlier in Berkeley by Marshak, MacLeish, and Walker in 1940. These and other investigators have been aware for some time of the potential usefulness of high energy particle beams for radio-biological studies and their suitability for biological investigations. R.R. Wilson advanced the idea of using fast proton beams to deliver radiation and intervening tissues. R.E. Zirkle pointed out that such particle beams may be focused or screened until a cross-section of the beam is small enough to study effects of irradiation under the microscope on single cells or on parts of single cells. This article gives an overview of the radiological use of high energy deuteron beams, including the following topics: potential uses of high energy particle beams; experiments on the physical properties of the beam; lethal effect of the deuteron beam on mice.

  20. Towards systems thinking in cell biology education

    OpenAIRE

    Verhoeff, Roald Pieter

    2003-01-01

    Students are taught a large variety of life structures and processes at the cellular level. The concepts used to describe them are mainly drawn from the sub-cellular level, but this knowledge seems to be fragmentary if its integration at the cellular and organismic level remains undone. As a consequence, many students fail to acquire coherent conceptual understanding of the cell as a basic and functional unit of the organism. To enhance the coherence in students’ cell biological knowledge we ...

  1. Textbook Errors & Misconceptions in Biology: Cell Metabolism.

    Science.gov (United States)

    Storey, Richard D.

    1991-01-01

    The idea that errors and misconceptions in biology textbooks are often slow to be discovered and corrected is discussed. Selected errors, misconceptions, and topics of confusion about cell metabolism are described. Fermentation, respiration, Krebs cycle, pentose phosphate pathway, uniformity of catabolism, and metabolic pathways as models are…

  2. Micro/nano-fabrication technologies for cell biology

    OpenAIRE

    Qian, Tongcheng; Wang, Yingxiao

    2010-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabricatio...

  3. An electrostatic model for biological cell division

    CERN Document Server

    Faraggi, Eshel

    2010-01-01

    Probably the most fundamental processes for biological systems is their ability to create themselves through the use of cell division and cell differentiation. In this work a simple physical model is proposed for biological cell division. The model consists of a positive ionic gradient across the cell membrane, and concentration of charge at the nodes of the spindle and on the chromosomes. A simple calculation, based on Coulomb's Law, shows that under such circumstances a chromosome will tend to break up to its constituent chromatids and that the chromatids will be separated by a distance that is an order of thirty percent of the distance between the spindle nodes. Further repulsion between the nodes will tend to stretch the cell and eventually break the cell membrane between the separated chromatids, leading to cell division. The importance of this work is in continuing the understanding of the electromagnetic basis of cell division and providing it with an analytical model. A central implication of this and...

  4. Biological studies of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.H.

    1949-11-16

    This paper discusses procedures for research on biological effects of radiation, using mouse tissue: activation trace analysis including methods and proceedures for handling samples before during and after irradiation; methods and procedures for ion exchange study; method of separation and recovery of copper, iron, zinc, cobalt, pubidium and cesium. Also included are studies of trace elements with radioactive isotopes: the distribution of cobalt 60, zinc 65, and copper 64 in the cytoplasm and nuclei of normal mice and those with tumors. 16 figs., 2 tabs.

  5. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  6. Anti-Purkinje cell antibody as a biological marker in attention deficit/hyperactivity disorder: a pilot study.

    Science.gov (United States)

    Passarelli, Francesca; Donfrancesco, Renato; Nativio, Paola; Pascale, Esterina; Di Trani, Michela; Patti, Anna Maria; Vulcano, Antonella; Gozzo, Paolo; Villa, Maria Pia

    2013-05-15

    An autoimmune hypothesis has been suggested for several disorders in childhood. The aim of the study was to clarify the role of the cerebellum in ADHD and to evaluate the possible association between anti-Yo antibodies and ADHD. The presence/absence of antibodies was tested by indirect immunofluorescence assay on 30 combined subtype ADHD children, on 19 children with other psychiatric disorders (Oppositional-defiant and Conduct Disorders, Dyslexia) and 27 healthy controls. Results showed a significant positive response to the anti-Yo antibody immunoreactivity in the Purkinje cells of the cerebellum of ADHD children, compared with the control group and the psychiatric non-ADHD children. This association points to an immune dysregulation and the involvement of the cerebellum in ADHD. PMID:23510584

  7. Long-term depression: a cell biological view

    OpenAIRE

    Sheng, Morgan; Ertürk, Ali

    2014-01-01

    Recent studies of the molecular mechanisms of long-term depression (LTD) suggest a crucial role for the signalling pathways of apoptosis (programmed cell death) in the weakening and elimination of synapses and dendritic spines. With this backdrop, we suggest that LTD can be considered as the electrophysiological aspect of a larger cell biological programme of synapse involution, which uses localized apoptotic mechanisms to sculpt synapses and circuits without causing cell death.

  8. Receptor studies in biological psychiatry

    International Nuclear Information System (INIS)

    Recent advances in the pharmacological treatment of endogenous psychosis have led to the development of biological studies in psychiatry. Studies on neurotransmitter receptors were reviewed in order to apply positron-emission tomograph (PET) for biological psychiatry. The dopamine (DA) hypothesis for schizophrenia was advanced on the basis of the observed effects of neuroleptics and methamphetamine, and DA(D2) receptor supersensitivity measured by PET and receptor binding in the schizophrenic brain. The clinical potencies of neuroleptics for schizophrenia were correlated with their abilities to inhibit the D2 receptor, and not other receptors. The σ receptor was expected to be a site of antipsychotic action. However, the potency of drugs action on it was not correlated with clinical efficacy. Haloperidol binds with high affinity to the σ receptor, which may mediate acute dystonia, an extrapyramidal side effect of neuroleptics. Behavioral and neurochemical changes induced by methamphetamine treatment were studied as an animal model of schizophrenia, and both a decrease of D2 receptor density and an increase of DA release were detected. The monoamine hypothesis for manic-depressive psychosis was advanced on the basis of the effect of reserpine, monoamine oxidase inhibitor and antidepressants. 3H-clonidine binding sites were increased in platelet membranes of depressive patients, 3H-imipramine binding sites were decreased. The GABAA receptor is the target site for the action of anxiolytics and antiepileptics such as benzodiazepines and barbiturates. Recent developments in molecular biology techniques have revealed the structure of receptor proteins, which are classified into two receptor families, the G-protein coupled type (D2) and the ion-channel type (GABAA). (J.P.N.)

  9. Cells — An Open Access Journal of Cell Biology

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2011-01-01

    Full Text Available To expand the open access publishing project of our newly founded company MDPI [1,2] based in Basel, Switzerland, we are in the process of launching new journals. Based on our success in running journals that represent key areas in science and technology, such as Molecules [3], Sensors [4], Energies [5], Viruses [6], Pharmaceuticals [7], Cancers [8] and Toxins [9], we are launching a new journal entitled Cells. It is an open access journal combining cell biology, molecular biology and biophysics, toward an understanding of cell structure, function and interactions. [...

  10. Evaluation of the Redesign of an Undergraduate Cell Biology Course

    OpenAIRE

    McEwen, Laura April; Harris, dik; Schmid, Richard F.; Vogel, Jackie; Western, Tamara; Harrison, Paul

    2009-01-01

    This article offers a case study of the evaluation of a redesigned and redeveloped laboratory-based cell biology course. The course was a compulsory element of the biology program, but the laboratory had become outdated and was inadequately equipped. With the support of a faculty-based teaching improvement project, the teaching team redesigned the course and re-equipped the laboratory, using a more learner-centered, constructivist approach. The focus of the article is on the project-supported...

  11. Femtosecond fabricated surfaces for cell biology

    Science.gov (United States)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  12. The Kynurenine Pathway in Stem Cell Biology

    OpenAIRE

    Jones, Simon P; Guillemin, Gilles J; Bruce J Brew

    2013-01-01

    The kynurenine pathway (KP) is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington’s disease, amyotrophic lateral sclerosis, and Alzheimer’s disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental ar...

  13. The cell biology of fat expansion

    Science.gov (United States)

    Rutkowski, Joseph M.; Stern, Jennifer H.

    2015-01-01

    Adipose tissue is a complex, multicellular organ that profoundly influences the function of nearly all other organ systems through its diverse metabolite and adipokine secretome. Adipocytes are the primary cell type of adipose tissue and play a key role in maintaining energy homeostasis. The efficiency with which adipose tissue responds to whole-body energetic demands reflects the ability of adipocytes to adapt to an altered nutrient environment, and has profound systemic implications. Deciphering adipocyte cell biology is an important component of understanding how the aberrant physiology of expanding adipose tissue contributes to the metabolic dysregulation associated with obesity. PMID:25733711

  14. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    OpenAIRE

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the...

  15. Biological cell manipulation by magnetic nanoparticles

    Science.gov (United States)

    Gertz, Frederick; Khitun, Alexander

    2016-02-01

    We report a manipulation of biological cells (erythrocytes) by magnetite (Fe3O4) nanoparticles in the presence of a magnetic field. The experiment was accomplished on the top of a micro-electromagnet consisting of two magnetic field generating contours. An electric current flowing through the contour(s) produces a non-uniform magnetic field, which is about 1.4 mT/μm in strength at 100 mA current in the vicinity of the current-carrying wire. In responses to the magnetic field, magnetic nanoparticles move towards the systems energy minima. In turn, magnetic nanoparticles drag biological cells in the same direction. We present experimental data showing cell manipulation through the control of electric current. This technique allows us to capture and move cells located in the vicinity (10-20 microns) of the current-carrying wires. One of the most interesting results shows a periodic motion of erythrocytes between the two conducting contours, whose frequency is controlled by an electric circuit. The obtained results demonstrate the feasibility of non-destructive cell manipulation by magnetic nanoparticles with micrometer-scale precision.

  16. Autophagic regulation of smooth muscle cell biology

    Science.gov (United States)

    Salabei, Joshua K.; Hill, Bradford G.

    2014-01-01

    Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (patho)physiology. PMID:25544597

  17. Autophagic regulation of smooth muscle cell biology

    Directory of Open Access Journals (Sweden)

    Joshua K. Salabei

    2015-04-01

    Full Text Available Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (pathophysiology.

  18. Study on Biologic Activity for Membrane of Normal Bone Marrow Cells with Infection of Epidemic Hemorrhagic Fever Virus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using DPH fluorescence probe, the membrane of normal bone marrow cells with infection of epidemic hemorrhagic fever virus (EHFV) was labeled. The membrane lipid fluidity was obviously decreased from the membrane lipid fluorescence polarization. The membrane lipid fluidity of lymphocyte, monocyte and neutrophilic granulocyte was dynamically observed. After culturing the cells for 1, 6, 24 and 72 h, it was found that all the membrane lipid fluidity of the infected cells was decreased obviously with the longer the culturing time, the more obvious it. Compared with the normal control groups, there was a significant difference statistically (P<0. 05-0. 01). It was suggested that the decrease of the membrane lipid fluidity of normal bone marrow cell with infection of EHFV had correlation with the degree of virus invading and cellfunction injury.

  19. Celebrating Plant Cells: A Special Issue on Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A special issue on plant cell biology is long overdue for JIPB! In the last two decades or so, the plant biology community has been thrilled by explosive discoveries regarding the molecular and genetic basis of plant growth, development, and responses to the environment, largely owing to recent maturation of model systems like Arabidopsis thaliana and the rice Oryza sativa, as well as the rapid development of high throughput technologies associated with genomics and proteomics.

  20. Using synthetic biology to make cells tomorrow's test tubes.

    Science.gov (United States)

    Garcia, Hernan G; Brewster, Robert C; Phillips, Rob

    2016-04-18

    The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting. PMID:26952708

  1. Electrical Modeling and Impedance Analysis of Biological Cells

    Directory of Open Access Journals (Sweden)

    Gowri Sree V.

    2014-03-01

    Full Text Available It was proved that the external electric field intensity has significant effects on the biological systems. The applied electric field intensity changes the electrical behavior of the cell systems. The impact of electric field intensity on the cell systems should be studied properly to optimize the electric field treatments of biological systems. Based on the cell dimensions and its dielectric properties, an electrical equivalent circuit for an endosperm cell in rice was developed and its total impedance and capacitance were verified with measurement results. The variations of impedance and conductance with respect to applied impulse voltage at different frequencies were plotted. This impedance analysis method can be used to determine the optimum voltage level for electric field treatment and also to determine the cell rupture due to electric field applications.

  2. Correlating the morphological and light scattering properties of biological cells

    Science.gov (United States)

    Moran, Marina

    The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness

  3. Cell biology: at the center of modern biomedicine.

    Science.gov (United States)

    Budde, Priya Prakash; Williams, Elizabeth H; Misteli, Tom

    2012-10-01

    How does basic cell biology contribute to biomedicine? A new series of Features in JCB provides a cross section of compelling examples of how basic cell biology findings can lead to therapeutics. These articles highlight the fruitful, essential, and increasingly prominent bridge that exists between cell biology and the clinic.

  4. Cell biology of the Koji mold Aspergillus oryzae.

    Science.gov (United States)

    Kitamoto, Katsuhiko

    2015-01-01

    Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.

  5. Teaching Cell and Molecular Biology for Gender Equity

    Science.gov (United States)

    Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel

    2006-01-01

    Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social studies of…

  6. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  7. Skeletal Muscle Stem Cells from Animals I. Basic Cell Biology

    OpenAIRE

    Michael V. Dodson, Gary J. Hausman, LeLuo Guan, Min Du, Theodore P. Rasmussen, Sylvia P. Poulos, Priya Mir, Werner G. Bergen, Melinda E. Fernyhough, Douglas C. McFarland, Robert P. Rhoads, Beatrice Soret, James M. Reecy, Sandra G. Velleman, Zhihua Jiang

    2010-01-01

    Skeletal muscle stem cells from food-producing animals are of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding of muscle stem cell biology and function is essential for developing technologies and strategies to augment the metabolic efficiency and muscle hypertrophy of growing animals potentially leading to grea...

  8. Stem cells - biological update and cell therapy progress

    OpenAIRE

    GIRLOVANU, MIHAI; Susman, Sergiu; Soritau, Olga; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; Carmen Mihaela MIHU

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods t...

  9. Cell Biology: Cohesin Rings Leave Loose Ends

    Science.gov (United States)

    Skibbens, Robert V.

    2016-01-01

    Cohesins function in almost all aspects of chromosome biology. Two new studies confirm that a subset of cohesin subunits form a flexible but compressed ring that can be opened through degradation. X-ray crystallography supports potentially differing regulation of subunit associations. PMID:25649818

  10. Study on lethal effect on cells by determination of 10B in biological tissues and (n, α) reaction

    International Nuclear Information System (INIS)

    As for the macroscopic distribution in tissues and microscopic distribution in cells of 10B administrated to patients, which are important in thermal neutron capture therapy, it is difficult to say that the method of quantitative determination has been established. The authors tried some experiments by solid state track detection for the determination. That is, the trial determinations of boron in cells by solution method (wet process), filter paper method (dry process) and the method using an electron microscope are reported. If the maximum thermal neutron fluence available is assumed to be 1014/cm2 and the minimum detectable surface density of etch pits is 104/cm2, the detection limit of 10B concentration is estimated as about 10-2 μg/ml either in the solution method or in the filter paper method. In the quantitative determination of boron distribution at cell level with an electron microscope, a sample of tissue was covered with a plastic thin film, etched after the irradiation with thermal neutrons, and the tissue and the thin film were simultaneously observed with the transmission electron microscope. The thin film thickness of about 0.1 μm is suitable for the sliced tissue of about 0.1 μm thick. The existence of fast neutrons at the time of thermal neutron irradiation causes the generation of etch pits by recoiled particles in celluloid, and increases background counts, while γ-dose above 106 rad leads to the deterioration of celluloid composition. Some automatic methods of counting etch pits under consideration are described. (Wakatsuki, Y.)

  11. Cell biology and EMF safety standards.

    Science.gov (United States)

    Blank, Martin

    2015-01-01

    Living cells react defensively and start to synthesize stress proteins when exposed to potentially harmful stimuli. Electromagnetic fields (EMF) are among the many different environmental stimuli that initiate stress protein synthesis. Although there is greater energy transfer and heating due to EMF at higher frequencies, there is no greater stress response. The cellular stress response is far more sensitive to EMF than to an increase in temperature. It should be obvious that an EMF safety standard should be based on the more sensitive, natural biological response.

  12. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    OpenAIRE

    Zhenzhen eQiao; Marc eLibault

    2013-01-01

    Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i....

  13. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers.

  14. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    Science.gov (United States)

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  15. Designer nanoparticle: nanobiotechnology tool for cell biology

    Science.gov (United States)

    Thimiri Govinda Raj, Deepak B.; Khan, Niamat Ali

    2016-09-01

    This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.

  16. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  17. Femtosecond diffractive imaging of biological cells

    Science.gov (United States)

    Marvin Seibert, M.; Boutet, Sébastien; Svenda, Martin; Ekeberg, Tomas; Maia, Filipe R. N. C.; Bogan, Michael J.; Tîmneanu, Nicusor; Barty, Anton; Hau-Riege, Stefan; Caleman, Carl; Frank, Matthias; Benner, Henry; Y Lee, Joanna; Marchesini, Stefano; Shaevitz, Joshua W.; Fletcher, Daniel A.; Bajt, Sasa; Andersson, Inger; Chapman, Henry N.; Hajdu, Janos

    2010-10-01

    In a flash diffraction experiment, a short and extremely intense x-ray pulse illuminates the sample to obtain a diffraction pattern before the onset of significant radiation damage. The over-sampled diffraction pattern permits phase retrieval by iterative phasing methods. Flash diffractive imaging was first demonstrated on an inorganic test object (Chapman et al 2006 Nat. Phys. 2 839-43). We report here experiments on biological systems where individual cells were imaged, using single, 10-15 fs soft x-ray pulses at 13.5 nm wavelength from the FLASH free-electron laser in Hamburg. Simulations show that the pulse heated the sample to about 160 000 K but not before an interpretable diffraction pattern could be obtained. The reconstructed projection images return the structures of the intact cells. The simulations suggest that the average displacement of ions and atoms in the hottest surface layers remained below 3 Å during the pulse.

  18. Femtosecond diffractive imaging of biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Marvin Seibert, M; Boutet, Sebastien; Svenda, Martin; Ekeberg, Tomas; Maia, Filipe R N C; TImneanu, Nicusor; Caleman, Carl; Hajdu, Janos [Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala (Sweden); Bogan, Michael J [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Barty, Anton; Hau-Riege, Stefan; Frank, Matthias; Benner, Henry [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lee, Joanna Y [Department of Biology, Stanford University, Stanford, CA 94305 (United States); Marchesini, Stefano [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Shaevitz, Joshua W [150 Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544 (United States); Fletcher, Daniel A [Bioengineering and Biophysics, University of California, Berkeley, CA 94720 (United States); Bajt, Sasa [Photon Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Andersson, Inger [Department of Molecular Biology, Swedish University of Agricultural Sciences, Husargatan 3, Box 590, SE-751 24 Uppsala (Sweden); Chapman, Henry N, E-mail: marvin@xray.bmc.uu.s, E-mail: janos@xray.bmc.uu.s [Center for Free-Electron Laser Science, University of Hamburg and DESY, Notkestrasse 85, Hamburg (Germany)

    2010-10-14

    In a flash diffraction experiment, a short and extremely intense x-ray pulse illuminates the sample to obtain a diffraction pattern before the onset of significant radiation damage. The over-sampled diffraction pattern permits phase retrieval by iterative phasing methods. Flash diffractive imaging was first demonstrated on an inorganic test object (Chapman et al 2006 Nat. Phys. 2 839-43). We report here experiments on biological systems where individual cells were imaged, using single, 10-15 fs soft x-ray pulses at 13.5 nm wavelength from the FLASH free-electron laser in Hamburg. Simulations show that the pulse heated the sample to about 160 000 K but not before an interpretable diffraction pattern could be obtained. The reconstructed projection images return the structures of the intact cells. The simulations suggest that the average displacement of ions and atoms in the hottest surface layers remained below 3 A during the pulse.

  19. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  20. 人牙周膜干细胞的生物学活性研究%Study on Biological Activity of Human Periodontal Ligament Stem Cells

    Institute of Scientific and Technical Information of China (English)

    石建峰; 毕文超; 张晨; 饶国洲; 李昂

    2013-01-01

    目的体外分离培养、鉴定人牙周膜干细胞(PDLSCs)并探讨其生物学活性的研究.方法应用酶解组织块法分离培养PDLSCs,应用相差显微镜观察细胞表型变化;HE染色及免疫组化染色进行形态学检测;流式细胞术检测细胞表面CD29,CD44,CD105,CD34,CD45和HLA-DR的表达;诱导成骨细胞、成脂肪细胞及成神经元分化,并进行特异性染色分析,扫描电镜观察,检测PDLSCs生物学活性.结果 体外成功分离培养人PDLSCs,HE染色显示细胞均一性好;角蛋白阴性,波形蛋白和CD44阳性表达;流式细胞仪结果显示PDLSCs表面高表达CD29(92.47%),CD44(96.42%)和CD105(96.40%);CD34,CD45和HLA-DR阴性表达;诱导成骨结果显示PDLSCs有较强的成骨活性,茜素红染色诱导组有明显的矿化结节形成,ALP染色阳性;成脂诱导PDLSCs有较强的成脂活性,油红"O"脂肪染色阳性;成神经元诱导后NSE免疫组化染色呈阳性.结论 PDLSCs在体外具有多向分化的潜能.%Objective To isolate and culture in vitro,the identification of human periodontal ligament stem cells (PDLSCs) and to explore its biological activity. Methods Application of enzymatic tissue explant isolated and cultured in vitro the human periodontal ligament stem cells,in primary culture process by phase contrast microscopy to observe the changes of cell phenotype. Application HE staining and immunohistochemical study on morphological detection. The cell surfaceantigens such as CD29,CD44,CD105 and CD34,CD45 and HLA-DR were detected by flow cytometry. Induced PDLSCs into osteo-genic cells,into fat cells and into neuronal differentiation,and through the specific dyeing analysis,scanning electron microscopy (sem) to detect the PDLSCs biological activities. Results In vitro successfully isolated and cultured human periodontal ligament stem cells, HE staining showed that cell uniformity; negative expression of keratin and vimentin positive expression, CD44-positive expression. Flow

  1. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  2. Biological characteristics of a novel giant cell tumor cell line derived from spine.

    Science.gov (United States)

    Zhou, Zhenhua; Li, Yan; Xu, Leqin; Wang, Xudong; Chen, Su; Yang, Cheng; Xiao, Jianru

    2016-07-01

    Giant cell tumor of bone(GCTB) is a special bone tumor for it consists of various cell types, and its biological characteristics is different from common benign or malignant neoplasm. In the present study, we report the biological features of a primary Asian GCTB cell line named GCTB28. We analyzed extensive properties of the GCTB28 cells including morphological observations, growth, cell cycle, karyotype, proliferation, proteins expression, surface biomarker verification, and tumorigenicity in nude mice. We found that the stromal cells of GCTB were endowed with self-renewal capacity and played dominant roles in GCTB development. Moreover, we confirmed that GCTB cells can be CD33(-)CD14(-) phenotype which was not in accord with previous study. This study provides an in vitro model system to investigate pathogenic mechanisms and molecular characteristics of GCTB and also provides a useful tool for researching the therapeutic targeting of GCTB. PMID:26801673

  3. The biology of human innate lymphoid cells

    NARCIS (Netherlands)

    J.H.J. Bernink

    2016-01-01

    In this thesis I performed studies to investigate the contribution of human innate lymphoid cells (ILCs) in maintaining the mucosal homeostasis, initiating and/or propagating inflammatory responses, but also - when not properly regulated - how these cells contribute to immunopathology. First I descr

  4. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  5. Experimental models to study cholangiocyte biology

    Institute of Scientific and Technical Information of China (English)

    Pamela S. Tietz; Xian-Ming Chen; Ai-Yu Gong; Robert C. Huebert; Anatoliy Masyuk; Tatyana Masyuk; Patrick L. Splinter; Nicholas F. LaRusso

    2002-01-01

    Cholangiocytes-the epithelial cells which line the bileducts-are increasingly recognized as importanttransporting epithelia actively involved in the absorptionand secretion of water, ions, and solutes. Thisrecognition is due in part to the recent development ofnew experimental models. New biologic concepts haveemerged including the identification and topography ofreceptors and flux proteins on the apical and/orbasolateral membrane which are involved in the molecularmechanisms of ductal bile secretion. Individually isolatedand/or perfused bile duct units from livers of rats andmice serve as new, physiologically relevant in vitromodels to study cholangiocyte transport. Biliary treedimensions and novel insights into anatomic remodeling ofproliferating bile ducts have emerged from three-dimensional reconstruction using CT scanning andsophisticated software. Moreover, new pathologicconcepts have arisen regarding the interaction ofcholangiocytes with pathogens such as Cryptosporidiumparvum. These concepts and associated methodologiesmay provide the framework to develop new therapies for the cholangiopathies, a group of important hepatobiliarydiseases in which cholangiocytes are the target cell.Tietz PS, Chen XM, Gong AY, Huebert RC, Masyuk A, MasyukT, Splinter PL, LaRusso NF. Experimental models to studycoholangiocyte biology.

  6. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  7. Biologic characteristics of fibroblast cells cultured from the knee ligaments

    Institute of Scientific and Technical Information of China (English)

    陈鸿辉; 唐毅; 李斯明; 沈雁; 刘向荣; 钟灿灿

    2002-01-01

    Objective: To culture fibroblast cells from the kneeligaments and to study the biological characteristics of thesecells.Methods: Cells of the anterior cruciate ligament(ACL) and the medial collateral ligament (MCL) fromNew Zealand white rabbit were cultured in vitro. Cellulargrowth and expression of the collagen were analyzed.Moreover, an in vitro wound closure model was establishedand the healing of the ACL and the MCL cells wascompared.Results: Maximal growth for all these cells wereobtained with Dulbecco's modified Eagle's mediumsupplemented with 10% fetal bovine serum, but RPMI 1640and Ham's F12 media were not suitable to maintain thesecells. Morphology of both ACL and MCL cells from NewZealand white rabbit was alike in vitro, but the MCL cellsgrew faster than the ACL cells. Both cell types producedsimilar amount of collagen in culture, but the ratio ofcollage type I to type III produced by ACL cells was higherthan that produced by MCL cells. Wound closure assayshowed that at 36 hours after injury, cell-free zones createdin the ACL cultures were occupied partially by the ACLcells; in contrast, the wounded zone in the MCL cultureswas almost completely covered by the cells.Conclusions: Although the ACL cells and the MCLcells from New Zealand white rabbit show similarappearance in morphology in culture, the cellular growthand the biochemical synthesis of collagen as well as thehealing in vitro were significantly different. Thesedifferences in intrinsic properties of the two types of cells invitro might contribute to the differential healing potentialsof these ligaments in vivo.

  8. Cdc48: A Swiss Army Knife of Cell Biology

    Directory of Open Access Journals (Sweden)

    Guem Hee Baek

    2013-01-01

    Full Text Available Cdc48 (also called VCP and p97 is an abundant protein that plays essential regulatory functions in a broad array of cellular processes. Working with various cofactors, Cdc48 utilizes its ATPase activity to promote the assembly and disassembly of protein complexes. Here, we review key biological functions and regulation of Cdc48 in ubiquitin-related events. Given the broad employment of Cdc48 in cell biology and its intimate ties to human diseases (e.g., amyotrophic lateral sclerosis, studies of Cdc48 will bring significant insights into the mechanism and function of ubiquitin in health and diseases.

  9. Pneumocystis carinii: genetic diversity and cell biology.

    Science.gov (United States)

    Smulian, A G

    2001-12-01

    As an important opportunistic pulmonary pathogen, Pneumocystis carinii has been the focus of extensive research over the decades. The use of laboratory animal models has permitted a detailed understanding of the host-parasite interaction but an understanding of the basic biology of P. carinii has lagged due in large part to the inability of the organism to grow well in culture and to the lack of a tractable genetic system. Molecular techniques have demonstrated extensive heterogeneity among P. carinii organisms isolated from different host species. Characterization of the genes and genomes of the Pneumocystis family has supported the notion that the family comprises different species rather than strains within the genus Pneumocystis and contributed to the understanding of the pathophysiology of infection. Many of the technical obstacles in the study of the organisms have been overcome in the past decade and the pace of research into the basic biology of the organism has accelerated. Biochemical pathways have been inferred from the presence of key enzyme activities or gene sequences, and attempts to dissect cellular pathways have been initiated. The Pneumocystis genome project promises to be a rich source of information with regard to the functional activity of the organism and the presence of specific biochemical pathways. These advances in our understanding of the biology of this organism should provide for future studies leading to the control of this opportunistic pathogen.

  10. Extending the knowledge in histochemistry and cell biology.

    Science.gov (United States)

    Heupel, Wolfgang-Moritz; Drenckhahn, Detlev

    2010-01-01

    Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.

  11. The cell biology of Tobacco mosaic virus replication and movement.

    Science.gov (United States)

    Liu, Chengke; Nelson, Richard S

    2013-01-01

    Successful systemic infection of a plant by Tobacco mosaic virus (TMV) requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement, and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton, and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  12. Fluid models and simulations of biological cell phenomena

    Science.gov (United States)

    Greenspan, H. P.

    1982-01-01

    The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.

  13. Cell biology apps for Apple devices.

    Science.gov (United States)

    Stark, Louisa A

    2012-01-01

    Apps for touch-pad devices hold promise for guiding and supporting learning. Students may use them in the classroom or on their own for didactic instruction, just-in-time learning, or review. Since Apple touch-pad devices (i.e., iPad and iPhone) have a substantial share of the touch-pad device market (Campbell, 2012), this Feature will explore cell biology apps available from the App Store. My review includes iPad and iPhone apps available in June 2012, but does not include courses, lectures, podcasts, audiobooks, texts, or other books. I rated each app on a five-point scale (1 star = lowest; 5 stars = highest) for educational and production values; I also provide an overall score. PMID:22949420

  14. Cell biology apps for Apple devices.

    Science.gov (United States)

    Stark, Louisa A

    2012-01-01

    Apps for touch-pad devices hold promise for guiding and supporting learning. Students may use them in the classroom or on their own for didactic instruction, just-in-time learning, or review. Since Apple touch-pad devices (i.e., iPad and iPhone) have a substantial share of the touch-pad device market (Campbell, 2012), this Feature will explore cell biology apps available from the App Store. My review includes iPad and iPhone apps available in June 2012, but does not include courses, lectures, podcasts, audiobooks, texts, or other books. I rated each app on a five-point scale (1 star = lowest; 5 stars = highest) for educational and production values; I also provide an overall score.

  15. 人乳腺癌细胞微球体生物学特性研究%Study on the biological characteristics of human breast cancer cell mammospheres

    Institute of Scientific and Technical Information of China (English)

    范原铭; 侯婧; 董宁; 王强; 顾敏

    2015-01-01

    目的:研究人乳腺癌细胞微球体(MSs)的生物学特性,建立乳腺癌干细胞实验模型。方法无血清悬浮培养人乳腺癌MCF‐7细胞(MCF‐7组),并获取MSs(MSs组)。利用细胞划痕实验、transwell实验及动物成瘤实验检测MSs在细胞迁移、侵袭性生长及体外成瘤等方面的生物学特性。结果细胞划痕实验提示:MSs组划痕带可在48 h后愈合,而MCF‐7组划痕带在48 h后未能愈合;transwell实验提示MSs组中可见到(76.24±0.35)个细胞通过生物膜,而MCF‐7细胞组中为(17.38±0.18)个(P<0.05);动物成瘤实验提示:MSs在成瘤速度及移植瘤体积方面均强于MCF‐7细胞。结论 MSs具有极强的迁移、侵袭性生长及动物体内成瘤的能力,可作为实验模型应用于乳腺癌干细胞相关研究中。%Objective To study the biological characteristics of the human breast cancer cell mammospheres (MSs) ,and con‐struct breast cancer stem cell experiment model .Methods MCF‐7 cells were cultured in the serum‐free media supplemented with growth factors (the MCF‐7 group) ,and the MSs was collected (the MSs group) .The migration ,invasive and animal tumor forma‐tion abilities of MSs were detected by wound healing ,transwell invasive assay and animal tumor formation test .Results The wound line of MSs healed after 48 hours ,but the line of MCF‐7cells could not heal after 48 h .The number of the cells going through the membrane in MSs group was (76 .24 ± 0 .35) ,and the number in MCF‐7cells was (17 .38 ± 0 .18)(P<0 .05) .MSs had stronger ani‐mal tumor formation ability than MCF‐7 cells .Conclusion MSs have stronger abilities in migration ,invasive and animal tumor for‐mation ,and could be used in the studies of breast cancer stem cell as experimental model .

  16. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.

  17. PENGEMBANGAN BAHAN AJAR BIOLOGI SEL PADA PROGRAM STUDI PENDIDIKAN BIOLOGI UIN ALAUDDIN MAKASSAR

    OpenAIRE

    Muriati, St

    2015-01-01

    Learning in UIN Alauddin is still limited knowledge to students, while, one mission to improve the quality of educators Biology in terms of belief, moral and scientific attitudes have not been implemented. This is caused by a lack of learning resources that connects Biology Science and its relation to scientific Qur'an. Cell Biology as subjects that reveal about the phenomenon of the smallest unit of life, it can be studied with scientific Qur'an. Therefore, it is necessary to develop teachin...

  18. Cell Biology and Pathology of Podocytes

    Science.gov (United States)

    Greka, Anna; Mundel, Peter

    2013-01-01

    As an integral member of the filtration barrier in the kidney glomerulus, the podocyte is in a unique geographical position: It is exposed to chemical signals from the urinary space (Bowman’s capsule), it receives and transmits chemical and mechanical signals to/from the glomerular basement membrane upon which it elaborates, and it receives chemical and mechanical signals from the vascular space with which it also communicates. As with every cell, the ability of the podocyte to receive signals from the surrounding environment and to translate them to the intracellular milieu is dependent largely on molecules residing on the cell membrane. These molecules are the first-line soldiers in the ongoing battle to sense the environment, to respond to friendly signals, and to defend against injurious foes. In this review, we take a membrane biologist’s view of the podocyte, examining the many membrane receptors, channels, and other signaling molecules that have been implicated in podocyte biology. Although we attempt to be comprehensive, our goal is not to capture every membrane-mediated pathway but rather to emphasize that this approach may be fruitful in understanding the podocyte and its unique properties. PMID:22054238

  19. Computational cell biology at the home of the helix.

    Science.gov (United States)

    Ward, Jonathan J; Nédélec, Francois J

    2010-06-01

    The Computational Cell Biology Conference, held jointly by the Cold Spring Harbor Laboratory and the Wellcome Trust, was convened in the grand surroundings of Hinxton Hall near Cambridge, UK. The high quality of the research presented at the meeting confirmed that the field of computational cell biology is maturing rapidly, which mirrors the progression of cell biology from being mostly descriptive to a more quantitative discipline.

  20. Translational research in ovarian carcinoma : cell biological aspects of drug resistance and tumor aggressiveness

    NARCIS (Netherlands)

    Zee, Ate Gerard Jan van der

    1994-01-01

    In this thesis diverse cell biological features that in cultured (ovarian) tumor cells have been linked to drug resistance and/or tumor aggressiveness are studied in tumor specimens of epithelial ovarian carcinomas.

  1. Photonic engineering for biological study

    Science.gov (United States)

    Wu, Fei

    My dissertation focuses on designing and developing prototypes of optical tools in the laboratory that can facilitate practical medical therapies. More specifically, this dissertation examines two novel biophotonic techniques: (1) a frequency multiplexed confocal microscope with the potential to provide rational therapy of congestive heart failure (CHF), and (2) the "optical comb" with the potential to improve results of retina reattachment surgery and accelerate post surgical recovery. Next, I will discuss the background, design and initial experimental results of each study individually. Part I: The Frequency Multiplexed Confocal Microscope. To overcome the limitations of existing confocal microscope technology, this dissertation proposes a non-scanning, real-time, high resolution technique (a multi-point frequency multiplexed confocal microscope) to measure 3-D intracellular calcium ion concentration in a living cardiac myocyte. This method can be also applied to measure the intracellular sodium ion concentration, or other ions in which high quantum-yield fluorescent probes are available. The novelty of the proposed research lies in the introduction of carrier frequency multiplexing techniques which can differentiate fluorescence emitted at different spatial locations in cardiac myocyte by their modulated frequency. It therefore opens the possibility to visualize the transient dynamics of intracellular dynamics at multiple locations in cells simultaneously, which will shine a new light on our understanding of CHF. The procedure for frequency multiplexing proposed is described below. Multiple incident laser beams are focused onto different locations in an isolated rat cardiac myocyte with each beam modulated at a different carrier frequency. The fluorescence emission at each location therefore bears the same modulated frequency as the stimulation laser beam. Each fluorescence signal is sent to the photo multiplier tube (PMT) after being spatially filtered by a

  2. Biology of Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Michele Milella, Alessandra Felici

    2011-01-01

    cell biology and tumor-host interactions may hold the key to future advances in such a complex and challenging disease.

  3. Synthetic biology outside the cell: linking computational tools to cell-free systems.

    Science.gov (United States)

    Lewis, Daniel D; Villarreal, Fernando D; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems. PMID:25538941

  4. Synthetic biology outside the cell: linking computational tools to cell-free systems.

    Science.gov (United States)

    Lewis, Daniel D; Villarreal, Fernando D; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  5. ``Physical Concepts in Cell Biology,'' an upper level interdisciplinary course in cell biophysics/mathematical biology

    Science.gov (United States)

    Vavylonis, Dimitrios

    2009-03-01

    I will describe my experience in developing an interdisciplinary biophysics course addressed to students at the upper undergraduate and graduate level, in collaboration with colleagues in physics and biology. The students had a background in physics, biology and engineering, and for many the course was their first exposure to interdisciplinary topics. The course did not depend on a formal knowledge of equilibrium statistical mechanics. Instead, the approach was based on dynamics. I used diffusion as a universal ``long time'' law to illustrate scaling concepts. The importance of statistics and proper counting of states/paths was introduced by calculating the maximum accuracy with which bacteria can measure the concentration of diffuse chemicals. The use of quantitative concepts and methods was introduced through specific biological examples, focusing on model organisms and extremes at the cell level. Examples included microtubule dynamic instability, the search and capture model, molecular motor cooperativity in muscle cells, mitotic spindle oscillations in C. elegans, polymerization forces and propulsion of pathogenic bacteria, Brownian ratchets, bacterial cell division and MinD oscillations.

  6. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry

    OpenAIRE

    Harris, D. Calvin; Jewett, Michael C.

    2012-01-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology ...

  7. Multiway modeling and analysis in stem cell systems biology

    Directory of Open Access Journals (Sweden)

    Vandenberg Scott L

    2008-07-01

    Full Text Available Abstract Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.. A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a

  8. Cell Biology: ERADicating Survival with BOK.

    Science.gov (United States)

    Chipuk, Jerry Edward; Luna-Vargas, Mark P

    2016-06-01

    Mechanistic insights into the function of the pro-apoptotic BCL-2 family member BOK have remained elusive. A recent study shows that healthy cells constitutively degrade BOK via the ER-associated degradation and ubiquitin-proteasome pathways; following proteasome inhibition, BOK is stabilized to initiate a unique pro-apoptotic death program.

  9. Structural Studies of Biological Solids Using NMR

    Science.gov (United States)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  10. Biological Characteristics of Foam Cell Formation in Smooth Muscle Cells Derived from Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Pengke Yan, Chenglai Xia, Caiwen Duan, Shihuang Li, Zhengrong Mei

    2011-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMSC can differentiate into diverse cell types, including adipogenic, osteogenic, chondrogenic and myogenic lineages. There are lots of BMSC accumulated in atherosclerosis vessels and differentiate into VSMC. However, it is unclear whether VSMC originated from BMSC (BMSC-SMC could remodel the vessel in new tunica intima or promote the pathogenesis of atherosclerosis. In this study, BMSC were differentiated into VSMC in response to the transforming growth factor β (TGF-β and shown to express a number of VSMC markers, such as α-smooth muscle actin (α-SMA and smooth muscle myosin heavy chain1 (SM-MHC1. BMSC-SMC became foam cells after treatment with 80 mg/L ox-LDL for 72 hours. Ox-LDL could upregulate scavenger receptor class A (SR-A but downregulate the ATP-binding cassette transporter A1 (ABCA1 and caveolin-1 protein expression, suggesting that modulating relative protein activity contributes to smooth muscle foam cell formation in BMSC-SMC. Furthermore, we found that BMSC-SMC have some biological characteristics that are similar to VSMC, such as the ability of proliferation and secretion of extracellular matrix, but, at the same time, retain some biological characteristics of BMSC, such as a high level of migration. These results suggest that BMSC-SMC could be induced to foam cells and be involved in the development of atherosclerosis.

  11. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  12. [Effects of decitabine on biological behavior of U266 cells].

    Science.gov (United States)

    Wang, Mei-Fang; Yang, Lin-Hua; Dong, Chun-Xia; Zhang, Rui-Juan; Zhang, Jian-Hua; Guo, Zhi-Ping; Chen, Jian-Fang; Zhagn, Li; Feng, Da-Wei

    2011-08-01

    This study was aimed to explore the effects of decitabine on the biological behaviour of U266 cells in vitro so as to provide a new thinking and experiment basis, as well as new evidences for the pathogenesis of multiple myeloma. MTT and colony formation assays were used to evaluate the impact of decitabine on the ability of proliferation of U266 cells; flow cytometry was used to analyze the cell distribution in cell cycle; transwell chamber and matrigel assays were used to observe the ability of migration and invasion. The results indicated that decitabine could significantly suppress the proliferation of U266 cells in time-and dose-dependent manners. The flow cytometric analysis demonstrated that the cells in G(0)-G(1) phase significantly increased while the cells in S and G(2)/M phase decreased. The migration and matrigel invading tests showed that the number of cells moving into under chamber of transwell decreased after U266 cells treated with decitabine. It is concluded that decitabine may act as an effective drug for MM by inhibiting the proliferation, migration and invasion ability, and the specific mechanism needs to be deeply explored.

  13. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    Science.gov (United States)

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc.

  14. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    Science.gov (United States)

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc. PMID:26960183

  15. Design, synthesis, and in vitro and in vivo biological studies of a 3'-deoxythymidine conjugate that potentially kills cancer cells selectively.

    Directory of Open Access Journals (Sweden)

    Qiong Wei

    Full Text Available Thymidine kinases (TKs have been considered one of the potential targets for anticancer therapeutic because of their elevated expressions in cancer cells. However, nucleobase analogs targeting TKs have shown poor selective cytotoxicity in cancer cells despite effective antiviral activity. 3'-Deoxythymidine phenylquinoxaline conjugate (dT-QX was designed as a novel nucleobase analog to target TKs in cancer cells and block cell replication via conjugated DNA intercalating quinoxaline moiety. In vitro cell screening showed that dT-QX selectively kills a variety of cancer cells including liver carcinoma, breast adenocarcinoma and brain glioma cells; whereas it had a low cytotoxicity in normal cells such as normal human liver cells. The anticancer activity of dT-QX was attributed to its selective inhibition of DNA synthesis resulting in extensive mitochondrial superoxide stress in cancer cells. We demonstrate that covalent linkage with 3'-deoxythymidine uniquely directed cytotoxic phenylquinoxaline moiety more toward cancer cells than normal cells. Preliminary mouse study with subcutaneous liver tumor model showed that dT-QX effectively inhibited the growth of tumors. dT-QX is the first molecule of its kind with highly amendable constituents that exhibits this selective cytotoxicity in cancer cells.

  16. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc.

  17. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  18. Biological effect of carbon beams on cultured human cells

    International Nuclear Information System (INIS)

    This study was performed to determine the biological effect of carbon beams on 13 human tumor cells, in comparison with 200 KVp X-rays. Carbon beams were generated by the Riken Ring Cyclotron. The RBE (relative biological effectiveness) values were distributed from 1.46 to 2.20 for LET of 20 keV/μm, and 2.29-3.54 for 80 keV/μm. The RBEs were increased in all cell lines as the LET of carbon beams was increased from 20 to 80 keV/μm. There was no significant difference in radiosensitivity between cells from adenocarcinoma and those from squamous cell carcinoma. The relationship between the radiosensitivity of cells to X-rays and RBE was analyzed, but no significant correlation was suggested. Several survival curves of 20-40 keV/μm carbon beam irradiation showed the initial shoulders and the recovery ratios between two split doses were determined. Recovery was observed for LET of 2O keV/μm but not for that of 40 keV/μm. Furthermore, recovery ratios were 1.0-1.8, smaller than those for X-rays (1.5-2.4). (author)

  19. Monitoring of Biological Responses of Tumor Cells after Irradiation with 99mTc-MIBI —— An In Vitro Study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore the possibility to employ 99mTc-MIBI to monitor biological response of tumor cells after irradiation and to observe the relation between the radiation doses and the uptake levels of 99mTc-MIBI in tumor cells, the cells were irradiated with a single dose of 2 Gy, 10 Gy and 20 Gy respectively. The uptake of 99mTc-MIBI in each dosage group was determined before and 24, 48, 72 h after irradiation respectively. Apoptosis index (AI), plating efficiency (PE) of tumor cells was simultaneously determined. There was a positive correlation between uptake levels of 99mTc-MIBI and AI(r=-0.91, P<0.05). A negative correlation was noted between the uptake levels and PE (r=-0.86, P<0.05). It is suggested that 99mTc-MIBI may be used as a tracer to monitor the change of viability state of tumor cells after being irradiated with different doses.

  20. The Histochemistry and Cell Biology compendium: a review of 2012.

    Science.gov (United States)

    Taatjes, Douglas J; Roth, Jürgen

    2013-06-01

    The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.

  1. Natural Killer Cells: Biology and Clinical Use in Cancer Therapy

    Institute of Scientific and Technical Information of China (English)

    William H. D. Hallett; William J. Murphy

    2004-01-01

    Natural killer (NK) cells have the ability to mediate both bone marrow rejection and promote engraftment, as well as the ability to elicit potent anti-tumor effects. However the clinical results for these processes are still elusive. Greater understanding of NK cell biology, from activating and inhibitory receptor functions to the role of NK cells in allogeneic transplantation, needs to be appreciated in order to draw out the clinical potential of NK cells. Mechanisms of bone marrow cell (BMC) rejection are known to be dependant on inhibitory receptors specific for major histocompatibility complex (MHC) molecules and on activating receptors that have many potential ligands. The modulation of activating and inhibitory receptors may hold the key to clinical success involving NK cells. Pre-clinical studies in mice have shown that different combinations of activating and inhibitory receptors on NK cells can reduce graft-versus-host disease (GVHD), promote engraftment, and provide superior graft-versus-tumor (GVT) responses. Recent clinical data have shown that the use of KIR-ligand incompatibility produces tremendous graft-versus-leukemia effect in patients with acute myeloid leukemia at high risk of relapse. This review will attempt to be a synthesis of current knowledge concerning NK cells, their involvement in BMT, and their use as an immunotherapy for cancer and other hematologic malignancies. Cellular & Molecular Immunology. 2004;1(1):12-21.

  2. Toward Network Biology in E. coli Cell.

    Science.gov (United States)

    Mori, Hirotada; Takeuchi, Rikiya; Otsuka, Yuta; Bowden, Steven; Yokoyama, Katsushi; Muto, Ai; Libourel, Igor; Wanner, Barry L

    2015-01-01

    E. coli has been a critically important model research organism for more than 50 years, particularly in molecular biology. In 1997, the E. coli draft genome sequence was published. Post-genomic techniques and resources were then developed that allowed E. coli to become a model organism for systems biology. Progress made since publication of the E. coli genome sequence will be summarized.

  3. A quick guide to light microscopy in cell biology

    Science.gov (United States)

    Thorn, Kurt

    2016-01-01

    Light microscopy is a key tool in modern cell biology. Light microscopy has several features that make it ideally suited for imaging biology in living cells: the resolution is well-matched to the sizes of subcellular structures, a diverse range of available fluorescent probes makes it possible to mark proteins, organelles, and other structures for imaging, and the relatively nonperturbing nature of light means that living cells can be imaged for long periods of time to follow their dynamics. Here I provide a brief introduction to using light microscopy in cell biology, with particular emphasis on factors to be considered when starting microscopy experiments. PMID:26768859

  4. Laboratory investigations in cell biology. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, A.A.

    1987-01-01

    This text contains 18 lab projects that explore the structural, biochemical, and physiological nature of eukaryotic cells. Topics are largely traditional, however, several investigations employ new methodologies. Offers extended coverage of biochemistry. Materials have been selected for availability and ease of handling: e.g. Project 4 - extraction of DNA and RNA done with calf liver, Project 9 - succinate dehydrogenase activity studied in mitochondria isolated from cauliflower. There is more procedural detail than found in most lab manuals, negating the need for constant instructional details. And a variety of methodologies is introduced, such as Cytochemistry, Spectrophotometry, Electrophoresis, Cell Fractionation, silver staining of active sites of RNA transcription, and many more. Pages are perforated for collecting and grading.

  5. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  6. Cell biology: Death drags down the neighbourhood

    Science.gov (United States)

    Vasquez, Claudia G.; Martin, Adam C.

    2015-02-01

    An analysis of dying cells reveals that they play an active part in modifying tissue shape by pulling on neighbouring cells. This induces neighbouring cells to contract at their apices, which results in tissue folding. See Letter p.245

  7. Isolation of biologically active nanomaterial (inclusion bodies from bacterial cells

    Directory of Open Access Journals (Sweden)

    Peternel Špela

    2010-09-01

    Full Text Available Abstract Background In recent years bacterial inclusion bodies (IBs were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  8. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  9. Functional Genomics and Cell Biology of the Dolphin (Tursiops runcatus): Establishment of Novel Molecular Tools to Study Marine Mammals in Changing Environments

    OpenAIRE

    Mancia, Annalaura

    2010-01-01

    The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studi...

  10. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; S. Wang; Wang, Y.; Wang, X-N.

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  11. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Directory of Open Access Journals (Sweden)

    Daniel eLewis

    2014-12-01

    Full Text Available As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo systems, with only a few examples of prominent work done on predicting the dynamics of cell-free systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  12. The state of the union: the cell biology of fertilization.

    Science.gov (United States)

    Evans, Janice P; Florman, Harvey M

    2002-10-01

    Fertilization is the process by which sperm and egg unite. An expanded understanding of the mechanisms that underlie these events has provided insights into an important aspect of early development and also has proven to be a valuable model in which to study cellular function. In addition, many emerging strategies for contraception and for the treatment of infertility are based on the mechanism of gamete interaction. Here, we discuss the cell and molecular biology of mammalian fertilization, highlight selected recent breakthroughs and attempt to identify key unanswered questions.

  13. Biological cell controllable patch-clamp microchip

    Science.gov (United States)

    Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long

    2010-12-01

    A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.

  14. Progenitor cells in the kidney: biology and therapeutic perspectives

    NARCIS (Netherlands)

    Rookmaaker, M.B.; Verhaar, M.C.; Zonneveld, A.J. van; Rabelink, T.J.

    2004-01-01

    Progenitor cells in the kidney: Biology and therapeutic perspectives. The stem cell may be viewed as an engineer who can read the blue print and become the building. The role of this fascinating cell in physiology and pathophysiology has recently attracted a great deal of interest. The archetype of

  15. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  16. Lgr proteins in epithelial stem cell biology

    NARCIS (Netherlands)

    Barker, N.; Tan, S.; Clevers, H.

    2013-01-01

    The ultimate success of global efforts to exploit adult stem cells for regenerative medicine will depend heavily on the availability of robust, highly selective stem cell surface markers that facilitate the isolation of stem cells from human tissues. Any subsequent expansion or manipulation of isola

  17. The cell biology of Tobacco mosaic virus replication and movement

    Directory of Open Access Journals (Sweden)

    Chengke eLiu

    2013-02-01

    Full Text Available Successful systemic infection of a plant by Tobacco mosaic virus (TMV requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  18. Quantitative cell biology: the essential role of theory.

    Science.gov (United States)

    Howard, Jonathon

    2014-11-01

    Quantitative biology is a hot area, as evidenced by the recent establishment of institutes, graduate programs, and conferences with that name. But what is quantitative biology? What should it be? And how can it contribute to solving the big questions in biology? The past decade has seen very rapid development of quantitative experimental techniques, especially at the single-molecule and single-cell levels. In this essay, I argue that quantitative biology is much more than just the quantitation of these experimental results. Instead, it should be the application of the scientific method by which measurement is directed toward testing theories. In this view, quantitative biology is the recognition that theory and models play critical roles in biology, as they do in physics and engineering. By tying together experiment and theory, quantitative biology promises a deeper understanding of underlying mechanisms, when the theory works, or to new discoveries, when it does not.

  19. Systems-biology dissection of eukaryotic cell growth

    OpenAIRE

    Andrews Justen; Przytycka Teresa M

    2010-01-01

    Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  20. Current view of mesenchymal stem cells biology (brief review

    Directory of Open Access Journals (Sweden)

    Maslova O. A.

    2012-06-01

    Full Text Available Although mesenchymal stem cells (MSC are in a focus of attention, some aspects of their biology are still unclear. This paper is a review of current research on MSC biology. The use of MSC in regenerative medicine is also briefly discussed.

  1. Bacterial cell biology outside the streetlight.

    Science.gov (United States)

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes.

  2. Bacterial cell biology outside the streetlight.

    Science.gov (United States)

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes. PMID:27306428

  3. iPS-Cinderella Story in Cell Biology

    Directory of Open Access Journals (Sweden)

    Editorial

    2010-01-01

    Full Text Available As we step through the frontiers of modern Science, we are all witnesses to the Cinderella story repeating itself in the form of the iPS. The process of re-programming adult somatic cells to derive Induced Pluripotent stem cells (iPS with the wand of transcription factors and then differentiating them back to adult somatic cells resembles the transformation of Cinderella from a Cinder girl to princess and back to a Cinder girl after the ball; but the iPS-Cinderella is the most fascinating thing ever in cell biology!From the day iPS first made its headlines when it was first produced by Shinya Yamanaka at Kyoto University in Japan, Stem Cell scientists all over the world are re- doing their experiments so far done using other sources like embryonic and adult Stem cells with the iPS cells exploring their potential to the fullest. A Stem Cell science news page without this magic word of iPS is difficult to imagine these days and Scientists have been successful in growing most of the adult Cell types from iPS cells.iPS cells was the key to solve the problems of Immune rejection and Immunosupression required when using other allogeneic Stem cell types which had baffled scientists previously. But the issues raised by scientists about the use of viruses and Oncogenes in producing iPS cells were made groundless when scientists in February 2008 published the discovery of a technique that could remove oncogenes after the induction of pluripotency and now it is possible to induce pluripotency using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. The word of the day is pIPS which are protein-induced Pluripotent stem cells which are iPS cells that were generated without any genetic alteration of the adult cell. This research by the group of Sheng Ding in La Jolla, California made public in April 2009 showed that the generation of poly-arginine anchors was sufficient to induce

  4. Biological Evaluation of Single Cell Protein

    International Nuclear Information System (INIS)

    In this study, the nutritional value of single cell protein (SCP) was evaluated as a non conventional protein source produced by fermenting fungal local strains of Trichoderma longibrachiatum, Aspergillus niger, Aspergillus terreus and Penicillium funiculosum with alkali treated sugar cane bagasse. Amino acid analysis revealed that the produced SCP contains essential and non essential amino acids. Male mice were fed on normal (basal) diet which contains 18% conventional protein and served as control group. In the second (T1) and the third (T2) group, the animals were fed on a diet in which 15% and 30% of conventional protein source were replaced by SCP, respectively. At intervals of 15, 30, 45 and 60 days, mice were sacrificed and the blood samples were collected for the biochemical evaluation. The daily averages of body weight were significantly higher with group T2 than group T1. Where as, the kidney weights in groups (T1) and (T2) were significantly increased as compared with control. A non significant difference between the tested groups in the enzyme activities of AST, ALT and GSH content of liver tissue were recorded. While, cholesterol and triglycerides contents showed a significant decrease in both (T1) and (T2) groups as compared with control. The recorded values of the serum hormone (T4), ALP activities, albumin and A/G ratio did not changed by the previous treatments. Serum levels of total protein, urea, creatinine and uric acid were higher for groups (T1) and (T2) than the control group. In conclusion, partial substitution of soy bean protein in mice diet with single cell protein (15%) improved the mice growth without any adverse effects on some of the physiological functions tested

  5. The Cell Biology of Fission Yeast Septation.

    Science.gov (United States)

    García Cortés, Juan C; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-09-01

    In animal cells, cytokinesis requires the formation of a cleavage furrow that divides the cell into two daughter cells. Furrow formation is achieved by constriction of an actomyosin ring that invaginates the plasma membrane. However, fungal cells contain a rigid extracellular cell wall surrounding the plasma membrane; thus, fungal cytokinesis also requires the formation of a special septum wall structure between the dividing cells. The septum biosynthesis must be strictly coordinated with the deposition of new plasma membrane material and actomyosin ring closure and must occur in such a way that no breach in the cell wall occurs at any time. Because of the high turgor pressure in the fungal cell, even a minor local defect might lead to cell lysis and death. Here we review our knowledge of the septum structure in the fission yeast Schizosaccharomyces pombe and of the recent advances in our understanding of the relationship between septum biosynthesis and actomyosin ring constriction and how the two collaborate to build a cross-walled septum able to support the high turgor pressure of the cell. In addition, we discuss the importance of the septum biosynthesis for the steady ingression of the cleavage furrow.

  6. Toxicity Studies on "840 Biologic Pesticide"

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    [Objective] "840 Biologic Pesticide" is a very effective biologic pesticide. It consists of Abamectin and celastrus angulatus. Toxicity study was aimed to provide scientific toxicological basis. [Methods] The acute toxicity test,Ames test,micronucleus test and testicle chromosome aberration test were done. [Results] The acute toxicity of single dose of "840 Biologic Pesticide" showed that acute oral LD50 for female and male rats are 4 300 and 4 280 mg/kg,and for female and male mice are 2 330 and 5 110 mg/kg,respectively. The dermal LD50 was >2 000 mg/kg for female and male rats. The mutagenesis studies indicated that Ames test,micronucleus test and testicle chromosome aberration test were negative. [Conclusion] Tested pesticidc belongs to low toticity grade.

  7. Mechanistic modeling confronts the complexity of molecular cell biology

    OpenAIRE

    Phair, Robert D.

    2014-01-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a fu...

  8. The Effect of Hypoxia on Mesenchymal Stem Cell Biology

    OpenAIRE

    Mostafa Ejtehadifar; Karim Shamsasenjan; Aliakbar Movassaghpour; Parvin Akbarzadehlaleh; Nima Dehdilani; Parvaneh Abbasi; Zahra Molaeipour; Mahshid Saleh

    2015-01-01

    Although physiological and pathological role of hypoxia have been appreciated in mammalians for decades however the cellular biology of hypoxia more clarified in the past 20 years. Discovery of the transcription factor hypoxia-inducible factor (HIF)-1, in the 1990s opened a new window to investigate the mechanisms behind hypoxia. In different cellular contexts HIF-1 activation show variable results by impacting various aspects of cell biology such as cell cycle, apoptosis, diff...

  9. Stem cell biology and drug discovery

    Directory of Open Access Journals (Sweden)

    Haston Kelly M

    2011-06-01

    Full Text Available Abstract There are many reasons to be interested in stem cells, one of the most prominent being their potential use in finding better drugs to treat human disease. This article focuses on how this may be implemented. Recent advances in the production of reprogrammed adult cells and their regulated differentiation to disease-relevant cells are presented, and diseases that have been modeled using these methods are discussed. Remaining difficulties are highlighted, as are new therapeutic insights that have emerged.

  10. Advancing Our Understanding of Osteocyte Cell Biology

    OpenAIRE

    Guo, Dayong; BONEWALD, LYNDA F.

    2009-01-01

    Osteocytes were the forgotten bone cell until the bone community could become convinced that these cells do serve an important role in bone function and maintenance. In this review we trace the history of osteocyte characterization and present some of the major observations that are leading to the conclusion that these cells are not passive placeholders residing in the bone matrix, but are indeed, major orchestrators of bone remodeling.

  11. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  12. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs. PMID:19605307

  13. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  14. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-01-01

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  15. Microbubble generation by piezotransducer for biological studies

    Science.gov (United States)

    Zhu, W.; Alkhazal, M.; Cho, M.; Xiao, S.

    2015-12-01

    Bubbles induced by blast waves or shocks are speculated to be the major cause of damages in biological cells in mild traumatic brain injuries. Microbubble collapse was found to induce noticeable cell detachment from the cell substrate, changes in focal adhesion and biomechanics. To better understand the bubble mechanism, we would like to construct a system, which allows us to clearly differentiate the impact of bubbles from that of shocks. Such a generator needs to be low profile in order to place under a microscope. A piezoelectric transducer system was designed to meet the need. The system uses either a flat or a spherical focusing piezoelectric transducer to produce microbubbles in a cuvette loaded with cell-culture medium. The transducer is placed on the side of the cuvette with its axis lining horizontally. A cover slip is placed on the top of the cuvette. The impact of the waves to the cells is minimized as the cover slip is parallel to the direction of the wave. Only bubbles from the medium reach the cover slip and interact with cells. The effect of bubbles therefore can be separated that of pressure waves. The bubbles collected on a cover slip range in size from 100 μm to 10 μm in radius, but the dominant size is 20-30 μm.

  16. Translating Stem Cell Biology Into Drug Discovery

    Science.gov (United States)

    Singeç, Ilyas; Simeonov, Anton

    2016-01-01

    Pluripotent stem cell research has made extraordinary progress over the last decade. The robustness of nuclear reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has created entirely novel opportunities for drug discovery and personalized regenerative medicine. Patient- and disease-specific iPSCs can be expanded indefinitely and differentiated into relevant cell types of different organ systems. As the utilization of iPSCs is becoming a key enabling technology across various scientific disciplines, there are still important challenges that need to be addressed. Here we review the current state and reflect on the issues that the stem cell and translational communities are facing in bringing iPSCs closer to clinical application.

  17. Mechanistic modeling confronts the complexity of molecular cell biology.

    Science.gov (United States)

    Phair, Robert D

    2014-11-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist-electrical engineer-systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build-and subject to exhaustive experimental tests-models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.

  18. Parallel optical sorting of biological cells using the generalized phase contrast method

    DEFF Research Database (Denmark)

    Rindorf, Lars; Bu, Minqiang; Glückstad, Jesper

    2014-01-01

    Optical forces are used to fixate biological cells with optical tweezers where numerous biological parameters and phenomena can be studied. Optical beams carry a small momentum which generates a weak optical force, but on a cellular level this force is strong enough to allow for manipulation...... of biological cells in microfluidic systems exclusively using light. We demonstrate an optical cell sorter that uses simultaneous manipulation by multiple laser beams using the Generalized Phase Contrast method (GPC). The basic principle in an optical sorter is that the radiation force of the optical beam can...

  19. Applications of Microfluidics in Stem Cell Biology

    OpenAIRE

    Zhang, Qiucen; Austin, Robert H.

    2012-01-01

    Stem cell research can significantly benefit from recent advances of microfluidics technology. In a rationally designed microfluidics device, analyses of stem cells can be done in a much deeper and wider way than in a conventional tissue culture dish. Miniaturization makes analyses operated in a high-throughput fashion, while controls of fluids help to reconstruct the physiological environments. Through integration with present characterization tools like fluorescent microscope, microfluidics...

  20. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Bayoumi, Maged Fouad

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  1. Advancing cell biology through proteomics in space and time (PROSPECTS).

    Science.gov (United States)

    Lamond, Angus I; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V; Serrano, Luis; Hartl, F Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-03-01

    The term "proteomics" encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology and molecular medicine.

  2. Suspended micro- and nanotools for cell biology

    OpenAIRE

    Durán Ibáñez, Sara

    2014-01-01

    Esta tesis presenta el diseño, desarrollo tecnológico, caracterización y aplicaciones tanto químicas como biológicas de micro- y nanodispositivos destinados a ser herramientas funcionales en biología celular. Esta línea de investigación es posible gracias a los avances obtenidos en el campo de las Micro- y Nanotecnologías, donde la aplicación de técnicas de miniaturización en la fabricación de sus dispositivos a escala celular es ya una realidad. Estas herramientas son lo suficientemente p...

  3. Stochasticity in cell biology: Modeling across levels

    Science.gov (United States)

    Pedraza, Juan Manuel

    2009-03-01

    Effective modeling of biological processes requires focusing on a particular level of description, and this requires summarizing de details of lower levels into effective variables and properly accounting for the constrains that other levels impose. In the context of stochasticity in gene expression, I will show how the details of the stochastic process can be characterized by a few effective parameters, which facilitates modeling but complicates interpretation of current experiments. I will show how the resulting noise can provide advantageous or deleterious phenotypic fluctuation and how noise control in the copy number control system of plasmids can change the selective pressures. This system illustrates the direct connection between molecular dynamics and evolutionary dynamics.

  4. Role of inositol phospholipid signaling in natural killer cell biology

    Directory of Open Access Journals (Sweden)

    Matthew eGumbleton

    2013-03-01

    Full Text Available Natural Killer (NK cells are important in the host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to prevent autoimmunity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the PI3K signaling pathway have defective development, natural killer cell repertoire expression (NKRR and effector function. Here we review the role of inositol phospholipid signaling in NK cell biology.

  5. Information Literacy in Biology Education: An Example from an Advanced Cell Biology Course

    OpenAIRE

    Porter, John R

    2005-01-01

    Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information literacy instruction and then proceed to select, update, and write about a current research topic in an upper-level cell biology course is described....

  6. The shifting geography and language of cell biology.

    Science.gov (United States)

    Mayor, Satyajit

    2015-05-11

    With the increase in scientific activity globally, the geographical focus of basic research is shifting away from the West. At the same time, multidisciplinary approaches are uncovering new layers in our understanding of how cells work. How will these trends affect cell biology in the near future?

  7. Advancing cell biology through proteomics in space and time (PROSPECTS)

    DEFF Research Database (Denmark)

    Lamond, A.I.; Uhlen, M.; Horning, S.;

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU...... the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology...

  8. The novel insights into spatiotemporal cell biology and its schematic frame, triple W.

    Science.gov (United States)

    Hou, Yingchun; Hou, Yang; He, Siyu; Xing, Ruihuan

    2012-05-01

    Numerous research results have suggested that the events occurred in a selected cell target and the fates of the cells are spatiotemporally regulated. It has been paying much attention to study the cell events with spatiotemporal proposal designation and analysis. We have been tracking and thinking the new scientific area for many years. Spatiotemporal cell biology and its schematic frame, triple W (when, where, which), are systemically introduced in this study. The triple W under pathological conditions is also discussed.

  9. Heart-on-a-chip based on stem cell biology.

    Science.gov (United States)

    Jastrzebska, Elzbieta; Tomecka, Ewelina; Jesion, Iwona

    2016-01-15

    Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.

  10. Shedding light on biology of bacterial cells.

    Science.gov (United States)

    Schneider, Johannes P; Basler, Marek

    2016-11-01

    To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging

  11. Spectral fingerprint of electrostatic forces between biological cells.

    Science.gov (United States)

    Murovec, T; Brosseau, C

    2015-10-01

    The prediction of electrostatic forces (EFs) between biological cells still poses challenges of great scientific importance, e.g., cell recognition, electroporation (EP), and mechanosensing. Frequency-domain finite element simulations explore a variety of cell configurations in the range of parameters typical for eukaryotic cells. Here, by applying an electric field to a pair of layered concentric shells, a prototypical model of a biological cell, we provide numerical evidence that the instantaneous EF changes from repulsion to attraction as the drive frequency of the electric field is varied. We identify crossover frequencies and discuss their dependence as a function of field frequency, conductivity of the extracellular medium, and symmetry of the configuration of cells. We present findings which suggest that the spectrum of EFs depends sensitively on the configuration of cells. We discuss the signatures of the collective behavior of systems with many cells in the spectrum of the EF and highlight a few of the observational consequences that this behavior implies. By looking at different cell configurations, we are able to show that the repulsion-to-attraction transition phenomenon is largely associated with an asymmetric electrostatic screening at very small separation between cells. These findings pave the way for the experimental observation of the electromagnetic properties of efficient and simple models of biological tissues. PMID:26565282

  12. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    Science.gov (United States)

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  13. An in vitro study of liposomal curcumin: stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells.

    Science.gov (United States)

    Chen, Changguo; Johnston, Thomas D; Jeon, Hoonbae; Gedaly, Roberto; McHugh, Patrick P; Burke, Thomas G; Ranjan, Dinesh

    2009-01-21

    Curcumin is a multi-functional and pharmacologically safe natural agent. Used as a food additive for centuries, it also has anti-inflammatory, anti-virus and anti-tumor properties. We previously found that it is a potent inhibitor of cyclosporin A (CsA)-resistant T-cell co-stimulation pathway. It inhibits mitogen-stimulated lymphocyte proliferation, NFkappaB activation and IL-2 signaling. In spite of its safety and efficacy, the in vivo bioavailability of curcumin is poor, and this may be a major obstacle to its utility as a therapeutic agent. Liposomes are known to be excellent carriers for drug delivery. In this in vitro study, we report the effects of different liposome formulations on curcumin stability in phosphate buffered saline (PBS), human blood, plasma and culture medium RPMI-1640+10% FBS (pH 7.4, 37 degrees C). Liposomal curcumin had higher stability than free curcumin in PBS. Liposomal and free curcumin had similar stability in human blood, plasma and RPMI-1640+10% FBS. We looked at the toxicity of non-drug-containing liposomes on (3)H-thymidine incorporation by concanavalin A (Con A)-stimulated human lymphocytes, splenocytes and Epstein-Barr virus (EBV)-transformed human B-cell lymphoblastoid cell line (LCL). We found that dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) were toxic to the tested cells. However, addition of cholesterol to the lipids at DMPC:DMPG:cholesterol=7:1:8 (molar ratio) almost completely eliminated the lipid toxicity to these cells. Liposomal curcumin had similar or even stronger inhibitory effects on Con A-stimulated human lymphocyte, splenocyte and LCL proliferation. We conclude that liposomal curcumin may be useful for intravenous administration to improve the bioavailability and efficacy, facilitating in vivo studies that could ultimately lead to clinical application of curcumin.

  14. An in vitro study of liposomal curcumin: stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells.

    Science.gov (United States)

    Chen, Changguo; Johnston, Thomas D; Jeon, Hoonbae; Gedaly, Roberto; McHugh, Patrick P; Burke, Thomas G; Ranjan, Dinesh

    2009-01-21

    Curcumin is a multi-functional and pharmacologically safe natural agent. Used as a food additive for centuries, it also has anti-inflammatory, anti-virus and anti-tumor properties. We previously found that it is a potent inhibitor of cyclosporin A (CsA)-resistant T-cell co-stimulation pathway. It inhibits mitogen-stimulated lymphocyte proliferation, NFkappaB activation and IL-2 signaling. In spite of its safety and efficacy, the in vivo bioavailability of curcumin is poor, and this may be a major obstacle to its utility as a therapeutic agent. Liposomes are known to be excellent carriers for drug delivery. In this in vitro study, we report the effects of different liposome formulations on curcumin stability in phosphate buffered saline (PBS), human blood, plasma and culture medium RPMI-1640+10% FBS (pH 7.4, 37 degrees C). Liposomal curcumin had higher stability than free curcumin in PBS. Liposomal and free curcumin had similar stability in human blood, plasma and RPMI-1640+10% FBS. We looked at the toxicity of non-drug-containing liposomes on (3)H-thymidine incorporation by concanavalin A (Con A)-stimulated human lymphocytes, splenocytes and Epstein-Barr virus (EBV)-transformed human B-cell lymphoblastoid cell line (LCL). We found that dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) were toxic to the tested cells. However, addition of cholesterol to the lipids at DMPC:DMPG:cholesterol=7:1:8 (molar ratio) almost completely eliminated the lipid toxicity to these cells. Liposomal curcumin had similar or even stronger inhibitory effects on Con A-stimulated human lymphocyte, splenocyte and LCL proliferation. We conclude that liposomal curcumin may be useful for intravenous administration to improve the bioavailability and efficacy, facilitating in vivo studies that could ultimately lead to clinical application of curcumin. PMID:18840516

  15. Synthetic biology of cyanobacterial cell factories

    NARCIS (Netherlands)

    S.A. Angermayr

    2014-01-01

    In the field of microbial biotechnology rational design approaches are employed for the generation of microbial cells with desired functions, such as the ability to produce precursor molecules for biofuels or bioplastics. In essence, that is the introduction of a (new) biosynthetic pathway into a mi

  16. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces cerevi...

  17. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  18. Inflammatory mediators: Parallels between cancer biology and stem cell therapy

    OpenAIRE

    Patel, Shyam A; Heinrich, Andrew C; Bobby Y. Reddy; Rameshwar, Pranela

    2009-01-01

    Inflammation encompasses diverse molecular pathways, and it is intertwined with a wide array of biological processes. Recently, there has been an upsurge of interest in the interactions between mediators of inflammation and other cells such as stem cells and cancer cells. Since tissue injuries are associated with the release of inflammatory mediators, it would be difficult to address this subject without considering the implications of their systemic effects. In this review, we discuss the ef...

  19. Knowledge gaps in rodent pancreas biology: taking human pluripotent stem cell-derived pancreatic beta cells into our own hands

    Directory of Open Access Journals (Sweden)

    Munirah Mohamad Santosa

    2016-01-01

    Full Text Available In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs. Whilst much has been learnt from rodent pancreas biology in the early steps towards Pdx1+ pancreatic progenitors, much less is known about the transition towards Ngn3+ pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  20. TinkerCell: modular CAD tool for synthetic biology

    Directory of Open Access Journals (Sweden)

    Bergmann Frank T

    2009-10-01

    Full Text Available Abstract Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com. Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled

  1. Information Technologies for Biology Education: Computerized Electrophysiology of Plant Cells

    Directory of Open Access Journals (Sweden)

    Vilma KISNIERIENE

    2008-04-01

    Full Text Available Biology has moved from a bench-based discipline to a bioinformational science in modern times but application of computational and analytical methods of informatics in it is still a problem for many researchers and students of biology. We suggest to integrate cost effective and practical combination of the real and the virtual laboratories into the undergraduate biological science curriculum. This laboratory work illustrates passive and active electrical properties of plant cell membranes while introducing basic principles of electrophysiological recording, data acquisition and analysis. As the object for investigation in this laboratory work large cells of starry stonewort (Nitellopsis obtusa were used. The simple program for experiment control and express visualization of recorded data was developed. Experiment proposed in this paper is easy implemented with a minimum of laboratory equipment, materials and gives an experience of computerized biological experiment.

  2. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  3. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  4. In Vivo Models to Study Chemokine Biology.

    Science.gov (United States)

    Amaral, F A; Boff, D; Teixeira, M M

    2016-01-01

    Chemokines are essential mediators of leukocyte movement in vivo. In vitro assays of leukocyte migration cannot mimic the complex interactions with other cell types and matrix needed for cells to extravasate and migrate into tissues. Therefore, in vivo strategies to study the effects and potential relevance of chemokines for the migration of particular leukocyte subsets are necessary. Here, we describe methods to study the effects and endogenous role of chemokine in mice. Advantages and pitfalls of particular models are discussed and we focus on description in model's joint and pleural cavity inflammation and the effects and relevance of CXCR2 and CCR2 ligands on cell migration.

  5. Finding the key - cell biology and science education.

    Science.gov (United States)

    Miller, Kenneth R

    2010-12-01

    No international research community, cell biology included, can exist without an educational community to renew and replenish it. Unfortunately, cell biology researchers frequently regard their work as independent of the process of education and see little reason to reach out to science teachers. For cell biology to continue to prosper, I argue that researchers must support education in at least three ways. First, we must view education and research as part of a single scientific community. Second, we should take advantage of new technologies to connect the research laboratory to the classroom. Finally, we must take the initiative in defending the integrity of science teaching, particularly when education is under attack for political or religious reasons.

  6. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2014-03-01

    Full Text Available Biologic influence of deuterium (D on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О. The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of D2О (from 0 up to 98 % D2O and the subsequent selection of stable to D2O cells. In the result of that technique were obtained adapted to maximum concentration of D2O cells, biological material of which instead of hydrogen contained deuterium with levels of enrichment 92–97,5 at.% D.

  7. The untapped cell biology of neglected tropical diseases

    Science.gov (United States)

    Sullivan, William

    2016-01-01

    The World Health Organization lists a constellation of 17 tropical diseases that afflict approximately one in six individuals on the planet and, until recently, few resources have been devoted to the treatment and eradication of those diseases. They are often referred to as the diseases of the “bottom billion,” because they are most prevalent among the poorest individuals in impoverished tropical nations. However, the few studies that have been performed reveal an extraordinary world of molecular and cellular adaptations that facilitate the pathogens’ survival in hosts ranging from insects to humans. A compelling case can be made that even a modest investment toward understanding the basic molecular and cell biology of these neglected pathogens has a high probability of yielding exciting new cellular mechanisms and insights into novel ways of combating these diseases. PMID:26915691

  8. Competency development in antibody production in cancer cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Park, M.S.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The main objective of this project was to develop a rapid recombinant antibody production technology. To achieve the objective, the authors employed (1) production of recombinant antigens that are important for cell cycle regulation and DNA repair, (2) immunization and specific selection of antibody-producing lymphocytes using the flow cytometry and magnetic bead capturing procedure, (3) construction of single chain antibody library, (4) development of recombinant vectors that target, express, and regulate the expression of intracellular antibodies, and (5) specific inhibition of tumor cell growth in tissue culture. The authors have accomplished (1) optimization of a selection procedure to isolate antigen-specific lymphocytes, (2) optimization of the construction of a single-chain antibody library, and (3) development of a new antibody expression vector for intracellular immunization. The future direction of this research is to continue to test the potential use of the intracellular immunization procedure as a tool to study functions of biological molecules and as an immuno-cancer therapy procedure to inhibit the growth of cancer cells.

  9. Cell biological analyses of anther morphogenesis and pollen viability in Arabidopsis and rice.

    Science.gov (United States)

    Chang, Fang; Zhang, Zaibao; Jin, Yue; Ma, Hong

    2014-01-01

    Major advances have been made in recent years in our understanding of anther development through a combination of genetic studies, cell biological technologies, biochemical analysis, microarray and high-throughput sequencing-based approaches. In this chapter, we summarize the widely used protocols for pollen viability staining; the investigation of anther morphogenesis by light microscopy of semi-thin sections; TUNEL assay for programmed tapetum cell death; and laser microdissection procedures to obtain specialized cells or cell layers for carrying out transcriptomics.

  10. Organic Production Systems: What the Biological Cell Can Teach Us About Manufacturing

    OpenAIRE

    Lieven Demeester; Knut Eichler; Christoph H. Loch

    2004-01-01

    Biological cells run complicated and sophisticated production systems. The study of the cell's production technology provides us with insights that are potentially useful in industrial manufacturing. When comparing cell metabolism with manufacturing techniques in industry, we find some striking commonalities, but also some important differences. Like today's well-run factories, the cell operates a very lean production system, assures quality at the source, and uses component commonality to si...

  11. Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects.

    Directory of Open Access Journals (Sweden)

    Veedamali S Subramanian

    Full Text Available Mammalian cells obtain vitamin B1 (thiamin from their surrounding environment and convert it to thiamin pyrophosphate (TPP in the cytoplasm. Most of TPP is then transported into the mitochondria via a carrier-mediated process that involves the mitochondrial thiamin pyrophosphate transporter (MTPPT. Knowledge about the physiological parameters of the MTPP-mediated uptake process, MTPPT targeting and the impact of clinical mutations in MTPPT in patients with Amish lethal microcephaly and neuropathy and bilateral striatal necrosis are not fully elucidated, and thus, were addressed in this study using custom-made (3H-TPP as a substrate and mitochondria isolated from mouse liver and human-derived liver HepG2 cells. Results showed (3H-TPP uptake by mouse liver mitochondria to be pH-independent, saturable (Km = 6.79±0.53 µM, and specific for TPP. MTPPT protein was expressed in mouse liver and HepG2 cells, and confocal images showed a human (hMTPPT-GFP construct to be targeted to mitochondria of HepG2 cells. A serial truncation analysis revealed that all three modules of hMTPPT protein cooperated (although at different levels of efficiency in mitochondrial targeting rather than acting autonomously as independent targeting module. Finally, the hMTPPT clinical mutants (G125S and G177A showed proper mitochondrial targeting but displayed significant inhibition in (3H-TPP uptake and a decrease in level of expression of the MTPPT protein. These findings advance our knowledge of the physiology and cell biology of the mitochondrial TPP uptake process. The results also show that clinical mutations in the hMTPPT system impair its functionality via affecting its level of expression with no effect on its targeting to mitochondria.

  12. Stem Cells: A Renaissance in Human Biology Research.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.

  13. A decade of molecular cell biology: achievements and challenges.

    Science.gov (United States)

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  14. Apoptotic cell clearance: basic biology and therapeutic potential.

    Science.gov (United States)

    Poon, Ivan K H; Lucas, Christopher D; Rossi, Adriano G; Ravichandran, Kodi S

    2014-03-01

    The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.

  15. Integrative biological studies of anti-tumour agents

    OpenAIRE

    Johnson, L. A.

    2009-01-01

    3, 11-difluoro-6, 8, 13-trimethyl-8H- quino [4, 3, 2-kl] acridinium methosulfate (RHPS4) is a member of a series of pentacyclic acridines developed at the University of Nottingham, which bind to, and stabilise the structure of G-quadruplex DNA and inhibit the action of telomerase at sub-micromolar concentrations in the cell free TRAP assay and limit cancer cell growth therefore leading to the conclusion that RHPS4 has potential anti-tumour activity. Previous biological studies, however, have...

  16. Natural killer cell biology: an update and future directions.

    Science.gov (United States)

    Campbell, Kerry S; Hasegawa, Jun

    2013-09-01

    Natural killer (NK) cells constitute a minor subset of normal lymphocytes that initiate innate immune responses toward tumor and virus-infected cells. They can mediate spontaneous cytotoxicity toward these abnormal cells and rapidly secrete numerous cytokines and chemokines to promote subsequent adaptive immune responses. Significant progress has been made in the past 2 decades to improve our understanding of NK cell biology. Here we review recent discoveries, including a better comprehension of the "education" of NK cells to achieve functional competence during their maturation and the discovery of "memory" responses by NK cells, suggesting that they might also contribute to adaptive immunity. The improved understanding of NK cell biology has forged greater awareness that these cells play integral early roles in immune responses. In addition, several promising clinical therapies have been used to exploit NK cell functions in treating patients with cancer. As our molecular understanding improves, these and future immunotherapies should continue to provide promising strategies to exploit the unique functions of NK cells to treat cancer, infections, and other pathologic conditions.

  17. The Emerging Role of PEDF in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Mina Elahy

    2012-01-01

    Full Text Available Encoded by a single gene, PEDF is a 50 kDa glycoprotein that is highly conserved and is widely expressed among many tissues. Most secreted PEDF deposits within the extracellular matrix, with cell-type-specific functions. While traditionally PEDF is known as a strong antiangiogenic factor, more recently, as this paper highlights, PEDF has been linked with stem cell biology, and there is now accumulating evidence demonstrating the effects of PEDF in a variety of stem cells, mainly in supporting stem cell survival and maintaining multipotency.

  18. T Regulatory Cell Biology in Health and Disease.

    Science.gov (United States)

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency. PMID:26922942

  19. T Regulatory Cell Biology in Health and Disease.

    Science.gov (United States)

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency.

  20. Advancing Stem Cell Biology toward Stem Cell Therapeutics

    OpenAIRE

    Scadden, David; Srivastava, Alok

    2012-01-01

    Here, the International Society for Stem Cell Research (ISSCR) Clinical Translation Committee introduces a series of articles outlining the current status, opportunities, and challenges surrounding the clinical translation of stem cell therapeutics for specific medical conditions.

  1. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  2. Innate immune pattern recognition: a cell biological perspective.

    Science.gov (United States)

    Brubaker, Sky W; Bonham, Kevin S; Zanoni, Ivan; Kagan, Jonathan C

    2015-01-01

    Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.

  3. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... of developing improved yeast cell factories....

  4. A new view into prokaryotic cell biology from electron cryotomography

    OpenAIRE

    Oikonomou, Catherine M.; Jensen, Grant J.

    2016-01-01

    Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (~4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provid...

  5. The clinical and biological significance of MICA in clear cell renal cell carcinoma patients.

    Science.gov (United States)

    Zhang, Xiang; Yan, Lei; Jiao, Wei; Ren, Juchao; Xing, Naidong; Zhang, Yongzhen; Zang, Yuanwei; Wang, Jue; Xu, Zhonghua

    2016-02-01

    Major histocompatibility complex class I-related chains A (MICA), a ligand of Natural killer group 2, member D (NKG2D) receptor, is broadly upregulated in epithelial originated tumor cells. MICA plays a critical role in the immune surveillance against tumor cells and is associated with the prognosis of several malignancies. The aim of this study is to evaluate the clinical and biological significance of MICA in clear cell renal cell carcinoma (ccRCC). The expression of MICA was analyzed by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Both MICA mRNA and protein levels were upregulated in ccRCC tissues, compared with normal tissues. IHC staining revealed a homogenous pattern of MICA staining within each tumor, which combined both membrane staining and granular cytoplasmic staining. Furthermore, high MICA expression was associated with lymph node metastasis and advanced clinical stage and predicted poor prognosis in patients with ccRCC. Gene set enrichment analysis (GSEA) was performed using RNA-sequencing data from The Cancer Genome Atlas Research Network (TCGA) to elucidate the biological role of MICA in ccRCC and revealed that MICA was significantly associated with the epithelial-to-mesenchymal transition (EMT) gene set, which was further confirmed by qRT-PCR. Our findings contribute to the studies on biomarkers of kidney cancers and the mechanism of renal cancer progression driven by EMT pathway.

  6. The time is right: proteome biology of stem cells.

    NARCIS (Netherlands)

    Whetton, A.D.; Williamson, A.J.K.; Krijgsveld, J.; Lee, B.H.; Lemischka, I.; Oh, S.; Pera, M.; Mummery, C.L.; Heck, A.J.R.

    2008-01-01

    In stem cell biology, there is a growing need for advanced technologies that may help to unravel the molecular mechanisms of self-renewal and differentiation. Proteomics, the comprehensive analysis of proteins, is such an emerging technique. To facilitate interactions between specialists in proteomi

  7. T-cell acute lymphoblastic leukaemia : recent molecular biology findings

    NARCIS (Netherlands)

    Kraszewska, Monika D.; Dawidowska, Malgorzata; Szczepanski, Tomasz; Witt, Michal

    2012-01-01

    For many years, T-cell acute lymphoblastic leukaemia (T-ALL) has been considered and treated as a single malignancy, but divergent outcomes in T-ALL patients receiving uniform treatment protocols encouraged intensive research on the molecular biology of this disease. Recent findings in the field dem

  8. The cell biology of HIV-1 and other retroviruses

    Directory of Open Access Journals (Sweden)

    Mouland Andrew J

    2006-11-01

    Full Text Available Abstract In recognition of the growing influence of cell biology in retrovirus research, we recently organized a Summer conference sponsored by the American Society for Cell Biology (ASCB on the Cell Biology of HIV-1 and other Retroviruses (July 20–23, 2006, Emory University, Atlanta, Georgia. The meeting brought together a number of leading investigators interested in the interplay between cell biology and retrovirology with an emphasis on presentation of new and unpublished data. The conference was arranged from early to late events in the virus replication cycle, with sessions on viral fusion, entry, and transmission; post-entry restrictions to retroviral infection; nuclear import and integration; gene expression/regulation of retroviral Gag and genomic RNA; and assembly/release. In this review, we will attempt to touch briefly on some of the highlights of the conference, and will emphasize themes and trends that emerged at the meeting. Meeting report The conference began with a keynote address from W. Sundquist on the biochemistry of HIV-1 budding. This presentation will be described in the section on Assembly and Release of Retroviruses.

  9. Progress in focus: recent advances in histochemistry and cell biology.

    Science.gov (United States)

    Asan, Esther

    2002-12-01

    Advances in histochemical and cell biological techniques enable increasingly refined investigations into the cellular and subcellular distribution of specific molecules and into their role in dynamic processes; thus progress in these fields complements the growing knowledge in genomics and proteomics. The present review summarizes recent technical progress and novel applications. PMID:12483316

  10. A short guide to technology development in cell biology

    NARCIS (Netherlands)

    B. van Steensel (Bas)

    2015-01-01

    textabstractNew technologies drive progress in many research fields, including cell biology. Much of technological innovation comes from "bottom-up" efforts by individual students and postdocs. However, technology development can be challenging, and a successful outcome depends on many factors. This

  11. The Palade symposium: celebrating cell biology at its best.

    Science.gov (United States)

    Schmid, Sandra L; Farquhar, Marilyn G

    2010-07-15

    A symposium was held at the University of California, San Diego, to honor the contributions of Nobel Laureate, George Palade, to cell biology. The speakers included Günter Blobel, on the structure and function of nuclear pore complexes; Peter Walter, on the unfolded protein response in health and disease; Randy Schekman, on human disease-linked mutations in the COPII machinery; Scott Emr, on the regulation of plasma membrane composition by selective endocytosis; Roger Kornberg, on the structure and function of the transcription machinery; Peter Novick, on the regulation of rab GTPases along the secretory pathway; Jim Spudich, on the mechanism of the enigmatic myosin VI motor; and Joe Goldstein, on the function of the Niemann-Pick C (NPC)-linked gene products, NPC1 and NPC2, in cholesterol transport. Their work showcased the multidisciplinary nature, diversity, and vitality of cell biology. In the words of George Palade, their talks also illustrated "how cell biology could be used to understand disease and how disease could be used to discover normal cell biology." An integrated understanding of the cellular machinery will be essential in tackling the plethora of questions and challenges posed by completion of the human genome and for understanding the molecular mechanisms underlying human disease.

  12. [Experimental models in oncology: contribution of cell culture on understanding the biology of cancer].

    Science.gov (United States)

    Cruz, Mariana; Enes, Margarida; Pereira, Marta; Dourado, Marília; Sarmento Ribeiro, Ana Bela

    2009-01-01

    In the beginning of the 20th century, tissue culture was started with the aim of studying the behaviour of animal cells in normal and stress conditions. The cell study at molecular level depends on their capacity of growing and how they can be manipulated in laboratory. In vitro cell culture allows us the possibility of studying biological key processes, such as growth, differentiation and cell death, and also to do genetic manipulations essential to the knowledge of structure and genes function. Human stem cells culture provides strategies to circumvent other models' deficiencies. It seems that cancer stem cells remain quiescent until activation by appropriated micro-environmental stimulation. Several studies reveal that different cancer types could be due to stem cell malignant transformations. Removal of these cells is essential to the development of more effective cancer therapies for advanced disease. On the other hand, dendritic cells modified in culture may be used as a therapeutic vaccine in order to induce tumour withdraw.

  13. On the cell biology of pit cells, the liver-specific NK cells

    Institute of Scientific and Technical Information of China (English)

    Dian Zhong Luo; David Vermijlen; Bülent Ahishali; Vasilis Triantis; Georgia Plakoutsi; Filip Braet; Karin Vanderkerken; Eddie Wisse

    2000-01-01

    @@ INTRODUCTION Natural killer (NK) cells are functionally defined by their ability to kill certain tumor cells and virusinfected cells without prior sensitization[1]. NK cells comprise about 10% to 15% of lymphocytes in the peripheral blood and most of these cells in human and rat have the morphology of large granular lymphocytes ( LGL )[2]. However, recent studies have demonstrated that small agranular lymphocytes, lacking CD3 expression, have cytolytic activity comparable to NK cells[3].

  14. Chemical Biology Studies on Molecular Diversity of Annonaceous Acetogenins

    Institute of Scientific and Technical Information of China (English)

    Yao Zhu-Jun

    2004-01-01

    Annonaceous acetogenins, isolated from the Annonaceae plants, have been attracting worldwide attention in recent years due to their biological activities, especially as growth inhibitors of certain tumor ceils [ 1 ]. They have been shown to function by blocking complex I in mitochondria [2] as well as ubiquinone-linked NADPH oxidase in the cells of specific tumor cell lines, including some multidrug-resistant ones [3]. These features make these acetogenins excellent leads for the new antitumor agents. In our previous work, the compounds 1a to 1d (Figure 1), which relies on structure simplification while maintaining all essential functionalities of the acetogenins, was in vitro tested against several human solid tumor cell lines and showed interesting cell selectivity [4]. All four analogues show remarkable activity against the HCT-8 and HT-29 cell lines, while compound 1c was found the best [4bi. In order to further investigate the effects of key structural features, a convergent parallel fragments assembly strategy was developed [4e]. In addition, the biological relevancies of typical annonaceous acetogenin mimetics were also studied [4f].

  15. The cell biology of CNS myelination.

    Science.gov (United States)

    Hughes, Ethan G; Appel, Bruce

    2016-08-01

    Myelination of axons in the central nervous system results from the remarkable ability of oligodendrocytes to wrap multiple axons with highly specialized membrane. Because myelin membrane grows as it ensheaths axons, cytoskeletal rearrangements that enable ensheathment must be coordinated with myelin production. Because the myelin sheaths of a single oligodendrocyte can differ in thickness and length, mechanisms that coordinate axon ensheathment with myelin growth likely operate within individual oligodendrocyte processes. Recent studies have revealed new information about how assembly and disassembly of actin filaments helps drive the leading edge of nascent myelin membrane around and along axons. Concurrently, other investigations have begun to uncover evidence of communication between axons and oligodendrocytes that can regulate myelin formation.

  16. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights.

    Science.gov (United States)

    Jiang, Chao; Caccamo, Paul D; Brun, Yves V

    2015-04-01

    How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era.

  17. Statins as Modulators of Regulatory T-Cell Biology

    Directory of Open Access Journals (Sweden)

    David A. Forero-Peña

    2013-01-01

    Full Text Available Statins are pharmacological inhibitors of the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR, an enzyme responsible for the synthesis of cholesterol. Some recent experimental studies have shown that besides their effects on the primary and secondary prevention of cardiovascular diseases, statins may also have beneficial anti-inflammatory effects through diverse mechanisms. On the other hand, the induction and activity of regulatory T cells (Treg are key processes in the prevention of pathology during chronic inflammatory and autoimmune diseases. Hence, strategies oriented towards the therapeutic expansion of Tregs are gaining special attention among biomedical researchers. The potential effects of statins on the biology of Treg are of particular importance because of their eventual application as in vivo inducers of Treg in the treatment of multiple conditions. In this paper we review the experimental evidence pointing out to a potential effect of statins on the role of regulatory T cells in different conditions and discuss its potential clinical significance.

  18. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-01

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. PMID:26590403

  19. Ship diesel emission aerosols: A comprehensive study on the chemical composition, the physical properties and the molecular biological and toxicological effects on human lung cells of aerosols from a ship diesel engine operated with heavy or light diesel fuel oil

    Science.gov (United States)

    Zimmermann, R.; Buters, J.; Öder, S.; Dietmar, G.; Kanashova, T.; Paur, H.; Dilger, M.; Mülhopt, S.; Harndorf, H.; Stengel, B.; Rabe, R.; Hirvonen, M.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Berube, K.; Sippula, O.; Streibel, T.; Karg, E.; Schnelle-Kreis, J.; Lintelmann, J.; Sklorz, M.; Arteaga Salas, M.; Orasche, J.; Müller, L.; Reda, A.; Passig, J.; Radischat, C.; Gröger, T.; Weiss, C.

    2013-12-01

    The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties, transformation processes and health effects of anthropogenic combustion emissions. This is performed by thorough comprehensive chemical and physical characterization of combustion aerosols (including application of advantageous on-line methods) and studying of biological effects on human lung cell-cultures. A new ALI air-liquid-interface (ALI) exposition system and a mobile S2-biological laboratory were developed for the HICE-measurements. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized (e.g. proteomics). By using stable isotope labeling technologies (13C-Glucose/metabolomics; 2H-Lysine/SILAC-proteomics), high sensitivity and accuracy for detection of molecular-biological effects is achievable even at sub-toxic effect dose levels. Aerosols from wood combustion and ship diesel engine (heavy/light fuel oil) have been investigated. The effect of wood combustion and ship diesel PM e.g. on the protein expression of ALI-exposed A549 cells was compared. Filtered aerosol is used as gas-reference for the isotope labeling based method (SILAC). Therefore the effects of wood combustion- and shipping diesel-PM can be directly compared. Ship diesel aerosol causes a broader distribution in the observed fold changes (log2), i.e. more proteins are significantly up-/down-regulated in case of shipping diesel PM-exposure. This corresponds to a stronger biological reaction if compared to wood combustion-PM exposure. The chemical analysis results on wood combustion- and ship diesel-PM depict more polycyclic aromatic hydrocarbons (PAH)/oxidized-PAH but less of some transition metals (V, Fe) in the wood combustion case. Interestingly, alkylated PAH are considerably more abundant in shipping PM, suggesting that PAH/Oxy-PAH may be less relevant for

  20. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology.

    Directory of Open Access Journals (Sweden)

    George R Littlejohn

    2014-04-01

    Full Text Available Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximise the information gained from advances in fluorescent protein labelling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC, perfluorodecalin (PFD enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the perfluorocarbons PFD, and perfluoroperhydrophenanthrene (PP11 for in vivo plant leaf imaging using 4 advanced modes of microscopy: laser scanning confocal microscopy (LSCM, Two-photon fluorescence (TPF microscopy, second harmonic generation (SHG microscopy and stimulated Raman scattering (SRS microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image perfluorocarbons directly in the mesophyll and thereby easily delimit the negative space within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.

  1. [New insights into adipose cell biology].

    Science.gov (United States)

    Burcelin, Rémy

    2013-01-01

    Our research focuses on the molecular mechanisms controlling glycemia in healthy and diabetic individuals. Diabetes is now considered as a worldwide epidemic by WHO, and is predicted to affect several hundred million people in the near future. Current therapies have failed to prevent or control hyperglycemia, as well as the deleterious cardiovascular consequences of the disease have increased. New paradigms are thus needed to develop novel therapeutic strategies. Over the last 15 years, we have been studying the intestine as a major regulator of the integrated cross-talk between the brain, liver, pancreas, muscles and blood vessels required for glycemic control. As a first example, we identified that during a meal the glucose transporter GLUT2 and the intestinal hormone glucagon-like peptide-1 (GLP-1) are involved in glucose detection by the entero-portal system. This was done using highly innovative experimental techniques in the awake free moving mouse. We then found that the enteric-vagal nervous system transmits this nutritional information towards the brain stem and hypothalamus, where leptin, neuropeptide Y and GLP-1 relay the enteric signal to control the endocrine pancreas (insulin-glucagon secretion), the liver (glycogen metabolism), the vascular system (vasodilation, arterial flow), and muscle metabolism. This "anticipatory metabolic reflex " is altered during diabetes and might thus represent a new pharmacological target. Subsequently, while investigating the molecular mechanisms responsible for regulating this new physiological pathway, we discovered that a fat-rich diabetogenic diet alters the intestinal microbiota and permeability. This leads to an increase in the concentration of plasma lipopolysaccharides (LPS), which causes metabolic endotoxemia responsible for the induction of low-grade inflammation that characterizes type 2 diabetes, insulin resistance, adipose tissue development and hepatic lipid storage. We then showed that bacteria can be

  2. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  3. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, M. Sajimol, E-mail: sajimollazar@gmail.com [Department of Physics, St.Teresa' s College , Kochi-11, Kerala (India); Mathew, Lizzy [Department of Botany, St.Teresa' s College , Kochi-11, Kerala (India); Alex, Roselin [Department of Biotechnology, Cochin University of Science and Technology, Kochi-22 (India); Deepa, G. D. [NCAAH, Cochin University of Science and Technology,Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Kochi-22 (India)

    2014-01-28

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  4. L-serine capped ZnS:Mn nanocrystals for plant cell biological studies and as a growth enhancing agent for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae)

    Science.gov (United States)

    Augustine, M. Sajimol; Mathew, Lizzy; Alex, Roselin; Deepa, G. D.; Jayalekshmi, S.

    2014-01-01

    In the present work, the prospects of ZnS:Mn nanocrystals capped with L- serine, a bio-compatible amino acid, synthesized by wet chemical route, as efficient fluorescent probes for plant cell biological studies have been investigated. The present synthesis route using bio-compatible material is a low cost and easy to control method. The colloidal stability of the capped nano crystals is very good as they remain stable without settling down for long time. It is observed that L- serine significantly modifies the structural and optical characteristics of the ZnS:Mn nanocrystals and hence is suitable as a bio-compatible capping agent. The structural properties of L- serine capped nanocrystals were investigated by XRD technique. The size of the L- serine capped ZnS:Mn nanocrystals is found to be around 2 nm . The optical characterization of the nanocrystals was carried out on the basis of photoluminescence (PL) spectroscopic studies. The intense photoluminescence emission observed around 597nm for L-serine capped ZnS:Mn offers high prospects of applications in bio-imaging fields. The unique optical properties of nanoparticles make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations. In the present study, L-serine capped ZnS:Mn nanocrystals were used as a staining dye in fluorescent microscope for observing cell division, cell structure etc. These nanocrystals were also incorporated into the culture media along with the normal auxin- cytokinin hormone combinations in Murashige and Skoog (MS) medium for micropropagation of Bacopa monnieri Linn. (Brahmi:Scrophulariaceae), an Ayurvedic medicine. The results suggest that L-serine capped ZnS:Mn nanocrystals can act as efficient enhancers towards quick callusing and shoot proliferation.

  5. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  6. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  7. Extracellular Vesicles: Evolving Factors in Stem Cell Biology

    Science.gov (United States)

    Nawaz, Muhammad; Fatima, Farah; Vallabhaneni, Krishna C.; Penfornis, Patrice; Valadi, Hadi; Ekström, Karin; Kholia, Sharad; Whitt, Jason D.; Fernandes, Joseph D.; Pochampally, Radhika; Squire, Jeremy A.; Camussi, Giovanni

    2016-01-01

    Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies. PMID:26649044

  8. Inflammatory mediators: Parallels between cancer biology and stem cell therapy

    Directory of Open Access Journals (Sweden)

    A Patel

    2009-02-01

    Full Text Available Shyam A Patel1,2,3, Andrew C Heinrich2,3, Bobby Y Reddy2, Pranela Rameshwar21Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA; 2Department of Medicine – Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA; 3These authors contributed equally to this workAbstract: Inflammation encompasses diverse molecular pathways, and it is intertwined with a wide array of biological processes. Recently, there has been an upsurge of interest in the interactions between mediators of inflammation and other cells such as stem cells and cancer cells. Since tissue injuries are associated with the release of inflammatory mediators, it would be difficult to address this subject without considering the implications of their systemic effects. In this review, we discuss the effects of inflammatory reactions on stem cells and extrapolate on information pertaining to cancer biology. The discussion focuses on integrins and cytokines, and identifies the transcription factor, nuclear factor-kappa B (NFκB as central to the inflammatory response. Since stem cell therapy has been proposed for type II diabetes mellitus, metabolic syndrome, pulmonary edema, these disorders are used as examples to discuss the roles of inflammatory mediators. We propose prospects for future research on targeting the NFκB signaling pathway. Finally, we explore the bridge between inflammation and stem cells, including neural stem cells and adult stem cells from the bone marrow. The implications of mesenchymal stem cells in regenerative medicine as pertaining to inflammation are vast based on their anti-inflammatory and immunosuppressive effects. Such features of stem cells offer great potential for therapy in graft-versus-host disease, conditions with a significant inflammatory component, and tissue regeneration.Keywords: mesenchymal stem cells, cancer, cytokines

  9. Recursive Partitioning Analysis of Mediastinal N2 Lymph Node Involvement with Selected Biological Markers in Operable Non-small Cell Lung Cancer: A Correlative Study

    Directory of Open Access Journals (Sweden)

    Hakan Bozcuk

    2007-01-01

    Full Text Available Background: Expressions of various biomarkers in non-small cell lung cancer (NSCLC have been linked with the prognosis and involvement of mediastinal lymph nodes.Methods: In this study, we utilized recursive partitioning analysis (RPA by using P53, c-erb-B2, and P-glycoprotein (PGP expressions evaluated by immunohistochemistry to estimate retrospectively the likelihood of the occult N2 mediastinal lymph node involvement in patients with operable NSCLC.Results: In univariate tests, immunohistochemical staining of the primary tumor for these 3 markers in 61 patients undergoing surgery revealed no direct relationship with the N2 involvement. However, RPA demonstrated in patients aged 75 and with 4 mediastinal lymph nodes removed that, high PGP expression frequency (20% predicted an increased likelihood of the N2 involvement (46.7%, R2 = 0.25. Univariate nominal logistic regression analysis revealed that RPA group affiliation, and the number of mediastinal lymph nodes resected (logarithmic transformation were associated with the metastasis to N2 lymph nodes (χ2 = 17.59, p = 0.0005, and χ2 = 2.40, p = 0.0654, respectively. Multivariate analysis confirmed that only RPA group affiliation predicted the N2 involvement (χ2 = 14.63, p = 0.0022.Conclusion: This study shows for the first time that PGP expression of the primary tumor may help to predict the occult N2 mediastinal lymph node involvement in NSCLC. Thus, further research is required to understand whether PGP expression may aid in the decision process for preoperative mediastinoscopy.

  10. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Directory of Open Access Journals (Sweden)

    Matthew Emerson Randolph

    2015-10-01

    Full Text Available The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some muscular dystrophies. The biology of muscle stem cells varies depending on their embryologic origins and the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  11. High-Content Screening for Quantitative Cell Biology.

    Science.gov (United States)

    Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J

    2016-08-01

    High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future.

  12. Biological dosimetry of X-rays by micronuclei study

    International Nuclear Information System (INIS)

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in hematological, biochemical an cytogenetics data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable, in this case, the study of micronuclei in peripheral blood lymphocytes cytokinetic blocked can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using micronuclei assay for X-rays at 250 kVp, 43,79 rads/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y=c+ α D+β D2 where. Y is the number micronuclei per cell and D the dose. the curve is compared with those produced elsewhere

  13. Biological Dosimetry of X-rays by micronuclei study

    International Nuclear Information System (INIS)

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical an cytogenetics data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable, in this case, the study of micronuclei in peripheral blood lymphocytes citokinetics blocked can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using micronuclei assay for X-rays at 250 kVp, 43,79 rads/min and temperature 37 degree centigree has been produced. Experimental data is fitted to model Y=C+ αD+BD''2 where Y is the number of micronuclei per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 24 refs

  14. Bringing the physical sciences into your cell biology research

    OpenAIRE

    Robinson, Douglas N; Iglesias, Pablo A.

    2012-01-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works toget...

  15. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  16. Biological Indicators in Studies of Earthquake Precursors

    Science.gov (United States)

    Sidorin, A. Ya.; Deshcherevskii, A. V.

    2012-04-01

    Time series of data on variations in the electric activity (EA) of four species of weakly electric fish Gnathonemus leopoldianus and moving activity (MA) of two cat-fishes Hoplosternum thoracatum and two groups of Columbian cockroaches Blaberus craniifer were analyzed. The observations were carried out in the Garm region of Tajikistan within the frameworks of the experiments aimed at searching for earthquake precursors. An automatic recording system continuously recorded EA and DA over a period of several years. Hourly means EA and MA values were processed. Approximately 100 different parameters were calculated on the basis of six initial EA and MA time series, which characterize different variations in the EA and DA structure: amplitude of the signal and fluctuations of activity, parameters of diurnal rhythms, correlated changes in the activity of various biological indicators, and others. A detailed analysis of the statistical structure of the total array of parametric time series obtained in the experiment showed that the behavior of all animals shows a strong temporal variability. All calculated parameters are unstable and subject to frequent changes. A comparison of the data obtained with seismicity allow us to make the following conclusions: (1) The structure of variations in the studied parameters is represented by flicker noise or even a more complex process with permanent changes in its characteristics. Significant statistics are required to prove the cause-and-effect relationship of the specific features of such time series with seismicity. (2) The calculation of the reconstruction statistics in the EA and MA series structure demonstrated an increase in their frequency in the last hours or a few days before the earthquake if the hypocenter distance is comparable to the source size. Sufficiently dramatic anomalies in the behavior of catfishes and cockroaches (changes in the amplitude of activity variation, distortions of diurnal rhythms, increase in the

  17. 白血病细胞分化与凋亡的化学生物学研究%Chemical biology study for differentiation and apoptosis of leukemic cell

    Institute of Scientific and Technical Information of China (English)

    陈国强; 赵倩; 吴英理; 王立顺

    2012-01-01

    Chemical biology is a scientific interdiscipline spanning the fields of chemistry and biology that involves the application of chemical tools, often compounds, to the study and manipulation of biological systems. Remarkable achievements have been obtained on chemical biology which aims to study important biological events by using small molecular active compounds as a probe thus small active compound has become effective tools in the research of biomedieine. Our research group has achieved a series of results in the molecular mechanism study of leukemic cell differentiation and apoptosis through using small molecular active compounds. We discovered that adenanthin, a diterpenoid compound extracted from Rabdosia adenantha, induces APL-like cell differentiation, represses tumor growth in vivo and prolongs the survival of mouse A PL models that are sensitive and resistant to retinoic acid. The chemical probe biotin-tagged adenanthin was designed on the basis of structure-activity relationship data. Further study demonstrated adenanthin directly targets the conserved resolving cysteines of Prx I and Prx 0 and inhibits their peroxidase activities. Consequently, cellularH2O2 is elevated, leading to the activation of extracellular signal regulated kinases and increased transcription of C/EBP|3, which contributes to adenanthin-induced differentiation. In another study we identified a novel natural ent-kaurene diterpenoid derived from /. pharicus leaves called pharicin B that can rapidly stabilize RARa as well as PML-RARa protein and enhances ATRA-dependent transcriptional activity of RARa. Additionally, pharicin B enhances differentiation -enhancing effect of ATRA in AML cell lines, some primary leukemic cells and overcomes retinoid resistance in ATRA-resistant subclones. The effectiveness of the ATRA/pharicin B combination warrants further investigation on their use as a therapeutic strategy for AML patients. Based on our previous study that NSC606985, a novel

  18. Skeletal muscle stem cells from animals I. Basic cell biology

    Science.gov (United States)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  19. New Developments in Mast Cell Biology: Clinical Implications.

    Science.gov (United States)

    Arthur, Greer; Bradding, Peter

    2016-09-01

    Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.

  20. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  1. Integrated Raman and angular scattering of single biological cells

    Science.gov (United States)

    Smith, Zachary J.

    2009-12-01

    Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the

  2. Factors Influencing Academic Performance of Students Enrolled in a Lower Division Cell Biology Core Course

    Science.gov (United States)

    Soto, Julio G.; Anand, Sulekha

    2009-01-01

    Students' performance in two semesters of our Cell Biology course was examined for this study. Teaching strategies, behaviors, and pre-course variables were analyzed with respect to students' performance. Pre-semester and post-semester surveys were administered to ascertain students' perceptions about class difficulty, amount of study and effort…

  3. Studies on the effect of cell cycle arrest on central metabolism in the diatom Phaeodactylum tricornutum, using physiological and systems biology approaches

    Science.gov (United States)

    Kim, Joomi

    Diatoms (Bacillarophyceae) are photosynthetic unicellular microalgae that have risen to ecological prominence in the modern oceans over the past 30 million years. They are excellent candidates for biodiesel feedstocks. Global climate change has led to an interest in algal triacylglycerols (TAGs) as feedstocks for sustainable biodiesel, and diatoms are attractive candidates for TAG production as one of the most productive and environmentally flexible algae in the contemporary oceans. For Chapter 2, a genome-scale metabolic model was constructed to calculate intracellular fluxes of a diatom under different growth conditions. The model identified enzymes that may be relevant to increasing lipid synthesis, explored how transporters affect flux outputs, and explored unusual features of diatoms, including the Entner-Douderoff and phosphoketolase pathways, and glycolytic enzymes in their mitochondria. Chapter 3 discusses how cell cycle arrest via cyclin-dependent kinase (Cdk) inhibition, can increase accumulation of TAGs, and shift metabolism away from protein synthesis. For Chapter 4, transcriptome analysis of cells under cell cycle arrest was performed to show that the pattern of gene expression was fundamentally different from nitrogen stress. Most of the genes related to fatty acid and TAG synthesis were up-regulated. The gene expression pattern for light harvesting complexes was similar to cells stressed by high light, suggesting that arrested cells have smaller sinks for photosynthetically generated electrons.

  4. Biological study of the effect of water soluble [N-(2-hydroxybenzyl)-L-aspartato] gallium complexes on breast carcinoma and fibrosarcoma cells.

    Science.gov (United States)

    Mohsen, Ahmed; Saby, Charles; Collery, Philippe; Sabry, Gilane Mohamed; Hassan, Rasha Elsherif; Badawi, Abdelfattah; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid

    2016-10-01

    Two water soluble gallium complexes described as [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives, were synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, mass spectrometry, and elemental analysis. The 2-(5-chloro-2-hydroxybenzylamino)succinic acid derivative (GS2) has been found to be a promising anticancer drug candidate. This compound was found to be more cytotoxic against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines than the unsubstituted derivative and GaCl3. GS2 was able to induce apoptosis through downregulation of AKT phosphorylation, G2M arrest in cell cycle, and caspase 3/7 pathway. This gallium complex was found to induce an increase in mitochondrial ROS level in HT-1080 cells but not in MDA-MB231 cells. This suggests that the mechanism of action of GS2 would not be mediated by the drug-induced oxidative stress but probably by directly and indirectly inhibiting the AKT cell-signaling pathway.

  5. The circadian clock and cell cycle: Interconnected biological circuits

    OpenAIRE

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2013-01-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the ‘gating’ controls of the ci...

  6. Nanodomain stabilization dynamics in plasma membranes of biological cells

    Science.gov (United States)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  7. A short guide to technology development in cell biology.

    Science.gov (United States)

    van Steensel, Bas

    2015-03-16

    New technologies drive progress in many research fields, including cell biology. Much of technological innovation comes from "bottom-up" efforts by individual students and postdocs. However, technology development can be challenging, and a successful outcome depends on many factors. This article outlines some considerations that are important when embarking on a technology development project. Despite the challenges, developing a new technology can be extremely rewarding and could lead to a lasting impact in a given field.

  8. In focus: molecular and cell biology research in China.

    Science.gov (United States)

    Yao, Xuebiao; Li, Dangsheng; Pei, Gang

    2013-09-01

    An interactive, intellectual environment with good funding opportunities is essential for the development and success of basic research. The fast-growing economy and investment in science, together with a visionary plan, have attracted foreign scholars to work in China, motivated world-class Chinese scientists to return and strengthened the country's international collaborations. As a result, molecular and cell biology research in China has evolved rapidly over the past decade.

  9. Plant Cell and Signaling Biology Blooms in the Wuyi Mountain

    Institute of Scientific and Technical Information of China (English)

    Jianping Hu

    2011-01-01

    @@ INTRODUCTION The Eighth International Conference on Plant Biology Fron-tiers, organized by Zhenbiao Yang, Chentao Lin, and Xing-wang Deng, was convened in the Wuyi Mountain Yeohwa Resort in Fujian, China, 23-27 September 2010.The meeting's main theme was Cells and Signals, featuring four keynote speeches, 45 plenary talks, and over 40 poster presentations that covered a wide range of topics, from dynamic cellular structures to how developmental and environmental signals control various plant processes at the juncture of cells.

  10. A new view into prokaryotic cell biology from electron cryotomography.

    Science.gov (United States)

    Oikonomou, Catherine M; Jensen, Grant J

    2016-04-01

    Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (∼4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future.

  11. Dentinoameloblastoma with ghost cells: A rare case report with emphasis on its biological behavior

    Directory of Open Access Journals (Sweden)

    Kiran Kumar

    2013-01-01

    Full Text Available Ameloblastomas are regarded as a homogeneous group of neoplasms with locally invasive character. They generally do not show induction of dental hard tissue formation except in few cases. Biological behavior and histogenesis of these tumors is still unexplored as there is lack of relevant studies and long follow-up of these patients. So, we aimed to report this rare case of dentinoameloblastoma with unique presence of ghost cells in middle-aged female involving maxilla with emphasis on its biological behavior. We conclude that although histogenesis of this tumor is not clear but biological potential is similar to conventional ameloblastoma requiring wider excision.

  12. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  13. Using Molecular Biology to Develop Drugs for Renal Cell Carcinoma

    Science.gov (United States)

    Cowey, C. Lance; Rathmell, W. Kimryn

    2010-01-01

    Background Renal cell carcinoma is a disease marked by a unique biology which has governed it’s long history of poor response to conventional cancer treatments. The discovery of the signaling pathway activated as a result of inappropriate constitutive activation of the hypoxia inducible factors (HIF), transcription factors physiologically and transiently stabilized in response to low oxygen, has provided a primary opportunity to devise treatment strategies to target this oncogenic pathway. Objective A review of the molecular pathogenesis of renal cell cancer as well as molecularly targeted therapies, both those currently available and those in development, will be provided. In addition, trials involving combination or sequential targeted therapy are discussed. Methods A detailed review of the literature describing the molecular biology of renal cell cancer and novel therapies was performed and summarized. Results/Conclusion Therapeutics targeting angiogenesis have provided the first class of agents which provide clinical benefit in a large majority of patients and heralded renal cell carcinoma as a solid tumor paradigm for the development of novel therapeutics. Multiple strategies targeting this pathway and now other identified pathways in renal cell carcinoma provide numerous potential opportunities to make major improvements in treating this historically devastating cancer. PMID:20648240

  14. Micrasterias as a Model System in Plant Cell Biology

    Science.gov (United States)

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  15. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    Science.gov (United States)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  16. Early biological effects of low doses of ionizing radiation on yeast cells

    International Nuclear Information System (INIS)

    The biological effectiveness of different radiation types for variety organisms requires further study. For fundamental studies of this problem it is worthwhile to use the most thoroughly investigated biological objects, for example, yeasts. The yeast Saccharomyces cerevisiae was used as the test eukaryotic organism which gives the experimenter complete control over its chemical and physical environment. The aim of the study consisted in comparative analysis of early effects induced by low doses of low LET (60Co and 137Cs) and high LET ( α-particles 239Pu, neutrons) radiation on eukaryotic cells (cell survival about 100%). Biological effects of low doses of ionizing radiation were studied by two criteria: 1.delay of cell division and kinetics of yeast cells micro-colonies formation; 2.morphology of micro-colonies at different temperature. The results have shown that only small part of irradiated cell population (∼10%) divided at the same rate as unirradiated cells. Other part of cells had a delayed division. Unirradiated control cells formed typical micro-colonies at the solid nutrient media (YEPD) after 10 15 h of incubation. The fraction of cells population (20- 25%) exposed to low doses of?-particles or neutrons formed spectrum of untypical micro-colonies for the same incubation time, which consisted of small number of larger and more elongated cells. Some of these micro-colonies had 10 50 cells were of exotic forms ('spider'), differed from other micro-colonies in population. Using this method we can reveal an early response of cells at very low doses (survival about 100%) and determine the number non-lethally damaged cells. (author)

  17. Cystitis: From Urothelial Cell Biology to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gilho Lee

    2014-01-01

    Full Text Available Cystitis is a urinary bladder disease with many causes and symptoms. The severity of cystitis ranges from mild lower abdominal discomfort to life-threatening haemorrhagic cystitis. The course of disease is often chronic or recurrent. Although cystitis represents huge economical and medical burden throughout the world and in many cases treatments are ineffective, the mechanisms of its origin and development as well as measures for effective treatment are still poorly understood. However, many studies have demonstrated that urothelial dysfunction plays a crucial role. In the present review we first discuss fundamental issues of urothelial cell biology, which is the core for comprehension of cystitis. Then we focus on many forms of cystitis, its current treatments, and advances in its research. Additionally we review haemorrhagic cystitis with one of the leading causative agents being chemotherapeutic drug cyclophosphamide and summarise its management strategies. At the end we describe an excellent and widely used animal model of cyclophosphamide induced cystitis, which gives researches the opportunity to get a better insight into the mechanisms involved and possibility to develop new therapy approaches.

  18. High white blood cell count at diagnosis of childhood acute lymphoblastic leukaemia: biological background and prognostic impact. Results from the NOPHO ALL-92 and ALL-2000 studies

    DEFF Research Database (Denmark)

    Vaitkeviciene, G; Forestier, E; Hellebostad, M;

    2011-01-01

    Prognostic impact of peripheral blood white blood cell count (WBC) at the diagnosis of childhood acute lymphoblastic leukaemia (ALL) was evaluated in a population-based consecutive series of 2666 children aged 1–15 treated for ALL between 1992 and 2008 in the five Nordic countries (Denmark, Finland...

  19. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  20. Sorting and biological characteristics analysis for side population cells in human primary hepatocellular carcinoma

    Science.gov (United States)

    Jiang, Yegui; Gao, Hucheng; Liu, Mingdong; Mao, Qing

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cause of the tumor worldwide, its incidence is increasing year by year. This study aims to investigate the sorting and biological characteristics of side population (SP) cells. Human HCC tissues used were obtained from patients undergoing surgical resection. SP cells were sorted using flow cytometry. Cell cycle assay, apoptosis assay and colony formation assay were performed to detect cell proliferation and apoptosis. Invasion assay was employed to examine SP cell invasion. Tumorigenicity assay was used to evaluate tumorigenicity. HCC related microRNAs (miRNA) were analyzed using Micro-array analysis. Target genes were predicted using miRNA database. GO analsis was employed to predict target gene function. Apoptosis percentage was lower and cell viability was higher in SP cells than non-SP (NSP) cells. Colony forming ability of SP cells was significantly higher than NSP cells. Transwell assay positive cells in SP cells were higher significantly than NSP cells. Tumorigenicity of SP cells was higher significantly than NSP cells. 107 differentially expression miRNA were discovered, including 45 up-expressed miRNAs and 62 down-expressed miRNAs in SP cells. Up-regulated hsa-miR-193b-3p and hsa-miR-505-3p predict 25 and 35 target genes, and correlated with 4 and 42 GO terms, respectively. Down-regulated hsa-miR-200a-3p, hsa-miR-194-5p, hsa-miR-130b-3p predict 133, 48 and 127 target genes, and correlate with 10, 7 and 109 GO terms, respectively. In conclusion, proliferation, colony formation, anti-apoptosis, self-renewal capavility, invasive characteristic and tumorigenicity in SP cells isolated from HCC tissues was higher compared to NSP cells. Therefore, sorted SP cells could characterize with biological functions of cancer stem cells.

  1. An exploratory study on teaching in Medical Cell Biology for international students in English.%留学生医学细胞生物学全英文教学探索

    Institute of Scientific and Technical Information of China (English)

    夏米西努尔·伊力克; 周勇; 吴江

    2012-01-01

    International students were recruited in Xinjiang Medical Lniversity for the first time in 1992, and large - scale education for international students was carried out in 2001. At present time, students from 26 countries including Pakistan, India, Afghanistan, Saudi Arabia, CIS of Russia, Kenya, South Korea, the Lnited Kingdom, the Lnited States etc. Academic teaching levels covered undergraduates, postgraduates and doctor degrees, forming a relatively complete external medical education system. The Department of Biology has undertaken theoretical and experimental teaching in Medical Cell Biology with teaching hours over 1000 hours since 2001. The quality of teaching is very good, and appreciated by majority of students. At the same time, the education for international students has been listed as an educational reformation subject for study. In experience of English teaching during past 12 years; four major contents in teaching of Medical Cell Biology were deeply appreciated by international students, and more attention should be paid to teaching reformation for international students. It is important to pay attention to 4 items in English teaching of Medical Cell Biology namely the compilation of teaching materials, improvement of teaching programs, reformation of teaching mode and improvement of quality of teachers by self, and they are important links in reformation of teaching in Medical Cell Biology.%新疆医科大学从1992年首次招收留学生,2001年开展规模化留学生教育.目前留学生已遍及巴基斯坦、印度、阿富汗、沙特阿拉伯、独联体、科尼亚、韩国、英国和美国等26个国家,学历层次涵盖本科、硕士、博士,形成了比较完善的对外医学教育体系.生物学教研室从2001年起承担了医学细胞生物学理论和实验教学工作,授课学时达1000多学时.教学质量好,深受广大留学生的喜爱.同时教研室把留学生教育列为教改课题来进行研究.回顾12年来

  2. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration

    Directory of Open Access Journals (Sweden)

    Luca Gentile

    2011-01-01

    Full Text Available Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.

  3. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces.

    Science.gov (United States)

    Gooding, J Justin; Parker, Stephen G; Lu, Yong; Gaus, Katharina

    2014-04-01

    Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.

  4. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium

    Directory of Open Access Journals (Sweden)

    Nathan Salomonis

    2016-07-01

    Full Text Available The rigorous characterization of distinct induced pluripotent stem cells (iPSC derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.

  5. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    Science.gov (United States)

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.

  6. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    Science.gov (United States)

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community. PMID:27293150

  7. Computational modeling of STED microscopy through multiple biological cells under one- and two-photon excitation

    Science.gov (United States)

    Mark, Andrew E.; Davis, Mitchell A.; Starosta, Matthew S.; Dunn, Andrew K.

    2015-03-01

    While superresolution optical microscopy techniques afford enhanced resolution for biological applications, they have largely been used to study structures in isolated cells. We use the FDTD method to simulate the propagation of focused beams for STED microscopy through multiple biological cells. We model depletion beams that provide 2D and 3D confinement of the fluorescence spot and assess the effective PSF of the system as a function of focal depth. We compare the relative size of the STED effective PSF under one- and two-photon excitation. PSF calculations suggest that imaging is possible up to the maximum simulation depth if the fluorescence emission remains detectable.

  8. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  9. Particle-based model to simulate the micromechanics of biological cells

    Science.gov (United States)

    van Liedekerke, P.; Tijskens, E.; Ramon, H.; Ghysels, P.; Samaey, G.; Roose, D.

    2010-06-01

    This paper is concerned with addressing how biological cells react to mechanical impulse. We propose a particle based model to numerically study the mechanical response of these cells with subcellular detail. The model focuses on a plant cell in which two important features are present: (1) the cell’s interior liquidlike phase inducing hydrodynamic phenomena, and (2) the cell wall, a viscoelastic solid membrane that encloses the protoplast. In this particle modeling framework, the cell fluid is modeled by a standard smoothed particle hydrodynamics (SPH) technique. For the viscoelastic solid phase (cell wall), a discrete element method (DEM) is proposed. The cell wall hydraulic conductivity (permeability) is built in through a constitutive relation in the SPH formulation. Simulations show that the SPH-DEM model is in reasonable agreement with compression experiments on an in vitro cell and with analytical models for the basic dynamical modes of a spherical liquid filled shell. We have performed simulations to explore more complex situations such as relaxation and impact, thereby considering two cell types: a stiff plant type and a soft animal-like type. Their particular behavior (force transmission) as a function of protoplasm and cell wall viscosity is discussed. We also show that the mechanics during and after cell failure can be modeled adequately. This methodology has large flexibility and opens possibilities to quantify problems dealing with the response of biological cells to mechanical impulses, e.g., impact, and the prediction of damage on a (sub)cellular scale.

  10. [Long-term subculture and biological characterization of the murine bone marrow endothelial cell line].

    Science.gov (United States)

    Huang, Chang; Zhu, Wen-Biao; Zhu, Hai-Ling; Wang, Bao-He; Wang, Qi-Ru

    2007-12-01

    The murine bone marrow endothelial cell line (mBMEC) has been maintained by means of subculture and cryopreservation for over 10 years since it was established in our laboratory. This study was aimed to newly identify biological characteristics of this cell line for further study. The cultured mBMEC cells were observed by inverted microscopy and transmission electron microscopy (TEM). PECAM-1 (CD31) and von Willebrand factor (vWF) were detected by immunofluorescent staining. The phagocytotic activity of the cells in culture was tested by using fluorescent acetylated low-density lipoprotein (Dil-Ac-LDL). The cell growth kinetics analysis and karyotype analysis were performed. The results showed that the adherent cells were mostly elliptical, rounded and spindle-shaped, and some of them connected to each other to form cord- and network-like arrangements in mBMEC cultures at subconfluence. The adherent cells grew up to confluence as a cobblestone-like monolayer. Several ultrastructural features of the endothelial cells could be observed in TEM sections of the cultured cells. More than 94% of mBMEC cells were positive for either CD31 or vWF. The phagocytotic ingestion of Dil-Ac-LDL occurred in 98.5% of cells. In normal culture conditions, the cells grew with a mean population doubling time of 54.6 hours and the maximal mitotic index was 38 per thousand in the rapid growth period. The colony yields were 4.33% to 7.40% depending on the plating density of cells. Karyotypes of all the cells were aneuploidy with a greater percentage of hyperdiploid. It is concluded that mBMEC cells retain the fundamental properties of endothelial cells, but the growth kinetics and biological behaviors are slightly different from those in the early days after the establishment of this cell line.

  11. Mathematical models in cell biology and cancer chemotherapy

    CERN Document Server

    Eisen, Martin

    1979-01-01

    The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...

  12. In vitro cultured cells as probes for space radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Meli, A.; Perrella, G.; Curcio, F.; Ambesi-Impiombato, F.S. [Dipartimento di Patologia e Medicina Sperimentale e Clinica, Universita di Udine, P.le S. Maria della Misericordia, 33100 Udine (Italy)

    1999-12-06

    Near future scenarios of long-term and far-reaching manned space missions, require more extensive knowledge of all possible biological consequences of space radiation, particularly in humans, on both a long-term and a short-term basis. In vitro cultured cells have significantly contributed to the tremendous advancement of biomedical research. It is therefore to be expected that simple biological systems such as cultured cells, will contribute to space biomedical sciences. Space represents a novel environment, to which life has not been previously exposed. Both microgravity and space radiation are the two relevant components of such an environment, but biological adaptive mechanisms and efficient countermeasures can significantly minimize microgravity effects. On the other hand, it is felt that space radiation risks may be more relevant and that defensive strategies can only stem from our deeper knowledge of biological effects and of cellular repair mechanisms. Cultured cells may play a key role in such studies. Particularly, thyroid cells may be relevant because of the exquisite sensitivity of the thyroid gland to radiation. In addition, a clone of differentiated, normal thyroid follicular cells (FRTL5 cells) is available in culture, which is well characterized and particularly fit for space research.

  13. Study of the influence of microgravity on the biological cells and molecular level; Seitai saibo bunshi level ni okeru bisho juryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The shape of osteoblast, gene appearance, gene of rice blast, cellular fusion of plants, gravity acceptance mechanism of unicellular organisms, and physiological and immunity functions of mice were investigated under the microgravity condition. The influence of gravity on the vital reaction and the influence of microgravity on the crystallization of vital substances were also investigated. For the observation of osteoblast, the fluorescence dye reacted with Ca was well taken in the cells. The microgravity affected the stability of rice blast, but hardly affected the protoplast culture of mushroom. The reaction of ciliate against the gravity related to the specific gravity difference between cells and outer liquid. The level of adrenaline in blood of mice increased during the drop. The moving speed of trigger waves of chemical parallel slit formed at the BZ reaction under the microgravity became 60% to 80% of that on the ground. In the case of crystallization at the deposition agent concentration of 1% to 4%, the turbidity showing the degree of crystallization changed complicatedly. Nine processes of crystal growth were recognized. 21 refs., 55 figs., 1 tab.

  14. Simulated biological effects of microgravity on phospholipid and energy metabolism of chicken embryonic brain cells studied by 31P-NMR spectroscopy

    Institute of Scientific and Technical Information of China (English)

    孙彤; 沈宏略; 王彦; 张锦珠

    2000-01-01

    Levels of phosphomonoester (PME), phosphodiester (PDE), ATP and pH in brain cells of chicken embryos rotated for 24 h in a clinostat during the period of hatching the 13th day (E13) and 15th day (E15) embryos were investigated by using 31P-NMR spectroscopy. Significant increases in the values of PME, ATP and pH were identified after E13 rotating for 24 h. With the same treatment, differences were obtained in the phospholipid and energy metabolism of E15, but no significant levels have been reached . The calorimetric assay (malachite green method) was used for measuring the activity of total ATPase. A dramatic decrease was evident in the activity of ATPase in brain cells of rotated E13 and E15. The former is more sensitive than the latter. All the levels mentioned above could restore in 24 h after the rotation stopped, except that the level of ATP was still higher than the control.

  15. Adhesion in the stem cell niche: biological roles and regulation

    OpenAIRE

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhe...

  16. 2012478 Biological characteristics of bone marrow mesenchymal stem cells and JAK2 mutation in myeloproliferative neoplasms

    Institute of Scientific and Technical Information of China (English)

    田竑

    2012-01-01

    Objective To study the biological characteristics of bone marrow mesenchymal stem cells(BMSCs) and detect JAK2 mutation in BMSCs from myeloproliferative neoplasms(MPN) patients. Methods JAK2 V617F mutation and exon 12 mutation in 70 MPN patients’ blood or bone marrow samples were detected.

  17. A Statistical Analysis of Student Questions in a Cell Biology Laboratory

    Science.gov (United States)

    Keeling, Elena L.; Polacek, Kelly M.; Ingram, Ella L.

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students…

  18. No question about exciting questions in cell biology.

    Directory of Open Access Journals (Sweden)

    Thomas D Pollard

    2013-12-01

    Full Text Available Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.

  19. No question about exciting questions in cell biology.

    Science.gov (United States)

    Pollard, Thomas D

    2013-12-01

    Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.

  20. Studies about space radiation promote new fields in radiation biology

    International Nuclear Information System (INIS)

    Astronauts are constantly exposed to space radiation of various types of energy with a low dose-rate during long-term stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Studies about biological the effects at a low dose and a low dose-rate include various aspects of microbeams, bystander effects, radioadaptive responses and hormesis which are important fields in radiation biology. In addition, space radiations contain high linear energy transfer (LET) particles. In particular, neutrons may cause reverse effectiveness at a low dose-rate in comparison to ionizing radiation. We are also interested in p53-centered signal transduction pathways involved in the cell cycle, DNA repair and apoptosis induced by space radiations. We must also study whether the relative biological effectiveness (RBE) of space radiation is affected by microgravity which is another typical component in space. To confirm this, we must prepare centrifuge systems in an International Space Station (ISS). In addition, we must prepare many types of equipment for space experiments in an ISS, because we cannot use conventional equipment from our laboratories. Furthermore, the research for space radiation might give us valuable information about the birth and evolution of life on the Earth. We can also realize the importance of preventing the ozone layer from depletion by the use of exposure equipment to sunlight in an ISS. For these reasons, we desire to educate space researchers of the next generation based on the consideration of the preservation of the Earth from research about space radiation. (author)

  1. Mobile Applications in Cell Biology Present New Approaches for Cell Modelling

    Science.gov (United States)

    de Oliveira, Mayara Lustosa; Galembeck, Eduardo

    2016-01-01

    Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…

  2. Study on Construction of Accelerating Ulcer Concrescence Cell/Hydrogel Compound and Its Biological Character%促溃疡愈合细胞/水凝胶三维复合物的初步构建及表征

    Institute of Scientific and Technical Information of China (English)

    董荣娜; 毋中明; 于德民

    2012-01-01

      目的:应用壳聚糖衍生物水凝胶负载表达人血小板衍化生长因子-BB 的 CHO 细胞系,初步构建促溃疡愈合复合物。方法:选择壳聚糖经 N-乙酰-L-半胱氨酸修饰后合成含巯基的双硫键壳聚糖,加水合成水凝胶,用 MTT 法检测生物相容性并负载转基因 CHO 细胞,构建促溃疡愈合复合物并进行表征。结果:该水凝胶材料与转基因 CHO 细胞系生物相容性良好。水凝胶呈网格结构,孔径一致、细胞黏附生长,负载转基因 CHO 细胞构成三维复合物。结论:CHO-rhPDGF-BB 细胞具有新的生物学功能,水凝胶与该细胞相容性良好,为研究糖尿病溃疡创面愈合提供了实验基础。%  Objective :Use natural macromolecule hydrogel material to compose 3D cell scaffolds loading transgenic cell that could stably express platelet-derived growth factor-BB (PDGF-BB) to construct accelerating ulcer concrescence compound.Method:Choosed chitosan and modified it by NAC to synthesize disulfide bond chitosan with sulfydryl,dissolved the compound into deionized water generating hydrogel,tested it’s cytotoxicity by MTT;used it loading transgenic CHO as 3D cell scaffolds to construct cell/scaffold composition,scaned it’s structure.Result:The hydrogel has good biocompatibility.The compound has network structure,aperture well-distributed,cells stuck well.Conclusion:The CHO cell line had new biological character,and successfully constructed the cell/scaffold composition,which can afford experiment base and theory foundation to study ulcer concrescence.

  3. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture.

    Science.gov (United States)

    Lei, Lei; Liao, WeiMing; Sheng, PuYi; Fu, Ming; He, AiShan; Huang, Gang

    2007-06-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: 61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t x log2/logNt - logN0" was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the 61 years old group (statistical analysis of variance (ANOVA), P=0.002, PhADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  4. [Retrospective study of the implementation of the qualitative PCR technique in biological samples for monitoring toxoplasmosis in pediatric patients receiving hematopoietic stem cell transplantation].

    Science.gov (United States)

    Nigro, Mónica G; Figueroa, Carlos; Ledesma, Bibiana A

    2014-01-01

    Toxoplasmosis is an opportunistic infection caused by the parasite Toxoplasma gondii. The infection is severe and difficult to diagnose in patients receiving allogeneic hematopoietic stem cell transplantation (HSCT). Twelve patients receiving HSCT were monitored post-transplant, by qualitative PCR at the Children's Hospital S.A.M.I.C. "Prof. Dr. Juan P. Garrahan". The monitoring of these patients was defined by a history of positive serology for toxoplasmosis in the donor or recipient and because their hematologic condition did not allow the use of trimethoprim-sulfamethoxazole for prophylaxis. During the patients' monitoring, two of them with positive PCR results showed signs of illness by T. gondii and were treated with pyrimethamine-clindamycin. In two other patients, toxoplasmosis was the cause of death and an autopsy finding, showing negative PCR results. Four patients without clinical manifestations received treatment for toxoplasmosis because of positive PCR detection. In four patients there were no signs of toxoplasmosis disease and negative PCR results during follow-up. The qualitative PCR technique proved useful for the detection of toxoplasmosis reactivation in HSCT recipients, but has limitations in monitoring and making clinical decisions due to the persistence of positive PCR over time and manifestations of toxicity caused by the treatment.

  5. [Better understanding of the biology of cancer cells].

    Science.gov (United States)

    Klein, G

    2000-09-25

    Most forms of cancer arise through a Darwinian evolutionary process. The natural selection that ultimately leads to cancer takes place in somatic tissues although it may be triggered by inherited mutations in a small but significant minority. It favors the growth of clones and subclones that are less and less responsive to normal intra- and extracellular growth control mechanisms. The development of molecular biology has led to the identification of many genes that participate in this somatic evolution. They belong to the following groups: Oncogenes, constitutively activated by structural and/or regulatory changes that drive the cell to continuous proliferation; Tumor suppressor genes, that can inhibit the illegitimately activated cell cycle. They contribute to tumor development by loss mutations or permanent down-regulation, e.g. by methylation; Apoptosis inhibitory genes that can contribute to tumor development by raising the apoptotic threshold, and apoptosis promoting genes that can favor the growth of apoptosis prone tumor cells by their loss or inactivation; DNA repair genes whose inactivation can counteract the normal elimination of cells that carry potentially cancer promoting mutations. Inherited mutations in DNA repair genes can lead to familial cancer syndromes. Immortalizing genes that counteract cellular senescence; Angiogenesis promoting genes whose products may stimulate the vascular supply of tumors; Genes whose structural or functional changes may facilitate the escape of tumor cells from immune rejection; The multi-step development of individual tumors can encompass changes in most or all of these genes. They occur independently of each other and without any fixed order or timing. Tumor emancipation from growth control can therefore proceed along various pathways. It follows that each tumor must be regarded as a biologically unique individual.

  6. Deducing protein function by forensic integrative cell biology.

    Directory of Open Access Journals (Sweden)

    William C Earnshaw

    2013-12-01

    Full Text Available Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  7. Deducing protein function by forensic integrative cell biology.

    Science.gov (United States)

    Earnshaw, William C

    2013-12-01

    Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  8. Preparation of cell-sized water-in-oil droplets for in vitro reconstitution of biological processes in cellular compartments

    OpenAIRE

    sprotocols

    2015-01-01

    This protocol presents a method for encapsulation of purified proteins into cell-sized water-in-oil droplets surrounded by a phospholipid monolayer, which can be broadly applied to studies to reconstitute biological processes in cellular compartments.

  9. 15N in biological nitrogen fixation studies

    International Nuclear Information System (INIS)

    A bibliography with 298 references on the use of the stable nitrogen isotope 15N in the research on the biological fixation of dinitrogen is presented. The literature pertaining to this bibliography covers the period from 1975 to the middle of 1985. (author)

  10. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells.

    Science.gov (United States)

    Fujita, Nobuyuki; Suzuki, Satoshi; Watanabe, Kota; Ishii, Ken; Watanabe, Ryuichi; Shimoda, Masayuki; Takubo, Keiyo; Tsuji, Takashi; Toyama, Yoshiaki; Miyamoto, Takeshi; Horiuchi, Keisuke; Nakamura, Masaya; Matsumoto, Morio

    2016-08-01

    Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.

  11. Exploring Osmosis and Diffusion in Cells: A Guided-Inquiry Activity for Biology Classes, Developed through the Lesson-Study Process

    Science.gov (United States)

    Maguire, Lauren; Myerowitz, Lindsay; Sampson, Victor

    2010-01-01

    Guided inquiry is an instructional technique that requires students to answer a teacher-proposed research question, design an investigation, collect and analyze data, and then develop a conclusion (Bell, Smetana, and Binns 2005; NRC 2000). In this article, the authors describe a guided-inquiry lesson developed through the lesson-study process…

  12. Cell-to-cell variability in cell death: can systems biology help us make sense of it all?

    OpenAIRE

    Xia, X; Owen, M. S.; Lee, R E C; Gaudet, S

    2014-01-01

    One of the most common observations in cell death assays is that not all cells die at the same time, or at the same treatment dose. Here, using the perspective of the systems biology of apoptosis and the context of cancer treatment, we discuss possible sources of this cell-to-cell variability as well as its implications for quantitative measurements and computational models of cell death. Many different factors, both within and outside of the apoptosis signaling networks, have been correlated...

  13. Mantle cell lymphoma: biological insights and treatment advances.

    Science.gov (United States)

    Leonard, John P; Williams, Michael E; Goy, Andre; Grant, Steven; Pfreundschuh, Michael; Rosen, Steve T; Sweetenham, John W

    2009-08-01

    Mantle cell lymphoma (MCL) exhibits considerable molecular heterogeneity and complexity, and is regarded as one of the most challenging lymphomas to treat. With increased understanding of the pathobiology of MCL, it is proposed that MCL is the result of 3 major converging factors, namely, deregulated cell cycle pathways, defects in DNA damage responses, and dysregulation of cell survival pathways. In the present era of targeted therapies, these biologic insights have resulted in the identification of several novel rational targets for therapeutic intervention in MCL that are undergoing active clinical testing. To date, there is no standard of care in MCL. Several approaches including conventional anthracycline-based therapies and intensive high-dose strategies with and without stem cell transplantation have failed to produce durable remissions for most patients. Moreover, considering the heterogeneity of MCL, it is increasingly being recognized that risk-adapted therapy might be a relevant therapeutic approach in this disease. At the first and second Global Workshops on Mantle Cell Lymphoma, questions addressing advances in the pathobiology of MCL, optimization of existing therapies, assessment of current data with novel therapeutic strategies, and the identification of molecular or phenotypic risk factors for utilization in risk-adapted therapies were discussed and will be summarized herein. PMID:19717376

  14. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Science.gov (United States)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  15. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  16. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  17. Biological behaviour and role of endothelial progenitor cells in vascular diseases

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiu-hua; SHE Ming-peng

    2007-01-01

    Obiective To review the biological behaviour of endothelial progenitor cells and their role in vascular diseases.Data sources The data used in this review were mainly from Medline and PubMed for relevant English language articles published from 1985 to March 2007.The search term was "endothelial progenitor cells".Study selection Articles about the biological behaviour of endothelial progenitor cells and their roles in the pathogenesis of vascular diseases such as atherogenesis were used.Results Progenitor cells in bone marrow,peripheral blood and adventitia can differentiate into mature endothelial cells (ECs).The progenitor cells,which express certain surface markers including AC133,CD34 and KDR,enable restoration of the microcirculation and ECs when injury or ischaemia occurs.Endothelial progenitor cells used in experimental models and clinical trials for ischaemic syndromes could restore endothelial integrity and inhibit neointima development.Moreover,their number and functional properties are influenced by certain cytokines and atherosclerotic risk factors.Impairment of the progenitor cells might limit the regenerative capacity,even lead to the development of atherosclerosis or other vascular diseases.Conclusions Endothelial progenitor cells have a particular role in prevention and treatment of certain cardiovascular diseases.However,many challenges remain in understanding differentiation of endothelial progenitor cells,their mobilization and revascularization.

  18. A poroelastic immersed boundary method with applications to cell biology

    Science.gov (United States)

    Strychalski, Wanda; Copos, Calina A.; Lewis, Owen L.; Guy, Robert D.

    2015-02-01

    The immersed boundary method is a widely used mixed Eulerian/Lagrangian framework for simulating the motion of elastic structures immersed in viscous fluids. In the traditional immersed boundary method, the fluid and structure move with the same velocity field. In this work, a model based on the immersed boundary method is presented for simulating poroelastic media in which the fluid permeates a porous, elastic structure of small volume fraction that moves with its own velocity field. Two distinct methods for calculating elastic stresses are presented and compared. The methods are validated on a radially symmetric test problem by comparing with a finite difference solution of the classical equations of poroelasticity. Finally, two applications of the modeling framework to cell biology are provided: cellular blebbing and cell crawling. It is shown that in both examples, poroelastic effects are necessary to explain the relevant mechanics.

  19. Electroporation of Biological Cells Embedded in a Polycarbonate Filter

    CERN Document Server

    Hercules, W A; Lindesay, J; Schmukler, R; Hercules, William A.; Lindesay, James; Coble, Anna; Schmukler, Robert

    2003-01-01

    The electropermeabilization of biological cell membranes by the application of an external field occurs whenever an applied field exceeds a threshold value. For fields above this threshold value but less than another critical value, the pores formed in the membrane are transient or reversible. Several mechanisms have been proposed for the formation of these transient pores. Here we examine the local electric fields generated for the configuration of cells embedded in a polycarbonate filter, both in the region in and around the pore. We consider the shear forces created in the membrane due to the gradient of the field along the surface of the membrane, and the interaction of the charged molecules in the membrane with this field. A relationship between the electric field strength and the size of the pore formed is derived.

  20. 2. Brazilian Congress on Cell Biology and 7. Brazilian Colloquium on Electron Microscopy - Abstracts

    International Nuclear Information System (INIS)

    Immunology, virology, bacteriology, genetics and protozoology are some of the subjects treated in the 2. Brazilian Congress on Cell Biology. Studies using radioisotopic techniques and ultrastructural cytological studies are presented. Use of optical - and electron microscopy in some of these studies is discussed. In the 7. Brazilian Colloquium on Electron Microscopy, the application of this technique to materials science is discussed (failure analysis in metallurgy, energy dispersion X-ray analysis, etc). (I.C.R.)

  1. Machine learning in cell biology - teaching computers to recognize phenotypes.

    Science.gov (United States)

    Sommer, Christoph; Gerlich, Daniel W

    2013-12-15

    Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening. High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort. Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be considered for their successful application in cell biology. We outline how microscopy images can be converted into a data representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the data analysis pipeline.

  2. Lessons learned about spaceflight and cell biology experiments

    Science.gov (United States)

    Hughes-Fulford, Millie

    2004-01-01

    Conducting cell biology experiments in microgravity can be among the most technically challenging events in a biologist's life. Conflicting events of spaceflight include waiting to get manifested, delays in manifest schedules, training astronauts to not shake your cultures and to add reagents slowly, as shaking or quick injection can activate signaling cascades and give you erroneous results. It is important to select good hardware that is reliable. Possible conflicting environments in flight include g-force and vibration of launch, exposure of cells to microgravity for extended periods until hardware is turned on, changes in cabin gases and cosmic radiation. One should have an on-board 1-g control centrifuge in order to eliminate environmental differences. Other obstacles include getting your funding in a timely manner (it is not uncommon for two to three years to pass between notification of grant approval for funding and actually getting funded). That said, it is important to note that microgravity research is worthwhile since all terrestrial life evolved in a gravity field and secrets of biological function may only be answered by removing the constant of gravity. Finally, spaceflight experiments are rewarding and worth your effort and patience.

  3. How chemistry supports cell biology: the chemical toolbox at your service.

    Science.gov (United States)

    Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib

    2014-12-01

    Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research.

  4. In vivo cell biology of cancer cells visualized with fluorescent proteins.

    Science.gov (United States)

    Hoffman, Robert M

    2005-01-01

    This chapter describes a new cell biology where the behavior of individual cells can be visualized in the living animal. Previously it has been demonstrated that fluorescent proteins can be used for whole-body imaging of metastatic tumor growth, bacterial infection, and gene expression. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of tumor-stroma interactions and especially tumor-induced angiogenesis, tumor-infiltrating lymphocytes, stromal fibroblasts, and macrophages. Another example is the color coding of cells with RFP or GFP such that both cell types can be simultaneously visualized in vivo. Stem cells can also be visualized and tracked in vivo. Mice in which the regulatory elements of the stem cell marker nestin drive GFP expression enable nascent vasculature to be visualized interacting with transplanted RFP-expressing cancer cells. Nestin-driven GFP expression can also be used to visualize hair follicle stem cells. Dual-color cells expressing GFP in the nucleus and RFP in the cytoplasm enable real-time visualization of nuclear-cytoplasm dynamics including cell cycle events and apoptosis. Highly elongated cancer cells in capillaries in living mice were observed within skin flaps. The migration velocities of the cancer cells in the capillaries were measured by capturing images of the dual-color fluorescent cells over time. The cells in the capillaries elongated to fit the width of these vessels. The use of the dual-color cancer cells differentially labeled in the cytoplasm and nucleus and associated fluorescent imaging provide a powerful tool to understand the mechanism of cancer cell migration and deformation in small vessels.

  5. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands

    OpenAIRE

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2016-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1+ pancreatic progenitors, much less is known about the transition toward Ngn3+ p...

  6. Teaching Cell Biology to Nonscience Majors Through Forensics, or How to Design a Killer Course

    OpenAIRE

    Arwood, Laura

    2004-01-01

    Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose. Another goal was to maximize the ...

  7. Teaching Cell Biology to Nonscience Majors through Forensics, or How to Design a Killer Course

    Science.gov (United States)

    Arwood, Laura

    2004-01-01

    Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose.…

  8. Cell reprogramming: a new chemical approach to stem cell biology and tissue regeneration.

    Science.gov (United States)

    Anastasia, L; Piccoli, M; Garatti, A; Conforti, E; Scaringi, R; Bergante, S; Castelvecchio, S; Venerando, B; Menicanti, L; Tettamanti, G

    2011-02-01

    Generation of pluripotent stem cells (iPSCs) from adult fibroblasts starts a "new era" in stem cell biology, as it overcomes several key issues associated with previous approaches, including the ethical concerns associated with human embryonic stem cells. However, as the genetic approach for cell reprogramming has already shown potential safety issues, a chemical approach may be a safer and easier alternative. Moreover, a chemical approach could be advantageous not only for the de-differentiation phase, but also for inducing reprogrammed cells into the desired cell type with higher efficiency than current methodologies. Finally, a chemical approach may be envisioned to activate resident adult stem cells to proliferate and regenerate damaged tissues in situ, without the need for exogenous cell injections.

  9. New advances in pollination biology and the studies in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Pollination biology is the study of the various biological features in relation to the event of pollen transfer. It is one of the central concerns of plant reproductive ecology and evolutionary biology. In this paper, we attempt to introduce the main advances and some new interests in pollination biology and make a brief review of the research work that has been done in China in recent years. We also give some insights into the study that we intend to carry out in this field in the future.

  10. Microstructured polymeric substrates applied to human stem cells studies

    OpenAIRE

    Grespan, Eleonora

    2015-01-01

    Stem cells are undifferentiated cells that have the capability to differentiate into specialized cells and to subdivide indefinitely to produce more stem cells. Studies on human stem cells represent a powerful method to analyze biological and physiological processes specific of human cells, as well as for tissue engineering, regenerative medicine and cell therapies. When these studies are performed in vitro it is important to take in account that cellular processes such as adhesion, migration...

  11. Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy.

    Science.gov (United States)

    Liu, Rui; Taylor, Douglas S; Matthews, Dennis L; Chan, James W

    2010-11-01

    We report on the development and characterization of a multifocal laser tweezers Raman spectroscopy (M-LTRS) technique for parallel Raman spectral acquisition of individual biological cells. Using a 785-nm diode laser and a time-sharing laser trapping scheme, multiple laser foci are generated to optically trap single polystyrene beads and suspension cells in a linear pattern. Raman signals from the trapped objects are simultaneously projected through the slit of a spectrometer and spatially resolved on a charge-coupled device (CCD) detector with minimal signal crosstalk between neighboring cells. By improving the rate of single-cell analysis, M-LTRS is expected to be a valuable method for studying single-cell dynamics of cell populations and for the development of high-throughput Raman based cytometers. PMID:21073802

  12. Paul Ehrlich's mastzellen: a historical perspective of relevant developments in mast cell biology.

    Science.gov (United States)

    Ghably, Jack; Saleh, Hana; Vyas, Harsha; Peiris, Emma; Misra, Niva; Krishnaswamy, Guha

    2015-01-01

    Following the discovery of mast cells (or mastzellen) by the prolific physician researcher, Paul Ehrlich, many advances have improved our understanding of these cells and their fascinating biology. The discovery of immunoglobulin E and receptors for IgE and IgG on mast cells heralded further in vivo and in vitro studies, using molecular technologies and gene knockout models. Mast cells express an array of inflammatory mediators including tryptase, histamine, cytokines, chemokines, and growth factors. They play a role in many varying disease states, from atopic diseases, parasitic infections, hematological malignancies, and arthritis to osteoporosis. This review will attempt to summarize salient evolving areas in mast cell research over the last few centuries that have led to our current understanding of this pivotal multifunctional cell.

  13. Optical diffraction tomography techniques for the study of cell pathophysiology

    CERN Document Server

    Kim, Kyoohyun; Shin, Seungwoo; Lee, SangYun; Yang, Su-A; Park, YongKeun

    2016-01-01

    Three-dimensional imaging of biological cells is crucial for the investigation of cell biology, provide valuable information to reveal the mechanisms behind pathophysiology of cells and tissues. Recent advances in optical diffraction tomography (ODT) have demonstrated the potential for the study of various cells with its unique advantages of quantitative and label-free imaging capability. To provide insight on this rapidly growing field of research and to discuss its applications in biology and medicine, we present the summary of the ODT principle and highlight recent studies utilizing ODT with the emphasis on the applications to the pathophysiology of cells.

  14. Prognostic cell biological markers in cervical cancer patients primarily treated with (chemo)radiation : a systematic review

    NARCIS (Netherlands)

    Noordhuis, Maartje G; Eijsink, Jasper J H; Roossink, Frank; de Graeff, Pauline; Pras, Elisabeth; Schuuring, Ed; Wisman, G Bea A; de Bock, Geertruida H; van der Zee, Ate G J

    2011-01-01

    The aim of this study was to systematically review the prognostic and predictive significance of cell biological markers in cervical cancer patients primarily treated with (chemo)radiation. A PubMed, Embase, and Cochrane literature search was performed. Studies describing a relation between a cell b

  15. Emerging Stem Cell Therapies: Treatment, Safety, and Biology

    Directory of Open Access Journals (Sweden)

    Joel Sng

    2012-01-01

    Full Text Available Stem cells are the fundamental building blocks of life and contribute to the genesis and development of all higher organisms. The discovery of adult stem cells has led to an ongoing revolution of therapeutic and regenerative medicine and the proposal of novel therapies for previously terminal conditions. Hematopoietic stem cell transplantation was the first example of a successful stem cell therapy and is widely utilized for treating various diseases including adult T-cell leukemia-lymphoma and multiple myeloma. The autologous transplantation of mesenchymal stem cells is increasingly employed to catalyze the repair of mesenchymal tissue and others, including the lung and heart, and utilized in treating various conditions such as stroke, multiple sclerosis, and diabetes. There is also increasing interest in the therapeutic potential of other adult stem cells such as neural, mammary, intestinal, inner ear, and testicular stem cells. The discovery of induced pluripotent stem cells has led to an improved understanding of the underlying epigenetic keys of pluripotency and carcinogenesis. More in-depth studies of these epigenetic differences and the physiological changes that they effect will lead to the design of safer and more targeted therapies.

  16. The cytoskeleton significantly impacts invasive behavior of biological cells

    Science.gov (United States)

    Fritsch, Anatol; Käs, Josef; Seltman, Kristin; Magin, Thomas

    2014-03-01

    Cell migration is a key determinant of cancer metastasis and nerve regeneration. The role of the cytoskeleton for the epithelial-meschenymal transition (EMT), i.e, for invasive behavior of cells, is only partially understood. Here, we address this issue in cells lacking all keratins upon genome engineering. In contrast to prediction, keratin-free cells show a 60% higher deformability compared to less pronounced softening effects for actin depolymerization. To relate these findings with functional consequences, we use invasion and three-dimensional growth assays. These reveal higher invasiveness of keratin-free cells. This study supports the view that downregulation of keratins observed during EMT directly contributes to the migratory and invasive behavior of tumor cells. Cancer cells that effectively move through tissues are softer and more contractile than cells that stay local in tissues. Soft and contractile avoids jamming. Naturally, softness has to have its limits. So neuronal growth cones are too soft to carry large loads to move efficiently through scar tissue, which is required for nerve regeneration. In synopsis, the physical bounds that the functional modules of a moving cell experience in tissues may provide an overarching motif for novel approaches in diagnosis and therapy.

  17. The 2~(nd) Guangzhou International Forum on the Frontier of Stem Cell and Regeneration Biology Invitations

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ The forum will focus on the following topics: reprogramming of stem cell, chemical biology researchin stem cell, applied research in embryonic and somatic stem cells, stem cell and drug R&D, developmentand mode animal research, stem cell biology and cloning. The Forum will invite members of the CASOverseas Innovation Team on stem cells and cloning, expert panel members of the national key projecton Development and Procreation, the nation's 973 Project chief scientists and other professionals of thearea from all over the world.

  18. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation.

    Science.gov (United States)

    Sharma, Deepika; Kanneganti, Thirumala-Devi

    2016-06-20

    Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome.

  19. Recent advances in the cell biology of polycystic kidney disease.

    Science.gov (United States)

    Smyth, Brendan J; Snyder, Richard W; Balkovetz, Daniel F; Lipschutz, Joshua H

    2003-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a significant familial disorder, crossing multiple ethnicities as well as organ systems. The goal of understanding and, ultimately, curing ADPKD has fostered collaborative efforts among many laboratories, mustered on by the opportunity to probe fundamental cellular biology. Here we review what is known about ADPKD including well-accepted data such as the identification of the causative genes and the fact that PKD1 and PKD2 act in the same pathway, fairly well-accepted concepts such as the "two-hit hypothesis," and somewhat confusing information regarding polycystin-1 and -2 localization and protein interactions. Special attention is paid to the recently discovered role of the cilium in polycystic kidney disease and the model it suggests. Studying ADPKD is important, not only as an evaluation of a multisystem disorder that spans a lifetime, but as a testament to the achievements of modern biology and medicine.

  20. The rise of developmental genetics - a historical account of the fusion of embryology and cell biology with human genetics and the emergence of the Stem Cell Initiative.

    Science.gov (United States)

    Kidson, S H; Ballo, R; Greenberg, L J

    2016-05-25

    Genetics and cell biology are very prominent areas of biological research with rapid advances being driven by a flood of theoretical, technological and informational knowledge. Big biology and small biology continue to feed off each other. In this paper, we provide a brief overview of the productive interactions that have taken place between human geneticists and cell biologists at UCT, and credit is given to the enabling environment created led by Prof. Peter Beighton. The growth of new disciplines and disciplinary mergers that have swept away division of the past to make new exciting syntheses are discussed. We show how our joint research has benefitted from worldwide advances in developmental genetics, cloning and stem cell technologies, genomics, bioinformatics and imaging. We conclude by describing the role of the UCT Stem Cell Initiative and show how we are using induced pluripotent cells to carry out disease-in-the- dish studies on retinal degeneration and fibrosis.

  1. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    Science.gov (United States)

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  2. [Adhesive cell interactions in the biology of cancer].

    Science.gov (United States)

    Bocharova, O A

    2002-01-01

    The present review describes a hypothesis for a critical role of cell adhesive interactions in tumorigenesis. Dysregulation of tissue cell-cell interactions initiates first of all local (in the tissue) and then general (in whole body) conditions for tumor growth. Otherwise imbalance of tissue-specific adhesion factor at the very beginning of carcinogenesis is considered to trigger a cascade of pathological reactions responsible for more severe adhesive disorders that are in turn critical for the "totalitarian" behavior of a tumor and its "colonization" of other tissues and organs. Impaired disturbance is likely to be the key mechanism of carcinogenesis since it is significantly associated with the main features of a tumor: tissue proliferation control loss, anaplasia, invasion, metastasis, and immune surveillance deficit. The hypothesis is supported by evolutionary, biological, histological, immunological, and clinical arguments whose combination does not characterize any other known mechanisms of oncogenesis. The concept of adhesiveness opens new possibilities for the diagnosis, prevention, and treatment of tumors and also improves a strategy for designing new drugs.

  3. The study of biocompatibility on build three-dimensional scaffold of dental pulp stem cells with biological fibrin glue in vitro%生物蛋白胶-牙髓干细胞构建三维支架的生物相容性

    Institute of Scientific and Technical Information of China (English)

    胡红梅; 曾常爱; 陈彩芬; 李伟

    2015-01-01

    目的:构建牙髓干细胞-生物蛋白胶支架的三维培养体系,研究牙髓干细胞在生物蛋白胶中的生物相容性。方法体外复苏牙髓干细胞并复合进入生物蛋白胶中培养,通过CCK-8检测提取液对细胞增长情况的影响,并通过细胞的矿化情况进一步分析生物蛋白胶的生物特性。结果冻存的牙髓干细胞经免疫荧光染色具备干细胞的特性,细胞包埋于生物蛋白胶内可见三维培养下细胞状态更加伸展,更加模拟自然生长,细胞形态典型,2 w后生物蛋白胶可完全降解,牙髓干细胞矿化诱导结果较典型。结论生物蛋白胶是一种适宜的组织工程牙髓种子细胞载体。%Objective To build the three-dimensional cultivation system of dental pulp stem cells with biological fibrin glue bracket , study the compatibility of dental pulp stem cells in biological fibrin glue ,explore the feasibility of the biological fibrin glue in the dental pulp tissue engineering scaffold .Methods The dental pulp stem cells were recovered in vitro and identificated by immunofluorescence staining , and cultivated in biological fibrin glue ,the effect of cell growth was detected by CCK 8,the characteristics of the biological fibrin glue was an-alyzed through mineralization changes of the cells .Results Dental pulp stem cells in frozen storage had the characteristics of stem cells by immunofluorescence staining ,cell state was more stretch ,more simulated natural growth and more the typical forms in embedding in biological fibrin glue,the biological fibrin glue had completely degradations after 2 weeks,induced mineralization results of dental pulp stem cells .Con-clusions Biological fibrin glue is a suitable carrier of dental pulp tissue engineering seed cells .

  4. ALOUD biological: Adult Learning Open University Determinants study - Association of biological determinants with study success in formal lifelong learners

    NARCIS (Netherlands)

    Gijselaers, Jérôme; De Groot, Renate; Kirschner, Paul A.

    2012-01-01

    Gijselaers, H. J. M., De Groot, R. H. M., & Kirschner, P. A. (2012, 15 March). ALOUD biological: Adult Learning Open University Determinants study - Association of biological determinants with study success in formal lifelong learners. Presentation given at the plenary meeting of Learning & Cognitio

  5. Towards Modelling and Simulation of Crowded Environments in Cell Biology

    Science.gov (United States)

    Bittig, Arne T.; Jeschke, Matthias; Uhrmacher, Adelinde M.

    2010-09-01

    In modelling and simulation of cell biological processes, spatial homogeneity in the distribution of components is a common but not always valid assumption. Spatial simulation methods differ in computational effort and accuracy, and usually rely on tool-specific input formats for model specification. A clear separation between modelling and simulation allows a declarative model specification thereby facilitating reuse of models and exploiting different simulators. We outline a modelling formalism covering both stochastic spatial simulation at the population level and simulation of individual entities moving in continuous space as well as the combination thereof. A multi-level spatial simulator is presented that combines populations of small particles simulated according to the Next Subvolume Method with individually represented large particles following Brownian motion. This approach entails several challenges that need to be overcome, but nicely balances between calculation effort and required levels of detail.

  6. Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education

    Science.gov (United States)

    Araujo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Claudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Claudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.

    2004-01-01

    The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of…

  7. Anomalous transport in the crowded world of biological cells

    Science.gov (United States)

    Höfling, Felix; Franosch, Thomas

    2013-04-01

    A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important

  8. Molecular biology of breast cancer metastasis: Clinical implications of experimental studies on metastatic inefficiency

    International Nuclear Information System (INIS)

    Recent technological advances have led to an increasing ability to detect isolated tumour cells and groups of tumour cells in patients' blood, lymph nodes or bone marrow. However, the clinical significance of these cells is unclear. Should they be considered as evidence of metastasis, necessitating aggressive treatment, or are they in some cases unrelated to clinical outcome? Quantitative experimental studies on the basic biology of metastatic inefficiency are providing clues that may help in understanding the significance of these cells. This understanding will be of use in guiding clinical studies to assess the significance of isolated tumour cells and micrometastases in cancer patients

  9. Biologically based epidemiological studies of electric power and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.G. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-01

    Use of electricity is a hallmark of the industrialization process, but there has been no suspicion that electricity could increase the risk of cancer. Recently, however, a number of epidemiologic studies have suggested that electromagnetic fields (EMF) may do just that. Although few cancer experiments have been done yet, there are a number of biological effects of EMF reported in the literature that might provide bases for designing cancer experiments and epidemiologic studies. These include effects of EMF on: (a) DNA transcription and translation, (b) calcium balance in cells, and (c) pineal production of melatonin. Alterations in DNA transcription and translation could have pleiotropic effects. Disruption of calcium homeostasis has many implications including oncogene activation, promotional activity via protein kinases and ornithine decarboxylase (ODC), and increasing oxidative stress. Reduction of melatonin suggests a possible increased risk of cancers of hormone-dependent tissues such as breast and prostate. The idea that a cancer-causing agent must either be an initiator or a promoter should be discarded; indeed, the phenomenologic meaning of these two terms has become confused with imputed mechanistic necessity in recent years. Agents that affect division of normal cells or of fully transformed cells can play an important role in clinical cancer development quite apart from initiation or promotion. Epidemiologic studies of EMF and cancer should attempt to take account of other products of electric power (e.g., light at night) or factors associated with occupational EMF exposure (e.g., toxic chemicals) that may increase cancer risk and therefore act as cofactors or confounders. Epidemiology and laboratory studies should act synergistically in determining if there is a problem and identifying mitigation strategies if needed. 84 refs., 3 figs., 1 tab.

  10. Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We With Cardiac Cell-Based Therapy?

    Science.gov (United States)

    Sanina, Cristina; Hare, Joshua M

    2015-07-17

    Cell-based treatment represents a new generation in the evolution of biological therapeutics. A prototypic cell-based therapy, the mesenchymal stem cell, has successfully entered phase III pivotal trials for heart failure, signifying adequate enabling safety and efficacy data from phase I and II trials. Successful phase III trials can lead to approval of a new biological therapy for regenerative medicine.

  11. A description of the semiotic metaphor in biology teaching: assertions about the animal cell

    Directory of Open Access Journals (Sweden)

    Marlon Dantas Trevisan

    2010-03-01

    Full Text Available The main objective of this survey is describing signly the metaphor learning resource, with focus on biology education. Our teorical reference is the peircean semiotics, because it means solid heritage to code surveys implicated at science education, it led us to do an explanation about the main lines about that reference, addressed to researchers and lecturers interested in those reasonings. In the description yearned, another objectives appear: demonstrate diferences between metaphor/analogy and pragmatic analogy; to list metaphors, from cell representation analysis, and argue about principals diferences and probable cognitive consequences between the metaphor event in the visual representation and speech sentences. Therefore we analysed the animal cell of a high school first grade studying book – biologycell biology – used by São Paulo and another state students. The findings demonstrate the undeniable importance of the metaphor as a learning tool in the biology education, and new findings about that, such as its limits in the concept elaboration, gnosiologic consequences for receptioning, the search needs for propositions– pictures between concept relations – in the science speech construction, and other results.

  12. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  13. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  14. Single-Molecule Studies in Live Cells

    Science.gov (United States)

    Yu, Ji

    2016-05-01

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  15. History of the Department of Cell Biology at Yale School of Medicine, 1813-2010.

    Science.gov (United States)

    Lentz, Thomas L

    2011-06-01

    The Department of Cell Biology at the Yale University School of Medicine was established in 1983. It was preceded by the Section of Cell Biology, which was formed in 1973 when George E. Palade and collaborators came to Yale from the Rockefeller University. Cell Biology at Yale had its origins in the Department of Anatomy that existed from the beginning of classes at the Medical Institution of Yale College in 1813. This article reviews the history of the Department of Anatomy at Yale and its evolution into Cell Biology that began with the introduction of histology into the curriculum in the 1860s. The formation and development of the Section and Department of Cell Biology in the second half of the 20th century to the present time are described. Biographies and research activities of the chairs and key faculty in anatomy and cell biology are provided.

  16. Study of biological markers for radiation pretreatment of hematopoietic stem cell transplant recipients%造血干细胞移植辐射预处理生物标志物的实验研究

    Institute of Scientific and Technical Information of China (English)

    杨晶; 胡莉钧; 徐军; 杨淑琴

    2015-01-01

    目的 研究小鼠受60C0γ射线照射后血液和免疫系统的早期生物参数变化,为造血干细胞移植(HSCT)受者放疗预处理寻找灵敏可靠的生物剂量标志物.方法 采用纯品系BALB/c雄性小鼠,随机分为1个对照组和3个照射组.应用60Coγ射线全身照射,吸收剂量分别为0、2、4和6Gy.照射后24 h,外周血白细胞计数及淋巴细胞百分率应用血常规计数测定;外周血和骨髓嗜多染红细胞微核(mn-PCE)应用Giemsa染色镜下计数观察;骨髓细胞、脾脏和胸腺早期凋亡率应用Annexin Ⅴ/PI双染法流式细胞仪检测.结果 与对照组比较,各照射组小鼠外周血白细胞计数及淋巴细胞百分率随辐射剂量增加而显著降低(P<0.01),其回归方程分别为E=0.1750D2-1.7440D+ 5.2020和E=84.9390-3.4255D;外周血和骨髓mn-PCE随辐射剂量增加而显著增加(P<0.01),骨髓mn-PCE与辐射剂量呈正相关,其回归方程为E=3.9725D+2.9700;骨髓细胞、脾脏和胸腺早期凋亡率随辐射剂量增加而显著增高(P<0.01),呈线性正相关,回归方程分别为E=3.42D+ 8.36,E=3.0645D+ 3.1840和E=2.5620D+2.5090.结论 外周血淋巴细胞计数和骨髓嗜多染红细胞微核率与辐射剂量呈线性相关,其回归方程可作为放射预处理剂量评估灵敏可靠的早期生物剂量标志物;骨髓细胞、脾脏和胸腺淋巴细胞早期凋亡率与辐射剂量呈线性正相关,其回归方程可用于HCST受者放射预处理免疫系统抑制程度的判定指标.%Objective To study the early biological parameterchanges of blood andimmune systems of mice after 60Co γ-ray irradiation in order to find sensitive and reliable biological dose markers for radiation pretreatment of hematopoietic stem cell transplant recipients.Methods Pure strain BALB/c male mice were randomly divided into control group and three irradiation groups and absorbed doses of total body irradiation by 60Co γ-ray were 0,2,4,6 Gy,respectively.In 24h after

  17. Studying of Phenomenon of Biological Adaptation to Heavy Water

    OpenAIRE

    Oleg Mosin; Ignat Ignatov; Dmitry Skladnev; Vitaly Shvets

    2014-01-01

    Biological influence of deuterium on cells of various taxonomic groups of prokaryotic and eucaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates (methylotrophic bacteria Brevibacterium methylicum, chemoheterotrophic bacteria Bacillus subtilis, photo-organotrophic halobacteria Halobacterium halobium, and green micro algae Chlorella vulgaris) was investigated at the growth on media with heavy wate...

  18. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    Science.gov (United States)

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work.

  19. The IWOP Technique and Wigner-Function Approach to Quantum Effect of Mesoscopic Biological Cell

    Science.gov (United States)

    Wang, Xiu-Xia

    2014-09-01

    Using the IWOP technique, Wigner function theory and TFD theory, the quantization of a mesoscopic biological cell equivalent circuit is proposed, The quantum fluctuations of the mesoscopic biological cell are researched in thermal vacuum state and vacuum state. It is shown that the IWOP technique, Wigner function theory and Umezawa-Takahashi's TFD theory play the key role in quantizing a mesoscopic biological cell at finite temperature and the fluctuations and uncertainty increase with increasing temperature and decrease with prolonged time.

  20. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  1. A proposal of collaborative education for biochemistry and cell biology teaching

    OpenAIRE

    A. A. Souza-Júnior; Silva, A.P.; Silva, T. A.; G. P.V. Andrade

    2015-01-01

    INTRODUCTION: Currently students grow up in a world of digital tools that allow you to connect instantly with the world. At the same time, teachers face several challenges to increase student interest and learning efficiency. One such challenge is the pedagogical commitment of the density of biochemistry and cell biology contents, producing a conflict scenario, between meeting content and maintain the class quality. OBJECTIVES: From this perspective, this study aimed to evaluate the learning ...

  2. Nano-textured fluidic biochip as biological filter for selective survival of neuronal cells.

    Science.gov (United States)

    Han, Hsieh-Cheng; Lo, Hung-Chun; Wu, Chia-Yu; Chen, Kuei-Hsien; Chen, Li-Chyong; Ou, Keng-Liang; Hosseinkhani, Hossein

    2015-06-01

    This is an innovative study to engineer biological filter to evaluate the effect of template surface structure and physiochemical properties that can be used for wide variety of applications in biological, health care as well as environmental protection. Specifically, planar silicon (Si) wafer and arrayed Si nano-tips (SiNT) templates were fabricated and coated with gold for various lengths of time to study the effect of surface charge, surface roughness, and hydrophilicity on biological activity of rat pheochromocytoma cell lines PC12. The initial growth and proliferation of PC12 cells on Si and SiNT templates showed an antipathy for the ultra-sharp SiNTs templates. In contrast, the same cells demonstrated a preferable adherence to and proliferation on planar Si templates, resulting in higher cell densities by three orders of magnitude than those on SiNT templates. It is hypothesized that SiNTs array does generate nano-fluidic effect such that the effective contact region for aqueous solution on SiNTs is lower than that on planar Si templates, thus decreasing adsorbable area for cell viability and survival. Moreover, the effect of the gold coating on cell number density was analyzed in terms of the surface roughness, zeta potential and wetting properties of the templates. It was determined that surface charge, as measured by the zeta potential, strongly correlated with the trend observed in the surface cell density, whereas no such correlation was observed for surface roughness or wetting properties in the ranges of our experiment conditions. PMID:25256631

  3. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    Institute of Scientific and Technical Information of China (English)

    LEI Lei; LIAO WeiMing; SHENG PuYi; FU Ming; HE AiShan; HUANG Gang

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell's replication activity and the donor's age factor, and to assess the stem cells as a new source for tissue engineering, hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21-40years old, 41-60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45,CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell,and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro.The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula "TD = t log2/logNt - logN0 "was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=-0.002, P<0.05). These findings suggested that a higher level of hADAS cells replication activity was found in the younger donators, and they represent novel and valuable seed cells for studies of tissue engineering.

  4. The role of Protein Kinase Cη in T cell biology

    Directory of Open Access Journals (Sweden)

    Nicholas R.J. Gascoigne

    2012-06-01

    Full Text Available Protein kinase Cη (PKCη is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη− or PKCθ−deficient and double knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some

  5. Redefining plant systems biology: from cell to ecosystem

    NARCIS (Netherlands)

    Keurentjes, J.J.B.; Angenent, G.C.; Dicke, M.; Martins Dos Santos, V.A.P.; Molenaar, J.; Putten, van der W.H.; Ruiter, de P.C.; Struik, P.C.; Thomma, B.

    2011-01-01

    Molecular biologists typically restrict systems biology to cellular levels. By contrast, ecologists define biological systems as communities of interacting individuals at different trophic levels that process energy, nutrient and information flows. Modern plant breeding needs to increase agricultura

  6. Phenotypic evolutionary models in stem cell biology: replacement, quiescence, and variability.

    Directory of Open Access Journals (Sweden)

    Marc Mangel

    Full Text Available Phenotypic evolutionary models have been used with great success in many areas of biology, but thus far have not been applied to the study of stem cells except for investigations of cancer. We develop a framework that allows such modeling techniques to be applied to stem cells more generally. The fundamental modeling structure is the stochastic kinetics of stem cells in their niche and of transit amplifying and fully differentiated cells elsewhere in the organism, with positive and negative feedback. This formulation allows graded signals to be turned into all or nothing responses, and shows the importance of looking beyond the niche for understanding how stem cells behave. Using the deterministic version of this framework, we show how competition between different stem cell lines can be analyzed, and under what circumstances stem cells in a niche will be replaced by other stem cells with different phenotypic characteristics. Using the stochastic version of our framework and state dependent life history theory, we show that the optimal behavior of a focal stem cell will involve long periods of quiescence and that a population of identical stem cells will show great variability in the times at which activity occurs; we compare our results with classic ones on quiescence and variability in the hematopoietic system.

  7. The Cell Biology of Cytomegalovirus: Implications for Transplantation.

    Science.gov (United States)

    Kaminski, H; Fishman, J A

    2016-08-01

    Interpretation of clinical data regarding the impact of cytomegalovirus (CMV) infection on allograft function is complicated by the diversity of viral strains and substantial variability of cellular receptors and viral gene expression in different tissues. Variation also exists in nonspecific (monocytes and dendritic cells) and specific (NK cells, antibodies) responses that augment T cell antiviral activities. Innate immune signaling pathways and expanded pools of memory NK cells and γδ T cells also serve to amplify host responses to infection. The clinical impact of specific memory T cell anti-CMV responses that cross-react with graft antigens and alloantigens is uncertain but appears to contribute to graft injury and to the abrogation of allograft tolerance. These responses are modified by diverse immunosuppressive regimens and by underlying host immune deficits. The impact of CMV infection on the transplant recipient reflects cellular changes and corresponding host responses, the convergence of which has been termed the "indirect effects" of CMV infection. Future studies will clarify interactions between CMV infection and allograft injury and will guide interventions that may enhance clinical outcomes in transplantation.

  8. Modeling human risk: Cell ampersand molecular biology in context

    International Nuclear Information System (INIS)

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small but highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response

  9. Modeling human risk: Cell & molecular biology in context

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small but highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response.

  10. Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology

    Science.gov (United States)

    Novak, Igor L.; Gao, Fei; Choi, Yung-Sze; Resasco, Diana; Schaff, James C.; Slepchenko, Boris M.

    2007-10-01

    An algorithm is presented for solving a diffusion equation on a curved surface coupled to diffusion in the volume, a problem often arising in cell biology. It applies to pixilated surfaces obtained from experimental images and performs at low computational cost. In the method, the Laplace-Beltrami operator is approximated locally by the Laplacian on the tangential plane and then a finite volume discretization scheme based on a Voronoi decomposition is applied. Convergence studies show that mass conservation built in the discretization scheme and cancellation of sampling error ensure convergence of the solution in space with an order between 1 and 2. The method is applied to a cell-biological problem where a signaling molecule, G-protein Rac, cycles between the cytoplasm and cell membrane thus coupling its diffusion in the membrane to that in the cell interior. Simulations on realistic cell geometry are performed to validate, and determine the accuracy of, a recently proposed simplified quantitative analysis of fluorescence loss in photobleaching. The method is implemented within the Virtual Cell computational framework freely accessible at http://www.vcell.org.

  11. Mesenchymal stem cells: biological characteristics and potential clinical applications

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2004-01-01

    are among the first stem cell types to be introduced in the clinic. Several studies have demonstrated the possible use of MSC in systemic transplantation for systemic diseases, local implantation for local tissue defects, as a vehicle for genes in gene therapy protocols or to generate transplantable tissues...

  12. Biological - Elwha River Dam Removal Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem...

  13. Predicting spiral wave patterns from cell properties in a model of biological self-organization

    Science.gov (United States)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  14. Method and apparatus for sustaining viability of biological cells on a substrate

    Science.gov (United States)

    McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2011-12-13

    A method for the transient transformation of a living biological cell having an intact cell membrane defining an intracellular domain, and an apparatus for the transient transformation of biological cells. The method and apparatus include introducing a compartmentalized extracellular component fixedly attached to a cellular penetrant structure to the intracellular domain of the cell, wherein the cell is fixed in a predetermined location and wherein the component is expressed within in the cell while being retained within the compartment and wherein the compartment restricts the mobility and interactions of the component within the cell and prevents transference of the component to the cell.

  15. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To investigate the biological character of human adipose-derived adult stem cells (hADAS cells) when cultured in vitro and the relationship between hADAS cell’s replication activity and the donor’s age factor, and to assess the stem cells as a new source for tissue engineering. hADAS cells are isolated from human adipose tissue of different age groups (from adolescents to olds: <20 years old, 21―40 years old, 41―60 years old and >61 years old groups). The protein markers (CD29, CD34, CD44, CD45, CD49d, HLA-DR, CD106) of hADAS cells were detected by flow cytometry (FCM) to identify the stem cell, and the cell cycle was examined for P20 hADAS cells to evaluate the safety of the subculture in vitro. The generative activity of hADAS cells in different age groups was also examined by MTT method. The formula “ log2T D = t logN t ? logN 0” was used to get the time doubling (TD) of the cells. The results showed that the cells kept heredity stabilization by chromosome analysis for at least 20 passages. The TD of these cells increased progressively by ageing, and the TD of the <20 years old group was lower than that of the >61 years old group (statistical analysis of variance (ANOVA), P=0.002, P<0.05). These find- ings suggested that a higher level of hADAS cells replication activity was found in the younger dona- tors, and they represent novel and valuable seed cells for studies of tissue engineering.

  16. WWW.Cell Biology Education: Using the World Wide Web to Develop a New Teaching Topic

    Science.gov (United States)

    Blystone, Robert V.; MacAlpine, Barbara

    2005-01-01

    "Cell Biology Education" calls attention each quarter to several Web sites of educational interest to the biology community. The Internet provides access to an enormous array of potential teaching materials. In this article, the authors describe one approach for using the World Wide Web to develop a new college biology laboratory exercise. As a…

  17. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  18. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  19. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Science.gov (United States)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  20. Pressure-assisted cell spinning: a direct protocol for spinning biologically viable cell-bearing fibres and scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Arumuganathar, Sumathy [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Irvine, Scott [Royal Free and University College London Medical School, Rayne Institute, 5 University Street, London WC1E 6JJ (United Kingdom); McEwan, Jean R [Molecular Immunology Unit, Institute of Child Health, University College London, Guilford Street, London WC1N 1EH (United Kingdom); Jayasinghe, Suwan N [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2007-12-15

    We recently pioneered the ability to directly electrospin living cells from which scaffolds to membranes were derived. This protocol, now widely referred to as 'cell electrospinning', is currently undergoing in-depth investigations where the post-treated cell's global gene expression to its sub-cellular components is being investigated for understanding any effects post-treating. Our motivation is to develop this method for the biomedical sciences, in particular for applications in regenerative and therapeutic medicine. In the current work, we unveil a direct cell spinning protocol which is non-electric field driven and which will compete directly with cell electrospinning. We referred to this processing method as 'pressure-assisted spinning' in our previous studies, where we demonstrated this route as an emerging micro/nanotechnology. In the current context, we refer to this processing protocol as 'pressure-assisted cell spinning' (PACS). Our developmental studies on PACS reported here show, for the first time, that this technique could be explored as an alternative approach to cell electrospinning. Pressure-assisted cell spinning now enters the direct biological scaffold to membrane formation league.

  1. Cell biology and genetics of minimal change disease

    Science.gov (United States)

    Saleem, Moin A.; Kobayashi, Yasuko

    2016-01-01

    Minimal change disease (MCD) is an important cause of nephrotic syndrome and is characterized by massive proteinuria and hypoalbuminemia, resulting in edema and hypercholesterolemia. The podocyte plays a key role in filtration and its disruption results in a dramatic loss of function leading to proteinuria. Immunologic disturbance has been suggested in the pathogenesis of MCD. Because of its clinical features, such as recurrent relapse/remission course, steroid response in most patients, and rare familial cases, a genetic defect has been thought to be less likely in MCD. Recent progress in whole-exome sequencing reveals pathogenic mutations in familial cases in steroid-sensitive nephrotic syndrome (SSNS) and sheds light on possible mechanisms and key molecules in podocytes in MCD. On the other hand, in the majority of cases, the existence of circulating permeability factors has been implicated along with T lymphocyte dysfunction. Observations of benefit with rituximab added B cell involvement to the disease. Animal models are unsatisfactory, and the humanized mouse may be a good model that well reflects MCD pathophysiology to investigate suggested “T cell dysfunction” directly related to podocytes in vivo. Several candidate circulating factors and their effects on podocytes have been proposed but are still not sufficient to explain whole mechanisms and clinical features in MCD. Another circulating factor disease is focal segmental glomerulosclerosis (FSGS), and it is not clear if this is a distinct entity, or on the same spectrum, implicating the same circulating factor(s). These patients are mostly steroid resistant and often have a rapid relapse after transplantation. In clinical practice, predicting relapse or disease activity and response to steroids is important and is an area where novel biomarkers can be developed based on our growing knowledge of podocyte signaling pathways. In this review, we discuss recent findings in genetics and podocyte biology in

  2. Review series: The cell biology of renal filtration.

    Science.gov (United States)

    Scott, Rizaldy P; Quaggin, Susan E

    2015-04-27

    The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.

  3. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  4. Biological characteristics of breast carcinomas with neuroendocrine cell differentiation

    Institute of Scientific and Technical Information of China (English)

    姚根有; 周吉林; 赵仲生; 阮俊

    2004-01-01

    Background The aim of this study was to investigate DNA content and expression of c-erbB-2, PS2, and prostate-specific antigen (PSA) proteins in breast carcinomas with neuroendocrine (NE) cell differentiation.Methods Chromogranin, c-erbB-2, PS2, and PSA in 131 samples of breast cancer were detected immunohistochemically. Classic Feulgen staining image analysis techniques were used to quantify DNA content in 81 of the breast cancer samples.Results The c-erbB-2 positive rate in breast carcinoma samples containing neuroendocrine cells was 37.5% and the rate of high expression of c-erbB-2 (++ or +++) was 33.3%, both significantly lower than that in breast carcinomas without neuroendocrine cells (62.6% and 68.7%, respectively, P 5c aneuploidy cells, and rate of aneuploidy among cells were all lower than that in NE (-) breast carcinomas (P<0.01). In NE (+) grade I or II breast carcinomas, these indices were also all lower than that in the NE (-) breast carcinoma samples (P<0.01).Conclusion Breast carcinomas with neuroendocrine differentiation have a lower rate of malignancy. Neuroendocrine differentiation could serve as a prognostic marker in clinical practice.

  5. The binding, transport and fate of aluminium in biological cells.

    Science.gov (United States)

    Exley, Christopher; Mold, Matthew J

    2015-04-01

    Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion.

  6. Microfabricated devices for cell biology: all for one and one for all.

    Science.gov (United States)

    Lautenschläger, Franziska; Piel, Matthieu

    2013-02-01

    Individual cells in their native physiological states face a dynamic multi-factorial environment. This is true of both single-celled and multi-cellular organisms. A key challenge in cell biology is the design of experimental methods and specific assays to disentangle the contribution of each of the parameters governing cell behavior. After decades of studying cells cultured in Petri dishes or on glass coverslips, researchers can now benefit from a range of recent technological developments that allow them to study cells in a variety of contexts, with different levels of complexity and control over a range of environmental parameters. These technologies include new types of microscopy for detailed imaging of large cell aggregates or even whole tissues, and the development of cell culture substrates, such as 3D matrices. Here we will review the contribution of a third type of tool, collectively known as microfabricated tools. Derived from techniques originally developed for microelectronics, these tools range in size from hundreds of microns to hundreds of nanometers.

  7. Waveguide evanescent field fluorescence microscopy & its application in cell biology

    Science.gov (United States)

    Hassanzadeh, Abdollah

    There are many powerful microscopy technologies available for the investigation of bulk materials as well as for thin film samples. Nevertheless, for imaging an interface, especially live cells on a substrate and ultra thin-films, only Total Internal Reflection Fluorescence (TIRF) microscopy is available. This TIRF microscopy allows imaging without interference of the bulk. Various approaches are employed in fluorescence microscopy applications to restrict the excitation and detection of fluorophores to a thin region of the specimen. Elimination of background fluorescence from outside the focal plane can dramatically improve the signal-to-noise ratio, and consequently, the spatial resolution of the features or events of interest. TIRF microscopy is an evanescent field based microscopy. In this method, fluorescent dyes are only excited within an evanescent field: roughly within 100 nm above a glass coverslip. This will allow imaging surface and interfacial issues of the glass coverslip and an adjacent material. Waveguide evanescent field fluorescence (WEFF) microscopy is a new development for imaging cell-substrate interactions in real time and in vitro. It is an alternative to TIRF microscopy. In this method the light is coupled into a waveguide via an optical grating. The coupled light propagates as a waveguide mode and exhibits an evanescent field on top of the waveguide. This can be used as a surface-bound illumination source to excite fluorophores. This evanescent field serves as an extremely powerful tool for quality control of thin films, to study cell-substrate contacts, and investigating the effect of external agents and drugs on the cell-substrate interaction in real time and in vitro. This new method has been established and optimized to minimize non-uniformity, scattering and photo bleaching issues. Visualizing and quantifying of the cell-substrates and solid thin films have been carried out by WEFF microscopy. The images of the cell-substrate interface

  8. Mammalian skin cell biology: at the interface between laboratory and clinic.

    Science.gov (United States)

    Watt, Fiona M

    2014-11-21

    Mammalian skin research represents the convergence of three complementary disciplines: cell biology, mouse genetics, and dermatology. The skin provides a paradigm for current research in cell adhesion, inflammation, and tissue stem cells. Here, I discuss recent insights into the cell biology of skin. Single-cell analysis has revealed that human epidermal stem cells are heterogeneous and differentiate in response to multiple extrinsic signals. Live-cell imaging, optogenetics, and cell ablation experiments show skin cells to be remarkably dynamic. High-throughput, genome-wide approaches have yielded unprecedented insights into the circuitry that controls epidermal stem cell fate. Last, integrative biological analysis of human skin disorders has revealed unexpected functions for elements of the skin that were previously considered purely structural.

  9. Using a Module-Based Laboratory to Incorporate Inquiry into a Large Cell Biology Course

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.

    2005-01-01

    Because cell biology has rapidly increased in breadth and depth, instructors are challenged not only to provide undergraduate science students with a strong, up-to-date foundation of knowledge, but also to engage them in the scientific process. To these ends, revision of the Cell Biology Lab course at the University of Wisconsin-La Crosse was…

  10. In vitro growth, differentiation and biological characteristics of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Meijiang Yun; Lianzhong Wang; Yongcai Wang; Xiaolian Jiang

    2006-01-01

    OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification, differentiation and source of neural stem cells.DATA SOURCES: An online search of Pubmed database was undertaken to identify English articles about the growth of neural stem cells in vitro published from January 2000 to October 2006 by using the keywords of "neural stem ceils, bone marrow mesenchymal stem cells (BMSCs), umbilical cord blood stem cells, embryonic stem cells (ESC), separation methods, neural growth factor". And relevant articles published in IEEE/IEE Electronic Library (IEL) database, Springer Link database and Kluwer Online Journals were also searched.Chinese relevant articles published between January 2000 to October 2006 were searched with the same keywords in Chinese in Chinese journal full-text database.STUDY SELECTTON: The articles were primarily screened, and then the full-texts were searched. Inclusive criteria: ① Articles relevant to the biological characteristics and classification of neural stem cells; ② Articles about the source, separation and differentiation of the ESCs, BMSCs and umbilical cord blood stem cells. The repetitive studies and reviews were excluded.DATA EXTRACTION: Thirty articles were selected from 203 relevant articles according to the inclusive criteria.Articles were excluded because of repetition and reviews.DATA SYNTHESTS: Neural stem cells have the ability of self-renewing and high differentiation, and they are obtained from ESCs, nerve tissue, nerve system, BMSCs and umbilical cord blood stem cells. ESCs can be separated by means of mechanical dissociation is better than that of the trypsin digestion, BMSCs by density gradient centrifuge separation, hemolysis, whole-blood culture, etc., and umbilical cord blood stem cells by Ficoil density gradient centrifugation, hydroxyethyl starch (HES) centrifugation sedimentation, etc. Neural growth factor (NGF) and other factors play an important role in the growth

  11. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin

    Directory of Open Access Journals (Sweden)

    Ruifeng Liu

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp., including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.

  12. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin.

    Science.gov (United States)

    Liu, Ruifeng; Chang, Wenjuan; Wei, Hong; Zhang, Kaiming

    2016-01-01

    Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types. PMID:27239202

  13. Development of an Integrated Microfluidic Perfusion Cell Culture System for Real-Time Microscopic Observation of Biological Cells

    Directory of Open Access Journals (Sweden)

    Chih-Chin Oh-Yang

    2011-08-01

    Full Text Available This study reports an integrated microfluidic perfusion cell culture system consisting of a microfluidic cell culture chip, and an indium tin oxide (ITO glass-based microheater chip for micro-scale perfusion cell culture, and its real-time microscopic observation. The system features in maintaining both uniform, and stable chemical or thermal environments, and providing a backflow-free medium pumping, and a precise thermal control functions. In this work, the performance of the medium pumping scheme, and the ITO glass microheater were experimentally evaluated. Results show that the medium delivery mechanism was able to provide pumping rates ranging from 15.4 to 120.0 μL·min−1. In addition, numerical simulation and experimental evaluation were conducted to verify that the ITO glass microheater was capable of providing a spatially uniform thermal environment, and precise temperature control with a mild variation of ±0.3 °C. Furthermore, a perfusion cell culture was successfully demonstrated, showing the cultured cells were kept at high cell viability of 95 ± 2%. In the process, the cultured chondrocytes can be clearly visualized microscopically. As a whole, the proposed cell culture system has paved an alternative route to carry out real-time microscopic observation of biological cells in a simple, user-friendly, and low cost manner.

  14. BIOLOGICAL EFFECTS OF PULSED SHORT WAVE TREATMENT. AN EXPERIMENTAL STUDY

    OpenAIRE

    Dogaru Gabriela; Crăciun Constantin

    2015-01-01

    Pulsed short waves are short electromagnetic waves emitted as intermittent trains with a fixed duration, separated by free intervals of variable duration. The biological effects of pulsed short waves could be explained according to most of the authors by an activation of cellular enzymatic reactions, a stimulation of energy metabolism, a stimulation of liver function, of adrenal gland function and of the reticulocyte system, changes in cell permeability, by an increase of peripheral blood flo...

  15. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Hayashi

    2016-01-01

    Full Text Available In recent years, as human pluripotent stem cells (hPSCs have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK, which transmits ECM-integrin signaling to AKT (also known as protein kinase B, has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

  16. Design and testing of biological scaffolds for delivering reparative cells to target sites in the lung.

    Science.gov (United States)

    Ingenito, Edward P; Sen, Elif; Tsai, Larry W; Murthy, Shankar; Hoffman, Andrew

    2010-06-01

    This study summarizes the development and testing of a scaffold to promote engraftment of cells in the distal lung. A fibrinogen-fibronectin-vitronectin hydrogel (FFVH) was developed and optimized with respect to its mechanical and biological properties for this application. In vitro, FFVH scaffolds promoted attachment, histiotypic growth and expression of basement membrane proteins by primary ovine lung mesenchymal cells derived from lung biopsies. In vivo testing was then performed to assess the ability of FFVHs to promote cell engraftment in the sheep lung. Treatment with autologous cells delivered using FFVH was clinically well tolerated. Cells labelled with a fluorescent dye (PKH-26) were detected at treatment sites after 1 month. Tissue mass (assessed by CT imaging) and lung perfusion (assessed by nuclear scintigraphy) were increased at emphysema test sites. Post-treatment histology demonstrated cell proliferation and increased elastin expression without scarring or collapse. No treatment-related pathology was observed at healthy control sites. FFVH scaffolds promote cell attachment, spreading and extracellular matrix expression in vitro and apparent engraftment in vivo, with evidence of trophic effects on the surrounding tissue. Scaffolds of this type may contribute to the development of cell-based therapies for patients with end-stage pulmonary diseases. PMID:20020503

  17. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... of the final pool of harvested material or samples of each subculture of cells used to prepare the... completed product or samples of the final pool of harvested material or samples of each subculture of cells... cells or each subculture of primary cells used to prepare a biological product shall be shown free...

  18. Protoplasts: a useful research system for plant cell biology, especially dedifferentiation.

    Science.gov (United States)

    Jiang, Fangwei; Zhu, Jian; Liu, Hai-Liang

    2013-12-01

    As protoplasts have the characteristics of no cell walls, rapid population growth, and synchronicity, they are useful tools for research in many fields, especially cellular biology (Table 1). This article is an overview that focuses on the application of protoplasts to investigate the mechanisms of dedifferentiation, including changes in hormone signals, epigenetic changes, and organelle distribution during the dedifferentiation process. The article also emphasizes the wide range of uses for protoplasts in studying protein positions and signaling during different stresses. The examples provided help to show that protoplast systems, for example the mesophyll protoplast system of Arabidopsis, represent promising tools for studying developmental biology. Meanwhile, specific analysis of protoplast, which comes from different tissue, has specific advantages and limitations (Table 2), and it can provide recommendations to use this system.

  19. Mesenchymal Stem Cells for Enhancing Biologic Healing after Anterior Cruciate Ligament Injuries.

    Science.gov (United States)

    Jang, Ki-Mo; Lim, Hong Chul; Bae, Ji Hoon

    2015-01-01

    Arthroscopic anterior cruciate ligament (ACL) reconstruction using tendon grafts is the current gold standard for the treatment of ACL tears in active patients. However, many patients still experience residual knee instability, knee pain and progressive cartilage degeneration following ACL reconstruction. Recent developments in mesenchymal stem cell (MSC)-based approaches for treating musculoskeletal injuries have led to the application of MSCs for enhancing healing after ACL injuries. The purpose of this article is to review recent pre-clinical and clinical studies using MSCs for the enhancement of biologic healing of ACL injuries. Because of the success of pre-clinical studies, MSC-based approaches are now thought to be promising treatment options for enhancing biologic healing of ACL grafts and restoring the functional properties to the levels of the native ACL, and ultimately improving clinical outcomes.

  20. 3D-dynamic visualization of complex molecular cell biology processes : 1-year university students' understanding of visualizations of signal transduction

    OpenAIRE

    Jacobsson, Johan Lars Henrik

    2008-01-01

    This study deals with the use of 3D-dynamic visualizations for teaching complex molecular cell biology concepts. The focus is on signal transduction, which is a concept that constitutes an important part of biological systems. 3D-dynamic visualizations (animations) were produced and shown for a total of 24 students attending a course in molecular cell biology at Karlstad University, Sweden. Data were collected by questionnaires and interviews which were structured around the understandability...

  1. The Biological Effect of Hepsin on the Proliferation and Invasion of PC-3 Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Yong Xu; Zhiqiang Fan; Jantao Sun; Ranlu Liu; Weiming Zhao; Chunyu Wang; Ju Zhang

    2006-01-01

    OBJECTIVE Recent studies have shown that hepsin, a type of transmembrane serine protease, is highly upregulated in prostate cancer, but, little is known about its role in progression and invasion of this cancer. We constructed a hepsin-expressing plasmid and transfected it into PC-3 cells to investigate the effect of the hepsin gene on the biological behavior of the PC-3 cells.METHODS Plasmid pHepsin-IRES2 was transfected into prostate cancer PC-3 cells using Fugene6, and the cells with stable hepsin expression were screened and selected with Zeocin (600 mg/L). The hepsin mRNA level was measured by real-time PCR and the growth curve of the PC-3-transfected cells assessed using MTT and BrdU assays. A Boyden chamber was used to examine the difference in invasion and metastases between transfected and non-transfected cells.RESULTS The hepsin mRNA level in pHepsin-IRES2 transfected -PC-3 cells was significantly higher than that found in the control PC-3 cells. While the growth curve of the hepsin gene transfected PC-3 cells showed that there was no significant effect on proliferation, the invasive ability of the pHepsin-IRES2 transfected PC-3 cells, as compared with control cells, was significantly increased (P<0.05).CONCLUSION The results suggest that even though hepsin has no effect on the proliferation of prostate cancer PC-3 cells, it does promote cellular invasion and metastasis.Therefore hepsin may have a role in the development of prostate cancer.

  2. Simulated studies on the biological effects of space radiation on quiescent human fibroblasts

    Science.gov (United States)

    Ding, Nan; Pei, Hailong; He, Jinpeng; Furusawa, Yoshiya; Hirayama, Ryoichi; Liu, Cuihua; Matsumoto, Yoshitaka; Li, He; Hu, Wentao; Li, Yinghui; Wang, Jufang; Wang, Tieshan; Zhou, Guangming

    2013-10-01

    High charge and energy (HZE) particles are severe risk to manned long-term outer space exploration. Studies on the biological effects of space HZE particles and the underlying mechanisms are essential to the accurate risk assessment and the development of efficient countermeasure. Since majority of the cells in human body stay quiescent (G0 phase), in this study, we established G0 cell and G1 cell models by releasing human normal embryonic lung fibroblast cells from contact inhibition and studied the radiation toxicity of various kinds of HZE particles. Results showed that all of the particles were dose-dependently lethal and G0 cells were more radioresistant than G1 cells. We also found that 53BP1 foci were induced in a LET- and fluence-dependent manner and fewer foci were induced in G0 cells than G1 cells, however, the decrease of foci in 24 h after irradiation was highly relevant to the type of particles. These results imply that even though health risk of space radiation is probably overestimated by the data obtained with exponentially growing cells, whose radiosensitivity is similar to G1 cells, the risk of space HZE particles is un-ignorable and accurate assessment and mechanistic studies should be deepened. The diverse abilities of G0 cells and G1 cells in repairing DNA damages induced by HZE particles emphasize the importance in studying the impact of HZE particles on DNA damage repair pathways.

  3. A few nascent methods for measuring mechanical properties of the biological cell.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos (Purdue University, West Lafayette, IN); Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a

  4. Biological characterization of cultured dermal papilla cells and hair follicle regeneration in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Lü Zhong-fa; CAI Sui-qing; WU Jin-jin; ZHENG Min

    2006-01-01

    Background Dermal papilla cells (DPC) are a group of mesenchyme-derived cells at the base of the hair follicle, where they regulate and control hair follicle growth through the expression and secretion of cytokines. Nevertheless, the role of DPC derived chemokines and other cytokines in the hair follicle biology remain speculative. In this study, we investigated the expression of basic fibroblast growth factor (bFGF), endothelin-1 (ET-1) and stem cell factor (SCF) in different passages of cultured DPC and their effects on the biological behaviour of DPC.Methods The expression of bFGF, ET-1 and SCF in different passages of cultured DPC and their possible effects on the biological behavior of DPC are investigated using in situ hybridization and immunochemistry. In addition, we performed transplantation of hair follicle cells into nude mice. The cultured DPC, dermal sheath cells and fibroblast of human scalp, respectively, were mixed with cells of the hair follicle epithelium in different ratios, and then were cultured in hair follicle organotypic cultures or implanted into the subcutis of nude mice.Results The expression of ET-1 and SCF in early passages of cultured DPC became stronger, but turned weaker and even negative in late passages (>6 passages). Hair follicle-like structures were formed after DPC combined with the cells of hair follicle epithelium cells in hair follicle organotypic cultures. When hair follicle organotypic cultures were implanted into the subcutis of nude mice, the relative intact hair follicles were formed. After the transplantation of hair follicle cells into the nude mice, the hair follicle-like structure was formed in the group that contained DPC mixed with hair follicle epithelium cells. However, no hair follicles were formed in the other two groups. It was found that the higher the expression of ET-1 and SCF in DPC, the stronger the ability of DPC to induce hair follicle regeneration.Conclusions The cultured DPC can induce hair follicle

  5. Study on the biological activities of bone marrow stromal cells in patients with psoriasis%银屑病患者骨髓基质细胞生物学活性研究

    Institute of Scientific and Technical Information of China (English)

    刘瑞风; 冯海燕; 张静; 尹国华; 张开明

    2011-01-01

    目的:通过比较银屑病患者与对照组骨髓基质细胞生物学活性(包括细胞形态、免疫表型、增殖活性、自发凋亡率以及分泌细胞因子)的差异,揭示银屑病患者骨髓基质细胞的异常.方法:采用密度梯度离心法分别分离患者组与对照组骨髓单一核细胞,通过贴壁法培养骨髓基质细胞,收集传3代后的骨髓基质细胞及细胞培养上清液,流式细胞术鉴定其免疫表型及细胞凋亡率、四甲基偶氮唑蓝(MTT)比色法检测其增殖活性以及ELISA法检测细胞培养上清液中白介素(IL)-6、血小板源性生长因子(PDGF)和表皮生长因子(EGF)的水平.结果:患者组和对照组比较,骨髓基质细胞形态相似、表型相同,但细胞增殖活性、凋亡率以及细胞因子分泌水平均有差异(P<0.05).结论:银屑病患者骨髓基质细胞生物学活性异常,表明患者骨髓造血微环境可能存在异常.%Objective: To reveal the abnormlities of bone marrow stromal cells in patients with psoriasis by comparing the biological activities (including morphology, immunophenotype, proliferative activity, apoptosis rate and cytokine secretion) in patients with psoriasis and normal controls. Methods: Bone marrow stromal cells from patients with psoriasis and normal controls were isolated by density gradient centrifugation method. The cells isolated were cultured,and cells at passage 3 and the culture supernatants were collected. The immuno-phenotype and spontaneous apoptosis rate of cells were analyzed by flow cytometry. The cell proliferation was measured by MTT colorimetrie assay. ELISA was used to measure the concetrations of cytokines secreted from bone marrow stromal cells in the patients and the controls. Results: The cells from both groups had the same morphology and immunophenotype, but in comparison with the normal controls, the activity of proliferation of bone marrow stromal cells from the patients with psoriasis was significantly

  6. From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology.

    Science.gov (United States)

    Natarajan, Niranjana; Pluznick, Jennifer L

    2014-12-01

    Recent studies have highlighted a myriad of ways in which the activity and composition of the gut microbiota can affect the host organism. A primary way in which the gut microbiota affect host physiology is by the production of metabolites, such as short-chain fatty acids (SCFAs), which are subsequently absorbed into the bloodstream of the host. Although recent studies have begun to unravel the ways in which gut microbial SCFAs affect host physiology, less is understood regarding the underlying cell biological mechanisms. In this review, we will outline the known receptors and transporters for SCFAs, and review what is known about the cell biological effects of microbial SCFAs. PMID:25273884

  7. Directing experimental biology: a case study in mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Matthew A Hibbs

    2009-03-01

    Full Text Available Computational approaches have promised to organize collections of functional genomics data into testable predictions of gene and protein involvement in biological processes and pathways. However, few such predictions have been experimentally validated on a large scale, leaving many bioinformatic methods unproven and underutilized in the biology community. Further, it remains unclear what biological concerns should be taken into account when using computational methods to drive real-world experimental efforts. To investigate these concerns and to establish the utility of computational predictions of gene function, we experimentally tested hundreds of predictions generated from an ensemble of three complementary methods for the process of mitochondrial organization and biogenesis in Saccharomyces cerevisiae. The biological data with respect to the mitochondria are presented in a companion manuscript published in PLoS Genetics (doi:10.1371/journal.pgen.1000407. Here we analyze and explore the results of this study that are broadly applicable for computationalists applying gene function prediction techniques, including a new experimental comparison with 48 genes representing the genomic background. Our study leads to several conclusions that are important to consider when driving laboratory investigations using computational prediction approaches. While most genes in yeast are already known to participate in at least one biological process, we confirm that genes with known functions can still be strong candidates for annotation of additional gene functions. We find that different analysis techniques and different underlying data can both greatly affect the types of functional predictions produced by computational methods. This diversity allows an ensemble of techniques to substantially broaden the biological scope and breadth of predictions. We also find that performing prediction and validation steps iteratively allows us to more completely

  8. BIOLOGICAL EFFECTS OF PULSED SHORT WAVE TREATMENT. AN EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Dogaru Gabriela

    2015-02-01

    Full Text Available Pulsed short waves are short electromagnetic waves emitted as intermittent trains with a fixed duration, separated by free intervals of variable duration. The biological effects of pulsed short waves could be explained according to most of the authors by an activation of cellular enzymatic reactions, a stimulation of energy metabolism, a stimulation of liver function, of adrenal gland function and of the reticulocyte system, changes in cell permeability, by an increase of peripheral blood flow through the enhancement of local vascularization. This research aimed to investigate the biological effects of exposure to pulsed short waves at different doses on the adrenal glands of experimental animals, by structural and ultrastructural studies. The study included 35 animals assigned to 4 groups. Group I included 10 experimental animals exposed to radiation at a dose of 1/80 impulses/sec, group II, 10 animals exposed to a dose of 4/400 impulses/sec, group III, 10 animals exposed to a dose of 6/600 impulses/sec, for 10 min/day, and the control group consisted of 5 unexposed animals. Structural and ultrastructural changes of adrenal glands induced by the dose of 4/400 impulses/sec, compared to the unexposed control group and the dose of 1/80 impulses/sec, include an intensification of protein synthesis processes, an enhancement of energy metabolism in providing the energy required for an increased production of hormones, an intensification of collagen fiber synthesis processes in the capsule, necessary for healing. It was demonstrated that this dose induced an intensification of hormone synthesis and secretion, a stimulation of adrenal function. At the dose of 6/600 cycles/sec, a slight diminution of hormone synthesis and secretion activity was found, which was not below the limits existing in the unexposed control group, but was comparable to group II. This dose is probably too strong for experimental animals, inducing them a state of stress. The

  9. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases.

    Science.gov (United States)

    Carletti, Barbara; Piemonte, Fiorella; Rossi, Ferdinando

    2011-06-01

    During the past decades Neural Stem Cells have been considered as an alternative source of cells to replace lost neurons and NSC transplantation has been indicated as a promising treatment for neurodegenerative disorders. Nevertheless, the current understanding of NSC biology suggests that, far from being mere spare parts for cell replacement therapies, NSCs could play a key role in the pharmacology of neuroprotection and become protagonists of innovative treatments for neurodegenerative diseases. Here, we review this new emerging concept of NSC biology.

  10. Autotaxin: Its Role in Biology of Melanoma Cells and as a Pharmacological Target

    Directory of Open Access Journals (Sweden)

    Maciej Jankowski

    2011-01-01

    Full Text Available Autotaxin (ATX is an extracellular lysophospholipase D (lysoPLD released from normal cells and cancer cells. Activity of ATX is detected in various biological fluids. The lysophosphatidic acid (LPA is the main product of ATX. LPA acting through specific G protein-coupled receptors (LPA1-LPA6 affects immunological response, normal development, and malignant tumors' formation and progression. In this review, the impact of autotoxin on biology of melanoma cells and potential treatment is discussed.

  11. Omnis cellula e cellula revisited: cell biology as the foundation of pathology.

    Science.gov (United States)

    Wright, Nicholas A; Poulsom, Richard

    2012-01-01

    This 2012 Annual Review Issue of The Journal of Pathology argues strongly that cell biology, in its many disciplines, underpins the foundation of our understanding of the mechanisms of disease-the holy grail of pathology. Our increasing knowledge of the human genome will not be enough to attain this goal without parallel developments in our comprehension of the results, at the cellular level, of these genetic changes. In the end, it is cell biology and cell biologists who will deliver this mission.

  12. Cells release subpopulations of exosomes with distinct molecular and biological properties

    OpenAIRE

    Eduard Willms; Johansson, Henrik J; Imre Mäger; Yi Lee; Blomberg, K. Emelie M.; Mariam Sadik; Amr Alaarg; C.I. Edvard Smith; Janne Lehtiö; Samir EL Andaloussi; Matthew J A Wood; Pieter Vader

    2016-01-01

    Cells release nano-sized membrane vesicles that are involved in intercellular communication by transferring biological information between cells. It is generally accepted that cells release at least three types of extracellular vesicles (EVs): apoptotic bodies, microvesicles and exosomes. While a wide range of putative biological functions have been attributed to exosomes, they are assumed to represent a homogenous population of EVs. We hypothesized the existence of subpopulations of exosomes...

  13. Primordial germ cell biology at the beginning of the XXI century.

    Science.gov (United States)

    De Felici, Massimo

    2009-01-01

    At the XIV Workshop on the Development and Function of the Reproductive Organs held at the Congress Centre of the University of Rome Tor Vergata, Monteporzio Catone, Rome, Italy, the introduction to the first session entitled Mammalian primordial germ cells dedicated to the memory of Anne McLaren, was the occasion for a concise review of the state of art of research on the biology of primordial germ cells (PGCs). This great, unforgettable scientist, who died in a car accident in July 2007, dedicated most of her studies to this field over the last 25 years. Topics briefly reviewed in this Meeting Report are: 1) how the germ line is determined; 2) what are the mechanisms underlying PGC migration; 3) to what extent PGC survival, proliferation and differentiation are cell autonomous or environmentally controlled processes and 4) how the potential for totipotency is retained in PGCs.

  14. The image of cell in biology books: an approach from Cognitive Theory of Multimedia Learning

    Directory of Open Access Journals (Sweden)

    Ricardo Ferreira das Neves

    2016-04-01

    Full Text Available The research aimed to analyze the didactic value (VD of the images related to the concept of cell in biology books of High School and Higher Education, supported by Cognitivist Theory of Multimedia Learning (TCAM. With the technological advent there was a better development of the layout of production techniques and layout of the images in books, in order to help the study of abstract concepts and often complex, such as the cell. However sometimes it not happens. From the application of TCAM principles, we noted that the images related to cell concept presented VD elements with deviations on the principles of Consistency, Signaling and Spatial Contiguity, with great emphasis to the last one. It is necessary to establish eligibility criteria and inclusion of images in books, because the images represent potential resource to reduce abstraction and to facilitate conceptual learning.

  15. Immunglobulin Expression and Its Biological Significance in Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Duosha Hu; Hui Zheng; Haidan Liu; Ming Li; Wei Ren; Wei Liao; Zhi Duan; Lili Li; Ya Cao

    2008-01-01

    It is generally believed that the expression of a gene iS restricted "within the right place and at the right time".This principle has long been considered applicable as well to the expression of immunoglobulin(Ig)lymphocytes of B cell lineage.However,increasing evidence has shown Ig "paradoxically" expressed in malignant tumors of epitheliaI origin.We reviewed the recent progress in the study of cancer-derived Ig,and also discussed its mechanisms and possible functions,trying to arouse interest and attention to those working in the field of immunology and oncology.

  16. Sperm cell biology: current perspectives and future prospects

    Institute of Scientific and Technical Information of China (English)

    R John Aitken; Ralf R Henkel

    2011-01-01

    @@ Major advances in biomolecular techniques as well as in the sensitivity and accuracy of mass spectrometers are transform-ing the scientific landscape by fueling unprecedented advances in ana-lytical biochemistry-the 'omics revolution, which refers to the study of genes (genomics), transcripts (transcriptomics), proteins (proteo-mics) and the various metabolites (metabolomics). It is now possible to secure inventories of lipids, proteins, metabolites and RNA species in purified cell populations and to determine how these entities change in relation to cellular function.

  17. Psychological and biological foundations of time preference : evidence from a day reconstruction study with biological tracking

    OpenAIRE

    Daly, Michael; Delaney, Liam; Harmon, Colm

    2008-01-01

    This paper considers the relationship between the economic concept of time preference and relevant concepts from psychology and biology. Using novel data from a time diary study conducted in Ireland that combined detailed psychometric testing with medical testing and real-time bio-tracking, we examine the distribution of a number of psychometric measures linked to the economic concept of time preferences and test the extent to which these measures form coherent clusters and the degree to whic...

  18. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    Science.gov (United States)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  19. Comparative Cell Biology and Evolution of Annexins in Diplomonads

    Science.gov (United States)

    Einarsson, Elin; Ástvaldsson, Ásgeir; Hultenby, Kjell; Andersson, Jan O.; Svärd, Staffan G.

    2016-01-01

    ABSTRACT Annexins are multifunctional, calcium-binding proteins found in organisms across all kingdoms. Most studies of annexins from single-celled eukaryotes have focused on the alpha-giardins, proteins assigned to the group E annexins, expressed by the diplomonad Giardia intestinalis. We have characterized the annexin gene family in another diplomonad parasite, Spironucleus salmonicida, by phylogenetic and experimental approaches. We constructed a comprehensive phylogeny of the diplomonad group E annexins and found that they are abundant across the group with frequent gene duplications and losses. The annexins of S. salmonicida were found to be related to alpha-giardins but with better-preserved type II Ca2+ coordination sites. Two annexins were confirmed to bind phospholipids in a Ca2+-dependent fashion but with different specificities. Superresolution and confocal microscopy of epitope-tagged S. salmonicida annexins revealed localization to distinct parts of the cytoskeleton and membrane. The ultrastructural details of the localization of several annexins were determined by proximity labeling and transmission electron microscopy. Two annexins localize to a novel cytoskeletal structure in the anterior of the cell. Our results show that the annexin gene family is expanded in diplomonads and that these group E annexins are associated mostly with cytoskeletal and membrane structures. IMPORTANCE Annexins are proteins that associate with phospholipids in a Ca2+-dependent fashion. These proteins have been intensely studied in animals and plants because of their importance in diverse cellular processes, yet very little is known about annexins in single-celled eukaryotes, which represent the largest diversity of organisms. The human intestinal parasite Giardia intestinalis is known to have more annexins than humans, and they contribute to its pathogenic potential. In this study, we investigated the annexin complement in the salmon pathogen Spironucleus salmonicida, a

  20. A conundrum in molecular toxicology: molecular and biological changes during neoplastic transformation of human cells.

    Science.gov (United States)

    Milo, G E; Shuler, C F; Lee, H; Casto, B C

    1995-12-01

    The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells