WorldWideScience

Sample records for cell auxiliary power

  1. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    DeMinco, C.; Mukerjee, S.; Grieve, J.; Faville, M.; Noetzel, J.; Perry, M.; Horvath, A.; Prediger, D.; Pastula, M.; Boersma, R.; Ghosh, D.

    2000-01-01

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700 o C. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  2. PEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tinton Dwi Atmaja

    2012-02-01

    Full Text Available Page HeaderOpen Journal SystemsJournal HelpUser You are logged in as...aulia My Journals My Profile Log Out Log Out as UserNotifications View (27 new ManageJournal Content SearchBrowse By Issue By Author By Title Other JournalsFont SizeMake font size smaller Make font size default Make font size largerInformation For Readers For Authors For LibrariansKeywords CBPNN Displacement FLC LQG/LTR Mixed PMA Ventilation bottom shear stress direct multiple shooting effective fuzzy logic geoelectrical method hourly irregular wave missile trajectory panoramic image predator-prey systems seawater intrusion segmentation structure development pattern terminal bunt manoeuvre Home About User Home Search Current Archives ##Editorial Board##Home > Vol 23, No 1 (2012 > AtmajaPEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid VehicleTinton Dwi Atmaja, Amin AminAbstractone of the present-day implementation of fuel cell is acting as main power source in Fuel Cell Hybrid Vehicle (FCHV. This paper proposes some strategies to optimize the performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC implanted with auxiliary power source to construct a proper FCHV hybridization. The strategies consist of the most updated optimization method determined from three point of view i.e. Energy Storage System (ESS, hybridization topology and control system analysis. The goal of these strategies is to achieve an optimum hybridization with long lifetime, low cost, high efficiency, and hydrogen consumption rate improvement. The energy storage system strategy considers battery, supercapacitor, and high-speed flywheel as the most promising alternative auxiliary power source. The hybridization topology strategy analyzes the using of multiple storage devices injected with electronic components to bear a higher fuel economy and cost saving. The control system strategy employs nonlinear control system to optimize the ripple factor of the voltage and the current

  3. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  4. A battery-fuel cell hybrid auxiliary power unit for trucks: Analysis of direct and indirect hybrid configurations

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Krupp, Carsten; Baltzer, Sidney; Gnörich, Bruno; Peters, Ralf; Stolten, Detlef

    2016-01-01

    Highlights: • A battery-fuel cell hybrid auxiliary power unit for heavy duty vehicles is reported. • Comparison of direct and indirect hybrids using representative load profiles. • Evaluation based on validated fuel cell system and battery models. • Indirect hybrid with constant fuel cell load yields 29.3% hybrid system efficiency. • Fuel cell should be pre-heated using waste heat from the diesel engine during drive. - Abstract: The idling operation of engines in heavy duty vehicles to cover electricity demand during layovers entails significant fuel consumption and corresponding emissions. Indeed, this mode of operation is highly inefficient and a noteworthy contributor to the transportation sector’s aggregate carbon dioxide emissions. Here, a potential solution to this wasteful practice is outlined in the form of a hybrid battery-fuel cell system for application as an auxiliary power unit for trucks. Drawing on experimentally-validated fuel cell and battery models, several possible hybrid concepts are evaluated and direct and indirect hybrid configurations analyzed using a representative load profile. The results indicate that a direct hybrid configuration is only applicable if the load demand profile does not deviate strongly from the assumed profile. Operation of an indirect hybrid with a constant fuel cell load yields the greatest hybrid system efficiency, at 29.3%, while battery size could be reduced by 87% if the fuel cell is operated at the highest dynamics. Maximum efficiency in truck applications can be achieved by pre-heating the system prior to operation using exhaust heat from the motor, which increased system efficiency from 25.3% to 28.1%, including start-up. These findings confirm that hybrid systems could offer enormous fuel savings and constitute a sizeable step on the path toward energy-efficient and environmentally-friendly heavy duty vehicles that does not necessitate a fuel switch.

  5. Auxiliary power unit for moving a vehicle

    Science.gov (United States)

    Akasam, Sivaprasad [Peoria, IL; Johnson, Kris W [Peoria, IL; Johnson, Matthew D [Peoria, IL; Slone, Larry M [Washington, IL; Welter, James Milton [Chillicothe, IL

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  6. Vacuum switchgear for power station auxiliary switchboards

    International Nuclear Information System (INIS)

    Coombs, P.E.

    1992-01-01

    Sizewell B is the first UK power station in which vacuum switchgear is used for the auxiliary switchboards. Previously the 3.3kV, 6.6kV or 11kV switchgear has used air-break circuit breakers and fused air-break contactors, known as motor starting devices or fused switching devices (FSD). The use of vacuum interrupters is therefore a new technology in this application, although it has been established in the UK distribution network and in industrial installations from the mid 1970s. Vacuum switchgear was already in use in the USA for power station auxiliary switchgear at the time that it was proposed for Sizewell B. The Sizewell B high voltage auxiliary switchgear comprises eight Unit and Station Auxiliary Switchboards at 3.3kV and 11kV, and four 3.3kV Essential Switchboards for the essential safety related circuits, making a total of 65 circuit breakers plus FSD panels. (Author)

  7. Auxiliary cooling device for power plant

    International Nuclear Information System (INIS)

    Yamanoi, Kozo.

    1996-01-01

    An auxiliary cooling sea water pipeline for pumping up cooling sea water, an auxiliary cooling sea water pipeline and a primary side of an auxiliary cooling heat exchanger are connected between a sea water taking vessel and a sea water discharge pit. An auxiliary cooling water pump is connected to an auxiliary water cooling pipeline on the second side of the auxiliary cooling heat exchanger. The auxiliary cooling water pipeline is connected with each of auxiliary equipments of a reactor system and each of auxiliary equipments of the turbine system connected to a turbine auxiliary cooling water pipeline in parallel. During ordinary operation of the reactor, heat exchange for each of the auxiliary equipments of the reactor and heat exchange for each of the equipments of the turbine system are conducted simultaneously. Since most portions of the cooling devices of each of the auxiliary equipments of the reactor system and each of the auxiliary equipments of the turbine system can be used in common, the operation efficiency of the cooling device is improved. In addition, the space for the pipelines and the cost for the equipments can be reduced. (I.N.)

  8. 14 CFR 23.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 23.1142... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on the... power unit. [Doc. No. 26344, 58 FR 18974, Apr. 9, 1993] ...

  9. 14 CFR 25.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 25.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for starting...

  10. 14 CFR 29.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 29.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for starting...

  11. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  12. Effects of Auxiliary-Source Connection in Multichip Power Module

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Wang, Xiongfei

    2017-01-01

    the power loop and the gate loop like how the Kelvin-source connection does, owing to their involvement in the loop of the power source current. Three effects of the auxiliary-source connections are then analyzed, which are 1) the common source stray inductance reduction, 2) the transient drain......Auxiliary-source bond wires and connections are widely used in power modules with paralleled MOSFETs or IGBTs. This paper investigates the operation mechanism of the auxiliary-source connections in multichip power modules. It reveals that the auxiliary-source connections cannot fully decouple......-source current imbalance mitigation, and 3) the influence on the steady-state current distribution. Lastly, simulations and experimental results validate the theoretical analysis....

  13. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels

    Science.gov (United States)

    Neubauer, Raphael; Weinlaender, Christof; Kienzl, Norbert; Bitschnau, Brigitte; Schroettner, Hartmuth; Hochenauer, Christoph

    2018-05-01

    On-board desulfurization is essential to operate fuel-cell-based auxiliary power units (APU) with commercial fuels. In this work, both (i) on-board desulfurization and (ii) on-board regeneration performance of Ag-Al2O3 adsorbent is investigated in a comprehensive manner. The herein investigated regeneration strategy uses hot APU off-gas as the regeneration medium and requires no additional reagents, tanks, nor heat exchangers and thus has remarkable advantages in comparison to state-of-the-art regeneration strategies. The results for (i) show high desulfurization performance of Ag-Al2O3 under all relevant operating conditions and specify the influence of individual operation parameters and the combination of them, which have not yet been quantified. The system integrated regeneration strategy (ii) shows excellent regeneration performance recovering 100% of the initial adsorption capacity for all investigated types of fuels and sulfur heterocycles. Even the adsorption capacity of the most challenging dibenzothiophene in terms of regeneration is restored to 100% over 14 cycles of operation. Subsequent material analyses proved the thermal and chemical stability of all relevant adsorption sites under APU off-gas conditions. To the best of our knowledge, this is the first time 100% regeneration after adsorption of dibenzothiophene is reported over 14 cycles of operation for thermal regeneration in oxidizing atmospheres.

  14. High Performance Auxiliary Power Unit Technology Demonstrator.

    Science.gov (United States)

    1980-12-01

    aft bearings 1.13 P3 - Power producer CDP 1.14 DPHE - Lube pressure drop at heat exchanger 1.15 POFP - Load airflow orifice pressure 1.16 DPOFP - Load...P𔃽I -PSI G PEBL -PSIG P2 -PS.IG DPHE -PID POFP -F Iu 0. 022±_ 77. 3478 6o5. 6 4±4 ±8L-. 4852 19. 51-17.4 DPOFP -PSID Ni -,. N2-i -RPM NSATM -FPM...28. 0250 83. 3505 29. 861 1:9. 7680 PGi -PSIG PEBL -PSIG P3 -PSIG DPHE -PSID POFP -PSIG 0. 0100 77. 9199 72.4862 17. 25 ±19. 4122 1= DPOFP -PSID NI

  15. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships

    International Nuclear Information System (INIS)

    Strazza, C.; Del Borghi, A.; Costamagna, P.; Traverso, A.; Santin, M.

    2010-01-01

    Fuel cells own the potential for significant environmental improvements both in terms of air quality and climate protection. Through the use of renewable primary energies, local pollutant and greenhouse gas emissions can be significantly minimized over the full life cycle of the electricity generation process, so that marine industry accounts renewable energy as its future energy source. The aim of this paper is to evaluate the use of methanol in Solid Oxide Fuel Cells (SOFC), as auxiliary power systems for commercial vessels, through Life Cycle Assessment (LCA). The LCA methodology allows the assessment of the potential environmental impact along the whole life cycle of the process. The unit considered is a 20 kWel fuel cell system. In a first part of the study different fuel options have been compared (methanol, bio-methanol, natural gas, hydrogen from cracking, electrolysis and reforming), then the operation of the cell fed with methanol has been compared with the traditional auxiliary power system, i.e. a diesel engine. The environmental benefits of the use of fuel cells have been assessed considering different impact categories. The results of the analysis show that fuel production phase has a strong influence on the life cycle impacts and highlight that feeding with bio-methanol represents a highly attractive solution from a life cycle point of view. The comparison with the conventional auxiliary power system shows extremely lower impacts for SOFCs.

  16. Dynamic analysis of auxiliary buildings in nuclear power plants

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Madhava Rao, A.S.; Warudkar, A.S.

    1989-01-01

    All nuclear power plants have a large number of auxiliary buildings housing various services and control systems required for the operation of the plant. Illustrative examples are turbine building, control building, service building etc. These buildings are seismically qualified as Class I or Class II structures. Usually, these auxiliary buildings are of low rise type with two or three floors and floor heights varying from five to eight meters and of framed construction in steel or concrete or a combination of both the materials. The floors are usually staggered with large cutouts and may not extend over the full area in plan. Some of the bays are often of double story height with the columns continuous over a story in order to accommodate cranes and other equipment. The structural elements supporting the roof may consist of steel roof trusses instead of beams. The seismic analysis of these structures involves the formulation of the analytical model that can simulate the physical behavior of the structure as close as possible taking into consideration the practical aspects. The criteria adopted to formulate the mathematical model has an important bearing on the evaluated dynamic characteristics and seismic response

  17. Large gap plasma display cell with auxiliary electrodes: macro-cell experiments and two-dimensional modelling

    International Nuclear Information System (INIS)

    Ouyang, J T; Callegari, Th; Caillier, B; Boeuf, J-P

    2003-01-01

    In this paper we use a two-dimensional fluid model and a 'macroscopic' PDP cell to investigate the possibility of using large gap configurations with auxiliary electrodes to improve the efficiency of PDP discharge cells. The large gap allows operation in a transient positive column regime where energy is more efficiently deposited into xenon excitation, while the auxiliary electrodes are used to keep reasonable values of the operating voltage. Two types of auxiliary electrode configurations (floating and powered) are considered. The discharge characteristics and the discharge efficiency in exciting xenon are studied with simulations and by measuring the intensity of infrared emission from xenon and visible emission from neon in a macroscopic PDP cell. The results show that an efficient positive column regime can be achieved at reasonably low operating voltages when the auxiliary electrode configuration is carefully designed

  18. STARTER-GENERATOR SYSTEM FOR AUXILIARY POWER UNIT

    Directory of Open Access Journals (Sweden)

    A. V. Levin

    2017-01-01

    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  19. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine tests in auxiliary power unit (APU... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.96 Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which...

  20. Auxiliary System Load Schemes in Large Thermal and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kuzle, I.; Bosnjak, D.; Pandzic, H.

    2010-01-01

    Uninterrupted auxiliary system power supply in large power plants is a key factor for normal operation, transient states, start-ups and shutdowns and particularly during fault conditions. Therefore, there are many challenges in designing the main electrical system as well as the auxiliary systems power supply. Depending upon the type of fuel used and the environmental control system required, a thermal power plant may consume as much as 10% of its total generation for auxiliary power, while a nuclear power plant may require only 4 - 6% auxiliaries. In general, the larger the power generating plant, the higher the voltage selected for the AC auxiliary electric system. Most stations in the 75 to 500 MW range utilize 4,2 kV as the base auxiliary system voltage. Large generating stations 500 - 1000 MW and more use voltage levels of 6,9 kV and more. Some single dedicated loads such as electric driven boiler feed pumps are supplied ba a 13,8 kV bus. While designing the auxiliary electric system, the following areas must be considered: motor starting requirements, voltage regulation requirements, short-circuit duty requirements, economic considerations, reliability and alternate sources. Auxiliary power supply can't be completely generalized and each situation should be studied on its own merits to determine the optimal solution. Naturally, nuclear power plants have more reliability requirements and safety design criteria. Main coolant-pump power supply and continuity of service to other vital loads deserve special attention. This paper presents an overview of some up-to-date power plant auxiliary load system concepts. The main types of auxiliary loads are described and the electric diagrams of the modern auxiliary system supply concepts are given. Various alternative sources of auxiliary electrical supply are considered, the advantages and disadvantages of these are compared and proposals are made for high voltage distribution systems around the thermal and nuclear plant

  1. Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM FCs

    International Nuclear Information System (INIS)

    Contestabile, Marcello

    2010-01-01

    Proton exchange membrane fuel cells (PEM FCs) offer a promising alternative to internal combustion engines in road transport. During the last decade PEM FC research, development and demonstration (RD and D) activities have been steadily increasing worldwide, and targets have been set to begin their commercialisation in road transport by 2015-2020. However, there still is considerable uncertainty on whether these targets will actually be met. The picture is complex and market and technology issues are closely interlinked; investment in RD and D projects is essential but not sufficient; the development of suitable early markets is also necessary and policy is set to play an important role. Auxiliary power units (APUs) are generally regarded as one important early market for FCs in transport. This paper analyses the possible future market for diesel PEM FC APUs onboard long-haul trucks and its implications for the development of PEM FCs in general. The analysis, part of the project HyTRAN (EC Contract no. 502577), is aided by the use of a dynamic simulation model of technology and markets developed by the author. Results suggest that an interesting window of opportunity for diesel PEM FC APUs exists but this is subject to additional research particularly targeted at the rapid development of fuel processors.

  2. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  3. Auxiliary buildings

    International Nuclear Information System (INIS)

    Lakner, I.; Lestyan, E.

    1979-01-01

    The nuclear power station represents a complicated and a particular industrial project. Consequently, the design of the auxiliary buildings serving the power station (offices, kitchen, refreshment room, workshops, depots, water treatment plant building, boiler houses, etc.) requires more attention than usual. This chapter gives a short survey of the auxiliary buildings already completed and discusses the problems of their design, location and structure. (author)

  4. ASCERTAINMENT OF ELECTRIC-SUPPLY SCHEMES RELIABILITY FOR THE ATOMIC POWER PLANT AUXILIARIES

    Directory of Open Access Journals (Sweden)

    A. L. Starzhinskij

    2015-01-01

    Full Text Available The paper completes ascertainment of electrical-supply scheme reliability for the auxiliaries of a nuclear power plant. Thereat the author considers the system behavior during the block normal operation, carrying out current maintenance, and capital repairs in combination with initiating events. The initiating events for reactors include complete blackout, i.e. the loss of outside power supply (normal and reserve; emergency switching one of the working turbogenerators; momentary dumping the normal rating to the level of auxiliaries with seating the cutout valve of one turbo-generator. The combination of any initiating event with the repairing mode in case of one of the system elements failure should not lead to blackout occurrence of more than one system of the reliable power supply. This requirement rests content with the help of the reliable power supply system self-dependence (electrical and functional and the emergency power-supply operational autonomy (diesel generator and accumulator batteries.The reliability indicators of the power supply system for the nuclear power plant auxiliaries are the conditional probabilities of conjoined blackout of one, two, and three sections of the reliable power supply conditional upon an initiating event emerging and the blackout of one, two, and three reliable power-supply sections under the normal operational mode. Furthermore, they also are the blackout periodicity of one and conjointly two, three, and four sections of normal operation under the block normal operational mode. It is established that the blackout of one bus section of normal operation and one section of reliable power-supply system of the auxiliaries that does not lead to complete blackout of the plant auxiliaries may occur once in three years. The probability of simultaneous power failure of two or three normal-operation sections and of two reliable power-supply sections during the power plant service life is unlikely.

  5. An optimal power management system for a regenerative auxiliary power system for delivery refrigerator trucks

    International Nuclear Information System (INIS)

    Mohagheghi Fard, Soheil; Khajepour, Amir

    2016-01-01

    Highlights: • A new anti-idling system for refrigerator trucks is proposed. • This system enables regenerative braking. • An innovative two-level controller is proposed for the power management system. • A fast dynamic programming technique to find real-time SOC trajectory is proposed. • In addition to idling elimination, this system reduces fuel consumption. - Abstract: Engine idling of refrigerator trucks during loading and unloading contributes to greenhouse gas emissions due to their increased fuel consumption. This paper proposes a new anti-idling system that uses two sources of power, battery and engine-driven generator, to run the compressor of the refrigeration system. Therefore, idling can be eliminated because the engine is turned OFF and the battery supplies auxiliary power when the vehicle is stopped for loading or unloading. This system also takes advantage of regenerative braking for increased fuel savings. The power management of this system needs to satisfy two requirements: it must minimize fuel consumption in the whole cycle and must ensure that the battery has enough energy for powering the refrigeration system when the engine is OFF. To meet these objectives, a two-level controller is proposed. In the higher level of this controller, a fast dynamic programming technique that utilizes extracted statistical features of drive and duty cycles of a refrigerator truck is used to find suboptimal values of the initial and final SOC of any two consecutive loading/unloading stops. The lower level of the controller employs an adaptive equivalent fuel consumption minimization (A-ECMS) to determine the split ratio of auxiliary power between the generator and battery for each segment with initial and final SOC obtained by the high-level controller. The simulation results confirm that this new system can eliminate idling of refrigerator trucks and reduce their fuel consumption noticeably such that the cost of replacing components is recouped in a

  6. Introduction to deaerator in auxiliary water supply system of nuclear power plant

    International Nuclear Information System (INIS)

    Dong Jianguo; Zhou Xia; Lei Yongxia

    2015-01-01

    The paper introduces the operation theory and thermal calculation and verification requirements for the deaerator in the auxiliary water supply system of nuclear power plant. In addition, it describes the key factors in terms of function, structure, design and fabrication of equipment. (authors)

  7. Catalytic Reforming of Higher Hydrocarbon Fuels to Hydrogen: Process Investigations with Regard to Auxiliary Power Units

    OpenAIRE

    Kaltschmitt, Torsten

    2012-01-01

    This thesis discusses the investigation of the catalytic partial oxidation on rhodium-coated honeycomb catalysts with respect to the conversion of a model surrogate fuel and commercial diesel fuel into hydrogen for the use in auxiliary power units. Furthermore, the influence of simulated tail-gas recycling was investigated.

  8. Analysis of design of auxiliary system of Booshehr Nuclear Power Plant

    International Nuclear Information System (INIS)

    Naseh Hasanzadeh, M.

    1999-01-01

    Power plant's internal auxiliary system has an important role in its safety operation. Because of the decay heat and safety aspects in the nuclear power plants, this role is more important. In this thesis, operation of the nuclear power plant with PWR reactor is studied and deferent nuclear systems described. In the next section all electrical loads in the Booshehr Nuclear Power Plant identified and feeding methods of each load is determined. by use of the single line diagram of the internal auxiliary system, the nominal rating of all electrical devices as transformers, inverters, Ups, diesel generators and etc. is determined. In the following, short circuit calculations performed and by above conclusion, rating values of circuit breakers is determined. At last the starting problems of electrical motors is studied and the results of motor's behavior at starting moment is discussed

  9. Civil engineering in nuclear power stations: design of the turbine building and nuclear auxiliary building

    International Nuclear Information System (INIS)

    Lacroix, R.

    1985-01-01

    After enumerating the specific features of civil engineering in nuclear power stations. One goes on to examine the principal deliberations undertaken with the aim of optimising projects for transition from the P4 to P'4 and then N4 generations of nuclear power stations. The courses of action decided with respect to the design of the machine room and auxiliary equipment building are described [fr

  10. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges

    1998-01-01

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  11. 75 FR 3639 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Science.gov (United States)

    2010-01-22

    .... 10-24; DA 10-92] Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the... Auxiliary Stations, Including Wireless Microphones, and the Digital Television Transition AGENCY: Federal... language that must be used in the consumer disclosure that is required by Section 15.216 of Appendix B in...

  12. Sawtooth Pacing by Real-Time Auxiliary Power Control in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Goodman, T. P.; Felici, F.; Sauter, O.; Graves, J. P.

    2011-01-01

    In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.

  13. Impact of Auxiliary Equipments Consumption on Electricity Generation Cost in Selected Power Plants of Pakistan

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR

    2017-04-01

    Full Text Available This study focuses on higher generation cost of electricity in selected TPPs (Thermal Power Plants in Sindh, Pakistan. It also investigates the energy consumed by the auxiliary equipment of the selected TPPs in Sindh, Pakistan. The AC (Auxiliary Consumption of selected TPPs is compared with that in UK and other developed countries. Results show that the AC in selected TPPs in Sindh, Pakistan exceeds the average AC of the TPPs situated in developed countries. Many energy conservation measures such as impeller trimming and de-staging, boiler feed pump, high voltage inverter, variable frequency drive, and upgrading the existing cooling tower fan blades with fiber reinforced plastic are discussed to overcome higher AC. This study shows that harnessing various available energy conservative measures the AC and unit cost can be reduced by 4.13 and 8.8%; also adverse environmental impacts can be mitigated. Results show that the unit cost of electricity can be reduced from Rs.20 to19/kWh in JTPP (Jamshoro Thermal Power Plant, Rs.9 to 8.8/kWh in GTPS (Gas Turbine Power Station Kotri and Rs. 11 to 10.27/ kWh in LPS (Lakhara Power Station. Thus, electricity production can be improved with the existing capacity, which will eventually assist to manage the current energy crisis and ensure its conservation

  14. IEC 61850. Integrated supervision of auxiliary power equipment; IEC 61850. Prozess und Eigenbedarf wachsen zusammen

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, Robert; Jung, Matthias [Siemens AG, Erlangen (Germany)

    2009-07-01

    It is state of technology today: Having process control and auxiliary power control integrated in one DCS. The integration is based on the international standard IEC 61850 which allows standardization of electrical structures from the process interface up to the DCS level. Modern control systems are designed to realize a system structure according to IEC 61850. A wide range of systems is available from systems with interfaces to realize a standardized data exchange up to systems with a complete integration of the standard IEC 61850. (orig.)

  15. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    Energy Technology Data Exchange (ETDEWEB)

    Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  16. A minimization procedure for estimating the power deposition and heat transport from the temperature response to auxiliary power modulation

    International Nuclear Information System (INIS)

    Eester, Dirk van

    2004-01-01

    A method commonly used for determining where externally launched power is absorbed inside a tokamak plasma is to examine the temperature response to modulation of the launched power. Strictly speaking, this response merely provides a first good guess of the actual power deposition rather than the deposition profile itself: not only local heat sources but also heat losses and heat wave propagation affect the temperature response at a given position. Making use of this, at first sight non-desirable, effect modulation becomes a useful tool for conducting transport studies. In this paper a minimization method based on a simple conduction-convection model is proposed for deducing the power deposition and transport characteristics from the experimentally measured (electron) energy density response to a modulation of the auxiliary heating power. An L-mode JET example illustrates the potential of the technique

  17. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  18. Test system design for Hardware-in-Loop evaluation of PEM fuel cells and auxiliaries

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, Guenter; Moore, Robert M. [Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI (United States)

    2006-07-14

    In order to evaluate the dynamic behavior of proton exchange membrane (PEM) fuel cells and their auxiliaries, the dynamic capability of the test system must exceed the dynamics of the fastest component within the fuel cell or auxiliary component under test. This criterion is even more critical when a simulated component of the fuel cell system (e.g., the fuel cell stack) is replaced by hardware and Hardware-in-Loop (HiL) methodology is employed. This paper describes the design of a very fast dynamic test system for fuel cell transient research and HiL evaluation. The integration of the real time target (which runs the simulation), the test stand PC (that controls the operation of the test stand), and the programmable logic controller (PLC), for safety and low-level control tasks, into one single integrated unit is successfully completed. (author)

  19. Systems for Nuclear Auxiliary Power annual report, government fiscal year 1976/TQ

    International Nuclear Information System (INIS)

    1976-01-01

    The overall objective of the Systems for Nuclear Auxiliary Power (SNAP) Program is to continue system and component engineering activities relating to the zirconium hydride (ZrH) reactor. The specific objectives for FY 1976/TQ were to: (1) study standardized ZrH reactor space power systems and components, (2) perform preconceptual analysis and design of ZrH reactor--organic Rankine power systems for subsea applications, (3) conduct fuel and hydrogen barrier investigations, (4) perform system studies in support of the Department of Defense and their contractors as directed by ERDA, (5) test components, and (6) provide for material disposal and facility surveillance. In the study, representative systems which utilize Brayton, Rankine, and Stirling cycle power conversion units as well as thermoelectric modules, are analyzed at power levels of 10, 25, 50, and 75 kWe. Waste heat rejection is accomplished by concentric, cylindrical space radiators which can be nested during launch for space shuttle integration. Subsequent studies, which supported this effort, were completed and provided useful information on system reliability and survivability

  20. Considerations on safety against seismic excitations in the project of reactor auxiliary building and control building in nuclear power plants

    International Nuclear Information System (INIS)

    Santos, S.H.C.; Castro Monteiro, I. de

    1986-01-01

    The seismic requests to be considered in the project of main buildings of a nuclear power plant are discussed. The models for global seismic analysis of nuclear power plant structures, as well as models for global strength distribution are presented. The models for analysing reactor auxiliary building and control building, which together with the reactor building and turbine building form the main energy generation complex in a nuclear power plant, are described. (M.C.K.) [pt

  1. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Science.gov (United States)

    2010-10-01

    ... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.216 Disclosure requirements for... following disclosure requirements: (1) Such persons must display the consumer disclosure text, as specified... point of sale or lease of each such low power auxiliary station. The text must be displayed in a clear...

  2. 75 FR 3622 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Science.gov (United States)

    2010-01-22

    ... translators, and Class A stations are continuing to operate in the 700 MHz Band after the transition. The..., marketing, and packaging materials, including online materials, related to such devices. The labeling must... display (including online display) any low power auxiliary stations, including wireless microphones, that...

  3. Thermal stability analysis and auxiliary power feedback control for the tokamak engineering test breeder (TETB-II)

    International Nuclear Information System (INIS)

    Sheng Guangzhao

    1993-01-01

    The thermal stability of TETB-II is analyzed using different methods, viz., POPCON, linear stability analysis and the time evolution calculation of plasma parameters. A thermal instability of the TETB-II is predicted. Auxiliary power feedback control for thermal stability appears feasible and efficient

  4. 75 FR 34347 - Airworthiness Directives; Honeywell International Inc. Auxiliary Power Unit Models GTCP36-150(R...

    Science.gov (United States)

    2010-06-17

    ... Airworthiness Directives; Honeywell International Inc. Auxiliary Power Unit Models GTCP36-150(R) and GTCP36-150...) models GTCP36- 150(R) and GTCP36-150(RR). This AD requires inspecting the fuel control unit (FCU...-150(R) and GTCP36-150(RR). We published the proposed AD in the Federal Register on December 23, 2009...

  5. A probabilistic evaluation of the Shearon Harris Nuclear Power Plant auxiliary feedwater isolation system

    International Nuclear Information System (INIS)

    Anoba, R.C.

    1989-01-01

    This paper reports on a fault tree approach that was used to evaluate the safety significance of modifying the Shearon Harris Auxiliary Feedwater Isolation System. The design modification was a result of on-site reviews which identified a single failure in the Auxiliary Feedwater Isolation circuitry

  6. Full scale vibration test on nuclear power plant auxiliary building: Part I

    International Nuclear Information System (INIS)

    Langer, V.; Tinic, S.; Berger, E.; Zwicky, P.; Prater, E.G.

    1987-01-01

    In connection with the construction of the reinforced concrete auxiliary building housing the two boric water tanks (so-called BOTA building) of the Beznau Nuclear Power Plant in Switzerland the opportunity was given to carry out full scale vibration tests in November 1985. The overall aim of the tests was to validate computational models and parameters widely used in the seismic analysis of the structures and critical components of nuclear power plants. The scope of the experimental investigation was the determination of the eigenfrequencies and damping values for the fundamental soil-structure interaction (SSI) modes. The excitation level was aimed to be as high as feasibly possible. A working group was formed of representatives of the owner, NOK, the consulting firm Basler and Hofmann and the ETH to supervise the project. The project's main phases were the planning and execution of the tests, the evaluation of recorded data, numerical simulation of the tests using different computer models and finally the comparison and interpretation of measured and computed results

  7. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com [College of Engineering and Technology, Northeast Forestry University, Harbin 150040 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.

  8. Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A

    International Nuclear Information System (INIS)

    Xu Weidong; Xuan Weimin; Yao Lieying; Wang Yingqiao

    2012-01-01

    The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 μs. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.

  9. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  10. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  11. Analysing the Possible Ways for Short-Term Forcing Gas Turbine Engines in Auxiliary Power Unit

    Directory of Open Access Journals (Sweden)

    N. I. Trotskii

    2016-01-01

    applied only to small-sized and auxiliary gas turbines, operating as part of gas turbine power plants in vehicles, which comprise additional compressed air cylinders. Here are calculation results as a function of the engine power and forcing time on the amount of additional compressed air fed into the combustion chamber. The article shows that in feeding the additional compressed air in the amount of 15% of the airflow the engine power in the compressor is increased by 27%. It also describes the main implementation difficulties of this method.In conclusion, the article presents data on the considered methods for short-term forcing the GTE and shows the main difficulties in their implementation. It also comes to conclusion that the electro-generator design strength and characteristics restrict the limits of these short-term forcing methods.

  12. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  13. Experimental simulation of a light aircraft crash on to a nuclear power plant auxiliary building roof

    International Nuclear Information System (INIS)

    Barnes, D.; Barr, P.; Garton, G.; Howe, W.D.; Neilson, A.J.

    1984-08-01

    The experiments described were conducted at a reduced scale with geometric dimensions of prototype structures of one-fifth full size. The target was based on the auxiliary buildings for the proposed Sizewell PWR. Descriptions of the simulated aircraft model and the test panels are given, together with the instrumentation. Details are given of the test programme and the results are summarized and discussed. Comparison is made of the model aircraft tests with an equivalent hard missile impact. (U.K.)

  14. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    OSCAR, DEBBY S.; WALKER, SHARON ANN; HUNTER, REGINA LEE; WALKER, CHERYL A.

    1999-01-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2

  15. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  16. On the prohibition of automatic redundant power supply of 6 and 0.4 kV auxiliary sections at Leningrad NPP

    International Nuclear Information System (INIS)

    Mokeev, S.F.

    1987-01-01

    At Leningrad NPP the automatic switching on of the auxiliary power supply sources of 6 and 0.4 kV is prohibited to provide personnel safety and preserve destruction of electroequipment. With excess of current maximum value in the 6 kV section immediate detachment of all electric motors occurs. At that moment by the switchers detechment emergency signal it occurs immediate swithing on of auxiliary systems or emergency switching on of auxiliary supply of the main circulating pumps, that insreases abruptly operation reliability of plant technological department

  17. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  18. The Impact of Drive Cycles and Auxiliary Power on Passenger Car Fuel Economy

    Directory of Open Access Journals (Sweden)

    Thomas Grube

    2018-04-01

    Full Text Available In view of the advancement of zero emission transportation and current discussions on the reliability of nominal passenger car fuel economy, this article considers the procedure for assessing the potential for reducing the fuel consumption of passenger cars by using electric power to operate them. The analysis compares internal combustion engines, hybrid and fully electric concepts utilizing batteries and fuel cells. The starting point for the newly developed, simulation-based fuel consumption analysis is a longitudinal vehicle model. Mechanical power requirements on the drive side incorporate a large variety of standardized drive cycles to simulate typical patterns of car usage. The power requirements of electric heating and air conditioning are also included in the simulation, as these are especially relevant to electric powertrains. Moreover, on-board grid-load profiles are considered in the assessment. Fuel consumption is optimized by applying concept-specific operating strategies. The results show that the combination of low average driving speed and elevated onboard power requirements have severe impacts on the fuel efficiency of all powertrain configurations analyzed. In particular, the operational range of battery-electric vehicles is strongly affected by this due to the limited storage capacity of today’s batteries. The analysis confirms the significance of considering different load patterns of vehicle usage related to driving profiles and onboard electrical and thermal loads.

  19. Steam generator auxiliary systems

    International Nuclear Information System (INIS)

    Heinz, A.

    1982-01-01

    The author deals with damage and defect types obtaining in auxiliary systems of power plants. These concern water/steam auxiliary systems (feed-water tank, injection-control valves, slide valves) and air/fluegas auxiliary systems (blowers, air preheaters, etc.). Operating errors and associated damage are not dealt with; by contrast, weak spots are pointed out which result from planning and design. Damage types and events are collected in statistics in order to facilitate damage evaluation for arriving at improved design solutions. (HAG) [de

  20. Procedure of qualification applied to motors driving auxiliaries in fossil fired and nuclear power plants

    International Nuclear Information System (INIS)

    Coperchini, C.; Fises, A.

    1984-01-01

    Twenty year operation have enabled EDF to better understand the factors improving the reliability of powerhouse auxiliary drive induction motors. Progress in the behaviour of such machines are mainly due to analysis and handling of full size test results achieved in the Saint-Denis Motor Test Laboratory. This work led to the printing of recommendations and technical specifications. Service and safety requirements of the nuclear plant new generation lead to examine again the procedures of qualification. The analysis made in this report let appear the justification to maintain the present EDF policy with some necessary adjustments, especially as far as the nuclear safety motors are concerned [fr

  1. Aging and service wear of auxiliary feedwater pumps for PWR nuclear power plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    This paper describes investigations on auxiliary feedwater pumps being done under the Nuclear Plant Aging Research (NPAR) Program. Objectives of these studies are: to identify and evaluate practical, cost-effective methods for detecting, monitoring, and assessing the severity of time-dependent degradation (aging and service wear); recommend inspection and maintenance practices; establish acceptance criteria; and help facilitate use of the results. Emphasis is given to identifying and assessing methods for detecting failure in the incipient stage and to developing degradation trends to allow timely maintenance, repair or replacement actions. 3 refs

  2. Research of grounding capacitive current of neutral non-grounding auxiliary system in nuclear power plants

    International Nuclear Information System (INIS)

    Yang Shan; Liu Li; Huang Xiaojing

    2014-01-01

    In the domestic and abroad standards, the grounding capacitive current limitation in the non-grounding electric auxiliary system is less than 10 A. Limiting capacitive current in the standard aims to speed up the arc extinguishing to reduce the duration of arc over-voltage, but not to prevent the arc producing, The arc over-voltage harm is related to the multiple, frequency and duration of the over-voltage. When the insulation vulnerabilities appear in the equipment, the arc over-voltage may result in insulation vulnerabilities of the electrical equipment breakdown, which leads to multiple, short-circuit accidents. The cable connector, accessory and electromotor winding are all insulation vulnerabilities. Setting the arc suppression coil which can counteract the grounding capacitive current makes the arc vanish quickly. Using the casting bus which remarkably reduces the ground capacitance of the electric transmission line makes the equipment safer. (authors)

  3. Operation auxiliary system (SAO)

    International Nuclear Information System (INIS)

    Lolich, J.; Santome, D.; Drexler, J.

    1990-01-01

    This work presents an auxiliary system for nuclear power plants operation (SAO). The development purpose consisted in a computing supervision system to be installed at different sites of a reactor, mainly in the control room. The inclusion of this system to a nuclear power plant minimizes the possibility of human error for the facility operation. (Author) [es

  4. Auxiliary feedwater system risk-based inspection guide for the North Anna nuclear power plants

    International Nuclear Information System (INIS)

    Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1992-10-01

    In a study sponsored by the US Nuclear regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. North Anna was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the North Anna plant

  5. Auxiliary feedwater system risk-based inspection guide for the Palo Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Sloan, J.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Palo Verde was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Palo Verde plants

  6. Auxiliary feedwater system risk-based inspection guide for the McGuire nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1994-05-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. McGuire was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the McGuire plant

  7. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant

  8. Auxiliary feedwater system risk-based inspection guide for the Maine Yankee Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gore, B.F.; Vo, T.V.; Moffitt, N.E.; Bumgardner, J.D.

    1992-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. The information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Maine Yankee was selected as one of a series of plants for study. ne product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Maine Yankee plant

  9. Auxiliary feedwater system risk-based inspection guide for the Byron and Braidwood nuclear power plants

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1991-07-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Byron and Braidwood were selected for the fourth study in this program. The produce of this effort is a prioritized listing of AFW failures which have occurred at the plants and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Byron/Braidwood plants. 23 refs., 1 fig., 1 tab

  10. Auxiliary feedwater system risk-based inspection guide for the H. B. Robinson nuclear power plant

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Lloyd, R.C.; Gore, B.F.; Vo, T.V.; Garner, L.W.

    1993-08-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. H. B. Robinson was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the H. B. Robinson plant

  11. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Vehec, T.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant

  12. Auxiliary feedwater system risk-based inspection guide for the Ginna Nuclear Power Plant

    International Nuclear Information System (INIS)

    Pugh, R.; Gore, B.F.; Vo, T.V.; Moffitt, N.E.

    1991-09-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Ginna was selected as the eighth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Ginna plant. 23 refs., 1 fig., 1 tab

  13. A niching genetic algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization

    International Nuclear Information System (INIS)

    Sacco, W.F.; Lapa, Celso M.F.; Pereira, C.M.N.A.; Oliveira, C.R.E. de

    2006-01-01

    This article extends previous efforts on genetic algorithms (GAs) applied to a nuclear power plant (NPP) auxiliary feedwater system (AFWS) surveillance tests policy optimization. We introduce the application of a niching genetic algorithm (NGA) to this problem and compare its performance to previous results. The NGA maintains a populational diversity during the search process, thus promoting a greater exploration of the search space. The optimization problem consists in maximizing the system's average availability for a given period of time, considering realistic features such as: (i) aging effects on standby components during the tests; (ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; (iii) components have distinct test parameters (outage time, aging factors, etc.) and (iv) tests are not necessarily periodic. We find that the NGA performs better than the conventional GA and the island GA due to a greater exploration of the search space

  14. Free-Piston Diesel-Fueled Linear Alternator for Auxiliary Power Unit Applications

    National Research Council Canada - National Science Library

    Atkinson, Christopher

    1999-01-01

    .... Previous studies of free-piston engine designs have indicated that they would be useful where linear power delivery could be used, such as in fluid power delivery, or in electrical energy applications.

  15. Sensitivity Analysis of Core Damage by Loss of Auxiliary Feed Water during the Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo Jae; Chung, Soon Il; Hwang, Su Hyun; Lee, Kyung Jin; Lee, Byung Chul [FNC Tech., Yongin (Korea, Republic of); Yun, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, the reactor core damage time for OPR1000 type Nuclear Power Plant (NPP) was analyzed to develop a strategy to handle ELAP and to apply to the EOP. The reactor core damage time in the ELAP condition was calculated according to the time of Auxiliary Feedwater (AFW) loss. Fukushima accident was caused by long hours of Station Black Out (SBO) caused by natural disaster beyond Design Based Accident (DBA) criteria. It led to the reactor core damage. After the accident, the regulatory authorities of each country (Japan, US, EU, IAEA, and etc.) recommended developing the necessary systems and strategies in order to cover up the Extended Loss of All AC Power (ELAP) such as one occurred in the Fukushima accident. And the need of procedure or guideline to cope with ELAP has been raised through the stress test for Wolsong Nuclear Power Plant unit 1. Current Emergency Operating Procedures (EOP) used in domestic nuclear power plant are seemed to be insufficient to cope with ELAP. Therefore, it has been required to be improved. As the result, the time of AFW loss in the ELAP condition influences greatly on core damage time.

  16. IEEE C37.105-1987: IEEE standard for qualifying Class 1E protective relays and auxiliaries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the basic principles, requirements, and methods for qualifying Class 1E protective relays and auxiliaries such as test and control switches, terminal blocks, and indicating lamps for applications in nuclear power generating stations. When properly employed it can be used to demonstrate the design adequacy of such equipment under normal, abnormal, design basis event and post design basis event conditions in accordance with ANSI/IEEE Std 323-1983. When protective relays and auxiliaries are located in areas not subject to harsh environments, environmental qualification is not required. Protective relays and auxiliaries located inside primary containment in a nuclear power generating station present special conditions beyond the scope of this document. The qualification procedure presented is generic in nature. Other methods may be used at the discretion of the qualifier, provided the basic precepts of ANSI/IEEE Std 32301983 are satisfied

  17. Optimum voltage of auxiliary systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Segawa, Motomichi

    1979-01-01

    In the power plants in Japan, their unit power output has been greatly enhanced since the introduction of new powerful thermal power plants from 1950's to 1960's. In both thermal and nuclear power plants, 1,000 MW machines have been already in operation. The increase of unit power output results in the increase of in-plant load capacity. Of these the voltage adopted for in-plant low voltage systems is now mainly 440 V at load terminals, and the voltage for in-plant high voltage systems has been changing to 6 kV level via 3 kV and 4 kV levels. As plant capacity increases, the load of low voltage systems significantly increases, and it is required to raise the voltage of 400 V level. By the way, the low voltage in AC is specified to be not higher than 600 V. This makes the change within the above range comparatively easy. Considering these conditions, it is recommended to change the voltage for low voltage systems to 575 V at power source terminals and 550 V at load terminals. Some merits in constructing power systems and in economy by raising the voltage were examined. Though demerits are also found, they are only about 15% of total merits. The most advantageous point in raising the voltage is to be capable of increasing the supplying range to low voltage system loads. (Wakatsuki, Y.)

  18. Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model

    Directory of Open Access Journals (Sweden)

    Yongpeng Shen

    2016-02-01

    Full Text Available Auxiliary power units (APUs are widely used for electric power generation in various types of electric vehicles, improvements in fuel economy and emissions of these vehicles directly depend on the operating point of the APUs. In order to balance the conflicting goals of fuel consumption and emissions reduction in the process of operating point choice, the APU operating point optimization problem is formulated as a constrained multi-objective optimization problem (CMOP firstly. The four competing objectives of this CMOP are fuel-electricity conversion cost, hydrocarbon (HC emissions, carbon monoxide (CO emissions and nitric oxide (NO x emissions. Then, the multi-objective particle swarm optimization (MOPSO algorithm and weighted metric decision making method are employed to solve the APU operating point multi-objective optimization model. Finally, bench experiments under New European driving cycle (NEDC, Federal test procedure (FTP and high way fuel economy test (HWFET driving cycles show that, compared with the results of the traditional fuel consumption single-objective optimization approach, the proposed multi-objective optimization approach shows significant improvements in emissions performance, at the expense of a slight drop in fuel efficiency.

  19. CAREM-25. Auxiliary systems

    International Nuclear Information System (INIS)

    Acosta, Eduardo; Amaya, Daniel; Carlevaris, Rodolfo; Patrignani, A.; Ramilo, L.; Santecchia, A.; Vindrola, C.

    2000-01-01

    CAREM is an innovative PWR reactor whose prototype will be of small power generation capacity (100MWt, about 25MWe).CAREM design is based on light water integrated reactor with slightly enriched uranium.In this work, a summary of the functions and most relevant design characteristics of main auxiliary systems associated to the chain of heat removal and physicochemical - radiological treatment of the cooling fluids of the CAREM-25 prototype is presented.Even though these auxiliary systems of the reactor are not safety system, they fulfill functions related with the nuclear safety at different operative modes of the reactor

  20. CAREM-25. Auxiliary systems

    International Nuclear Information System (INIS)

    Acosta, Eduardo; Amaya, Daniel; Carlevaris, Rodolfo; Patrignani, Alberto; Santecchia, Alberto; Vindrola, Carlos; Ramilo, Lucia B.

    2000-01-01

    CAREM is an innovative PWR reactor whose prototype will be of small power generation capacity (100 M Wt, about 25 M We). CAREM design is based on light water integrated reactor with slightly enriched uranium. In this work, a summary of the functions and most relevant design characteristics of main auxiliary systems associated to the chain of heat removal and physicochemical - radiological treatment of the cooling fluids of the CAREM-25 prototype is presented. Even though these auxiliary systems of the reactor are not safety system, they fulfill functions related with the nuclear safety at different operative modes of the reactor. (author)

  1. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  2. Model Specification for Rework of Aircraft Engine, Power Transmission, and Accessory/Auxiliary Ball and Roller Bearings

    Science.gov (United States)

    Zaretsky, Erwin V.; Branzai, Emanuel V.

    2007-01-01

    This document provides a model specification for the rework and/or repair of bearings used in aircraft engines, helicopter main power train transmissions, and auxiliary bearings determined to be critical by virtue of performance, function, or availability. The rolling-element bearings to be processed under the provisions of this model specification may be used bearings removed after service, unused bearings returned from the field, or certain rejected bearings returned for reinspection and salvage. In commercial and military aircraft application, it has been a practice that rolling-element bearings removed at maintenance or overhaul be reworked and returned to service. Depending on the extent of rework and based upon theoretical analysis, representative life factors (LF) for bearings subject to rework ranged from 0.87 to 0.99 the lives of new bearings. Based on bearing endurance data, 92 percent of the bearing sets that would be subject to rework would result in L(sub 10) lives equaling and/or exceeding that predicted for new bearings. The remaining 8 percent of the bearings have the potential to achieve the analytically predicted life of new bearings when one of the rings is replaced at rework. The potential savings from bearing rework varies from 53 to 82 percent of that of new bearings depending on the cost, size, and complexity of the bearing

  3. Parallel island genetic algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Lapa, Celso M.F.

    2003-01-01

    In this work, we focus the application of an Island Genetic Algorithm (IGA), a coarse-grained parallel genetic algorithm (PGA) model, to a Nuclear Power Plant (NPP) Auxiliary Feedwater System (AFWS) surveillance tests policy optimization. Here, the main objective is to outline, by means of comparisons, the advantages of the IGA over the simple (non-parallel) genetic algorithm (GA), which has been successfully applied in the solution of such kind of problem. The goal of the optimization is to maximize the system's average availability for a given period of time, considering realistic features such as: i) aging effects on standby components during the tests; ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; iii) components have distinct test parameters (outage time, aging factors, etc.) and iv) tests are not necessarily periodic. In our experiments, which were made in a cluster comprised by 8 1-GHz personal computers, we could clearly observe gains not only in the computational time, which reduced linearly with the number of computers, but in the optimization outcome

  4. Power assisted fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, L P; Atwater, T B; Plichta, E J; Cygan, P J [US Army CECOM, Fort Monmouth, NJ (United States). Research Development and Engineering Center

    1998-02-01

    A hybrid fuel cell demonstrated pulse power capability at pulse power load simulations synonymous with electronics and communications equipment. The hybrid consisted of a 25.0 W Proton Exchange Membrane Fuel Cell (PEMFC) stack in parallel with a two-cell lead-acid battery. Performance of the hybrid PEMFC was superior to either the battery or fuel cell stack alone at the 18.0 W load. The hybrid delivered a flat discharge voltage profile of about 4.0 V over a 5 h radio continuous transmit mode of 18.0 W. (orig.)

  5. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    International Nuclear Information System (INIS)

    Berger, E.; Tinic, S.

    1988-01-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system

  6. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E [Basler and Hofmann AG, Consulting Engineers, Zurich (Switzerland); Tinic, S [Nordostschweizerische Kraftwerke AG, Baden (Switzerland)

    1988-07-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system.

  7. CFD simulations of power coefficients for an innovative Darrieus style vertical axis wind turbine with auxiliary straight blades

    Science.gov (United States)

    Arpino, F.; Cortellessa, G.; Dell'Isola, M.; Scungio, M.; Focanti, V.; Profili, M.; Rotondi, M.

    2017-11-01

    The increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in renewable energy sources such as wind energy. Amongst the different typologies of wind generators, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, Computational Fluid Dynamic (CFD) simulations were performed in order to investigate the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds. The micro turbine under investigation is composed of three pairs of airfoils, consisting of a main and auxiliary blades with different chord lengths. The simulations were made using the open source finite volume based CFD toolbox OpenFOAM, considering different turbulence models and adopting a moving mesh approach for the turbine rotor. The simulated data were reported in terms of dimensionless power coefficients for dynamic performance analysis. The results from the simulations were compared to the data obtained from experiments on a scaled model of the same VAWT configuration, conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). From the proposed analysis, it was observed that the most suitable model for the simulation of the performances of the micro turbine under investigation is the one-equation Spalart-Allmaras, even if under the conditions analysed in the present work and for TSR values higher than 1.1, some discrepancies between numerical and experimental data can be observed.

  8. Cooldown to residual heat removal entry conditions using atmospheric dump valves and auxiliary pressurizer spray following a loss-of-offsite power at Calvert Cliffs, Unit 1

    International Nuclear Information System (INIS)

    Jenks, R.P.

    1984-01-01

    An investigation of cooldown using atmospheric dump valves (ADVs) and auxiliary pressurizer spray (APS) following loss-of-offsite power at Calvert Cliffs-1 showed residual heat removal entry conditions could not be reached with the plant ADVs alone. Use of APS with the plant ADVs enhanced depressurization, but still provided insufficient cooldown. Effective cooldown and depressurization was shown to occur when rated steady state flow through the ADVs was increased by a factor of four. 6 refs., 30 figs., 2 tabs

  9. Development and experimental testing of a hybrid Stirling engine-adsorption chiller auxiliary power unit for heavy trucks

    International Nuclear Information System (INIS)

    Flannery, Barry; Lattin, Robert; Finckh, Oliver; Berresheim, Harald; Monaghan, Rory F.D.

    2017-01-01

    Highlights: • Free-piston Stirling engine for truck APU. • Waste heat driven adsorption chiller for cab air conditioning. • Reduced-order model comparing proposed system to existing technology. • Experimental test data from prototype test rig. - Abstract: This paper identifies the key technical requirements for a heavy truck auxiliary power unit (APU) and explores a potential alternative technology for use in a next-generation APU which could eliminate key problems related to emissions, noise and maintenance experienced today by conventional diesel engine-vapour compression APUs. The potential performance of a novel hybrid Stirling engine-adsorption chiller concept is investigated and benchmarked against the incumbent technology using a reduced-order model based on experimental data. Experimental results from a Stirling-adsorption system (SAS) prototype test rig are also presented which highlight system integration dynamics and overall performance. The adsorption chiller achieved an average COP of 0.42 ± 0.06 and 2.3 ± 0.1 kW_t of cooling capacity at the baseline test condition. The prototype SAS test rig demonstrates that there appear to be no major technology barriers remaining that would prevent adoption of the SAS concept in a next-generation APU. Such a system could offer a reduction of exhaust emissions, greenhouse gases (GHG), ozone-depleting substances, noise, low maintenance and the potential for fuel flexibility and higher reliability. Preliminary modelling results indicate that the proposed system could offer superior overall electrical and cooling efficiencies compared to incumbent APUs and demonstrate a payback period of 4.6 years.

  10. State of the art and further development of reinforced concrete wall cells for nuclear power plant construction

    International Nuclear Information System (INIS)

    Uhlemann, E.; Wartenberg, J.

    1985-01-01

    Reinforced concrete wall cells have been developed for nuclear power plant construction by the USSR and GDR. In this article, a new type of these cells, which will be used for constructing auxiliary equipment of the Stendal nuclear power plant, is described

  11. Energy control of supercapacitor/fuel cell hybrid power source

    International Nuclear Information System (INIS)

    Payman, Alireza; Pierfederici, Serge; Meibody-Tabar, Farid

    2008-01-01

    This paper deals with a flatness based control principle in a hybrid system utilizing a fuel cell as a main power source and a supercapacitor as an auxiliary power source. The control strategy is based on regulation of the dc bus capacitor energy and, consequently, voltage regulation. The proposed control algorithm does not use a commutation algorithm when the operating mode changes with the load power variation and, thus, avoids chattering effects. Using the flatness based control method, the fuel cell dynamic and its delivered power is perfectly controlled, and the fuel cell can operate in a safe condition. In the hybrid system, the supercapacitor functions during transient energy delivery or during energy recovery situations. To validate the proposed method, the control algorithms are executed in dSPACE hardware, while analogical current loops regulators are employed in the experimental environment. The experimental results prove the validity of the proposed approach

  12. Test facility for auxiliary cooling system (ACS) of fast breeder reactor for Power Reactor and Nuclear Fuel Development Corporation (PNC)

    International Nuclear Information System (INIS)

    1983-01-01

    In preparation of constructing ''Monju'', a prototype fast breeder reactor, PNC has been pushing forward its research and development projects and the ACS was constructed under these projects. The auxiliary cooling system is an important engineered safety feature, and is used for safe removal of heat from the reactor at the shutdown. The ACS serves as a means of testing and assessing the auxiliary cooling system for the ''Monju'' and is designed and manufactured to have one fifth capacity of the Monju. The air heat exchanger and the ACS system was designed to withstand higher temperature range of the conventional design code (MITI-501), and finned tubes were applied for effective heat removal. Preheating system was designed to heat up the whole system over 200 0 C within 20 hours to prevent sodium from freezing. Basic performance of ACS was verified satisfactorily by a series of performance tests, such as start up test, flow rate measurement and preheating test before delivery. The experience from designing and construction of ACS and data obtained by these tests will be very instructive for designing and construction of the ''Monju''. (author)

  13. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  14. Modification on C217 by auxiliary acceptor toward efficient sensitiser for dye-sensitised solar cells: a theoretical study

    Science.gov (United States)

    Zhao, Caibin; Jin, Lingxia; Ge, Hongguang; Guo, Xiaohua; Zhang, Qiang; Wang, Wenliang

    2018-02-01

    In this work, to develop efficient organic dye sensitisers, a series of novel donor-acceptor-π-acceptor metal-free dyes were designed based on the C217 dye by means of modifying different auxiliary acceptors, and their photovoltaic performances were theoretically investigated with systematic density functional theory calculations coupled with the incoherent charge-hopping model. Results showed that the designed dyes possess lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels as well as narrower HOMO-LUMO gaps compared to C217, which indicate their higher light-harvesting efficiency. In addition, using the (TiO2)38 cluster and bidentate bridging model, we predicted that the photoelectric conversion efficiency (PCE) for the C217 dye is as high as 9.92% under air mass (AM) 1.5 illumination (100 mW.cm-2), which is in good agreement with its experimental value (9.60%-9.90%). More interestingly, the cell sensitised by the dye 7 designed in this work exhibits a middle-sized open-circuit voltage of 0.737 V, large short-circuit photocurrent density of 21.16 mAˑcm-2 and a fill factor of 0.801, corresponding to a quite high PCE of 12.49%, denoting the dye 7 is a more promising sensitiser candidate than the C217, and is worth further experimental study.

  15. Auxiliary feedwater system risk-based inspection guide for the Beaver Valley, Units 1 and 2 nuclear power plants

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Vehec, T.A.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Rossbach, L.W.; Sena, P.P. III

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Beaver Valley Units 1 and 2 were selected as two of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at Beaver Valley Units 1 and 2

  16. Auxiliary feedwater system risk-based inspection guide for the J.M. Farley Nuclear Power Plant

    International Nuclear Information System (INIS)

    Vo, T.V.; Pugh, R.; Gore, B.F.; Harrison, D.G.

    1990-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment(PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. J. M. Farley was selected as the second plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important at the J. M. Farley plant. 23 refs., 1 fig., 1 tab

  17. Auxiliary feedwater system risk-based inspection guide for the Diablo Canyon Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gore, B.F.; Vo, T.V.; Harrison, D.G.

    1990-08-01

    This document presents a compilation of auxiliary feedwater (AFW) system failure information which has been screened for risk significance in terms of failure frequency and degradation of system performance. It is a risk-prioritized listing of failure events and their causes that are significant enough to warrant consideration in inspection planning at Diablo Canyon. This information is presented to provide inspectors with increased resources for inspection planning at Diablo Canyon. The risk importance of various component failure modes was identified by analysis of the results of probabilistic risk assessments (PRAs) for many pressurized water reactors (PWRs). However, the component failure categories identified in PRAs are rather broad, because the failure data used in the PRAs is an aggregate of many individual failures having a variety of root causes. In order to help inspectors to focus on specific aspects of component operation, maintenance and design which might cause these failures, an extensive review of component failure information was performed to identify and rank the root causes of these component failures. Both Diablo Canyon and industry-wide failure information was analyzed. Failure causes were sorted on the basis of frequency of occurrence and seriousness of consequence, and categorized as common cause failures, human errors, design problems, or component failures. This information permits an inspector to concentrate on components important to the prevention of core damage. Other components which perform essential functions, but which are not included because of high reliability or redundancy, must also be addressed to ensure that degradation does not increase their failure probabilities, and hence their risk importances. 23 refs., 1 fig., 1 tab

  18. A decision theoretic approach to an accident sequence: when feedwater and auxiliary feedwater fail in a nuclear power plant

    International Nuclear Information System (INIS)

    Svenson, Ola

    1998-01-01

    This study applies a decision theoretic perspective on a severe accident management sequence in a processing industry. The sequence contains loss of feedwater and auxiliary feedwater in a boiling water nuclear reactor (BWR), which necessitates manual depressurization of the reactor pressure vessel to enable low pressure cooling of the core. The sequence is fast and is a major contributor to core damage in probabilistic risk analyses (PRAs) of this kind of plant. The management of the sequence also includes important, difficult and fast human decision making. The decision theoretic perspective, which is applied to a Swedish ABB-type reactor, stresses the roles played by uncertainties about plant state, consequences of different actions and goals during the management of a severe accident sequence. Based on a theoretical analysis and empirical simulator data the human error probabilities in the PRA for the plant are considered to be too small. Recommendations for how to improve safety are given and they include full automation of the sequence, improved operator training, and/or actions to assist the operators' decision making through reduction of uncertainties, for example, concerning water/steam level for sufficient cooling, time remaining before insufficient cooling level in the tank is reached and organizational cost-benefit evaluations of the events following a false alarm depressurization as well as the events following a successful depressurization at different points in time. Finally, it is pointed out that the approach exemplified in this study is applicable to any accident scenario which includes difficult human decision making with conflicting goals, uncertain information and with very serious consequences

  19. Chemistry control approach of pre commissioning and power operation of primary and auxiliary system of KGS-3 and 4 and trouble shooting made

    International Nuclear Information System (INIS)

    Bennet Raj, N.; Sahu, B.S.; Kumar, Vineet; Valluri, J.

    2008-01-01

    KGS (Kaiga Generating Station) 3 and 4 is a 220 MWe pressurized heavy water reactor (PHWR) using heavy water (D 2 O) as moderator and primary heat coolant and the secondary system is light water which is used to make the steam for generating the power. The chemistry control approach made for the successful commissioning and subsequent power operation of the unit is discussed here. The chemistry control is of two parts first part covers the pre commissioning chemistry control and the second part covers the commissioning chemistry control. During commissioning all systems were preserved by proper chemistry control and regular recirculation of system to avoid stagnancy. The major pre commissioning and commissioning chemistry control are depicted below: Pre commissioning chemistry control of primary heat transport (PHT) system and auxiliaries; Pre commissioning chemistry control of moderator system; Primary heat transport system hot conditioning with light water; Commissioning chemistry control of End Shield System (ESC) and Calandria Vault Cooling (CVC) system; Heavy water addition and its chemistry control in moderator system; and Heavy water addition and its chemistry control in PHT system. During power operation dew point in annular gas monitoring system (AGMS) of KGS unit 3 was maintaining in higher side under recirculation. The increase of dew point could be due to ingress of heavy water or light water. A new device was developed to collect condensate and the chemistry of the condensate was checked. The result indicated the ingress of light water. (author)

  20. Auxiliary verbs in Dinka

    DEFF Research Database (Denmark)

    Andersen, Torben

    2007-01-01

    Dinka, a Western Nilotic language, has a class of auxiliary verbs which is remarkable in the following four respects: (i) It is unusually large, comprising some 20 members; (ii) it is grammatically homogeneous in terms of both morphology and syntax; (iii) most of the auxiliary verbs correspond...... to adverbs in languages like English, while the rest are tense-aspect markers; and (iv) it is possible to combine several auxiliary verbs in a single clause. For some of the auxiliary verbs there are extant full verbs from which they have evolved. To some extent, therefore, it is possible to observe what...

  1. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  2. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  3. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  4. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source...... of energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  5. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant; Um modelo de manutencao centrada em confiabilidade aplicada ao sistema de agua de alimentacaco auxiliar de uma usina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson Borges

    1998-01-15

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  6. 46 CFR 58.25-10 - Main and auxiliary steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main and auxiliary steering gear. 58.25-10 Section 58.25... AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-10 Main and auxiliary steering gear. (a) Power-operated main and auxiliary steering gear must be separate systems that are independent throughout their...

  7. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  8. Hydrogen fuel cell power system

    International Nuclear Information System (INIS)

    Lam, A.W.

    2004-01-01

    'Full text:' Batteries are typically a necessary and prime component of any DC power system, providing a source of on-demand stored energy with proven reliability. The integration of batteries and basic fuel cells for mobile and stationary utility applications poses a new challenge. For high value applications, the specification and operating requirements for this hybrid module differ from conventional requirements as the module must withstand extreme weather conditions and provide extreme reliability. As an electric utility company, BCHydro has embarked in the development and application of a Hydrogen Fuel Cell Power Supply (HFCPS) for field trial. A Proton Exchange Membrane (PEM)- type fuel cell including power electronic modules are mounted in a standard 19-inch rack that provides 48V, 24V, 12V DC and 120V AC outputs. The hydrogen supply consists of hydrogen bottles and regulating devices to provide a continuous fuel source to the power modules. Many tests and evaluations have been done to ensure the HFCPS package is robust and suitable for electric utility grade operation. A field trial demonstrating this standalone system addressed reliability, durability, and installation concerns as well as developed the overall system operating procedures. (author)

  9. Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2016-01-01

    Deep generative models parameterized by neural networks have recently achieved state-of-the-art performance in unsupervised and semi-supervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave...... the generative model unchanged but make the variational distribution more expressive. Inspired by the structure of the auxiliary variable we also propose a model with two stochastic layers and skip connections. Our findings suggest that more expressive and properly specified deep generative models converge...... faster with better results. We show state-of-the-art performance within semi-supervised learning on MNIST (0.96%), SVHN (16.61%) and NORB (9.40%) datasets....

  10. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  11. Auxiliary mine ventilation manual

    Energy Technology Data Exchange (ETDEWEB)

    Workplace Safety North

    2010-07-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  12. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  13. Auxiliary partial liver transplantation

    NARCIS (Netherlands)

    C.B. Reuvers (Cornelis Bastiaan)

    1986-01-01

    textabstractIn this thesis studies on auxiliary partial liver transplantation in the dog and the pig are reported. The motive to perform this study was the fact that patients with acute hepatic failure or end-stage chronic liver disease are often considered to form too great a risk for successful

  14. PS auxiliary magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    Units of the PS auxiliary magnet system. The picture shows how the new dipoles, used for vertical and horizontal high-energy beam manipulation, are split for installation and removal so that it is not necessary to break the accelerator vacuum. On the right, adjacent to the sector valve and the windings of the main magnet, is an octupole of the set.

  15. Energy consumption of auxiliary systems of electric cars

    Directory of Open Access Journals (Sweden)

    Evtimov Ivan

    2017-01-01

    Full Text Available The paper analyzes the power demand of the auxiliary systems of electric cars. On the basis of existing electric cars an analysis of energy consumption of different auxiliary systems is done. As a result possibilities for rational use of these systems have been proposed, which can increase the mileage per one charge of the battery.

  16. Optimization of feed water control for auxiliary boiler

    International Nuclear Information System (INIS)

    Li Lingmao

    2004-01-01

    This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)

  17. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  18. Auxiliary office chair

    OpenAIRE

    Pascual Osés, Maite

    2007-01-01

    The aim of this project is to develop an auxiliary office chair, which favorably will compete with the existing chairs on the market. Evolutions of ergonomical survey in the work environment and on the configuration of offices require new products which fulfill the requirements properly. In order to achieve it a survey about office chairs has been carried out: types, characteristics, ways of usage and products on the market besides a large antropometrical study and ergonomics related to work ...

  19. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  20. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  1. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  2. Progress on radio frequency auxiliary heating system designs in ITER

    International Nuclear Information System (INIS)

    Makowski, M.; Bosia, G.; Elio, F.

    1996-09-01

    ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined

  3. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  4. Effect of auxiliary group for p-type organic dyes in NiO-based dye-sensitized solar cells: The first principal study

    Science.gov (United States)

    Li, Juan; Zhang, Shijie; Shao, Di; Yang, Zhenqing; Zhang, Wansong

    2018-03-01

    Auxiliary acceptor groups play a crucial role in D-A-π-A structured organic dyes. In this paper, we designed three D-A-π-A structured organic molecules based on the prototype dye QT-1, named ME18-ME20, and further investigated their electronic and optical properties with density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated results indicate that the scope and intensity of dyes' absorption spectra have some outstanding changes by inserting auxiliary groups. ME20 has not only 152 nm redshifts to long wave orientation, but also 78% increased oscillator strength compared to QT-1, and its absorption spectrum broadens region even up to 1400 nm. Then, we studied the reason that the effect of the introduced different auxiliary acceptor groups in these dyes through their ground states geometries and energy levels, electron transfer and recombination rate.

  5. Analysis and Measurement of NOx Emissions in Port Auxiliary Vessels

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2013-09-01

    Full Text Available This paper is made NOx pollution emitted by port auxiliary vessels, specifically by harbour tugs, due to its unique operating characteristics of operation, require a large propulsion power changes discontinuously, also possess some peculiar technical characteristics, large tonnage and high propulsive power, that differentiate them from other auxiliary vessels of the port. Taking into account all the above features, there are no studies of the NOx emission engines caused by different working regimes of power because engine manufacturers have not measured these emissions across the range of operating power, but usually we only report the pollution produced by its engines to a maximum continuous power.

  6. Study of the reliability of the Auxiliary Feedwater System of a LWR nuclear power plant through the Fault Tree and Bayesian Network

    International Nuclear Information System (INIS)

    Lava, Deise Diana

    2016-01-01

    This paper aims to present a study of the reliability of the Auxiliary Feedwater System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10 -3 . (author)

  7. Biofuel Cells – Alternative Power Sources

    International Nuclear Information System (INIS)

    Babanova, Sofia; Yolina Hubenova; Mario Mitov

    2009-01-01

    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  8. Wind Power Plant Evaluation Naval Auxiliary Landing Field, San Clemente Island, California: Period of Performance 24 September 1999--15 December 2000

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L.; Gulman, P.J.; McKenna, E.

    2000-12-11

    The purpose of this report is to evaluate the wind power benefits and impacts to the San Clement Island wind power system, including energy savings, emissions reduction, system stability, and decreased naval dependence on fossil fuel at the island. The primary goal of the SCI wind power system has been to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen oxide emissions and other pollutants.

  9. Eigenstates with the auxiliary field method

    Energy Technology Data Exchange (ETDEWEB)

    Semay, Claude [Service de Physique Nucleaire et Subnucleaire, Universite de Mons-UMONS, 20 Place du Parc, 7000 Mons (Belgium); Silvestre-Brac, Bernard, E-mail: claude.semay@umons.ac.b, E-mail: silvestre@lpsc.in2p3.f [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France)

    2010-07-02

    The auxiliary field method is a powerful technique to obtain approximate closed-form energy formulas for eigenequations in quantum mechanics. Very good results can be obtained for Schroedinger and semirelativistic Hamiltonians with various potentials, even in the case of many-body problems. This method can also provide approximate eigenstates in terms of well-known wavefunctions, for instance harmonic oscillator or hydrogen-like states, but with a characteristic size which depends on quantum numbers. In this paper, we consider two-body Schroedinger equations with linear, logarithmic and exponential potentials and show that analytical approximations of the corresponding eigenstates can be obtained with the auxiliary field method, with very good accuracy in some cases.

  10. Eigenstates with the auxiliary field method

    International Nuclear Information System (INIS)

    Semay, Claude; Silvestre-Brac, Bernard

    2010-01-01

    The auxiliary field method is a powerful technique to obtain approximate closed-form energy formulas for eigenequations in quantum mechanics. Very good results can be obtained for Schroedinger and semirelativistic Hamiltonians with various potentials, even in the case of many-body problems. This method can also provide approximate eigenstates in terms of well-known wavefunctions, for instance harmonic oscillator or hydrogen-like states, but with a characteristic size which depends on quantum numbers. In this paper, we consider two-body Schroedinger equations with linear, logarithmic and exponential potentials and show that analytical approximations of the corresponding eigenstates can be obtained with the auxiliary field method, with very good accuracy in some cases.

  11. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  12. Sea water take-up facility for cooling reactor auxiliary

    International Nuclear Information System (INIS)

    Numata, Noriko; Mizutani, Akira; Hirako, Shizuka; Uchiyama, Yuichi; Oda, Atsushi.

    1997-01-01

    The present invention provides an improvement of a cooling sea water take-up facility for cooling auxiliary equipments of nuclear power plant. Namely, an existent sea water take-up facility for cooling reactor auxiliary equipments has at least two circulation water systems and three independent sea water systems for cooling reactor auxiliary equipments. In this case, a communication water channel is disposed, which connects the three independent sea water systems for cooling reactor auxiliary equipments mutually by an opening/closing operation of a flow channel partitioning device. With such a constitution, even when any combination of two systems among the three circulation water systems is in inspection at the same time, one system for cooling the reactor auxiliary equipments can be kept operated, and one system is kept in a stand-by state by the communication water channel upon periodical inspection of water take-up facility for cooling the auxiliary equipments. As a result, the sea water take-up facility for cooling auxiliary equipments of the present invention have operation efficiency higher than that of a conventional case while keeping the function and safety at the same level as in the conventional case. (I.S.)

  13. System Study: Auxiliary Feedwater 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the auxiliary feedwater (AFW) system at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AFW results.

  14. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  15. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  16. Research and Application of Auxiliary Optimization Technology of Power Grid Accident Processing Based on the Mode of Regulation and Control Integration

    Directory of Open Access Journals (Sweden)

    Cui Houzhen

    2015-01-01

    Full Text Available Accident processing is the most important link of the scheduling of daily monitoring. The improvement of intelligent level is of great significance for improving the efficiency of accident processing scheduling, shortening the time of accident processing and preventing further deterioration of accidents. According to features of accident processing scheduling, this paper puts forward an integrated framework of aid decision-making of online accident processing based on large power grid, and carries out a study from five aspects, namely integrated information support platform, risk perception in advance, online fault diagnosis, aid decision-making afterwards and visual display, so as to conduct real-time tracking on operating state of power grid, eliminate potential safety hazards of power grid and upgrade power grid from “manual analysis” scheduling to “intelligent analysis” scheduling.

  17. A cell-level power management IC in BCD-SOI for partial power processing in Concentrating-PV systems

    NARCIS (Netherlands)

    Zaman, M.S.; Wen, Y.; Fernandes, R.; Buter, B.; Doorn, T.S.; Dijkstra, M.; Bergveld, H.J.; Trescases, O.

    2014-01-01

    This work presents a power management IC used to mitigate the effects of mismatch in Concentrating-Photovoltaic (CPV) systems. The IC contains a bi-directional dc-dc converter, an auxiliary boost converter to generate the internal 10 V power supply, as well as protection and monitoring circuits. The

  18. Experimental Evaluation of Supercapacitor-Fuel Cell Hybrid Power Source for HY-IEL Scooter

    Directory of Open Access Journals (Sweden)

    Piotr Bujlo

    2013-01-01

    Full Text Available This paper presents the results of development of a hybrid fuel cell supercapacitor power system for vehicular applications that was developed and investigated at the Energy Sources Research Section of the Wroclaw Division of Electrotechnical Institute (IEL/OW. The hybrid power source consists of a polymer exchange membrane fuel cell (PEMFC stack and an energy-type supercapacitor that supports the system in time of peak power demands. The developed system was installed in the HY-IEL electric scooter. The vehicle was equipped with auxiliary components (e.g., air compressor, hydrogen tank, and electromagnetic valves needed for proper operation of the fuel cell stack, as well as electronic control circuits and a data storage unit that enabled on-line recording of system and vehicle operation parameters. Attention is focused on the system energy flow monitoring. The experimental part includes field test results of a vehicle powered with the fuel cell-supercapacitor system. Values of currents and voltages recorded for the system, as well as the vehicle’s velocity and hydrogen consumption rate, are presented versus time of the experiment. Operation of the hybrid power system is discussed and analysed based on the results of measurements obtained.

  19. Energy management in fuel cell power trains

    International Nuclear Information System (INIS)

    Corbo, P.; Corcione, F.E.; Migliardini, F.; Veneri, O.

    2006-01-01

    In this paper, experimental results obtained on a small size fuel cell power train (1.8 kW) based on a 500 W proton exchange membrane (PEM) stack are reported and discussed with specific regard to energy management issues to be faced for attainment of the maximum propulsion system efficiency. The fuel cell system (FCS) was realized and characterized via investigating the effects of the main operative variables on efficiency. This resulted in an efficiency higher than 30% in a wide power range with a maximum of 38% at medium load. The efficiency of the overall fuel cell power train measured during both steady state and dynamic conditions (European R40 driving cycle) was about 30%. A discussion about the control strategy to direct the power flows is reported with reference to two different test procedures used in dynamic experiments, i.e., load levelled and load following

  20. Exoelectrogenic bacteria that power microbial fuel cells

    KAUST Repository

    Logan, Bruce E.

    2009-01-01

    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  1. Exoelectrogenic bacteria that power microbial fuel cells

    KAUST Repository

    Logan, Bruce E.

    2009-03-30

    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  2. A portable system powered with hydrogen and one single air-breathing PEM fuel cell

    International Nuclear Information System (INIS)

    Fernández-Moreno, J.; Guelbenzu, G.; Martín, A.J.; Folgado, M.A.; Ferreira-Aparicio, P.; Chaparro, A.M.

    2013-01-01

    Highlights: • A portable system based on hydrogen and single air breathing PEM fuel cell. • Control electronics designed for low single cell voltage (0.5–0.8 V). • Forced air convection and anode purging required to help water management. • Application consisting of a propeller able to display a luminous message. • Up to 20 h autonomy with continuous 1.1 W consumption, using 1 g H 2 . - Abstract: A portable system for power generation based on hydrogen and a single proton exchange membrane fuel cell (PEMFC) has been built and operated. The fuel cell is fed in the anode with hydrogen stored in a metal hydrides cartridge, and in the cathode with oxygen from quiescent ambient air (‘air breathing’). The control electronics of the system performs DC–DC conversion from the low voltage (0.5–0.8 V) and high current output (200–300 mA cm −2 ) of the single fuel cell, up to 3.3 V to power an electronic application. System components assist fuel cell operation, including an electronic valve for anode purging, a fan in front of the open cathode, two supercapacitors for auxiliary power requirements, four LED lights, and a display screen. The influence of the system components on fuel cell behaviour is analyzed. The cathode fan and anodic purging help excess water removal from the electrodes leading to steadier cell response at the expense of extra power consumption. The power system is able to provide above 1 W DC electricity to an external application during 20 h using 1 g of H 2 . An application consisting of a propeller able to display a luminous message is chosen to test system. It is shown that one single air breathing PEM fuel cell powered with hydrogen may provide high energy density and autonomy for portable applications

  3. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  4. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  5. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.

    Science.gov (United States)

    Sales, B B; Saakes, M; Post, J W; Buisman, C J N; Biesheuvel, P M; Hamelers, H V M

    2010-07-15

    The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potential of this resource, the controlled mixing of river and seawater, is enormous, but existing conversion technologies are still complex and expensive. Here we present a small-scale device that directly generates electrical power from the sequential flow of fresh and saline water, without the need for auxiliary processes or converters. The device consists of a sandwich of porous "supercapacitor" electrodes, ion-exchange membranes, and a spacer and can be further miniaturized or scaled-out. Our results demonstrate that alternating the flow of saline and fresh water through a capacitive cell allows direct autogeneration of voltage and current and consequently leads to power generation. Theoretical calculations aid in providing directions for further optimization of the properties of membranes and electrodes.

  6. Power auxiliaries and research reactors. Section 3 of Symposium on the peaceful uses of atomic energy in Australia, 1958, held in Sydney, in June 1958

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-10-15

    The problems of disposing of the large amounts of highly-radioactive waste resulting from a large-scale nuclear power program are reviewed. The Canadian research reactor NRX is discussed. The DIDO reactor is briefly described and operating experience for the first year at high flux is summarized. The core of the High Flux Australian Research Reactor (HIFAR) is described, and some reactivity balance data are given (T.R.H.)

  7. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  8. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  9. Nuclear Reactors for Space Power, Understanding the Atom Series.

    Science.gov (United States)

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  10. Improving Energy Efficiency of Auxiliaries

    International Nuclear Information System (INIS)

    Carl T. Vuk

    2001-01-01

    The summaries of this report are: Economics Ultimately Dictates Direction; Electric Auxiliaries Provide Solid Benefits. The Impact on Vehicle Architecture Will be Important; Integrated Generators With Combined With Turbo Generators Can Meet the Electrical Demands of Electric Auxiliaries; Implementation Will Follow Automotive 42V Transition; Availability of Low Cost Hardware Will Slow Implementation; Industry Leadership and Cooperation Needed; Standards and Safety Protocols Will be Important. Government Can Play an Important Role in Expediting: Funding Technical Development; Incentives for Improving Fuel Economy; Developing Standards, Allowing Economy of Scale; and Providing Safety Guidelines

  11. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  12. Fuel Cell / electrolyser, Solar Photovoltaic Powered

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents experimental obtained results in the operation ofelectrolyzer powered by solar photovoltaic modules, for the waterelectrolysis and with the obtained hydrogen and oxygen proceeds tothe operation in fuel cell mode, type PEM. The main operatingparameters and conditions to optimize the energy conversion on thesolar-hydrogen-electricity cycle are highlighted, so that those arecomparable or superior to conventional cycles.

  13. Heat transfer equipment performance diagnosis of auxiliary systems in electric power stations; Diagnostico de comportamiento de equipo de transferencia de calor de sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza Gutierrez, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    In this article the methodology followed to diagnose the performance of the equipment where heat is transferred from the feed water, condensate and circulation water systems in fossil power plants (FPP). The data collection is made with the unit in normal operation, using local instrumentation without taking the equipment out of service for its installation. The equipment diagnosis is made through the analysis of the collected data in actual operation and the design data; for this purpose a thermal balance of the interested systems is performed to obtain all the conditions an operation data. Later on the performance indicative parameters (PIP) of actual operation and design are calculated and compared one against the other. Such a comparison reveals the performance deterioration and the possible equipment faults. The data obtained and the supplementary information are stored in a data base whose objective is that Comision Federal de Electricidad has on hand a prompt access to them in order to control the performance, compare them among similar units and power stations, and inclusively verify possible recurrent causes of low availability in the referred systems. [Espanol] En este articulo se presenta la metodologia seguida para diagnosticar el comportamiento de equipos en los que se transfiere calor de los sistemas de agua de alimentacion, condensado y circulacion de las centrales termoelectricas (CTE). La toma de datos se realiza con la unidad en operacion normal, utilizando instrumentacion local sin necesidad de sacar de servicio a los equipos para su instalacion, ya que se ocupan los mismos puntos para instrumentos con que cuentan por diseno. El diagnostico de los equipos se realiza mediante el analisis de los datos recopilados, tanto de operacion real como de diseno; para ello, se efectua un balance termico de los sistemas de interes para obtener todas las condiciones y los datos de operacion. Posteriormente, se calculan los parametros indicativos de

  14. Heat transfer equipment performance diagnosis of auxiliary systems in electric power stations; Diagnostico de comportamiento de equipo de transferencia de calor de sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Esparza Gutierrez, Rogelio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    In this article the methodology followed to diagnose the performance of the equipment where heat is transferred from the feed water, condensate and circulation water systems in fossil power plants (FPP). The data collection is made with the unit in normal operation, using local instrumentation without taking the equipment out of service for its installation. The equipment diagnosis is made through the analysis of the collected data in actual operation and the design data; for this purpose a thermal balance of the interested systems is performed to obtain all the conditions an operation data. Later on the performance indicative parameters (PIP) of actual operation and design are calculated and compared one against the other. Such a comparison reveals the performance deterioration and the possible equipment faults. The data obtained and the supplementary information are stored in a data base whose objective is that Comision Federal de Electricidad has on hand a prompt access to them in order to control the performance, compare them among similar units and power stations, and inclusively verify possible recurrent causes of low availability in the referred systems. [Espanol] En este articulo se presenta la metodologia seguida para diagnosticar el comportamiento de equipos en los que se transfiere calor de los sistemas de agua de alimentacion, condensado y circulacion de las centrales termoelectricas (CTE). La toma de datos se realiza con la unidad en operacion normal, utilizando instrumentacion local sin necesidad de sacar de servicio a los equipos para su instalacion, ya que se ocupan los mismos puntos para instrumentos con que cuentan por diseno. El diagnostico de los equipos se realiza mediante el analisis de los datos recopilados, tanto de operacion real como de diseno; para ello, se efectua un balance termico de los sistemas de interes para obtener todas las condiciones y los datos de operacion. Posteriormente, se calculan los parametros indicativos de

  15. Advanced technology components for model GTP305-2 aircraft auxiliary power system. Final report 6 May 75-15 Jul 79

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Large, G.D.

    1980-02-01

    The GTP305-2 Advanced APU is a single shaft, all shaft power engine incorporating an axial-centrifugal compressor, a reverse flow annular combustor and a radial-axial turbine. Cycle analyses indicated a 10-percent high pressure compressor flow increase improved matching characteristics with the low pressure compressor. The combustion system is a reverse flow annular combustor with an air-assist/airblast fuel injection system. The radial-axial turbine stage is characterized by an integrally cast turbine rotor and a cast exhaust duct assembly. The Integrated Components Assembly (ICA) rig consists of the combustor and turbines with a dummy mass on the shaft to simulate the compressor. ICA testing was conducted to establish component performance at design operating conditions. ICA and cold air aerodynamic testing of the turbine stage and cooling flow effects, indicates design efficiency goals were exceeded. ICA test results, cold-air testing and combustion system parameters were input to the cycle model. Room temperature strain-control LCF tests were performed and results analyzed on a Weibull distribution. Data analysis indicated LCF life improvement was obtained through HIP and heat treatment.

  16. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  17. Aspectual auxiliary verbs in Xitsonga

    African Journals Online (AJOL)

    Kate H

    Let him always come' e. á vá hátl-é vá yá étlélà. OPT 3PL quickly-OPT 3PL go sleep. 'Let them quickly go to bed'. 3.4 Negative markers. Negation is marked on AA verbs. The auxiliary verb hatla 'quickly' is negated in three tenses.

  18. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  19. Fuel cell power trains for road traffic

    Science.gov (United States)

    Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard

    Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.

  20. 33 CFR 5.47 - Auxiliary ensign.

    Science.gov (United States)

    2010-07-01

    ... matching blue Coast Guard Auxiliary emblem is centered. The white slash shall be at a 70 degree angle, rising away from the hoist. (c) The Auxiliary emblem consists of a disk with the shield of the Coat of...

  1. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  2. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired thermal... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler, etc...

  3. Specific features of auxiliary water supply at underground NPPs

    International Nuclear Information System (INIS)

    Pergamenshchik, B.K.; Pavlov, A.S.

    1991-01-01

    Specific features of auxiliary water supply systems for underground NPPs related to peculiarities of NPP basis equipment arrangement, are considered. Circulation water supply scheme, in which water cooling storage basin (cooling towers) with operational area corresponding to NPP power is on the surface and has traditional design, is proposed. Sufficiently high efficiency of the arrangement proposed is proved

  4. Fuel cell power plants for automotive applications

    Science.gov (United States)

    McElroy, J. F.

    1983-02-01

    While the Solid Polymer Electrolyte (SPE) fuel cell has until recently not been considered competitive with such commercial and industrial energy systems as gas turbine generators and internal combustion engines, electrical current density improvements have markedly improved the capital cost/kW output rating performance of SPE systems. Recent studies of SPE fuel cell applicability to vehicular propulsion have indicated that with adequate development, a powerplant may be produced which will satisfy the performance, size and weight objectives required for viable electric vehicles, and that the cost for such a system would be competitive with alternative advanced power systems.

  5. 45 CFR 707.10 - Auxiliary aids.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Auxiliary aids. 707.10 Section 707.10 Public Welfare Regulations Relating to Public Welfare (Continued) COMMISSION ON CIVIL RIGHTS ENFORCEMENT OF... § 707.10 Auxiliary aids. (a) The Agency shall furnish appropriate auxiliary aids where necessary to...

  6. 7 CFR 15b.37 - Auxiliary aids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Auxiliary aids. 15b.37 Section 15b.37 Agriculture... ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Other Aid, Benefits, or Services § 15b.37 Auxiliary aids... appropriate auxiliary aids to persons with impaired sensory, manual, or speaking skills, where necessary to...

  7. 30 CFR 57.6161 - Auxiliary facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary facilities. 57.6161 Section 57.6161...-Underground Only § 57.6161 Auxiliary facilities. (a) Auxiliary facilities used to store explosive material near work places shall be wooden, box-type containers equipped with covers or doors, or facilities...

  8. Fuel-cell based power generating system having power conditioning apparatus

    Science.gov (United States)

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  9. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  10. Neoclassical offset toroidal velocity and auxiliary ion heating in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, E., E-mail: lazzaro@ifp.cnr.it [Istituto di Fisica del Plasma CNR (Italy)

    2016-05-15

    In conditions of ideal axisymmetry, for a magnetized plasma in a generic bounded domain, necessarily toroidal, the uniform absorption of external energy (e.g., RF or any isotropic auxiliary heating) cannot give rise to net forces or torques. Experimental evidence on contemporary tokamaks shows that the near central absorption of RF heating power (ICH and ECH) and current drive in presence of MHD activity drives a bulk plasma rotation in the co-I{sub p} direction, opposite to the initial one. Also the appearance of classical or neoclassical tearing modes provides a nonlinear magnetic braking that tends to clamp the rotation profile at the q-rational surfaces. The physical origin of the torque associated with P{sub RF} absorption could be due the effects of asymmetry in the equilibrium configuration or in power deposition, but here we point out also an effect of the response of the so-called neoclassical offset velocity to the power dependent heat flow increment. The neoclassical toroidal viscosity due to internal magnetic kink or tearing modes tends to relax the plasma rotation to this asymptotic speed, which in absence of auxiliary heating is of the order of the ion diamagnetic velocity. It can be shown by kinetic and fluid calculations, that the absorption of auxiliary power by ions modifies this offset proportionally to the injected power thereby forcing the plasma rotation in a direction opposite to the initial, to large values. The problem is discussed in the frame of the theoretical models of neoclassical toroidal viscosity.

  11. Auxiliary reactor for a hydrocarbon reforming system

    Science.gov (United States)

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  12. Auxiliary feedwater system aging study

    International Nuclear Information System (INIS)

    Kueck, J.D.

    1992-01-01

    The Phase 1 Auxiliary Feedwater (AFW) System Aging Study, NUREG/CR-5404 V1, focused on how and to what extent the various AFW system component types fail, how the failures have been and can be detected, and on the value of current testing requirements and practices. This follow-on study, which will be provided in full in NUREG/CR-5404 V2, provides a closure to the Phase 1 Study. For each of the component types and for the various sources of component failure identified in the Phase 1 Study, the methods of failure detection were designated and tabulated and the following findings became evident: Instrumentation and Control (I and C) related failures dominated the group of failures that were detected during demand conditions; many of the potential failure sources not detectable by the current monitoring practices were related to the I and C portion of the system; some component failure modes are actually aggravated by conventional test methods; and several important system functions did not undergo any function verification test. The goal of this follow-on study was to categorize and evaluate the deficiencies in testing identified by Phase 1 and to make specific recommendations for corrective action. In addition, this study presents discussions of alternate, state-of-the-art test methods, and provides a proposed Auxiliary Feedwater Pump test at normal operating pressure which should do much to verify system operability while eliminating degradation

  13. Flasher Powered by Photovoltaic Cells and Ultracapacitors

    Science.gov (United States)

    Eichenberg, Dennis J.; Soltis, Richard F.

    2003-01-01

    A unique safety flasher powered by photovoltaic cells and ultracapacitors has been developed. Safety flashers are used wherever there are needs to mark actually or potentially hazardous locations. Examples of such locations include construction sites, highway work sites, and locations of hazardous operations. Heretofore, safety flashers have been powered by batteries, the use of which entails several disadvantages: Batteries must be kept adequately charged, and must not be allowed to become completely discharged. Batteries have rather short cycle lives, and their internal constituents that react chemically to generate electricity deteriorate (and hence power-generating capacities decrease) over time. The performances of batteries are very poor at low temperatures, which often occur in the circumstances in which safety flashers are most needed. The disposal of batteries poses a threat to the environment. The development of the present photovoltaic/ultracapacitor- powered safety flasher, in which the ultracapacitors are used to store energy, overcomes the aforementioned disadvantages of using batteries to store energy. The ultracapacitors in this flasher are electrochemical units that have extremely high volumetric capacitances because they contain large-surface-area electrodes separated by very small gaps. Ultracapacitors have extremely long cycle lives, as compared to batteries; consequently, it will never be necessary to replace the ultracapacitors in the safety flasher. The reliability of the flasher is correspondingly increased, and the life-of-system cost and the adverse environmental effects of the flasher are correspondingly reduced. Moreover, ultracapacitors have excellent low-temperature characteristics, are maintenance-free, and provide consistent performance over time.

  14. Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki

    2003-01-01

    The auxiliary cooling system of the high temperature engineering test reactor (HTTR) is employed for heat removal as an engineered safety feature when the reactor scrams in an accident when forced circulation can cool the core. The HTTR is the first high temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 degree sign C and thermal power of 30 MW. The auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components and water boiling of itself. Simulation tests on manual trip from 9 MW operation and on loss of off-site electric power from 15 MW operation were carried out in the rise-to-power test up to 20 MW of the HTTR. Heat removal characteristics of the auxiliary cooling system were examined by the tests. Empirical correlations of overall heat transfer coefficients were acquired for a helium/water heat exchanger and air cooler for the auxiliary cooling system. Temperatures of fluids in the auxiliary cooling system were predicted on a scram event from 30 MW operation at 950 degree sign C of the reactor outlet coolant temperature. Under the predicted helium condition of the auxiliary cooling system, integrity of fuel blocks among the core graphite components was investigated by stress analysis. Evaluation results showed that overcooling to the core graphite components and boiling of water in the auxiliary cooling system should be prevented where open area condition of louvers in the air cooler is the full open

  15. Auxiliary bearing design and rotor dynamics analysis of blower fan for HTR-10

    International Nuclear Information System (INIS)

    Gao Mingshan; Yang Guojun; Xu Yang; Zhao Lei; Yu Suyuan

    2005-01-01

    The electromagnetic bearing instead of ordinary mechanical bearing was chosen to support the rotor in the blower fan system with helium of 10 MW high temperature gas-cooled test reactor (HTR-10), and the auxiliary bearing was applied in the HTR-10 as the backup protector. When the electromagnetic bearing doesn't work suddenly for the power broken, the auxiliary bearing is used to support the falling rotor with high rotating speed. The rotor system will be protected by the auxiliary bearing. The design of auxiliary bearing is the ultimate safeguard for the system. This rotor is vertically mounted to hold the blower fan. The rotor's length is about 1.5 m, its weight is about 240 kg and the rotating speed is about 5400 r/min. Auxiliary bearing design and rotor dynamics analysis are very important for the design of blower fan to make success. The research status of the auxiliary bearing was summarized in the paper. A sort of auxiliary bearing scheme was proposed. MSC.Marc was selected to analyze the vibration mode and the natural frequency of the rotor. The scheme design of auxiliary bearing and analysis result of rotor dynamics offer the important theoretical base for the protector design and control system of electromagnetic bearing of the blower fan. (authors)

  16. Airport electric vehicle powered by fuel cell

    Science.gov (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  17. The Acquisition of Auxiliary Syntax: A Longitudinal Elicitation Study. Part 1: Auxiliary BE

    Science.gov (United States)

    Theakston, Anna L.; Rowland, Caroline F.

    2009-01-01

    Purpose: The question of how and when English-speaking children acquire auxiliaries is the subject of extensive debate. Some researchers posit the existence of innately given Universal Grammar principles to guide acquisition, although some aspects of the auxiliary system must be learned from the input. Others suggest that auxiliaries can be…

  18. Auxiliary feedwater system aging study

    International Nuclear Information System (INIS)

    Kueck, J.D.

    1993-07-01

    This report documents the results of a Phase I follow-on study of the Auxiliary Feedwater (AFW) System that has been conducted for the US Regulatory Commission's Nuclear Plant Aging research Program. The Phase I study found a number of significant AFW System functions that are not being adequately tested by conventional test methods and some that are actually being degraded by conventional testing. Thus, it was decided that this follow-on study would focus on these testing omissions nd equipment degradation. The deficiencies in current monitoring and operating practice are categorized and evaluated. Areas of component degradation caused by current practice are discussed. Recommendations are made for improved diagnostic methods and test procedures

  19. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000 Btu/hr...

  20. Review of the Shearon Harris Unit 1 auxiliary feedwater system reliability analysis

    International Nuclear Information System (INIS)

    Fresco, A.; Youngblood, R.; Papazoglou, I.A.

    1986-02-01

    This report presents the results of a review of the Auxiliary Feedwater System Reliability Analysis for the Shearon Harris Nuclear Power Plant (SHNPP) Unit 1. The objective of this report is to estimate the probability that the Auxiliary Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except vital instrumentation and control 125-V dc/120-V ac power. The scope, methodology, and failure data are prescribed by NUREG-0611 for other Westinghouse plants

  1. 47 CFR 73.1675 - Auxiliary antennas.

    Science.gov (United States)

    2010-10-01

    ... Class A TV licensees may request a decrease from the authorized facility's ERP in the license application. An FM, TV or Class A TV licensee may also increase the ERP of the auxiliary facility in a license... licensed main facility as an auxiliary facility with an ERP less than or equal to the ERP specified on the...

  2. 78 FR 27321 - Revision of Auxiliary Regulations

    Science.gov (United States)

    2013-05-10

    ... Auxiliary organizational structure, extending civil liability protection to Auxiliary units and members, and... entities. C. Assistance for Small Entities If you think that your business, organization, or governmental..., explain why you think your business or organization qualifies, how and to what degree this rule would...

  3. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  4. Fuel cells show promise as vehicle power source

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Fuel-cell-powered vehicles appear to offer great promise for energy-saving, high-efficiency transportation. Fuel cells are both highly efficient (50% thermal efficiency has been demonstrated by some) and non-polluting (water being the main by-product). Dramatic improvements in performance have occurred recently due to aerospace and utility RandD efforts. The primary vehicle considered at workshops of laboratory and industrial investigators was a fuel cell/battery hybrid, in which fuel cells are paralleled by batteries. Fuel cells are used for cruising power and battery recharge, while batteries supply transient power for acceleration and starting

  5. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  6. Hybrid mesons with auxiliary fields

    International Nuclear Information System (INIS)

    Buisseret, F.; Mathieu, V.

    2006-01-01

    Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the π 1 (1600) and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique (also known as the einbein field method) to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body q system with an excited flux tube, or a three-body qg system. We also compute the masses of the 1 -+ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models. (orig.)

  7. Seismic Qualification of Auxiliary Feed Water Control Valve

    International Nuclear Information System (INIS)

    Hwang, K. M.; Jang, J. B.; Kim, J. K.; Suh, Y. P.

    2006-01-01

    Although domestic nuclear power industry has almost accomplished technical independence, Auxiliary Feed Water Control Valve (AFWCV) is still depending on import. In order to jump to advanced nation in nuclear power industry, it is very important to achieve technical independence in designing and manufacturing AFWCV. At last, AFWCV is self-manufactured using the domestic technology under the financial support of the government. Therefore, the seismic qualification is carried out to verify the safety and operability of AFWCV against the earthquake in this study

  8. Modeling a Distributed Power Flow Controller with a PEM Fuel Cell for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    J. Chakravorty

    2018-02-01

    Full Text Available Electrical power demand is increasing at a relatively fast rate over the last years. Because of this increasing demand the power system is becoming very complex. Both electric utilities and end users of electric power are becoming increasingly concerned about power quality. This paper presents a new concept of distributed power flow controller (DPFC, which has been implemented with a proton exchange membrane (PEM fuel cell. In this paper, a PEM fuel cell has been simulated in Simulink/MATLAB and then has been used in the proposed DPFC model. The new proposed DPFC model has been tested on a IEEE 30 bus system.

  9. Microbial Fuel Cells for Powering Navy Devices

    Science.gov (United States)

    2014-01-20

    specific MFC being analyzed. Figure 3 depicts simulated voltage vs. current plots (black curves) and corresponding power vs. current...Powering Navy Devices 7     Fig. 3 – Simulated voltage vs current and power vs current polarization plots for a two- chamber MFC in which membrane...the anode is generated by fermentation of glucose by other microorganisms in the sediment represented by clostridium in Fig. 4. The products of the

  10. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, Geneva, NY 14456 (United States)

    2016-01-15

    shifted channel gating to hyperpolarized potentials. • The β1 subunit had opposite effects on the actions of tefluthrin and deltamethrin. • Auxiliary subunits are required for full reconstitution of channel function. • Channels in HEK293 cells exhibit properties similar to channels in neurons.

  11. Fuel cells make gains in power generation market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The ultra-low emission, highly efficient natural gas-fueled fuel cell system is beginning to penetrate the electric power generation market in the US and abroad as the fuel cell industry lowers product costs. And, even as the current market continues to grow, fuel cell companies are developing new technology with even higher levels of energy efficiency. The paper discusses fuel cell efficiency, business opportunities, work to reduce costs, and evolving fuel cell technology

  12. The improved photovoltaic performance of phenothiazine-dithienopyrrole based dyes with auxiliary acceptors

    Science.gov (United States)

    Han, Ming-Liang; Zhu, Yi-Zhou; Liu, Shuang; Liu, Qing-Long; Ye, Dan; Wang, Bing; Zheng, Jian-Yu

    2018-05-01

    Incorporating alkyl chain decorated dithienopyrrole π-spacer with phenothiazine donor has proven to be efficient strategy for constructing novel dyes, which can achieve both large short-circuit current (Jsc) and high open-circuit voltage (Voc) in dye-sensitized solar cells (DSSCs). To promote the light harvesting capability, auxiliary acceptors including benzotriazole (BTZ), benzothiadiazole (BTD), and quinoxaline (Qu) have been inserted into the skeleton of dyes, and much improved Jsc have been realized. Meantime, the rational design of alkyl chains endows dyes JY53 and JY55 a good shielding effect from the penetration of electrolyte, guaranteeing a high Voc (over 810 mV) through retarding unwanted interfacial charge recombination. As a result, with the assistance of introduced auxiliary acceptors and alkyl chains, the photovoltaic performance of devices have been significantly improved, and dye JY55 has achieved an excellent power conversion efficiency (PCE) of 10.06% with Jsc of 19.18 mA cm-2, Voc of 829 mV, and FF of 0.63 under AM 1.5 G irradiation.

  13. Green Applications for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft propulsion and power for many decades has relied on Hydrazine monopropellant technology for auxiliary power units (APU), orbital circularization, orbit...

  14. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    Science.gov (United States)

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

  15. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  16. Numerical analysis of magnetically suspended rotor in HTR-10 helium circulator being dropped into auxiliary bearings

    International Nuclear Information System (INIS)

    Zhao Jingxiong; Yang Guojun; Li Yue; Yu Suyuan

    2012-01-01

    Active magnetic bearings (AMB) have been selected to support the rotor of primary helium circulator in commercial 10 Mega-Walt High Temperature Gas-cooled Reactor (HTR-10). In an AMB system, the auxiliary bearings are necessary to protect the AMB components in case of losing power. This paper performs the impact simulation of Magnetically Suspended Rotor in HTR-10 Helium Circulator being dropped into the auxiliary bearings using the finite element program ABAQUS. The dynamic response and the strain field of auxiliary bearings are analyzed. The results achieved by the numerical analysis are in agreement with the experiment results. Therefore, the feasibility of the design of auxiliary bearing and the possibility of using the AMB system in the HTR are proved. (authors)

  17. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  18. Photovoltaic cells for laser power beaming

    Science.gov (United States)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  19. Generating Selected Color using RGB, Auxiliary Lights, and Simplex Search

    Directory of Open Access Journals (Sweden)

    Kim HyungTae

    2015-01-01

    Full Text Available A mixed light source generates various colors, with the potential to adjust intensities of multiple LEDs, which makes it possible to generate arbitrary colors. Currently, PCs and OSs provide color selection windows that can obtain the RGB or HSL color coordinates of a user’s selection. Mixed light sources are usually composed of LEDs in the primary colors, with LEDs in auxiliary colors such as white and yellow used in a few cases. When using auxiliary color LEDs, the number of LED inputs, the dimming levels, is larger than the number of elements in the color coordinate, which causes an under-determined problem. This study proposed how to determine the dimming levels of LEDs based on the selected color. Commercial LEDs have di_erent optical power values and impure color coordinates, even if they are RGB. Hence, the characteristics of the LEDs were described using a linear model derived from the tri-stimulus values (an XYZ color coordinate model and dimming levels. Color mixing models were derived for the arbitrary number of auxiliary color LEDs. The under-determined problem was solved using a simplex search method without an inverse matrix operation. The proposed method can be applied to a machine vision system and an RGBW light mixer for semiconductor inspection. The dimming levels, obtained using the proposed method were better than derived using other methods.

  20. 30 CFR 75.331 - Auxiliary fans and tubing.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fans and tubing. 75.331 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.331 Auxiliary fans and tubing. (a) When auxiliary fans and tubing are used for face ventilation, each auxiliary fan shall be— (1...

  1. Method for controlling power flow between an electrochemical cell and a power grid

    International Nuclear Information System (INIS)

    Coleman, A. K.

    1981-01-01

    A method is disclosed for controlling a force-commutated inverter coupled between an electrochemical cell and a power grid for adjusting the magnitude and direction of the electrical energy flowing therebetween. Both the real power component and the reactive power component of ac electrical energy flow can be independently VARied through the switching waveform presented to the intermediately coupled inverter. A VAR error signal is derived from a comparison of a var command signal with a signal proportional to the actual reactive power circulating between the inverter and the power grid. This signal is presented to a voltage controller which essentially varies only the effective magnitude of the fundamental voltage waveform out of the inverter , thereby leaving the real power component substantially unaffected. In a similar manner, a power error signal is derived by a comparison of a power command signal with a signal proportional to the actual real power flowing between the electrochemical cell and the power grid. This signal is presented to a phase controller which varies only the phase of the fundamental component of the voltage waveform out of the inverter relative to that of the power grid and changes only the real power in proportion thereto, thus leaving the reactive power component substantially unaffected

  2. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  3. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  4. Nuclear Reactor RA Safety Report, Vol. 8, Auxiliary system

    International Nuclear Information System (INIS)

    1986-11-01

    This volume describes RA reactor auxiliary systems, as follows: special ventilation system, special drainage system, hot cells, systems for internal transport. Ventilation system is considered as part of the reactor safety and protection system. Its role is eliminate possible radioactive particles dispersion in the environment. Special drainage system includes pipes and reservoirs with the safety role, meaning absorption or storage of possible radioactive waste water from the reactor building. Hot cells existing in the RA reactor building are designed for production of sealed radioactive sources, including packaging and transport [sr

  5. Harmonic Analysis and Mitigation of Low- Frequency Switching Voltage Source Inverter with Auxiliary VSI

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    The output currents of high-power Voltage Source Inverters (VSIs) are distorted by the switching harmonics and the background harmonics in the grid voltage. This paper presents an active harmonic filtering scheme for high-power, low-frequency switching VSIs with an additional auxiliary VSI. In th...

  6. Polymer electrolyte fuel cell mini power unit for portable application

    Energy Technology Data Exchange (ETDEWEB)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E. [CNR-ITAE, via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina (Italy); Zerbinati, O. [Universita del Piemonte Orientale, Dip. di Scienze dell' Ambiente e della Vita, via Bellini 25/g, 15100 Alessandria (Italy)

    2007-06-20

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H{sub 2} supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm{sup 2} and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance. (author)

  7. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    De Bernardinis, Alexandre

    2014-01-01

    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  8. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  9. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  10. Advanced Space Power Systems (ASPS): Regenerative Fuel Cells (RFC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the regenerative fuel cell project element is to develop power and energy storage technologies that enable new capabilities for future human space...

  11. Advanced Solar Cells for Satellite Power Systems

    Science.gov (United States)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  12. The Acquisition of Auxiliary Syntax: A Longitudinal Elicitation Study. Part 2: The Modals and Auxiliary DO

    Science.gov (United States)

    Rowland, Caroline F.; Theakston, Anna L.

    2009-01-01

    Purpose: The study of auxiliary acquisition is central to work on language development and has attracted theoretical work from both nativist and constructivist approaches. This study is part of a 2-part companion set that represents a unique attempt to trace the development of auxiliary syntax by using a longitudinal elicitation methodology. The…

  13. Development of the APR+ Auxiliary Building General Arrangement (GA)

    International Nuclear Information System (INIS)

    Moon, Hyung Keun; Park, Young Sheop; Kang, Yong Chul

    2011-01-01

    The general arrangement (GA) drawing of a nuclear power plant is the most basic drawing which contains all of the plant equipment, systems, and rooms. Therefore, it should be issued at an early design stage to provide the contours of the overall plant structure. This type of drawing is typically used widely throughout the design stages. The development project of APR+ (Advanced Power Reactor+), as a succeeding model of the APR1400 (Advanced Power Reactor 1400) design, has its own GA that encompasses all of its power buildings. This was developed starting in October of 2009. Among several of the buildings in this design, the Auxiliary Building (AB) is one of the most important buildings to produce electricity, and to protect against undesirable radiation emissions. This paper focuses on the design characteristics of the general arrangement of the AB

  14. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  15. An analysis of radioisotope power systems using improved ATEC cells

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Tournier, J.M.

    1998-01-01

    Recently, a ground demo of eight AMTEC (PX-3G) cells has been tested successfully in vacuum at the Air Force Research laboratory (AFRL). Results showed that the electric power output and voltage of the best performing PX-3G cell are short of meeting the requirements of the Pluto/Express (PX) mission. Using the basic configuration of the PX-3G cell, several design changes are explored, to improve the cell performance. Also, several integration options of the improved PX-3G cells with General-Purpose Heat Source (GPHS) modules are investigated for an electric power level of 130 W e and a 15-year mission. The options explored include varying the number of GPHS modules and AMTEC cells, and using fresh or aged fuel. The effects of changing the generators' output voltage (24 V or 28 V) on the evaporator and BASE metal-ceramic brazes temperatures and temperature margin in the cell are also examined

  16. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  17. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  18. Constructing organic D-A-π-A-featured sensitizers with a quinoxaline unit for high-efficiency solar cells: the effect of an auxiliary acceptor on the absorption and the energy level alignment.

    Science.gov (United States)

    Pei, Kai; Wu, Yongzhen; Wu, Wenjun; Zhang, Qiong; Chen, Baoqin; Tian, He; Zhu, Weihong

    2012-06-25

    Four organic D-A-π-A-featured sensitizers (TQ1, TQ2, IQ1, and IQ2) have been studied for high-efficiency dye-sensitized solar cells (DSSCs). We employed an indoline or a triphenylamine unit as the donor, cyanoacetic acid as the acceptor/anchor, and a thiophene moiety as the conjugation bridge. Additionally, an electron-withdrawing quinoxaline unit was incorporated between the donor and the π-conjugation unit. These sensitizers show an additional absorption band covering the broad visible range in solution. The contribution from the incorporated quinoxaline was investigated theoretically by using DFT and time-dependent DFT. The incorporated low-band-gap quinoxaline unit as an auxiliary acceptor has several merits, such as decreasing the band gap, optimizing the energy levels, and realizing a facile structural modification on several positions in the quinoxaline unit. As demonstrated, the observed additional absorption band is favorable to the photon-to-electron conversion because it corresponds to the efficient electron transitions to the LUMO orbital. Electrochemical impedance spectroscopy (EIS) Bode plots reveal that the replacement of a methoxy group with an octyloxy group can increase the injection electron lifetime by a factor of 2.4. IQ2 and TQ2 can perform well without any co-adsorbent, successfully suppress the charge recombination from TiO(2) conduction band to I(3)(-) in the electrolyte, and enhance the electron lifetime, resulting in a decreased dark current and enhanced open circuit voltage (V(oc)) values. By using a liquid electrolyte, DSSCs based on dye IQ2 exhibited a broad incident photon-to-current conversion efficiency (IPCE) action spectrum and high efficiency (η=8.50 %) with a short circuit current density (J(sc)) of 15.65 mA cm(-2), a V(oc) value of 776 mV, a fill factor (FF) of 0.70 under AM 1.5 illumination (100 mW cm(-2)). Moreover, the overall efficiency remained at 97% of the initial value after 1000 h of visible

  19. Builtin vs. auxiliary detection of extrapolation risk.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Miles Arthur; Kegelmeyer, W. Philip,

    2013-02-01

    A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.

  20. Fuel cells - an option for decentralized power supply?

    International Nuclear Information System (INIS)

    Ketterer, H.

    1995-01-01

    Development efforts worldwide are made on industrial-scale power stations with high-temperature fuel cells fuelled with coal gas and with off-gases of up to 1000 C, which will improve the high efficiency of the plant even further. As reported at a conference of the VDI-Gesellschaft Energietechnik, it with still take several decades until these base load power station will be in operation. On the other hand, heating power stations with low-temperature fuel cells in the range up to 200 kW have been tested successfully worldwide. (orig.) [de

  1. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  2. Reduction of residual gas in a sputtering system by auxiliary sputter of rare-earth metal

    International Nuclear Information System (INIS)

    Li Dejie

    2002-01-01

    In film deposition by sputtering, the oxidation and nitrification of the sputtered material lead to degradation of film quality, particularly with respect to metal sulfide films. We propose to use auxiliary sputtering as a method to produce a fresh film of rare-earth metal, usually dysprosium (Dy), that absorbs the active gases in a sputtering system, greatly reducing the background pressure and protecting the film from oxidation and nitrification effectively. The influence of the auxiliary sputtering power consumption, sputtering time, and medium gas pressure on the background pressure in the vacuum chamber is investigated in detail. If the auxiliary sputtering power exceeds 120 W and the sputtering time is more than 4 min, the background pressure is only one fourth of the ultimate pressure pumped by an oil diffusion pump. The absorption activity of the sputtered Dy film continues at least an hour after completion of the auxiliary sputter. Applied to film deposition of Ti and ZnS, this technique has been proven to be effective. For the Ti film, the total content of N and O is reduced from 45% to 20% when the auxiliary sputtering power of Dy is 120 W, and the sputtering time is 20 min. In the case of ZnS, the content of O is reduced from 8% to 2%

  3. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  4. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...

  5. Nuclear reactors with auxiliary boiler circuit

    International Nuclear Information System (INIS)

    George, B.V.; Cook, R.K.

    1976-01-01

    A gas-cooled nuclear reactor has a main circulatory system for the gaseous coolant incorporating one or more main energy converting units, such as gas turbines, and an auxiliary circulatory system for the gaseous coolant incorporating at least one steam generating boiler arranged to be heated by the coolant after its passage through the reactor core to provide steam for driving an auxiliary steam turbine, such an arrangement providing a simplified start-up procedure also providing emergency duties associated with long term heat removal on reactor shut down

  6. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  7. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  8. Emf, maximum power and efficiency of fuel cells

    International Nuclear Information System (INIS)

    Gaggioli, R.A.; Dunbar, W.R.

    1990-01-01

    This paper discusses the ideal voltage of steady-flow fuel cells usually expressed by Emf = -ΔG/nF where ΔG is the Gibbs free energy of reaction for the oxidation of the fuel at the supposed temperature of operation of the cell. Furthermore, the ideal power of the cell is expressed as the product of the fuel flow rate with this emf, and the efficiency of a real fuel cell, sometimes called the Gibbs efficiency, is defined as the ratio of the actual power output to this ideal power. Such viewpoints are flawed in several respects. While it is true that if a cell operates isothermally the maximum conceivable work output is equal to the difference between the Gibbs free energy of the incoming reactants and that of the leaving products, nevertheless, even if the cell operates isothermally, the use of the conventional ΔG of reaction assumes that the products of reaction leave separately from one another (and from any unused fuel), and when ΔS of reaction is positive it assumes that a free heat source exists at the operating temperature, whereas if ΔS is negative it neglects the potential power which theoretically could be obtained form the heat released during oxidation. Moreover, the usual cell does not operate isothermally but (virtually) adiabatically

  9. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    Science.gov (United States)

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  10. Loss Model and Efficiency Analysis of Tram Auxiliary Converter Based on a SiC Device

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2017-12-01

    Full Text Available Currently, the auxiliary converter in the auxiliary power supply system of a modern tram adopts Si IGBT as its switching device and with the 1700 V/225 A SiC MOSFET module commercially available from Cree, an auxiliary converter using all SiC devices is now possible. A SiC auxiliary converter prototype is developed during this study. The author(s derive the loss calculation formula of the SiC auxiliary converter according to the system topology and principle and each part loss in this system can be calculated based on the device datasheet. Then, the static and dynamic characteristics of the SiC MOSFET module used in the system are tested, which aids in fully understanding the performance of the SiC devices and provides data support for the establishment of the PLECS loss simulation model. Additionally, according to the actual circuit parameters, the PLECS loss simulation model is set up. This simulation model can simulate the actual operating conditions of the auxiliary converter system and calculate the loss of each switching device. Finally, the loss of the SiC auxiliary converter prototype is measured and through comparison it is found that the loss calculation theory and PLECS loss simulation model is valuable. Furthermore, the thermal images of the system can prove the conclusion about loss distribution to some extent. Moreover, these two methods have the advantages of less variables and fast calculation for high power applications. The loss models may aid in optimizing the switching frequency and improving the efficiency of the system.

  11. Effects of upgrading systems on energy conversion efficiency of a gasifier - fuel cell - gas turbine power plant

    International Nuclear Information System (INIS)

    Pedrazzi, Simone; Allesina, Giulio; Tartarini, Paolo

    2016-01-01

    Highlights: • An advanced gasifier-SOFC-MGT system is modeled. • An overall electrical efficiency of 32.81% is reached. • Influence of all the sub-system modeled on the power plant efficiency is discussed. • Compression storage of syngas is taken into account. - Abstract: This work focuses on a DG-SOFC-MGT (downdraft gasifier - solid oxide fuel cell - micro gas turbine) power plant for electrical energy production and investigates two possible performance-upgrading systems: polyphenylene oxide (PPO) membrane and zeolite filters. The first is used to produce oxygen-enriched air used in the reactor, while the latter separates the CO_2 content from the syngas. In order to prevent power plant shutdowns during the gasifier reactor scheduled maintenance, the system is equipped with a gas storage tank. The generation unit consists of a SOFC-MGT system characterized by higher electrical efficiency when compared to conventional power production technology (IC engines, ORC and EFGT). Poplar wood chips with 10% of total moisture are used as feedstock. Four different combinations with and without PPO and zeolite filtrations are simulated and discussed. One-year energy and power simulation were used as basis for comparison between all the cases analyzed. The modeling of the gasification reactions gives results consistent with literature about oxygen-enriched processes. Results showed that the highest electrical efficiency obtained is 32.81%. This value is reached by the power plant equipped only with PPO membrane filtration. Contrary to the PPO filtering, zeolite filtration does not increase the SOFC-MGT unit performance while it affects the energy balance with high auxiliary electrical consumption. This solution can be considered valuable only for future work coupling a CO_2 sequestration system to the power plant.

  12. A novel control and physical realization of a clean hybrid hydrogen fuel-cell/battery low-power personal electric vehicle

    Science.gov (United States)

    Watkins, Andrew N.

    With the rapid continuation of global warming, high concentrations of pollutants, and foreign oil conflicts, the green energy push has now begun to manifest into great advancements in renewable or clean energies. Fuel-cells have a promising future for mobile power such as the automotive industry, distributed generation, and portable auxiliary power supplies. The type of fuel-cell that has the most focus today is the hydrogen Proton Exchange Membrane (PEM) fuel-cell. It is widely accepted that a fuel-cell cannot effectively supply a dynamic load on its own. In order to correct this drawback and make the fuel-cell system useful for all occasions, a hybrid FC/storage device system needs to be implemented. In this type of system, a balance is created between the high-energy fuel-cell and the high-power storage devices. In this thesis, a hybrid fuel-cell system topology favorable for use in a "personal" electric vehicle such as a scooter is proposed. This topology consists of a fuel-cell connected directly to the batteries and load via a DC link converter. The converter is used to manage the flow of power within the system. In order to have this flow of power to be stable and within operational limits of the devices, a novel adaptive control algorithm implementing six transfer functions based on six major operating conditions is developed. The development of the adaptive algorithm and the implementation of hardware tests were carried out by Matlab/Simulink and dSPACE. The results of the tests showed that the control algorithm was successful at regulating power flow as well as facilitating DC link stability and accuracy at the major operating points.

  13. Curricular Guidelines for Dental Auxiliary Radiology.

    Science.gov (United States)

    Journal of Dental Education, 1981

    1981-01-01

    AADS curricular guidelines suggest objectives for these areas of dental auxiliary radiology: physical principles of X-radiation in dentistry, related radiobiological concepts, principles of radiologic health, radiographic technique, x-ray films and intensifying screens, factors contributing to film quality, darkroom, and normal variations in…

  14. Window-mounted auxiliary solar heater

    Science.gov (United States)

    Anthony, K. G.; Herndon, E. P.

    1977-01-01

    System uses hot-air collectors, no thermal storage, and fan with thermostat switches. At cost of heating efficiency, unit could be manufactured and sold at price allowing immediate entry to market as auxiliary heating system. Its simplicity allows homeowner installation, and maintenance is minimal.

  15. Computation within the auxiliary field approach

    International Nuclear Information System (INIS)

    Baeurle, S.A.

    2003-01-01

    Recently, the classical auxiliary field methodology has been developed as a new simulation technique for performing calculations within the framework of classical statistical mechanics. Since the approach suffers from a sign problem, a judicious choice of the sampling algorithm, allowing a fast statistical convergence and an efficient generation of field configurations, is of fundamental importance for a successful simulation. In this paper we focus on the computational aspects of this simulation methodology. We introduce two different types of algorithms, the single-move auxiliary field Metropolis Monte Carlo algorithm and two new classes of force-based algorithms, which enable multiple-move propagation. In addition, to further optimize the sampling, we describe a preconditioning scheme, which permits to treat each field degree of freedom individually with regard to the evolution through the auxiliary field configuration space. Finally, we demonstrate the validity and assess the competitiveness of these algorithms on a representative practical example. We believe that they may also provide an interesting possibility for enhancing the computational efficiency of other auxiliary field methodologies

  16. Aging assessment of auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Casada, D.A.

    1989-01-01

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The study has reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results. 7 figs

  17. Modeling and Nonlinear Control of Fuel Cell / Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    DEFF Research Database (Denmark)

    El Fadil, Hassan; Giri, Fouad; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of controlling hybrid energy storage system (HESS) for electric vehicle. The storage system consists of a fuel cell (FC), serving as the main power source, and a supercapacitor (SC), serving as an auxiliary power source. It also contains a power block for energy...

  18. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    Science.gov (United States)

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  19. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    Science.gov (United States)

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  20. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  1. Polypyrrole RVC biofuel cells for powering medical implants.

    Science.gov (United States)

    Roxby, Daniel N; Ting, S R Simon; Nguyen, Hung T

    2017-07-01

    Batteries for implanted medical devices such as pacemakers typically require surgical replacement every 5 to 10 years causing stress to the patient and their families. A Biofuel cell uses two electrodes with enzymes embedded to convert sugar into electricity. To evaluate the power producing capabilities of biofuel cells to replace battery technology, polypyrrole electrodes were fabricated by compression with Glucose oxidase and Laccase. Vitreous carbon was added to increase the conductivity, whilst glutaraldehyde acted as a crosslinking molecule. A maximum open circuit potential of 558.7 mV, short circuit current of 1.09 mA and maximum power of 0.127 mW was obtained from the fuel cells. This was able to turn on a medical thermometer through a TI BQ25504 energy harvesting circuit, hence showing the powering potential for biomedical devices.

  2. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  3. Common-cause failure analysis of McGuire Unit 2 auxiliary feedwater system

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Fowler, R.D.; Summitt, R.L.; Logan, B.W.

    1982-01-01

    A powerful method for qualitative common cause failure analysis (CCFA) of nuclear power plant systems was developed by EG and G Idaho at the Idaho National Engineering Laboratory. As a cooperative project to demonstrate and evaluate the usefulness of the method, the Duke Power Company agreed to allow a CCFA of the auxiliary feedwater system (AFWS) in their McGuire Nuclear Station Unit 2. The results of the CCFA are the subject of this discussion

  4. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro......-CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system...

  5. The English Primary Auxiliary Verbs: A Linguistic Theoretical Exercise

    African Journals Online (AJOL)

    Nekky Umera

    Abstract. Obviously, the fact remains that English Language is a sensitive Language ... Even though the English auxiliary verbs are of two kinds: Primary and Modal auxiliary ..... Therefore we are of the opinion that most speakers lack adequate.

  6. Design and scope of impact of auxiliary lanes : technical report.

    Science.gov (United States)

    2014-06-01

    For decades, Texas Department of Transportation districts have constructed auxiliary lanes to support interchange : ramp operations and to resolve congestion proximate to freeway entrance and exit ramps. While auxiliary lanes are : built throughout T...

  7. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  8. Limit power of nuclear fuel cells with biconcave cross sections

    International Nuclear Information System (INIS)

    Alves, Thiago Antonini; Pelegrini, Marcelo Ferreira; Woiski, Emanuel Rocha; Maia, Cassio Roberto Macedo

    2004-01-01

    Diffusive media with distributed sources, such as the case of nuclear fuel cells, represent a major role in engineering. Due to the nuclear fission of the chemical element, fuel cells are capable of releasing an enormous amount of thermal energy in spite of their reduced dimensions, in such a way that the maximum power of the reactor is closely related to the fusion temperature of the fuel, and consequently to the maximum temperature in the cell. The cell maximum temperature is, therefore, a chief parameter in nuclear reactor design. Limiting power, of course, depends not only of the fuel thermo physical properties, but also of the cell shape and dimensions. The present work purports the study of the effects of some parameters of cell geometry on the limiting power, especially for cell with biconcave cross sections. Given the large temperature gradients in the cell, the thermal conductivity must be assumed as a generic function of temperature. Therefore, the problem has been modeled as a nonlinear 2 D Poisson-like PDE, with a nontrivial geometry of the boundary. For the analytical solution, Kirchhoff transform has been employed to turn the equation into a linear Poisson equation, a conformal transform brought it to a rectangular domain and Generalized Integral Transform method applied in order to solve the resulting equation. For the numerical solution of the linearized equation, a program has been developed in Python, reusing classes of Ellipt2d, an open-source elliptic solver. The domain has been divided into linear triangular finite elements, and the system of equations resulting of Galerkin method application has been solved, for each parameter set. The trend in critical power has been discussed, as well as the numerical results compared to the analytical solutions and to the literature. (author)

  9. Design of auxiliary shield for remote controlled metallographic microscope

    International Nuclear Information System (INIS)

    Matsui, Hiroki; Okamoto, Hisato

    2014-06-01

    The remote controlled optical microscope installed in the lead cell at the Reactor Fuel Examination Facility (RFEF) in Japan Atomic Energy Agency (JAEA) has been upgraded to a higher performance unit to study the effect of the microstructural evolution in clad material on the high burn-up fuel behavior under the accident condition. The optical pass of the new microscope requires a new through hole in the shielding lead wall of the cell. To meet safety regulations, auxiliary lead shieldings were designed to cover the lost shielding function of the cell wall. Particle and Heavy Ion Transport Code System (PHITS) was used to calculate and determine the shape and setting positions of the shielding unit. Seismic assessments of the unit were also performed. (author)

  10. Compact driver, notably for a light emitting diode, having an auxiliary output

    NARCIS (Netherlands)

    2015-01-01

    The current invention relates to a driver(10,20) for driving at least one main load and one auxiliary load comprising: ä power converter(101) adapted to convert an input voltage(Vin) into at least one main output voltage provided through a main output(1011) for driving said main load, and at least

  11. Computer determination of event maps with application to auxiliary supply systems

    International Nuclear Information System (INIS)

    Wredenberg, L.; Billinton, R.

    1975-01-01

    A method of evaluating the reliability of sequential operations in systems containing standby and alternate supply facilities is presented. The method is based upon the use of a digital computer for automatic development of event maps. The technique is illustrated by application to a nuclear power plant auxiliary supply system. (author)

  12. Auxiliary VHF transmitter to aid recovery of solar Argos/GPS PTTs

    Science.gov (United States)

    Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh

    2014-01-01

    While conducting greater sage-grouse (Centrocercus urophasianus) research, we found that solar-powered global positioning systems platform transmitter terminals (GPS PTTs) can be lost if the solar panel does not receive adequate sunlight. Thus, we developed 5-g (mortality sensor included; Prototype A) and 9.8-g (no mortality sensor; Prototype B) auxiliary very high...

  13. Development of molten carbonate fuel cells for power generation

    Science.gov (United States)

    1980-04-01

    The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.

  14. 14 CFR 29.757 - Hull and auxiliary float strength.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...

  15. 30 CFR 57.8529 - Auxiliary fan systems

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fan systems 57.8529 Section 57.8529 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Underground Only § 57.8529 Auxiliary fan systems When auxiliary fan systems are used, such systems shall...

  16. Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice

    KAUST Repository

    Park, Jincheol; Liang, Faming

    2012-01-01

    of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model

  17. Solar combisystems with forecast control to increase the solar fraction and lower the auxiliary energy cost

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2011-01-01

    Solar Combi systems still need quite a lot of auxiliary energy especially in small systems without seasonal storage possibilities. The control of the auxiliary energy input both in time and power is important to utilize as much as possible of the solar energy available from the collectors and also...... energy sources. It can be either direct electric heating elements or a heat pump upgrading ambient energy in the air, ground, solar collector or waste heat from the house. The paper describes system modeling and simulation results. Advanced laboratory experiments are also starting now with three...

  18. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2009-06-19

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.

  19. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2009-01-01

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential

  20. A New Green Power Inverter for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Klumpner, Christian; Kjær, Søren Bækhøj

    2002-01-01

    This paper presents a new grid connected inverter for fuel cells. It consists of a two stage power conversion topology. Since the fuel cell operates with a low voltage in a wide voltage range (25 V-45 V) this volt- age must be transformed to around 350-400 V in order to invert this dc power into ac...... power to the grid. The proposed converter consists of an isolated dc-dc converter cascaded with a single phase H-bridge inverter. The dc-dc converter is a current-fed push-pull converter. A new dedicated voltage mode startup procedure has been developed in order to limit the inrush current during...... startup. The inverter is controlled as a power factor controller with resistor emulation.Experimental results of converter efficiency, grid performance and fuel cell response are shown for a 1 kW prototype. The proposed converter exhibits a high efficiency in a wide power range (higher than 92...

  1. Modified Darboux transformations with foreign auxiliary equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2011-01-01

    We construct a new type of first-order Darboux transformations for the stationary Schroedinger equation. In contrast to the conventional case, our Darboux transformations support arbitrary (foreign) auxiliary equations. We show that among other applications, our formalism can be used to systematically construct Darboux transformations for Schroedinger equations with energy-dependent potentials, including a recent result (Lin et al., 2007) as a special case. -- Highlights: → We generalize the Darboux transformation for the Schroedinger equation. → By admitting arbitrary auxiliary functions, we provide a new tool for generating solutions. → As a special case we recover a recent result on energy-dependent potentials. → We extend the latter result to very general energy-dependence.

  2. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  3. Auxiliary facilities on nuclear ship 'MUTSU'

    International Nuclear Information System (INIS)

    Tsujimura, Shotaro; Takigami, Yoshio.

    1989-01-01

    The nuclear ship 'MUTSU' has been moored at SEKINEHAMA, MUTU City in AOMORI Prefecture and several tests and works are being carried out on the ship. The construction of the auxiliary facilities for these works on the ship was completed in safety in August 1988. After that the facilities have fulfilled their function. The outlines of design, fabrication and construction of the facilities are described in this paper. (author)

  4. Auxiliary Heat Exchanger Flow Distribution Test

    International Nuclear Information System (INIS)

    Kaufman, J.S.; Bressler, M.M.

    1983-01-01

    The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a high-temperature gas-cooled reactor (HTGR). Measurements of velocity and pressure were made with various shell side inlet and outlet configurations. A flow configuration was developed which provides acceptable velocity distribution throughout the heat exchanger without adding excessive pressure drop

  5. Categorical Data Fusion Using Auxiliary Information

    OpenAIRE

    Fosdick, Bailey K.; DeYoreo, Maria; Reiter, Jerome P.

    2015-01-01

    In data fusion, analysts seek to combine information from two databases comprised of disjoint sets of individuals, in which some variables appear in both databases and other variables appear in only one database. Most data fusion techniques rely on variants of conditional independence assumptions. When inappropriate, these assumptions can result in unreliable inferences. We propose a data fusion technique that allows analysts to easily incorporate auxiliary information on the dependence struc...

  6. Model predictions for auxiliary heating in spheromaks

    International Nuclear Information System (INIS)

    Fauler, T.K.; Khua, D.D.

    1997-01-01

    Calculations are presented of the plasma temperature waited for under auxiliary heating in spheromaks. A model, ensuring good agreement of earlier experiments with joule heating results, is used. The model includes heat losses due to magnetic fluctuations and shows that the plasma temperatures of the kilo-electron-volt order may be achieved in a small device with the radius of 0.3 m only

  7. Pressurizer /Auxiliary Spray Piping Stress Analysis For Determination Of Lead Shielding Maximum Allow Able Load

    International Nuclear Information System (INIS)

    Setjo, Renaningsih

    2000-01-01

    Piping stress analysis for PZR/Auxiliary Spray Lines Nuclear Power Plant AV Unit I(PWR Type) has been carried out. The purpose of this analysis is to establish a maximum allowable load that is permitted at the time of need by placing lead shielding on the piping system on class 1 pipe, Pressurizer/Auxiliary Spray Lines (PZR/Aux.) Reactor Coolant Loop 1 and 4 for NPP AV Unit one in the mode 5 and 6 during outage. This analysis is intended to reduce the maximum amount of radiation dose for the operator during ISI ( In service Inspection) period.The result shown that the maximum allowable loads for 4 inches lines for PZR/Auxiliary Spray Lines is 123 lbs/feet

  8. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  10. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    Science.gov (United States)

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  11. Direct fuel cell - A high proficiency power generator for biofuels

    International Nuclear Information System (INIS)

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-01-01

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products

  12. Microbial fuel cells as power supply of a low-power temperature sensor

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  13. Inverters for interfacing of solar cells with the power grid

    Science.gov (United States)

    Karamanzanis, G. N.; Jackson, R. D.

    In this work, based on a research course in the Engineering Dep. Cambridge University, some non-classical inverter circuits are studied. They can be used for interfacing solar cells with the power grid at low voltage (230V) and at low power level. They are based on d.c. choppers which have a fast switching transistor. Their theoretical efficiency is 100 percent and they provide a satisfactory output current waveform in phase to the a.c. line voltage. The problems of control are also studied using a suitable mathematical model.

  14. High-power ultrashort fiber laser for solar cells micromachining

    Science.gov (United States)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  15. PSA effect analysis of a design modification of the auxiliary feedwater system for a Westinghouse type plant

    International Nuclear Information System (INIS)

    Bae, Yeon Kyoung; Lee, Eun Chan

    2012-01-01

    The auxiliary feedwater system is an important system used to mitigate most accidents considered in probabilistic safety assessment (PSA). The reference plant has produced electric power for about thirty years. Due to age related deterioration and lack of parts, a turbine driven auxiliary feedwater pump (TD AFWP), some valves, and piping of the auxiliary feedwater system should be replaced. This change includes relocation of some valves, installation of valves for maintenance of the steam generator, and a new cross tie line. According to the design change, the Final Safety Analysis Report (FSAR) has been revised. Therefore, this design modification affects the PSA. It is thus necessary to assess the improvement of plant safety. In this paper, the impact of the design change of the auxiliary feedwater system on the PSA is assessed. The results demonstrate that this modification considering the plant safety decreased the total CDF

  16. Thermoeconomic analysis of a fuel cell hybrid power system from the fuel cell experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Tomas [Endesa Generacion, Ribera del Loira, 60, 28042 Madrid (Spain)]. E-mail: talvarez@endesa.es; Valero, Antonio [Fundacion CIRCE, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Montes, Jose M. [ETSIMM-Universidad Politecnica de.Madrid, Rios Rosas, 21, 28003 Madrid (Spain)

    2006-08-15

    An innovative configuration of fuel cell technology is proposed based on a hybrid fuel cell system that integrates a turbogenerator to overcome the intrinsic limitations of fuel cells in conventional operation. An analysis is done of the application of molten carbonate fuel cell technology at the Guadalix Fuel Cell Test Facility, for the assessment of the performance of the fuel cell prototype to be integrated in the Hybrid Fuel Cell System. This is completed with a thermoeconomic analysis of the 100 kW cogeneration fuel cell power plant which was subsequently built. The operational results and design limitations are evaluated, together with the operational limits and thermodynamic inefficiencies (exergy destruction and losses) of the 100 kW fuel cell. This leads to the design of a hybrid system in order to demonstrate the possibilities and benefits of the new hybrid configuration. The results are quantified through a thermoeconomic analysis in order to get the most cost-effective plant configuration. One promising configuration is the MCFC topper where the fuel cell in the power plant behaves as a combustor for the turbogenerator. The latter behaves as the balance of plant for the fuel cell. The combined efficiency increased to 57% and NOx emissions are essentially eliminated. The synergy of the fuel cell/turbine hybrids lies mainly in the use of the rejected thermal energy and residual fuel from the fuel cell to drive the turbogenerator in a 500 kW hybrid system.

  17. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  18. Fuel cells - a new contributor to stationary power

    Science.gov (United States)

    Dufour, Angelo U.

    Stationary power generation historically started as distributed generation near the user, with the configuration of a very open market, where a lot of small competing utilities were offering electricity to the customers. At a second time it became a `monopolistic' business because of technical reasons. Big steam turbines and electric generators, allowing better efficiencies, were more conveniently installed in very large power plants, necessarily located in sites far away from where the power was needed, and the transmission losses were bounded by AC high voltage technology. The Governments were, therefore, trying to balance the power of monopolies, that were limiting the economical development of the countries, by strengthening the concept of electrical energy price public control and, alternatively, by establishing rules to allow a free flow of electricity from one region to the other, or taking direct control through ownership of big and small utilities. The most effective way of making the electric energy system competitive has proved to be the opening of a partial competition in the generation field by forcing the utilities to compare the cost of their energy, produced with new centralised plants, to the price of the available energy, coming from combined heat and power dispersed generators. In fact, with reference to this cost, all the peculiar features of large central stations and dispersed generators were taken into account, like the widespread use of natural gas, the investment risk reduction with single smaller increments of capacity, the transmission and distribution siting difficulties and high costs, the improved system reliability, and, finally, the high quality electric power. Fuel Cells are a recently become available technology for distributed electrical energy production, because they share the main typical aspects, relevant for a distributed power system, like compatibility with other modular subsystem packages, fully automation possibility

  19. Fuel cell power plants for decentralised CHP applications

    International Nuclear Information System (INIS)

    Ohmer, Martin; Mattner, Katja

    2015-01-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO 2 and other emissions (NO x , SO x and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  20. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  1. Minimisation of Power loss from partially shaded solar cell arrays

    Energy Technology Data Exchange (ETDEWEB)

    Maine, Tony; Bell, John [Queensland University of Technology, Brisbane (Australia). Built Environment Engineering; Martin, Stewart [University of South Australia, Mawson Lakes Campus, SA (Australia). School of Electrical and Information Engineering

    2008-07-01

    In conventional wiring schemes the output from a partially shaded solar cell array drops rapidly to that of the fully shaded array even when only a small fraction is shaded. In this paper circuit simulation has been used to show that by dynamically reconfiguring the array, the power losses due to shading can be significantly reduced. Reconfiguration is achieved by using switching microcircuits with on-chip photo detectors to determine which parts of the array are in shade. The currents from the shaded and unshaded sections of the array are separated and then connected in parallel to a maximum power point tracker. It is shown that by using this reconfiguration that the power output from a partially shaded array can be increased by at least 100% compared with that from a conventional series connected array over a range of shading conditions. (orig.)

  2. Bistable energy harvesting enhancement with an auxiliary linear oscillator

    Science.gov (United States)

    Harne, R. L.; Thota, M.; Wang, K. W.

    2013-12-01

    Recent work has indicated that linear vibrational energy harvesters with an appended degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend the operational bandwidth. Given the additional interest in bistable harvester designs, which exhibit a propitious snap through effect from one stable state to the other, it is a logical extension to explore the influence of an added DOF to a bistable system. However, bistable snap through is not a resonant phenomenon, which tempers the presumption that the dynamics induced by an additional DOF on bistable designs would inherently be beneficial as for linear systems. This paper presents two analytical formulations to assess the fundamental and superharmonic steady-state dynamics of an excited bistable energy harvester to which is attached an auxiliary linear oscillator. From an energy harvesting perspective, the model predicts that the additional linear DOF uniformly amplifies the bistable harvester response magnitude and generated power for excitation frequencies less than the attachment’s resonance while improved power density spans a bandwidth below this frequency. Analyses predict bandwidths having co-existent responses composed of a unique proportion of fundamental and superharmonic dynamics. Experiments validate key analytical predictions and observe the ability for the coupled system to develop an advantageous multi-harmonic interwell response when the initial conditions are insufficient for continuous high-energy orbit at the excitation frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found to be an effective means of enhancing the energy harvesting performance and robustness.

  3. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    Science.gov (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  4. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  5. A magnetorheological clutch for efficient automotive auxiliary device actuation

    Directory of Open Access Journals (Sweden)

    F. Bucchi

    2013-01-01

    Full Text Available In this paper the results of a project funded by Regione Toscana aimed at reducing the power absorption of auxiliary devices in vehicles are presented. In particular the design, testing and application of a magnetorheological clutch (MR is proposed, aimed at disengaging the vacuum pump, which draws in air from the power-brake booster chamber, in order to reduce the device power absorption. Several clutch preliminary studies done to choose the clutch geometry and the magnetic field supply are illustrated. The final choice consisted in an MR clutch with permanent magnet, which satisfied size, torque and fail-safe specifications. The clutch characteristics, in terms of torque versus slip, were obtained experimentally for three different clutch prototypes on an ad-hoc developed test bench.As result of a preliminary simulation, a comparison between the power absorption of a current production vacuum pump, an innovative vacuum pump and both vacuum pumps coupled with the MR clutch is presented. The New European Driving Cycle is considered for simulating the vacuum pump operation both in urban and highway driving. Results show that the use of the innovative vacuum pump reduces the device consumption of about 35%, whereas the use of MR clutch coupled with the innovative vacuum pump reduces it up to about 44% in urban driving and 50% in highway driving.

  6. Corrosion in batteries and fuel-cell power sources

    International Nuclear Information System (INIS)

    Cieslak, W.R.

    1987-01-01

    Batteries and fuel cells, as electrochemical power sources, provide energy through controlled redox reactions. Because these devices contain electrochemically active components, they place metals in contact with environments in which the metals may corrode. The shelf lives of batteries, particularly those that operate at ambient temperatures depend on very slow rates of corrosion of the electrode materials at open circuit. The means of reducing this corrosion must also be evaluated for its influence on performance. A second major corrosion consideration in electrochemical power sources involves the hardware. Again, shelf lives and service lives depend on very good corrosion resistance of the containment materials and inactive components, such as separators. In those systems in which electrolyte purity is important, even small amounts of corrosion that have not lessened structural integrity can degrade performance. There is a wide variety of batteries and fuel cells, and new systems are constantly under development. Therefore, to illustrate the types of corrosion phenomena that occur, this article will discuss the following systems: lead-acid batteries, alkaline batteries (in terms of the sintered nickel electrode only), lithium ambient-temperature batteries, aluminum/air batteries, sodium/sulfur batteries, phosphoric acid (H/sub 3/PO/sub 4/) fuel cells, and molten carbonate fuel cells

  7. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  8. Modern cooling systems in thermal power plants relieve environmental pollution. Pt. 2

    International Nuclear Information System (INIS)

    Brosche, D.

    1983-01-01

    Direct and indirect dry recirculation cooling, wet cooling tower, natural-draught wet cooling tower, combined cooling processes, hybrid cooling systems, cell cooling systems, auxiliary water preparation, cooling process design, afterheat removal in nuclear power plants, environmental effects, visible plumes as a function of weather conditions, environmental protection and energy supply assurance. (orig.) [de

  9. Auxiliary equipment cooling circuit in nuclear reactors

    International Nuclear Information System (INIS)

    Yanagisawa, Ko.

    1986-01-01

    Purpose: To prevent the propagation of bacterias that transform NO 2 into NO 3 in auxiliary equipment coolants using corrosion inhibitors of nitrite type in BWR type reactors. Method: In auxiliary equipments coolant systems, water quality is controlled by using purified water as supplement water and nitrite such as Na 2 NO 2 as the corrosion inhibitors. However, in the circumstance where dissolved oxygen is present, bacteria propagate to oxidize NO 2 into NO 3 . Thus, NO 2 at 200 ppm is reduced to 20 ppm. In view of the above, a surge tank supplied from water supplement line is connected in series and a deaeration device is disposed thereto. Since the presence of dissolved oxygen causes the bacteria to propagate it is desired that the dissolved oxygen density in the supplement water is less than 5 ppm. Deaeration and pressure reduction in the surge tank can remove the dissolved oxygen, prevent NO 3 increase and also prevent stress corrosion cracks in the system pipeways. (Horiuchi, T.)

  10. Cell heterogeneity problems in the analysis of zero power experiments

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Stevenson, J.M.

    1979-01-01

    Methods are described for treating plate and pin cell heterogeneity in the preparation of broad group cross-sections used in the analysis of zero power fast reactor experiments. Methods used at Karlsruhe and Winfrith are summarised and compared, with particular reference to the treatment of resonance shielding, the calculation of broad group spatial fine structure, the treatment of leakage and the calculation of anisotropic diffusion coefficients. The problems of cells near boundaries such as core-breeder interfaces and of singularities such as control rods are also considered briefly. Numerical studies carried out to investigate approximations in the methods are described. These include tests of the accuracy of one-dimensional cell modelling techniques, and the validation by Monte Carlo of methods for treating streaming in the calculation of diffusion coefficients. Comparisons are shown between the heterogeneity effects calculated by the Karlsruhe and Winfrith methods for typical pin and plate cells used in the BIZET experimental programme, and their effect in a whole reactor calculation is indicated. Comparisons are given with measurements which provide tests of the heterogeneity calculations. These include reaction rate scans within pin and plate cells, and reaction rate measurements across sectors of pin and plate fuel, where the flux tilt is determined by the relative reactivity of the pin and plate cells. Finally, the heterogeneity problems arising in the interpretation of reaction rate measurements are discussed. (author)

  11. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.

    2013-12-17

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  12. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.; Hatzell, Marta; Zhang, Fang; Logan, Bruce E.

    2013-01-01

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  13. Retinal ganglion cell topography and spatial resolving power in penguins.

    Science.gov (United States)

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  14. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian

    2004-01-01

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  15. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    KAUST Repository

    Zhu, Xiuping; Tokash, Justin C.; Hong, Yiying; Logan, Bruce E.

    2013-01-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: RESIDENTIAL ELECTRIC POWER GENERATION USING THE PLUG POWER SU1 FUEL CELL SYSTEM

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  17. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  18. Cloud Instrument Powered by Solar Cell Sends Data to Pachube

    Directory of Open Access Journals (Sweden)

    Doru Ursutiu

    2010-11-01

    Full Text Available Despite the economic downturn, there have been quite a few new developments in the world of remote measurements lately. Tag4M (www.tag4m.com introduced the concept of cloud instrument where sensors connected to WiFi tags send data to off-the-shelf Access Points which are part of the WiFi infrastructure that exists in enterprises, retail outlets, factories, and warehouses. Access Points route the data to the Internet where specialized web applications receive the information for processing and display. One of these specialized web applications is Pachube, (http://www.pachube.com which bills itself as a “real-time data brokerage platform”. Pachube enables people to tag and share real time sensor data from objects, devices and spaces around the world. This article presents the pachube cloud instrument where sensors connected to Tag4M WiFi tags send digitized data to www.pachube.com for public display. The article contains very detailed analysis of the solar cell power source that is used to continuously power the Tag4M tag during this application. Cloud Instruments powered by solar cells enable people around the world to share real time sensor data using web pages on the Internet. This is a very interesting and exciting technology development that we want to bring to your attention.

  19. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.; Wallack, Maxwell J; Kim, Kyoung-Yeol; He, Weihua; Feng, Yujie; Saikaly, Pascal

    2015-01-01

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  20. Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |

    Science.gov (United States)

    Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics

  1. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  2. Auxiliary aggregates: Effects on fuel consumption and potential fuel savings; Einfluss und Potenzial von Nebenaggregaten auf den Kraftstoffverbrauch

    Energy Technology Data Exchange (ETDEWEB)

    Rauchfuss, Lutz; Hindorf, Kay [Robert Bosch GmbH (Germany)

    2008-07-01

    New concepts and new developments in the field of auxiliary aggregates will help to reduce fuel consumption in the future. One aspect is the higher efficiency of components, the other on-demand power supply management. The contribution shows that thermomanagement, intelligent generator control, the start/stop system, auxiliary power control and fuel pumps may achieve considerable savings in the driving cycle and also in real operation. Efficient air conditioning systems and higher generator efficiency will show their potential in real operation. Cost-profit analyses are presented to prove the economic effects for the customer. (orig.)

  3. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  4. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  5. Increased theta band EEG power in sickle cell disease patients

    Directory of Open Access Journals (Sweden)

    Case M

    2017-12-01

    Full Text Available Michelle Case,1 Sina Shirinpour,1 Huishi Zhang,1 Yvonne H Datta,2 Stephen C Nelson,3 Karim T Sadak,4 Kalpna Gupta,2 Bin He1,5 1Department of Biomedical Engineering, 2Department of Medicine, University of Minnesota, 3Pediatric Hematology-Oncology, Children’s Hospitals and Clinics of Minnesota, 4Pediatric Hematology-Oncology, University of Minnesota Masonic Children’s Hospital, 5Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA Objective: Pain is a major issue in the care of patients with sickle cell disease (SCD. The mechanisms behind pain and the best way to treat it are not well understood. We studied how electroencephalography (EEG is altered in SCD patients. Methods: We recruited 20 SCD patients and compared their resting state EEG to that of 14 healthy controls. EEG power was found across frequency bands using Welch’s method. Electrophysiological source imaging was assessed for each frequency band using the eLORETA algorithm. Results: SCD patients had increased theta power and decreased beta2 power compared to controls. Source localization revealed that areas of greater theta band activity were in areas related to pain processing. Imaging parameters were significantly correlated to emergency department visits, which indicate disease severity and chronic pain intensity. Conclusion: The present results support the pain mechanism referred to as thalamocortical dysrhythmia. This mechanism causes increased theta power in patients. Significance: Our findings show that EEG can be used to quantitatively evaluate differences between controls and SCD patients. Our results show the potential of EEG to differentiate between different levels of pain in an unbiased setting, where specific frequency bands could be used as biomarkers for chronic pain. Keywords: sickle cell disease, electroencephalography, chronic pain, electrophysiological source imaging, thalamocortical dysrhythmia

  6. FY1992 research report on the evaluation and analysis of data collected in fuel cell power generation field test project; 1992 nendo nenryo denchi hatsuden field test jigyo ni okeru shushu data hyoka kaiseki kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This paper describes the achievements in fiscal 1992 in the field tests on fuel cell power generation systems. The three locations subjected to the present analysis are all installed with 50-kW systems, whereas power generation efficiency of around 35% such as 35.3, 34.2 and 34.6% was obtained when the systems were operated at the rated output. When the load gets to below a certain load band (about 30 kW), the power generation efficiency decreases proportionately with the load. The overall efficiency including heat supply was 77.8, 70.7 and 80.3% respectively at about the rated output, showing a trend that the higher the thermal efficiency, the higher the overall efficiency. The case of generating both electric power and heat simultaneously has higher efficiency than the case of heat supply alone. The contribution rate of the fuel cell as a base load was 2.8, 4.6 and 13.6%, respectively. The system with as high value as 13.6% takes a power load following type operation mode, in which power is generated during a time band with large load during weekdays, and no power is generated at nighttime and in holidays when load is smaller, playing a role of peak responding power supply. Only one trouble has occurred in an auxiliary generator in the heat recovery system. (NEDO)

  7. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2015-09-01

    Full Text Available Microbial fuel cells (MFCs are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  8. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    Science.gov (United States)

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  9. Solid polymer fuel cell stationary power generation design studies

    Energy Technology Data Exchange (ETDEWEB)

    Pyke, S.H.; Wood, A.; Williams, G.J.; Kearney, P.

    2000-07-01

    This report summarises the results of a study investigating potential markets for solid polymer fuel cells (SPFC) stationary power generating systems and evaluating design options for grid connected and stand-alone systems. The specification of potential application for SPFC systems, initial modelling and economic analysis of twelve candidate SPFC applications, and the ranking and evaluation of candidate applications are examined. Details are given of performance modelling and economic analysis of four preferred SPFC systems (domestic, commercial, light industrial, and transportable generation), and comparison of SPFC with competing technologies. The economics of SPFC and conventional technologies for commercial applications are compared and market opportunities and potential barriers to commercialisation are identified.

  10. Auxiliary accelerating system for TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Zach, M.; Fong, K.; Laxdal, R.; Mackenzie, G.H.; Pacak, V.; Pearson, J.; Richardson, J.R.; Stanford, G.; Worsham, R.

    1990-06-01

    A 92 MHz auxiliary accelerating cavity has been designed and manufactured for installation in the TRIUMF cyclotron. Operating at the fourth harmonic of the RF with a peak voltage of 150 kV, it almost doubles the present energy gain per turn in the 400-500 MeV range, and reduces by ∼50% the stripping loss of the H - beam. This significant improvement will allow a substantial increase in the extracted current above the present routine level of 150μA while maintaining the same levels of residual radioactivity. The system is completed and being commissioned. A description of the design and commissioning procedures is presented, and results of beam tests given. (Author) 7 refs., 5 figs

  11. On Estimating Quantiles Using Auxiliary Information

    Directory of Open Access Journals (Sweden)

    Berger Yves G.

    2015-03-01

    Full Text Available We propose a transformation-based approach for estimating quantiles using auxiliary information. The proposed estimators can be easily implemented using a regression estimator. We show that the proposed estimators are consistent and asymptotically unbiased. The main advantage of the proposed estimators is their simplicity. Despite the fact the proposed estimators are not necessarily more efficient than their competitors, they offer a good compromise between accuracy and simplicity. They can be used under single and multistage sampling designs with unequal selection probabilities. A simulation study supports our finding and shows that the proposed estimators are robust and of an acceptable accuracy compared to alternative estimators, which can be more computationally intensive.

  12. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  13. The Business Case for Fuel Cells 2012. America's Partner in Power

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cells 2000, Washington, DC (United States); Gangi, Jennifer [Fuel Cells 2000, Washington, DC (United States); Skukowski, Ryan [Fuel Cells 2000, Washington, DC (United States)

    2012-12-01

    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and administrative offices.

  14. Major factors in critical equipment reliability - Auxiliary systems; The development of an auxiliary system

    International Nuclear Information System (INIS)

    Forsthoffer, W.E.

    1992-01-01

    In this article, the author details the development of an actual auxiliary system in order to fully understand the function of each major component and how it contributes to the total operation and reliability of the system. Only after the function of an auxiliary system is thoroughly understood, can one proceed to discuss specifications, design audits, testing, operation and preventive maintenance. The application selected will be to develop a pressurized lubrication and steam turbine control oil system for the critical equipment unit. This example was selected since many readers will be familiar with this type and because it provides a good foundation towards understanding fluid sealing systems. In the exercise that follow, he will define the system requirements and determine the system parameters. This information will then be used for component sizing

  15. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  16. The Range of Gapping and the Status of Auxiliaries.

    Science.gov (United States)

    Warner, A. R.

    Full verbs and auxiliaries are subject to gapping. In the simplest cases, this construction type involves apparent ellipsis within one or more clausal conjuncts under identity with the finite verb or auxiliary of a preceding conjunct. It has often been suggested that the apparent ellipsis must involve at least a verb. Some researchers see in the…

  17. Applicability of PSD to Pennsylvania Power and Light Auxiliary Boiler

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  18. Nonlinear observer designs for fuel cell power systems

    Science.gov (United States)

    Gorgun, Haluk

    A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS

  19. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  20. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  1. Demand-Side Contribution to Primary Frequency Control With Wind Farm Auxiliary Control

    DEFF Research Database (Denmark)

    Gomez-Lazaro, Emilio; Munoz-Benavente, Irene; Hansen, Anca Daniela

    2014-01-01

    Maintaining a close balance between power generation and demand is essential for sustaining the quality and reliability of a power system. Currently, due to increased renewable energy generation, frequency deviations and power fluctuations of greater concern are being introduced to the grid...... to the primary frequency control together with an auxiliary frequency control, which is carried out by variable-speed wind turbines through an additional control loop that synthesizes virtual inertia. We have evaluated both the suitability of these two additional control actions counteracting frequency deviation...

  2. A Self-Supported Direct Borohydride-Hydrogen Peroxide Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Ashok K. Shukla

    2009-04-01

    Full Text Available A self-supported direct borohydride-hydrogen peroxide fuel cell system with internal manifolds and an auxiliary control unit is reported. The system, while operating under ambient conditions, delivers a peak power of 40 W with about 2 W to run the auxiliary control unit. A critical cause and effect analysis, on the data for single cells and stack, suggests the optimum concentrations of fuel and oxidant to be 8 wt. % NaBH4 and 2 M H2O2, respectively in extending the operating time of the system. Such a fuel cell system is ideally suited for submersible and aerospace applications where anaerobic conditions prevail.

  3. High Temperature PEM Fuel Cell Stacks with Advent TPS Meas

    Directory of Open Access Journals (Sweden)

    Neophytides Stylianos

    2017-01-01

    Full Text Available High power/high energy applications are expected to greatly benefit from high temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs. In this work, a combinatorial approach is presented, in which separately developed and evaluated MEAs, design and engineering are employed to result in reliable and effective stacks operating above 180°C and having the characteristics well matched to applications including auxiliary power, micro combined heat and power, and telecommunication satellites.

  4. Initial evaluation tests of General Electric Company 26.5 ampere-hour nickel-cadmium spacecraft cells with auxiliary electrodes for the TIROS-N and NOAA-A satellites

    Science.gov (United States)

    Harkness, J. D.

    1978-01-01

    This evaluation test program had the purpose to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. Test limits specify those values at which a cell is to be terminated from charge or discharge. Requirements are referenced to as normally expected values based on past performance of aerospace nickel-cadmium cells with demonstrated life characteristics. A requirement does not constitute a limit for discontinuance from test.

  5. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  6. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  7. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  8. Decommissioning of hot cells using a hydraulically powered servo manipulator

    International Nuclear Information System (INIS)

    Asquith, J.D.; Loughborough, D.

    1993-01-01

    This paper describes the preparations and initial trials involved in remotely dismantling the containment boxes within two concrete shielded hot cells at Harwell Laboratory using a hydraulically powered servo manipulator, ARTISAN. The manipulator deploys a variety of tools for cutting operations. The modular design has enabled it to be specifically configured for this application by adjusting the link lengths using spacers between the joints. In addition to the remote handling requirements, a new posting and ventilation system for the facility is outlined. Trials with ARTISAN in an in-active mock-up have now been successfully completed, and the manipulator is installed in the active facility. The considerations and approach adopted in this project are typical of many situations where remote techniques are required for decommissioning activities. (author)

  9. Energic, Exergic, Exergo‐economic investigation and optimization of auxiliary cooling system (ACS equipped with compression refrigerating system (CRS

    Directory of Open Access Journals (Sweden)

    Omid Karimi Sadaghiyani

    2017-09-01

    Full Text Available Heller main cooling tower as air-cooled heat exchanger is used in the combined cycle power plants (CCPP to reduce the temperature of condenser. In extreme summer heat, the efficiency of the cooling tower is reduced and it lessens performance of Steam Turbine Generation (STG unit of Combined Cycle Power Plant (CCPP. Thus, the auxiliary cooling system (ACS is equipped with compression refrigerating system (CRS. This auxiliary system is linked with the Heller main cooling tower and improves the performance of power plant. In other words, this auxiliary system increases the generated power of STG unit of CCPP by decreasing the temperature of returning water from cooling tower Therefore, in the first step, the mentioned auxiliary cooling system (ACS as a heat exchanger and compression refrigerating system (CRS have been designed via ASPEN HTFS and EES code respectively. In order to validate their results, these two systems have been built and theirs experimentally obtained data have been compared with ASPEN and EES results. There are good agreements between results. After that, exergic and exergo-economic analysis of designed systems have been carried out. Finally, the compression refrigerating system (CRS has been optimized via Genetic Algorithm (GA. Increasing in exergy efficiency (ε from 14.23% up to 36.12% and decreasing the total cost rate (ĊSystem from 378.2 ($/h to 308.2 ($/h are as results of multi-objective optimization.

  10. Aging assessment of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1987-01-01

    ORNL is conducting aging assessments of auxiliary feedwater pumps to provide recommendations for monitoring and assessing the severity of time-dependent degradation as well as to recommend maintenance and replacement practices. Cornerstones of these activities are the identification of failure modes and causes and ranking of causes. Failure modes and causes of interest are those due to aging and service wear. Design details, functional requirements, and operating experience data were used to identify failure modes and causes and to rank the latter. Based on this input, potentially useful inspection, surveillance, and condition monitoring methods that are currently available for use or in the developmental stage were examined and recommendations made. The methods selected are listed and discussed in terms of use and information to be obtained. Relationships between inspection, surveillance, and monitoring and maintenance practices entered prominently into maintenance recommendations. These recommendations, therefore, embrace predictive as well as corrective and preventative maintenance practices. The recommendations are described, inspection details are discussed, and periodic inspection and maintenance interval guidelines are given. Surveillance testing at low-flow conditions is also discussed. It is shown that this type of testing can lead to accelerated aging

  11. Power generation from furfural using the microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yong; Liu, Guangli; Zhang, Renduo; Zhang, Cuiping [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)

    2010-01-01

    Furfural is a typical inhibitor in the ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In the literature, no report has shown that furfural can be utilized as the fuel to produce electricity in the microbial fuel cell (MFC), a device that uses microbes to convert organic compounds to generate electricity. In this study, we demonstrated that electricity was successfully generated using furfural as the sole fuel in both the ferricyanide-cathode MFC and the air-cathode MFC. In the ferricyanide-cathode MFC, the maximum power densities reached 45.4, 81.4, and 103 W m{sup -3}, respectively, when 1000 mg L{sup -1} glucose, a mixture of 200 mg L{sup -1} glucose and 5 mM furfural, and 6.68 mM furfural were used as the fuels in the anode solution. The corresponding Coulombic efficiencies (CE) were 4.0, 7.1, and 10.2% for the three treatments, respectively. For pure furfural as the fuel, the removal efficiency of furfural reached up to 95% within 12 h. In the air-cathode MFC using 6.68 mM furfural as the fuel, the maximum values of power density and CE were 361 mW m{sup -2} (18 W m{sup -3}) and 30.3%, respectively, and the COD removal was about 68% at the end of the experiment (about 30 h). Increase in furfural concentrations from 6.68 to 20 mM resulted in increase in the maximum power densities from 361 to 368 mW m{sup -2}, and decrease in CEs from 30.3 to 20.6%. These results indicated that some toxic and biorefractory organics such as furfural might still be suitable resources for electricity generation using the MFC technology. (author)

  12. Direct fuel cell power plants: the final steps to commercialization

    Science.gov (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  13. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-22

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenue for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.

  14. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  15. The effect of an auxiliary discharge on anode sheath potentials in a transverse discharge

    International Nuclear Information System (INIS)

    Foster, J.E.; Gallimore, A.D.

    1997-01-01

    A novel scheme that employs the use of an auxiliary discharge has been shown to reduce markedly anode sheath potentials in a transverse discharge. An 8.8 A low-pressure argon discharge in the presence of a transverse magnetic field was used as the plasma source in this study. In such discharges, the transverse flux that is collected by the anode is severely limited due to marked reductions in the transverse diffusion coefficient. Findings of this study indicate that the local electron number density and the transverse flux increase when the auxiliary discharge is operated. Changes in these parameters are reflected in the measured anode sheath voltage. Anode sheath potentials, estimated by using Langmuir probes, were shown to be reduced by over 33% when the auxiliary discharge is operated. These reductions in anode sheath potentials translated into significant reductions in anode power flux as measured using water calorimeter techniques. The reductions in anode power flux also correlate well with changes in the electron transverse flux. Finally, techniques implementing these positive effects in real plasma accelerators are discussed. copyright 1997 American Institute of Physics

  16. Experimental investigation and mathematical modeling of triode PEM fuel cells

    International Nuclear Information System (INIS)

    Martino, E.; Koilias, G.; Athanasiou, M.; Katsaounis, A.; Dimakopoulos, Y.; Tsamopoulos, J.; Vayenas, C.G.

    2017-01-01

    Highlights: •The triode fuel cell operation was tested using novel comb-type electrode designs. •Triode operation enhances the PEMFC power output by up to 500%. •Power output enhancement exceeds auxiliary power by up to 20%. •Good agreement with mathematical model based on the laws of Kirchhoff. •Proton fluxes in the membrane found via solution of the Nernst Planck equation -- Abstract: The triode operation of humidified PEM fuel cells has been investigated both with pure H 2 and with CO poisoned H 2 feed over commercial Vulcan supported Pt(30%)-Ru(15%) anodes. It was found that triode operation, which involves the use of a third, auxiliary, electrode, leads to up to 400% power output increase with the same CO poisoned H 2 gas feed. At low current densities, the power increase is accompanied by an increase in overall thermodynamic efficiency. A mathematical model, based on Kirchhoff’s laws, has been developed which is in reasonably good agreement with the experimental results. In order to gain some additional insight into the mechanism of triode operation, the model has been also extended to describe the potential distribution inside the Nafion membrane via the numerical solution of the Nernst-Planck equation. Both model and experiment have shown the critical role of minimizing the auxiliary-anode or auxiliary-cathode resistance, and this has led to improved comb-shaped anode or cathode electrode geometries.

  17. Modeling and stability analysis for the upper atmosphere research satellite auxiliary array switch component

    Science.gov (United States)

    Wolfgang, R.; Natarajan, T.; Day, J.

    1987-01-01

    A feedback control system, called an auxiliary array switch, was designed to connect or disconnect auxiliary solar panel segments from a spacecraft electrical bus to meet fluctuating demand for power. A simulation of the control system was used to carry out a number of design and analysis tasks that could not economically be performed with a breadboard of the hardware. These tasks included: (1) the diagnosis of a stability problem, (2) identification of parameters to which the performance of the control system was particularly sensitive, (3) verification that the response of the control system to anticipated fluctuations in the electrical load of the spacecraft was satisfactory, and (4) specification of limitations on the frequency and amplitude of the load fluctuations.

  18. Hydrogen sulfide-powered solid oxide fuel cells

    Science.gov (United States)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts

  19. Reliability of supply of switchgear for auxiliary low voltage in substations extra high voltage to high voltage

    Directory of Open Access Journals (Sweden)

    Perić Dragoslav M.

    2015-01-01

    Full Text Available Switchgear for auxiliary low voltage in substations (SS of extra high voltages (EHV to high voltage (HV - SS EHV/HV kV/kV is of special interest for the functioning of these important SS, as it provides a supply for system of protection and other vital functions of SS. The article addresses several characteristic examples involving MV lines with varying degrees of independence of their supply, and the possible application of direct transformation EHV/LV through special voltage transformers. Auxiliary sources such as inverters and diesel generators, which have limited power and expensive energy, are also used for the supply of switchgear for auxiliary low voltage. Corresponding reliability indices are calculated for all examples including mean expected annual engagement of diesel generators. The applicability of certain solutions of switchgear for auxiliary low voltage SS EHV/HV, taking into account their reliability, feasibility and cost-effectiveness is analyzed too. In particular, the analysis of applications of direct transformation EHV/LV for supply of switchgear for auxiliary low voltage, for both new and existing SS EHV/HV.

  20. Auxiliary water supply device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In the device of the present invention, a cooling condensation means is disposed to a steam discharge channel of a turbine for driving pumps to directly return condensates to the reactor, so that the temperature of the suppression pool water is not elevated. Namely, the cooling condensation means for discharged steams is disposed to the discharge channel of the turbine. The condensate channel from the cooling condensation means is connected to a sucking side of the turbine driving pump. With such a constitution, when the reactor is isolated from a main steam system, reactor scram is conducted. Although the reactor water level is lowered by the reactor scram, the lowering of the reactor water level is prevented by supplementing cooling water by the turbine driving pump using steams generated in the reactor as a power source. The discharged steams after driving the turbine are cooled and condensated by the cooling condensation means by way of the discharge channel and returned to the reactor again by way of the condensate channel. With such procedures, since the temperature of suppression pool water is not elevated, there is no need to operate other cooling systems. In addition, auxiliary water can be supplied for a long period of time. (I.S.)

  1. Simulation of a passive auxiliary feedwater system with TRACE5

    Energy Technology Data Exchange (ETDEWEB)

    Lorduy, María; Gallardo, Sergio; Verdú, Gumersindo, E-mail: maloral@upv.es, E-mail: sergalbe@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), València (Spain)

    2017-07-01

    The study of the nuclear power plant accidents occurred in recent decades, as well as the probabilistic risk assessment carried out for this type of facility, present human error as one of the main contingency factors. For this reason, the design and development of generation III, III+ and IV reactors, which include inherent and passive safety systems, have been promoted. In this work, a TRACE5 model of ATLAS (Advanced Thermal- Hydraulic Test Loop for Accident Simulation) is used to reproduce an accidental scenario consisting in a prolonged Station BlackOut (SBO). In particular, the A1.2 test of the OECD-ATLAS project is analyzed, whose purpose is to study the primary system cooling by means of the water supply to one of the steam generators from a Passive Auxiliary Feedwater System (PAFS). This safety feature prevents the loss of secondary system inventory by means of the steam condensation and its recirculation. Thus, the conservation of a heat sink allows the natural circulation flow rate until restoring stable conditions. For the reproduction of the test, an ATLAS model has been adapted to the experiment conditions, and a PAFS has been incorporated. >From the simulation test results, the main thermal-hydraulic variables (pressure, flow rates, collapsed water level and temperature) are analyzed in the different circuits, contrasting them with experimental data series. As a conclusion, the work shows the TRACE5 code capability to correctly simulate the behavior of a passive feedwater system. (author)

  2. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    Science.gov (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  3. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  4. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    Science.gov (United States)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  5. 46 CFR 182.620 - Auxiliary means of steering.

    Science.gov (United States)

    2010-10-01

    ... TONS) MACHINERY INSTALLATION Steering Systems § 182.620 Auxiliary means of steering. (a) Except as... personnel hazards during normal or heavy weather operation. (b) A suitable hand tiller may be acceptable as...

  6. New set of auxiliary fields for supergravity theories

    International Nuclear Information System (INIS)

    Oliveira Rivelles, V. de.

    1983-02-01

    A brief introduction on supersymmetry is given. The problems with the obtainment of the auxiliary fields in supergravity theories are discussed, after a short presentation of the supersymmetry algebra representations. (L.C.) [pt

  7. The installation of helium auxiliary systems in HTGR

    International Nuclear Information System (INIS)

    Qin Zhenya; Fu Xiaodong

    1993-01-01

    The inert gas Helium was chosen as reactor coolant in high temperature gas coolant reactor, therefore a set of Special and uncomplex helium auxiliary systems will be installed, the safe operation of HTR-10 can be safeguarded. It does not effect the inherent safety of HTR-10 MW if any one of all those systems were damaged during operation condition. This article introduces the design function and the system principle of all helium auxiliary systems to be installed in HTR-10. Those systems include: helium purification and its regeneration system, helium supply and storage system, pressure control and release system of primary system, dump system for helium auxiliary system and fuel handling, gaseous waste storage system, water extraction system for helium auxiliary systems and evacuation system for primary system

  8. Auxiliary fields for super Yang-Mills from division algebras

    CERN Document Server

    Evans, Jonathan M.

    1994-01-01

    Division algebras are used to explain the existence and symmetries of various sets of auxiliary fields for super Yang-Mills in dimensions d=3,4,6,10. (Contribution to G\\"ursey Memorial Conference I: Strings and Symmetries)

  9. Parallel Auxiliary Space AMG Solver for $H(div)$ Problems

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-18

    We present a family of scalable preconditioners for matrices arising in the discretization of $H(div)$ problems using the lowest order Raviart--Thomas finite elements. Our approach belongs to the class of “auxiliary space''--based methods and requires only the finite element stiffness matrix plus some minimal additional discretization information about the topology and orientation of mesh entities. Also, we provide a detailed algebraic description of the theory, parallel implementation, and different variants of this parallel auxiliary space divergence solver (ADS) and discuss its relations to the Hiptmair--Xu (HX) auxiliary space decomposition of $H(div)$ [SIAM J. Numer. Anal., 45 (2007), pp. 2483--2509] and to the auxiliary space Maxwell solver AMS [J. Comput. Math., 27 (2009), pp. 604--623]. Finally, an extensive set of numerical experiments demonstrates the robustness and scalability of our implementation on large-scale $H(div)$ problems with large jumps in the material coefficients.

  10. Multi-level converter with auxiliary resonant-commutated pole

    NARCIS (Netherlands)

    Dijkhuizen, F.R.; Duarte, J.L.; Groningen, van W.D.H.

    1998-01-01

    The family of multi-level power converters offers advantages for high-power, high-voltage systems. A multi-level nested-cell structure has the attractive feature of static and dynamic voltage sharing among the switches. This is achieved by using clamping capacitors (floating capacitors) rather than

  11. An auxiliary differential equation FDTD method for anisotropic magnetized plasmas

    International Nuclear Information System (INIS)

    Liu Shaobin; Mo Jinjun; Yuan Naichang

    2004-01-01

    An auxiliary differential equation finite-difference time-domain (ADE-FDTD) methodology for anisotropic magnetized plasmas is derived. The method is based on a difference approximation of the auxiliary differential equation. A comparison with the JEC method is included. The CPU time saving by several times and accuracy of the method are confirmed by computing the reflection and transmission through a magnetized plasma layer with the direction of propagation parallel to the direction of the biasing field

  12. Operating experiences and degradation detection for auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Casada, D.; Farmer, W.S.

    1992-01-01

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The results of the study are documented in NUREG/CR-5404, Vol. 1, Auxiliary Feedwater System Aging Study. The study reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results

  13. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang; Wei, Bin; Luo, Yong; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32

  14. A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    In the past decade the scientific community has showed considerable interest in the development of implantable medical devices such as muscle stimulators, neuroprosthetic devices, and biosensors. Those devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper, we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10 μA cm -2. A non-enzymatic approach is preferred because of higher long term stability. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. An important characteristic of the fuel cell is that it has no membrane separating the electrodes, which results in low ohmic losses and small fuel cell volume. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2 μW cm -2 and has a sustainable power density of 1.5 μW cm -2 at 10 μA cm -2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.

  15. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  16. Life cycle analysis of photovoltaic cell and wind power plants

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    1997-01-01

    The paper presents life cycle analyses of net energy and CO 2 emissions on photovoltaic cell and wind power generation plants. Energy requirements associated with a plant are estimated for producing materials, manufacturing equipment, constructing facilities, acid operating plants. Energy ratio and net supplied energy are calculated by the process energy analysis that examines the entire energy inventory of input and output during life time of a plant. Life cycle CO 2 emission can also be calculated from the energy requirements obtained by the net energy analysis. The emission also includes greenhouse effect equivalent to CO 2 emission of methane gas leakage at a mining as well as CO 2 emissions from fossil fuel combustion during generating electricity, natural gas treatment at an extracting well and cement production in industry. The commercially available and future-commercial technologies are dealt with in the study. Regarding PV technologies, two different kinds of installation are investigated; roof-top typed installation of residential houses and ground installation of electric utilities. (author)

  17. Efficiency measurement and uncertainty discussion of an electric engine powered by a ``self-breathing'' and ``self-humidified'' proton exchange membrane fuel cell

    Science.gov (United States)

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H2 high heating value (HHV), a tank-to-wheel integral efficiency of (18.2±0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5±1.3)% in complete dead-end operation mode.

  18. Method to improve reliability of a fuel cell system using low performance cell detection at low power operation

    Science.gov (United States)

    Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.

    2013-04-16

    A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.

  19. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Hao; Shih, Chunkuan [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science; Wang, Jong-Rong; Lin, Hao-Tzu [Atomic Energy Council, Taiwan (China). Inst. of Nuclear Energy Research

    2013-07-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  20. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    International Nuclear Information System (INIS)

    Chen, Che-Hao; Shih, Chunkuan; Wang, Jong-Rong; Lin, Hao-Tzu

    2013-01-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  1. Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis

    International Nuclear Information System (INIS)

    Al-Saidi, W.A.; Zhang Shiwei; Krakauer, Henry

    2006-01-01

    We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schroedinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H 2 O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T)

  2. FY 1999 Report on the technical results. Part 1. Development of fuel cell power generation technologies (Research and development of molten carbonate fuel cell power generation system); 1999 nendo nenryo denchi hatsuden gijutsu kaihatsu seika hokokusho. 1. Yoyu tansan'engata nenryo denchi (hatsuden system no kenknyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    This research and development project is aimed at development of the stacking, cooling and operating technologies for the molten carbonate fuel cell power generation systems, to improve service life and performance of these systems and reduce their cost, based on the results obtained so far by the FY 1993. The R and D efforts are directed to (1) technologies for improving stack performance, (2) development of the plant system by operating a 1,000kW class power generation system, and (3) support technologies, e.g., those for stack materials. The item (1) studies 3 stack types, cross-flow, parallel-flow and internal reforming types, including the electrodes, electrolyte-supporting bases and improvement of performance and service life by separator reforming for the cross-flow and parallel-flow types, and installation and operation of a 200kW class stack system for the internal reforming type, where cells are assembled into the system and tested for their operability, after the auxiliary units are PAC-tested. The item (2) installs a 1,000kW class plant, which is operated, after clearing the requirements set by the related laws, e.g., Electric Utility Industry Law, for starting the operation, to achieve the intended targets. The item (3) includes development of the technologies for stack materials, technologies for handling gases produced by coal gasification, and studies on the total systems. (NEDO)

  3. VLTI First Fringes with Two Auxiliary Telescopes at Paranal

    Science.gov (United States)

    2005-03-01

    ESO Video Newsreel 15, released on March 14, 2005. It provides an introduction to the VLT Interferometer (VLTI) and the two Auxiliary Telescopes (ATs) now installed at Paranal. ESO PR Photo 07a/05 shows the impressive ensemble at the summit of Paranal. From left to right, the enclosure of VLT Antu, Kueyen and Melipal, AT1, the VLT Survey Telescope (VST) in the background, AT2 and VLT Yepun. Located at the summit of the 2,600-m high Cerro Paranal in the Atacama Desert (Chile), ESO's Very Large Telescope (VLT) is at the forefront of astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. The VLT is composed of four 8.2-m Unit Telescope (Antu, Kueyen, Melipal and Yepun). They have been progressively put into service together with a vast suite of the most advanced astronomical instruments and are operated every night in the year. Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal. The href="/instruments/vlti">VLT Interferometer (VLTI) combines starlight captured by two 8.2- VLT Unit Telescopes, dramatically increasing the spatial resolution and showing fine details of a large variety of celestial objects. The VLTI is arguably the world's most advanced optical device of this type. It has already demonstrated its powerful capabilities by addressing several key scientific issues, such as determining the size and the shape of a variety of stars (ESO PR 22/02, PR 14/03 and PR 31/03), measuring distances to stars (ESO PR 25/04), probing the innermost regions of the proto-planetary discs around young stars (ESO PR 27/04) or making the first detection by infrared interferometry of an extragalactic object (ESO PR 17/03). "Little Brothers" ESO PR Photo 07b/05 ESO PR Photo 07b/05 [Preview - JPEG: 597 x 400 pix - 47k] [Normal - JPEG: 1193 x 800 pix - 330k] [HiRes - JPEG: 5000 x 3354 pix - 10.0M] ESO PR Photo 07c/05 ESO PR Photo 07c/05

  4. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stiebitz, Paul [Rochester Institute of Technology, NY (United States)

    2014-05-27

    The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliable power sources for microsystems.

  5. Influence of Intra-cell Traffic on the Output Power of Base Station in GSM

    Directory of Open Access Journals (Sweden)

    M. Mileusnic

    2014-06-01

    Full Text Available In this paper we analyze the influence of intracell traffic in a GSM cell on the base station output power. It is proved that intracell traffic increases this power. If offered traffic is small, the increase of output power is equal to the part of intracell traffic. When the offered traffic and, as the result, call loss increase, the increase of output power becomes less. The results of calculation are verified by the computer simulation of traffic process in the GSM cell. The calculation and the simulation consider the uniform distribution of mobile users in the cell, but the conclusions are of a general nature.

  6. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then...

  7. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  8. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    Science.gov (United States)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  9. Recent advances and challenges of fuel cell based power system architectures and control – A review

    DEFF Research Database (Denmark)

    Das, Vipin; Sanjeevikumar, Padmanaban; Venkitusamy, Karthikeyan

    2017-01-01

    by bit with expansion in current because of losses associated with fuel cell. It is difficult in handling large rated fuel cell based power system without regulating mechanism. The issue connected with fuel based structural planning and the arrangements are widely investigated for all sorts......Renewable energy generation is rapidly growing in the power sector industry and widely used for two categories: grid connected and standalone system. This paper gives the insights about fuel cell operation and application of various power electronics systems. The fuel cell voltage decreases bit...

  10. Probabilistic cloning with supplementary information contained in the quantum states of two auxiliary systems

    International Nuclear Information System (INIS)

    Li, Lvjun; Qiu, Daowen

    2007-01-01

    In probabilistic cloning with two auxiliary systems, we consider and compare three different protocols for the success probabilities of cloning. We show that, in certain circumstances, it may increase the success probability to add an auxiliary system to the probabilistic cloning machine having one auxiliary system, but we always can find another cloning machine with one auxiliary system having the same success probability as that with two auxiliary systems

  11. Power Converters Maximize Outputs Of Solar Cell Strings

    Science.gov (United States)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  12. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    Science.gov (United States)

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    Energy Technology Data Exchange (ETDEWEB)

    Moses, L. Ng; Chien-Liang Lin [Industrial Technology Research Institute, Taiwan (China); Ya-Tang Cheng [Power Research Institute, Taiwan (China)

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  14. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  15. Models and simulations for the Danish cell project. Running PowerFactory with OPC and cell controller

    Energy Technology Data Exchange (ETDEWEB)

    Martensen, Nis; Troester, Eckehard [energynautics GmbH, Langen (Germany); Lund, Per [Energinet.dk, Fredericia (Denmark); Holland, Rod [Spirae Inc., Fort Collins, CO (United States)

    2009-07-01

    In emergency situations, the Cell Controller disconnects a distribution grid from the high-voltage network and controls the cell's island operation. The controller thus activates the existing local generation plants to improve the security of supply. The Cell Controller can operate the Cell as a Virtual Power Plant during normal grid-connected operation, thereby implementing an exemplary Smart Grid. Modeling and simulation work is presented. (orig.)

  16. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy

    Science.gov (United States)

    Tender, Leonard M.; Gray, Sam A.; Groveman, Ethan; Lowy, Daniel A.; Kauffman, Peter; Melhado, Julio; Tyce, Robert C.; Flynn, Darren; Petrecca, Rose; Dobarro, Joe

    2008-05-01

    Here we describe the first demonstration of a microbial fuel cell (MFC) as a practical alternative to batteries for a low-power consuming application. The specific application reported is a meteorological buoy (ca. 18-mW average consumption) that measures air temperature, pressure, relative humidity, and water temperature, and that is configured for real-time line-of-sight RF telemetry of data. The specific type of MFC utilized in this demonstration is the benthic microbial fuel cell (BMFC). The BMFC operates on the bottom of marine environments, where it oxidizes organic matter residing in oxygen depleted sediment with oxygen in overlying water. It is maintenance free, does not deplete (i.e., will run indefinitely), and is sufficiently powerful to operate a wide range of low-power marine-deployed scientific instruments normally powered by batteries. Two prototype BMFCs used to power the buoy are described. The first was deployed in the Potomac River in Washington, DC, USA. It had a mass of 230 kg, a volume of 1.3 m3, and sustained 24 mW (energy equivalent of ca. 16 alkaline D-cells per year at 25 °C). Although not practical due to high cost and extensive in-water manipulation required to deploy, it established the precedence that a fully functional scientific instrument could derive all of its power from a BMFC. It also provided valuable lessons for developing a second, more practical BMFC that was subsequently used to power the buoy in a salt marsh near Tuckerton, NJ, USA. The second version BMFC has a mass of 16 kg, a volume of 0.03 m3, sustains ca. 36 mW (energy equivalent of ca. 26 alkaline D-cells per year at 25 °C), and can be deployed by a single person from a small craft with minimum or no in-water manipulation. This BMFC is being further developed to reduce cost and enable greater power output by electrically connecting multiple units in parallel. Use of this BMFC powering the meteorological buoy highlights the potential impact of BMFCs to enable long

  17. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell

    KAUST Repository

    Hatzell, Marta C.

    2013-05-01

    A microbial electrolysis cell (MEC) was powered by a capacitor based energy storage circuit using energy from a microbial fuel cell (MFC) to increase MEC hydrogen production rates compared to that possible by the MFC alone. To prevent voltage reversal, MFCs charged the capacitors in a parallel configuration, and then the capacitors were discharged in series to boost the voltage that was used to power the MECs. The optimal capacitance for charging was found to be ∼0.01 F for each MFC. The use of the capacitor charging system increased energy recoveries from 9 to 13%, and hydrogen production rates increased from 0.31 to 0.72 m3 m-3-day-1, compared to coupled systems without capacitors. The circuit efficiency (the ratio of the energy that was discharged to the MEC to the energy provided to the capacitor from the MFCs) was ∼90%. These results provide an improved method for linking MFCs to MECs for renewable hydrogen gas production. © 2012 Elsevier B.V. All rights reserved.

  18. Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2008-01-01

    We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature

  19. Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2008-07-11

    We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature.

  20. Low power and reliable SRAM memory cell and array design

    CERN Document Server

    Ishibashi, Koichiro

    2011-01-01

    Success in the development of recent advanced semiconductor device technologies is due to the success of SRAM memory cells. This book addresses various issues for designing SRAM memory cells for advanced CMOS technology. To study LSI design, SRAM cell design is the best materials subject because issues about variability, leakage and reliability have to be taken into account for the design.

  1. Auxiliary bearing design considerations for gas cooled reactors

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Rodwell, E.

    2001-01-01

    The need to avoid contamination of the primary system, along with other perceived advantages, has led to the selection of electromagnetic bearings (EMBs) in most ongoing commercial-scale gas cooled reactor (GCR) designs. However, one implication of magnetic bearings is the requirement to provide backup support to mitigate the effects of failures or overload conditions. The demands on these auxiliary or 'catcher' bearings have been substantially escalated by the recent development of direct Brayton cycle GCR concepts. Conversely, there has been only limited directed research in the area of auxiliary bearings, particularly for vertically oriented turbomachines. This paper explores the current state-of-the-art for auxiliary bearings and the implications for current GCR designs. (author)

  2. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes

    International Nuclear Information System (INIS)

    Arras, Matthias M L; Grasl, Christian; Schima, Heinrich; Bergmeister, Helga

    2012-01-01

    A conventional electrospinning setup was upgraded by two turnable plate-like auxiliary high-voltage electrodes that allowed aligned fiber deposition in adjustable directions. Fiber morphology was analyzed by scanning electron microscopy and attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR). The auxiliary electric field constrained the jet bending instability and the fiber deposition became controllable. At target speeds of 0.9 m s −1 90% of the fibers had aligned within 2°, whereas the angular spread was 70° without the use of auxiliary electrodes. It was even possible to orient fibers perpendicular to the rotational direction of the target. The fiber diameter became smaller and its distribution narrower, while according to the FTIR-ATR measurement the molecular orientation of the polymer was unaltered. This study comprehensively documents the feasibility of directed fiber deposition and offers an easy upgrade to existing electrospinning setups. (paper)

  3. Extensions of the auxiliary field method to solve Schroedinger equations

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2008-01-01

    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed

  4. Extensions of the auxiliary field method to solve Schroedinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2008-10-24

    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed.

  5. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  6. Linearized curvatures for auxiliary fields in the de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-09-19

    New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.

  7. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  8. System-level Reliability Assessment of Power Stage in Fuel Cell Application

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    reliability. In a case study of a 5 kW fuel cell power stage, the parameter variations of the lifetime model prove that the exponential factor of the junction temperature fluctuation is the most sensitive parameter. Besides, if a 5-out-of-6 redundancy is used, it is concluded both the B10 and the B1 system......High efficient and less pollutant fuel cell stacks are emerging and strong candidates of the power solution used for mobile base stations. In the application of the backup power, the availability and reliability hold the highest priority. This paper considers the reliability metrics from...... the component-level to the system-level for the power stage used in a fuel cell application. It starts with an estimation of the annual accumulated damage for the key power electronic components according to the real mission profile of the fuel cell system. Then, considering the parameter variations in both...

  9. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  10. Power system with an integrated lubrication circuit

    Science.gov (United States)

    Hoff, Brian D [East Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Lane, William H [Chillicothe, IL

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  11. Loss of preferred power events in German BWRs and PWRs

    International Nuclear Information System (INIS)

    Frisch, W.

    1984-01-01

    This chapter examines the variety of courses which the loss of auxiliary power case may take in different plants, depending on the initiation of the event, the switching to the alternate auxiliary power supply and the automatic start-up sequences of auxiliaries (e.g. feedwater pumps, condensate pumps) after a short term interruption of auxiliary power. Topics considered include main station transformer failure in a boiling water reactor (BWR), main plant features, event description, evaluation of the event, deviations from expected behavior, operator actions, a comparison with start-up tests and other events, a comparison with postcalculations, and auxiliary transformer failure in a pressurized water reactor (PWR). Loss of preferred (or auxiliary) power events are standard design cases taken into account in the design of many reactor and plant systems

  12. Improving Semi-Supervised Learning with Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    Deep generative models based upon continuous variational distributions parameterized by deep networks give state-of-the-art performance. In this paper we propose a framework for extending the latent representation with extra auxiliary variables in order to make the variational distribution more...... expressive for semi-supervised learning. By utilizing the stochasticity of the auxiliary variable we demonstrate how to train discriminative classifiers resulting in state-of-the-art performance within semi-supervised learning exemplified by an 0.96% error on MNIST using 100 labeled data points. Furthermore...

  13. TMI-2 auxiliary building elevator shaft and pit decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, T.G.

    1986-01-01

    Decontamination of the elevator pit and shaft in the auxiliary building at Three Mile Island Unit 2 (TMI-2) was performed to remove high radiation and contamination levels which prevented personnel from utilizing the elevator. The radiation and contamination levels in the TMI-2 auxiliary building elevator shaft have been reduced to the point where plant personnel are again permitted to ride in the elevator without a radiation work permit, with the exception of access to the 281-ft (basement) level. Based on the declassification and expanded use of the elevator, the task goal has been met. The tax expended 16.16 man-rem and 621 man-hours.

  14. Intrinsically safe electrical installations, auxiliary circuits and electric communication equipment

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1981-11-19

    Technical progress has not stopped short of electrical systems in mining, so that three new chapters are new included in the VDE regulations leaflet No. 0118 on 'Installation of electrical systems in underground coal mining'. The regulations on intrinsically safe electric systems, auxiliary circuits and communication systems are briefly described, and grounds for the regulations are presented. The regulations already take account of European regulations on intrinsic safety which will soon be published in a European Regulation on Mine Explosions. In the chapters on auxiliary circuits and communication systems, protection against direct contact, fires, and explosions is discussed as well as the further goal of reliable signal transmission.

  15. Direction of Impurity Pinch and Auxiliary Heating in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Angioni, C.; Peeters, A.G.

    2006-01-01

    A mechanism of particle pinch for trace impurities in tokamak plasmas, arising from the effect of parallel velocity fluctuations in the presence of a turbulent electrostatic potential, is identified analytically by means of a reduced fluid model and verified numerically with a gyrokinetic code for the first time. The direction of such a pinch reverses as a function of the direction of rotation of the turbulence in agreement with the impurity pinch reversal observed in some experiments when moving from dominant auxiliary ion heating to dominant auxiliary electron heating

  16. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  17. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    Science.gov (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  18. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  19. Compact Fuel Cell Power Supplies with Safe Fuel Storage

    National Research Council Canada - National Science Library

    Powell, M. R; Chellappa, A. S; Vencill, T. R

    2004-01-01

    .... Despite its energy-density advantage, this ammonia-based power supply will not likely be deployed in military or commercial markets unless safety concerns related to the possible rapid release of ammonia are resolved...

  20. Standard-Cell, Open-Architecture Power Conversion Systems

    National Research Council Canada - National Science Library

    Boroyevich, D; Wang, F; Lee, F. C; Odendaal, W. G; Edwards, S

    2005-01-01

    ...). This project was purposefully aimed to develop a standardized hierarchical design and analysis methodology for modular power electronics conversion systems using as basis the ISO/OSI seven-layer reference model...

  1. Development of a thin film solar cell interconnect for the PowerSphere concept

    International Nuclear Information System (INIS)

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen E.; Curtis, Henry B.; Kerslake, Thomas W.; Peterson, Todd T.

    2005-01-01

    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the PowerSphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference

  2. Impute DC link (IDCL) cell based power converters and control thereof

    Science.gov (United States)

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  3. Modelling and simulation of a PEM fuel cell power system with a fuzzy logic controller

    International Nuclear Information System (INIS)

    Al-Dabbagh, A.W.; Lu, L.; Mazza, A.

    2009-01-01

    Fuel cell power systems are emerging as promising means of electrical power generation on account of the associated clean electricity generation process, as well as their suitability for use in a wide range of applications. During the design stage, the development of a computer model for simulating the behaviour of a system under development can facilitate the experimentation and testing of that system's performance. Since the electrical power output of a fuel cell stack is seldom at a suitable fixed voltage, conditioning circuits and their associated controllers must be incorporated in the design of the fuel cell power system. This paper presents a MATLAB/Simulink model that simulates the behaviour of a Proton Exchange Membrane (PEM) fuel cell, conditioning circuits and their controllers. The computer modelling of the PEMFC was based on adopted mathematical models that describe the fuel cell's operational voltage, while accounting for the irreversibilities associated with the fuel cell stack. The conditioning circuits that are included in the Simulink model are a DC-DC converter and DC-AC inverter circuits. These circuits are the commonly utilized power electronics circuits for regulating and conditioning the output voltage from a fuel cell stack. The modelling of the circuits is based on relationships that govern the output voltage behaviour with respect to their input voltages, switching duty cycle and efficiency. In addition, this paper describes a Fuzzy Logic Controller (FLC) design that is aimed at regulating the conditioning circuits to provide and maintain suitable electrical power for a wide range of applications. (author)

  4. Stem cells technology: a powerful tool behind new brain treatments.

    Science.gov (United States)

    Duru, Lucienne N; Quan, Zhenzhen; Qazi, Talal Jamil; Qing, Hong

    2018-06-18

    Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.

  5. Improved Short-Circuit Protection for Power Cells in Series

    Science.gov (United States)

    Davies, Francis

    2008-01-01

    A scheme for protection against short circuits has been devised for series strings of lithium electrochemical cells that contain built-in short-circuit protection devices, which go into a high-resistance, current-limiting state when heated by excessive current. If cells are simply connected in a long series string to obtain a high voltage and a short circuit occurs, whichever short-circuit protection device trips first is exposed to nearly the full string voltage, which, typically, is large enough to damage the device. Depending on the specific cell design, the damage can defeat the protective function, cause a dangerous internal short circuit in the affected cell, and/or cascade to other cells. In the present scheme, reverse diodes rated at a suitably high current are connected across short series sub-strings, the lengths of which are chosen so that when a short-circuit protection device is tripped, the voltage across it does not exceed its rated voltage. This scheme preserves the resetting properties of the protective devices. It provides for bypassing of cells that fail open and limits cell reversal, though not as well as does the more-expensive scheme of connecting a diode across every cell.

  6. Fuel Cell Backup Power Unit Configuration and Electricity Market Participation: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-13

    This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.

  7. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. D. Vora

    2008-02-01

    Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

  8. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  9. The uses of electrostatic bending and focussing elements for auxiliary storage rings in large proton collider tunnels

    International Nuclear Information System (INIS)

    Winn, D.R.

    1987-01-01

    The authors discuss the possibility of using electrostatic elements, instead of magnets, for bending and focusing in auxiliary electron storage rings in the tunnels of large proton accelerators. For example, in the proposed SSC tunnel, electron beam energies of --100 GeV appear to be possible. Benefits of electrostatic systems over conventional magnets in cost, aperture, beam dynamics, radiation hardness, and power are presented. Electrostatic element designs are discussed, as are applications to electron, anti-proton and heavy ion beams

  10. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  11. A direct methanol fuel cell system to power a humanoid robot

    Science.gov (United States)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  12. Development of KALIMER auxiliary sodium and cover gas management system

    International Nuclear Information System (INIS)

    Kwon, Sang Woon; Hwang, Sung Tae

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author)

  13. Auxiliary services for petrochemistry. Cogeneration, thermocompression, steam distribution networks

    International Nuclear Information System (INIS)

    Vergerio, G.; Bruzzi, V.

    1999-01-01

    The article gives some guidelines for the choice of the most suitable energy vectors distributed in petrochemical plants and refineries for auxiliary services and for processes (mainly distillation). Conclusions are summed up in a diagram showing the most suitable heat sources and sinks for the various temperature ranges [it

  14. Auxiliary controller for time-to-digital converter module readout

    International Nuclear Information System (INIS)

    Ermolin, Yu.V.

    1992-01-01

    The KD-225 auxiliary controller for time-to-digital converter module readout in the SUMMA crate is described. After readout and preliminary processing the data are written in the P-140 buffer memory module. The controller is used in the FODS-2 experimental setup data acquisition system. 12 refs.; 1 fig

  15. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  16. 76 FR 22295 - National Poultry Improvement Plan and Auxiliary Provisions

    Science.gov (United States)

    2011-04-21

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection 9 CFR Part 145 [Docket No. APHIS-2009-0031] RIN 0579-AD21 National Poultry Improvement Plan and Auxiliary Provisions Correction In rule document 2011-6539 appearing on pages 15791-15798 in the issue of Tuesday, March 22, 2011, make the...

  17. Development of KALIMER auxiliary sodium and cover gas management system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Woon; Hwang, Sung Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-11-01

    The objectives of this report are to develop and to describe the auxiliary liquid metal and cover gas management systems of KALIMER. the system includes following system: (1) Auxiliary liquid metal system (2) Inert gas receiving and processing system (3) Impurity monitoring and analysis system. Auxiliary liquid metal and cover gas management system of KALIMER was developed. Functions of each systems and design basis were describes. The auxiliary liquid metal system receives, transfers, and purifies all sodium used in the plant. The system furnishes the required sodium quantity at the pressure, temperature, flow rate, and purity specified by the interfacing system. The intermediated sodium processing subsystem (ISPS) provides continuous purification of IHTS sodium, as well as performs the initial fill operation for both the IHTS and reactor vessel. The primary sodium processing subsystem provides purification (cold trapping) for sodium used in the reactor vessel. The inert gas receiving and processing (IGRP) system provides liquefied and ambient gas storage, delivers inert gases of specified composition and purity at regulated flow rates and pressures to points of usage throughout the KALIMER, and accepts the contaminated gases through its vacuum facilities for storage and transfer to the gas radwaste system. Three gases are used in the KALIMER: helium, argon, and nitrogen. 11 tabs., 12 figs. (Author).

  18. Auxiliary basis expansions for large-scale electronic structure calculations.

    Science.gov (United States)

    Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin

    2005-05-10

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  19. Verb and auxiliary movement in agrammatic Broca's aphasia

    NARCIS (Netherlands)

    Bastiaanse, Y.R.M.; Thompson, C.K.

    Verb production in agrammatic Broca's aphasia has repeatedly been shown to be impaired by a number of investigators. Not only is the number of verbs produced often significantly reduced, but verb inflections and auxiliaries are often omitted as well (e.g., Bastiaanse, Jonkers, & Moltmaker-Osinga,

  20. PWR auxiliary systems, safety and emergency systems, accident analysis, operation

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1976-01-01

    The author presents a description of PWR auxiliary systems like volume control, boric acid control, coolant purification, -degassing, -storage and -treatment system and waste processing systems. Residual heat removal systems, emergency systems and containment designs are discussed. As an accident analysis the author gives a survey over malfunctions and disturbances in the field of reactor operations. (TK) [de

  1. Development of Space Qualified Microlens Arrays for Solar Cells Used on Satellite Power Systems

    Directory of Open Access Journals (Sweden)

    Ömer Faruk Keser

    2017-08-01

    Full Text Available The power system, one of the main systems of satellite, provides energy required for the satellite. Solar cells are also the most used energy source in the power system. The third generation multi-junction solar cells are known as the ones with highest performance. One of the methods to increase the performance of the solar cells is anti-reflective surface coatings with the Micro Lens Array-MLA. It's expected that satellite technologies has high power efficiency and low mass. The space environment has many effects like atomic oxygen, radiation and thermal cycles. Researches for increasing the solar cells performance shows that MLA coated solar cell has increased light absorption performance and less cell heating with very low additional mass. However, it is established that few studies on MLA coatings of solar cells are not applicable on space platforms. In this study, the process of development of MLA which is convenient to space power systems is investigated in a methodological way. In this context, a method which is developed based on MLA coatings of multi-junction solar cells for satellite power systems is presented.

  2. Application of the monolithic solid oxide fuel cell to space power systems

    International Nuclear Information System (INIS)

    Myles, K.M.; Bhattacharyya, S.K.

    1991-01-01

    The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented---the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system

  3. Application of the monolithic solid oxide fuel cell to space power systems

    Science.gov (United States)

    Myles, Kevin M.; Bhattacharyya, Samit K.

    1991-01-01

    The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.

  4. Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells

    KAUST Repository

    Liu, Jia; Geise, Geoffrey M.; Luo, Xi; Hou, Huijie; Zhang, Fang; Feng, Yujie; Hickner, Michael A.; Logan, Bruce E.

    2014-01-01

    Power production in microbial reverse-electrodialysis cells (MRCs) can be limited by the internal resistance of the reverse electrodialysis stack. Typical MRC stacks use non-conductive spacers that block ion transport by the so-called spacer shadow

  5. Auxiliary radiofrequency heating of tokamaks, Task 3

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1991-07-01

    The research performed under this grant during the past three years has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling and heating issues: efficient coupling during the L- to H-mode transition by analysis and computer simulation of ICRF antennas edge plasma profiles; analysis of both dielectric-filled waveguide and coil ICRF antenna coupling to plasma edge profiles; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results; ICRF full-wave field solutions, power conservation and heating analyses; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report. 15 refs

  6. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    logo, Direct FuelCell and “DFC” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat... of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency

  7. Analysis of fuel cell hybrid locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects LLC, 621, 17th Street, Suite 2131, Denver, CO 80293 (United States); Peters, John; Smith, Brian E. [Transportation Technology Center Inc., 55500 DOT Road, Pueblo, CO 81007 (United States); Velev, Omourtag A. [AeroVironment Inc., 232 West Maple Avenue, Monrovia, CA 91016 (United States)

    2006-07-03

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109t, 1.2MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive, that

  8. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  9. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    International Nuclear Information System (INIS)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency

  10. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2008-01-15

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  11. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems

    International Nuclear Information System (INIS)

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2004-01-01

    This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various conditions, including the possibility of using fuel cell vehicles (FCVs) to produce power when they are parked at office buildings and residences. The analysis shows that the economics of both stationary fuel cell and FCV-based power vary significantly with variations in key input variables such as the price of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability levels. The 'central case' results show that stationary PEM fuel cell systems can supply electricity for offices and homes in California at a net savings when fuel cell system costs reach about $6000 for a 5 kW home system ($1200/kW) and $175,000 for a 250 kW commercial system ($700/kW) and assuming somewhat favorable natural gas costs of $6/GJ at residences and $4/GJ at commercial buildings. Grid-connected FCVs in commercial settings can also potentially supply electricity at competitive rates, in some cases producing significant annual benefits. Particularly attractive is the combination of net metering along with time-of-use electricity rates that allow power to be supplied to the utility grid at the avoided cost of central power plant generation. FCV-based power at individual residences does not appear to be as attractive, at least where FCV power can only be used directly or banked with the utility for net metering and not sold in greater quantity, due to the low load levels at these locations that provide a poor match to automotive fuel cell operation, higher natural gas prices than are available at commercial settings, and other factors

  12. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto; Alqarni, Wejdan Mohammed Mofleh; Hussain, Muhammad Mustafa

    2014-01-01

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  13. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  14. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy; Logan, Bruce E.

    2011-01-01

    significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter

  15. Power loss analysis of n-PASHA cells validated by 2D simulations

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Gutjahr, A.; Burgers, A.R.; Saynova, D.S.; Cesar, I.; Romijn, I.G.

    2013-10-15

    To reach >21% efficiency for the n-Pasha (passivated all sides H-pattern) cell of ECN, reliable power-loss analyses are essential. A power-loss analysis is presented that is based on experimental data but validated and completed by 2D simulations. The analysis is used to identify the key factors that will contribute most to achieving >21% efficiency.

  16. Rating PV Power and Energy: Cell, Module, and System Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2016-06-02

    A summary of key points related to research-level measurements of current vs. voltage measurement theory including basic PV operation, equivalent circuit, and concept of spectral error; PV power performance including PV irradiance sensors, simulators and commercial and generic I-V systems; PV measurement artifacts, intercomparisons, and alternative rating methods.

  17. Fuel cell programs in the United States for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  18. An updated assessment of the prospects for fuel cell-powered cars. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in the car market. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. The report provides an assessment of the status of technology development for different types of fuel cells in terms of applications to cars and offers estimates of market potential. Some fuel-cell powered cars are now available for demonstration purposes but the report concludes that truly commercial sales are unlikely to start before 2010 and widespread deployment is expected to take a further ten years after that. The issue of fuel choice is considered largely resolved with most car manufacturers currently focussing on hydrogen as a fuel. A discussion of the prospects and barriers for fuel cell cars concludes that cost reduction is now the major barrier to the successful commercialisation of fuel cells in cars. More demonstration prototypes and field trials are required to provide information on energy, environmental and economic performance of fuel cell cars. Field trials could also provide information to assist the development of refuelling systems, fuel storage systems, stacks and other system components and to gain experience of building integrated fuel cell systems within the constraints imposed by cars.

  19. Aluminum-air power cell research and development

    Science.gov (United States)

    Cooper, J. F.

    1984-12-01

    The wedge-shaped design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m(2). A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte.

  20. Advanced PEFC development for fuel cell powered vehicles

    Science.gov (United States)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  1. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  2. Minimal set of auxiliary fields and S-matrix for extended supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A [Physical Lebedev Institute - Moscow

    1979-05-19

    Minimal set of auxiliary fields for linearized SO(2) supergravity and one-parameter extension of the minimal auxiliary fields in the SO(1) supergravity are constructed. The expression for the S-matrix in SO(2) supergravity are given.

  3. Characterisation of a fuel cell based uninteruptable power supply

    Energy Technology Data Exchange (ETDEWEB)

    Aklil, D.; Gazey, R.; McGrath, D.

    2004-07-01

    This report presents the findings of tests carried out to determine if a fuel cell (FC) could be used instead of external batteries in UPS systems. Details are given of the configuration of the 1kW fuel cell based test UPS system (FC-UPS), fuel cell suitability for UPS, the start-up conditions, the on-load dynamic response, comparative weight/space savings of FC-UPS, lifetime costs compared to battery installations, and market readiness of FC systems for UPS deployment. The importance of the collaboration between the FC manufacturers and system integrator for the implementation of the project and of the testing and characterisation of FC products is stressed.

  4. Using a Voltage Domain Programmable Technique for Low-Power Management Cell-Based Design

    Directory of Open Access Journals (Sweden)

    Ching-Hwa Cheng

    2011-09-01

    Full Text Available The Multi-voltage technique is an effective way to reduce power consumption. In the proposed cell-based voltage domain programmable (VDP technique, the high and low voltages applied to logic gates are programmable. The flexible voltage domain reassignment allows the chip performance and power consumption to be dynamically adjusted. In the proposed technique, the power switches possess the feature of flexible programming after chip manufacturing. This VDP method does not use an external voltage regulator to regulate the supply voltage level from outside of the chip but can be easily integrated within the design. This novel technique is proven by use of a video decoder test chip, which shows 55% and 61% power reductions compared to conventional single-Vdd and low-voltage designs, respectively. This power-aware performance adjusting mechanism shows great power reduction with a good power-performance management mechanism.

  5. Chitin Lengthens Power Production in a Sedimentary Microbial Fuel Cell

    Science.gov (United States)

    2014-01-01

    organic carbon sediments demonstrate that chitin enhances and lengthens power production. Keywords—chitin; MFC; microbiology ; iron-reducing bacteria...levels of organic content available as a food source for bacteria in the sediment. Dependent upon applications, there are scenarios where a SMFC...as ethanol, molasses, or vegetable oils. In the case of underwater marine sediment, options for carbon amendment are limited to solid carbon

  6. Microplasma reforming of hydrocarbons for fuel cell power

    Science.gov (United States)

    Besser, R. S.; Lindner, P. J.

    The implementation of a microplasma approach for small scale reforming processes is explored as an alternative to more standard catalyst-based processes. Plasmas are a known approach to activating a chemical reaction in place of catalysts, and microplasmas are particularly attractive owing to their extremely high electron and power densities. Their inherent compactness gives them appeal for portable applications, but their modularity leads to scalability for higher capacity. We describe the realization of experimental microplasma reactors based on the microhollow cathode discharge (MHCD) structure by silicon micromachining for device fabrication. Experiments were carried out with model hydrocarbons methane and butane in the reactors within a microfluidic flow and analytical setup. We observe several key phenomena, including the ability to liberate hydrogen from the hydrocarbons at temperatures near ambient and sub-Watt input power levels, the tendency toward hydrocarbon decomposition rather than oxidation even in the presence of oxygen, and the need for a neutral carrier to obtain conversion. Mass and energy balances on these experiments revealed conversions up to nearly 50%, but the conversion of electrical power input to chemical reaction enthalpy was only on the order of 1%. These initial, exploratory results were recorded with devices and at process settings without optimization, and are hence promising for an emerging, catalyst-free reforming approach.

  7. Proton Exchange Membrane Fuel Cell/Supercapasitor Hybrid Power Management System for a Golf Cart

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    This paper presented the transformation of a golf cart system powered lead acid battery into an environmental friendly hybrid vehicle. The design developed by using an advantage contributes by the uprising alternative power source candidate which is Proton Exchange Membrane Fuel Cell (PEMFC) and the maintenance free energy storage device, a supercapacitor (SC). The fuel cell (FC) stack was an in house manufactured with 450 W (36 V, 12.5 A) power, while the SC was from Maxwell Technologies (48 V, 165 F). This two power sources were controlled by the mechanical relay, meanwhile the reactant (hydrogen) are control by mass flow controller (MFC) both signaled by a National Instrument (NI) devices. The power management controller are programmed in the LabVIEW environment and then downloaded to the NI devices. The experimental result of the power trend was compared before and after the transformation with the same route to validate the effectiveness of the proposed power management strategy. The power management successfully controls the power sharing between power sources and satisfies the load transient. While the reactant control managed to vary the hydrogen mass flow rate feed according to the load demand in vehicular applications. (author)

  8. 9.0% power conversion efficiency from ternary all-polymer solar cells

    NARCIS (Netherlands)

    Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Genene, Z.; Ma, W.; Mammo, W.; Yartsev, A.; Andersson, M.; Janssen, R.A.J.; Wang, E.

    2017-01-01

    Integration of a third component into a single-junction polymer solar cell (PSC) is regarded as an attractive strategy to enhance the performance of PSCs. Although binary all-polymer solar cells (all-PSCs) have recently emerged with compelling power conversion efficiencies (PCEs), the PCEs of

  9. Basic model and governing equation of solar cells used in power and control applications

    NARCIS (Netherlands)

    Izadian, A.; Pourtaherian, A.; Motahari, S.

    2012-01-01

    This paper provides an overview of modeling of a group of commercially available solar cells to ease the study of solar powered electric systems. The models solar cells can be accurately used to predict the behavior of the system operation under different conditions.

  10. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo.

    Science.gov (United States)

    Rella, Lorenzo; Fernandes Póvoa, Euclides E; Korswagen, Hendrik C

    2016-04-01

    During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process. © 2016 Wiley Periodicals, Inc.

  11. Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery

    Directory of Open Access Journals (Sweden)

    Mohamed Daowd

    2014-04-01

    Full Text Available Lithium-based batteries are considered as the most advanced batteries technology, which can be designed for high energy or high power storage systems. However, the battery cells are never fully identical due to the fabrication process, surrounding environment factors and differences between the cells tend to grow if no measures are taken. In order to have a high performance battery system, the battery cells should be continuously balanced for maintain the variation between the cells as small as possible. Without an appropriate balancing system, the individual cell voltages will differ over time and battery system capacity will decrease quickly. These issues will limit the electric range of the electric vehicle (EV and some cells will undergo higher stress, whereby the cycle life of these cells will be shorter. Quite a lot of cell balancing/equalization topologies have been previously proposed. These balancing topologies can be categorized into passive and active balancing. Active topologies are categorized according to the active element used for storing the energy such as capacitor and/or inductive component as well as controlling switches or converters. This paper proposes an intelligent battery management system (BMS including a battery pack charging and discharging control with a battery pack thermal management system. The BMS user input/output interfacing. The battery balancing system is based on battery pack modularization architecture. The proposed modularized balancing system has different equalization systems that operate inside and outside the modules. Innovative single switched capacitor (SSC control strategy is proposed to balance between the battery cells in the module (inside module balancing, IMB. Novel utilization of isolated bidirectional DC/DC converter (IBC is proposed to balance between the modules with the aid of the EV auxiliary battery (AB. Finally an experimental step-up has been implemented for the validation of the

  12. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    Fahad, A.; Ali, S.M.; Bhatti, A.A.; Nasir, M

    2013-01-01

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  13. Dynamic behaviour of Li batteries in hydrogen fuel cell power trains

    Science.gov (United States)

    Veneri, O.; Migliardini, F.; Capasso, C.; Corbo, P.

    A Li ion polymer battery pack for road vehicles (48 V, 20 Ah) was tested by charging/discharging tests at different current values, in order to evaluate its performance in comparison with a conventional Pb acid battery pack. The comparative analysis was also performed integrating the two storage systems in a hydrogen fuel cell power train for moped applications. The propulsion system comprised a fuel cell generator based on a 2.5 kW polymeric electrolyte membrane (PEM) stack, fuelled with compressed hydrogen, an electric drive of 1.8 kW as nominal power, of the same typology of that installed on commercial electric scooters (brushless electric machine and controlled bidirectional inverter). The power train was characterized making use of a test bench able to simulate the vehicle behaviour and road characteristics on driving cycles with different acceleration/deceleration rates and lengths. The power flows between fuel cell system, electric energy storage system and electric drive during the different cycles were analyzed, evidencing the effect of high battery currents on the vehicle driving range. The use of Li batteries in the fuel cell power train, adopting a range extender configuration, determined a hydrogen consumption lower than the correspondent Pb battery/fuel cell hybrid vehicle, with a major flexibility in the power management.

  14. Mitochondria can Power Cells to Life and Death

    Indian Academy of Sciences (India)

    molecular basis of pathogenicity and ... Mitochondria were discovered by R Altman in 1890 and the word was coined ... Diabetes mellitus ... 2 x 103 per cell) depending upon where and in which tissue they exist. They can .... is released, which then gears up other types of caspases to orchestrate .... Cellular Biology, CDFD.

  15. Hydrogen & fuel cells: advances in transportation and power

    National Research Council Canada - National Science Library

    Hordeski, Michael F

    2009-01-01

    ... race, it became more of an economics issue since as long as petroleum was available and cheap there was no need to develop a hydrogen technology. Now, we see much more investment in fuel cell technology, hydrogen fueled vehicles and even hydrogen fuel stations. The technology is being pushed by economics as oil prices continue to rise with dwind...

  16. Safe, High Specific Energy & Power Li-ion Cells

    Data.gov (United States)

    National Aeronautics and Space Administration — Today’s best, safe commercial Li-ion cell designs achieve ~180 Wh/kg, ~500 Wh/L, and 400 W/kg. When accounting for the lightest (1.35) parasitic mass and smallest...

  17. Power losses in bilayer inverted small molecule organic solar cells

    KAUST Repository

    Trinh, Cong; Bakke, Jonathan R.; Brennan, Thomas P.; Bent, Stacey F.; Navarro, Francisco; Bartynski, Andrew; Thompson, Mark E.

    2012-01-01

    Inverted bilayer organic solar cells using copper phthalocyanine (CuPc) as a donor and C60 as an acceptor with the structure: glass/indium tin oxide (ITO)/ZnO/C60/CuPc/MoO3/Al, in which the zinc oxide (ZnO) was deposited by atomic layer deposition

  18. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  19. Accuracy of sentinel lymph node biopsy for the assessment of auxiliary status in patients with early (T1) breast carcinoma

    International Nuclear Information System (INIS)

    Gurleyik, G.; Sekmen, U.; Saglam, A.; Aker, F.

    2005-01-01

    Objective: To determine the accuracy of SLN biopsy for the assessment of auxiliary status, and prognostic markers leading to lymphatic metastasis in patients with early (T1) breast cancer. Design: Cross-sectional study. Place and Duration of Study: Department of Surgery, Teaching and Research Hospital. Between January 2000 and August 2004. Patients and Methods: SLN mapping by blue dye method was performed on 39 patients with T1 breast carcinoma. SLNs, level 1 and 2 auxiliary nodes were dissected and excised. The size, pathologic features of the primary tumor, SLNs and other auxiliary nodes, and hormone receptors were evaluated by histopathologic examination. The rate of SLNs and non SLNs involvement, and demographic, clinical and pathologic risk factors leading to nodal metastasis were established. The diagnostic accuracy of SLN for auxiliary status was calculated. Results: SLNs were identified in 37 (95%) patients. The axilla had metastasis in 11 (28%) patients. Malignant cells involved SLNs in 8 patients. Non-SLNs had metastasis in 3 patients without SLN involvement. The sensitivity, specificity and accuracy of SLN biopsy for predicting auxiliary status was calculated as 73%, 100% and 92% respectively. Four of 5 patients T1c tumors (p=0.14) and lymphovascular invasion (p=0.0004). Conclusion: SLN biopsy with high diagnostic accuracy may prevent unnecessary disection of the axilla in the majority of patients with early (T1) breast carcinoma. Some risk factors as pre-menopausal status, absence of hormone receptors, and presence of lymphovascular invasion must be taken into account as important determinant of non-SLNs metastasis. (author)

  20. Reliability considerations of a fuel cell backup power system for telecom applications

    Science.gov (United States)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  1. Design approach for solar cell and battery of a persistent solar powered GPS tracker

    Science.gov (United States)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio

    2017-08-01

    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  2. A review on DC/DC converter architectures for power fuel cell applications

    International Nuclear Information System (INIS)

    Kolli, Abdelfatah; Gaillard, Arnaud; De Bernardinis, Alexandre; Bethoux, Olivier; Hissel, Daniel; Khatir, Zoubir

    2015-01-01

    Highlights: • Different DC/DC power converter topologies for Fuel Cell systems are presented. • Advantages and drawbacks of the DC/DC power converter topologies are detailed. • Wide-BandGap semiconductors are attractive candidates for design of converters. • Wide-BandGap semiconductors improve efficiency and thermal limits of converters. • Different semiconductor technologies are assessed. - Abstract: Fuel cell-based power sources are attractive devices. Through multi-stack architecture, they offer flexibility, reliability, and efficiency. Keys to accessing the market are simplifying its architecture and each components. These include, among others, the power converter enabling the output voltage regulation. This article focuses on this specific component. The present paper gives a comprehensive overview of the power converter interfaces potentially favorable for the automotive, railways, aircrafts and small stationary domains. First, with respect to the strategic development of a modular design, it defines the specifications of a basic interface. Second, it inventories the best architecture opportunities with respect to these requirements. Based on this study, it fully designs a basic module and points out the outstanding contribution of the new developed silicon carbide switch technology. In conclusion, this review article exhibits the importance of choosing the right power converter architecture and the related technology. In this context it is highlighted that the output power interface can be efficient, compact and modular. In addition, its features enable a thermal compatibility with many ways of integrating this component in the global fuel cell based power source.

  3. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  4. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    Science.gov (United States)

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

  5. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  6. 47 CFR 74.601 - Classes of TV broadcast auxiliary stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Classes of TV broadcast auxiliary stations. 74... Television Broadcast Auxiliary Stations § 74.601 Classes of TV broadcast auxiliary stations. (a) TV pickup stations. A land mobile station used for the transmission of TV program material and related communications...

  7. BE, DO, and Modal Auxiliaries of 3-Year-Old African American English Speakers

    Science.gov (United States)

    Newkirk-Turner, Brandi L.; Oetting, Janna B.; Stockman, Ida J.

    2014-01-01

    Purpose: This study examined African American English--speaking children's use of BE, DO, and modal auxiliaries. Method: The data were based on language samples obtained from 48 three-year-olds. Analyses examined rates of marking by auxiliary type, auxiliary surface form, succeeding element, and syntactic construction and by a number of child…

  8. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fans (I-C mines). 57.22209 Section 57... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22209 Auxiliary fans (I-C mines). Electric auxiliary fans shall be approved by MSHA under the applicable requirements of 30 CFR part 18...

  9. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the applicable...

  10. Design and analysis of single- ended robust low power 8T SRAM cell

    Directory of Open Access Journals (Sweden)

    Gupta Neha

    2016-01-01

    Full Text Available This paper is based on the observation of 8T single ended static random access memory (SRAM and two techniques for reducing the sub threshold leakage current, power consumption are examined. In the first technique, effective supply voltage and ground node voltages are changed using a dynamic variable voltage level technique(VVL. In the second technique power supply is scaled down. This 8T SRAM cell uses one word line, two bitlinesand a transmission gate. Simulations and analytical results show that when the two techniques combine the new SRAM cell has correct read and write operation and also the cell contains 55.6% less leakage and the dynamic power is 98.8% less than the 8T single ended SRAM cell. Simulations are performed using cadence virtuoso tool at 45nm technology.

  11. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    Science.gov (United States)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  12. Fuel cells niche market applications and design studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Mainstream fuel cell markets such as stationary power and transport propulsion have already received considerable attention. However, the niche areas considered in this report also offer considerable markets that are considered potentially ready for exploitation. This report examines those markets and considers the broad issues for exploitation. This programme of work has been funded under the DTI's Advanced Fuel Cell Programme. The overall aim of this project was to identify and evaluate niche market applications that have the potential to provide early commercially competitive market opportunities for fuel cell systems. Battery replacement, portable, mobile auxiliary power and stationary applications for non-standard generation are covered. (author)

  13. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

    Science.gov (United States)

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2011-10-28

    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011

  14. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Marmy, C A; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  15. Fuel cell powered vehicles using supercapacitors-device characteristics, control strategies, and simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H.; Burke, A.F. [Institute of Transportation Studies, University of California (United States)

    2010-10-15

    The fuel cell powered vehicle is one of the most attractive candidates for the future due to its high efficiency and capability to use hydrogen as the fuel. However, its relatively poor dynamic response, high cost and limited life time have impeded its widespread adoption. With the emergence of large supercapacitors (also know as ultracapacitors, UCs) with high power density and the shift to hybridisation in the vehicle technology, fuel cell/supercapacitor hybrid fuel cell vehicles are gaining more attention. Fuel cells in conjunction with supercapacitors can create high power with fast dynamic response, which makes it well suitable for automotive applications. Hybrid fuel cell vehicles with different powertrain configurations have been evaluated based on simulations performed at the Institute of Transportation Studies, University of California-Davis. The following powertrain configurations have been considered: (a)Direct hydrogen fuel cell vehicles (FCVs) without energy storage (b)FCVs with supercapacitors directly connected in parallel with fuel cells (c)FCVs with supercapacitors coupled in parallel with fuel cells through a DC/DC converter (d)FCVs with fuel cells connected to supercapacitors via a DC/DC converter. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Abuse behavior of high-power, lithium-ion cells

    Science.gov (United States)

    Spotnitz, R.; Franklin, J.

    Published accounts of abuse testing of lithium-ion cells and components are summarized, including modeling work. From this summary, a set of exothermic reactions is selected with corresponding estimates of heats of reaction. Using this set of reactions, along with estimated kinetic parameters and designs for high-rate batteries, models for the abuse behavior (oven, short-circuit, overcharge, nail, crush) are developed. Finally, the models are used to determine that fluorinated binder plays a relatively unimportant role in thermal runaway.

  17. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  18. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    International Nuclear Information System (INIS)

    Kuznetsov, I.A.; Greenfield, M.J.; Mehta, Y.U.; Merchan-Merchan, W.; Salkar, G.; Saveliev, A.V.

    2011-01-01

    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  19. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  20. Micro hydrogen for portable power : generating opportunities for hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A new fuel cell technology for portable applications was reviewed. Success for the fuel cell industry will be achieved primarily by supplanting lithium-ion batteries, and fuel cells for portable applications have clear advantages to batteries in addition to their known environmental benefits. Micro hydrogen {sup TM} is the integrated combination of hydrogen fuel cell, hydrogen storage and delivery, fluidic interconnects and power conditioning electronics required for creating high energy density portable power sources. The small size, low heat production, environmental sustainability and refueling flexibility of the systems provides enormous economic opportunities for the use of micro hydrogen in cell phone technology, personal digital assistants and other electronic gadgets. Details of a trial to test and evaluate micro hydrogen fuel cell powered bike lights were presented. Further programs are planned for external demonstrations of high-beam search and rescue lighting, flashlights for security personnel and portable hydrogen power sources that will be used by multiple organizations throughout British Columbia. It was concluded that fuel cell technology must match the lithium-ion battery's performance by providing fast recharge, high energy density, and adaptability. Issues concerning refueling and portable and disposable cartridges for micro hydrogen systems were also discussed. 8 figs.

  1. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  2. Versatile Auxiliary Orthodontic Spring for Orthodontic Correction of Impacted Teeth

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2011-01-01

    Full Text Available Malocclusion such as impacted tooth is not uncommon. Many approaches with various auxiliary springs have been reported in literature till date for correction of such malocclusions. They had biomechanical, retentive and stability drawbacks inherent in their designs. This article presents the innovative approach for orthodontic correction of impacted tooth, especially with light force appliance, i.e. Begg′s appliance, where round wires in round molar tubes are used throughout treatment. A versatile auxiliary orthodontic spring (VAOS is fabricated in the 0.018 inch Australian stainless steel round wire, which may be anchored on round molar buccal tube, and desirable force vector may be applied in any of the three dimensions. Fabrication and its clinical application are discussed.

  3. Vanishing auxiliary variables in PPS sampling - with applications in microscopy

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute; Jensen, Eva B. Vedel

    Recently, non-uniform sampling has been suggested in microscopy to increase efficiency. More precisely, sampling proportional to size (PPS) has been introduced where the probability of sampling a unit in the population is proportional to the value of an auxiliary variable. Unfortunately, vanishing...... auxiliary variables are a common phenomenon in microscopy and, accordingly, part of the population is not accessible, using PPS sampling. We propose a modification of the design, for which an optimal solution can be found, using a model assisted approach. The optimal design has independent interest...... in sampling theory. We verify robustness of the new approach by numerical results, and we use real data to illustrate the applicability....

  4. Renormalization of supersymmetric models without using auxiliary fields

    International Nuclear Information System (INIS)

    Urbanek, P.

    1986-01-01

    Previously a linear representation of supersymmetry (Ss) was used in investigations of renormalizability. There auxiliary fields have been introduced in order that the Ss-algebra closes 'off-shell'. When the auxiliary fields are eliminated by their equations of motion, the Ss representation becomes nonlinear and Ss closes only 'on-shell'. Following O.Piguet and K.Sibold 1984 Ss is expressed through Ward identities which are formulated as functional variations of the generating functional of the Green functions. These functional operators form a closed algebra, a fact essential for the proof of renormalizability, which is given. It is not necessary to use a specific subtraction scheme in the Green functions. The procedure is applied to the Wess-Zumino model and the supersymmetric extension of the quantum electrodynamics. 15 refs. (qui)

  5. Aging assessment of PWR [Pressurized Water Reactor] Auxiliary Feedwater Systems

    International Nuclear Information System (INIS)

    Casada, D.A.

    1988-01-01

    In support of the Nuclear Regulatory Commission's Nuclear Plant Aging Research (NPAR) Program, Oak Ridge National Laboratory is conducting a review of Pressurized Water Reactor Auxiliary Feedwater Systems. Two of the objectives of the NPAR Program are to identify failure modes and causes and identify methods to detect and track degradation. In Phase I of the Auxiliary Feedwater System study, a detailed review of system design and operating and surveillance practices at a reference plant is being conducted to determine failure modes and to provide an indication of the ability of current monitoring methods to detect system degradation. The extent to which current practices are contributing to aging and service wear related degradation is also being assessed. This paper provides a description of the study approach, examples of results, and some interim observations and conclusions. 1 fig., 1 tab

  6. Component Data Base for Space Station Resistojet Auxiliary Propulsion

    Science.gov (United States)

    Bader, Clayton H.

    1988-01-01

    The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.

  7. An updated assessment of the prospects for fuel cell-powered buses. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in buses. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. As well as assessing the prospects for SPFCs in buses, the report examines those for alkaline fuel cells (AFCs) and phosphoric acid fuel cells (PAFCs) in buses. The report provides an assessment of the status of technology development for different types of fuel cells in terms of applications to buses and offers estimates of market potential. Some fuel-cell powered buses are now available for demonstration purposes but the report concludes that truly commercial sales are unlikely to start before 2010 and widespread deployment is expected to take a further ten years after that. Buses have now slipped behind cars in terms of worldwide deployment. The issue of fuel choice is considered largely resolved with most fleet vehicle/bus manufacturers currently focussing on hydrogen as a fuel. A discussion of the prospects and barriers for fuel cell buses concludes that cost reduction is now the major barrier to the successful commercialisation of fuel cells in buses. More demonstration prototypes and field trials are required to provide information on energy, environmental and economic performance of fuel cell buses. Field trials could also provide information to assist the development of refuelling systems, fuel storage systems, stacks and other system components and to gain experience of building integrated fuel cell systems.

  8. Hot-cell shielding system for high power transmission in DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Park, J.; Yang, M.; Park, H.

    2000-01-01

    This paper presents a newly designed hot-cell shielding system for use in the development of DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel at KAERI (Korea Atomic Energy Research Institute). This hot-cell shielding system that was designed to transmit high power to sintering furnace in-cell from the out-of-cell through a thick cell wall has three subsystems - a steel shield plug with embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. The dose-equivalent rates of the hot-cell shielding system and of the apertures between this system and the hot-cell wall were calculated. Calculated results were compared with the allowable dose limit of the existing hot-cell. Experiments for examining the temperature changes of the shielding system developed during normal furnace operation were also carried out. Finally, gamma-ray radiation survey experiments were conducted by Co-60 source. It is demonstrated that, from both calculated and experimental results, the newly designed hot-cell shielding system meets all the shielding requirements of the existing hot-cell facility, enabling high power transmission to the in-cell sintering furnace. (author)

  9. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...

  10. Auxiliary representations of Lie algebras and the BRST constructions

    International Nuclear Information System (INIS)

    Burdik, C.; Pashnev, A.I.; Tsulaya, M.M.

    2000-01-01

    The method of construction of auxiliary representations for a given Lie algebra is discussed in the framework of the BRST approach. The corresponding BRST charge turns out to be nonhermitian. This problem is solved by the introduction of the additional kernel operator in the definition of the scalar product in the Fock space. The existence of the kernel operator is proved for any Lie algebra

  11. Surgical nurse: his leadership style with nursing auxiliary personnel

    OpenAIRE

    Galvão, Cristina Maria; Trevizan, Maria Auxiliadora; Okino Sawada, Namie

    2008-01-01

    This investigation as carried out in order to promote follow-up in the studies concerning nurse`s leadership in the hospital context. Emphasys is given to the nurses that works in surgical ward unities. As a theoretical framework, authors utilized the model of leadership proposed by Hersey na Blanchard, named Situational Leadership. The objective was to analyze the correspondence of opinion between nurses and nursing auxiliary personnel about the leadership style of nurse should adopt in acco...

  12. Restarting Automata with Auxiliary Symbols and Small Lookahead

    DEFF Research Database (Denmark)

    Schluter, Natalie Elaine

    2012-01-01

    We present a study on lookahead hierarchies for restarting automata with auxiliary symbols and small lookahead. In particular, we show that there are just two different classes of languages recognised by RRWW automata, through the restriction of lookahead size. We also show that the respective...... (left-) monotone restarting automaton models characterise the context-free languages and that the respective right-left-monotone restarting automata characterise the linear languages both with just lookahead length 2....

  13. Tube Model Predictive Control with an Auxiliary Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Miodrag Spasic

    2016-07-01

    Full Text Available This paper studies Tube Model Predictive Control (MPC with a Sliding Mode Controller (SMC as an auxiliary controller. It is shown how to calculate the tube widths under SMC control, and thus how much the constraints of the nominal MPC have to be tightened in order to achieve robust stability and constraint fulfillment. The analysis avoids the assumption of infinitely fast switching in the SMC controller.

  14. Exact fluctuations of nonequilibrium steady states from approximate auxiliary dynamics

    OpenAIRE

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.

    2017-01-01

    We describe a framework to significantly reduce the computational effort to evaluate large deviation functions of time integrated observables within nonequilibrium steady states. We do this by incorporating an auxiliary dynamics into trajectory based Monte Carlo calculations, through a transformation of the system's propagator using an approximate guiding function. This procedure importance samples the trajectories that most contribute to the large deviation function, mitigating the exponenti...

  15. Real Mission Profile Based Lifetime Estimation of Fuel-cell Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    . This paper describes a lifetime prediction method for the power semiconductors used in the power conditioning of a fuel cell based backup system, considering both the long-term standby mode and active operation mode. The annual ambient temperature profile is taken into account to estimate its impact...... on the degradation of MOSFETs during the standby mode. At the presence of power outages, the backup system is activated into the operation mode and the MOSFETs withstand additional thermal stresses due to power losses. A study case of a 1 kW backup system is presented with two annual mission profiles in Denmark...... and India, respectively. The ambient temperature, occurrence frequency of power outages, active operation time and power levels are considered for the lifetime prediction of the applied MOSFETs. Comparisons of the accumulated lifetime consumptions are performed between standby mode and operation mode...

  16. Gas Boiler Powered by the Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Nicolae Badea

    2014-09-01

    Full Text Available The paper presents a new solution for supply of boilers with electrical energy in the order to achieve autonomy from electrical grid. The paper presents the experimental system implemented in the university lab, the components and implementation in Matlab-Simulink for simulation. As a result of numeric simulation performed, the experimental bench has been achieved. The problem of power quality, especially the THD factor, affects the sensitivity of equipment at perturbations. In achieving of these systems, the authors propose that the electrical part of the supply system for building appliances must satisfy the EN 50160 standard, having the main voltage parameters and their permissile deviation ranges at the customer’s point of common coupling in public low voltage (LV, under normal operating conditions.

  17. Fuel consumption reduction by shutoff of auxiliary aggregates, e.g. water pumps; Moeglichkeiten zur Kraftstoffverbrauchsreduzierung durch Nebenaggregateabschaltung am Beispiel der Wasserpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Eifler, G. [ElringKlinger Motortechnik GmbH, Idstein (Germany)

    2007-07-01

    A significant amount of power which is produced by modern combustion engines is used for driving the auxiliaries. Because of the fact that the modules are designed according to the most extreme case of demand which ever could happen the auxiliaries are mostly operating under low efficiency circumstances - especially when the vehicle is driving at low load and speed in inner city areas. In this publication the coolant water pump was taken for an example to show how significant benefits in fuel economy can be achieved by switching off the auxiliaries if possible. The operating behaviour will not only be discussed in the European test-cycle but also in special city cycles under real conditions. The results will be compared to the fuel consumption saving potentials which can be realized when introducing new combustion processes into series production. (orig.)

  18. Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice

    KAUST Repository

    Park, Jincheol

    2012-04-01

    The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation: it requires users to invert a large covariance matrix. This is infeasible when the number of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model completely avoids the requirement of matrix inversion. It is remarkable that the computational complexity of our method is only O(n), where n is the number of observations. Hence, our method can be applied to very large datasets with reasonable computational (CPU) times. The numerical results indicate that our model can approximate Gaussian random fields very well in terms of predictions, even for those with long correlation lengths. For real data examples, our model can generally outperform conventional Gaussian random field models in both prediction errors and CPU times. Supplemental materials for the article are available online. © 2012 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

  19. Auxiliary/Master microprocessor CAMAC Crate Controller applications

    International Nuclear Information System (INIS)

    Barsotti, E.

    1975-01-01

    The need for further sophistication of an already complex serial CAMAC control system at Fermilab led to the development of an Auxilary/Master CAMAC Crate Controller. The controller contains a Motorola 6800 microprocessor, 2K bytes of RAM, and 8K bytes of PROM memory. Bussed dataway lines are time shared with CAMAC signals to provide memory expansion and direct addressing of peripheral devices without the need of external cabling. The Auxiliary/Master Crate Controller (A/MCC) can function as either a Master, i.e., stand alone, crate controller or as an Auxiliary controller to Fermilab's Serial Crate Controller (SCC). Two modules, one single- and one double-width, make up an A/MCC. The microprocessor has one nonmaskable and one maskable vectored interrupt. Time sharing the dataway between SCC programmed and block transfer generated dataway cycles and A/MCC operations still allows a 99 percent microprocessor CPU busy time. Since the conception of the A/MCC, there has been an increasing number of control system-related projects proposed which would not have been possible or would have been very difficult to implement without such a device. The first such application now in use at Fermilab is a stand-alone control system for a mass spectrometer experiment in the Main Ring Internal Target Area. This application in addition to other proposed A/MCC applications, both stand-alone and auxiliary, is discussed

  20. ADAPTIVE SELECTION OF AUXILIARY OBJECTIVES IN MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

    Directory of Open Access Journals (Sweden)

    I. A. Petrova

    2016-05-01

    Full Text Available Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems.