Sample records for cell applications final

  1. Solid oxide fuel cells towards real life applications. Final report

    Energy Technology Data Exchange (ETDEWEB)


    Solid Oxide Fuel Cells offer a clean and efficient way of producing electricity and heat from a wide selection of fuels. The project addressed three major challenges to be overcome by the technology to make commercialisation possible. (1) At the cell level, increased efficiency combined with production cost reduction has been achieved through an optimization of the manufacturing processes, b) by using alternative raw materials with a lower purchase price and c) by introducing a new generation of fuel cells with reduced loss and higher efficiency. (2) At the stack level, production cost reduction is reduced and manufacturing capacity is increased through an optimization of the stack production. (3) At the system level, development of integrated hotbox concepts for the market segments distributed generation (DG), micro combined heat and power (mCHP), and auxiliary power units (APU) have been developed. In the mCHP segment, two concepts have been developed and validated with regards to market requirements and scalability. In the APU-segment, different types of reformers have been tested and it has been proven that diesel can be reformed through appropriate reformers. Finally, operation experience and feedback has been gained by deployment of stacks in the test facility at the H.C. OErsted Power Plant (HCV). This demonstration has been carried out in collaboration between TOFC and DONG Energy Power A/S (DONG), who has participated as a subcontractor to TOFC. The demonstration has given valuable knowledge and experience with design, start-up and operation of small power units connected to the grid and future development within especially the mCHP segment will benefit from this. In this report, the project results are described for each of the work packages in the project. (Author)

  2. Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05).

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; Coker, Eric Nicholas; Jarek, Russell L.; Steen, William Arthur


    The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported catalyst structures, and by verifying electrochemical performance in half cells and ultimately laboratory fuel cells. Synthesis methods were developed for making small, well-defined platinum clusters using zeolite hosts, ion exchange, and controlled calcination/reduction processes. Several factors influence cluster size, and clusters below 1 nm with narrow size distribution have been prepared. To enable electrochemical application, the zeolite pores were filled with electrically-conductive carbon via infiltration with carbon precursors, polymerization/cross-linking, and pyrolysis under inert conditions. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. Plotting electrochemical activity versus pyrolysis temperature typically produces a Gaussian curve, with a peak at ca. 800 C. The poorer relative performances at low and high temperature are due to low electrical conductivity of the carbon matrix, and loss of zeolitic structure combined with Pt sintering, respectively. Cluster sizes measured via adsorption-based methods were consistently larger than those observed by TEM and EXAFS, suggesting , that a fraction of the clusters were inaccessible to the fluid phase. Detailed EXAFS analysis has been performed on selected catalysts and catalyst precursors to monitor trends in cluster size evolution, as well as oxidation states of Pt. Experiments were conducted to probe the electroactive surface area of the Pt clusters. These Pt/C materials had as much as 110 m{sup 2}/g{sub pt} electroactive surface area, an almost 30% improvement over what is commercially (mfg. by ETEK) available (86 m{sup 2}/g{sub pt}). These Pt/C materials also perform

  3. Center for Fuel Cell Research and Applications development phase. Final report

    Energy Technology Data Exchange (ETDEWEB)



    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

  4. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    Energy Technology Data Exchange (ETDEWEB)



    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  5. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, D.; Zuettel, A.


    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  6. Final Report - Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jagat [3M Company, Maplewood, MN (United States)


    Lithium Ion Battery (LIB) technology’s potential to enable a commercially viable high energy density is the key to a lower $/Wh, thereby a low cost battery. The design of a LIB with high energy, high power, safety and long life is a challenge that requires cell design from the ground up and synergy between all components. 3M Company (3M), the Recipient, led by its Principal Investigator, Jagat Singh, pursued this challenging task of a LIB by ‘teaming’ key commercial businesses [General Motors (GM), Umicore and Iontensity] and labs [Army Research Laboratory (ARL) and Lawrence Berkley National Laboratory (LBNL)]. The technology from each team member was complimentary and a close working relationship spanning the value chain drove productivity.The completion of this project is a significant step towards more energy efficient and environmentally friendly vehicles, making America less dependent on imported oil.

  7. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)



    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  8. Space tug applications. Final report

    International Nuclear Information System (INIS)


    This article is the final report of the conceptual design efforts for a 'space tug'. It includes preliminary efforts, mission analysis, configuration analysis, impact analysis, and conclusions. Of the several concepts evaluated, the nuclear bimodal tug was one of the top candidates, with the two options being the NEBA-1 and NEBA-3 systems. Several potential tug benefits were identified during the mission analysis. The tug enables delivery of large (>3,500 kg) payloads to the outer planets and it increases the GSO delivery capability by 20% relative to current systems. By providing end of life disposal, the tug can be used to extend the life of existing space assets. It can also be used to reboost satellites which were not delivered to their final orbit by the launch system. A specific mission model is the key to validating the tug concept. Once a mission model can be established, mission analysis can be used to determine more precise propellant quantities and burn times. In addition, the specific payloads can be evaluated for mass and volume capability with the launch systems. Results of the economic analysis will be dependent on the total years of operations and the number of missions in the mission model. The mission applications evaluated during this phase drove the need for large propellant quantities and thus did not allow the payloads to step down to smaller and less expensive launch systems

  9. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)


    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  10. Applications of Cell Microencapsulation. (United States)

    Opara, Emmanuel C


    The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.

  11. TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.


    This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004

  12. Application opportunities in wireless communications. Final report

    International Nuclear Information System (INIS)

    Abbott, R.E.; Blevins, R.P.; Olmstead, C.


    This report presents the results of examinations of wireless technologies and applications that may offer potential to utilities. Five different wireless technology areas are reviewed. Three areas--Communication Networks, Monitored Security Services, and Home Automation--potentially represent new business ventures for utilities. Two areas--Automatic Vehicle Location and Automated Field-Force Management--represent wireless applications with potential for reduced operating costs and improved customer relations

  13. Call for applications_2013_VA_Final

    International Development Research Centre (IDRC) Digital Library (Canada)

    Lindsay Beck


    Apr 12, 2013 ... graduate level field-‐school, taught by UNBC and CoPEH-‐Canada team members1 . Final assignments will be completed in July. *CoPEH-‐Canada is a pan-‐Canadian group with a commitment to bilingualism. In 2013 the course will be held in an. English-‐speaking environment and most of the sessions ...

  14. Solar Cell Nanotechnology Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Das, Biswajit [Univ. of Nevada, Las Vegas, NV (United States)


    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arrays of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the

  15. CanDan 2, phase 2. Final report. [Fuel cell systems for back-up power and materials handling applications]; CanDan 2, fase 2. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)



    CanDan 2 Phase 2 is the second phase of a research and demonstration project for fuel cell backup power systems and fuel cell powered material handling equipment. In the Backup Power segment the fuel cell units have been developed, certified and delivered. A total of 32 fuel cell backup power systems have been delivered for EnergiMidt and in operation since early 2011. Following this project EnergiMidt has purchased another 31 systems in order to make a full transition from battery backup to fuel cell backup in their entire broadband network. In the material handling segment a 10 kW fuel cell system has been fully integrated in the fork lift truck, Dantruck 3000 Power Hydrogen. The result was a much more commercially mature product than expected from the beginning of the project. The result is a finished 2,5T fork lift truck which was presented at the CE-mat fair in April 2011. (LN)

  16. Application of fusion plasma technology. Final report

    International Nuclear Information System (INIS)

    Sabri, Z.A.


    This report presents principal findings of studies conducted at Iowa State on Applications of Fusion Plasma Technology. Two tasks were considered. The first was to identify and investigate plasma processes for near term industrial applications of already developed plasma technology. The second was to explore the potential of reprocessing the fuel for fusion test facilities in a closed-cycle system. For the first task, two applications were considered. One was alumina reduction in magnetically confined plasmas, and the other was uranium enrichment using plasma centrifuges. For the second task, in-core and ex-core plasma purification were considered. Separation techniques that are compatible with the plasma state were identified and preliminary analysis of their effectiveness were carried out. The effects of differential ionization of impurities on the separation effectiveness are considered. Possible technical difficulties in both tasks are identified and recommendations for future work are given

  17. Research and Development for Off-Road Fuel Cell Applications U.S. Department of Energy Grant DE-FG36-04GO14303 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Michael [H2PowerTech (formerly known as IdaTech); Erickson, Paul [Univeristy of California at Davis; Lawrence, Richard [Retired (formerly employed by IdaTech); Tejaswi, Arun [Univeristy of California at Davis; Brum, Magdalena [Univeristy of California at Davis


    Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter. Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.

  18. Development of cryotribological theories & application to cryogenic devices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu


    This is the final report of a research program on low-temperature friction and wear, primarily focused on development of cryotribological theories and application to cryogenic devices, particularly superconducting magnets.

  19. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.


    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  20. Imaging systems for biomedical applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radparvar, M.


    Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. The proposed digital SQUID integrates the processing circuitry on the same cryogenic chip as the SQUID magnetometer and eliminates the sophisticated peripheral electronics. Such a system is compact and cost effective, and requires minimal support electronics. Under a DOE-sponsored SBIR program, we designed, simulated, laid out, fabricated, evaluated, and demonstrated a digital SQUID magnetometer. This report summarizes the accomplishments under this program and clearly demonstrates that all of the tasks proposed in the phase II application were successfully completed with confirmed experimental results.

  1. Nanoparticle Solar Cell Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue


    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  2. Advanced direct methanol fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hamdan, Monjid; Kosek, John A.


    The goal of the program was an advanced proton-exchange membrane (PEM) for use as the electrolyte in a liquid feed direct methanol fuel cell which provides reduced methanol crossover while simultaneously providing high conductivity and low membrane water content. The approach was to use a membrane containing precross-linked fluorinated base polymer films and subsequently to graft the base film with selected materials. Over 80 different membranes were prepared. The rate of methanol crossover through the advanced membranes was reduced 90%. A 5-cell stack provided stable performance over a 100-hour life test. Preliminary cost estimates predicted a manufacturing cost at $4 to $9 per kW.

  3. Carbon-based Fuel Cell. Final report

    International Nuclear Information System (INIS)

    Steven S. C. Chuang


    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO 2 , and (3) the production of a nearly pure CO 2 exhaust stream for the direct CO 2 sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts

  4. 15 CFR 301.7 - Final disposition of an application. (United States)


    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Final disposition of an application. 301.7 Section 301.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS INSTRUMENTS...

  5. Fuel cells: principles, types, fuels, and applications. (United States)

    Carrette, L; Friedrich, K A; Stimming, U


    During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  6. Alkaline fuel cells applications (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  7. SKB's safety case for a final repository license application

    International Nuclear Information System (INIS)

    Hedin, Allan; Andersson, Johan


    The safety assessment SR-Site is a main component in SKB's license application, submitted in March 2011, to construct and operate a final repository for spent nuclear fuel at Forsmark in the municipality of Oesthammar, Sweden. Its role in the application is to demonstrate long-term safety for a repository at Forsmark. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. The principal regulatory acceptance criterion, issued by the Swedish Radiation Safety Authority (SSM), requires that the annual risk of harmful effects after closure not exceed 10 -6 for a representative individual in the group exposed to the greatest risk. SSM's regulations also imply that the assessment time for a repository of this type is one million years after closure. The licence applied for is one in a stepwise series of permits, each requiring a safety report. The next step concerns a permit to start excavation of the repository and requires a preliminary safety assessment report (PSAR) covering both operational and post-closure safety. Later steps include permission to commence trial operation, to commence regular operation and to close the final repository. (authors)

  8. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.


    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  9. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wipke, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ainscough, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy’s (DOE’s) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  10. Development of simplified process for environmentally resistant cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    King, W.J.


    A program to develop a simple, foolproof, all-vacuum solar cell manufacturing process which can be completely automated and which results in medium efficiency cells which are inherently environmentally resistant is described. All components of the completed cells are integrated into a monolithic structure with no material interfaces. The exposed materials (Si, Al/sub 2/O/sub 3/, Al, Ni) are all resistant to atmospheric attack and the junction, per se, is passivated to prevent long term degradation. Such cells are intended to be incorporated into a simple module consisting basically of a press-formed metallic superstructure with a separated glass cover for missile, etc., protection. A 5 cm x 5 cm test cell configuration was designed in which the various efficiency loss factors were adjusted to yield a 10% AMI cell. Each of the cell elements was individually optimized for combination with the others. The basic cell consists of alloyed front (Al) and back (Ag plus Ni) contacts, a multi-purpose (AR, hermetic seal, implantation oxide) front surface coating of Al/sub 2/O/sub 3/, and an implanted front junction. Implantation damage annealing and contact alloying are carried out in a simple one step thermal treatment at 870/sup 0/C using a resistance heated furnace in vacuum. The use of non-analyzed and semi-analyzed beams for fabricating these cells was developed by KCI. A final lot of 50 cells made using the semi-analyzed beam method had an average efficiency of 10.4% at AMI (28 +- 1/sup 0/C). An economic analysis predicts a manufacturing cost of $.45/peak-watt for these cells using a one machine automatic method.

  11. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Thomas


    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  12. Clinical applications of cells labelling

    International Nuclear Information System (INIS)

    Gonzalez, B.M.


    Blood cells labelled with radionuclides are reviewed and main applications are described. Red blood cell labelling by both random and specific principle. A table with most important clinical uses, 99mTc labelling of RBC are described pre tinning and in vivo reduction of Tc, in vitro labelling and administration of labelled RBC and in vivo modified technique. Labelled leucocytes with several 99mTc-complex radiopharmaceuticals by in vitro technique and specific monoclonal s for white cells(neutrofiles). Labelled platelets for clinical use and research by in vitro technique and in vivo labelling

  13. Final Report. Center for Scalable Application Development Software

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)


    The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codes for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.

  14. Progress and Application of The Initial-Final Mass Relation (United States)

    Cummings, Jeffrey D.


    The stellar life cycle is dominated by phases such as the hydrogen-burning stage and the remnant white dwarf cooling phase. However, between these two stages, stars dramatically transform themselves by losing the bulk of their mass. Planetary nebulae (PNe) provide a powerful clue to the processes involved in this transformation, but they are very complex. Over the past 15 years, a new wave of imaging and spectroscopy programs have uncovered the remnants of PNe, white dwarfs, in a wide range of well-measured environments. With this we can map the masses and temperatures of the stellar remnants to the properties of their progenitors. This work has now led to the first uniform mapping of the initial-final mass relation from 1.5 to 7 M⊙. The resulting relation is a fundamental input to our understanding of stellar evolution for low and intermediate-mass stars that produce PNe and has a wide range of applications.

  15. Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film. (United States)

    Barthes, Julien; Vrana, Nihal E; Özçelik, Hayriye; Gahoual, Rabah; François, Yannis N; Bacharouche, Jalal; Francius, Grégory; Hemmerlé, Joseph; Metz-Boutigue, Marie-Hélène; Schaaf, Pierre; Lavalle, Philippe


    Mammalian cell culture is the starting point in many research studies focusing on biomedical applications. However, researchers have little control over the standardized cell microenvironment parameters. Here a modular ECM-mimicking surface coating for cell culture environment is designed. This substrate is a new and versatile thin film obtained by spin-coating of concentrated gelatin crosslinked by transglutaminase. It can be modified with respect to the biochemical and biophysical needs of the final cell destination, i.e. it delivers loaded multi-growth factors and serum components and allows for cell culture in a serum-free culture medium. Also, a well-known cell behavior modulator, the substrate stiffness, is controlled exogenously by addition of nanoparticles. In addition to growth factors, antimicrobial agents such as natural peptides are added to the substrate for limiting the repeated addition of antimicrobial agents to the culture medium and to prevent the increase of resistant bacterial strains in the culture environment. Finally, this substrate contains simultaneously ECM components, growth factors, stiffening elements and antimicrobial agents. It provides a favorable microenvironment and sterile conditions. It is a free-of-maintenance system, as cells will grow without addition of serum or antimicrobial cocktails. This low cost and easy-to-use substrate could emerge as a new standard for cell culture.

  16. Protein and cell patterning for cell-based biosensor applications (United States)

    Veiseh, Mandana

    Patterned platforms that alternately promote or prevent the attachment of biomolecules promise to advance bio-micro-electro-mechanical systems (Bio-MEMS) and cell-based biosensors (CBBs) for medical diagnostic, therapeutic, and prosthetic applications. When integrated with microelectronic or optical technologies, arrays of cells can be fabricated onto "biochips" to simultaneously process numerous analytes. Among the benefits are rapid and sensitive analysis, portability and ability to obtain functional information from analytes. This integration requires cells to be selectively patterned on platforms composed of more than one material, particularly in an electrode-insulator format. Current cell patterning technologies cannot yet provide effective solutions to patterning cells on desired substrates, largely because most of the techniques pattern cells on substrates of single material. In addition, they generally employ a mechanical device to guide selective protein or cell attachment, which may degrade their biological functionality. The other major challenges, especially in development of CBBs, include long-term cell selectivity and creation of uniform "single-cell" patterns. The central component of this research is to develop novel techniques to pattern multiple and/or single cells with high precision, selectivity, reproducibility, and long-term cell selectivity. First, a novel surface engineering approach was developed to covalently immobilize proteins or peptides on the gold substrates and bio-inert poly(ethylene glycol)-silane molecules on silicon substrates. Next, photolithography and surface engineering were combined to pattern microarrays of cell-adhesive proteins on gold electrodes to mediate cell adhesion. The versatility of this approach for immobilization of various proteins on different types of gold patterns was characterized by florescence microscopy, ToF-SIMS, and AFM. Optical-DIC microscopy illustrated selective attachment of various cells on

  17. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.


    the same. (6) Through the use of statistical lifetime analysis methods, it is possible to develop new MEAs with predicted durability approaching the DOE 2010 targets. (7) A segmented cell was developed that extend the resolution from ~ 40 to 121 segments for a 50cm2 active area single cell which allowed for more precise investigation of the local phenomena in a operating fuel cell. (8) The single cell concept was extended to a fuel size stack to allow the first of its kind monitoring and mapping of an operational fuel cell stack. An internal check used during this project involved evaluating the manufacturability of any new MEA component. If a more durable MEA component was developed in the lab, but could not be scaled-up to ‘high speed, high volume manufacturing’, then that component was not selected for the final MEA-fuel cell system demonstration. It is the intent of the team to commercialize new products developed under this project, but commercialization can not occur if the manufacture of said new components is difficult or if the price is significantly greater than existing products as to make the new components not cost competitive. Thus, the end result of this project is the creation of MEA and fuel cell system technology that is capable of meeting the DOEs 2010 target of 40,000 hours for stationary fuel cell systems (although this lifetime has not been demonstrated in laboratory or field testing yet) at a cost that is economically viable for the developing fuel cell industry. We have demonstrated over 2,000 hours of run time for the MEA and system developed under this project.

  18. Power conditioning of fuel cell systems in portable applications

    Energy Technology Data Exchange (ETDEWEB)

    Brey, J.J.; Bordallo, C.R. [Hynergreen Technologies S.A. Avenida de la Buhaira, 2. 41018 SEVILLE (Spain); Carrasco, J.M.; Galvan, E.; Jimenez, A. [School of Engineering, University of Seville, Camino de los Descubrimientos s/n. 41092 SEVILLE (Spain); Moreno, E. [Instalaciones Inabensa S.A., c/Manuel Velasco Pando no. 7, 41007, SEVILLE (Spain)


    Fuel cells are emerging as main power source for portable applications. These devices need power management circuit to connect varying output fuel cell voltage to desired regulated voltage load with high efficiency. Maintaining high efficiency of the converter over a wide loading range can improve stored fuel longevity. The purpose of this paper is to report a general review of most used topologies in fuel cell power conditioning applied to portable systems. Finally, a 100 W DC-DC converter for a particular fuel cell portable application will be presented. This converter was designed to fulfill several specifications of input and output voltage. (author)

  19. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report. (United States)


    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  20. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pivovar, B.


    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  1. Direct fuel cell power plants: the final steps to commercialization (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  2. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)



    This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

  3. Artificial intelligence applications in logistics information systems : final report (United States)


    This report is the principal deliverable from the LIMSS-AI project. It summarizes the results of a survey of existing applications and discusses the feasibility and benefits of specific candidate logistics applications.

  4. Assessment of limestone blended cements for transportation applications : final report. (United States)


    This research assessed the applicability of Type IL cements satisfying AASHTO M 240 specifications for use in transportation applications in place of Type I/II cements which satisfy AASHTO M 85 specifications for construction of transportation struct...

  5. Roadway data representation and application development : final report, December 2009. (United States)


    The Straight-line Diagrammer, a web-based application to produce Straight-line Diagrams (SLDs) automatically, was developed in this project to replace old application (AutoSLD) which has outdated structure and limited capabilities.

  6. BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications (Final Report) (United States)

    EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & ...

  7. Glass markets information system; application summary reports. Final report

    Energy Technology Data Exchange (ETDEWEB)


    The Glass Markets Information System Summary Reports is a compilation of over 70 possible applications for post-consumer recycled glass. The database includes descriptions of the applications, literature references, processing and quality requirements, and economic data as available. The database is intended for use by groups seeking ideas for economic development with recycled glass.

  8. Wind energy applications in agriculture: executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    David, M.L.; Buzenberg, R.J.; Glynn, E.F.; Johnson, G.L.; Shultis, J.K.; Wagner, J.P.


    This report presents an assessment of the potential use of wind turbine generator systems (WTGS) in US agriculture. In particular, this report presents the number of WTGS's economically feasible for use in US agriculture and the conditions which yielded economic feasibility of WTGS's for certain agricultural applications. In addition, for each case, i.e., set of assumed conditions, under which WTGS's were found to be economically feasible, this report identifies (1) the agricultural WTGS applications in terms of location, type and size (complete farm and dedicated-use applications); (2) the number of WTGS's by wind machine and generator size category; (3) aggregate energy conversion potential; and (4) other technical and economic WTGS performance data for particular applications. This report also describes the methodology, data and assumptions used for the analysis. A major part of the study was the development and use of a rigorous analytical system to assess an application's wind power generation and use potential.

  9. Applications of Fluorogens with Rotor Structures in Solar Cells

    Directory of Open Access Journals (Sweden)

    Kok-Haw Ong


    Full Text Available Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  10. Applications of Fluorogens with Rotor Structures in Solar Cells. (United States)

    Ong, Kok-Haw; Liu, Bin


    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  11. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ludewigt, Bernhard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valentine, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quiter, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Descalle, Marie-Anne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Warren, Glen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kinlaw, Matt [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chichester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, Cameron [Univ. of Michigan, Ann Arbor, MI (United States); Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States)


    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range of energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.

  12. FY08 LDRD Final Report Stem Cell Fate Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A


    A detailed understanding of the biological control of fate decisions of stem and progenitor cells is needed to harness their full power for tissue repair and/or regeneration. Currently, internal and external factors that regulate stem cell fate are not fully understood. We aim to engineer biocompatible tools to facilitate the measurement and comparison of the roles and significance of immobilized factors such as extracellular matrix and signaling peptides, synergistic and opposing soluble factors and signals, and cell-to-cell communication, in stem cell fate decisions. Our approach is based on the development of cell microarrays to capture viable stem/progenitor cells individually or in small clusters onto substrate-bound signals (e.g. proteins), combined with conventional antibody and customized subcellular markers made in-house, to facilitate tracking of cell behavior during exposure to relevant signals. Below we describe our efforts, including methods to manipulate a model epithelial stem cell system using a custom subcellular reporter to track and measure cell signaling, arrays with surface chemistry that support viable cells and enable controlled presentation of immobilized signals to cells on the array and fluorescence-based measurement of cell response, and successful on-array tests via conventional immunofluorescence assays that indicate correct cell polarity, localization of junctional proteins, and phenotype, properties which are essential to measuring true cell responses.

  13. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.


    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  14. Bio optofluidics cell sorter: cell-BOCS concept and applications (United States)

    Roth, Tue; Glückstad, Jesper


    The cell-BOCS is a novel microfluidics based cell-sorting instrument utilizing next generation optical trapping technology developed at the Technical University of Denmark. It is targeted emerging bio-medical research and diagnostics markets where it for certain applications offers a number of advantages over conventional fluorescence activated cell-sorting (FACSTM) technology. Advantages include gentle handling of cells, sterile sorting, easy operation, small footprint and lower cost allowing out-of-core-facility use. Application examples are found within sorting of fragile transfected cells, high value samples and primary cell lines, where traditional FACS technology has limited application due to it's droplet-based approach to cell-sorting. In the diagnostics field, in particular applying the cell-BOCS for isolating pure populations of circulating tumor cells is an area that has generated a lot of interest.

  15. Plan for advanced microelectronics processing technology application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.


    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  16. Real Time Technology Application Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, John [Univ of KY, Center for Applied Energy Research, Kentucky Research Consortium for Energy and Environment; Hampson, Steve [Univ of KY, Center for Applied Energy Research, Kentucky Research Consortium for Energy and Environment; Johnson, Robert L [Argonne National Lab, Environmental Science Div.


    The work and results described in this final report pertain to the demonstration of real-time characterization technologies applied to potentially contaminated surface soils in and around Area of Concern (AOC) 492 at the Paducah Gaseous Diffusion Plant (PGDP). The work was conducted under the auspices of Kentucky Research Consortium for Energy and Environment (KRCEE). KRCEE was created to support the Department of Energy's (DOE) efforts to complete the expeditious and economically viable environmental restoration of the Paducah Gaseous Diffusion Plant (PGDP), the Western Kentucky Wildlife Management Area (WKWMA), and surrounding areas.

  17. Evaluation of the Field Performance of Residential Fuel Cells: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Torrero, E.; McClelland, R.


    Distributed generation has attracted significant interest from rural electric cooperatives and their customers. Cooperatives have a particular nexus because of inherently low customer density, growth patterns at the end of long lines, and an influx of customers and high-tech industries seeking to diversify out of urban environments. Fuel cells are considered a particularly interesting DG candidate for these cooperatives because of their power quality, efficiency, and environmental benefits. The National Rural Electric Cooperative Association Cooperative Research Network residential fuel cell program demonstrated RFC power plants and assessed related technical and application issues. This final subcontract report is an assessment of the program's results. This 3-year program leveraged Department of Energy (DOE) and National Renewable Energy Laboratory (NREL) funding.

  18. Solair heater program: solair applications study. Final report

    Energy Technology Data Exchange (ETDEWEB)


    General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Other attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.

  19. Final Report: Migration Mechanisms for Large-scale Parallel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jason Nieh


    Process migration is the ability to transfer a process from one machine to another. It is a useful facility in distributed computing environments, especially as computing devices become more pervasive and Internet access becomes more ubiquitous. The potential benefits of process migration, among others, are fault resilience by migrating processes off of faulty hosts, data access locality by migrating processes closer to the data, better system response time by migrating processes closer to users, dynamic load balancing by migrating processes to less loaded hosts, and improved service availability and administration by migrating processes before host maintenance so that applications can continue to run with minimal downtime. Although process migration provides substantial potential benefits and many approaches have been considered, achieving transparent process migration functionality has been difficult in practice. To address this problem, our work has designed, implemented, and evaluated new and powerful transparent process checkpoint-restart and migration mechanisms for desktop, server, and parallel applications that operate across heterogeneous cluster and mobile computing environments. A key aspect of this work has been to introduce lightweight operating system virtualization to provide processes with private, virtual namespaces that decouple and isolate processes from dependencies on the host operating system instance. This decoupling enables processes to be transparently checkpointed and migrated without modifying, recompiling, or relinking applications or the operating system. Building on this lightweight operating system virtualization approach, we have developed novel technologies that enable (1) coordinated, consistent checkpoint-restart and migration of multiple processes, (2) fast checkpointing of process and file system state to enable restart of multiple parallel execution environments and time travel, (3) process migration across heterogeneous

  20. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review

    Directory of Open Access Journals (Sweden)

    Silvia Román


    Full Text Available Active research on biomass hydrothermal carbonization (HTC continues to demonstrate its advantages over other thermochemical processes, in particular the interesting benefits that are associated with carbonaceous solid products, called hydrochar (HC. The areas of applications of HC range from biofuel to doped porous material for adsorption, energy storage, and catalysis. At the same time, intensive research has been aimed at better elucidating the process mechanisms and kinetics, and how the experimental variables (temperature, time, biomass load, feedstock composition, as well as their interactions affect the distribution between phases and their composition. This review provides an analysis of the state of the art on HTC, mainly with regard to the effect of variables on the process, the associated kinetics, and the characteristics of the solid phase (HC, as well as some of the more studied applications so far. The focus is on research made over the last five years on these topics.

  1. Thermal hydraulic design features for the BNCT application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blue, T.E.; Vafai, K.


    This project report is based on our investigations for thermal design of a heat pipe for removing generated heat resulting from Proton bombardments of a Lithium target for a BNCT application. In our investigation, an integral analysis was employed to investigate the vapor an liquid flow in a flat plate heat pipe heated asymmetrically for removal of the 75 kW generated from the BNCT application. The flat plate heat pipe configuration will be used for removing the heat which is generated as a result of proton bombardment of the lithium target. The working fluid in the heat pipe occurs in two phase namely liquid and vapor. The wick contains all the liquid phase and the vapor phase is mainly in the core region. Heat is applied by an external source at the evaporator section which vaporizes the working fluid in this section. This results in a pressure difference which drives the vapor to the condenser section where condenses and releases latent heat of vaporization to a heat sink in the condense section. Due to the vaporization of liquid in the evaporator, the liquid-vapor interface enters into the wick surface and hence capillary pressure is developed there. This capillary pressure causes the condensed liquid in the condenser to be pumped back to the evaporator again. The results of our investigation have enabled us to correlate such diverse information as; the thickness of the wick, the diameter of the heat pipe, the wetting angle, the capillary radius, the surface tension, the latent heat of evaporation, the permeability and porosity of the chosen wick, the length of the heat pipe, and the viscosity and density of the two phases; with the heat removal capabilities of the heat pipe. Expressions for the pressure and velocity distributions are obtained and discussed in relation to our application to BNCT. The present design clearly shows that it is possible to attain temperatures well below the melting temperature of the lithium in the BNCT application.

  2. Fuel cells: Trends in research and applications (United States)

    Appleby, A. J.

    Various aspects of fuel cells are discussed. The subjects addressed include: fuel cells for electric power production; phosphoric acid fuel cells; long-term testing of an air-cooled 2.5 kW PAFC stack in Italy; status of fuel cell research and technology in the Netherlands, Bulgaria, PRC, UK, Sweden, India, Japan, and Brazil; fuel cells from the manufacturer's viewpoint; and fuel cells using biomass-derived fuels. Also examined are: solid oxide electrolye fuel cells; aluminum-air batteries with neutral chloride electrolyte; materials research for advanced solid-state fuel cells at the Energy Research Laboratory in Denmark; molten carbonate fuel cells; the impact of the Siemens program; fuel cells at Sorapec; impact of fuel cells on the electric power generation systems in industrial and developing countries; and application of fuel cells to large vehicles.

  3. Development of Advanced Polymeric Reflector for CSP Applications - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Treglio, Richard, T; Boyle, Keith, A; Henderson, Hildie


    This project attempted to deposit extremely thick and dense protective barrier onto a mirror film stack with a PET substrate. The target thickness was very high for thin film products; particularly since large areas and long production lengths of film are needed to make the final product economic. The technical investigations in this project centered on maintaining a quality barrier (i.e. dense film) while evaporating alumina with a high deposition rate onto a low cost PET substrate. The project found that the proposed configuration, particularly direct ion bombardment, provides too narrow a solution space to effectively and economically produce the ASRM attempted. The initial project goals were met when depositing on a limited width and at a modest rate. However, expanding to wide deposition at aggressive deposition rates did not produce consistent film quality. Economic viability drives the process to maximize deposition rate. The current system configuration has a limiting upper rate threshold that does not appear economically viable. For future work, alternate approaches seem needed to address the challenges encountered in the scale-up phase of this project.

  4. Siting guidelines for utility application of wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.T.


    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  5. Scrap tire recycling: Promising high value applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B.D.; Leskovyansky, P.J.; Drela, H.


    Surface modification of scrap tire rubber (rubber particles treated with chlorine gas) show promise for ameliorating the scrap tire problem (the treated rubber can be used as a component in high- performance, expensive polymer systems). The process has been proven in Phase I. Phase II covers market/applications, process development (Forberg-design mixer reactor was chosen), plant design, capital cost estimate, economics environmental/safety/health, and energy impact. Almost of the small amount of chlorine is consumed. The capital costs for a rubber particle treatment facility are attractive, being at least two orders of magnitude less than that of facilities for making new polymer materials. Large volume markets using treated rubber are needed. The amount of scrap rubber available is small compared to the polymers available for replacement. 7 tabs, 16 figs.

  6. Heat pumps for geothermal applications: availability and performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.; Means, P.


    A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

  7. SIAM conference on inverse problems: Geophysical applications. Final technical report

    Energy Technology Data Exchange (ETDEWEB)



    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.

  8. Enabling Tool for Innovative Glass Applications - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    James M. Gillis


    The use of abrasive waterjet (AWJ) cutting systems in the industrial sector has been limited to applications that are difficult to machine using conventional methods. A major factor for this limited use is the high cost of the garnet abrasive currently used. Initial studies indicated that glass can be processed to produce particles with the desired characteristics at a fraction of the existing price of garnet. Inexpensive abrasive waterjet cutting systems would allow a wider array of glass products to be produced while eliminating many existing design limitations. Availability of low-cost abrasive waterjet cutting media would open new markets for glass applications by making glass a more versatile material. A fundamental goal of this project was to scale up and refine the circuit that was established in the initial phase of this project, which using waste glass as a feed stream, could economically produce glass particles displaying high angularity, sharp edges and a low aspect ratio which would prove suitable for use in abrasive waterjet (AWJ) cutting systems. Using commercial scale equipment, demonstration runs were conducted at various manufacturers facilities to further establish that waste glass is a viable source for the production of an inexpensive AWJ media for use in cutting glass and a variety of other materials. The glass abrasive produced was used to demonstrate that processed waste glass could serve as a less costly alternative to garnet in many AWJ cutting applications. Studies indicated that glass can be processed to produce particles with the desired characteristics at less than 1% of the existing price of garnet. The waste stream resulting from the use of the glass abrasive in an AWJ system was in turn used as a source for inexpensive fillers in various polymers. The reduced energy requirements needed to produce glass abrasives and lower cost associated with the use of waste glass over garnet, as well as the environmental benefits associated with


    Directory of Open Access Journals (Sweden)

    A. S. Panasugin


    Full Text Available The methodology of rating of the galvanic final tailings applicability for further processing in the interests of needs of metallurgical production of the Republic Belarus is offered.

  10. Proteomics Applications in Dental Derived Stem Cells. (United States)

    Li, Jie; Tian, Weidong; Song, Jinlin


    At present, the existence of a variety of dental derived stem cells has been documented. These cells displayed promising clinical application potential not only for teeth and its surrounding tissue regeneration, but also for other tissues, such as nerve and bone regeneration. Proteomics is an unbiased, global informatics tool that provides information on all protein expression levels as well as post-translational modification in cells or tissues and is applicable to dental derived stem cells research. Over the last decade, considerable progress has been made to study the global proteome, secrotome, and membrane proteome of dental derived stem cells. Here, we present an overview of the proteomics studies in the context of stem cell research. Particular attention is given to dental derived stem cell types as well as current challenges and opportunities. J. Cell. Physiol. 232: 1602-1610, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.


    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  12. Multi-Applications Small Light Water Reactor - NERI Final Report

    Energy Technology Data Exchange (ETDEWEB)

    S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson


    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

  13. Case study applications of venture analysis: fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mosle, R.


    In order to appraise the case for government intervention in the case of atmospheric fluid-bed combustion, Energy Resources Company and Rotan Mosle have developed a methodology containing four key elements. The first is an economic and environmental characterization of the new technology; the second, a survey of its prospective users and vendors; the third, a cost-benefit analysis of its prospective social benefits; and the fourth, an analytical model of its market penetration and the effects thereon of a basket of government incentives. Three major technical obstacles exist to continued AFBC development: feeding coal and limestone reliably to the boiler, tube erosion and corrosion, and developing boiler turndown capability. The review of the economic, environmental and technical attributes of the new technology has suggested that the preliminary venture can be selected with confidence as a commercial prospect capable of detailed evaluation from both private and public perspectives. The venture choice can therefore be considered firm: it will be the equipment required for the combustion of coal in atmospheric fluid beds as applied to industrial process steam in boilers of at least 83 Kpph capacity. The most effective demonstration of the potential of AFBC in the eyes of prospective industrial users is that provided by a project conducted by the private sector with minimal government direction. Unlike the ''experimental'' style of existing mixed public-private demonstration projects, the pressure to achieve reliability in more commercial applications would serve rapidly to reveal more clearly the potential of AFBC. The marketplace can be allowed to decide its fate thereafter. Once AFBC has been successfully demonstrated, the relative merits of AFBC and coal-FGD are best left to prospective users to evaluate.

  14. Applications in soil-structure interactions. Final report, June 1979

    International Nuclear Information System (INIS)

    Jhaveri, D.P.


    Complex phenomenon of soil-structure interaction was assessed. Relationships between the characteristics of the earthquake ground motions, the local soil and geologic conditions, and the response of the structures to the ground motions were studied. (I) The use of the explicit finite-difference method to study linear elastic soil-structure interaction is described. A linear two-dimensional study of different conditions that influence the dynamic compliance and scattering properties of foundations is presented. (II) The FLUSH computer code was used to compute the soil-structure interaction during SIMQUAKE 1B, an experimental underground blast excitation of a 1/12-scale model of a nuclear containment structure. Evaluation was performed using transient excitation, applied to a finite-difference grid. Dynamic foundation properties were studied. Results indicate that the orientation and location of the source relative to the site and the wave environment at the site may be important parameters to be considered. Differences between the computed and experimental recorded responses are indicated, and reasons for the discrepancy are suggested. (III) A case study that examined structural and ground response data tabulated and catalogued from tests at the Nevada Test Site for its applicability to the soil-structure interaction questions of interest is presented. Description, methods, and evaluation of data on soil-structure interaction from forced vibration tests are presented. A two-dimensional finite-difference grid representing a relatively rigid structure resting on uniform ground was analyzed and monitored. Fourier spectra of monitored time histories were also evaluated and are presented. Results show clear evidence of soil-structure interaction and significant agreement with theory. 128 figures, 18 tables

  15. Engineered cell manipulation for biomedical application

    CERN Document Server

    Akashi, Misturu; Matsusaki, Michiya


    This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell-cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell-cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engin...

  16. Multi-Application Small Light Water Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.


    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO{sub 2}, 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept

  17. Regulation of cell division in higher plants. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Thomas W.


    Research in the latter part of the grant period was divided into two parts: (1) expansion of the macromolecular tool kit for studying plant cell division; (2) experiments in which the roles played by plant cell cycle regulators were to be cast in the light of the emerging yeast and animal cell paradigm for molecular control of the mitotic cycle. The first objectives were accomplished to a very satisfactory degree. With regard to the second part of the project, we were driven to change our objectives for two reasons. First, the families of cell cycle control genes that we cloned encoded such closely related members that the prospects for success at raising distinguishing antisera against each were sufficiently dubious as to be impractical. Epitope tagging is not feasible in Pisum sativum, our experimental system, as this species is not realistically transformable. Therefore, differentiating the roles of diverse cyclins and cyclin-dependent kinases was problematic. Secondly, our procedure for generating mitotically synchronized pea root meristems for biochemical studies was far too labor intensive for the proposed experiments. We therefore shifted our objectives to identifying connections between the conserved proteins of the cell cycle engine and factors that interface it with plant physiology and development. In this, we have obtained some very exciting results.

  18. Therapeutic application of multipotent stem cells

    DEFF Research Database (Denmark)

    Mirzaei, Hamed; Sahebkar, Amirhossein; Sichani, Laleh Shiri


    Cell therapy is an emerging fields in the treatment of various diseases such as cardiovascular, pulmonary, hepatic, and neoplastic diseases. Stem cells are an integral tool for cell therapy. Multipotent stem cells are an important class of stem cells which have the ability to self-renew through...... been showed that multipotent stem cells exert their therapeutic effects via inhibition/activation of a sequence of cellular and molecular pathways. Although the advantages of multipotent stem cells are numerous, further investigation is still necessary to clarify the biology and safety of these cells...... before they could be considered as a potential treatment for different types of diseases. This review summarizes different features of multipotent stem cells including isolation, differentiation, and therapeutic applications....

  19. Heavy ion induced genetic effects in mammalian cells. Final report

    International Nuclear Information System (INIS)

    Kiefer, J.; Brend'amour, M.; Casares, A.; Egenolf, R.; Gutermuth, F.; Ikpeme, S.E.; Koch, S.; Kost, M.; Loebrich, M.; Pross, H.D.; Russmann, C.; Schmidt, P.; Schneider, E.; Stoll, U.; Weber, K.J.


    DNA double-strand breaks (DSBs) are generally assumed to be the most relevant initial event producing radiation-induced cellular lethality, as well as mutations and transformations. The dependence of their formation on radiation quality has been recently reviewed. Contrary to earlier observations there seems to be now agreement that the RBE does not increase above unity with increasing LET in mammalian cells when conventional techniques are applied which are not able to resolve smaller fragments. If they are, however, included in the analysis maximum RBE values around 2 are obtained. The situation is different with yeast: An increased effectiveness for DSB induction has been reported with alpha particles, as well as for heavy ions. This may be due to differences in methods or to chromosomal structure, as discussed in more detail in this paper. DSB induction was measured for a LET range of 100 to 11500 keV/? m in yeast cells using pulsed field gel electrophoresis. Under the conditions applied the chromosomes of the yeast cells could be separated according to size allowing the direct quantification of the DSB yield by measuring the intensity of the largest chromosomes. The results demonstrate clearly that DSB induction in yeast depends on radiation quality. The derived cross-sections for DSB induction were also compared to those for cell inactivation determined in parallel experiments under identical irradiation conditions. (orig.)

  20. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.


    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  1. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher


    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  2. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    Energy Technology Data Exchange (ETDEWEB)


    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  3. Engineering Stem Cells for Biomedical Applications (United States)

    Yin, Perry T.; Han, Edward


    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  4. Engineering Stem Cells for Biomedical Applications. (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum


    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantify and improve PEM fuel cell durability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))


    approx 4,000 hours of operation correspond to a loss of catalytic active area of 58% for the anode and 69% for the cathode respectively, and the MEA can be expected to perform equivalent to MEAs with less than half the catalyst loating. DMFC durability tests were carried out on both Nafion and Hydrocarbon membrane based MEAs using different electrode designs. Several single DMFC cells and stacks have been tested up to 3,000 hours. The degradation rates found for both single cells and stacks were in the range between 10-90 muV/hours per cell, depending on the MEA configuration. Certain performance losses incurred by the cell during the steady-state operation were recovered, fully or in part, after the regular OCV hold. Regeneration of the Pt-catalyst particles include electro-reduction of the surface PtO that gradually forms over time, surface electro-oxidation of adsorbed poisons (namely CO formed from methanol crossover), and chemical reduction of PtO and/or PtOH via crossover methanol. The HT PEM FC results indicate that a degradation rate of approx 5 muV/h for HT PEM FC can be expected under continuous operation with hydrogen and air at 150-160 C, corresponding to a lifetime of 12,000 hours before 10% performance loss. This lifetime is somewhat shorter than aimed at in the national Danish HT PEM Road map (2009: 20,000 h), but it is in this context important to remember the limited knowledge on HT PEM lifetime at the time of the roadmap definition in 2008. The accelerated durability test with potential cycling showed significant catalyst degradation, primarily due to the corrosion of carbon supports, which triggers the platinum sintering/agglomeration. Modified catalyst supports in form of graphite or carbon nanotubes improve the catalyst and therefore the PBI cell durability. (LN)

  6. Final Report: Sintered CZTS Nanoparticle Solar Cells on Metal Foil; July 26, 2011 - July 25, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Leidholm, C.; Hotz, C.; Breeze, A.; Sunderland, C.; Ki, W.; Zehnder, D.


    This is the final report covering 12 months of this subcontract for research on high-efficiency copper zinc tin sulfide (CZTS)-based thin-film solar cells on flexible metal foil. Each of the first three quarters of the subcontract has been detailed in quarterly reports. In this final report highlights of the first three quarters will be provided and details will be given of the final quarter of the subcontract.

  7. Claims Procedure for Plans Providing Disability Benefits; 90-Day Delay of Applicability Date. Final rule; delay of applicability (United States)


    This document delays for ninety (90) days--through April 1, 2018--the applicability of a final rule amending the claims procedure requirements applicable to ERISA-covered employee benefit plans that provide disability benefits (Final Rule). The Final Rule was published in the Federal Register on December 19, 2016, became effective on January 18, 2017, and was scheduled to become applicable on January 1, 2018. The delay announced in this document is necessary to enable the Department of Labor to carefully consider comments and data as part of its effort, pursuant to Executive Order 13777, to examine regulatory alternatives that meet its objectives of ensuring the full and fair review of disability benefit claims while not imposing unnecessary costs and adverse consequences.

  8. Application of Stem Cells in Orthopedics (United States)

    Schmitt, Andreas; van Griensven, Martijn; Imhoff, Andreas B.; Buchmann, Stefan


    Stem cell research plays an important role in orthopedic regenerative medicine today. Current literature provides us with promising results from animal research in the fields of bone, tendon, and cartilage repair. While early clinical results are already published for bone and cartilage repair, the data about tendon repair is limited to animal studies. The success of these techniques remains inconsistent in all three mentioned areas. This may be due to different application techniques varying from simple mesenchymal stem cell injection up to complex tissue engineering. However, the ideal carrier for the stem cells still remains controversial. This paper aims to provide a better understanding of current basic research and clinical data concerning stem cell research in bone, tendon, and cartilage repair. Furthermore, a focus is set on different stem cell application techniques in tendon reconstruction, cartilage repair, and filling of bone defects. PMID:22550505

  9. Commercial Application of a Photovoltaic Concentrator system. Phase I. Final report, 1 June 1978-28 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.J.; Anderson, E.R.; Bardwell, K.M.


    This report documents the design and analysis of the BDM CAPVC (Commercial Application of a Photovoltaic Concentrator) system. The preliminary design, prototype test and evaluation, system analysis, and final design of a large-scale concentrating photovoltaic system are described. The application is on an attractive new office building which represents a large potential market. The photovoltaic concentrating array is a roof-mounted, single-axis linear parabolic trough, using single crystalline silicon photovoltaic cells. A total of 6720 square feet of aperture is focussed on 13,944 PV cells. The photovoltaic system operates in parallel with the local utility in an augmentary loadsharing operating mode. The array is actively cooled and the thermal energy utilized for building heat during winter months. (WHK)

  10. New applications for phosphoric acid fuel cells (United States)

    Stickles, R. P.; Breuer, C. T.


    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  11. Dynamic mobility applications open source application development portal : Task 4 : system requirements specifications : final report. (United States)


    This document describes the System Requirements Specifications (SyRS) of the Dynamic Mobility Applications (DMA) Open Source Application Development Portal (OSADP) system in details according to IEEE-Std. 1233-1998. The requirement statements discuss...

  12. Micro solid oxide fuel cell on the chip. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M.; Hotz, N.; Bieri, N.; Poulikakos, D.


    The aim of this project is the numerical and experimental investigation of hydrocarbon-to-syngas reforming in micro reformers for incorporation into an entire micro fuel cell system. Numerical simulations are used to achieve deeper understanding of several determining aspects in such a micro reformer. These insights are used to optimize the reforming performance by proper choice of operational and geometrical parameters of a reformer. These numerical results are continued by comprehensive experimental studies. In the first chapter, the effect of wall conduction of a tubular methane micro reformer is investigated numerically. Methane is used as the representative hydrocarbon because its detailed surface reaction mechanism is known. It is found that the axial wall conduction can strongly influence the performance of the microreactor and should not be neglected without a careful a priori investigation of its impact. In the second chapter, the effect of the catalyst amount and reactor geometry on the reforming process was investigated. It was found that the hydrogen selectivity changes significantly with varying catalyst loading. Thus, the reaction path leading to higher hydrogen production becomes more important by increasing the catalyst surface site density on the active surface. Another unexpected result is the presence of optimum channel geometry and optimum catalyst amount. In the third chapter of this project, the capability of flame-made Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2} nanoparticles catalyzing the reforming of butane to H{sub 2}- and CO-rich syngas was investigated experimentally in a packed bed reactor. The main goal of this study was the efficient reforming of butane at temperatures between 500 and 600 {sup o}C for a micro intermediate-temperature SOFC system. Our results showed that Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2} nanoparticles proved to be a very promising material for butane-to-syngas reforming with complete butane conversion and a hydrogen yield of 77

  13. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rich Chartrand


    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the

  14. Machine learning applications in cell image analysis. (United States)

    Kan, Andrey


    Machine learning (ML) refers to a set of automatic pattern recognition methods that have been successfully applied across various problem domains, including biomedical image analysis. This review focuses on ML applications for image analysis in light microscopy experiments with typical tasks of segmenting and tracking individual cells, and modelling of reconstructed lineage trees. After describing a typical image analysis pipeline and highlighting challenges of automatic analysis (for example, variability in cell morphology, tracking in presence of clutters) this review gives a brief historical outlook of ML, followed by basic concepts and definitions required for understanding examples. This article then presents several example applications at various image processing stages, including the use of supervised learning methods for improving cell segmentation, and the application of active learning for tracking. The review concludes with remarks on parameter setting and future directions.

  15. Electrochemistry of fuel cells for transportation applications (United States)

    Gonzalez, E. R.; Srinivasan, S.

    Fuel cells are the most promising power sources for electric vehicles and do not suffer the inherent limitations of efficiency, energy density, and lifetime, and encountered with all types of batteries considered for this application. The projected performance of fuel-cell-powered vehicles is comparable to that of the internal combustion and diesel engine vehicles but with the additional advantages of higher fuel efficiency, particularly with synfuels from coal. The ideal fuel for a fuel cell power plant for electric vehicles is methanol. This fuel is reformed to hydrogen, which combines with oxygen from the air in an acid electrolyte (phosphoric, solid polymer, or superacid) fuel cell to produce electricity. Though the phosphoric acid fuel cell is in the most advanced state of development (mainly for power generation applications), the solid polymer and superacid electrolyte fuel cells are more promising for the transportation application because of the faster oxygen reduction kinetics (and hence potential for higher power densities) and shorter start-up times.

  16. Microbial fuel cells: From fundamentals to applications. A review. (United States)

    Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis


    In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

  17. Application of mesenchymal stem cells in paediatrics

    Directory of Open Access Journals (Sweden)

    Wawryk-Gawda Ewelina


    Full Text Available Mesenchymal stem cells (MSC were described by Friedenstein in the 1970s as being a group of bone marrow non-hematopoietic cells that are the source of fibroblasts. Since then, knowledge about the therapeutic potential of MSCs has significantly increased. MSCs are currently used for the treatment of many diseases, both in adults and children. MSCs are used successfully in the case of autoimmune diseases, including rheumatic diseases, diabetes mellitus type 1, gastroenterological and neurological diseases. Moreover, treatment of such organ disorders as damage or hypoxia through application of MSC therapy has shown to be satisfactory. In addition, there are some types of congenital disorders, including osteogenesis imperfecta and Spinal Muscular Atrophy, that may be treated with cellular therapy. Most studies showed no other adverse effects than fever. Our study is an analysis that particularly focuses on the registered trials and results of MSCs application to under 18 patients with acute, chronic, recurrent, resistance and corticosteroids types of Graft-versus-Host Disease (GvHD. Stem cells currently play an important role in the treatment of many diseases. Long-term studies conducted on animals have shown that cell therapy is both effective and safe. The number of indications for use of these cells in the course of treatment of people is constantly increasing. The results of subsequent studies provide important data justifying the application of MSCs in the course of treatment of many diseases whose treatment is ineffective when utilizing other approaches.

  18. [Application of systematic etiological analysis in final and differential diagnosis of hereditary hemolytic anemia]. (United States)

    Li, J Y; Gu, H H; Zheng, S J; Zha, Z S; Hua, M X; Jiang, J J; Cai, B; Zhou, L; Jia, Y; Fang, C P; Qian, B H


    Study on the application of the systematic analysis strategies of etiology in final and differential diagnosis of hereditary hemolytic anemia (HHA). Analysis of 1 506 patients with suspected hemolytic anemia (HA) in systematic hemolytic etiological analysis. ①1 413(94%) of the total 1 506 patients [male 799, female 707, median age 22-year-old (4 days to 86-year-old) ]were caused by membranopathy, hemoglobinopathy and enzymopathy, documented the three major causes of HHA. 369 cases (26%) of the 1 413 patients showed complex type of HA, which had the coexistence of two or more hereditary defects concerning HA in red cells, the other 1 044 cases (74%) were HA with single hemolytic cause. ②In 1 044 cases of single HA, hemoglobinopathy, membranopathy and enzymopathy was 22%, 63% and 15%, respectively. When single HA plused complex HA, the hemoglobinopathy, membranopathy and enzymopathy was 29%, 57% and 14% respectively. The difference was not statistically significant (P >0.05). ③ The most common double heterozygosis with different genetic defects was hemoglobinopathy complicated with membranopathy (50%, 184/369). The complex HA was also found in patients with the enzymopathy complicated with membranopathy (18%, 66/369) and with hemoglobinopathy (4%, 13/369). Some of complex HA patients had the same kinds of genetic defects which means double hemoglobinopathies (29 cases, 8% ), membranopathies (57 cases, 15% ) and enzymopathies (9 cases, 2%). Other kinds (11 cases, 3%) of complex HA, anemia and jaundice were seen in HAA patients accompanied with acquired and secondary defects or other system abnormalities. The parallel etiologic examination of three major genetic hemolytic diseases can be 94% of patients for classification. The results showed that the first cause of HAA was membranopathy, second hemoglobinopathy and then enzymopathy. Complex hemolysis is not uncommon and single factor analysis alone is not enough to provide scientific basis for diagnosis.

  19. Microbial fuel cells for biosensor applications. (United States)

    Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue


    Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.

  20. A Localised Corrosion Cell for Industrial Applications

    DEFF Research Database (Denmark)

    Andersen, A.; Hilbert, Lisbeth Rischel; Jansen, P.


    The LOCORR-CELL™ developed by FORCE TECHNOLOGY is an electrochemical cell for industrial applications estimating localised corrosion. The cell is constructed in a carbon steel casing for direct mounting into the system. It is based on an oxygen concentration element reflecting the interaction...... between the environment formed under a deposit or in a crevice. The essential feature of the method is that it reflects the influence of oxygen content, conductivity and temperature as well as the influence of corrosion inhibitors, MIC and other effects that have an effect on localised corrosion under...

  1. Final Technical Report: Effects of Impurities on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    James G. Goodwin, Jr.; Hector Colon-Mercado; Kitiya Hongsirikarn; and Jack Z. Zhang


    The main objectives of this project were to investigate the effect of a series of potential impurities on fuel cell operation and on the particular components of the fuel cell MEA, to propose (where possible) mechanism(s) by which these impurities affected fuel cell performance, and to suggest strategies for minimizing these impurity effects. The negative effect on Pt/C was to decrease hydrogen surface coverage and hydrogen activation at fuel cell conditions. The negative effect on Nafion components was to decrease proton conductivity, primarily by replacing/reacting with the protons on the Bronsted acid sites of the Nafion. Even though already well known as fuel cell poisons, the effects of CO and NH3 were studied in great detail early on in the project in order to develop methodology for evaluating poisoning effects in general, to help establish reproducibility of results among a number of laboratories in the U.S. investigating impurity effects, and to help establish lower limit standards for impurities during hydrogen production for fuel cell utilization. New methodologies developed included (1) a means to measure hydrogen surface concentration on the Pt catalyst (HDSAP) before and after exposure to impurities, (2) a way to predict conductivity of a Nafion membranes exposed to impurities using a characteristic acid catalyzed reaction (methanol esterification of acetic acid), and, more importantly, (3) application of the latter technique to predict conductivity on Nafion in the catalyst layer of the MEA. H2-D2 exchange was found to be suitable for predicting hydrogen activation of Pt catalysts. The Nafion (ca. 30 wt%) on the Pt/C catalyst resides primarily on the external surface of the C support where it blocks significant numbers of micropores, but only partially blocks the pore openings of the meso- and macro-pores wherein lie the small Pt particles (crystallites). For this reason, even with 30 wt% Nafion on the Pt/C, few Pt sites are blocked and, hence, are

  2. The public acceptance of Hydrogen Fuel Cell applications in Europe

    Directory of Open Access Journals (Sweden)

    Christian Oltra


    Full Text Available There is increasing realisation amongst policy makers and industry that ‘social acceptance’ is a key issue in the deployment of low carbon energy technologies and infrastructures in Europe. The development of hydrogen fuel cell technologies (HFCs involves small-scale residential and transport applications, as well as large-scale infrastructures, the socio-technical embedment of which will be influenced by the public and stakeholders in various roles. Previous research on public acceptance has investigated public perceptions of HFCs in specific countries. Here we present survey data on a multi-country scale, using a multivariate, socio-psychological approach. We particularly focus on cross-country differences in self-reported awareness and familiarity, global attitude and support in relation to mobile and residential HFC applications. Our data shows that less than half of the population in the seven countries are aware of the existence of hydrogen and fuel cell technologies in the context of energy production. The level of familiarity with both applications is low, and less than 10% of respondents consider themselves familiar with these applications. In general, respondents in the seven countries have a positive initial attitude towards HFC technologies and are likely to accept and support the adoption of residential fuel cells and HFCEVs. The seven populations studied are similar in their attitudes towards HFC technologies, but there are small to moderate differences in awareness and acceptance of HFC applications across countries. We finally found that positive and negative affect, perceived benefits, preference for alternative technologies, trust, and age were significant correlates of acceptance of HFC applications. We consider the implications of these differences for the public acceptance of HFCs.

  3. Cellular heredity in haploid cultures of somatic cells, March 1968-April 1981. Final report

    International Nuclear Information System (INIS)

    Freed, J.J.


    An account is given of the development and application to cell-culture genetics of unique haploid cell lines from frog embryo developed in this laboratory. Since 1968, the main aim of this project has been to develop the haploid cell system for studies of mutagenesis in culture, particularly by ultraviolet radiation. In the course of this work we isolated chromosomally stable cell lines, derived and characterized a number of variants, and adapted cell hybridization and other methods to this material. Particular emphasis was placed on ultraviolet photobiology, including studies of cell survival, mutagenesis, and pathways of repair of uv-damaged DNA. Although at present less widely used for genetic experiments than mammalian cell lines, the frog cells offer the advantages of authentic haploidy and a favorable repertory of DNA repair pathways for study of uv mutagenesis

  4. Stem cells in dentistry, sources, and applications

    Directory of Open Access Journals (Sweden)

    Mozafar Khazaei


    Full Text Available Introduction: Stem cells (SCs, known as cells with characteristics such as self-renewal and multilineage differentiation, are generally obtained from two sources: Embryonic stem cells (ESCs and adult stem cells (ASCs. SC research is expected to play a pivotal role in future medicine. The aim of the present review was to introduce dental and nondental SCs, examining the general characteristics, in vivo and in vitro differentiation capacities, immunosuppressive properties as well as the application of SCs in dentistry and regenerative medicine. Methods: In October 2015, PubMed, Scopus were searched by experienced researchers with the query "stem cells and dentistry "and a focus on SC and dental journals. Results: In the field of dentistry, ASCs, isolated from different structures, are divided into different subpopulations: Dental SCs, population of SCs isolated from different components of immature and mature teeth and nondental SCs, and those isolated from oromaxillofacial tissues. Conclusions: It appears that dental and nondental SCs are popular resources of SCs because of easier accessibility and fewer ethical problems. In addition, they have a high differentiation capacity into different cell lineages. Different studies have introduced dental and nondental SCs as suitable SC sources for SC therapy in dentistry and regenerative medicine.

  5. Yeast fuel cell: Application for desalination (United States)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo


    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  6. Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Mark Hilson Schneider


    This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: • relatively poor power quality as quantified by the IEEE-defined short term flicker parameter • relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available

  7. Gasifiers optimized for fuel cell applications (United States)

    Steinfeld, G.; Fruchtman, J.; Hauserman, W. B.; Lee, A.; Meyers, S. J.

    Conventional coal gasification carbonate fuel cell systems are typically configured so that the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45-53 percent (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

  8. Lead plant application of leak-before-break to high energy piping. Final report, January 1989

    International Nuclear Information System (INIS)


    This report presents the experience gained during a successful application of a leak-before-break program by Duquesne Light Company. This program was directed at the high energy nuclear piping at Beaver Valley Power Station - Unit 2. This experience can be applied to other nuclear plant leak-before-break efforts in order to minimize the number of pipe whip restraints, jet impingement shields, snubbers, and to discount the consideration of remaining pipe rupture dynamic effects. The chronology of events leading to Nuclear Regulatory Commission approval of the Beaver Valley Power Station - Unit 2 lead plant effort is described. The final report and pertinent sections of the final Safety Evaluation Report are also included. (author)

  9. Heterogenic final cell cycle by chicken retinal Lim1 horizontal progenitor cells leads to heteroploid cells with a remaining replicated genome.

    Directory of Open Access Journals (Sweden)

    Shahrzad Shirazi Fard

    Full Text Available Retinal progenitor cells undergo apical mitoses during the process of interkinetic nuclear migration and newly generated post-mitotic neurons migrate to their prospective retinal layer. Whereas this is valid for most types of retinal neurons, chicken horizontal cells are generated by delayed non-apical mitoses from dedicated progenitors. The regulation of such final cell cycle is not well understood and we have studied how Lim1 expressing horizontal progenitor cells (HPCs exit the cell cycle. We have used markers for S- and G2/M-phase in combination with markers for cell cycle regulators Rb1, cyclin B1, cdc25C and p27Kip1 to characterise the final cell cycle of HPCs. The results show that Lim1+ HPCs are heterogenic with regards to when and during what phase they leave the final cell cycle. Not all horizontal cells were generated by a non-apical (basal mitosis; instead, the HPCs exhibited three different behaviours during the final cell cycle. Thirty-five percent of the Lim1+ horizontal cells was estimated to be generated by non-apical mitoses. The other horizontal cells were either generated by an interkinetic nuclear migration with an apical mitosis or by a cell cycle with an S-phase that was not followed by any mitosis. Such cells remain with replicated DNA and may be regarded as somatic heteroploids. The observed heterogeneity of the final cell cycle was also seen in the expression of Rb1, cyclin B1, cdc25C and p27Kip1. Phosphorylated Rb1-Ser608 was restricted to the Lim1+ cells that entered S-phase while cyclin B1 and cdc25C were exclusively expressed in HPCs having a basal mitosis. Only HPCs that leave the cell cycle after an apical mitosis expressed p27Kip1. We speculate that the cell cycle heterogeneity with formation of heteroploid cells may present a cellular context that contributes to the suggested propensity of these cells to generate cancer when the retinoblastoma gene is mutated.

  10. European Fuel Cells R&D Review. Final report, Purchase Order No. 062014

    Energy Technology Data Exchange (ETDEWEB)

    Michael, P.D.; Maguire, J. [Energy Technology Support Unit, Harwell (United Kingdom)


    Aim of the Review is to present a statement on the status of fuel cell development in Europe, addressing the research, development and demonstration (RD&D) and commercialization activities being undertaken, identifying key European organizations active in development and commercialization of fuel cells and detailing their future plans. This document describes the RD&D activities in Europe on alkaline, phosphoric acid, polymer electrolyte, direct methanol, solid oxide, and molten carbonate fuel cell types. It describes the European Commission`s activities, its role in the European development of fuel cells, and its interaction with the national programs. It then presents a country-by-country breakdown. For each country, an overview is given, presented by fuel cell type. Scandinavian countries are covered in less detail. American organizations active in Europe, either in supplying fuel cell components, or in collaboration, are identified. Applications include transportation and cogeneration.

  11. Perovskite Materials: Solar Cell and Optoelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL


    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure, and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.

  12. New industrial heat pump applications to a synthetic rubber plant. Final report, Phase IIA

    Energy Technology Data Exchange (ETDEWEB)



    This report summarizes the results of the Phase IIA of the DOE sponsored study titled, Advanced Industrial Heat Pump Application and Evaluation. The scope of this phase of the study was to finalize the process design of the heat pump scheme, develop a process and instrumentation diagram, and a detailed cost estimate for the project. This information is essential for the site management to evaluate the economic viability and operability of the proposed heat pump design, prior to the next phase of installation and testing.

  13. Light and energy - solar cells in transparent facades. Final report; Lys og energi - solceller i transparente facader. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)


    The overall purpose with the project 'LIGHT AND ENERGY - solar cells in transparent facades' is to demonstrate and disseminate the potentials for the application of light-filtering solar cells as multi-functional components, which meets the architectural objectives while contributing to a good indoor climate, a suitable quality of lighting indoor and at the same time produces electricity. The project was divided into six activities. The first activity 'zooms in' on the light-filtering solar cells on the market today. The following activities gradually 'zoom out' from the solar cell itself to the building component and ends up in the facade and the room behind. This order - which largely reflects the chronological development of the project - is repeated in the final project report to ensure the best possible overview. The characterisation in the different activities has been a combination of technical measurements, simulations, calculations and a thorough architectural evaluation of solar cell component, facade and room for attain an overall, interprofessional evaluation of the solar cell panels. It is important to stress that the basis of the project is the solar cell products available on the market today and In the near future. The possibilities and ideas have been evaluated and documented using mock-ups in 1:1 scale since the individual components have completely other qualities when they are integrated in a facade - the platform of this project. These models in full scale are a possibility to register and experience the character of the light inside out and under different light settings. It has been important to think of the solar cell filter as a part of the architecture instead of a replacement for windows and actively use the light-filtering features as a possibility in new facade designs - a filter which in combination with the completely transparent glass and completely light-blocking materials opens up for new possibilities

  14. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of... (United States)


    ... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80...

  15. Cadmium sulfide/copper ternary heterojunction cell research. Final report, April 1, 1980-August 25, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Mickelsen, R. A.; Chen, W. S.


    The properties of polycrystalline, thin-film CuInSe/sub 2//CdS and CuInSe/sub 2//Zn/sub x/Cd/sub 1-x/S solar cells prepared by vacuum-evaporation techniques onto metallized-alumina substrates are described. An efficiency of 10.6% for a 1 cm/sup 2/ area cell and 8.3% for an 8 cm/sup 2/ cell when tested under simulated AM1 illumination is reported. The mixed-sulfide cells are described as exhibiting increased open-circuit voltages, slightly higher short-circuit currents, and improved efficiencies. Mixed-sulfide film preparation by evaporation of CdS and ZnS powders from a single source and from two sources is discussed with preference given to the later technique. Selenide-film preparation in a planetary or rotating substrate vacuum-deposition apparatus is described. A 1 cm/sup 2/ area cell without AR-coating produced by the planetary approach is reported to demonstrate a 7.5% efficiency. The results of cell heat-treatment studies showing a strong environmental dependence are presented and indicate the desirability of an oxygen-containing atmosphere. An automatic, computer-controlled, cell-measurement system for I-V, C-V, and spectral-response analysis is described. The results of the cell-analysis and cell-modeling studies on both the plain CdS and mixed Zn/sub x/Cd/sub 1-x/S thin-film devices are presented. Finally, data obtained from constant illumination and elevated temperature life-tests on the thin-film cells showing little degradation after 9300 hours is reported.

  16. Application of XPS to study electrocatalysts for fuel cells (United States)

    Corcoran, C. J.; Tavassol, H.; Rigsby, M. A.; Bagus, P. S.; Wieckowski, A.

    Analysis of the surface is paramount to understanding the reactivity, selectivity, and catalytic ability of substances. In particular, this understanding is required to make an efficient use of the catalytic surfaces in fuel cells. X-ray photoelectron spectroscopy (XPS) allows determination of changes in the electronic structure for different surface preparation and composition based, mainly, on shifts of the binding energies of core-level electrons. It is also an ideal method that allows identification of the surface or near surface species in relation to fuel cell catalysis. However, the fundamental theoretical concepts, which are used to analyze and interpret XPS spectra are sometimes not correctly understood or correctly applied. In this review, we not only report on XPS operational parameters in use for fuel cell electrocatalysis, but, more significantly, we review and provide rigorous definitions of fundamental concepts used to understand XPS spectra, including the separation of initial and final state effects and the relaxation of valence electrons to screen core-holes. An additional direction of our review is to show the relationships between XPS binding energy shifts and XPS satellite structure with chemical bonding and chemical interactions. However, our primary concern is to provide reviews of representative cases of the application of XPS to solving fuel cell and electrocatalysis-related problems, highlighting progress in this laboratory. We begin with descriptions of essential issues in fuel cell science and with a review of key concepts of XPS. Then, we briefly report on the XPS instrumentation, after which, studies of fundamental importance to electrochemical processes are reviewed. This review includes an overview of complex organic and biological systems in relation to fuel cell electrocatalysis (probed via XPS). We conclude with a discussion of modern developments in XPS methodology.

  17. PEM - fuel cell system for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Britz, P. [Viessmann Werke GmbH and Co KG, 35107 Allendorf (Germany); Zartenar, N.


    Viessmann is developing a PEM fuel cell system for residential applications. The uncharged PEM fuel cell system has a 2 kW electrical and 3 kW thermal power output. The Viessmann Fuel Processor is characterized by a steam-reformer/burner combination in which the burner supplies the required heat to the steam reformer unit and the burner exhaust gas is used to heat water. Natural gas is used as fuel, which is fed into the reforming reactor after passing an integrated desulphurisation unit. The low temperature (600 C) fuel processor is designed on the basis of steam reforming technology. For carbon monoxide removal, a single shift reactor and selective methanisation is used with noble metal catalysts on monoliths. In the shift reactor, carbon monoxide is converted into hydrogen by the water gas shift reaction. The low level of carbon monoxide at the outlet of the shift reactor is further reduced, to approximately 20 ppm, downstream in the methanisation reactor, to meet PEM fuel cell requirements. Since both catalysts work at the same temperature (240 C), there is no requirement for an additional heat exchanger in the fuel processor. Start up time is less than 30 min. In addition, Viessmann has developed a 2 kW class PEFC stack, without humidification. Reformate and dry air are fed straight to the stack. Due to the dry operation, water produced by the cell reaction rapidly diffuses through the electrolyte membrane. This was achieved by optimising the MEA, the gas flow pattern and the operating conditions. The cathode is operated by an air blower. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  18. 40 CFR 257.3-5 - Application to land used for the production of food-chain crops (interim final). (United States)


    ... production of food-chain crops (interim final). 257.3-5 Section 257.3-5 Protection of Environment... Application to land used for the production of food-chain crops (interim final). (a) Cadmium. A facility or... for the production of food-chain crops shall not exist or occur, unless in compliance with all...

  19. The potential application of stem cell in dentistry

    Directory of Open Access Journals (Sweden)

    Ketut Suardita


    Full Text Available Stem cells are generally defined as cells that have the capacity to self-renewal and differentiate to specialize cell. There are two kinds of stem cell, embryonic stem cell and adult stem cells. Stem cell therapy has been used to treat diseases including Parkinson’s and Alzheimer’s diseases, spinal cord injury, stroke, burns, heart diseases, diabetes, osteoarthritis, and rheumatoid arthritis. Stem cells were found in dental pulp, periodontal ligament, and alveolar bone marrow. Because of their potential in medical therapy, stem cells were used to regenerate lost or damage teeth and periodontal structures. This article discusses the potential application of stem cells for dental field.

  20. Bioethics of Clinical Applications of Stem Cells. (United States)

    Petrini, Carlo


    The clinical applications of stem cells pose a multitude of problems, including safety, efficacy, information and consent, the right to unproven treatments, the "right to try", costs, access, sustainability, scientific scrupulousness, patents and regulatory aspects, to name but a few. This article does not address individual issues, but rather introduces and discusses some of the possible approaches to solving the problems. The first part compares the consequentialist and deontological approaches, offering an overview of "top-down" and "bottom-up" models and proposing the principles of personalism as applied in clinical settings. The second part of the article suggests practical frameworks for organising the ethical issues, focusing in particular on the medical indications, patient preferences, quality of life, and contextual features.

  1. Spent fuel management strategies in eight countries and applicability to Sweden. Final report

    International Nuclear Information System (INIS)


    The spent fuel management activities described in volume 1 are compared in three areas. The first section summarizes the spent fuel management options being followed in each country and compares those options with regard to cost, environmental impact and public acceptability. Next section reviews and compares national policies on nuclear power, spent fuel management and high-level waste disposal and assesses their impact on the development and licensing of nuclear power plants. The third section compares the regulatory requirements affecting spent fuel managementin terms of their overall spirit and characteristics and in terms of the responsibilities of the utilities and the regulatory authorities. Finally, the last section addresses the applicability to Sweden of the findings from these comparisons, focusing on cost efficiency, health and safety, environmental impact, public acceptance and licensing procedures

  2. Final Report - Stationary and Emerging Market Fuel Cell System Cost Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Contini, Vince [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Mike [Battelle Memorial Inst., Columbus, OH (United States); George, Paul [Battelle Memorial Inst., Columbus, OH (United States); Eubanks, Fritz [Battelle Memorial Inst., Columbus, OH (United States); Jansen, Mike [Battelle Memorial Inst., Columbus, OH (United States); Valluri, Manoj [Battelle Memorial Inst., Columbus, OH (United States); Mansouri, Mahan [Battelle Memorial Inst., Columbus, OH (United States); Swickrath, Mike [Battelle Memorial Inst., Columbus, OH (United States)


    The U.S. Department of Energy (DOE) is focused on providing a portfolio of technology solutions to meet energy security challenges of the future. Fuel cells are a part of this portfolio of technology offerings. To help meet these challenges and supplement the understanding of the current research, Battelle has executed a five-year program that evaluated the total system costs and total ownership costs of two technologies: (1) an ~80 °C polymer electrolyte membrane fuel cell (PEMFC) technology and (2) a solid oxide fuel cell (SOFC) technology, operating with hydrogen or reformate for different applications. Previous research conducted by Battelle, and more recently by other research institutes, suggests that fuel cells can offer customers significant fuel and emission savings along with other benefits compared to incumbent alternatives. For this project, Battelle has applied a proven cost assessment approach to assist the DOE Fuel Cell Technologies Program in making decisions regarding research and development, scale-up, and deployment of fuel cell technology. The cost studies and subsequent reports provide accurate projections of current system costs and the cost impact of state-of-the-art technologies in manufacturing, increases in production volume, and changes to system design on system cost and life cycle cost for several near-term and emerging fuel cell markets. The studies also provide information on types of manufacturing processes that must be developed to commercialize fuel cells and also provide insights into the optimization needed for use of off-the-shelf components in fuel cell systems. Battelle’s analysis is intended to help DOE prioritize investments in research and development of components to reduce the costs of fuel cell systems while considering systems optimization.

  3. Design, construction and conditions of the application of unreinforced concrete final lining in conventionally driven tunnels (United States)

    Faltýnek, Jan; Hořejší, Jiří; Mařík, Libor; Růžička, Pavel


    The way to an economic design in the final lining in conventionally driven tunnels lies in structural analysing based on the actually encountered geotechnical conditions. Regarding reinforced concrete structures, many standards and regulations applicable to designing and building structures and taking them over by the client before their commissioning and before the end of the warranty period respectively exist in the Czech Republic. If the local conditions allow it, it is possible to design the final lining as an unreinforced concrete structure. In such a case it is necessary to take the differences into consideration in the structural design and in the possibilities of the lining behaviour and to set criteria for taking over the lining allowing for its use. Setting too stringent criteria for cracking can lead to an increase in the contract price, either because of the necessity for reinforcing the lining or because of the fact that the contractor reduces the risk by incorporating the assumed cost of repairs into the total cost. The paper describes basic differences in the approach to reinforced concrete and unreinforced concrete linings, the possibilities of limiting formation of cracks by means of the concrete mix design, by selection of the technological procedure of the work and the method of curing after stripping. The text contains a comparison of criteria for assessing the surface of an unreinforced concrete lining with criteria in foreign regulations.

  4. RBX2 maintains final retinal cell position in a DAB1-dependent and -independent fashion. (United States)

    Fairchild, Corinne L; Hino, Keiko; Han, Jisoo S; Miltner, Adam M; Peinado Allina, Gabriel; Brown, Caileigh E; Burns, Marie E; La Torre, Anna; Simó, Sergi


    The laminated structure of the retina is fundamental for the organization of the synaptic circuitry that translates light input into patterns of action potentials. However, the molecular mechanisms underlying cell migration and layering of the retina are poorly understood. Here, we show that RBX2, a core component of the E3 ubiquitin ligase CRL5, is essential for retinal layering and function. RBX2 regulates the final cell position of rod bipolar cells, cone photoreceptors and Muller glia. Our data indicate that sustained RELN/DAB1 signaling, triggered by depletion of RBX2 or SOCS7 - a CRL5 substrate adaptor known to recruit DAB1 - causes rod bipolar cell misposition. Moreover, whereas SOCS7 also controls Muller glia cell lamination, it is not responsible for cone photoreceptor positioning, suggesting that RBX2, most likely through CRL5 activity, controls other signaling pathways required for proper cone localization. Furthermore, RBX2 depletion reduces the number of ribbon synapses and disrupts cone photoreceptor function. Together, these results uncover RBX2 as a crucial molecular regulator of retina morphogenesis and cone photoreceptor function. © 2018. Published by The Company of Biologists Ltd.

  5. Final Scientific/Technical Report: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, William [24M Technologies, Inc., Cambridge, MA (United States)


    This document is the final technical report from 24M Technologies on the project titled: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing. All of the program milestones and deliverables were completed during the performance of the award. Specific accomplishments are 1) 24M demonstrated the processability and electrochemical performance of semi-solid electrodes with active volume contents increased by 10% relative to the program baseline; 2) electrode-level metrics, quality, and yield were demonstrated at an 80 cm2 electrode footprint; 3) these electrodes were integrated into cells with consistent capacities and impedances, including cells delivered to Argonne National Laboratory for independent testing; 4) those processes were scaled to a large-format (> 260 cm2) electrode footprint and quality and yield were demonstrated; 5) a high-volume manufacturing approach for large-format electrode fabrication was demonstrated; and 6) large-format cells (> 100 Ah capacity) were prototyped with consistent capacity and impedance, including cells which were delivered to Argonne National Laboratory for independent testing.

  6. Current overview on dental stem cells applications in regenerative dentistry


    Bansal, Ramta; Jain, Aditya


    Teeth are the most natural, noninvasive source of stem cells. Dental stem cells, which are easy, convenient, and affordable to collect, hold promise for a range of very potential therapeutic applications. We have reviewed the ever-growing literature on dental stem cells archived in Medline using the following key words: Regenerative dentistry, dental stem cells, dental stem cells banking, and stem cells from human exfoliated deciduous teeth. Relevant articles covering topics related to dental...

  7. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters (United States)

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.


    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  8. An overview of power electronics applications in fuel cell systems: DC and AC converters. (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A


    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  9. Genome editing in pluripotent stem cells: research and therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Deleidi, Michela, E-mail: [German Center for Neurodegenerative Diseases (DZNE) Tübingen within the Helmholtz Association, Tübingen (Germany); Hertie Institute for Clinical Brain Research, University of Tübingen (Germany); Yu, Cong [Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, New York (United States)


    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  10. Genome editing in pluripotent stem cells: research and therapeutic applications

    International Nuclear Information System (INIS)

    Deleidi, Michela; Yu, Cong


    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  11. Dental Stem Cells and Their Applications. (United States)

    Har, Alix; Park, Joo Cheol


    Stem cells are unspecialised cells that can divide, renew, and differentiate into more specialised cells. Due to their unique properties, stem cells are known for their use in therapies and treatments for missing tissues and damaged parts of the body. However, due to the invasive nature and other ethical issues with the retrieval process and usage of stem cells, stem cells are clinically being used in a limited manner. Furthermore, due to the invasive nature of the retrieval process elsewhere, dental tissues are one of the most preferred sources for stem cells. This review covers all of the characteristics of dental tissue-derived stem cells and their potential future uses.

  12. Assessment of instrumentation needs for advanced coal power plant applications: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.


    The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

  13. Current overview on dental stem cells applications in regenerative dentistry. (United States)

    Bansal, Ramta; Jain, Aditya


    Teeth are the most natural, noninvasive source of stem cells. Dental stem cells, which are easy, convenient, and affordable to collect, hold promise for a range of very potential therapeutic applications. We have reviewed the ever-growing literature on dental stem cells archived in Medline using the following key words: Regenerative dentistry, dental stem cells, dental stem cells banking, and stem cells from human exfoliated deciduous teeth. Relevant articles covering topics related to dental stem cells were shortlisted and the facts are compiled. The objective of this review article is to discuss the history of stem cells, different stem cells relevant for dentistry, their isolation approaches, collection, and preservation of dental stem cells along with the current status of dental and medical applications.

  14. Spent fuel management strategies in eight countries and applicability to Sweden. Final report

    International Nuclear Information System (INIS)


    International Energy Associates Limited (IEAL) undertook this study on behalf of Sweden's National Board for Spent Nuclear Fuel (SKN) from June to October 1986. The purpose of the project was to compare the programs and regulations for the management of spent fuel from nuclear power plants and disposal of high-level radioactive waste in eight countries: Belgium, Canada, the Federal Republic of Germany, France, Japan, Switzerland, the United Kingdom and the United States. This final report includes revisions requested by SKN upon review of the draft report dated in September 26, 1986. The study is presented in three volumes. Volume I (Section 2.0 of the report) consists of detailed country-specific reports on the policies, regulations and strategies for spent fuel and high-level waste management in each of the eight countries. The information contained in these country-specific reports was used as the basis for comparing the options in each country in terms of cost, environmental impact, and public acceptability, and for comparing the policies and regulatory requirements affecting these activities in each country. These comparisons are provided in Volume II (Section 3.0 of the report). Section 3.0 also includes a discussion of the applicability to Sweden of the strategies and policies in the eight countries studied. Finally, Volume III of the report (Section 4.0) presents the laws, regulations and other documents pertinent to spent fuel and high-level waste management in these countries. Descriptive summaries of the documents are provided in Section 4.0, a comparison guide to the documents themselves (the great majority of them in English) which are provided in 15 volumes of appendices


    Energy Technology Data Exchange (ETDEWEB)

    Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz


    US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

  16. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lonergan, Mark [Univ. of Oregon, Eugene, OR (United States)


    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  17. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. (United States)

    Mahla, Ranjeet Singh


    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

  18. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications. (United States)

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K


    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.

  19. Biological roles and potential applications of immune cell-derived extracellular vesicles. (United States)

    Wen, Chuan; Seeger, Robert C; Fabbri, Muller; Wang, Larry; Wayne, Alan S; Jong, Ambrose Y


    Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids) for intercellular communication in multicellular organisms. EVs are secreted by all cell types including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs have become the focus of great interest for various nano-biomedical applications, ranging from the medical use of nanoplatform-based diagnostic agents to the development of therapeutic interventions as well as vaccine applications, and thus may be ideal for 'immune-theranostic'. Here, we review the latest advances concerning the biological roles of immune cell-derived EVs in innate and acquired immunity. The intercellular communication amongst immune cells through their EVs is highlighted, showing that all immune cell-derived EVs have their unique function(s) in immunity through intricate interaction(s). Natural-killer (NK) cell-derived EVs, for example, contain potent cytotoxic proteins and induce apoptosis to targeted cancer cells. On the other hand, cancer cell-derived EVs bearing NK ligands may evade immune surveillance and responses. Finally, we discuss possible medical uses for the immune cell-derived EVs as a tool for immune-theranostic: as diagnostic biomarkers, for use in therapeutic interventions and for vaccination.

  20. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luczak, F.


    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  1. Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing


    Low-energy ion beam bombardment induced self-assembly has been used to form various periodic nano-size wave-ordered structures (WOS). Such WOS can be used as hard etching masks to produce nanowire arrays, trenches etc., on other materials by means of traditional etching or ion sputtering. These periodic nano-size structures have a wide range of applications, including flat panel displays, optical electronics, and clean energy technologies (solar and fuel cells, lithium batteries). In order to achieve high throughput of the above processes, a large area RF-driven multicusp nitrogen ion source has been developed for the application of nitrogen ion beam induced surface modification. An integrated ion beam system, which can house either a large area RF-driven multicusp ion source or a commercially available microwave ion source (Roth & Rau AG Tamiris 400-f) have been designed, manufactured, assembled, and tested.

  2. Final Technical Report: Affordable, High-Performance, Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Bryan [Redox Power Systems, LLC; Bishop, Sean [Redox Power Systems, LLC; Gore, Colin [Redox Power Systems, LLC; Wang, Lei [Redox Power Systems, LLC; Correa, Luis [Redox Power Systems, LLC; Langdo, Thomas [Redox Power Systems, LLC; Deaconu, Stelu [Redox Power Systems, LLC; Pan, Keji [Redox Power Systems, LLC


    In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and the lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large

  3. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei


    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  4. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, Charles, M., Jr.


    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have

  5. T regulatory cell separation for clinical application. (United States)

    Di Ianni, Mauro; Del Papa, Beatrice; Zei, Tiziana; Iacucci Ostini, Roberta; Cecchini, Debora; Cantelmi, Maria Grazia; Baldoni, Stefano; Sportoletti, Paolo; Cavalli, Laura; Carotti, Alessandra; Pierini, Antonio; Falini, Brunangelo; Martelli, Massimo F; Falzetti, Franca


    We selected T regulatory cells (Tregs) from standard leukapheresis using double-negative selection (anti-CD8 and anti-CD19) followed by positive selection (anti-CD25) and 72 procedures were performed. A median of 263×10(6)cells (range 143-470×10(6)) were recovered with a mean of CD4(+)/CD25(+) cells of 94.5±2.4% (36.5±18.6% CD4(+)/CD25(+hi)). FoxP3(+) cells were equal to 79.8%±22.2. CD127(+) cells were 12.5%±8.2. The inhibition assay showed an inhibition rate of 67±22. Cells isolated by means of this approach can be used in allogeneic hematopoietic stem cell transplantation to reduce the incidence and severity of GvHD without bystander inhibition of general immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Cell and stack design alternatives. Final report, August 1, 1978-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Jr., D. Q.; King, Robert B.


    The work described comprised the first phase of a planned six phase program to develop commercially viable phosphoric acid fuel cell (PAFC) driven on-site integrated energy systems (OS/IES). The Phase I effort was organized as three major technical tasks; (1) study of system design alternatives; (2) fuel cell design alternatives; and (3) methane conditioner study. It was decided that comprehensive modeling of one application would most effectively utilize the resources available for the study of systems design alternatives. A 48 unit apartment complex located in Albany, New York and built to HUD minimum standards was selected as being typical of the applications that will be served by the systems. The time varying space conditioning (HVAC) and electrical requirements including the effects of varying weather conditions, living habits and occupancy patterns were modeled. These requirements formed the basis for comparing the performance and cost of the alternative configurations with each other and with a conventional system. Five basic alternative OS/IES configurations plus four variations were selected from a preliminary list of 13 basic configurations for detailed performance nd cost evaluations. Study procedures and results are presented in detail. (WHK)

  7. Potential high efficiency solar cells: Applications from space photovoltaic research (United States)

    Flood, D. J.


    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  8. Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications. (United States)

    Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H


    Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.

  9. 76 FR 45612 - Notice of Availability of the Buckskin Mine Hay Creek II Coal Lease-by-Application Final... (United States)


    ... Bureau of Land Management Notice of Availability of the Buckskin Mine Hay Creek II Coal Lease-by-Application Final Environmental Impact Statement, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Availability. SUMMARY: In accordance with the National Environmental Policy Act of ] 1969 (NEPA...

  10. 78 FR 5439 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100... (United States)


    ... jobs in the United States by supplying information that competitors could use to compete with companies... or Financial Guarantee in Excess of $100 Million: AP087734XX AGENCY: Export-Import Bank of the United... received an application for final commitment for a long-term loan or financial guarantee in excess of $100...

  11. 78 FR 8130 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100... (United States)


    ... jeopardize jobs in the United States by supplying information that competitors could use to compete with... or Financial Guarantee in Excess of $100 Million: AP087679XX AGENCY: Export-Import Bank of the United... received an application for final commitment for a long-term loan or financial guarantee in excess of $100...

  12. 78 FR 38031 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100... (United States)


    ... supplying information that competitors could use to compete with companies in the United States. DATES... Loan or Financial Guarantee in Excess of $100 Million: AP087913XX AGENCY: Export-Import Bank of the... Bank has received an application for final commitment for a long-term loan or financial guarantee in...

  13. 77 FR 72860 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100... (United States)


    ... jeopardize jobs in the United States by supplying information that competitors could use to compete with... for a Long-Term Loan or Financial Guarantee in Excess of $100 Million: AP085680XX AGENCY: Export...''), that Ex-Im Bank has received an application for final commitment for a long-term loan or financial...

  14. 77 FR 74846 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100... (United States)


    ... supplying information that competitors could use to compete with companies in the United States. DATES... for a Long-Term Loan or Financial Guarantee in Excess of $100 million: AP085332XX AGENCY: Export...''), that Ex-Im Bank has received an application for final commitment for a long-term loan or financial...

  15. 78 FR 20317 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100... (United States)


    ... supplying information that competitors could use to compete with companies in the United States. DATES... or Financial Guarantee in Excess of $100 Million: AP087223XX and AP087223XA AGENCY: Export-Import...''), that Ex-Im Bank has received an application for final commitment for a long-term loan or financial...

  16. 77 FR 70161 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100... (United States)


    ... jobs in the United States by supplying information that competitors could use to compete with companies... or Financial Guarantee in Excess of $100 Million: AP087512XX AGENCY: Export-Import Bank of the United... received an application for final commitment for a long-term loan or financial guarantee in excess of $100...

  17. 78 FR 16675 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100... (United States)


    ... the purpose of the transaction: To support the export of General Electric turbines to the United Arab... Loan or Financial Guarantee in Excess of $100 Million: AP085996XX AGENCY: Export-Import Bank of the... Bank has received an application for final commitment for a long-term loan or financial guarantee in...

  18. Stem Cell Research: Applications In Haematological Conditions ...

    African Journals Online (AJOL)

    Haematopoietic Stem Cell Trans-plantation is a medical procedure in the field of haematology and oncology that involves transplantation of haematopoietic stem cells (HSC). It is most often performed for people with diseases of the blood or bone narrow or certain types of cancers.

  19. Implementation of Scientific Computing Applications on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Guochun Shi


    Full Text Available The Cell Broadband Engine architecture is a revolutionary processor architecture well suited for many scientific codes. This paper reports on an effort to implement several traditional high-performance scientific computing applications on the Cell Broadband Engine processor, including molecular dynamics, quantum chromodynamics and quantum chemistry codes. The paper discusses data and code restructuring strategies necessary to adapt the applications to the intrinsic properties of the Cell processor and demonstrates performance improvements achieved on the Cell architecture. It concludes with the lessons learned and provides practical recommendations on optimization techniques that are believed to be most appropriate.

  20. Enhancing the lifetime of SOFC stacks for combined heat and power applications SOF-CH - Final report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sfeir, J.; Hocker, T.; Herle, J. Van; Nakajo, A.; Tanasini, P.; Galinski, H.; Kuebler, J.


    This final report for the Swiss Federal Office of Energy (SFOE) reports on work done in 2007 by the Swiss SOF Consortium SOF-CH on research concerned with various aspects of fuel cell technology. Members of the consortium include several Swiss Institutes of Technology and Materials Research, Universities of Applied Sciences as well is important commercial players in the fuel cell area. The work done on various aspects of fuel cell technology and the co-operation between the various institutions and companies are reviewed. The five work packages defined in the project are reported on. Follow-up projects are noted.

  1. Final Report for Project "Framework Application for Core-Edge Transport Simulations (FACETS)"

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States)


    This is the final report for the Colorado State University Component of the FACETS Project. FACETS was focused on the development of a multiphysics, parallel framework application that could provide the capability to enable whole-device fusion reactor modeling and, in the process, the development of the modeling infrastructure and computational understanding needed for ITER. It was intended that FACETS be highly flexible, through the use of modern computational methods, including component technology and object oriented design, to facilitate switching from one model to another for a given aspect of the physics, and making it possible to use simplified models for rapid turnaround or high-fidelity models that will take advantage of the largest supercomputer hardware. FACETS was designed in a heterogeneous parallel context, where different parts of the application can take advantage through parallelism based on task farming, domain decomposition, and/or pipelining as needed and applicable. As with all fusion simulations, an integral part of the FACETS project was treatment of the coupling of different physical processes at different scales interacting closely. A primary example for the FACETS project is the coupling of existing core and edge simulations, with the transport and wall interactions described by reduced models. However, core and edge simulations themselves involve significant coupling of different processes with large scale differences. Numerical treatment of coupling is impacted by a number of factors including, scale differences, form of information transferred between processes, implementation of solvers for different codes, and high performance computing concerns. Operator decomposition involving the computation of the individual processes individually using appropriate simulation codes and then linking/synchronizing the component simulations at regular points in space and time, is the defacto approach to high performance simulation of multiphysics

  2. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    Energy Technology Data Exchange (ETDEWEB)

    James L. Gaddy, PhD; Ching-Whan Ko, PhD


    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T

  3. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis (United States)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  4. Fuel cell system for transportation applications (United States)

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.


    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  5. Dynamic mobility applications open source application development portal : Task 3.3 : concept of operations : final report. (United States)


    The Dynamic Mobility Applications (DMA) program seeks to promote the highest level of collaboration and preservation of intellectual capital generated from application development and associated research activities funded by the program. The program ...

  6. Current progress in the derivation and therapeutic application of neural stem cells. (United States)

    Tang, Yuewen; Yu, Pei; Cheng, Lin


    Neural stem cells (NSCs) have a unique role in neural regeneration. Cell therapy based on NSC transplantation is a promising tool for the treatment of nervous system diseases. However, there are still many issues and controversies associated with the derivation and therapeutic application of these cells. In this review, we summarize the different sources of NSCs and their derivation methods, including direct isolation from primary tissues, differentiation from pluripotent stem cells and transdifferentiation from somatic cells. We also review the current progress in NSC implantation for the treatment of various neural defects and injuries in animal models and clinical trials. Finally, we discuss potential optimization strategies for NSC derivation and propose urgent challenges to the clinical translation of NSC-based therapies in the near future.

  7. Fast Response, Load-Matching Hybrid Fuel Cell: Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, T. S.; Sitzlar, H. E.; Geist, T. D.


    Hybrid DER technologies interconnected with the grid can provide improved performance capabilities compared to a single power source, and, add value, when matched to appropriate applications. For example, in a typical residence, the interconnected hybrid system could provide power during a utility outage, and also could compensate for voltage sags in the utility service. Such a hybrid system would then function as a premium power provider and eliminate the potential need for an uninterruptible power supply. In this research project, a proton exchange membrane (PEM) fuel cell is combined with an asymmetrical ultracapacitor to provide robust power response to changes in system loading. This project also considers the potential of hybrid DER technologies to improve overall power system compatibility and performance. This report includes base year accomplishments of a proposed 3-year-option project.

  8. Accelerated vehicle-to-infrastructure (V2I) safety applications : system requirements document : final. (United States)


    This document describes the system requirements for two connected vehicle V2I safety applications related to work zone safety and speed management. Specifically, these applications are: : Spot Weather Information Warning (SWIW) : Reduced Spee...

  9. Implementation of pesticide applicator certification schools and continuing education workshops : final report. (United States)


    The Oklahoma Department of Transportations (ODOT) herbicide applicator training program consists of initial pesticide applicator training schools followed by independent Certification testing and then on-going yearly continuing education workshops...

  10. Processing and modeling issues for thin-film solar cell devices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R.W.; Phillips, J.E. [Univ. of Delaware, Newark, DE (United States). Institute of Energy Conversion


    During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.

  11. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs


    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  12. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. (United States)

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao


    Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.

  13. An assessment and comparison of fuel cells for transportation applications (United States)

    Krumpelt, M.; Christianson, C. C.


    Fuel cells offer the potential of a clean, efficient power source for buses, cars, and other transportation applications. When the fuel cell is run on methanol, refueling would be as rapid as with gasoline-powered internal combustion engines, providing a virtually unlimited range while still maintaining the smooth and quiet acceleration that is typical for electric vehicles. The advantages and disadvantages of five types of fuel cells are reviewed and analyzed for a transportation application: alkaline, phosphoric acid, proton exchange membrane, molten carbonate, and solid oxide. The status of each technology is discussed, system designs are reviewed, and preliminary comparisons of power densities, start-up times, and dynamic response capabilities are made. To test the concept, a fuel cell/battery powered urban bus appears to be a good first step that can be realized today with phosphoric acid cells. In the longer term, the proton exchange membrane and solid oxide fuel cells appear to be superior.

  14. Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks

    Directory of Open Access Journals (Sweden)

    Ulrich Martin


    Full Text Available Stem-cell-based therapies are considered to be promising and innovative but complex approaches. Induced pluripotent stem cells (iPSCs combine the advantages of adult stem cells with the hitherto unique characteristics of embryonic stem cells (ESCs. Major progress has already been achieved with regard to reprogramming technology, but also regarding targeted genome editing and scalable expansion and differentiation of iPSCs and ESCs, in some cases yielding highly enriched preparations of well-defined cell lineages at clinically required dimensions. It is noteworthy, however, that for many applications critical requirements such as the targeted specification into distinct cellular subpopulations and a proper cell maturation remain to be achieved. Moreover, current hurdles such as low survival rates and insufficient functional integration of cellular transplants remain to be overcome. Nevertheless, PSC technologies obviously have come of age and matured to a stage where various clinical applications of PSC-based cellular therapies have been initiated and are conducted.

  15. Derivation and application of pluripotent stem cells for regenerative medicine. (United States)

    Wang, Jiaqiang; Zhou, Qi


    Pluripotent stem cells (PSCs) are cells that can differentiate into any type of cells in the body, therefore have valuable promise in regenerative medicine of cell replacement therapies and tissue/organ engineering. PSCs can be derived either from early embryos or directly from somatic cells by epigenetic reprogramming that result in customized cells from patients. Here we summarize the methods of deriving PSCs, the various types of PSCs generated with different status, and their versatile applications in both clinical and embryonic development studies. We also discuss an intriguing potential application of PSCs in constructing tissues/organs in large animals by interspecies chimerism. All these emerging findings are likely to contribute to the breakthroughs in biological research and the prosperous prospects of regenerative medicine.

  16. Towards clinical application of microvascular endothelial cell seeding

    NARCIS (Netherlands)

    Arts, C.H.P. (Catharina Henrica Paulina)


    The central question in this thesis is whether microvascular endothelial cells (MVEC) from subcutaneous fat tissue are suitable for the seeding of prosthetic vascular grafts and deendothelialized surfaces. The aim of the application of endothelial cells (EC) is the inhibition of thrombogenicity and

  17. Workshop: Theory an Applications of Coupled Cell Networks (United States)


    Economia and Centro de Matematica , Universidade do Porto) Application of coupled cell systems have been made to a wide range of problems in the physical and...Departamento de Matematica Pura da Faculdade de Ciencias do Porto) As pointed by [1], in the class of coupled cell networks that permits self-coupling

  18. On direct and indirect methanol fuel cells for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfield, S.


    Research on direct oxidation methanol fuel cells (DMFCs) and polymer electrolyte fuel cells (PEFCs) is discussed. Systems considered for transportation applications are addressed. The use of platinum/ruthenium anode electrocatalysts and platinum cathode electrocatalysts in polymer electrolyte DMFCs has resulted in significant performance enhancements.

  19. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie


    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation....

  20. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.


    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  1. Two dimensional point of use fuel cell : a final LDRD project report.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Hickner, Michael A. (Pennsylvania State University, University Park, PA); Gross, Matthew L. (Pennsylvania State University, University Park, PA)


    The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices.

  2. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry


    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  3. Mitochondrial bioelectrocatalysis for biofuel cell applications

    International Nuclear Information System (INIS)

    Arechederra, Robert L.; Boehm, Kevin; Minteer, Shelley D.


    Mitochondria modified electrodes have been developed and characterized that utilize whole mitochondria isolated from tubers and immobilized within a quaternary ammonium modified Nafion membrane on a carbon electrode that can oxidize pyruvate and fatty acids. Detailed characterization of the performance of these mitochondria modified electrodes has been accomplished by coupling the mitochondria-based bioanode with a commercial air breathing cathode in a complete pyruvate/air biofuel cell. The studies included the effect of fuel (pyruvate) concentration, mitochondria lysing, temperature and pH on the performance of the mitochondria catalyzed, pyruvate/air biofuel cell. Effect of oxygen and cytochrome c oxidase inhibitors on biofuel cell performance has allowed us to further understand the mechanism of electron transfer with the carbon electrode.

  4. Fuel cells for portable, mobile and hybrid applications

    International Nuclear Information System (INIS)

    Roberge, R.; Kaufman, A.


    The introduction of fuel cell systems for a variety of low-power applications (below 1000 watts) means they can be used for applications such as portable power sources and mobile power sources. The energy and power are separate elements in a fuel cell system. The power is provided by the fuel cell stack (output characteristics are dependent on the cell active area, number of cells, and operating conditions), and the energy is defined by the fuel (hydrogen) storage. The authors indicated that proton exchange membrane fuel cells are the most appropriate for small fuel cell systems, since they have a temperature range ambient to 90 Celsius, ambient air (non-humidified), and load following response. In addition, they possess a solid electrolyte, high power density and specific power, and low-pressure operation. Simplicity of operation is the key to the design of a fuel cell system. The parameters to be considered include hydrogen supply, air supply, water management, and thermal management. Some of the options available for fuels are: compressed hydrogen, metal hydrides, chemical hydrides, and carbon-based hydrogen storage. Some of the factors that will help in determining market penetration are: rapid cost reduction with volume, fuel infrastructure, proven reliability, and identification of applications where fuel cells provide superior performance. 2 figs

  5. Upconverter solar cells: materials and applications

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.


    Spectral conversion of sunlight is a promising route to reduce spectral mismatch losses that are responsible for the major part of the efficiency losses in solar cells. Both upconversion and downconversion materials are presently explored. In an upconversion process, photons with an energy lower

  6. stem cell research: applications in haematological conditions

    African Journals Online (AJOL)

    Dr. E. P. Gharoro

    transplant. In this case there is greater need for immunosuppressive agents. Other conditions that bone marrow transplants are considered include thalassemia major, sickle cell disease, Myelodysplastic syndrome, lymphoma and multiple myeloma. More recently nonmyeloablative, or so called “mini transplant” procedures.

  7. Applications of atomic layer deposition in solar cells (United States)

    Niu, Wenbin; Li, Xianglin; Krishna Karuturi, Siva; Wenhui Fam, Derrick; Fan, Hongjin; Shrestha, Santosh; Wong, Lydia Helena; Iing Yoong Tok, Alfred


    Atomic layer deposition (ALD) provides a unique tool for the growth of thin films with excellent conformity and thickness control down to atomic levels. The application of ALD in energy research has received increasing attention in recent years. In this review, the versatility of ALD in solar cells will be discussed. This is specifically focused on the fabrication of nanostructured photoelectrodes, surface passivation, surface sensitization, and band-structure engineering of solar cell materials. Challenges and future directions of ALD in the applications of solar cells are also discussed.

  8. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    CERN Document Server

    Shelton, R D; Larbalestier, D; Schwall, R E; Sokolowski, R S; Suenaga, M; Willis, J E O


    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view.

  9. Development of electrolysis-cell separator for 125/sup 0/C operation. Advanced alkaline electrolysis cell development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J N


    This report contains the findings of a seven-month contracted effort. The major technical task involved a 125/sup 0/C operating temperature test of the 20 v/o polybenzimidazole (PBI) - 80 v/o potassium titanate (K/sub 2/TiO/sub 3/) separator in combination with the nickel-molybdenum cathode electrocatalyst system dubbed the C-AN cathode using the ARIES test system which was developed previously. The test of the PBI-K/sub 2/TiO/sub 3/ separator was only partially successful. The anticipated 1.85 (75/sup 0/C) and 1.75 volt per cell (100/sup 0/C) input requirement at 550 ma/cm/sup 2/ were surpassed slightly. The test module operated stably for about 550 hr. Although there were some mechanical difficulties with the ARIES test unit, testing at 125/sup 0/C proceeded from 745 hr on test until the test was terminated at 2318 operating hours to allow diagnostic disassembly. The input voltage degraded to a value of 1.82 volt per cell at 125/sup 0/C which is unacceptable. Diagnostic disassembly showed the PBI portion of the separator was no longer present. PBI had been shown to be stable in 123/sup 0/C, 45 w/o KOH solutions in a 1000-hr test. The attack is suggested to be attributable to a peroxide or perchlorate type oxidizer which would be unique to the electrolysis mode and probably not present in alkaline fuel cell applications. Recommendations for further testing include an evaluation of the chemical compatibility of PBI with alkaline/oxidizer solutions and endurance testing the C-AN cathode with new improved anode structures at 125/sup 0/C using asbestos separators in combination with a silicate saturated KOH electrolyte. Demonstration of the stability of this 1.65 volt per cell (90% voltage efficiency) technology at 500 ma/cm/sup 2/ will document an inexpensive and intelligent hydrogen production process which will satisfy the needs of the United States in the 1990s.

  10. Research and Development of Zinc Air Fuel Cell To Achieve Commercialization Final Report CRADA No. TC-1544-98

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haley, H. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The specific goal of this project was to advance the development of the zinc air fuel cell (ZAFC) towards commercial readiness in different mobile applications, including motor bikes, passenger cars, vans, buses and off-road vehicles (golf carts, factory equipment), and different stationary applications including generator sets, uninterruptible power systems and electric utility loading leveling and distributive power.

  11. Designing transmitting CMUT cells for airborne applications. (United States)

    Unlügedik, Aslı; Taşdelen, A; Atalar, Abdullah; Köymen, Hayrettin


    We report a new mode of airborne operation for capacitive micromachined ultrasonic transducers (CMUT), in which the plate motion spans the entire gap without collapsing and the transducer is driven by a sinusoidal voltage without a dc bias. We present equivalent-circuit-based design fundamentals for an airborne CMUT cell and verify the design targets using fabricated CMUTs. The performance limits for silicon plates are derived. We experimentally obtain 78.9 dB//20 μPa@1 m source level at 73.7 kHz, with a CMUT cell of radius 2.05 mm driven by 71 V sinusoidal drive voltage at half the frequency. The measured quality factor is 120. We also study and discuss the interaction of the nonlinear transduction force and the nonlinearity of the plate compliance.

  12. Smart load cells : an industrial application


    Rocha, J. G.; Couto, Carlos; Correia, J. H.


    This paper presents a data acquisition solution using a RISC type microcontroller with a very few components around, taking advantage of the ratiometric functioning of the load cells. The need of thermally stable circuits is minimized through the use of the same amplification chain for both signal and reference. The amplification and filtering are done trough switched-capacitor techniques controlled by the microcontroller. This option allows the choice of the proper scal...

  13. Advancing Microbial Desalination Cell towards Practical Applications


    Ping, Qingyun


    Conventional desalination plant, municipal water supply and wastewater treatment system are among the most electricity-intensive facilities. Microbial Desalination Cell (MDC) has emerged as a promising technique to capture the chemical energy stored in wastewater directly for desalination, which has the potential to solve the high energy consumption issue in desalination industry as well as wastewater treatment system. The MDC is composed of two critical components, the electrodes (anode and ...

  14. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake


    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  15. US Department of Energy fuel cell program for transportation applications (United States)

    Patil, Pandit G.


    Fuel cells of offer promise as the best future replacement for internal combustion engines in transportation applications. Fuel cells operate more efficiently than internal combustion engines, and are capable of running on non-petroleum fuels such as methanol, ethanol, natural gas or hydrogen. Fuel cells can also have a major impact on improving air quality. They virtually eliminate particulates, NO(x) and sulfur oxide emissions, and significantly reduce hydrocarbons and carbon monoxide. The U.S. Department of Energy program on fuel cells for transportation applications is structured to advance fuel cells technologies from the R&D phase, through engineering design and scale-tip, to demonstration in cars, trucks, buses and locomotives, in order to provide energy savings, fuel flexibility and air quality improvements. This paper describes the present status of the U.S. program.

  16. Current Applications and Future Prospects of Stem Cells in Dentistry. (United States)

    Surendran, Sharmila; Sivamurthy, Gautham


    Stem cells are defined as clonogenic, unspecialized cells capable of both selt-renewal and multi-lineage differentiation, contributing to regenerating specific tissues. For years, restorative treatments have exploited the lifelong regenerative potential of dental pulp stem cells to give rise to tertiary dentine, which is therapeutically employed for direct and indirect pulp capping. Current applications of stem cells in endodontic research have revealed their potential to continue root development in necrotic immature teeth and transplanted/replanted teeth. Successful application of pulp revascularization is highlighted here with support of a clinical case report. This article also discusses the role of dental stem cells as a promising tool for regeneration of individual tissue types like dentine, pulp and even an entire functional tooth.

  17. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Matt [Univ. of California, Irvine, CA (United States)


    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh

  18. Clinical applications of gamma delta T cells with multivalent immunity

    Directory of Open Access Journals (Sweden)

    Drew C Deniger


    Full Text Available Gamma delta T cells hold promise for adoptive immunotherapy because of their reactivity to bacteria, viruses, and tumors. However, these cells represent a small fraction (1-5% of the peripheral T-cell pool and require activation and propagation to achieve clinical benefit. Aminobisphosphonates specifically expand the Vgamma9Vdelta2 subset of gamma delta T cells and have been used in clinical trials of cancer where objective responses were detected. The Vgamma9Vdelta2 TCR heterodimer binds multiple ligands and results in a multivalent attack by a monoclonal T cell population. Alternatively, populations of gamma delta T cells with oligoclonal or polyclonal TCR repertoire could be infused for broad-range specificity. However, this goal has been restricted by a lack of applicable expansion protocols for non-Vgamma9Vdelta2 cells. Recent advances using immobilized antigens, agonistic monoclonal antibodies (mAbs, tumor-derived artificial antigen presenting cells (aAPC, or combinations of activating mAbs and aAPC have been successful in expanding gamma delta T cells with oligoclonal or polyclonal TCR repertoires. Immobilized MHC Class-I chain-related A was a stimulus for gamma delta T cells expressing TCRdelta1 isotypes, and plate-bound activating antibodies have expanded Vdelta1 and Vdelta2 cells ex vivo. Clinically-sufficient quantities of TCRdelta1, TCRdelta2, and TCRdelta1negTCRdelta2neg have been produced following co-culture on aAPC, and these subsets displayed differences in memory phenotype and reactivity to tumors in vitro and in vivo. Gamma delta T cells are also amenable to genetic modification as evidenced by introduction of alpha beta TCRs, chimeric antigen receptors (CARs, and drug-resistance genes. This represents a promising future for the clinical application of oligoclonal or polyclonal gamma delta T cells in autologous and allogeneic settings that builds on current trials testing the safety and efficacy of Vgamma9Vdelta2 T cells.

  19. Applications of Mesenchymal Stem Cells in Oral and Craniofacial Regeneration. (United States)

    Shakoori, Pasha; Zhang, Quanzhou; Le, Anh D


    The field of tissue engineering and regenerative medicine has been rapidly expanded through multidisciplinary integration of research and clinical practice in response to unmet clinical needs for reconstruction of dental, oral, and craniofacial structures. The significance of the various types of stem cells, specifically mesenchymal stem cells derived from the orofacial tissues, ranging from dental pulp stem cells to periodontal ligament stem cells to mucosa/gingiva has been thoroughly investigated and their applications in tissue regeneration are outlined in this article. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The application of state-level integration of safeguards in Sweden. Final report

    International Nuclear Information System (INIS)

    Dahlin, G.; Haeggblom, E.; Larsson, Mats; Rehn, I.


    SSAC/SKI activities as well as activities of the Euratom inspectorate. IAEA would be required to carry out the necessary measures, including sufficient independent verification activities, to assure that the results obtained are correct, and that they correctly represent the actual inventory of nuclear material. One or two unannounced inspections are foreseen to provide, as applicable, material balance verification and quality assurance, as well as to contribute to deterrence. It is expected, however, that such inspections will be co-ordinated between IAEA and Euratom to ensure the cost-effectiveness. The use of advanced technology, C/S and NDA instruments, with or without remote monitoring capability, would be limited to situations where repetition of costly verification measurements could be avoided. As regards fresh MOX, such instruments could be used to avoid costly measurements and to increase the detection capability of diversion, thus providing additional deterrence. Such technology and measures may also be used in special safeguard situations. The implementation of integrated safeguards in a cost-effective manner in Sweden would depend, on one hand, on the ability of the IAEA to ensure the application of all measures so that 'there is credible assurance of the absence of undeclared nuclear materials' in Sweden. On the other hand, the increased use of SSAC/SKI and RSAC/Euratom would facilitate the optimal use of all resources involved in implementation of integrated safeguards in Sweden. In order to add credibility to any decision that would reduce measures aimed at assuring the absence of diversion of declared nuclear materials, the value of the measures of the Additional Protocol should be better understood in that respect. The confidence in the ability of the IAEA to draw conclusions on the absence of undeclared nuclear materials and activities in a State is expected to increase as experience is gained. The roles and functional responsibilities of the four

  1. The application of state-level integration of safeguards in Sweden. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, G.; Haeggblom, E.; Larsson, Mats; Rehn, I


    results of SSAC/SKI activities as well as activities of the Euratom inspectorate. IAEA would be required to carry out the necessary measures, including sufficient independent verification activities, to assure that the results obtained are correct, and that they correctly represent the actual inventory of nuclear material. One or two unannounced inspections are foreseen to provide, as applicable, material balance verification and quality assurance, as well as to contribute to deterrence. It is expected, however, that such inspections will be co-ordinated between IAEA and Euratom to ensure the cost-effectiveness. The use of advanced technology, C/S and NDA instruments, with or without remote monitoring capability, would be limited to situations where repetition of costly verification measurements could be avoided. As regards fresh MOX, such instruments could be used to avoid costly measurements and to increase the detection capability of diversion, thus providing additional deterrence. Such technology and measures may also be used in special safeguard situations. The implementation of integrated safeguards in a cost-effective manner in Sweden would depend, on one hand, on the ability of the IAEA to ensure the application of all measures so that 'there is credible assurance of the absence of undeclared nuclear materials' in Sweden. On the other hand, the increased use of SSAC/SKI and RSAC/Euratom would facilitate the optimal use of all resources involved in implementation of integrated safeguards in Sweden. In order to add credibility to any decision that would reduce measures aimed at assuring the absence of diversion of declared nuclear materials, the value of the measures of the Additional Protocol should be better understood in that respect. The confidence in the ability of the IAEA to draw conclusions on the absence of undeclared nuclear materials and activities in a State is expected to increase as experience is gained. The roles and functional

  2. Metamaterials as a Platform for the Development of Novel Materials for Energy Applications. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, Willie [Boston College, Chestnut Hill, MA (United States)


    Final report detailing the work performed on DESC0005240 at Boston College. Report details research into metamaterial absorber theory, thermophotovoltaics a dynamic 3 state material capable of switching between transmissive, reflective, and absorptive states. Also high temperature NIR metamaterials are explored.

  3. Models to Study NK Cell Biology and Possible Clinical Application. (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J


    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  4. Human dental pulp stem cells: Applications in future regenerative medicine. (United States)

    Potdar, Pravin D; Jethmalani, Yogita D


    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.


    Directory of Open Access Journals (Sweden)

    Adrianto Dwi Nugroho


    Full Text Available The Final Withholding Tax (hereinafter, FWHT requires certain taxable income to be taxed in accordance with special rules that differ from the calculation of income taxes in general, and thus, disregarding the payer’s ability to pay. One concept upheld in justifying FWHT is simplicity. However, the concept has not  been  defined  clearly  in  FWHT  regime  in  Indonesia.  The  study  shows  that  conceptually,  there  are two definitions of simplicity in understanding its manifestation in FWHT regime in Indonesia. However, these definitions have deviated from the Pay As You Earn (PAYE concept, which provides basis for any withholding system in taxation. Pajak Penghasilan (selanjutnya, PPh Final menghendaki objek PPh tertentu dipungut pajaknya berdasarkan penghitungan yang berbeda dengan penghitungan PPh umum, sehingga tidak dihitung menurut kemampuan membayar dari Wajib Pajak tersebut. Salah satu konsep yang dapat menjustifikasi penyimpangan tersebut adalah kesederhanaan dalam pemungutan pajak. Namun demikian, konsep ini tidak memiliki pemaknaan yang jelas dalam pemungutan PPh Final di Indonesia. Hasil penelitian menunjukkan bahwa secara konseptual terdapat beberapa pemaknaan konsep kesederhanaan yang dapat digunakan dalam memahami rezim PPh Final di Indonesia. Namun demikian, makna konsep kesederhanaan ini menyimpang dari konsep Pay As You Earn, yang mendasari rezim PPh Pemotongan, termasuk yang bersifat final


    Directory of Open Access Journals (Sweden)

    Adrianto Dwi Nugroho


    Full Text Available The Final Withholding Tax (hereinafter, FWHT requires certain taxable income to be taxed in accordance with special rules that differ from the calculation of income taxes in general, and thus, disregarding the payer’s ability to pay. One concept upheld in justifying FWHT is simplicity. However, the concept has not  been  defined  clearly  in  FWHT  regime  in  Indonesia.  The  study  shows  that  conceptually,  there  are two definitions of simplicity in understanding its manifestation in FWHT regime in Indonesia. However, these definitions have deviated from the Pay As You Earn (PAYE concept, which provides basis for any withholding system in taxation.   Pajak Penghasilan (selanjutnya, PPh Final menghendaki objek PPh tertentu dipungut pajaknya berdasarkan penghitungan yang berbeda dengan penghitungan PPh umum, sehingga tidak dihitung menurut kemampuan membayar dari Wajib Pajak tersebut. Salah satu konsep yang dapat menjustifikasi penyimpangan tersebut adalah kesederhanaan dalam pemungutan pajak. Namun demikian, konsep ini tidak memiliki pemaknaan yang jelas dalam pemungutan PPh Final di Indonesia. Hasil penelitian menunjukkan bahwa secara konseptual terdapat beberapa pemaknaan konsep kesederhanaan yang dapat digunakan dalam memahami rezim PPh Final di Indonesia. Namun demikian, makna konsep kesederhanaan ini menyimpang dari konsep Pay As You Earn, yang mendasari rezim PPh Pemotongan, termasuk yang bersifat final.

  7. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Silvia Lopa


    Full Text Available Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.

  8. Algal Cell Factories: Approaches, Applications, and Potentials

    Directory of Open Access Journals (Sweden)

    Weiqi Fu


    Full Text Available With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive “cell factories”: the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO2, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field.

  9. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Murray, O.L.


    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  10. A review of fuel cell systems for maritime applications (United States)

    van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P. V.


    Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution, since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel, and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented, and maritime fuel cell application is reviewed with regard to efficiency, gravimetric and volumetric density, dynamic behaviour, environmental impact, safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours, but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles, hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study.

  11. Applicability of tooth derived stem cells in neural regeneration

    Directory of Open Access Journals (Sweden)

    Ludovica Parisi


    Full Text Available Within the nervous system, regeneration is limited, and this is due to the small amount of neural stem cells, the inhibitory origin of the stem cell niche and often to the development of a scar which constitutes a mechanical barrier for the regeneration. Regarding these aspects, many efforts have been done in the research of a cell component that combined with scaffolds and growth factors could be suitable for nervous regeneration in regenerative medicine approaches. Autologous mesenchymal stem cells represent nowadays the ideal candidate for this aim, thank to their multipotency and to their amount inside adult tissues. However, issues in their harvesting, through the use of invasive techniques, and problems involved in their ageing, require the research of new autologous sources. To this purpose, the recent discovery of a stem cells component in teeth, and which derive from neural crest cells, has came to the light the possibility of using dental stem cells in nervous system regeneration. In this work, in order to give guidelines on the use of dental stem cells for neural regeneration, we briefly introduce the concepts of regeneration and regenerative medicine, we then focus the attention on odontogenesis, which involves the formation and the presence of a stem component in different parts of teeth, and finally we describe some experimental approaches which are exploiting dental stem cells for neural studies.

  12. Engineered T Regulatory Type 1 Cells for Clinical Application

    Directory of Open Access Journals (Sweden)

    Silvia Gregori


    Full Text Available T regulatory cells, a specialized subset of T cells, are key players in modulating antigen (Ag-specific immune responses in vivo. Inducible T regulatory type 1 (Tr1 cells are characterized by the co-expression of CD49b and lymphocyte-activation gene 3 (LAG-3 and the ability to secrete IL-10, TGF-β, and granzyme (Gz B, in the absence of IL-4 and IL-17. The chief mechanisms by which Tr1 cells control immune responses are secretion of IL-10 and TGF-β and killing of myeloid cells via GzB. Tr1 cells, first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplantation, have been proven to modulate inflammatory and effector T cell responses in several immune-mediated diseases. The possibility to generate and expand Tr1 cells in vitro in an Ag-specific manner has led to their clinical use as cell therapy in patients. Clinical grade protocols to generate or to enrich and expand Tr1 cell medicinal products have been established. Proof-of-concept clinical trials with Tr1 cell products have demonstrated the safety and the feasibility of this approach and indicated some clinical benefit. In the present review, we provide an overview on protocols established to induce/expand Tr1 cells in vitro for clinical application and on results obtained in Tr1 cell-based clinical trials. Moreover, we will discuss a recently developed protocol to efficient convert human CD4+ T cells into a homogeneous population of Tr1-like cells by lentiviral vector-mediated IL-10 gene transfer.

  13. Graphene-Based Materials for Stem Cell Applications

    Directory of Open Access Journals (Sweden)

    Tae-Hyung Kim


    Full Text Available Although graphene and its derivatives have been proven to be suitable for several biomedical applications such as for cancer therapy and biosensing, the use of graphene for stem cell research is a relatively new area that has only recently started to be investigated. For stem cell applications, graphene has been utilized by itself or in combination with other types of materials such as nanoparticles, nanofibers, and polymer scaffolds to take advantage of the several unique properties of graphene, such as the flexibility in size, shape, hydrophilicity, as well as its excellent biocompatibility. In this review, we will highlight a number of previous studies that have investigated the potential of graphene or its derivatives for stem cell applications, with a particular focus on guiding stem cell differentiation into specific lineages (e.g., osteogenesis, neurogenesis, and oligodendrogenesis, promoting stem cell growth, stem cell delivery/transplantation, and effective monitoring of their differentiation. We hope that this review promotes and accelerates the use of graphene-based materials for regenerative therapies, especially for stem cell-based approaches to cure various incurable diseases/disorders such as neurological diseases (e.g., Alzheimer’s disease and Parkinson’s disease, stroke, spinal cord injuries, bone/cartilage defects, and cardiovascular diseases.

  14. Stem cells: progressions and applications in clinical medicine

    Directory of Open Access Journals (Sweden)

    Ali Hosseini Bereshneh


    Full Text Available Stem cells are undifferentiated and multi pluripotent cells which can differentiate into a variety of mature cells and tissues such as nervous tissue, muscle tissue, epithelial tissue, skeletal tissue and etc. Stem cells from all different source have three unique features: 1 Proliferative capability: Stem cells are capable of self dividing and self renewing for long periods or more than six months at least that called immortalization. 2 Undifferentiated nature: It’s considered as one of the essential characteristics of stem cell, so it doesn't have any tissue-specific construction. 3 Differentiation to the different cells from all organs: This ability can Induced by tissue specific transcription factors. Because of that, they are so important in prevention and treatment of human disease. Depending on the sources from which they derive, they have different types which can be used to produce special cells and tissues. The most significant types of stem cells are; embryonic stem cells (ESCs which are derived from embryos, adult stem cells (ASCs which are derived from differentiated cells in a specific tissue, induced pluripotent stem cells (iPSs which are produced from adult differentiated cells that have been genetically reprogrammed to act resemble to an embryonic stem cell and cord blood stem cells which contains haematopoietic stem cells and derived from the umbilical cord after gestation. By providing a medium containing of special growth factor, it is possible to orientated stem cell differentiation pathway and gained certain cells from them. The important uses of stem cells includes damaged heart tissue cells improvements and bone tissue repairing, cancer treatment, damaged neurological and spinal tissue repairing, improving burns and injuries and the treatment of diabetes, infertility and spermatogenesis dysfunction. Furthermore, the application of them in gene therapy is an important issue in the modern medicine science due to the role

  15. Application of self-consolidating concrete in bridge structures : final report. (United States)


    The objectives of this research were to evaluate the feasibility and performance of self-consolidating concrete (SCC) made with local aggregates for use in cast-in-place and precast concrete applications and to develop draft specifications, acceptanc...

  16. Demonstration of diesel fired coolant heaters in school bus applications : final report. (United States)


    Engine block pre-heating can reduce fuel consumption, decrease pollution, extend engine life, and it is often necessary for reliably starting diesel engines in cold climates. This report describes the application and experience of applying 36 diesel ...

  17. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc


    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  18. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. (United States)

    Schüürmann, Jan; Quehl, Paul; Festel, Gunter; Jose, Joachim


    Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.

  19. Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)


    The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

  20. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Hiroaki [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Yoshida, Toshiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nogami, Makiko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Orthopedic Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Koike, Chika; Okabe, Motonori [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Noto, Zenko [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Arai, Naoya; Noguchi, Makoto [Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan); Nikaido, Toshio, E-mail: [Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194 (Japan)


    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAM{alpha} cells and induced to osteogenic status-their in vivo osteogenesis was subsequently investigated in rats. It was found that HAM{alpha} cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAM{alpha} cells. The expression of osteocalcin mRNA was increased in HAM{alpha} cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAM{alpha} cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: Black-Right-Pointing-Pointer Human amniotic mesenchymal cells include cells (HAM{alpha} cells) that have the properties of MSCs. Black-Right-Pointing-Pointer HAM{alpha} cells have excellent osteogenic differentiation potential. Black-Right-Pointing-Pointer Osteogenic differentiation ability of HAM{alpha} was amplified by calcium phosphate scaffolds. Black-Right-Pointing-Pointer HAM{alpha} cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  1. Understanding the application of stem cell therapy in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Sharma RK


    Full Text Available Rakesh K Sharma, Donald J Voelker, Roma Sharma, Hanumanth K ReddyUniversity of Arkansas for Medical Sciences, Medical Center of South Arkansas, El Dorado, AR, USAAbstract: Throughout their lifetime, an individual may sustain many injuries and recover spontaneously over a period of time, without even realizing the injury in the first place. Wound healing occurs due to a proliferation of stem cells capable of restoring the injured tissue. The ability of adult stem cells to repair tissue is dependent upon the intrinsic ability of tissues to proliferate. The amazing capacity of embryonic stem cells to give rise to virtually any type of tissue has intensified the search for similar cell lineage in adults to treat various diseases including cardiovascular diseases. The ability to convert adult stem cells into pluripotent cells that resemble embryonic cells, and to transplant those in the desired organ for regenerative therapy is very attractive, and may offer the possibility of treating harmful disease-causing mutations. The race is on to find the best cells for treatment of cardiovascular disease. There is a need for the ideal stem cell, delivery strategies, myocardial retention, and time of administration in the ideal patient population. There are multiple modes of stem cell delivery to the heart with different cell retention rates that vary depending upon method and site of injection, such as intra coronary, intramyocardial or via coronary sinus. While there are crucial issues such as retention of stem cells, microvascular plugging, biodistribution, homing to myocardium, and various proapoptotic factors in the ischemic myocardium, the regenerative potential of stem cells offers an enormous impact on clinical applications in the management of cardiovascular diseases.Keywords: stem cell therapy, stem cell delivery, cardiovascular diseases, myocardial infarction, cardiomyopathy

  2. Perivascular cells and tissue engineering: Current applications and untapped potential. (United States)

    Avolio, Elisa; Alvino, Valeria V; Ghorbel, Mohamed T; Campagnolo, Paola


    The recent development of tissue engineering provides exciting new perspectives for the replacement of failing organs and the repair of damaged tissues. Perivascular cells, including vascular smooth muscle cells, pericytes and other tissue specific populations residing around blood vessels, have been isolated from many organs and are known to participate to the in situ repair process and angiogenesis. Their potential has been harnessed for cell therapy of numerous pathologies; however, in this Review we will discuss the potential of perivascular cells in the development of tissue engineering solutions for healthcare. We will examine their application in the engineering of vascular grafts, cardiac patches and bone substitutes as well as other tissue engineering applications and we will focus on their extensive use in the vascularization of engineered constructs. Additionally, we will discuss the emerging potential of human pericytes for the development of efficient, vascularized and non-immunogenic engineered constructs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Characteristics Of Quallion's Lithium-Ion Cells For Aerospace Applications (United States)

    Nakahara, Hiroshi; Tsukamoto, Hisashi; Beach, Paul; Visco, Vincent


    Rechargeable batteries that are presently in use in space missions include: Silver-Zinc (Ag-Zn), Nickel- Cadmium (Ni-Cd), Nickel-Hydrogen (Ni-H2), and more recently, Lithium-Ion batteries. In space applications, lithium-ion batteries offer significant mass and volume advantages (three- to four-fold) compared to standard Ni-Cd and Ni-H2 batteries. To address this need, Quallion LLC has developed custom true prismatic Li ion cells for use in Low Earth Orbit (LEO) & Geosynchronous Earth Orbit (GEO) applications: a 15Ah cell (QL015KA) and a 72Ah cell (QL075KA). In addition to using Quallion's patented long life lithium-ion chemistry, these cells are also Zero-VoltTM enabled, allowing for battery recovery in loss of spacecraft attitude and lower maintenance before launching.

  4. [Application of cell co-culture techniques in medical studies]. (United States)

    Luo, Yun; Sun, Gui-Bo; Qin, Meng; Yao, Fan; Sun, Xiao-Bo


    As the cell co-culture techniques can better imitate an in vivo environment, it is helpful in observing the interactions among cells and between cells and the culture environment, exploring the effect mechanisms of drugs and their possible targets and filling the gaps between the mono-layer cell culture and the whole animal experiments. In recently years, they has attracted much more attention from the medical sector, and thus becoming one of research hotspots in drug research and development and bio-pharmaceutical fields. The cell co-culture techniques, including direct and indirect methods, are mainly used for studying pathological basis, new-type treatment methods and drug activity screening. Existing cell co-culture techniques are used for more pharmacological studies on single drug and less studies on interaction of combined drugs, such as collaborative compatibility and attenuation and synergistic effect among traditional Chinese medicines (TCMs). In line with the action characteristics of multi-component and multi-target, the cell co-culture techniques provide certain reference value for future studies on the effect and mechanism of combined TCMs on organisms as well as new methods for studies on TCMs and their compounds. This essay summarizes cell co-culture methods and their application and look into the future of their application in studies on TCMs and compounds.

  5. Generally Applicable Transformation Protocols for Fluorescent Nanodiamond Internalization into Cells. (United States)

    Hemelaar, Simon R; van der Laan, Kiran J; Hinterding, Sophie R; Koot, Manon V; Ellermann, Else; Perona-Martinez, Felipe P; Roig, David; Hommelet, Severin; Novarina, Daniele; Takahashi, Hiroki; Chang, Michael; Schirhagl, Romana


    Fluorescent nanodiamonds (FNDs) are promising nanoprobes, owing to their stable and magnetosensitive fluorescence. Therefore they can probe properties as magnetic resonances, pressure, temperature or strain. The unprecedented sensitivity of diamond defects can detect the faint magnetic resonance of a single electron or even a few nuclear spins. However, these sensitivities are only achieved if the diamond probe is close to the molecules that need to be detected. In order to utilize its full potential for biological applications, the diamond particle has to enter the cell. Some model systems, like HeLa cells, readily ingest particles. However, most cells do not show this behavior. In this article we show for the first time generally applicable methods, which are able to transport fluorescent nanodiamonds into cells with a thick cell wall. Yeast cells, in particular Saccharomyces cerevisiae, are a favored model organism to study intracellular processes including aging on a cellular level. In order to introduce FNDs in these cells, we evaluated electrical transformation and conditions of chemical permeabilization for uptake efficiency and viability. 5% DMSO (dimethyl sulfoxide) in combination with optimized chemical transformation mix leads to high uptake efficiency in combination with low impact on cell biology. We have evaluated all steps in the procedure.

  6. Theory and Application of Porous Electrodes in Fuel Cell Characterization


    Wagner, Norbert


    The most common method used to characterize the electrochemical performance of fuel cells is recording of current/voltage U(i) curves. Separation of electrochemical and ohmic contributions to the U(i) characteristics requires additional experimental techniques like Electrochemical Impedance Spectroscopy (EIS). The application of EIS is an approach to determine parameters which have proved to be indispensable for the characterization and development of all types of fuel cell electrodes and ele...

  7. Development and Demonstration of Carbon Fuel Cell Final Report CRADA No. TC02091.0

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berner, J. K. [Contained Energy, Inc., Shaker Heights, OH (United States)


    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Contained Energy, Inc. (CEI), to conduct necessary research and to develop, fabricate and test a multi-cell carbon fuel cell.

  8. Final Report for 'Gyrotron Design and Evaluation using New Particle-in-Cell Capability'

    International Nuclear Information System (INIS)

    Smithe, David N.


    ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO's) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R and D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO's, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.

  9. In vitro models of cancer stem cells and clinical applications. (United States)

    S Franco, Sara; Szczesna, Karolina; Iliou, Maria S; Al-Qahtani, Mohammed; Mobasheri, Ali; Kobolák, Julianna; Dinnyés, András


    Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called "cancer stem cells" (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours.The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.

  10. Electromechanical properties of superconductors for DOE/OFE applications. Final report

    International Nuclear Information System (INIS)

    Ekin, J.W.; Bray, S.L.


    In many superconductor applications, especially large magnets, the superconductor is required to perform while under the influence of strong mechanical forces. These forces are commonly due to residual fabrication stress, differential thermal contraction of dissimilar materials, and electromagnetic forces generated within an energized magnet coil. Thorough knowledge of a superconductor's electrical performance under the influence of these forces (electromechanical properties) is required for successful magnet engineering. This report presents results of research conducted during the period from august 1993 through March 1997 on the electromechanical properties of superconductors for DOE/OFE fusion applications

  11. Electromechanical properties of superconductors for DOE/OFE applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ekin, J.W.; Bray, S.L.


    In many superconductor applications, especially large magnets, the superconductor is required to perform while under the influence of strong mechanical forces. These forces are commonly due to residual fabrication stress, differential thermal contraction of dissimilar materials, and electromagnetic forces generated within an energized magnet coil. Thorough knowledge of a superconductor`s electrical performance under the influence of these forces (electromechanical properties) is required for successful magnet engineering. This report presents results of research conducted during the period from august 1993 through March 1997 on the electromechanical properties of superconductors for DOE/OFE fusion applications.

  12. Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. (United States)

    Harrill, Joshua A


    Due to advances in the fields of stem cell biology and cellular engineering, a variety of commercially available human-derived neurons and neural progenitor cells (NPCs) are now available for use in research applications, including small molecule efficacy or toxicity screening. The use of human-derived neural cells is anticipated to address some of the uncertainties associated with the use of nonhuman culture models or transformed cell lines derived from human tissues. Many of the human-derived neurons and NPCs currently available from commercial sources recapitulate critical process of nervous system development including NPC proliferation, neurite outgrowth, synaptogenesis, and calcium signaling, each of which can be evaluated using high content image analysis (HCA). Human-derived neurons and NPCs are also amenable to culture in multiwell plate formats and thus may be adapted for use in HCA-based screening applications. This article reviews various types of HCA-based assays that have been used in conjunction with human-derived neurons and NPC cultures. This article also highlights instances where lower throughput analysis of neurodevelopmental processes has been performed and which demonstrate a potential for adaptation to higher-throughout imaging methods. Finally, a generic protocol for evaluating neurite outgrowth in human-derived neurons using a combination of immunocytochemistry and HCA is presented. The information provided in this article is intended to serve as a resource for cell model and assay selection for those interested in evaluating neurodevelopmental processes in human-derived cells.

  13. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery (United States)

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O


    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  14. Phytoplankton excretion revisited: healthy cells may not do it, but how many cells are healthy? Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A.M.


    The goal of this project was to develop fluorescent probes that could be used on a individual cell basis to determine the physiological condition of phytoplankton cells in the field. Progress gained and problems encounter are described.

  15. Effects of Magnetic Field on Biological Cells and Applications (United States)

    Chen, Ching-Jen


    While there has been extensive research performed in the physics of magnetic fields and the physics and chemistry in life sciences, independent of each other, there has been a paucity of scientific research and development investigating the possible applications of magnetic fields in life sciences. The focus of this presentation is to present the stimulation mechanism by which magnetic fields affect (a) yeast cells (b) plant cells and (c) mammalian normal and cancer cells. Recently we have found that the Saccharomyces Cerevsa yeast growth increases by about 30to a 1 tesla field and the production of CO2 increases by about 30of yeast metabolism may be due to an increase in intercellular interaction and protein channel alignment, the introduction of an alteration in the DNA from the magnetic field exposure or a combination of these mechanisms. We also have found that the application of high magnetic fields (1 tesla and above) can have marked effects on the germination and growth of plants, especially corn, beans and peas. This finding has opened up the possibility of technology developments in botanical growth systems to accelerate seed germination and crop harvesting. Most recently we have investigated the application of high magnetic fields on leukemia, CaCoII and HEP G2 cancer cell lines. We found that when leukemia are exposed to a 12 tesla field for 2 hours has an increase in cell death by about 30that were not exposed to the magnetic field. Viability of CaCoII cells sandwiched between permanent magnets of maximum strength of 1.2 tesla was measured. A decrease in viable cells by 33unexposed cells. HSP 70 was measured for HEPG2 cells that were exposed to permanent magnetic field of 1.2 tesla for 40 minutes and for unexposed cells. It was found that the exposed cells produce 19 times more HSP70 compared to unexposed cells. Our results together with other investigators report suggest a strong evidence of a reduction in the cell growth rate for cancer cells when

  16. The market potential for SMES in electric utility applications. Final report

    Energy Technology Data Exchange (ETDEWEB)


    Superconducting magnetic energy storage (SMES) is an emerging technology with features that are potentially attractive in electric utility applications. This study evaluates the potential for SMES technology in the generation, transmission, distribution, and use of electric energy; the time frame of the assessment is through the year 2030. Comparisons are made with other technology options, including both commercially available and advanced systems such as various peaking generation technologies, transmission stability improvement technologies, and power quality enhancement devices. The methodology used for this study focused on the needs of the market place, the capabilities of S and the characteristics of the competing technologies. There is widespread interest within utilities for the development of SMES technology, but there is no general consensus regarding the most attractive size. Considerable uncertainty exists regarding the eventual costs and benefits of commercial SMES systems, but general trends have been developed based on current industry knowledge. Results of this analysis indicate that as storage capacity increases, cost increases at a rate faster than benefits. Transmission system applications requiring dynamic storage appear to have the most attractive economics. Customer service applications may be economic in the near term, but improved ride-through capability of end-use equipment may limit the size of this market over time. Other applications requiring greater storage capacity appear to be only marginally economic at best.

  17. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report. (United States)


    ...-specific probabilistic risk assessment (PRA) and its results. (47) For applications for combined licenses... the limited accuracy, quantity, and time in which the historical data have been accumulated; (iv) The... accidents, to assure that these designs provide assurance of low risk of public exposure to radiation, in...

  18. LDRD final report : managing shared memory data distribution in hybrid HPC applications.

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Alexander M. (Georgia Institute of Technology, Atlanta, GA); Pedretti, Kevin Thomas Tauke


    MPI is the dominant programming model for distributed memory parallel computers, and is often used as the intra-node programming model on multi-core compute nodes. However, application developers are increasingly turning to hybrid models that use threading within a node and MPI between nodes. In contrast to MPI, most current threaded models do not require application developers to deal explicitly with data locality. With increasing core counts and deeper NUMA hierarchies seen in the upcoming LANL/SNL 'Cielo' capability supercomputer, data distribution poses an upper boundary on intra-node scalability within threaded applications. Data locality therefore has to be identified at runtime using static memory allocation policies such as first-touch or next-touch, or specified by the application user at launch time. We evaluate several existing techniques for managing data distribution using micro-benchmarks on an AMD 'Magny-Cours' system with 24 cores among 4 NUMA domains and argue for the adoption of a dynamic runtime system implemented at the kernel level, employing a novel page table replication scheme to gather per-NUMA domain memory access traces.

  19. Bio Optofluidics Cell Sorter – cell-BOCS Concept and Applications

    DEFF Research Database (Denmark)

    Roth, Tue; Glückstad, Jesper


    The cell-BOCS is a novel microfluidics based cell-sorting instrument utilizing next generation optical trapping technology developed at the Technical University of Denmark. It is targeted emerging bio-medical research and diagnostics markets where it for certain applications offers a number...

  20. Mesenchymal Stem Cells and Their Clinical Applications in Osteoarthritis. (United States)

    Chang, Yu-Hsun; Liu, Hwan-Wun; Wu, Kun-Chi; Ding, Dah-Ching


    Osteoarthritis is a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation. Chondrocytes in the matrix have a relatively slow turnover rate, and the tissue itself lacks a blood supply to support repair and remodeling. Researchers have evaluated the effectiveness of stem cell therapy and tissue engineering for treating osteoarthritis. All sources of stem cells, including embryonic, induced pluripotent, fetal, and adult stem cells, have potential use in stem cell therapy, which provides a permanent biological solution. Mesenchymal stem cells (MSCs) isolated from bone marrow, adipose tissue, and umbilical cord show considerable promise for use in cartilage repair. MSCs can be sourced from any or all joint tissues and can modulate the immune response. Additionally, MSCs can directly differentiate into chondrocytes under appropriate signal transduction. They also have immunosuppressive and anti-inflammatory paracrine effects. This article reviews the current clinical applications of MSCs and future directions of research in osteoarthritis.

  1. Stem cells in orthopedics: current concepts and possible future applications. (United States)

    Bagaria, Vaibhav; Patil, Nilesh; Sapre, Vikram; Chadda, Anshul; Singrakia, Manoj


    Stem cells are the cells that have the ability to divide for indefinite periods in culture and to give rise to specialized cells. Sources of these cells include embryo, umbilical cord and certain sites in adults such as the central nervous system [CNS] and bone marrow. Its use hold promise of wide spread applications particularly in areas of spinal cord injury, difficult non-unions, critical bone defects, spinal fusions, augmentation of ligament reconstructions, cartilage repair and degenerative disc disorders. This review article contains current information derived from Medline searches on the use in various orthopedic subspecialties. Some issues remain at the forefront of the controversy involving stem cell research - legislation, ethics and public opinion, cost and concentration methods. As is true with any new technology, the enthusiasm for this technology that has potential to influence virtually every orthopedic case management, must be balanced by subjecting it to stringent clinical and basic research investigations.

  2. Clinical Application of Stem Cells in the Cardiovascular System (United States)

    Stamm, Christof; Klose, Kristin; Choi, Yeong-Hoon

    Regenerative medicine encompasses "tissue engineering" - the in vitro fabrication of tissues and/or organs using scaffold material and viable cells - and "cell therapy" - the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.

  3. Final Technical Report: Application of in situ Neutron Diffraction to Understand the Mechanism of Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, Ravi [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Metallurgical Engineering


    In this research, phase transitions in the bulk electrodes for Li-ion batteries were investigated using neutron diffraction (ND) as well as neutron imaging techniques. The objectives of this research is to design of a novel in situ electrochemical cell to obtain Rietveld refinable neutron diffraction experiments using small volume electrodes of various laboratory/research-scale electrodes intended for Li-ion batteries. This cell is also to be used to investigate the complexity of phase transitions in Li(Mg) alloy electrodes, either by diffraction or by neutron imaging, which occur under electrochemical lithiation and delithiation, and to determine aspects of phase transition that enable/limit energy storage capacity. Additional objective is to investigate the phase transitions in electrodes made of etched micro-columns of silicon and investigate the effect of particle/column size on phase transitions and nonequilibrium structures. An in situ electrochemical cell was designed successfully and was used to study the phase transitions under in-situ neutron diffraction in both the electrodes (anode/cathode) simultaneously in graphite/LiCoO2 and in graphite/LiMn2O4 cells each with two cells. The diffraction patterns fully validated the working of the in situ cell. Additional experimental were performed using the Si micro-columnar electrodes. The results revealed new lithiation phenomena, as evidenced by mosaicity formation in silicon electrode. These experiments were performed in Vulcan diffractometer at SNS, Oak Ridge National Laboratory. In parallel, the spatial distribution of Li during lithiation and delithiation processes in Li-battery electrodes were investigated. For this purpose, neutron tomographic imaging technique has been used for 3D mapping of Li distribution in bulk Li(Mg) alloy electrodes. It was possible to observe the phase boundary of Li(Mg) alloy indicating phase transition from Li-rich BCC β-phase to Li-lean

  4. [Clinical applications of stem cells from human exfoliated deciduous teeth in stem cell therapy]. (United States)

    Xiaoxia, Li; Jiaozi, Fangteng; Shi, Yu; Yuming, Zhao; Lihong, Ge


    Stem cells from human exfoliated deciduous teeth (SHED) are one category of dental stem cells. They belong to ectodermal mesenchymal stem cells. As an ideal stem cell source, SHED possess great potential in stem cell therapy. This review demonstrates the biological characteristics and advantages of SHED in stem cell therapy and discusses its multiple functions in tissue regeneration and repair, including multiple differentiation potentiality, cell secretion of cytokines, and immunomodulatory ability. Furthermore, this article introduces the main findings regarding the potential clinical applications of SHED to a variety of diseases. This article demonstrates research progress in dentin-pulp regeneration, maxillofacial bone regeneration, and treatment of nervous system and immune system diseases with SHED for stem cell transplantation.

  5. Therapeutic application of T regulatory cells in composite tissue allotransplantation

    Directory of Open Access Journals (Sweden)

    Jeong-Hee Yang


    Full Text Available Abstract With growing number of cases in recent years, composite tissue allotransplantation (CTA has been improving the quality of life of patient who seeks reconstruction and repair of damaged tissues. Composite tissue allografts are heterogeneous. They are composed of a variety of tissue types, including skin, muscle, vessel, bone, bone marrow, lymph nodes, nerve, and tendon. As a primary target of CTA, skin has high antigenicity with a rich repertoire of resident cells that play pivotal roles in immune surveillance. In this regard, understanding the molecular mechanisms involved in immune rejection in the skin would be essential to achieve successful CTA. Although scientific evidence has proved the necessity of immunosuppressive drugs to prevent rejection of allotransplanted tissues, there remains a lingering dilemma due to the lack of specificity of targeted immunosuppression and risks of side effects. A cumulative body of evidence has demonstrated T regulatory (Treg cells have critical roles in induction of immune tolerance and immune homeostasis in preclinical and clinical studies. Presently, controlling immune susceptible characteristics of CTA with adoptive transfer of Treg cells is being considered promising and it has drawn great interests. This updated review will focus on a dominant form of Treg cells expressing CD4+CD25+ surface molecules and a forkhead box P3 transcription factor with immune tolerant and immune homeostasis activities. For future application of Treg cells as therapeutics in CTA, molecular and cellular characteristics of CTA and immune rejection, Treg cell development and phenotypes, Treg cell plasticity and stability, immune tolerant functions of Treg cells in CTA in preclinical studies, and protocols for therapeutic application of Treg cells in clinical settings are addressed in this review. Collectively, Treg cell therapy in CTA seems feasible with promising perspectives. However, the extreme high immunogenicity

  6. The limited application of stem cells in medicine: a review. (United States)

    Poulos, Jordan


    The history of stem cell therapies is one of a limited number of clinical applications despite a vast therapeutic potential. Major breakthroughs in stem cell research have not yet enjoyed clinical success-all stem cell therapies bar hematopoietic stem cell transplantations remain experimental. With the increased risk of organ failure and neurodegenerative disease associated with our ability to push the boundaries of life expectancy comes an increased pressure to pioneer novel stem cell-based therapeutic approaches. We conclude that the failure of such therapies to achieve clinical translation stems from the polarising effect of the ethical debate around their use. The intractability of the ethical debate is double edged: legislators not only have placed tighter restrictions on certain stem cell therapies, but do so in favour of less controversial cells which will have worse outcomes for patients. It is by considering this relationship between the politics, ethics and science of stem cells that the reasons for the currently limited clinical significance of stem cell therapies be realised.

  7. Fuel cell added value for early market applications (United States)

    Hardman, Scott; Chandan, Amrit; Steinberger-Wilckens, Robert


    Fuel Cells are often considered in the market place as just power providers. Whilst fuel cells do provide power, there are additional beneficial characteristics that should be highlighted to consumers. Due to the high price premiums associated with fuel cells, added value features need to be exploited in order to make them more appealing and increase unit sales and market penetration. This paper looks at the approach taken by two companies to sell high value fuel cells to niche markets. The first, SFC Energy, has a proven track record selling fuel cell power providers. The second, Bloom Energy, is making significant progress in the US by having sold its Energy Server to more than 40 corporations including Wal-Mart, Staples, Google, eBay and Apple. Further to these current markets, two prospective added value applications for fuel cells are discussed. These are fuel cells for aircraft APUs and fuel cells for fire prevention. These two existing markets and two future markets highlight that fuel cells are not just power providers. Rather, they can be used as solutions to many needs, thus being more cost effective by replacing a number of incumbent systems at the same time.

  8. Polymers application in proton exchange membranes for fuel cells (PEMFCs) (United States)

    Walkowiak-Kulikowska, Justyna; Wolska, Joanna; Koroniak, Henryk


    This review presents the most important research on alternative polymer membranes with ionic groups attached, provides examples of materials with a well-defined chemical structure that are described in the literature. Furthermore, it elaborates on the synthetic methods used for preparing PEMs, the current status of fuel cell technology and its application. It also briefly discusses the development of the PEMFC market.

  9. An effective strategy for porting C++ applications on cell

    NARCIS (Netherlands)

    Varbanescu, A.L.; Sips, H.; Ross, K.A.; Liu, Q.; Liu, L.K.; Natsev, A.; Smith, J.R.


    In this paper we present a solution for efficient porting of sequential C++ applications on the Cell B.E. processor. We present our step-by-step approach, focusing on its generality, we provide a set of code templates and optimization guidelines to support the porting, and we include a set of

  10. Plant cell engineering: current research, application and future prospects

    International Nuclear Information System (INIS)

    Wang Xunqing; Liu Luxiang


    This paper reviewed the current status of basic research in plant cell engineering, highlighted the application of embryo culture, double haploid (DH) technology, protoplast culture and somatic hybridization, somaclonal variation, rapid propagation, and bio-products production of plant-origin, and t he prospects. (authors)

  11. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.


    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  12. Smart structures for application in ceramic barrier filter technology. Final report, August 1991--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, S.J.; Lippert, T.E


    High temperature optical fiber sensors were developed to measure the in-service stressing that occurs in ceramic barrier filter systems. The optical fiber sensors were based on improvements to the sensor design developed under the DOE/METC Smart Structures for Fossil Energy Applications contract no. DE-AC21-89MC25159. In-house application testing of these sensors on both candle and cross-flow filters were performed in the Westinghouse Science and Technology Center High-Temperature, High-Pressure Filter Test Facility and the results analyzed. This report summarizes the sensor developments, methods to apply the sensors to the filters for in-situ testing, and the test results from the four in-house tests that were performed.

  13. Shape memory alloy seals for geothermal applications. Final report. Report ESG-82-14

    Energy Technology Data Exchange (ETDEWEB)

    Friske, Warren H.; Schwartzbart, Harry


    A novel temperature-actuated seal for geothermal applications is under development. This program uses the shape memory property of nickel-titanium (Nitinol) alloys to achieve an improved seal in geothermal downhole pumps. Nitinol flange face seals and pump shaft seals have been designed, fabricated, and tested. It has been demonstrated that the shape memory effect of Nitinol alloys can be utilized to activate and maintain a leaktight seal in geothermal environments.

  14. Microproteomics with microfluidic-based cell sorting: Application to 1000 and 100 immune cells. (United States)

    Kasuga, Kie; Katoh, Yasutake; Nagase, Keisuke; Igarashi, Kazuhiko


    Ultimately, cell biology seeks to define molecular mechanisms underlying cellular functions. However, heterogeneity within cell populations must be considered for optimal assay design and data interpretation. Although single-cell analyses are desirable for addressing this issue, practical considerations, including assay sensitivity, limit their broad application. Therefore, omics studies on small numbers of cells in defined subpopulations represent a viable alternative for elucidating cell functions at the molecular level. MS-based proteomics allows in-depth proteome exploration, although analyses of small numbers of cells have not been pursued due to loss during the multistep procedure involved. Thus, optimization of the proteomics workflow to facilitate the analysis of rare cells would be useful. Here, we report a microproteomics workflow for limited numbers of immune cells using non-damaging, microfluidic chip-based cell sorting and MS-based proteomics. Samples of 1000 or 100 THP-1 cells were sorted, and after enzymatic digestion, peptide mixtures were subjected to nano-LC-MS analysis. We achieved reasonable proteome coverage from as few as 100-sorted cells, and the data obtained from 1000-sorted cells were as comprehensive as those obtained using 1 μg of whole cell lysate. With further refinement, our approach could be useful for studying cell subpopulations or limited samples, such as clinical specimens. © 2017 The Authors. Proteomics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J.M.


    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented.

  16. Barometric pressure transient testing applications at the Nevada Test Site. Nuclear chimney analysis. Final report

    International Nuclear Information System (INIS)

    Hanson, J.M.


    Investigations of barometric pressure testing of NTS nuclear chimneys were reviewed. This review includes the models used in the interpretation, methods of analysis, and results. Analytic and semi-analytic models were presented and applied to both historical data and new data taken for this current project. An interpretation technique based on non-linear least squares methods was used to analyze this data in terms of historic and more recent chimney models. Finally, a detailed discussion of radioactive gas transport due to surface barometric pressure fluctuations was presented. This mechanism of transport, referred to as ''barometric pumping,'' is presented in terms of conditions likely to be encountered at the NTS. The report concludes with a discussion of the current understanding of gas flow properties in the alluvial and volcanic areas of the NTS, and suggestions for future efforts directed toward increasing this understanding are presented

  17. Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products. (United States)

    Yeh, Y; Purushothaman, P; Gupta, N; Ragnone, M; Verma, S C; de Mello, A S


    This research was conducted to study the effects of bacteriophage application during tumbling on Salmonella populations in ground meat and poultry. Red meat trim and poultry were inoculated with a Salmonella cocktail to result in a contamination level of 7logCFU/g in ground products. A commercial preparation containing bacteriophages S16 and Felix-O1a (FO1a) was applied during tumbling at 10 7 and 10 8 PFU/ml. Samples were held at 4°C for 6h and 18h (red meat) and 30min and 6h (poultry). Overall, bacteriophage application on trim reduced 1 and 0.8logCFU/g of Salmonella in ground beef and ground pork, respectively. For ground chicken and ground turkey, Salmonella was reduced by 1.1 and 0.9logCFU/g, respectively. This study shows that bacteriophage application during tumbling of red meat trim and poultry can provide additional Salmonella control in ground products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Final report on LDRD project : coupling strategies for multi-physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian; Hooper, Russell Warren; Pawlowski, Roger P.


    Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

  19. Standard house with integrated solar cell system. Technical final report; Typehus med integreret solcelleanlaeg. Faglig slutrapport

    Energy Technology Data Exchange (ETDEWEB)



    The interest in solar cell technology among Danish house owners is increasing, but there are many considerations to be made before the house owner choose to install solar cells on the house. Major barriers are the solar cell systems' price and appearance. This interdisciplinary development project will show that both aesthetic and economic advantages can be derived from integrating solar cells already when the first sketches of the house are being made. In order to promote utilization of solar cells in Denmark the solutions must be attractive, both economically and aesthetically. Therefore the solar cell solutions in this project are developed in preparation for marketing both as an aesthetic expression and a high-technological, green and prestigious element. (BA)

  20. Stem cell technology for bone regeneration: current status and potential applications

    Directory of Open Access Journals (Sweden)

    Asatrian G


    Full Text Available Greg Asatrian,1 Dalton Pham,1,2 Winters R Hardy,3 Aaron W James,1–3 Bruno Peault3,4 1Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, 2Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, 3UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA; 4Medical Research Council Centre for Regenerative Medicine, Edinburgh, Scotland, UK Abstract: Continued improvements in the understanding and application of mesenchymal stem cells (MSC have revolutionized tissue engineering. This is particularly true within the field of skeletal regenerative medicine. However, much remains unknown regarding the native origins of MSC, the relative advantages of different MSC populations for bone regeneration, and even the biologic safety of such unpurified, grossly characterized cells. This review will first summarize the initial discovery of MSC, as well as the current and future applications of MSC in bone tissue engineering. Next, the relative advantages and disadvantages of MSC isolated from distinct tissue origins are debated, including the MSC from adipose, bone marrow, and dental pulp, among others. The perivascular origin of MSC is next discussed. Finally, we briefly comment on pluripotent stem cell populations and their possible application in bone tissue engineering. While continually expanding, the field of MSC-based bone tissue engineering and regeneration shows potential to become a clinical reality in the not-so-distant future.Keywords: mesenchymal stem cell, pericyte, bone tissue engineering, MSC, ASC, DMSC

  1. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)


    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  2. Final Report - Effects of Impurities on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    Trent Molter


    This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

  3. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric


    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  4. Single cell analysis contemporary research and clinical applications

    CERN Document Server

    Cossarizza, Andrea


    This book highlights the current state of the art in single cell analysis, an area that involves many fields of science – from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.

  5. Characterization of polymer electrolytes for fuel cell applications

    International Nuclear Information System (INIS)

    Zawodzinski, T.A. Jr.; Springer, T.E.; Uribe, F.; Gottesfeld, S.


    We review here our recent work on polymer electrolyte fuel cells emphasizing membrane transport issues. Transport parameters measured at 30 degrees C for several available perfluorosulfonic acid membranes are compared. The water sorption characteristics, diffusion coefficient of water, electroosmotic drag, and pretonic conductivity were determined for Nafion reg-sign 117, Membrane C, and Dow XUS 13204.10 Developmental Fuel Cell Membrane. The diffusion coefficient and conductivity of each of these membranes were determined as functions of membrane water content. Data on water sorption and conductivity are reported for an experimental membrane which is a modified form of Nafion. Contact angle measurements indicate that the surface of a perfluorosulfonic acid membrane exposed to water vapor is quite hydrophobic, even in the presence of saturated water vapor. Modeling of water distribution in PEFC's based on the uptake and transport data shows that membrane thickness contributes in a nonlinear fashion to performance in PEM fuel cells. Finally, some work currently underway is discussed

  6. Final Report - High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Andrew [3M Company, Maplewood, MN (United States)


    The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.


    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  8. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.


    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  9. Application of stem cells in tissue engineering for defense medicine. (United States)

    Ude, Chinedu Cletus; Miskon, Azizi; Idrus, Ruszymah Bt Hj; Abu Bakar, Muhamad Bin


    The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war. Human development depends intimately on stem cells, the mysterious precursor to every kind of cell in the body that, with proper instruction, can grow and differentiate into any new tissue or organ. Recent reports have suggested the greater therapeutic effects of the anti-inflammatory, trophic, paracrine and immune-modulatory functions associated with these cells, which induce them to restore normal healing and tissue regeneration by modulating immune reactions, regulating inflammation, and suppressing fibrosis. Therefore, the use of stem cells holds significant promise for the treatment of many battlefield injuries and their complications. These applications include the treatment of injuries to the skin, sensory organs, nervous system tissues, the musculoskeletal system, circulatory/pulmonary tissues and genitals/testicles and of acute radiation syndrome and the development of novel biosensors. The new research developments in these areas suggest that solutions are being developed to reduce critical consequences of wounds and exposures suffered in warfare. Current military applications of stem cell-based therapies are already saving the lives of soldiers who would have died in previous conflicts. Injuries that would have resulted in deaths previously now result in wounds today; similarly, today's permanent wounds may be reduced to tomorrow's bad memories with further advances in stem cell-based therapies.

  10. Application-oriented evaluation of creep crack data of heat-resistant steels. Final report

    International Nuclear Information System (INIS)

    Granacher, J.; Tscheuschner, R.; Mao, T.; Maile, K.; Bareiss, J.


    A reliable description of the creep crack behaviour is a vital precondition for safeguarding high materials availability and safe operation of components affected by long-term creep. The essential parameter of creep assessment, the C * integral, usually is calculated via approximation relations, which however are limited in their applicability to components. Therefore, a calculation method has been established on the basis of the general formulation of the C * integral which can be applied together with the inelastic finite element method, to calculating stress-affected components of any geometry. The calculation method has been used to examine the creep crack behaviour of typical power plant steels, experimentally determined with specimens of various geometry and size, also based on near-to-practice creep equations. Such equations have been derived for some important 1% CrMoNiV steels and 12% Cr forgeable steels for a temperature of 550 C, and in some cases for 450 C and 600 C, and have been made available for the ABAQUS program in the form of CREEP user subroutines. A 2D and a 3D post processor have been developed as a general tool for calculating the C * parameter. With this tool, the C FE* has been calculated for several CT, DENT, and CNT specimens, and using the experimental data of the creep velocity a, a-C FE* relations have been established for the various steels and cases. The determined scatter band upper limits and the programs are available for industrial application. (orig.) [de


    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.


    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  12. Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays

    Directory of Open Access Journals (Sweden)

    Do Hyun Kim


    Full Text Available Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, technologies for patterning live cells on solid surfaces, cellular immobilization in different polymers, and studies on their application in environmental monitoring, disease diagnostics, and other related fields. On the basis of these results, we discuss current challenges and future prospects for novel microbial cell arrays, which show promise for use as potent tools for unraveling complex biological processes.

  13. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Grzesiak, Jakub, E-mail: [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)


    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  14. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Eidler, Phillip


    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The

  15. Development of molten-carbonate fuel-cell technology. Final report, February-December 1980

    Energy Technology Data Exchange (ETDEWEB)


    The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

  16. Knowledge-Based Parallel Performance Technology for Scientific Application Competitiveness Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D; Shende, Sameer


    The primary goal of the University of Oregon's DOE "œcompetitiveness" project was to create performance technology that embodies and supports knowledge of performance data, analysis, and diagnosis in parallel performance problem solving. The target of our development activities was the TAU Performance System and the technology accomplishments reported in this and prior reports have all been incorporated in the TAU open software distribution. In addition, the project has been committed to maintaining strong interactions with the DOE SciDAC Performance Engineering Research Institute (PERI) and Center for Technology for Advanced Scientific Component Software (TASCS). This collaboration has proved valuable for translation of our knowledge-based performance techniques to parallel application development and performance engineering practice. Our outreach has also extended to the DOE Advanced CompuTational Software (ACTS) collection and project. Throughout the project we have participated in the PERI and TASCS meetings, as well as the ACTS annual workshops.

  17. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Advani, S.H.; Lee, T.S. [Lehigh Univ., Bethlehem, PA (United States); Moon, H. [Ohio State Univ., Columbus, OH (United States)


    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.

  18. [National Academies' Board on Mathematical Sciences and their Application] Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Scott T. Weidman


    The National Academies' Board on Mathematical Sciences and their Applications (BMSA) is a primary interface between the research enterprise and federal agencies that rely on the mathematical sciences. The Board provides objective and authoritative advice on how best to apply the tools of mathematics, statistics, operations research, financial engineering, computational modeling, computational science, information analysis, and decision analysis to practical problems of national importance. In so doing, the Board strengthens the policy-making process and increases the visibility of, and appreciation for, the mathematical sciences while also identifying growth areas for the discipline. The Board consists of 18 pro bono experts from a broad range of quantitative fields, with experience in academia, industry, and national laboratories.

  19. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray


    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  20. Improved superconductor for transmission line applications, phase I. Final report, January 1, 1975--June 30, 1975

    International Nuclear Information System (INIS)

    Braginski, A.I.; Mauser, S.F.; Roland, G.W.; Burghardt, R.R.; Daniel, M.R.; Janocko, M.A.


    The analysis of an existing superconducting power transmission cable design indicated that economic benefits in the area of refrigeration can be derived from the substitution of Nb 3 Ge superconductor for the presently planned Nb 3 Sn. However, the cost of Nb 3 Ge must be comparable to that of Nb 3 Sn, which is achievable when preparing Nb 3 Ge by the chemical vapor deposition. Alternatively, technical benefits can be obtained. The most essential and prerequisite requirement is that the Nb 3 Ge critical current density be improved significantly over the present state-of-the art. Other properties of Nb 3 Ge are generally suitable for the transmission line application and/or require only moderate improvements. (auth)

  1. Use of geothermal heat for crop drying and related agricultural applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, T.J.; Wright, T.C.; Fein, E.; Munson, T.R.; Richmond, R.C.


    Observations led to the selection of the alfalfa dehydration industry for in-depth analysis of the application of moderate-temperature geothermal heat. Six geothermal heat exchanger/dryer configurations were examined. A low-temperature conveyor dryer using geothermal water to supply all required heat was chosen for site-specific analysis, the retrofitting of a large alfalfa dehydration plant within the Heber KGRA in the Imperial Valley, California. Even in the most favorable scenario--sharing a geothermal pipeline with the neighboring fertilizer plant--geothermal retrofitting would increase the price of the alfalfa ''dehy'' about 40 percent. The geothermal brine is estimated to cost $2.58/million Btu's compared with a 1977 natural gas cost of $1.15. Capital cost for heat exchangers and the new dryers is estimated at $3.3 million. The Heber plant appeared to offer the only good opportunity for geothermal retrofitting of an existing alfalfa dehydration plant. Construction of new plants at geothermal resource sites cannot be justified due to the uncertain state of the ''dehy'' industry. Use of geothermal heat for drying other crops may be much more promising. The potato dehydration industry, which is concentrated in the geothermal-rich Snake River Valley of Idaho, appears to offer good potential for geothermal retrofitting; about 4.7 x 10{sup 12}Btu's are used annually by plants within 50 miles of resources. Drying together at the geothermal wellhead several crops that have interlocking processing seasons and drying-temperature requirements may be quite attractive. The best ''multicrop drying center'' site identified was at Power Ranch Wells, Arizona; 34 other sites were defined. Agricultural processing applications other than drying were investigated briefly.

  2. Applications of magnetic refrigeration and its assessment. A feasibility study - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovski, A.; Diebold, M.; Vuarnoz, D.; Gonin, C.; Egolf, P. W.


    Magnetic refrigeration has the potential to replace conventional refrigeration systems - with often problematic refrigerants - in several niche markets or even some main markets of the refrigeration domain. Based on this insight the Swiss Federal Office of Energy has asked a division of the University of Applied Sciences of Western Switzerland (HEIG-VD) in Yverdon-les-Bains to list all possible refrigeration technologies and to evaluate the potential of magnetic refrigeration for these specific applications. The HEIG-VD researchers have developed a calculation tool to determine the coefficient of performance (COP) value and the exergy efficiency as a function of the magnetic field strength and the rotation frequency of a rotary type of magnetic refrigerator. The considered machine design is based on a patent, which was deposited by these scientists. Based on this work, it is found that especially two applications are very interesting for a closer investigation: the household refrigerator without a freezing compartment and the central chilling unit, which may be of large size. In the domains of refrigeration, where magnetic refrigeration could be successfully applied, the costs for magnetic refrigeration machines would be a little higher than those of the conventional ones. On the other hand the study shows possibilities how the magnetic refrigeration machines could reach higher COP values than those of the corresponding gas compression/expansion machines. Therefore, for magnetic refrigeration one may assume lower costs of operation. For large systems - as e.g. chiller units - it should be studied, if superconducting magnets could be economically applied. (author)

  3. Production strategies and applications of microbial single cell oils

    Directory of Open Access Journals (Sweden)

    Katrin Ochsenreither


    Full Text Available Polyunsaturated fatty acids (PUFAs of the -3 and -6 class (e.g. -linolenic acid, linoleic acid are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF or solid state fermentation (SSF. The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g. medium, pH-value, temperature, aeration, nitrogen source. From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids

  4. Production Strategies and Applications of Microbial Single Cell Oils. (United States)

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph


    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  5. A comprehensive quadratic assignment problem for an integrated layout design of final assembly line and manufacturing feeder cells

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani


    Full Text Available Assembly lines and cellular manufacturing systems (CMSs design have been widely used in the literature. However the integration of these manufacturing concepts is neglected in an environment where parts need to be assembled after production in different shops. In this paper, a comprehensive quadratic assignment problem is developed for the assignment of machines of each part manufacturing cell, sub-assembly tasks of each sub-assembly cell as well as the assignment of different cells and final assembly tasks within the shop floor in their relevant predetermined locations. A genetic algorithm (GA as well as a memetic algorithm (MA consisting of the proposed GA and Tabu search (TS algorithm are proposed and implemented on different size numerical examples. The obtained results show the efficiency of both algorithms to reach near optimal solutions compared to the optimal solution of small-sized problems.

  6. Mathematical model of a NiOOH/metal hydride cell. Final report, September 15, 1993--November 14, 1996

    Energy Technology Data Exchange (ETDEWEB)

    White, R.E.; Popov, B.N.


    One of the objectives of work on the nickel/metal hydride cell has been to develop a mathematical model of the performance of the cell. This is a summary of work to date and is meant to be a Final Report of the BES project. Mathematical model of the nickel/metal hydride cell depends on the kinetics, thermodynamics, and transport properties of the metal hydride electrode. Consequently, investigations were carried out to determine: (1) the exchange current density and the equilibrium potential as a function of hydrogen content in the electrode; (2) the hydrogen diffusion coefficient in the bulk of the alloy; (3) the hydrogen reaction rate order; (4) the symmetry factor for hydrogen evolution reaction and (5) to determine the reaction mechanisms of the hydrogen charge and discharge processes including overcharge and overdischarge mechanism.

  7. Efficiency Improvement of Crystalline Solar Cells: Final Subcontract Report, 1 January 2002 - 30 September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Weber, E. R.


    UC-Berkeley study of transition metal related defects in PV-grade mc-Si to understand their pathways into solar cells; chemical state/distribution; interaction with structural defects; defect engineering.

  8. Fuel Cell/Battery Powered Bus System. Final Report for period August 1987 - December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, R.


    Today, fuel cell systems are getting much attention from the automotive industry as a future replacement for the internal combustion engine (ICE). Every US automobile manufacturer and most foreign firms have major programs underway to develop fuel cell engines for transportation. The objective of this program was to investigate the feasibility of using fuel cells as an alternative to the ICE. Three such vehicles (30-foot buses) were introduced beginning in 1994. Extensive development and operational testing of fuel cell systems as a vehicle power source has been accomplished under this program. The development activity investigated total systems configuration and effectiveness for vehicle operations. Operational testing included vehicle performance testing, road operations, and extensive dynamometer emissions testing.

  9. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)


    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  10. Nanotechnology & human stem cells: Applications in cardiogenesis and neurogenesis (United States)

    Tomov, Martin L.

    Human stem cell research holds an unprecedented promise to revolutionize the way we approach medicine and healthcare in general, moving us from a position of mostly addressing the symptoms to a state where treatments can focus on removing the underlying causes of a condition. Stem cell research can shed light into normal developmental pathways, as we are beginning to replicate them in a petri dish and can also be used to model diseases and abnormal conditions. Direct applications can range from finding cures for single or multigene diseases to demonstrating that we can replace these genes with a normal copy. We can even begin to model lifelong conditions such as aging by iPSC technology by relying on fetal, young, adult, and centenarian populations to provide insights into the process. We have also begun to understand the microenvironment in which specific cell populations reside. Being able to replicate the chemical, physical mechanical, and spatial needs of those cells, research groups are successfully generating full organs using cadaver scaffolds of heart and kidney, and there is promising research to reach the same success with other organs, such as the liver, and pancreas. Advances in those areas open an enormous potential to study organs, organoids, organ valves, tubes or other functional elements such as beating cardiomyocytes in vitro. There is also the need to evaluate the whole genome of induced and differentiated cells, with its myriad of interacting pathways. Bioinformatics can help our understanding of embryogenesis, organ differentiation and function. It can also help optimize our stem cell and bio-scaffold tools to advance closer to functional organs and tissues. Such a combination approach will also include pluripotency evaluation and multi-lineage differentiation, as well as platforms that may assist in cell therapies: 3D structures, micro-ribbons, directed patterning to name a few. There is now a clearer path forward with stem cell research than

  11. Enhancing fuel cell system life by removing ammonia. Final report; Erhoehung der Lebensdauer von Brennstoffzellensystemen durch Ammoniak-Entfernung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)



    The problem of ammonia production and effects in the gas processor of fuel cell heating systems during steam reforming of hydrogen-containing natural gas was investigated, providing fundamental knowledge on NH{sub 3} formation. The processes of ammonia formation in reformer systems during reformation of nitrogen-containing natural gas were simulated and compared with experimental findings. Laboratory experiments defined the boundary conditions of ammonia synthesis in reformer systems as a function of N{sub 2} concentration in natural gas, temperature, catalysts and load dependence. The effects of ammonia on the catalysts of a steam reformer were investigated as well. It was the intention to develop a simple purification module that will remove ammonia traces from the product gas of reforming processes and can be integrated in fuel cell heating systems. In view of the strongly hydrophylic nature of ammonia, methods for solution and separation of ammonia in liquid water were investigated. Various technical concepts were implemented and investigated in laboratory experiments. The limitations of liquid water based processes were assessed, and options for complete removal of ammonia were investigated. An optimized laboratory version of a purification module was developed which ensures complete purification as well as product gas conditioning (temperature, moisture) for applications in fuel cells. Finally, the purification module was tested in a modified test stand with appropriate peripheral components. (orig./AKB) [German] Im Rahmen des Vorhabens wurde die Ammoniakproblematik hinsichtlich Entstehung und Wirkung im Gasprozessor von Brennstoffzellenheizgeraeten (BZH) bei der Dampfreformierung stickstoffhaltiger Erdgase untersucht und dabei grundlegende Erkenntnisse zur NH{sub 3}-Bildung gewonnen. Es wurden prozesstechnische Simulationen zur Ammoniakbildung im Reformersystem bei der Reformierung stickstoffhaltiger Erdgase durchgefuehrt und mit experimentell gewonnenen

  12. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)


    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  13. Thin film silicon solar cells: advanced processing and characterization - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, Ch.


    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out at the photovoltaics laboratory at the University of Neuchatel in Switzerland. The project aimed to demonstrate the production of high-efficiency thin-film silicon devices on flexible substrates using low cost processes. New ways of improving processing and characterisation are examined. The process and manufacturing know-how necessary to provide support for industrial partners within the framework of further projects is discussed. The authors state that the efficiency of most devices was significantly improved, both on glass substrates and on flexible plastic foils. The process reproducibility was also improved and the interactions between the different layers in the device are now said to be better understood. The report presents the results obtained and discusses substrate materials, transparent conductors, defect analyses and new characterisation tools. Finally, the laboratory infrastructure is described.

  14. Amyotrophic lateral sclerosis: applications of stem cells – an update

    Directory of Open Access Journals (Sweden)

    Lidia Cova


    Full Text Available Lidia Cova1, Vincenzo Silani21Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy; 2Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, Università degli Studi di Milano, IRCCS Istituto Auxologico Italiano, Milano, ItalyAbstract: Neurodegenerative diseases are a growing public health challenge, and amyotrophic lateral sclerosis (ALS remains a fatal incurable disease. The advent of stem cell therapy has opened new horizons for both researchers and ALS patients, desperately looking for a treatment. ALS must be considered a systemic disease affecting many cell phenotypes besides motor neurons, even outside the central nervous system. Cell replacement therapy needs to address the specific neurobiological issues of ALS to safely and efficiently reach clinical settings. Moreover, the enormous potential of induced pluripotent cells directly derived from patients for modeling and understanding the pathological mechanisms, in correlation with the discoveries of new genes and animal models, provides new opportunities that need to be integrated with previously described transplantation strategies. Finally, a careful evaluation of preclinical data in conjunction with wary patient choice in clinical trials needs to be established in order to generate meaningful results.Keywords: amyotrophic lateral sclerosis, regenerative medicine, stem cell therapy, clinical trials

  15. Solar cells: Operating principles, technology, and system applications (United States)

    Green, M. A.

    Solar cell theory, materials, fabrication, design, modules, and systems are discussed. The solar source of light energy is described and quantified, along with a review of semiconductor properties and the generation, recombination, and the basic equations of photovoltaic device physics. Particular attention is given to p-n junction diodes, including efficiency limits, losses, and measurements. Si solar cell technology is described for the production of solar-quality crystals and wafers, and design, improvements, and device structures are examined. Consideration is given to alternate semiconductor materials and applications in concentrating systems, storage, and the design and construction of stand-alone systems and systems for residential and centralized power generation.

  16. Applications of large cell remote handling techniques in nuclear plants

    International Nuclear Information System (INIS)

    Issel, W.; Leister, P.


    A comprehensive demonstration project in a special remote handling test facility was performed in parallel to the design of, and the basic engineering work for, the planned reprocessing plant at Wackersdorf. The aim of this project was to demonstrate the feasibility of a completely remote maintenance of the components of the PUREX process. These components were to be arranged as modules in large cells. Remote handling transporters, manipulators and tools (FEMO) for preplanned and unscheduled repair work were constructed and tested. The results of the successful demonstration project are summarized, and potential applications of the remote handling tools in hot cells and other nuclear plants are outlined. (orig./HP) [de

  17. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos


    facile H-2 activation. These NSAs could, potentially, facilitate highly selective hydrogenation reactions at low temperatures. In the present work, the suitability of NSAs for use as hydrogen fuel cell anodes has been evaluated: the combination of properties, possessed by selected NSAs, of weak binding...... of such materials for use in fuel cells and in an ever. increasing range of catalytic applications. Furthermore, we introduce a new concept for NSA-defect sites, which could be responsible for the promotional catalytic effects of a second metal added. even in minute quantities, to a host metal catalyst....

  18. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren


    During the last decade use of dendritic cells (DC) has moved from murine and in vitro studies to clinical trials as adjuvant in cancer immunotherapy. Here they function as delivery vehicles for exogenous tumor antigens, promoting an efficient antigen presentation. The development of protocols...... for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...

  19. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Charles [Delta Products, Triangle Park, NC (United States)


    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical

  20. Repair and cell cycle response in cells exposed to environmental biohazards. Final report, January 1, 1973-December 31, 1984

    International Nuclear Information System (INIS)

    Hadden, C.T.; Billen, D.


    These studies have focussed on agents which cause damage to DNA leading to inhibition of DNA synthesis or faulty DNA replication or repair. The overall goal of this project has been to understand how environmental agents interact with the DNA of cells and how cells cope with any resulting damage. In particular we have been concerned with the nature of the repair systems involved in restoration of damaged DNA and the cellular responses to radiation or chemical damage

  1. DOE Center of Excellence in Medical Laser Applications. Final report, December 1, 1994--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S.L.


    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland OR, Houston TX, and Galveston TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several new video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulant of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.

  2. Heart pathology determination from electrocardiogram signals by application of deterministic chaos mathematics. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Clapp, N.E.; Hively, L.M. [Oak Ridge National Lab., TN (United States); Stickney, R.E. [Physio-Control Corp., Redmond, WA (United States)


    It is well known that the electrical signals generated by the heart exhibit nonlinear, chaotic dynamics. A number of heart pathologies alter heartbeat dynamics and/or the electrical properties of the heart, which, in turn, alter electrocardiogram signals. Electrocardiogram techniques in common use for diagnosing pathologies have limited sensitivity and specificity. This leads to a relatively high misdiagnosis rate for ventricular fibrillation. It is also known that the linear analysis tools utilized (such as fast Fourier transforms and linear statistics) are limited in their ability to find subtle changes or characteristic signatures in nonlinear chaotic electrocardiogram signals. In contrast, the authors` research indicates that chaotic time-series analysis tools that they have developed allow quantification of the nonlinear nature of dynamic systems in the form of nonlinear statistics, and also enable characteristic signatures to be identified. The goal of this project is to modify these tools to increase and enhance the medically useful information obtained from electrocardiogram signals through the application of chaotic time series analysis tools. In the one year of the project, the tools have been extended to enhance the capabilities for detecting ventricular fibrillation. Chaotic time-series analysis provides a means to increase sensitivity in detecting general heart dynamics. Oak Ridge National Laboratory specialists have worked with Physio-Control and their medical collaborators to extend the capabilities of state-of-the-art electrocardiogram systems and interpretation of results.

  3. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jie; Minh, Nguyen


    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.


    Directory of Open Access Journals (Sweden)

    M. V. Eremeeva


    Full Text Available Different angiogenic factors induced angiogenesis stimulation in ischemic tissues stays in the focus of scientific research for long time. The key role in ischemic angiogenesis belongs to endothelial precursor cells, plenty of which are reserved in bone marrow. Resident endothelial precursor cells are also found in some tissues and in circulation. These cells are involved in neoangiogenesis as well. Theoretically, injection of exogeneous endothelial precusor cells might contribute to restoration of circulation in the ischemic organ. Various types of cells have been approved for regeneration stimulation in a number of experimental protocols. A various degree of improvement of myocardial contractive function has been obtained as a universal result of these investigations, though the mechanisms underlying observed effect remain evasive. The paper focuses on advantages and drawbacks of embryonic, hematopoetic and mesenhimal stem cells application for angiogenesis stimulation and organs and tissues regeneration. 

  5. Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.


    The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

  6. HPCC technology awareness program: Improved economic competitiveness through technology awareness, transfer and application. Final report

    Energy Technology Data Exchange (ETDEWEB)


    A need has been defined by Congress for the DOE National Laboratories to participate in various dual use and technology transfer programs. This requirement has spawned several technology transfer approaches at the DOE laboratories. These programs are designed to encourage large and small business to bring their problems and needs forward, and to allow the labs to transfer effective high performance computing technology to the commercial marketplace. This IG Technologies grant from the DOE was undertaken to address the issues and problems associated with technology transfer between the DOE National Laboratories and commercial industry. The key focus is to gain an understanding of how DOE and industry independently and collectively view the requirements and the missing elements that could allow DOE to facilitate HPCC technology transfer. At issue is HPCC Technology Transfer for the High Performance Computing industry and its relationship to the DOE National Laboratories. Several observations on this are addressed. The issue of a ``Technology Utilization Gap`` between the National Laboratories and Independent Software Vendors is discussed. This study addressed the HPCC Technology Transfer plans of all six DOE National Labs. Study team members briefed numerous industrial users of HPCC technology as to the feasibility of technology transfer for various applications. Significant findings of the effort are that the resistance to technology transfer is much higher than anticipated for both the National Labs and industry. Also, HPCC Technology Transfer is observed to be a large company`s dominion. Small businesses have a difficult time in addressing the requirements of technology transfer using Cooperative Research and Development Agreements (CRADA`s). Large businesses and the DOE National Labs however, often have requirements and objectives which are at cross purposes, making effective technology transfer difficult.

  7. Resource engineering and economic studies for direct application of geothermal energy. Draft final report

    Energy Technology Data Exchange (ETDEWEB)


    The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurations and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.

  8. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, B.B.


    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  9. Evaluation of a seafloor nuclear power supply and its potential applications. Final report

    International Nuclear Information System (INIS)


    The seafloor nuclear power supply (SNPS) concept has been proposed by Atomics International (AI) and Lockheed Petroleum Services, Ltd. (LPS) as a source of electrical energy for subsea pumping of petroleum products. It consists of a small nuclear reactor, moderated by zirconium hydride (ZrH) and cooled by liquid metal (NaK), which drives a 3-MW turbine/generator system using toluene as the working fluid. Arthur D. Little, Inc., was selected to assess the technical and economic feasibility of a SNPS, and to determine if potential applications for a SNPS might exist in offshore-oil-field development schemes where conventional power supplies could not be used. It was determined that the concept is technically feasible, with regard to the nuclear, marine, electrical, and petroleum engineering aspects. However, its initial cost of $14 million and operating expenses of $900,000 per year are considerably more in each case than the costs of conventional alternative power supplies. For the type of field development proposed as an example by LPS, a combination of gas turbines and dc cables would cost about $8 million. Fuel in the form of gas from the wells would be available at near-zero cost in almost all cases of field development, so that operating expenses would be minimal. Other power supply and cable systems were investigated, up to lengths of 200 miles. Alternating-current systems are preferred at distances less than 20 miles; direct current is more economical at greater distances. No set of circumstances was found in which oil field development is likely to occur and for which the SNPS offers uniquely attractive capabilities

  10. DECREASE Final Technical Report: Development of a Commercial Ready Enzyme Application System for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Teter, Sarah A


    Conversion of biomass to sugars plays a central in reducing our dependence on petroleum, as it allows production of a wide range of biobased fuels and chemicals, through fermentation of those sugars. The DECREASE project delivers an effective enzyme cocktail for this conversion, enabling reduced costs for producing advanced biofuels such as cellulosic ethanol. Benefits to the public contributed by growth of the advanced biofuels industry include job creation, economic growth, and energy security. The DECREASE primary project objective was to develop a two-fold improved enzyme cocktail, relative to an advanced cocktail (CZP00005) that had been developed previously (from 2000- 2007). While the final milestone was delivery of all enzyme components as an experimental mixture, a secondary objective was to deploy an improved cocktail within 3 years following the close of the project. In February 2012, Novozymes launched Cellic CTec3, a multi-enzyme cocktail derived in part from components developed under DECREASE. The externally validated performance of CTec3 and an additional component under project benchmarking conditions indicated a 1.8-fold dose reduction in enzyme dose required for 90% conversion (based on all available glucose and xylose sources) of NREL dilute acid pretreated PCS, relative to the starting advanced enzyme cocktail. While the ability to achieve 90% conversion is impressive, targeting such high levels of biomass digestion is likely not the most cost effective strategy. Novozymes techno economic modeling showed that for NREL's dilute acid pretreated corn stover (PCS), 80% target conversion enables a lower total production cost for cellulosic ethanol than for 90% conversion, and this was also found to be the case when cost assumptions were based on the NREL 2002 Design Report. A 1.8X dose-reduction was observed for 80% conversion in the small scale (50 g) DECREASE benchmark assay for CTec3 and an additional component. An upscaled experiment (in 0

  11. Atomic Layer Deposition of zinc oxide for solar cell applications (United States)

    Moret, M.; Abou Chaaya, A.; Bechelany, M.; Miele, P.; Robin, Y.; Briot, O.


    Atomic Layer Deposition (ALD) is a vapor phase thin film deposition technique, performed at low substrate temperatures, which enables the deposition of extremely uniform thin films. This technique is scalable up to very large substrates, making it very interesting for industrial applications. On the other hand, ZnO, both undoped and aluminum doped is commonly used as a transparent electrode in solar cells based on Cu(In,Ga)Se2 (CIGS), and is usually deposited by Physical Vapor Deposition techniques. In this paper, we investigate the potential of ALD for the deposition of ZnO windows for solar cell applications. Thin films of a few hundreds of nanometers were grown by ALD, both undoped and doped with aluminum. They were studied by X-ray diffraction, electrical transport measurements, Atomic Force Microscopy and transmittance experiments.

  12. Application of carbon nanotubes in perovskite solar cells: A review (United States)

    Oo, Thet Tin; Debnath, Sujan


    Solar power, as alternative renewable energy source, has gained momentum in global energy generation in recent time. Solar photovoltaics (PV) systems now fulfill a significant portion of electricity demand and the capacity of solar PV capacity is growing every year. PV cells efficiency has improved significantly following decades of research, evolving into third generations of PV cells. These third generation PV cells are set out to provide low-cost and efficient PV systems, further improving the commercial competitiveness of solar energy generation. Among these latest generations of PV cells, perovskite solar cells have gained attraction due to the simple manufacturing process and the immense growth in PV efficiency in a short period of research and development. Despite these advantages, perovskite solar cells are known for the weak stability and decomposition in exposure to humidity and high temperature, hindering the possibility of commercialization. This paper will discuss the role of carbon nanotubes (CNTs) in improving the efficiency and stability of perovskite solar cells, in various components such as perovskite layer and hole transport layer, as well as the application of CNTs in unique aspects. These includes the use of CNTs fiber in making the perovskite solar cells flexible, as well as simplification of perovskite PV production by using CNT flash evaporation printing process. Despite these advances, challenges remain in incorporation CNTs into perovskite such as lower conversion efficiency compared to rare earth metals and improvements need to be made. Thus, the paper will be also highlighting the CNTs materials suggested for further research and improvement of perovskite solar cells.

  13. Fuel Cell Testing - Degradation of Fuel Cells and its Impact on Fuel Cell Applications


    PFRANG Andreas


    Fuel cells are expected to play a major role in the future energy supply, especially polymer electrolyte membrane fuel cells could become an integral part in future cars. Reduction of degradation of fuel cell performance while keeping fuel cell cost under control is the key for an introduction into mass markets.

  14. Determination of the exposure to electromagnetic fields arising from radiofrequency identification technology (RFID) application. Final report

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard; Cecil, Stefan; Escorihuela-Navarro, Ana; Sainitzer, David; Weinfurter, Andreas


    antennas closer than 20 cm. Regarding UHF (868 MHz) and microwave (2,45 GHz) reader devices it was demonstrated that exposure above the basic restriction is not to be expected as long as a minimum distance to the antennas of 10 cm - 20 cm is maintained. Concerning exposure from currently widest deployed Electronic Article Surveillance (EAS) technology also differences between technologies become obvious. While the numerous measurements and computations carried out did not give indications that radio frequency (RF)-EAS devices (operating frequency range typically 7,5-8,9 MHz) cause exposure above the basic restrictions defined in ICNIRP 1998, it could be demonstrated that for acoustomagnetic (AM)-EAS systems (operating frequency 58 kHz) exposure above the ICNIRP 1998 basic restrictions is possible, when approaching the antenna very closely, i.e., at unusual short distances of less than a few centimeters between the trunk and/or the head and the antenna. With respect to the assessment of the exposure caused by the RFID- and EAS devices with operating frequencies less than 10 MHz (particularly close to and below 100 kHz), it must be noted that the assessment summarized above was carried out based on the ICNIRP guidelines published in 1998, i.e., that the basic restriction in terms of current density was applied only to central nervous (CNS) tissue. It must be expected that the application of the new assessment concept recently published by ICNIRP 2010, which is based of induced electric field strength inside the tissue and which provides now also limits for all body tissues and not only for CNS tissue, may lead to significant different assessment results and conclusions for the mentioned device categories. Regarding possible electromagnetic interference with cardiac pacemakers, again RFID- and EAS-devices with working frequencies 58 kHz and 120 kHz and large (e.g., floor standing) antennas showed up to have the highest potential for interference compared to the other

  15. Thin film CIGS solar cells with a novel low cost process - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.; Romanyuk, Y.


    Novel manufacturing routes for efficient and low-cost Cu(In,Ga)Se{sub 2} (called CIGS) thin film solar cells are explored and patented. CIGS has proven its suitability for highly efficient and extremely stable solar cells. The low-cost methods allow impurity free material synthesis, fast large-area deposition, high material utilization and a very short energy payback time with drastically lower manufacturing costs. Two non-vacuum, solution-based approaches are investigated to deposit thin layers of CIGS. The first approach considers incorporation of copper into indium gallium selenide precursor layers by ion-exchange from aqueous or organic solutions. Organic solutions provide faster copper incorporation and do not corrode the metal back contact. Solar cells processed from selenized precursor films exhibit efficiencies of up to 4.1%. The second approach with paste coating of inorganic salt solution results in a solar cell efficiency of 4% (record 6.7%), where further improvements are hindered by the presence of the residual carbon layer. Using alternative organic binders, pre-deposited selenium layers, non-binder recipes helps to avoid the carbon layer although the obtained layers are inhomogeneous and contain impurity phases. A patent for the ion-exchange approach is pending, and the obtained research results on the paste coating approach will be scrutinized during new European FP7 project 'NOVA-CIGS'. (authors)

  16. Enzymology and Molecular Biology of Cell Wall Biosynthesis. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter M. Ray


    The following aspects of enzymology of cell wall synthesis were pursued under this cited grant: (1) Isolation of plasma membrane-localized glucan synthase II (GS-II) of pea; (2) Cloning of genes for possible plant GS-II components; (3) Golgi glucan synthase-I (GS-I); and (4) Golgi reversibly glycosylated protein 1 (RGP1).

  17. Final Scientific/Technical Report for Low Cost, High Capacity Non- Intercalation Chemistry Automotive Cells

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevsky, Gene


    Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A major goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).

  18. Final Report - Durable Catalysts for Fuel Cell Protection during Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Atanasoski, Radoslav [3M Company, St. Paul, MN (United States); van der Vliet, Dennis [3M Company, St. Paul, MN (United States); Cullen, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atanasoska, Ljiljana [3M Company, St. Paul, MN (United States)


    The objective of this project was to develop catalysts that will enable proton exchange membranes (PEM) fuel cell systems to weather the damaging conditions in the fuel cell at voltages beyond the thermodynamic stability of water during the transient periods of start-up/shut-down and fuel starvation. Such catalysts are required to make it possible for the fuel cell to satisfy the 2015 DOE targets for performance and durability. The project addressed a key issue of importance for successful transition of PEM fuel cell technology from development to pre-commercial phase. This issue is the failure of the catalyst and the other thermodynamically unstable membrane electrode assembly (MEA) components during start-up/shut-down and local fuel starvation at the anode, commonly referred to as transient conditions. During these periods the electrodes can reach potentials higher than the usual 1.23V upper limit during normal operation. The most logical way to minimize the damage from such transient events is to minimize the potential seen by the electrodes. At lower positive potentials, increased stability of the catalysts themselves and reduced degradation of the other MEA components is expected.

  19. Technology Enabling Ultra High Concentration Multi-Junction Cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, S. M.; Colter, Peter


    The project goal is to enable multijunction cells to operate at greater than 2000× suns intensity with efficiency above forty percent. To achieve this goal the recipients have developed a robust high-bandgap tunnel junction, reduce series resistance, and integrated a practical heat dissipation scheme.

  20. Design, fabrication, and applications of in situ fluid cell TEM. (United States)

    Li, Dongsheng; Nielsen, Michael H; De Yoreo, James J


    In situ fluid cell TEM is a powerful new tool for understanding dynamic processes during liquid phase chemical reactions, including mineral formation. This technique, which operates in the high vacuum of a TEM chamber, provides information on crystal structure, phase, morphology, size, aggregation/segregation, and crystal growth mechanisms in real time. In situ TEM records both crystal structure and morphology at spatial resolutions down to the atomic level with high temporal resolution of up to 10(-6)s per image, giving it distinct advantages over other in situ techniques such as optical microscopy, AFM, or X-ray scattering or diffraction. This chapter addresses the design, fabrication, and assembly of TEM fluid cells and applications of fluid cell TEM to understanding mechanisms of mineralization. © 2013 Elsevier Inc. All rights reserved.

  1. Compact direct methanol fuel cells for portable application (United States)

    Icardi, U. A.; Specchia, S.; Fontana, G. J. R.; Saracco, G.; Specchia, V.

    Consumers' demand for portable audio/video/ICT products has driven the development of advanced power technologies in recent years. Fuel cells are a clean technology with low emissions levels, suitable for operation with renewable fuels and capable, in a next future, of replacing conventional power systems meeting the targets of the Kyoto Protocol for a society based on sustainable energy systems. Within such a perspective, the objective of the European project MOREPOWER (compact direct methanol fuel cells for portable applications) is the development of a low-cost, low temperature, portable direct methanol fuel cell (DMFC; nominal power 250 W) with compact construction and modular design for the potential market area of weather stations, medical devices, signal units, gas sensors and security cameras. This investigation is focused on a conceptual study of the DMFC system carried out in the Matlab/Simulink ® platform: the proposed scheme arrangements lead to a simple equipment architecture and a efficient process.

  2. Somatic cell nuclear transfer cloning: practical applications and current legislation. (United States)

    Niemann, H; Lucas-Hahn, A


    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  3. Atomic Layer Deposited Catalysts for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta

    The micro direct methanol fuel cell (µDMFC) has been proposed as a candidate to power portable applications. The device can operate at room temperature on inexpensive, energy-dense methanol fuel, and it can be easily "recharged" by fuel refilling. Microfabrication techniques could be one route...... for the realization of such tiny devices. It is a mature technology, suitable for mass production, where versatile structuring is available at the micro and nano regime. Carbon black supported catalysts synthesized by wet chemistry methods are not readily applicable for standard microfabrication techniques. Atomic...... on the sample surface. Its unique growth characteristic enables conformal and uniform lms of controlled thickness and composition. In certain conditions ALD commences by island growth, resulting in discrete nanoparticle formation, which is generally preferred for catalytic applications. Pt-Ru is the best...

  4. The use of electromagnetic particle-in-cell codes in accelerator applications

    International Nuclear Information System (INIS)

    Eppley, K.


    The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs

  5. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy


    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  6. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    Fluke, D.J.


    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  7. Characterization of single cell derived cultures of periosteal progenitor cells to ensure the cell quality for clinical application.

    Directory of Open Access Journals (Sweden)

    Stefan Stich

    Full Text Available For clinical applications of cells and tissue engineering products it is of importance to characterize the quality of the used cells in detail. Progenitor cells from the periosteum are already routinely applied in the clinics for the regeneration of the maxillary bone. Periosteal cells have, in addition to their potential to differentiate into bone, the ability to develop into cartilage and fat. However, the question arises whether all cells isolated from periosteal biopsies are able to differentiate into all three tissue types, or whether there are subpopulations. For an efficient and approved application in bone or cartilage regeneration the clarification of this question is of interest. Therefore, 83 different clonal cultures of freshly isolated human periosteal cells derived from mastoid periosteum biopsies of 4 donors were generated and growth rates calculated. Differentiation capacities of 51 clonal cultures towards the osteogenic, the chondrogenic, and the adipogenic lineage were investigated. Histological and immunochemical stainings showed that 100% of the clonal cultures differentiated towards the osteogenic lineage, while 94.1% demonstrated chondrogenesis, and 52.9% could be stimulated to adipogenesis. For osteogenesis real-time polymerase chain reaction (PCR of BGLAP and RUNX2 and for adipogenesis of FABP4 and PPARG confirmed the results. Overall, 49% of the cells exhibited a tripotent potential, 45.1% showed a bipotent potential (without adipogenic differentiation, 3.9% bipotent (without chondrogenic differentiation, and 2% possessed a unipotent osteogenic potential. In FACS analyses, no differences in the marker profile of undifferentiated clonal cultures with bi- and tripotent differentiation capacity were found. Genome-wide microarray analysis revealed 52 differentially expressed genes for clonal subpopulations with or without chondrogenic differentiation capacity, among them DCN, NEDD9, TGFBR3, and TSLP. For clinical

  8. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark


    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  9. Final report: Seven-layer membrane electrode assembly - an innovative approach to PEM fuel cell design

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.


    Costs of materials and fabrication, rather than appropriateness of technology, are the major barriers to the sales of fuel cells. With the objective of reducing costs, potential alternative component materials for (a) the fluid flow plate (FFP) and (b) the gas diffusion layers were investigated. The concept of a 7-layer membrane electrode assembly (MEA), in which components are bonded into a unitised module, was also studied. The advantages of the bonded cell, and the flow field design, are expounded. Low-cost carbon particle composites were developed for the FFPs. The modular 7-layer MEA has an order of magnitude saving over current materials. Overall, the study has led to a greater volumetric power output, lower costs and greater reliability. The work was carried out by Morgan Group Technology Limited and funded by the DTI.

  10. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang


    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  11. Technology development goals for automotive fuel cell power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)


    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  12. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications. (United States)

    Yoshida, Yoshinori; Yamanaka, Shinya


    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that have features similar to embryonic stem cells, such as the capacity of self-renewal and differentiation into many types of cells, including cardiac myocytes. Although initially the reprogramming efficiency was low, several improvements in reprogramming methods have achieved robust and efficient generation of iPSCs without genomic insertion of transgenes. iPSCs display clonal variations in epigenetic and genomic profiles and cellular behavior in differentiation. iPSC-derived cardiac myocytes (iPSC cardiac myocytes) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models, and are useful for drug discovery and toxicology testing. In addition, iPSC cardiac myocytes can help with patient stratification in regard to drug responsiveness. Furthermore, they can be used as source cells for cardiac regeneration in animal models. Here, we review recent progress in iPSC technology and its applications to cardiac diseases. © 2017 American Heart Association, Inc.

  13. [Progress and potential applications of induced pluripotent stem cell technology]. (United States)

    Wu, Cui-Ling; Zhang, Yu-Ming


    Differentiated somatic cells can be reprogrammed to a pluripotent state through ectopic expression of specific transcription factors. These reprogrammed cells, which were designated as induced pluripotent stem (iPS) cells, are detected to exhibit unlimited self-renewal capacity and pluripotency. This breakthrough in stem cell research provides a powerful and novel tool for the studies on pathogenesis of diseases, reprogramming mechanism and development of new therapies. For this reason, the iPSC technology has currently become one of the hot topics in stem cells research. Recently, major progress in this field has been achieved: initially, researchers succeeded in inducing the reprogramming of mouse fibroblasts by retroviral transduction of four specific transcription factors; in succession, the accelerated development of iPSC technology by employing non-integrating viral vectors, non-viral vectors or removing the introduced foreign genes via gene knock-out has ensured the yields of much safer iPSC; meanwhile, some researches discovered the proofs that a number of micro molecular compounds were potent in accelerating the cellular reprogramming. For a prospect, iPSC are highly promising for regenerative medicine, disease modeling and drug screening. In this review, the recent progress in the generation of iPSC, prospects of their possible clinical applications and problems in the iPSC research are summarized and discussed.

  14. A cell strain system for small homogeneous strain applications. (United States)

    Bottlang, M; Simnacher, M; Schmitt, H; Brand, R A; Claes, L


    A cell culture system has been developed that enables application of well characterized, homogeneously distributed cyclic strains to monolayer cell cultures. Optically clear silicone culture dishes atop Plexiglas base plates are deformed by four-point bending of flexible silicone culture wells driven in user specified strain cycle patterns using computer controlled electromagnetic linear actuators. Cyclic mechano-transduction can be induced in amplitudes of 0 to 3000 mustrain, in frequencies of 0 to 30 Hz and in any specified strain cycle pattern. The cell culture system, which contains six simultaneously driven culture wells, has been mechanically characterized by holographic interferometry, laser displacement sensor recordings of the dish surfaces, strain gauge monitoring of the base plates, and finite element modeling of the dishes on the base plates. The standard deviation of the strain amplitudes among the six simultaneously stimulated culture wells is less than 5%. The cell culture system allows accurate generation of small magnitudes of well characterized, homogeneous strain, easy handling of the culture wells, flexible setting of cyclic strain pattern parameters, simultaneous stimulation of 6 culture wells, and light microscopic observation of the cell cultures.

  15. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Campos, I; AsIn, L; Torres, T E; Tres, A; Ibarra, M R; Goya, G F [Instituto de Nanociencia de Aragon (INA), Mariano Esquillor s/n, CP 50018, Zaragoza (Spain); Marquina, C, E-mail: [Condensed Matter Department, Sciences Faculty, University of Zaragoza, 50009 (Spain)


    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH{sub 2}{sup +}) or negative (COOH{sup -}) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  16. Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs (United States)

    Lee, Philip J.; Hung, Paul J.; Shaw, Robin; Jan, Lily; Lee, Luke P.


    Direct cell-cell communication between adjacent cells is vital for the development and regulation of functional tissues. However, current biological techniques are difficult to scale up for high-throughput screening of cell-cell communication in an array format. In order to provide an effective biophysical tool for the analysis of molecular mechanisms of gap junctions that underlie intercellular communication, we have developed a microfluidic device for selective trapping of cell-pairs and simultaneous optical characterizations. Two different cell populations can be brought into membrane contact using an array of trapping channels with a 2μm by 2μm cross section. Device operation was verified by observation of dye transfer between mouse fibroblasts (NIH3T3) placed in membrane contact. Integration with lab-on-a-chip technologies offers promising applications for cell-based analytical tools such as drug screening, clinical diagnostics, and soft-state biophysical devices for the study of gap junction protein channels in cellular communications. Understanding electrical transport mechanisms via gap junctions in soft membranes will impact quantitative biomedical sciences as well as clinical applications.

  17. Construction and application of an inducible system for homogenous expression levels in bulk cell lines.

    Directory of Open Access Journals (Sweden)

    Jun Yu

    Full Text Available Stringently controlled conditional expressing systems are crucial for the functional characterization of genes. Currently, screening of multiple clones to identify the tightly controlled ones is necessary but time-consuming. Here, we describe a system fusing Tet (tetracycline-inducible elements, BAC (bacterial artificial chromosome and Gateway technology together to allow tight control of gene expression in BAC-transfected eukaryotic bulk cell cultures. Recombinase cloning into the shuttle vector and the BAC facilitates vector construction. An EGFP (enhanced green fluorescent protein allows FACS (fluorescence activated cell sorting and the BAC technology ensures tight control of gene expression that is independent of the integrating site. In the current first application, our gene of interest encodes a beta-catenin-ERalpha fusion protein. Tested by luciferase assay and western blotting, in HTB56 lung cancer cells the final BAC E11-IGR-beta-catenin-ERalpha vector demonstrated sensitive inducibility by Tet or Dox (doxycycline in a dose-dependent manner with low background, and the EGFP was an effective selection marker by FACS in bulk culture HTB56 and myeloblastic 32D cells. This is a highly efficient tool for the rapid generation of stringently controlled Tet-inducible systems in cell lines.

  18. Silicon solar cells with high efficiencies. Final report; Silicium-Solarzellen mit hoechsten Wirkungsgraden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W.; Knobloch, J.; Glunz, S.W.; Henninger, V.; Kamerewerd, F.J.; Koester, B.; Leimenstoll, A.; Schaeffer, E.; Schumacher, J.; Sterk, S.; Warta, W.


    In this report the basic activities for the development of the silicon high efficiency solar cell technology are described. The project had two main goals: (i) The improvement of efficiencies using a systematic optimization of all cell parameters and technology steps and (ii) the simplification of the technology towards the possibilities of an industrial production, keeping the cell efficiency at a high level. Starting from the LBSF technology, developed at Fraunhofer ISE, the reduction of all loss mechanisms led to efficiencies up to 22.5% on FZ-silicon. Using a modification of this technology efficiencies of up to 21.7% have been reached on Cz-silicon. Even after the reduction of the number of photolithographic steps from six to three efficiencies up to 21.6% on FZ- and 19.5% on Cz-silicon have been obtained. These are best values in an international comparison. (orig.) [Deutsch] In diesem Projektbericht werden grundlegende Arbeiten zur Entwicklung der Silicium-`Highefficiency`-Solarzellentechnologie beschrieben. Das Projekt hatte zwei Hauptziele: (i) Die Erhoehung der Wirkungsgrade durch eine systematische Optimierung aller Zellparameter und aller Technologieschritte und (ii) die Vereinfachung der Technologie unter Beibehaltung sehr hoher Wirkungsgrade mit dem Ziel einer Annaeherung an die Moeglichkeiten der Industriefertigung. Ausgehend von der im Fraunhofer ISE entwickelten LBSF-Technologie gelang es durch Reduzierung aller Verlustmechanismen, Wirkungsgrade bis zu 22.5% auf FZ-Silicium zu erreichen. Nach Anpassung der Technologie wurden auf Cz-Silicium Wirkungsgrade bis 21.7% erzielt. Ein von sechs auf drei Fotomaskenschritte reduzierter Prozess erzielte immerhin noch Werte bis 21.6% auf FZ- und 19.5% auf Cz-Material. Alle dieser Werte stellen im internationalen Vergleich Spitzenleistungen dar. (orig.)


    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Nabil Balnaves, Mike


    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  20. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    Energy Technology Data Exchange (ETDEWEB)



    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  1. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    International Nuclear Information System (INIS)


    This EA evaluates the proposed action to decontaminate and decommission GA's hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R ampersand D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required

  2. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)



    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  3. Physico-chemical studies of radiation effects in cells: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.


    The career of Dr. E.L. Powers, a pioneer in the development of radiobiology, is reviewed. His initial research involved the effects of radiation and certain chemicals on Paramecium, associated ultrastructural studies on protozoan cells, responses of Rickettsia and bacteriophage to irradiation, and the development of techniques for studying bacterial spores. These efforts established the basic radiation biology of the spore and its importance in understanding the effects of free radicals, oxygen, and water. His recent research extended work on the dry spore to the very wet spore and to other selected chemical systems in aqueous suspension. 126 refs., 2 figs.

  4. Physico-chemical studies of radiation effects in cells: Final report

    International Nuclear Information System (INIS)

    Powers, E.L.


    The career of Dr. E.L. Powers, a pioneer in the development of radiobiology, is reviewed. His initial research involved the effects of radiation and certain chemicals on Paramecium, associated ultrastructural studies on protozoan cells, responses of Rickettsia and bacteriophage to irradiation, and the development of techniques for studying bacterial spores. These efforts established the basic radiation biology of the spore and its importance in understanding the effects of free radicals, oxygen, and water. His recent research extended work on the dry spore to the very wet spore and to other selected chemical systems in aqueous suspension. 126 refs., 2 figs

  5. Light Duty Fuel Cell Electric Vehicle Validation Data. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jelen, Deborah [Electricore, Inc., Santa Clarita, CA (United States); Odom, Sara [Electricore, Inc., Santa Clarita, CA (United States)


    Electricore, along with partners from Quong & Associates, Inc., Honda R&D Americas (Honda), Nissan Technical Center North America (Nissan), and Toyota Motor Engineering & Manufacturing North America, Inc. (Toyota), participated in the Light Duty Fuel Cell Electric Vehicle (FCEV) Validation Data program sponsored by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) (Cooperative Agreement No. DE-EE0005968). The goal of this program was to provide real world data from the operation of past and current FCEVs, in order to measure their performance and improvements over time. The program was successful; 85% of the data fields requested were provided and not restricted due to proprietary reasons. Overall, the team from Electricore provided at least 4.8 GB of data to DOE, which was combined with data from other participants to produce over 33 key data products. These products included vehicle performance and fuel cell stack performance/durability. The data were submitted to the National Renewable Energy Laboratory’s National Fuel Cell Technology Evaluation Center (NREL NFCTEC) and combined with input from other participants. NREL then produced composite data products (CDP) which anonymized the data in order to maintain confidentiality. The results were compared with past data, which showed a measurable improvement in FCEVs over the past several years. The results were presented by NREL at the 2014 Fuel Cell Seminar, and 2014 and 2015 (planned) DOE Annual Merit Review. The project was successful. The team provided all of the data agreed upon and met all of its goals. The project finished on time and within budget. In addition, an extra $62,911 of cost sharing was provided by the Electricore team. All participants believed that the method used to collect, combine, anonymize, and present the data was technically and economically effective. This project helped EERE meet its mission of ensuring America’s security and prosperity by

  6. Organic-inorganic hybrid nanostructures for solar cell applications (United States)

    AbdulAlmohsin, Samir M.

    The enticing electro-optical properties of nanostructured materials such as carbon nanotubes, graphene, CdS nanocrystals and ZnO nanowrie bring new vigor into the innovation of photovoltaics. The main purpose of this dissertation is to develop novel nano-structured materials for low cost solar cell applications. Fabrication, characterization, and solar cell application of organic-inorganic hybrid structures are the main focus of this research. Polyaniline (PANI)/multi-walled carbon nanotube (MWNT) composite films were synthesized by an electrochemical polymerization of aniline with airbrushed MWNTs on ITO substrates. It was found that the incorporation of MWNTs in PANI effectively increase the film conductivity with a percolation threshold of 5% of nanotubes in the composite. The solar cell performance strongly depends on the conductivity of the composite films, which can be tuned by adjusting nanotube concentration. A higher conductivity resulted in a better cell performance, resulting from an efficient charge collection. This study indicates that PANI/MWNT composite films with optimized conductivity are potentially useful for low-cost hybrid solar cell applications. CdS nanocrystal-sensitized solar cells (NCSSCs) were investigated by using polyaniline (PANI) as a replacement for conventional platinum counter electrode. The growth time of the nanocrystals significantly affects the solar cell performance. At an optimum growth, the NCSSCs exhibit 0.83% of the conversion efficiency in comparison to 0.13% for the identical cells without CdS nanocrystals. Electrochemical impedance spectroscopy showed that the charge transfer in the solar cells with CdS nanocrystals was improved. The enhanced overall energy conversion efficiency by nanocrystals is attributed to improved light absorption and suppressed recombination rate of interfacial charges at the injection, resulting in significantly improved charge transfer and electron lifetime. In addition, the PANI electrodes

  7. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi


    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  8. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.


    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  9. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Contracts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cornforth, Michael N. [The University of Texas Medical Branch at Galveston, TX (United States)


    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. The aims of this work apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. These aims are: to analyze by multi-flour fluorescence in situ hybridization (mFISH) the chromosomes in clonal descendents of individual human fibroblasts that were previously irradiated; to examine irradiated clones from Aim 1 for submicroscopic deletions by subjecting their DNA to comparative genomic hybridization (CGH) microarray analysis; and to flow-sort aberrant chromosomes from clones containing stable radiation-induced translocations and map the breakpoints to within an average resolution of 100 kb using the technique of 'array painting'.

  10. Solid Oxide Fuel Cell Technology Stationary Power Application Project

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre


    The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale

  11. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products

    Directory of Open Access Journals (Sweden)

    Ana Rita Caseiro


    Full Text Available Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells’ secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.

  12. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications) (United States)

    Vedam, K.; Das, M. B.; Krishnaswamy, S. V.


    Emphasis during the third quarter of the program was on the improvement of the quality of sputtered films, their characterization and use in the fabrication of Schottky barrier type diodes and solar cell structures. Films prepared under different conditions and on different substrates were examined showing modular growths under certain conditions. I-V, C-V, and photovoltaic characteristics were measured on numerous samples based on n- and p-type films on Ni substrates having top metallization of either evaporated Au and Al. The n-type samples showed up to 200 mV V/sub oc/and small short-circuit currents. The characteristics observed are indicative of the presence of interfacial layer and surface states. Surface state's capacitance were measured on p-type samples metalized with Au.

  13. Mesenchymal stem cells in obesity: insights for translational applications. (United States)

    Matsushita, Kenichi; Dzau, Victor J


    Obesity is now a major public health problem worldwide. Lifestyle modification to reduce the characteristic excess body adiposity is important in the treatment of obesity, but effective therapeutic intervention is still needed to control what has become an obesity epidemic. Unfortunately, many anti-obesity drugs have been withdrawn from market due to adverse side effects. Bariatric surgery therefore remains the most effective therapy for severe cases, although such surgery is invasive and researchers continue to seek new control strategies for obesity. Mesenchymal stem cells (MSCs) are a major source of adipocyte generation, and studies have been conducted into the potential roles of MSCs in treating obesity. However, despite significant progress in stem cell research and its potential applications for obesity, adipogenesis is a highly complex process and the molecular mechanisms governing MSC adipogenesis remain ill defined. In particular, successful clinical application of MSCs will require extensive identification and characterization of the transcriptional regulators controlling MSC adipogenesis. Since obesity is associated with the incidence of multiple important comorbidities, an in-depth understanding of the relationship between MSC adipogenesis and the comorbidities of obesity is also necessary to evaluate the potential of effective and safe MSC-based therapies for obesity. In addition, brown adipogenesis is an attractive topic from the viewpoint of therapeutic innovation and future research into MSC-based brown adipogenesis could lead to a novel breakthrough. Ongoing stem cell studies and emerging research fields such as epigenetics are expected to elucidate the complicated mechanisms at play in MSC adipogenesis and develop novel MSC-based therapeutic options for obesity. This review discusses the current understanding of MSCs in adipogenesis and their potential clinical applications for obesity.

  14. Genetically engineered mesenchymal stem cells: applications in spine therapy. (United States)

    Aslan, Hadi; Sheyn, Dima; Gazit, Dan


    Spine disorders and intervertebral disc degeneration are considered the main causes for the clinical condition commonly known as back pain. Spinal fusion by implanting autologous bone to produce bony bridging between the two vertebrae flanking the degenerated-intervertebral disc is currently the most efficient treatment for relieving the symptoms of back pain. However, donor-site morbidity, complications and the long healing time limit the success of this approach. Novel developments undertaken by regenerative medicine might bring more efficient and available treatments. Here we discuss the pros and cons of utilizing genetically engineered mesenchymal stem cells for inducing spinal fusion. The combination of the stem cells, gene and carrier are crucial elements for achieving optimal spinal fusion in both small and large animal models, which hopefully will lead to the development of clinical applications.

  15. An application programming interface for CellNetAnalyzer. (United States)

    Klamt, Steffen; von Kamp, Axel


    CellNetAnalyzer (CNA) is a MATLAB toolbox providing computational methods for studying structure and function of metabolic and cellular signaling networks. In order to allow non-experts to use these methods easily, CNA provides GUI-based interactive network maps as a means of parameter input and result visualization. However, with the availability of high-throughput data, there is a need to make CNA's functionality also accessible in batch mode for automatic data processing. Furthermore, as some algorithms of CNA are of general relevance for network analysis it would be desirable if they could be called as sub-routines by other applications. For this purpose, we developed an API (application programming interface) for CNA allowing users (i) to access the content of network models in CNA, (ii) to use CNA's network analysis capabilities independent of the GUI, and (iii) to interact with the GUI to facilitate the development of graphical plugins. Here we describe the organization of network projects in CNA and the application of the new API functions to these projects. This includes the creation of network projects from scratch, loading and saving of projects and scenarios, and the application of the actual analysis methods. Furthermore, API functions for the import/export of metabolic models in SBML format and for accessing the GUI are described. Lastly, two example applications demonstrate the use and versatile applicability of CNA's API. CNA is freely available for academic use and can be downloaded from Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. ZnO Tetrapods: Synthesis and Applications in Solar Cells

    Directory of Open Access Journals (Sweden)

    Luting Yan


    Full Text Available Zinc oxide (ZnO tetrapods have received much interest due to their unique morphology, that is, four arms con‐ nected to one centre. Tetrapod networks possess the excellent electronic properties of the ZnO semiconductor, which is attractive for photoelectrode materials in energy- conversion devices because of their advantages in electron extraction and transportation. In this review, we have discussed recent advancements in the field of ZnO tetrapod synthesis, including vapour transport synthesis and the wet chemical method, together with their advantages and disadvantages in terms of morphology control and yield regulation. The developments and improvements in the applications of ZnO nanotetrapods in photovoltaics, including dye-sensitized solar cells and polymer solar cells, are also described. Our aim is to give readers a compre‐ hensive and critical overview of this unique morphology of ZnO, including synthesis control and growth mechanism, and to understand the role of this particular morphology in the development of solar cells. The future research directions in ZnO tetrapods-based solar cell are also discussed.

  17. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    R Paul Drake


    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  18. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    Directory of Open Access Journals (Sweden)

    Kazi M. Zakir Hossain


    Full Text Available Tubular scaffolds with aligned polylactic acid (PLA fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

  19. Waveguide evanescent field fluorescence microscopy & its application in cell biology (United States)

    Hassanzadeh, Abdollah

    There are many powerful microscopy technologies available for the investigation of bulk materials as well as for thin film samples. Nevertheless, for imaging an interface, especially live cells on a substrate and ultra thin-films, only Total Internal Reflection Fluorescence (TIRF) microscopy is available. This TIRF microscopy allows imaging without interference of the bulk. Various approaches are employed in fluorescence microscopy applications to restrict the excitation and detection of fluorophores to a thin region of the specimen. Elimination of background fluorescence from outside the focal plane can dramatically improve the signal-to-noise ratio, and consequently, the spatial resolution of the features or events of interest. TIRF microscopy is an evanescent field based microscopy. In this method, fluorescent dyes are only excited within an evanescent field: roughly within 100 nm above a glass coverslip. This will allow imaging surface and interfacial issues of the glass coverslip and an adjacent material. Waveguide evanescent field fluorescence (WEFF) microscopy is a new development for imaging cell-substrate interactions in real time and in vitro. It is an alternative to TIRF microscopy. In this method the light is coupled into a waveguide via an optical grating. The coupled light propagates as a waveguide mode and exhibits an evanescent field on top of the waveguide. This can be used as a surface-bound illumination source to excite fluorophores. This evanescent field serves as an extremely powerful tool for quality control of thin films, to study cell-substrate contacts, and investigating the effect of external agents and drugs on the cell-substrate interaction in real time and in vitro. This new method has been established and optimized to minimize non-uniformity, scattering and photo bleaching issues. Visualizing and quantifying of the cell-substrates and solid thin films have been carried out by WEFF microscopy. The images of the cell-substrate interface

  20. Chemically controllable fabrication of one-dimensional ZnO nanostructures and their applications in solar cells. (United States)

    Zhang, Yuqi; Heng, Liping; Jiang, Lei


    One-dimensional (1D) ZnO nanostructures have attracted much attention due to their interesting optical and electronic properties, which make them suitable for a wide variety of current and future technological applications, including photodetectors, photovoltaics, photocatalysis, field emissions, gas sensors and solar cells. This review gives a comprehensive overview of recent developments in chemically controllable fabrication of 1D ZnO nanomaterials. We will cover the synthetic techniques including chemical vapor deposition (CVD), metal-organic chemical vapor deposition (MOCVD), hydrothermal technique, solvothermal synthesis, sol-gel method, electrochemical deposition, and nanosphere lithography technique. Finally, we will also highlight their application in the energy conversion system.

  1. Plant cell wall architecture. Final report, 1 June 1994--30 October 1996

    Energy Technology Data Exchange (ETDEWEB)



    The authors have successfully finished the DOE-supported project entitled ``Plant cell wall architecture.`` During the funding period (June 1, 1994--October 30, 1996), they have published 6 research papers and 2 review articles. A brief description of these accomplishments is outlined as follows: (1) Improved and extended tissue printing techniques to reveal different surface and wall architectures, and to localized proteins and RNA. (2) Identification of an auxin- and cytokinin-regulated gene from Zinnia which is mainly expressed in cambium. (3) It was found that caffeoyl CoA 3-O-methyltransferase is involved in an alternative methylation pathway of lignin biosynthesis. (4) It was found that two different O-methyltransferases involved in lignification are differentially regulated in different lignifying tissues during development. They propose a scheme of monolignol biosynthesis combining both methylation pathways. (5) Identification of cysteine and serine proteases which are preferentially expressed during xylogenesis. This is the first report to identify an autolysis-associated cDNA in plants. (6) Characterization of two ribonuclease genes which are induced during xylogenesis and by wounding. (7) Isolation of cinnamic acid 4-hydroxylase gene and analysis of its expression patterns during lignification.

  2. LDRD Final Report - In Operando Liquid Cell TEM Characterization of Nickel-Based Electrocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    A commercial electrochemistry stage for transmission electron microscopy (TEM) was tested to determine whether to purchase one for the microscopes at Lawrence Livermore National Lab (LLNL). Deposition of a nickel-based electrocatalyst was pursued as a material system for the purpose of testing the stage. The stage was found to be problematic with recurring issues in the electrical connections and vacuum sealing, which has thus far precluded a systematic investigation of the original material system. However, the electrochemical cells purchased through this FS will allow the Lawrence Fellow (Nielsen) to continue testing the stage. Furthermore, discussions with a second vendor, which released a similar electrochemical TEM stage during the course of this FS, have resulted in an upcoming longterm loan of their stage at Lawrence Berkeley National Lab (LBNL) for testing. In addition, low-loss electron energy-loss spectroscopy (EELS) measurements on nickel-bearing electrolyte solutions led to a broader EELS investigation of solvents and salt solutions. These measurements form the basis of a manuscript in preparation on EELS measurements of the liquid phase.

  3. Automated Solar Cell Assembly Teamed Process Research. Final subcontract report, 6 January 1993--31 October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nowlan, M. J.; Hogan, S. J.; Breen, W. F.; Murach, J. M.; Sutherland, S. F.; Patterson, J. S.; Darkazalli, G. [Spire Corp., Bedford, MA (US)


    This is the Final Technical Report for a program entitled ''Automated Solar Cell Assembly Teamed Process Research,'' funded by the US Department of Energy. This program was part of Phase 3A of the Photovoltaic Manufacturing Technology (PVMaT) project, which addressed the generic needs of the photovoltaic (PV) industry for improved quality, accelerated production scale-up, and substantially reduced manufacturing cost. Crystalline silicon solar cells (Czochralski monocrystalline, cast polycrystalline, and ribbon polycrystalline) are used in the great majority of PV modules produced in the US, accounting for 95% of all shipments in 1994. Spire's goal in this program was to reduce the cost of these modules by developing high throughput (5 MW per year) automated processes for interconnecting solar cells made from standard and thin silicon wafers. Spire achieved this goal by developing a completely new automated processing system, designated the SPI-ASSEMBLER{trademark} 5000, which is now offered as a commercial product to the PV industry. A discussion of the project and of the Assembler is provided.

  4. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa


    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  5. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso


    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  6. Optimization of ITO layers for applications in a-Si/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pla, J.; Tamasi, M.; Rizzoli, R.; Losurdo, M.; Centurioni, E.; Summonte, C.; Rubinelli, F


    A detailed study of the properties of indium tin oxide (ITO) thin films used as antireflecting front electrodes in a-Si/c-Si heterojunction solar cells is presented. The deposition conditions of ITO layers by radiofrequency magnetron sputtering were optimized for heterojunction solar cells applications. The X-ray photoelectron spectroscopy analysis of the deposited films allowed for a correlation between the film composition and the experimental parameters used in the sputtering process. The ITO thickness was optimized considering the thickness of the a-Si emitter layer, its optical characteristics and the heterojunction solar cell spectral response. In our devices, the optimal thickness calculated for the ITO film was in the range 80-95 nm, depending on the solar cell spectral response, and a thickness tolerance of {+-}10 nm was found to be suitable to limit the degradation of the device performance. Finally, device simulation results obtained by the 'Analysis of Microelectronic and Photonic Structures' code are reported.

  7. Biofuel cells for biomedical applications: colonizing the animal kingdom. (United States)

    Falk, Magnus; Narváez Villarrubia, Claudia W; Babanova, Sofia; Atanassov, Plamen; Shleev, Sergey


    Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evaluation of battery converters based on 4. 8-MW fuel cell demonstrator inverter. Final report. [Contains brief glossary

    Energy Technology Data Exchange (ETDEWEB)


    Electrical power conditioning is a critical element in the development of advanced electrochemical energy storage systems. This program evaluates the use of existing self-commutated converter technology (as developed by the Power Systems Division of United Technologies for the 4.8-MW Fuel Cell Demonstrator) with modification for use in battery energy storage systems. The program consists of three parts: evaluation of the cost and performance of a self-commutated converter modified to maintain production commonality between battery and fuel cell power conditioners, demonstration of the principal characteristics required for the battery application in MW-scale hardware, and investigation of the technical requirements of operation isolated from the utility system. A power-conditioning system consisting of a self-commutated converter augmented with a phase-controlled rectifier was selected and a preliminary design, prepared. A principal factor in this selection was production commonality with the fuel cell inverter system. Additional types of augmentation, and the use of a self-commutated converter system without augmentation, were also considered. A survey of advanced battery manufacturers was used to establish the dc interface characteristics. The principal characteristics of self-commutated converter operation required for battery application were demonstrated with the aid of an available 0.5-MW development system. A survey of five REA and municipal utilities and three A and E firms was conducted to determine technical requirements for operation in a mode isolated from the utility. Definitive requirements for this application were not established because of the limited scope of this study. 63 figures, 37 tables.

  9. Acute application of cisplatin affects methylation status in neuroblastoma cells. (United States)

    Tabata, Keiichi; Sakai, Hayato; Nakajima, Ryosuke; Saya-Nishimura, Reiko; Motani, Kou; Okano, Soichiro; Shibata, Yasuko; Abiko, Yoshimitsu; Suzuki, Takashi


    The pharmacological mechanism of the anti-cancer effect of cisplatin is well known to be DNA intercalation, but the direct or indirect effects of cisplatin on protein expression in cancer cells remain to be explained. In this study, we used a proteomic approach to clarify the early impact of cisplatin on protein expression. In a 2-dimensional gel electrophoresis proteomic experiment, the application of cisplatin for 24 h increased the expression of four proteins and decreased the levels of one protein in neuroblastoma IMR-32 cells. Levels of S-adenosyl-L-homocysteine hydrolase, a key enzyme in methylation metabolism, were increased the most. Therefore, we examined the methylation status of histone proteins. Histone H3K9 methylation was reduced by the application of cisplatin for 24 h. These results suggest that acute cisplatin treatment alters methylation status. Thus, these data can help clarify the unknown pharmacological mechanisms of cisplatin, including the anticancer effect, adverse effects and/or the mechanism of drug resistance.

  10. Recent progress in stabilizing hybrid perovskites for solar cell applications (United States)

    Chen, Jianqing; Cai, Xin; Yang, Donghui; Song, Dan; Wang, Jiajia; Jiang, Jinghua; Ma, Aibin; Lv, Shiquan; Hu, Michael Z.; Ni, Chaoying


    Hybrid inorganic-organic perovskites have quickly evolved as a promising group of materials for solar cells and optoelectronic applications mainly owing to the inexpensive materials, relatively simple and versatile fabrication and high power conversion efficiency (PCE). The certified energy conversion efficiency for perovskite solar cell (PSC) has reached above 20%, which is compatible to the current best for commercial applications. However, long-term stabilities of the materials and devices remain to be the biggest challenging issue for realistic implementation of the PSCs. This article discusses the key issues related to the stability of perovskite absorbing layer including crystal structural stability, chemical stability under moisture, oxygen, illumination and interface reaction, effects of electron-transporting materials (ETM), hole-transporting materials (HTM), contact electrodes, ion migration and preparation conditions. Towards the end, prospective strategies for improving the stability of PSCs are also briefly discussed and summarized. We focus on recent understanding of the stability of materials and devices and our perspectives about the strategies for the stability improvement.

  11. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J. [and others


    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  12. Degradation behaviour of phosphinothricin in nontransgenic and transgenic maize- and rape cells as well as in whole plants. Final report

    International Nuclear Information System (INIS)

    Engelhardt, G.; Pawlizki, K.H.; Ruhland, M.


    Up to now only very few publications are available about the metabolism of phosphinothricin (D/L-PPT, trade names: BASTA trademark , LIBERTY trademark ) in plants. In most of these reports degradation studies with cell cultures using very low herbicide concentrations are described. There are no publications about the degradation in transgenic intact plants under outdoor conditions yet. In order to clarify the question, whether the degradation in transgenic crops may differ from that in nontransgenic plants and if there exist differences between D- and L-PPT, the degradation of 14 C-D/L-, -L- and -D-PPT in transgenic and nontransgenic cell cultures as well as in intact, transgenic rape and maize plants was studied under outdoor conditions. D-PPT was not metabolised to a reasonable extent both in cell cultures and whole plants, all metabolites were formed from L-PPT. At harvest the amounts of total residues in maize plants ranged from 9 to 16% of the applied herbicide dosage and in rape plants from 35 to 47%. In nontransgenic plant cells L-PPT was exclusively metabolised to different methylphosphinico fatty acids. The main metabolite both in transgenic cells and whole plants with a content of 60 to 90% of total residues in rape and maize was N-acetyl-L-PPT, which seems to be stable in transgenic plants. In addition very low amounts of the same methylphosphinico fatty acids as in nontransgenic cells were detected in transgenic plants. More than 95% of the total residues were extractable by water, the formation of nonpolar and nonextractable residues was below 4%. At harvest the highest amounts of the residues were found in the treated leaves (4-15%), the lowest in the kernals (0,07-0,6%). According to these results total residues of PPT will not exceed the official tolerances in transgenic rape and maize if application follows good agricultural practice. (orig.) [de

  13. Novel Contact Materials for Improved Performance CdTe Solar Cells Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, Angus [Colorado School of Mines, Golden, CO (United States); Marsillac, Sylvain [Old Dominion Univ., Norfolk, VA (United States); Collins, Robert [Univesity of Toledo


    This program has explored a number of novel materials for contacts to CdTe solar cells in order to reduce the back contact Schottky barrier to zero and produce an ohmic contact. The project tested a wide range of potential contact materials including TiN, ZrN, CuInSe2:N, a-Si:H and alloys with C, and FeS2. Improved contacts were achieved with FeS2. As part of understanding the operation of the devices and controlling the deposition processes, a number of other important results were obtained. In the process of this project and following its conclusion it led to research that resulted in seven journal articles, nine conference publications, 13 talks presented at conferences, and training of eight graduate students. The seven journal articles were published in 2015, 2016, and 2017 and have been cited, as of March 2018, 52 times (one cited 19 times and two cited 11 times). We demonstrated high levels of doping of CIS with N but electrical activity of the resulting N was not high and the results were difficult to reproduce. Furthermore, even with high doping the contacts were not good. Annealing did not improve the contacts. A-Si:H was found to produce acceptable but unstable contacts, degrading even over a day or two, apparently due to H incorporation into the CdTe. Alloying with C did not improve the contacts or stability. The transition metal nitrides produced Schottky type contacts for all materials tested. While these contacts were found to be unsatisfactory, we investigated FeS2 and found this material to be effective and comparable to the best contacts currently available. The contacts were found to be chemically stable under heat treatment and preferable to Cu doped contacts. Thus, we demonstrated an improved contact material in the course of this project. In addition, we developed new ways of controlling the deposition of CdTe and other materials, demonstrated the nature of defects in CdTe, and studied the distribution of conductivity and carrier type in Cd

  14. TNX GeoSiphon Cell (TGSC-1) Phase II Minimum Flushing Velocity Deployment/Demonstration Final Report

    International Nuclear Information System (INIS)

    Phifer, M.A.


    The TNX Area is a semi-works facility for the Savannah River Technology Center (SRTC), which is located one-quarter mile from the Savannah river at the Savannah River Site. As the result of TNX operation, groundwater contamination has occurred. The predominant contaminants detected in the flood plain downgradient from TNX are trichloroethylene (TCE) and nitrate.Treatability studies into the applicability of a groundwater remediation system combining GeoSiphon Cell and zero-valent iron technologies for treatment of the TCE-contaminated groundwater at TNX have been conducted. These treatability studies have been conducted by SRTC under the sponsorship of the Environmental Restoration Department

  15. TNX GeoSiphon Cell (TGSC-1) Phase II Minimum Flushing Velocity Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.


    The TNX Area is a semi-works facility for the Savannah River Technology Center (SRTC), which is located one-quarter mile from the Savannah river at the Savannah River Site. As the result of TNX operation, groundwater contamination has occurred. The predominant contaminants detected in the flood plain downgradient from TNX are trichloroethylene (TCE) and nitrate.Treatability studies into the applicability of a groundwater remediation system combining GeoSiphon Cell and zero-valent iron technologies for treatment of the TCE-contaminated groundwater at TNX have been conducted. These treatability studies have been conducted by SRTC under the sponsorship of the Environmental Restoration Department.

  16. Applications of magnetic 'power production' and its assessment. A feasibility study - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovski, A.; Diebold, M.; Vuarnoz, D.; Gonin, C.; Egolf, P. W


    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at how magnetic power conversion systems could present an alternative to conventional power conversion technologies. Magnetic 'power generators' based on permanent or superconducting magnets are proposed and analysed for numerous heat-source temperatures, magnetic field strengths and frequencies of rotating porous heat exchanger machines. Such machines have been proposed in a patent deposited by the University of Applied Sciences of Western Switzerland (HEIG-VD/IGT/SIT division). A special numerical analysis is looked at that takes advantage of a thermodynamic model which permits the determination of thermodynamic efficiency, exergy efficiency, total mass and total volume of such magnetic power conversion machines. Magneto-caloric materials are discussed and the advantages and disadvantages of such systems are discussed. The report is concluded with an overview of various systems working under different operating conditions. The systems are listed and evaluated as far as their potential for application in the area of magnetic power conversion is concerned.

  17. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sparn, Bethany F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Seal, Brian [Electric Power Research Institute (EPRI)


    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set of leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.

  18. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. (United States)

    Jia, Jia; Coyle, Robert C; Richards, Dylan J; Berry, Christopher Lloyd; Barrs, Ryan Walker; Biggs, Joshua; James Chou, C; Trusk, Thomas C; Mei, Ying


    Synthetic polymer microarray technology holds remarkable promise to rapidly identify suitable biomaterials for stem cell and tissue engineering applications. However, most of previous microarrayed synthetic polymers do not possess biological ligands (e.g., peptides) to directly engage cell surface receptors. Here, we report the development of peptide-functionalized hydrogel microarrays based on light-assisted copolymerization of poly(ethylene glycol) diacrylates (PEGDA) and methacrylated-peptides. Using solid-phase peptide/organic synthesis, we developed an efficient route to synthesize methacrylated-peptides. In parallel, we identified PEG hydrogels that effectively inhibit non-specific cell adhesion by using PEGDA-700 (M. W.=700) as a monomer. The combined use of these chemistries enables the development of a powerful platform to prepare peptide-functionalized PEG hydrogel microarrays. Additionally, we identified a linker composed of 4 glycines to ensure sufficient exposure of the peptide moieties from hydrogel surfaces. Further, we used this system to directly compare cell adhesion abilities of several related RGD peptides: RGD, RGDS, RGDSG and RGDSP. Finally, we combined the peptide-functionalized hydrogel technology with bioinformatics to construct a library composed of 12 different RGD peptides, including 6 unexplored RGD peptides, to develop culture substrates for hiPSC-derived cardiomyocytes (hiPSC-CMs), a cell type known for poor adhesion to synthetic substrates. 2 out of 6 unexplored RGD peptides showed substantial activities to support hiPSC-CMs. Among them, PMQKMRGDVFSP from laminin β4 subunit was found to support the highest adhesion and sarcomere formation of hiPSC-CMs. With bioinformatics, the peptide-functionalized hydrogel microarrays accelerate the discovery of novel biological ligands to develop biomaterials for stem cell and tissue engineering applications. In this manuscript, we described the development of a robust approach to prepare peptide

  19. Remote tooling applications at the FFTF/IEM cell

    International Nuclear Information System (INIS)

    Webb, R.H.


    At the fast flux test facility, a US Government-owned 400-MW(thermal) sodium-cooled fast reactor, the interim examination and maintenance (IEM) cell is used for the remote disassembly of irradiated fuel and material experiments and remote maintenance operations. The IEM cell has been a challenging area both for maintenance and operation of remote equipment. Innovative tooling has been required to provide the reliability, strength and dexterity for performing myriad bolting, cutting, gripping, and other such functions. Over the years, a set of basic components that can be modified and adapted to several applications has been developed. These include torque multipliers, torque limiters, right-angle drives, and many common hand tools with fittings designed to be handled by master-slave manipulators (MSM) or electromechanical manipulator (EMM) hands. An example of such a system is the closed loop ex-vessel machine (CLEM) grapple change tool, which is designed for both hands-on use in a glove box and remote use in the IEM cell

  20. Coordinated research programme on the application of isotope techniques to investigate groundwater pollution final research coordination meeting and consultants' meeting. Final report

    International Nuclear Information System (INIS)

    Robinson, B.; Chilton, J.; Travi, Y.; Gerardo-Abaya, J.


    This document summarizes the IAEA Coordinated Research Programme (CRP) on the Application of Isotope Techniques to Investigate Groundwater Pollution. Summaries of 16 completed investigations are given. The completed investigations resulted to the application of 18 O, 2 H, 3 H, 13 C, 14 C, 34 S, 15 N and boron isotopes integrated to some extend with the classical hydrological tools. These studies have broadly confirmed the use of isotope techniques on two main ways: a) to assist in the interpretation of groundwater flow systems; b) to act as tracers of the origin and pathways of ta range of groundwater pollutants. Several important aspects have become clear in the CRP: it is advisable not to rely on single isotopes, but to combine where possible the use of more than one, particularly oxygen with nitrogen and sulfur; it is essential to integrate isotope techniques with conventional hydrochemistry; trace elements have an important role to play in an integrated approach to the interpretation of contamination sources and pathways. This CRP should be regarded as a stepping stone, considering that the magnitude of the problem of groundwater pollution is enormous in global terms. In order to have an impact on the understanding of groundwater pollution, the need is seen for follow-up by several CRPs targeted at specific areas or problems. Of priorities are: a) urban waste, both human and industrial; b) the origin of saline groundwater; and c) nitrate in groundwater in both agricultural and urban areas

  1. Monosaccharide-responsive phenylboronate-polyol cell scaffolds for cell sheet and tissue engineering applications.

    Directory of Open Access Journals (Sweden)

    Rachamalla Maheedhar Reddy

    Full Text Available Analyte-responsive smart polymeric materials are of great interest and have been actively investigated in the field of regenerative medicine. Phenylboronate containing copolymers form gels with polyols under alkaline conditions. Monosaccharides, by virtue of their higher affinity towards boronate, can displace polyols and solubilize such gels. In the present study, we investigate the possibility of utilizing phenylboronate-polyol interactions at physiological pH in order to develop monosaccharide-responsive degradable scaffold materials for systems dealing with cells and tissues. Amine assisted phenylboronate-polyol interactions were employed to develop novel hydrogel and cryogel scaffolds at neutral pH. The scaffolds displayed monosaccharide inducible gel-sol phase transformability. In vitro cell culture studies demonstrated the ability of scaffolds to support cell adhesion, viability and proliferation. Fructose induced gel degradation is used to recover cells cultured on the hydrogels. The cryogels displayed open macroporous structure and superior mechanical properties. These novel phase transformable phenylboronate-polyol based scaffolds displayed a great potential for various cell sheet and tissue engineering applications. Their monosaccharide responsiveness at physiological pH is very useful and can be utilized in the fields of cell immobilization, spheroid culture, saccharide recognition and analyte-responsive drug delivery.

  2. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells


    Jung-Hwan Lee; Seog-Jin Seo


    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting atten...

  3. Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. (United States)

    Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo


    This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp(2)-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.

  4. Evaluation of Novel Semiconductor Materials Potentially Useful in Solar Cells: Cooperative Research and Development Final Report, CRADA number CRD-06-00172

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, J.


    Evaluation of novel semiconductor materials potentially useful in solar cells. NREL will fabricate, test and analyze solar cells from EpiWorks' wafers produced in 2-3 separate growth campaigns. NREL will also characterize material from 2-3 separate EpiWorks material development campaigns. Finally, NREL will visit EpiWorks and help establish any necessary process, such as spectral CV measurements and III-V on Si metalization processes and help validate solar cell designs and performance.

  5. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Ana Maria Díez-Pascual


    Full Text Available Graphene (G and its derivatives, graphene oxide (GO and reduced graphene oxide (rGO have enormous potential for energy applications owing to their 2D structure, large specific surface area, high electrical and thermal conductivity, optical transparency, and huge mechanical strength combined with inherent flexibility. The combination of G-based materials with polymers leads to new nanocomposites with enhanced structural and functional properties due to synergistic effects. This review briefly summarizes recent progress in the development of G/polymer nanocomposites for use in polymer solar cells (PSCs. These nanocomposites have been explored as transparent conducting electrodes (TCEs, active layers (ALs and interfacial layers (IFLs of PSCs. Photovoltaic parameters, such as the open-circuit voltage (Voc, short-circuit current density (Jsc, fill factor (FF and power-conversion efficiency (PCE are compared for different device structures. Finally, future perspectives are discussed.

  6. Optimization of processing and modeling issues for thin film solar cell devices: Final report, February 3, 1997--September 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E.


    This final report describes results achieved under a 20-month NREL subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE's long-range efficiency, reliability and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development and improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to device structure and module encapsulation.

  7. Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications

    International Nuclear Information System (INIS)

    Badami, M.; Mura, M.


    Highlights: ► A hydrogen recirculation blower for automotive fuel cells applications is studied. ► A 3D CFD analysis has been carried out to better understand the internal flows of the machine. ► The CFD results are compared to a 1D model set up by the authors in previous works. ► The main hypotheses put forward for the theoretical 1D model are compatible with the 3D analysis. - Abstract: A 3D Computational Fluid Dynamics (CFD) analysis has been carried out to better understand the internal fluid dynamics of a regenerative blower used for hydrogen recirculation in a Proton Exchange Membrane (PEM), Fuel Cell (FC) utilized for automotive applications. The obtained results are used to highlight the motion of the fluid in the vanes and in the side channel of the machine and to verify the main hypotheses put forward concerning the theoretical 1D model set up by the authors in previous works on the basis of the momentum exchange theory. Finally, the CFD analysis has been used to point out the effect of the slope of the vanes on the performance of the regenerative blower, and the results have been compared with those obtained using of the 1D model.

  8. Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications. (United States)

    Nalvuran, Hande; Elçin, Ayşe Eser; Elçin, Yaşar Murat


    Graphene and silk fibroin (SF) have been extensively investigated in the literature. Hybrid scaffolds of SF and graphene combine the properties of both of the materials and provide promising applications for tissue engineering purposes. In this study, reduced graphene oxide (RGO) (0.5%, 1.0% and 2.0% (w/v)) was incorporated into SF and fabricated into composite nanofibers through electrospinning. The fibers were characterized and analyzed by SEM, XRD, FTIR, TGA, circular dichroism analysis, contact angle measurements and tensile tests. Here, we document that the presence of RGO increases intermolecular forces between RGO and SF molecular chains in the SF matrix, which results in an increased silk II content. Upon the incorporation of RGO, thermal stability and mechanical properties of the fibers significantly improved. Furthermore, in-vitro findings showed that composite nanofibers supported cell viability and were hemocompatible. Finally, bone marrow mesenchymal stem cells were induced osteogenically on electrospun SF/RGO mats for 30days, which showed that the substrate supported osteogenic differentiation. In this study, a feasible method is proposed to generate biocompatible and versatile SF/RGO-composite nanofibers that can influence biomedical applications. Copyright © 2018. Published by Elsevier B.V.

  9. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. (United States)

    Mimeault, M; Hauke, R; Batra, S K


    Basic and clinical research accomplished during the last few years on embryonic, fetal, amniotic, umbilical cord blood, and adult stem cells has constituted a revolution in regenerative medicine and cancer therapies by providing the possibility of generating multiple therapeutically useful cell types. These new cells could be used for treating numerous genetic and degenerative disorders. Among them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson's and Alzheimer's diseases, arthritis, and muscular, skin, lung, eye, and digestive disorders as well as aggressive and recurrent cancers could be successfully treated by stem cell-based therapies. This review focuses on the recent advancements in adult stem cell biology in normal and pathological conditions. We describe how these results have improved our understanding on critical and unique functions of these rare sub-populations of multipotent and undifferentiated cells with an unlimited self-renewal capacity and high plasticity. Finally, we discuss some major advances to translate the experimental models on ex vivo and in vivo expanded and/or differentiated stem cells into clinical applications for the development of novel cellular therapies aimed at repairing genetically altered or damaged tissues/organs in humans. A particular emphasis is made on the therapeutic potential of different tissue-resident adult stem cell types and their in vivo modulation for treating and curing specific pathological disorders.

  10. Passivated silicon ribbon solar cells and modules. Final report; Passivierte Siliciumfolien-Solarzellen und -module (PFS). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, W.; Heit, W.; Lauinger, T.; Roth, P.; Schum, B.


    This project was organised into three main work packages. (a) The outcome of the characterisation of silicon materials and specially silicon ribbons was the elaboration of a specification for EFG (edge-defined film-fed growth) silicon wafers. Moreover, for final inspection of EFG solar cells, methods suitable for continuous operation were developed. RGS silicon ribbons were characterised together with institutes. (b) The solar cell development activities lead to the definition of a new simple process sequence and related continuous production techniques for the automated production of passivated silicon ribbon solar cells. Combined with the EFG wafer specification, the achieved results formed the base for the design of a new fully automated continuous pilot production line. The developed solar cell processing technologies were successfully approved in this line: Mean efficiencies of 14% for EFG silicon ribbon and 14.5 to 15% for cast multicrystalline silicon wafers were achieved. A main result of the module development was the elaboration of interconnection and encapsulation technologies suitable for EfG silicon ribbon solar cells. In addition, extensive studies of module failure mechanisms were successfully completed, thereby contributing to knowledge about module design for enhanced lifetime. (orig.) [German] In diesem Vorhaben wurden drei Schwerpunktthemen bearbeitet. (a) Die Materialcharakterisierung, insbesondere von Siliciumfolien, muendete in die Erstellung einer Spezifikation fuer EFG (edge-defined film-fed growth)-Siliciumfolien. Darueber hinaus wurden fuer die Endkontrolle von EFG-Siliciumfoliensolarzellen geeignete Durchlaufkonzepte und Pruefverfahren entwickelt. RGS-Folien wurden in Zusammenarbeit mit Instituten charakterisiert. (b) Die Solarzellenentwicklung fuehrte zu einer einfachen Prozessfolge und den zugehoerigen neuartigen Durchlaufverfahren fuer eine vollautomatische Herstellung von hocheffizienten passivierten Siliciumfoliensolarzellen

  11. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells (United States)

    Yu, Fei; Wang, Chengxian; Ma, Jie


    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  12. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Fei Yu


    Full Text Available Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC. In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy.

  13. High purity of human oligodendrocyte progenitor cells obtained from neural stem cells: suitable for clinical application. (United States)

    Wang, Caiying; Luan, Zuo; Yang, Yinxiang; Wang, Zhaoyan; Wang, Qian; Lu, Yabin; Du, Qingan


    Recent studies have suggested that the transplantation of oligodendrocyte progenitor cells (OPCs) may be a promising potential therapeutic strategy for a broad range of diseases affecting myelin, such as multiple sclerosis, periventricular leukomalacia, and spinal cord injury. Clinical interest arose from the potential of human stem cells to be directed to OPCs for the clinical application of treating these diseases since large quantities of high quality OPCs are needed. However, to date, there have been precious few studies about OPC induction from human neural stem cells (NSCs). Here we successfully directed human fetal NSCs into highly pure OPCs using a cocktail of basic fibroblast growth factor, platelet-derived growth factor, and neurotrophic factor-3. These cells had typical morphology of OPCs, and 80-90% of them expressed specific OPC markers such as A2B5, O4, Sox10 and PDGF-αR. When exposed to differentiation medium, 90% of the cells differentiated into oligodendrocytes. The OPCs could be amplified in our culture medium and passaged at least 10 times. Compared to a recent published method, this protocol had much higher stability and repeatability, and OPCs could be obtained from NSCs from passage 5 to 38. It also obtained more highly pure OPCs (80-90%) via simpler and more convenient manipulation. This study provided an easy and efficient method to obtain large quantities of high-quality human OPCs to meet clinical demand. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Light ions radiobiological effects on human tumoral cells: measurements modelling and application to hadron-therapy

    International Nuclear Information System (INIS)

    Jalade, P.


    In classical radiotherapy, the characteristics of photons interactions undergo limits for the treatment of radioresistant and not well located tumours. Pioneering treatments of patients at the Lawrence Laboratory at Berkeley has demonstrated two advantages of hadrons beams: the Relative Biologic Effect (the RBE) and the ballistic of the beams. Since 1994, the clinical centre at Chiba, has demonstrated successfully the applicability of the method. A physics group, managed by G. Kraft, at Darmstadt in Germany, has underlined the advantages of carbon beams. An European pool, called ENGIGHT (European Network for LIGHt ion Therapy) has been created in which the French ETOILE project appeared. The purpose of the thesis concerns measurements and models of 'in vitro' human cells survival. In the first part, the nowadays situation in particles interactions, tracks and cells structures and radiobiology is presented here. The second is devoted to the models based on the beam tracks and localization of the physical dose. Discussion of sensitivity to various parameters of the model has been realized with the help of numerical simulations. Finally the predictions of the improved model has been compared to experimental irradiations of human cells with argon and carbon beams of the GANIL machine. Conclusion of such study shows the performance and limits of a local model for predicting the radiobiological efficiency of light ions in hadron-therapy. (author)

  15. Robust Platinum-Based Electrocatalysts for Fuel Cell Applications (United States)

    Coleman, Eric James

    Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and

  16. Comparison of Hybrid Blends for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Maria C. Lechmann


    Full Text Available In blended hybrid systems distinct micro- or nanostructured materials can be formed by phase separation. Network structures of particles or rods in a polymer matrix can be developed via self-assembly. We use this blending approach to compare active materials for application in solar cell devices. Blends were fabricated from either poly(hexylthiophene P3HT or poly(triphenylamine PTPA mixed with nanocrystalline TiO2 rods. In this manner, we compare two different hole conducting polymers in their performance in photovoltaic devices, while experimental conditions are kept identical. We find that the choice of solvent and photovoltaic characterization conducted in inert atmosphere is of importance for blends prepared from P3HT/TiO2 blends, but not for PTPA/TiO2 blends. Even though prepared with the same TiO2 rods, solar cells prepared from PTPA blends showed an enhanced efficiency when measured under ambient conditions. Furthermore, the PTPA/TiO2 showed higher long-term stability.

  17. A conducting polymer/ferritin anode for biofuel cell applications

    International Nuclear Information System (INIS)

    Inamuddin; Shin, Kwang Min; Kim, Sun I.; So, Insuk; Kim, Seon Jeong


    An enzyme anode for use in biofuel cells (BFCs) was constructed using an electrically connected bilayer based on a glassy carbon (GC) electrode immobilized with the conducting polymer polypyrrole (Ppy) as electron transfer enhancer, and with horse spleen ferritin protein (Frt) as electron transfer mediator. The surface-coupled redox system of nicotinamide adenine dinucleotide (NADH) catalyzed with diaphorase (Di) was used for the regeneration of NAD + in the inner layer and the NAD + -dependent enzyme catalyst glucose dehydrogenase (GDH) in the outer layer. The outer layer of the GC-Ppy-Frt-Di-NADH-GDH electrode effectively catalyzes the oxidation of glucose biofuel continuously; using the NAD + generated at the inner layer of the Di-catalyzed NADH redox system mediated by Frt and Ppy provides electrical communication with enhancement in electron transport. The electrochemical characteristics of the electrodes were investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). This anode provides a current density of 1.2 mA cm -2 in a 45 mM glucose solution and offers a good possibility for application in biofuel cells.

  18. Osteochondral tissue engineering: scaffolds, stem cells and applications (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R


    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848


    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki


    Electrolytes. Ionically conducting solid electrolytes are successfully used for battery, fuel cell and sensor applications.

  20. Application of Graphene Based Nanotechnology in Stem Cells Research. (United States)

    Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian


    The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.

  1. New proton conducting membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, P.R.


    In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to ''grafting through'' method. In ''grafting through'' method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for Proton Exchange Membrane Fuel Cell applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25A C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly

  2. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, W.


    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  3. Regenerative Applications Using Tooth Derived Stem Cells in Other Than Tooth Regeneration: A Literature Review

    Directory of Open Access Journals (Sweden)

    Yun-Jong Park


    Full Text Available Tooth derived stem cells or dental stem cells are categorized according to the location from which they are isolated and represent a promising source of cells for regenerative medicine. Originally, as one kind of mesenchymal stem cells, they are considered an alternative of bone marrow stromal cells. They share many commonalties but maintain differences. Considering their original function in development and the homeostasis of tooth structures, many applications of these cells in dentistry have aimed at tooth structure regeneration; however, the application in other than tooth structures has been attempted extensively. The availability from discarded or removed teeth can be an innate benefit as a source of autologous cells. Their origin from the neural crest results in exploitation of neurological and numerous other applications. This review briefly highlights current and future perspectives of the regenerative applications of tooth derived stem cells in areas beyond tooth regeneration.

  4. Regenerative Applications Using Tooth Derived Stem Cells in Other Than Tooth Regeneration: A Literature Review. (United States)

    Park, Yun-Jong; Cha, Seunghee; Park, Young-Seok


    Tooth derived stem cells or dental stem cells are categorized according to the location from which they are isolated and represent a promising source of cells for regenerative medicine. Originally, as one kind of mesenchymal stem cells, they are considered an alternative of bone marrow stromal cells. They share many commonalties but maintain differences. Considering their original function in development and the homeostasis of tooth structures, many applications of these cells in dentistry have aimed at tooth structure regeneration; however, the application in other than tooth structures has been attempted extensively. The availability from discarded or removed teeth can be an innate benefit as a source of autologous cells. Their origin from the neural crest results in exploitation of neurological and numerous other applications. This review briefly highlights current and future perspectives of the regenerative applications of tooth derived stem cells in areas beyond tooth regeneration.

  5. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, David


    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  6. Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications, Phase I (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to produce a conductive polyethersulfone (PES) microporous membrane for fuel cell water management applications. This membrane will...

  7. Microfluidic platforms and fundamental electrocatalysis studies for fuel cell applications (United States)

    Cohen, Jamie Lee

    The fabrication and testing of a planar membraneless microchannel fuel cell, based on a silicon microchannel, is described in detail. Laminar flow of fuel and oxidant streams, one on top of the other, prevents fuel crossover while allowing ionic transport at the interface between the two solutions. By employing laminar flow, the useful functions of a membrane are retained, while bypassing its inherent limitations. The planar design maximizes the anode and cathode areas, and elimination of the membrane affords broad flexibility in the choice of fuel and oxidant. Fuels including formic acid, methanol, ethanol, sodium borohydride and hydrogen were tested along with oxidants such as oxygen, hydrogen peroxide and potassium permanganate. Steps taken to improve voltage, current density, and overall power output have been addressed, including the testing of a dual electrolyte system and the use of micro-patterned electrode surfaces to enhance fuel utilization. As the complexity of the fuels studied in the microchannel fuel cell increased, it was imperative to characterize these fuels using electrochemical techniques prior to utilization in the fuel cell. The oxidation pathway of the liquid fuel methanol was studied rigorously because of its importance for micro-fuel cell applications. Activation energies for methanol oxidation at a Ptpoly surface were determined using electrochemical techniques, providing a benchmark for the comparison of activation energies of other Pt-based electrocatalysts for methanol oxidation at a given potential. A protocol to obtain Ea values was established in three different electrolytes and experimental parameters that influence the magnitude of these values are discussed in detail. The oxidation pathways of sodium borohydride were also examined at Au, Pt, and Pd surfaces using cyclic voltammetry, chronoamperometry, and rotating disk electrode voltammetry. In addition to studies on bulk Ptpoly surfaces, new bulk intermetallic catalysts were

  8. High-Efficiency Thin-Film Cadmium Telluride Photovoltaic Cells; Final Subcontract Report, Final Technical Report, 21 January 1994-31 March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A. D.; Bohn, R. G.


    This report describes work performed during the past year by The University of Toledo photovoltaics group. Researchers continued to develop rf sputtering for CdS/CdTe thin-film solar cells and to optimize the post-deposition process steps to match the characteristics of the sputtering process. During the fourth phase of the present contract, we focused on determining factors that limit the efficiency in our ''all-sputtered'' thin-film CdTe solar cells on soda-lime glass. These issues include controlling CdS/CdTe interdiffusion, understanding the properties of the CdS{sub x}Te{sub 1-x} alloy, optimizing process conditions for CdCl{sub 2} treatments, manipulating the influence of ion bombardment during rf sputtering, and understanding the role of copper in quenching photoluminescence and carrier lifetimes in CdTe. To better understand the important CdS/CdTe interdiffusion process, we have continued our collaboration with the University at Buffalo and Brookhaven National Synchrotron Light Source in measurements using grazing-incidence X-rays. Interdiffusion results in the formation of the ternary alloy material CdS{sub x}Te{sub 1-x} at or near the heterojunction, where its properties are critical to the operation of the solar cell. We have placed significant effort on characterizing this alloy, an effort begun in the last phase. A complete set of films spanning the alloy range, prepared by pulsed-laser deposition, has now been characterized by wavelength dispersive X-ray spectroscopy and optical absorption at NREL; by Raman scattering, X-ray diffraction, and electrical measurements in our lab; and by spectroscopic ellipsometry at Brooklyn College. We continued to participate in cooperative activity with the CdTe National Team. We prepared a series of depositions on borosilicate glass substrates having doped SnO{sub 2} layers coated with TiO{sub 2} (prepared by the University of South Florida and Harvard) and similar substrates having a resistive Sn

  9. Microbial linguistics: perspectives and applications of microbial cell-to-cell communication. (United States)

    Mitchell, Robert J; Lee, Sung Kuk; Kim, Taesung; Ghim, Cheol-Min


    Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.

  10. Modelling hepatitis C virus kinetics: the relationship between the infected cell loss rate and the final slope of viral decay. (United States)

    Dahari, Harel; Shudo, Emi; Cotler, Scott J; Layden, Thomas J; Perelson, Alan S


    Patients infected with hepatitis C virus (HCV) who respond to treatment with interferon-alpha plus ribavirin exhibit biphasic or triphasic viral load decreases. While the rapid first phase is indicative of the effectiveness of therapy in blocking viral production (epsilon), the slope of the final phase (lambda), that is, the second phase in biphasic decreases and the third phase in triphasic decreases, depends on the infected cell loss rate (delta). In standard models, lambda is approximately epsilondelta when the viral clearance rate c>delta, as has been previously estimated. The relationship among epsilon, delta, lambda and the baseline fraction of HCV-infected hepatocytes (pi) was investigated in a model that included proliferation of hepatocytes. We found that lambda was not proportional to epsilon, but rather obeyed a complex relationship that could lead to dramatic increases in estimates of delta as epsilon increased. In particular, when epsilon99%, delta approximately lambda regardless of pi. Our results indicated that in patients undergoing therapy who achieved a 2 log(10) reduction in viral load (epsilon99% should allow for a more accurate estimate of delta in HCV RNA kinetic studies. This might be important when using viral kinetics to estimate the effect of the immune response on viral elimination and the attainment of sustained virological response.

  11. Application of low level laser on skin cell lines

    CSIR Research Space (South Africa)

    Ndhundhuma, IM


    Full Text Available Lasers have emerged as powerful tools for tissue engineering. To examine cellular growth, and cell to cell interactions, in vitro skin models have been developed combining two major cell types of skin, keratinocytes and fibroblasts. The main...

  12. An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. (United States)

    Gholizadeh-Ghaleh Aziz, Shiva; Fathi, Ezzatollah; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Fardyazar, Zahra; Pashaiasl, Maryam


    Recent studies have elucidated that cell-based therapies are promising for cancer treatments. The human amniotic fluid stem (AFS) cells are advantageous cells for such therapeutic schemes that can be innately changed to express therapeutic proteins. HAFSCs display a natural tropism to cancer cells in vivo. They can be useful in cancer cells targeting. Moreover, they are easily available from surplus diagnostic samples during pregnancy and less ethical and legal concern are associated with the collection and application than other putative cells are subjected. This review will designate representatives of amniotic fluid and stem cell derived from amniotic fluid. For this propose, we collect state of human AFS cells data applicable in cancer therapy by dividing this approach into two main classes (nonengineered and engineered based approaches). Our study shows the advantage of AFS cells over other putative cells types in terms differentiation ability to a wide range of cells by potential and effective use in preclinical studies for a variety of diseases. This study has shown the elasticity of human AFS cells and their favorable potential as a multipotent cell source for regenerative stem cell therapy and capable of giving rise to multiple lineages including such as osteoblasts and adipocyte.

  13. Application of Induced Pluripotent Stem Cells Reprogrammed from Dental Pulp Cells: a Novel Approach for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou


    Full Text Available Introduction: Candidate human dental stem/progenitor cells have been isolated and charac-terized from dental tissues and shown to hold the capability to differentiate into tooth-generating cells. However, ad-vances in engineering a whole tooth by these stem cells are hindered by various factors, such as the poor availability of human primitive tooth bud stem cells, difficulties in isolating and purifying dental mesenchymal stem cells and ethical controversies when using embryonic oral epithelium. As a result it is meaningful to find other autologous dental cells for the purpose of reconstructing a tooth.The hypothesis: Previous studies demonstrated that somatic cells can be reprogrammed into induced pluripotent stem cells by ex-ogenous expression Oct-4 and Sox-2. On the basis of these findings we can reasonably hypothesize that when transfected with specific transcription factors Oct-4 and Sox-2, dental pulp cells, the main cell in pulp, could also be reprogrammed into induced pluripotent stem cells, which are considered to be of best potential to regenerate a whole tooth. Evaluation of the hypothesis: After transfection with Oct-4 and Sox-2 into human dental pulp cells, the positive colonies are isolated and then identified according to the characteristics of iPS cells. These cells are further investigated the capability in differentiating into ameloblasts and odontoblasts and finally seeded onto the sur-face of a tooth-shaped biodegradable polymer scaffold to detect the ability of constructing a bioengineered tooth.

  14. High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Final Technical Report, 4 March 1998--15 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A. D.; Deng, X.; Bohn, R. G.


    This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Si materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.

  15. Gene editing for cell engineering: trends and applications. (United States)

    Gupta, Sanjeev K; Shukla, Pratyoosh


    Gene editing with all its own advantages in molecular biology applications has made easy manipulation of various production hosts with the discovery and implementation of modern gene editing tools such as Crispr (Clustered regularly interspaced short palindromic repeats), TALENs (Transcription activator-like effector nucleases) and ZFNs (Zinc finger nucleases). With the advent of these modern tools, it is now possible to manipulate the genome of industrial production hosts such as yeast and mammalian cells which allows developing a potential and cost effective recombinant therapeutic protein. These tools also allow single editing to multiple genes for knocking-in or knocking-out of a host genome quickly in an efficient manner. A recent study on "multiplexed" gene editing revolutionized the knock-out and knock-in events of yeast and CHO, mammalian cells genome for metabolic engineering as well as high, stable, and consistent expression of a transgene encoding complex therapeutic protein such as monoclonal antibody. The gene of interest can either be integrated or deleted at single or multiple loci depending on the strategy and production requirement. This review will give a gist of all the modern tools with a brief description and advances in genetic manipulation using three major tools being implemented for the modification of such hosts with the emphasis on the use of Crispr-Cas9 for the "multiplexing gene-editing approach" for genetic manipulation of yeast and CHO mammalian hosts that ultimately leads to a fast track product development with consistent, improved product yield, quality, and thus affordability for a population at large.

  16. Modifying ferritic stainless steels for solid oxide fuel cell applications (United States)

    Laney, Scot Jason


    One of the most important problem areas associated with the solid oxide fuel cells is selection of a cost effective material for use as the interconnect component of the cell. Metals are now being considered as materials for this component, with ferritic stainless steels being the leading candidate. This work evaluates methods to combat the problem areas, namely rapid growth rate and vaporization of the oxide scale, that hinder the use of these materials. Oxidation experiments have been performed in dry and wet single atmosphere exposures as well as a dual environment exposure to simulate the conditions in a working SOFC. Measurements of the electrical properties of the oxides that formed were also performed. Commercial alloys, E-Brite and Crofer 22APU, were tested to form a baseline and resultant oxidation and electrical behaviors match those found in the literature. Isothermal oxidation tests for short exposure times have also led to a possible mechanism for the formation of the MnCr2O4 layer on Crofer. All of these tests were then replicated on a series of experimental Fe-22Cr-XTi (X=0-4) alloys. These alloys are shown to form a rutile layer analogous to the MnCr2O4 layer on Crofer. While this layer does prevent some chromia vaporization, the consequences due to the presence of Ti in the chromia include increased growth rate, decreased resistivity, extensive internal oxidation and nitridation of Ti, and a change of the growth direction of the chromia. The alloys containing ˜2--3 wt%Ti appear to offer the best combination of oxidation, electrical, and mechanical properties. Coatings of lanthanum chromites and ferrites were also tested and shown to be very sensitive to exposure condition, resulting in the formation of pores, and to coating thickness, where thicker coatings are subject to cracking. Finally, reactive element oxide doping was attempted to slow the oxide growth rate for E-Brite (CeO2 doping) and for the Fe-Cr-Ti alloys (CeO 2 and La2O3 doping). A

  17. Development and evaluation of the process for final placement application: a review of the new student led allocation system


    Mason, Rachael; Brackenbury, Debra; Broady, Sophie


    Background A process to facilitate nursing students to have more ownership of their final placement was introduced for this academic year by inviting them to apply for a specific placement they felt most appropriate. Whilst there has been significant research into preparing students for practice (Woods et al, 2015) and to explore the transition from student to graduate nurse (Kumaran and Carney, 2014), there is little to explore the effect of gaining preference for their final placement or...

  18. Mesenchymal stem cells: biological characteristics and potential clinical applications

    DEFF Research Database (Denmark)

    Kassem, Moustapha


    Mesenchymal stem cells (MSC) are clonogenic, non-hematpoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages, for example, osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages, for example, neuronal...

  19. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Christopher T. Saeui


    Full Text Available Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  20. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. (United States)

    Choueiri, Toni K; Escudier, Bernard; Powles, Thomas; Tannir, Nizar M; Mainwaring, Paul N; Rini, Brian I; Hammers, Hans J; Donskov, Frede; Roth, Bruce J; Peltola, Katriina; Lee, Jae Lyun; Heng, Daniel Y C; Schmidinger, Manuela; Agarwal, Neeraj; Sternberg, Cora N; McDermott, David F; Aftab, Dana T; Hessel, Colin; Scheffold, Christian; Schwab, Gisela; Hutson, Thomas E; Pal, Sumanta; Motzer, Robert J


    Cabozantinib is an oral inhibitor of tyrosine kinases including MET, VEGFR, and AXL. The randomised phase 3 METEOR trial compared the efficacy and safety of cabozantinib versus the mTOR inhibitor everolimus in patients with advanced renal cell carcinoma who progressed after previous VEGFR tyrosine-kinase inhibitor treatment. Here, we report the final overall survival results from this study based on an unplanned second interim analysis. In this open-label, randomised phase 3 trial, we randomly assigned (1:1) patients aged 18 years and older with advanced or metastatic clear-cell renal cell carcinoma, measurable disease, and previous treatment with one or more VEGFR tyrosine-kinase inhibitors to receive 60 mg cabozantinib once a day or 10 mg everolimus once a day. Randomisation was done with an interactive voice and web response system. Stratification factors were Memorial Sloan Kettering Cancer Center risk group and the number of previous treatments with VEGFR tyrosine-kinase inhibitors. The primary endpoint was progression-free survival as assessed by an independent radiology review committee in the first 375 randomly assigned patients and has been previously reported. Secondary endpoints were overall survival and objective response in all randomly assigned patients assessed by intention-to-treat. Safety was assessed per protocol in all patients who received at least one dose of study drug. The study is closed for enrolment but treatment and follow-up of patients is ongoing for long-term safety evaluation. This trial is registered with, number NCT01865747. Between Aug 8, 2013, and Nov 24, 2014, 658 patients were randomly assigned to receive cabozantinib (n=330) or everolimus (n=328). The median duration of follow-up for overall survival and safety was 18·7 months (IQR 16·1-21·1) in the cabozantinib group and 18·8 months (16·0-21·2) in the everolimus group. Median overall survival was 21·4 months (95% CI 18·7-not estimable) with

  1. High efficiency isolated DC/DC converter inherently optimized for fuel cell applications

    DEFF Research Database (Denmark)

    Petersen, Lars Press; Jensen, Lasse Crone; Larsen, Martin Norgaard


    The isolated full-bridge boost converter has been suggested as the best choice for fuel cell applications. Comparisons have been carried out in the literature using both stress factors and experimental verified designs to determine the optimal converter. Never the less, this paper suggests...... a different topology not previous used for fuel cell applications with some clear advantages. Taking into account the I-V characteristics of the fuel cell only emphasized the performance of the proposed converter and reveals its self as an optimal candidate for the fuel cell application....

  2. Advantages and Applications of CAR-Expressing Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Wolfgang eGlienke


    Full Text Available In contrast to donor T cells, natural killer (NK cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD. In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/ on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy.

  3. Final Report; FINAL

    International Nuclear Information System (INIS)

    Freeling, Michael


    Well-studied maize gene Adh1 has been shown to carry tissue-specific, anaerobic induction-specific and pollen-specific information in the sequences near protein-coding sequences.- The grass ligule network of function proves to be one of the simplest systems of organogenesis known in plants, requiring two specific transcription factors. - Programmed cell death happens at the maize ligule, and kernels situated ''backwards'' in the ear occur due to timed identity transformations caused during a dosage-sensitive regulatory step

  4. Mesenchymal Stem Cells: Application for Immunomodulation and Tissue Repair

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid


    Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth and diffe......Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...

  5. Hybrid energy fuel cell based system for household applications in a Mediterranean climate

    International Nuclear Information System (INIS)

    Nižetić, S.; Tolj, I.; Papadopoulos, A.M.


    Highlights: • A hybrid energy system was proposed, combining a HT-PEM fuel cell system and a standard split heat pump system with heat recovery for household applications. • The hybrid energy system is able to produce both high and low temperature heat, electricity and cooling capacity. • The system showed high overall energy efficiency and a favorable environmental aspect. • The calculated cost of overall produced energy proved to be competitive in comparison with the average cost of electricity for households. - Abstract: In this paper, a specific hybrid energy system was proposed for household applications. The hybrid energy system was assembled from a HT-PEM fuel cell stack supplied by hydrogen via a steam reformer, where finally the majority of produced electricity is used to drive a modified split heat pump system with heat recovery (that is enabled via standard modified accumulation boilers). The system is able to produce both high and low temperature heat output (in the form of hot water), cooling thermal output and electricity. Performance analysis was conducted and the specific hybrid energy system showed high value for overall energy efficiency, for the specific case examined it reached 250%. Levelized Cost of Energy (LCOE) analysis was also carried out and the proposed hybrid energy system’s cost is expected to be between 0.09 €/kW h and 0.16 €/kW h, which is certainly competitive with the current retail electricity price for households on the EU market. Additionally, the system also has environmental benefits in relation to reduced CO 2 emissions, as estimated CO 2 emissions from the proposed hybrid energy system are expected to be at around 9.0 gCO 2 /kW h or 2.6 times less than the emissions released from the utilization of grid electricity.

  6. Broadband grating couplers for efficient thin film solar cells. Final report; Breitband-Gitterkoppler fuer effiziente Duennschichtsolarzellen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stutzmann, M.; Nebel, C.E.; Eisele, C.; Klein, S.; Carius, R.; Finger, F.; Schubert, M.


    tunable means of coupling sunlight into thin film solar cells. While the best results achieved so far do not give rise to a noticeable improvement compared to light trapping strategies based on statistical texture, the transferability of the process developed here to other solar cell structures is an important advantage. (ii) Thin microcrystalline SiGe-layers on glass produced by evaporation and laser crystallization exhibit promising electronic and optical properties with respect to applications as absorber layers in thin film solar cells. However, to this end, a further optimization of the crystallization process and the ensuing material properties will be necessary. (orig.) [German] Fuer Duennschicht-Solarzellen ist im Allgemeinen eine integrierte Lichtfallenstruktur notwendig, um eine moeglichst vollstaendige Absorption des Sonnenspektrums zu erzielen. Gegenwaertig werden hierfuer fast ausschliesslich statistisch texturierte transparente Elektrodenschichten (z.B. aus ZnO) eingesetzt. Ziel dieses Projektes war die Herstellung und Untersuchung mikrostrukturierter periodischer Gitterkoppler zur gezielten Einkopplung schwach absorbierten Lichtes. Zusaetzlich sollten erste Versuche zum Einsatz von kristallinen SiGe-Duennschicht-Filmen auf Glas als stark absorbierendes Halbleitermaterial fuer den Einsatz in Tandem-Solarzellen exploratorisch durchgefuehrt werden. Im Rahmen des Forschungsprojektes wurden strukturierte Elektroden aus TCO hergestellt, die hohe optische Transparenz bis ins UV aufweisen. Zur effizienten Lichteinkopplung wurden erfolgreich Beugungsgitter im Submikrometerbereich hergestellt, die als Lichtfallen wirken. In Zusammenarbeit mit dem Institut fuer Photovoltaik (IPV) wurden diese Lichtfallen in Solarzellen integriert. Die elektrischen und optischen Eigenschaften dieser Solarzellen mit Gitterkoppler-Strukturen wurden systematisch untersucht, insbesondere auch hinsichtlich einer durch die Strukturierung bewirkten internen Feldverstaerkung. Zusaetzlich

  7. Motor models and transient analysis for high-temperature, superconductor switch-based adjustable speed drive applications. Final report

    International Nuclear Information System (INIS)

    Bailey, J.M.


    New high-temperature superconductor (HTSC) technology may allow development of an energy-efficient power electronics switch for adjustable speed drive (ASD) applications involving variable-speed motors, superconducting magnetic energy storage systems, and other power conversion equipment. This project developed a motor simulation module for determining optimal applications of HTSC-based power switches in ASD systems

  8. Final report to NASA JSC : thermal abuse performance of MOLI, Panasonic and Sanyo 18650 Li-ion cells.

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Emanuel Peter


    Thermal property measurements of 18650 cells for the Space Shuttle Orbiter Advanced Hydraulic Power System (AHPS, formerly known as EAPU) have been performed. Cells were measured from three commercial manufacturers: E-One MOLI (12 cells), Panasonic (5 cells) and Sanyo (5 cells). Thermal property measurements of the MOLI 18650 cells included measurements of specific heat, self discharge (microcalorimetry), overcharge response and thermal runaway by accelerating rate calorimetry (ARC). The Panasonic and Sanyo cells were measured only for thermal runaway response in the ARC at increasing states of charge (3.8V, 4.0V, 4.2V, 4.3V).

  9. High-efficiency silicon solar cells for low-illumination applications


    Glunz, S.W.; Dicker, J.; Esterle, M.; Hermle, M.; Isenberg, J.; Kamerewerd, F.; Knobloch, J.; Kray, D.; Leimenstoll, A.; Lutz, F.; Oßwald, D.; Preu, R.; Rein, S.; Schäffer, E.; Schetter, C.


    At Fraunhofer ISE the fabrication of high-efficiency solar cells was extended from a laboratory scale to a small pilot-line production. Primarily, the fabricated cells are used in small high-efficiency modules integrated in prototypes of solar-powered portable electronic devices such as cellular phones, handheld computers etc. Compared to other applications of high-efficiency cells such as solar cars and planes, the illumination densities found in these mainly indoor applications are signific...

  10. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  11. Cell based therapeutic approach in vascular surgery: application and review

    Directory of Open Access Journals (Sweden)

    Rocca Aldo


    Full Text Available Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.

  12. The Application of Structured Job Analysis Information Based on the Position Analysis Questionnaire (PAQ). Final Report No. 9. (United States)

    McCormick, Ernest J.

    The Position Analysis Questionnaire (PAQ) is a job analysis instrument consisting of 187 job elements organized into six divisions. The PAQ was used in the eight studies summarized in this final report. The studies were: (1) ratings of the attribute requirements of PAQ job elements, (2) a series of principal components analyses of these attribute…

  13. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching (United States)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young


    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  14. Application of Fuel Cells to Marine Power Generation Systems


    Senichi, Sasaki


    Fuel cells are one of the future technologies for marine energy sources. A fuel cell combines hydrogen and oxygen to produce electricity, with water and heat as its by-product. Since the conversion of the fuel to energy takes place via an electrochemical process, the process is clean, quiet and highly efficient. This paper presents the types and characteristics of fuel cells, the status of marine use, and the outline of safety requirements which apply to fuel cell power generation systems.

  15. Cell bioprocessing in space - Applications of analytical cytology (United States)

    Todd, P.; Hymer, W. C.; Goolsby, C. L.; Hatfield, J. M.; Morrison, D. R.


    Cell bioprocessing experiments in space are reviewed and the development of on-board cell analytical cytology techniques that can serve such experiments is discussed. Methods and results of experiments involving the cultivation and separation of eukaryotic cells in space are presented. It is suggested that an advanced cytometer should be developed for the quantitative analysis of large numbers of specimens of suspended eukaryotic cells and bioparticles in experiments on the Space Station.

  16. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures. (United States)

    Huang, Zhuangrong; Lee, Dong-Yup; Yoon, Seongkyu


    Chinese hamster ovary (CHO) cells have been widely used for producing many recombinant therapeutic proteins. Constraint-based modeling, such as flux balance analysis (FBA) and metabolic flux analysis (MFA), has been developing rapidly for the quantification of intracellular metabolic flux distribution at a systematic level. Such methods would produce detailed maps of flows through metabolic networks, which contribute significantly to better understanding of metabolism in cells. Although these approaches have been extensively established in microbial systems, their application to mammalian cells is sparse. This review brings together the recent development of constraint-based models and their applications in CHO cells. The further development of constraint-based modeling approaches driven by multi-omics datasets is discussed, and a framework of potential modeling application in cell culture engineering is proposed. Improved cell culture system understanding will enable robust developments in cell line and bioprocess engineering thus accelerating consistent process quality control in biopharmaceutical manufacturing. © 2017 Wiley Periodicals, Inc.

  17. Dynamic Simulation of a Proton Exchange Membrane Fuel Cell System For Automotive Applications

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud


    A dynamic model of the PEMFC system is developed to investigate the behaviour and transient response of the fuel cell system for automotive applications. The system accounts for the fuel cell stack with coolant, humidifier, heat exchangers and pumps. Governing equations for fuel cell and humidifier...

  18. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W


    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  19. Anaerobic glycolysis as a property of malignant cells and its application aspects

    International Nuclear Information System (INIS)

    Shmakova, N.L.; Korogodin, V.I.


    Under hypoxia excess glucose causes fast death of malignant cells without affecting viability of benign tumor and normal tissue cells. Laws and mechanisms of this phenomenon are described. Relationship between glycolysis activation and malignant degeneration of normal cells, application of artificial hyperglycemia to cancer therapy are discussed. 21 refs., 5 figs., 2 tabs

  20. Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Harkness, Linda; Zaher, Walid


    Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells that reside in a perivascular niche in close association with pericytes and endothelial cells and possess self-renewal and multi-lineage differentiation capacity. The origin, unique properties, and therapeutic benefits of MSC ...

  1. Assessment of research needs for advanced heterogeneous catalysts for energy applications. Final report: Volume 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.


    This report assesses the direction, technical content, and priority of research needs judged to provide the best chance of yielding new and improved heterogeneous catalysts for energy-related applications over a period of 5--20 years. It addresses issues of energy conservation, alternate fuels and feedstocks, and the economics and applications that could alleviate pollution from energy processes. Recommended goals are defined in 3 major, closely linked research thrusts: catalytic science, environmental protection by catalysis, and industrial catalytic applications. This volume provides a comprehensive executive summary, including research recommendations.

  2. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  3. Site Evaluation for Application of Fuel Cell Technology, Naval Hospital - Marine Corps Air Ground Combat Center Twentynine Palms, CA

    National Research Council Canada - National Science Library

    Binder, Michael


    ...). CERL has selected and evaluated application sites, supervised the design and installation of fuel cells, actively monitored the operation and maintenance of fuel cells, and compiled "lessons learned...

  4. Some applications of nanotechnologies in stem cells research

    Energy Technology Data Exchange (ETDEWEB)

    Belicchi, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Cancedda, R. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Cedola, A. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Fiori, F. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Gavina, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Giuliani, A. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); CNISM - Matec (Ancona) (Italy); Komlev, V.S. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); Institute for Physical Chemistry of Ceramics, Russian Academy of Sciences, Ozernaya 48, 119361 Moscow (Russian Federation); Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Mastrogiacomo, M. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Renghini, C. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Rustichelli, F., E-mail: f.rustichelli@univpm.i [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy)


    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  5. Some applications of nanotechnologies in stem cells research

    International Nuclear Information System (INIS)

    Belicchi, M.; Cancedda, R.; Cedola, A.; Fiori, F.; Gavina, M.; Giuliani, A.; Komlev, V.S.; Lagomarsino, S.; Mastrogiacomo, M.; Renghini, C.; Rustichelli, F.


    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  6. Integrated Incident Management System (IIMS) web client application development, deployment and evaluation Staten Island (SI) demonstration project : final report. (United States)


    This evaluation report provides background on the development and findings. The aim of the UTRC project was to develop and : deploy Portable IIMS based on Smartphone web applications. Previously, traditional IIMS was deployed in the field vehicles : ...

  7. Application prospective of nanoprobes with MRI and FI dual-modality imaging on breast cancer stem cells in tumor. (United States)

    Chen, Hetao; Wang, Yu; Wang, Tong; Shi, Dongxing; Sun, Zengrong; Xia, Chunhui; Wang, Baiqi


    Breast cancer (BC) is a serious disease to threat lives of women. Numerous studies have proved that BC originates from cancer stem cells (CSCs). But at present, no one approach can quickly and simply identify breast cancer stem cells (BCSCs) in solid tumor. Nanotechnology is probably able to realize this goal. But in study process, scientists find it seems that nanomaterials with one modality, such as magnetic resonance imaging (MRI) or fluorescence imaging (FI), have their own advantages and drawbacks. They cannot meet practical requirements in clinic. The nanoprobe combined MRI with FI modality is a promising tool to accurately detect desired cells with low amount in tissue. In this work, we briefly describe the MRI and FI development history, analyze advantages and disadvantages of nanomaterials with single modality in cancer cell detection. Then the application development of nanomaterials with dual-modality in cancer field is discussed. Finally, the obstacles and prospective of dual-modal nanoparticles in detection field of BCSCs are also pointed out in order to speed up clinical applications of nanoprobes.

  8. Preparation, characterization and single cell testing of new ionic conducting polymers for fuel cell applications (United States)

    Escribano, P. G.; del Río y, C.; Acosta, J. L.

    In this work, heterogeneous sulfonation and both, structural and electrical characterization of a mixture composed on block copolymer ionomers (HSBS and EPDM) and commercial silica, are studied. The incorporation of sulfonic groups was checked by infrared spectroscopy (FTIR-ATR). Microstructure was studied by means of dynamic mechanical analysis (DMA). Also, water uptake and methanol crossover were determined, and the results were compared with those of Nafion ® 117. Electrical behavior was recorded by means of electrochemical impedance spectroscopy (EIS) at different hydration times. Results show that sulfonation of the styrene rings has effectively occurred. Conductivity values are similar to Nafion and they improve with hydration time. Methanol crossover is lower than in Nafion. Finally, a single complete proton exchange membrane fuel cell (PEMFC) as a whole was tested obtaining the polarization and power curves at different temperatures and pressures, and modeling it by an electrical equivalent circuit (EC) in the symmetrical mode (SM) configuration using the EIS technique. This study offers a physical interpretation relating physical parameters to several processes occurring in the system. Power density values are higher than in Nafion.

  9. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    CERN Document Server


    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical a...

  10. The Analysis of Fixed Final State Optimal Control in Bilinear System Applied to Bone Marrow by Cell-Cycle Specific (CCS) Chemotherapy (United States)

    Rainarli, E.; E Dewi, K.


    The research conducted by Fister & Panetta shown an optimal control model of bone marrow cells against Cell Cycle Specific chemotherapy drugs. The model used was a bilinear system model. Fister & Panetta research has proved existence, uniqueness, and characteristics of optimal control (the chemotherapy effect). However, by using this model, the amount of bone marrow at the final time could achieve less than 50 percent from the amount of bone marrow before given treatment. This could harm patients because the lack of bone marrow cells made the number of leukocytes declining and patients will experience leukemia. This research would examine the optimal control of a bilinear system that applied to fixed final state. It will be used to determine the length of optimal time in administering chemotherapy and kept bone marrow cells on the allowed level at the same time. Before simulation conducted, this paper shows that the system could be controlled by using a theory of Lie Algebra. Afterward, it shows the characteristics of optimal control. Based on the simulation, it indicates that strong chemotherapy drug given in a short time frame is the most optimal condition to keep bone marrow cells spine on the allowed level but still could put playing an effective treatment. It gives preference of the weight of treatment for keeping bone marrow cells. The result of chemotherapy’s effect (u) is not able to reach the maximum value. On the other words, it needs to make adjustments of medicine’s dosage to satisfy the final treatment condition e.g. the number of bone marrow cells should be at the allowed level.

  11. Application of laser tweezers Raman spectroscopy techniques to the monitoring of single cell response to stimuli (United States)

    Chan, James W.; Liu, Rui; Matthews, Dennis L.


    Laser tweezers Raman spectroscopy (LTRS) combines optical trapping with micro-Raman spectroscopy to enable label-free biochemical analysis of individual cells and small biological particles in suspension. The integration of the two technologies greatly simplifies the sample preparation and handling of suspension cells for spectroscopic analysis in physiologically meaningful conditions. In our group, LTRS has been used to study the effects of external perturbations, both chemical and mechanical, on the biochemistry of the cell. Single cell dynamics can be studied by performing longitudinal studies to continuously monitor the response of the cell as it interacts with its environment. The ability to carry out these measurements in-vitro makes LTRS an attractive tool for many biomedical applications. Here, we discuss the use of LTRS to study the response of cancer cells to chemotherapeutics and bacteria cells to antibiotics and show that the life cycle and apoptosis of the cells can be detected. These results show the promise of LTRS for drug discovery/screening, antibiotic susceptibility testing, and chemotherapy response monitoring applications. In separate experiments, we study the response of red blood cells to the mechanical forces imposed on the cell by the optical tweezers. A laser power dependent deoxygenation of the red blood cell in the single beam trap is reported. Normal, sickle cell, and fetal red blood cells have a different behavior that enables the discrimination of the cell types based on this mechanochemical response. These results show the potential utility of LTRS for diagnosing and studying red blood cell diseases.

  12. Dental pulp stem cells: function, isolation and applications in regenerative medicine. (United States)

    Tatullo, Marco; Marrelli, Massimo; Shakesheff, Kevin M; White, Lisa J


    Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine. © 2014 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.

  13. The novel tool of cell reprogramming for applications in molecular medicine. (United States)

    Mall, Moritz; Wernig, Marius


    Recent discoveries in the field of stem cell biology have enabled scientists to "reprogram" cells from one type to another. For example, it is now possible to place adult skin or blood cells in a dish and convert them into neurons, liver, or heart cells. It is also possible to literally "rejuvenate" adult cells by reprogramming them into embryonic-like stem cells, which in turn can be differentiated into every tissue and cell type of the human body. Our ability to reprogram cell types has four main implications for medicine: (1) scientists can now take skin or blood cells from patients and convert them to other cells to study disease processes. This disease modeling approach has the advantage over animal models because it is directly based on human patient cells. (2) Reprogramming could also be used as a "clinical trial in a dish" to evaluate the general efficacy and safety of newly developed drugs on human patient cells before they would be tested in animal models or people. (3) In addition, many drugs have deleterious side effects like heart arrhythmias in only a small and unpredictable subpopulation of patients. Reprogramming could facilitate precision medicine by testing the safety of already approved drugs first on reprogrammed patient cells in a personalized manner prior to administration. For example, drugs known to sometimes cause arrhythmias could be first tested on reprogrammed heart cells from individual patients. (4) Finally, reprogramming allows the generation of new tissues that could be grafted therapeutically to regenerate lost or damaged cells.

  14. Stem cells differentiation and probing their therapeutic applications in hematological disorders: a critical review. (United States)

    Ali, F; Taresh, S; Al-Nuzaily, M; Mok, P L; Ismail, A; Ahmad, S


    Numerous lines of evidence support that bone marrow is a rich source of stem cells that can be used for research purposes and to treat some complex blood diseases and cancers. Stem cells are a potential source for regenerative medicine and tissue replacement after injury or disease, and mother cells that possess the capacity to become any type of cell in the body. They are cells without specific structure and characterized by their ability to self-renew or multiply while maintaining the potential to develop into other types of cells. Stem cells can normally become cells of the blood, heart, bones, skin, muscles or brain. Although, there are different sources of stem cells, all types of stem cells have the same capacity to develop into multiple types of cells. Stem cells are generally described as unspecialized cells with unlimited proliferation capacity that can divide (through mitosis) to produce more stem cells. Several types of adult stem cells have been characterized and can be cultured in vitro, including neural stem cells, hematopoietic stem cells, mesenchymal stem cells, cardiac stem cells and epithelial stem cells. They are valuable as research tools and might, in the future, be used to treat a wide range of diseases such as hematological hereditary diseases, Parkinson's disease, diabetes mellitus, heart disease and many other diseases. Currently, two types of stem cells have been identified based on their origins, namely embryonic stem cells and adult stem cells. Collectively, although many kinds of literature have been studying stem cell application in terms of clinical practice, stem cell-based therapy is still in its infancy stage.

  15. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    of the microfluidic perfusion cell culture system is shown by investigation of adipose-derived stem cell (ASC) differentiation into adipocytes, where we have revealed that paracrine/autocrine signaling is involved in differentiation of a population of ASCs into adipocytes. We have thereby demonstrated......Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs...

  16. Biological roles and potential applications of immune cell-derived extracellular vesicles


    Wen, Chuan; Seeger, Robert C.; Fabbri, Muller; Wang, Larry; Wayne, Alan S.; Jong, Ambrose Y.


    ABSTRACT Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids) for intercellular communication in multicellular organisms. EVs are secreted by all cell types including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs have become the focus of great interest for various nano-biomedical applications, ranging from th...

  17. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products


    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  18. Carbon nanotubes based nafion composite membranes for fuel cell applications

    CSIR Research Space (South Africa)

    Cele, NP


    Full Text Available composite membranes. Keywords: Carbon Nanotubes, Conductivity, Fuel Cell, Nafion, Nanocomposite Membranes, Thermal Properties, Water Uptake FUEL CELLS 00, 0000, No. 0, 1–8 ? 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 ORIGINA L RESEAR CH PAPE... used strategies to overcome these drawbacks is the modification of Nafion by using polymer nanocomposite (PNC) technology. PNCs have recently shown a worldwide growth effort especially in the fabrication of high temperature PEM for fuel cells [18...

  19. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee


    Full Text Available The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs- based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.

  20. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells. (United States)

    Lee, Jung-Hwan; Seo, Seog-Jin


    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.

  1. Patterning of Cells on Bioresist for Tissue Engineering Applications

    National Research Council Canada - National Science Library

    Umar, Yusif; Thiyagarajan, Muthiah; Halberstadt, Craig; Gonsalves, Kenneth E


    .... The field of tissue engineering hinges on developing degradable polymeric scaffolds that promote cell proliferation and expression of desired physiological behaviors through careful control of the polymer surface...

  2. Applicability of federal and state environmental requirements to selected DOE field installations and recommendations for development of generic compliance guidance. Final report

    International Nuclear Information System (INIS)


    This final report identifies and describes federal and state environmental requirements applicable to selected Department of Energy (DOE) nuclear field installations, establishes priorities for the requirements, determines the need for development of additional compliance guidance, and recommends development of compliance guidance for specific priority requirements. Compliance guidance developed as part of the study is summarized. The applicability of environmental requirements to 12 DOE field installations was reviewed. Five installations were examined under Task 4. They are: Nevada Test Site; Lawrence Berkeley Laboratory; Paducah Gaseous Diffusion Plant; Oak Ridge Y-12 Plant; and Los Alamos Scientific Laboratory. Seven other installations were reviewed under Task 2 and included: Idaho National Engineering Laboratory; Hanford; Savannah River Plant; Oak Ridge Gaseous Diffusion Plant; Pantex Plant; Rocky Flats Plant; and Lawrence Livermore Laboratory. This report combines results of the two tasks. The objective of the study was to identify the set of environmental requirements which are applicable to DOE field installations, track changes in the requirements, and prepare compliance guidance for important requirements and important regulatory developments as necessary. A cumulative calendar update for July 1982 represents the current status of applicable requirements. Environmental profiles of each facility, along with ambient monitoring results, are presented. Applicable federal requirements are identified. The specific applicability of federal and state requirements is detailed for each installation. Compliance guidance available from various agencies is described. Each requirement described is ranked by priority, and recommendations are made for development of additional guidance

  3. Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. (United States)

    Liu, Junjun; Yu, Fang; Sun, Yao; Jiang, Beizhan; Zhang, Wenjun; Yang, Jianhua; Xu, Guo-Tong; Liang, Aibin; Liu, Shangfeng


    Recently, numerous types of human dental tissue-derived mesenchymal stem cells (MSCs) have been isolated and characterized, including dental pulp stem cells, stem cells from exfoliated deciduous teeth, periodontal ligament stem cells, dental follicle progenitor cells, alveolar bone-derived MSCs, stem cells from apical papilla, tooth germ progenitor cells, and gingival MSCs. All these MSC-like cells exhibit self-renewal, multilineage differentiation potential, and immunomodulatory properties. Several studies have demonstrated the potential advantages of dental stem cell-based approaches for regenerative treatments and immunotherapies. This review outlines the properties of various dental MSC-like populations and the progress toward their use in regenerative therapy. Several dental stem cell banks worldwide are also introduced, with a view toward future clinical application. © 2014 AlphaMed Press.

  4. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime


    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  5. Low temperature geothermal energy applications in the Albuquerque area. Final report, July 1, 1978-August 18, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, D.; Houghton, A.V.


    A study was made of the engineering and economic feasibility of hot water geothermal energy applications in the Albuquerque area. A generalized system design was developed and used as the basis for a series of economic case studies. Reservoir and user siting considerations were studied in light of the economic findings. Several specific potential applications were identified, including university campuses, industrial and commercial facilities, and residential buildings. Specific key technical problems relating to Albuquerque area applications were studied. These included environmental impacts, corrosion, scaling, heat losses in wells and transmission lines, heat exchangers, control systems, and system utilization and reliability. It is concluded that geothermal energy could be competitive with other energy sources for space heating and limited industrial use for moderate to large (10 million Btu/hr or more) energy using systems.

  6. Basic Science and Clinical Application of Stem Cells in Veterinary Medicine (United States)

    Ribitsch, I.; Burk, J.; Delling, U.; Geißler, C.; Gittel, C.; Jülke, H.; Brehm, W.

    Stem cells play an important role in veterinary medicine in different ways. Currently several stem cell therapies for animal patients are being developed and some, like the treatment of equine tendinopathies with mesenchymal stem cells (MSCs), have already successfully entered the market. Moreover, animal models are widely used to study the properties and potential of stem cells for possible future applications in human medicine. Therefore, in the young and emerging field of stem cell research, human and veterinary medicine are intrinsically tied to one another. Many of the pioneering innovations in the field of stem cell research are achieved by cooperating teams of human and veterinary medical scientists.

  7. Multilevel SOT-MRAM Cell with a Novel Sensing Scheme for High-Density Memory Applications

    DEFF Research Database (Denmark)

    Zeinali, Behzad; Esmaeili, Mahsa; Madsen, Jens Kargaard


    in high-density memory application. To deal with this obstacle, we propose a multilevel cell which stores two bits per memory cell. In addition, we propose a novel sensing scheme to read out the stored data in the multilevel SOT-MRAM cell. Our simulation results show that the proposed cell can achieve 3X......This paper presents a multilevel spin-orbit torque magnetic random access memory (SOT-MRAM). The conventional SOT-MRAMs enables a reliable and energy efficient write operation. However, these cells require two access transistors per cell, hence the efficiency of the SOTMRAMs can be questioned...

  8. Micro-fuel cells-Current development and applications (United States)

    Kundu, Arunabha; Jang, J. H.; Gil, J. H.; Jung, C. R.; Lee, H. R.; Kim, S.-H.; Ku, B.; Oh, Y. S.

    The importance of micro-fuel cell has been increased with the demand for uninterrupted power source in today's power hungry portable electronics. Currently, there is aggressive research going on to commercialize the micro-fuel cell by many laboratories and companies. The three different fuels feeding systems, i.e. pure hydrogen, pure hydrocarbons (alcohol, i.e. methanol and ethanol; formic acid and ethylene glycol) and on-board hydrogen from reformed hydrocarbons like methanol or other compound like water can be used for operating the micro-fuel cells. The current status on the research and development of micro-fuel cell with all the above three types of fuels have been discussed. The different substrate materials used in micro-fuel cells for the suitability of the portable electronics have also been stated. The design aspects of micro-fuel cells and micro-reformers are discussed here. The current state of commercialization of micro-fuel cells for portable electronics has been reviewed based on the open literature. The hurdles to overcome in order to commercialize in full phase have been reported, whenever possible. Some very new technologies which can make the micro-fuel cell into a very promising system with a simple operation have also been focused.

  9. A review of fuel cell systems for maritime applications

    NARCIS (Netherlands)

    van Biert, L; Godjevac, M.; Visser, K.; Purushothaman Vellayani, A.


    Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution, since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell

  10. High specific energy Lithium Sulfur cell for space application

    Directory of Open Access Journals (Sweden)

    Samaniego Bruno


    Airbus DS has been testing and characterizing prototype Li-S cells manufactured by OXIS Energy Ltd. since 2014, demonstrating the potential and fast evolution of the cells performance. This paper presents the last test results on a set of different batches provided by OXIS and performed at Airbus DS premises in the frame of an ESA Innovation Triangle Initiative (ITI.

  11. Translational applications of adult stem cell-derived organoids

    NARCIS (Netherlands)

    Drost, Jarno; Clevers, Hans


    Adult stem cells from a variety of organs can be expanded long-term in vitro as three-dimensional organotypic structures termed organoids. These adult stem cell-derived organoids retain their organ identity and remain genetically stable over long periods of time. The ability to grow organoids from

  12. Culturing intestinal stem cells: applications for colorectal cancer research

    Directory of Open Access Journals (Sweden)

    Masayuki eFujii


    Full Text Available Recent advance of sequencing technology has revealed genetic alterations in colorectal cancer. The biological function of recurrently mutated genes has been intensively investigated through mouse genetic models and colorectal cancer cell lines. Although these experimental models may not fully reflect biological traits of human intestinal epithelium, they provided insights into the understanding of intestinal stem cell self-renewal, leading to the development of novel human intestinal organoid culture system. Intestinal organoid culture enabled to expand normal or tumor epithelial cells in vitro retaining their stem cell self-renewal and multiple differentiation. Gene manipulation of these cultured cells may provide an attractive tool for investigating genetic events involved in colorectal carcinogenesis.

  13. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells. (United States)

    Klar, Agnes S; Zimoch, Jakub; Biedermann, Thomas


    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  14. Phagocytotic labelling of migratory blood cells and it clinical applications

    International Nuclear Information System (INIS)

    Oberhausen, E.; Schroth, H.J.


    A method for the labelling of monocytes and granulocytes with 99m-Tc-Sn-colloid in whole blood is described. The basis of the method is the phagocytosis of the Sn-colloid by the monocytes and granulocytes. There is the disadvantage that more than half of the activity is accumulated in the liver and spleen after the reinjection of labelled cells. Experiments in rats have revealed that about 90% of the administered cell bound activity were removed from the circulation and were taken up in the liver and spleen. By venipuncture of such a rat it was possible to remove circulating labelled cells of which, on reinjection into a second rat, about one half remiained in the circulation. This evidence indicated that phagocytotic tagging of white blood cells with 99m-Tc-Sn-colloid yielded viable, labelled cells. (Auth.)

  15. 50 kWp Photovoltaic Concentrator Application Experiment, Phase I. Final report, 1 June 1978-28 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    Maget, H.J.R.


    This program consists of a design study and component development for an experimental 50-kWp photovoltaic concentrator system to supply power to the San Ramon substation of the Pacific Gas and Electric Company. The photovoltaic system is optimized to produce peaking power to relieve the air conditioning load on the PG and E system during summer afternoons; and would therefore displace oil-fired power generation capacity. No electrical storage is required. The experiment would use GaAs concentrator cells with point-focus fresnel lenses operating at 400X, in independent tracking arrays of 440 cells each, generating 3.8 kWp. Fourteen arrays, each 9 feet by 33 feet, are connected electrically in series to generate the 50 kWp. The high conversion efficiency possible with GaAs concentrator cells results in a projected annual average system efficiency (AC electric power output to sunlight input) of better than 15%. The capability of GaAs cells for high temperature operation made possible the design of a total energy option, whereby thermal power from selected arrays could be used to heat and cool the control center for the installation. System design and analysis, fabrication and installation, environmental assessment, and cost projections are described in detail. (WHK)

  16. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi


    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  17. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001; FINAL

    International Nuclear Information System (INIS)

    Carpita, Nicholas C.


    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis

  18. Assessment of research needs for advanced heterogeneous catalysts for energy applications. Final report: Volume 2, Topic reports

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.


    This report assesses the direction, technical content, and priority of research needs judged to provide the best chance of yielding new and improved heterogeneous catalysts for energy-related applications over the period of 5-20 years. It addresses issues of energy conservation, alternate fuels and feedstocks, and the economics and applications that could alleviate pollution from energy processes. Recommended goals are defined in 3 research thrusts: catalytic science, environmental protection by catalysis, and industrial catalytic applications. This study was conducted by an 11-member panel of experts from industry and academia, including one each from Japan and Europe. This volume first presents an in-depth overview of the role of catalysis in future energy technology in chapter 1; then current catalytic research is critically reviewed and research recommended in 8 topic chapters: catalyst preparation (design and synthesis), catalyst characterization (structure/function), catalyst performance testing, reaction kinetics/reactor design, catalysis for industrial chemicals, catalysis for electrical applications (clean fuels, pollution remediation), catalysis for control of exhaust emissions, and catalysts for liquid transportation fuels from petroleum, coal, residual oil, and biomass.

  19. Final Environmental Impact Statement. Permit Application by United States Steel Corp., Proposed Lake Front Steel Mill, Conneaut, OH. Volume 4 (United States)


    scale drink and the air we breathe and depend upon- for agricultura industry mre than anything reflects the time schedule set by the applicant.,os...seed. There Is eat suff iciest data available. vast will the effects of the Organica be en the Commaalth? .believe thin should be Included Is the US

  20. Final report on LDRD project: Semiconductor surface-emitting microcavity laser spectroscopy for analysis of biological cells and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; McDonald, A.E. [Sandia National Labs., Albuquerque, NM (United States). Nanostructure and Semiconductor Physics Dept.; Gourley, M.F. [Washington Hospital Center, DC (United States); Bellum, J. [Coherent Technologies, Boulder, CO (United States)


    This article discusses a new intracavity laser technique that uses living or fixed cells as an integral part of the laser. The cells are placed on a GaAs based semiconductor wafer comprising one half of a vertical cavity surface-emitting laser. After placement, the cells are covered with a dielectric mirror to close the laser cavity. When photo-pumped with an external laser, this hybrid laser emits coherent light images and spectra that depend sensitively on the cell size, shape, and dielectric properties. The light spectra can be used to identify different cell types and distinguish normal and abnormal cells. The laser can be used to study single cells in real time as a cell-biology lab-on-a-chip, or to study large populations of cells by scanning the pump laser at high speed. The laser is well-suited to be integrated with other micro-optical or micro-fluidic components to lead to micro-optical-mechanical systems for analysis of fluids, particulates, and biological cells.

  1. In situ applications of X ray fluorescence techniques. Final report of a coordinated research project 2000-2003

    International Nuclear Information System (INIS)


    In 2000 the IAEA initiated a Coordinated Research Project (CRP) on In Situ Applications of XRF Techniques as one of the elements of the project on Nuclear Instruments for Specific Applications, the major objective of which is to assist Member States in the development of nuclear instruments and software for special applications such as the characterization of materials. An overall objective of the CRP was to assist laboratories in Member States in such areas as environmental pollution monitoring, mineral exploration, the preservation of cultural heritage, the control of industrial processes and the optimization of analytical methodologies for these applications using field-portable X ray fluorescence (FPXRF). Although a significant amount of work has been undertaken in the development of FPXRF techniques, there is little consensus on the best approach for any particular application. The most important aspect before FPXRF techniques can be applied successfully is, therefore, the development of a clear FPXRF methodology. Because of the wide range of problems to which FPXRF can be applied, these procedures must be comprehensive and cover many applications involving the analysis of samples such as rocks, soils, air particulates or liquid samples. The specific research objectives of the CRP included the development and optimization of sampling methodologies for in situ XRF measurements, the improvement in the analytical performance of FPXRF based on the study of mineralogical effects, surface irregularity effects, heterogeneity and the influence of moisture content, the development and validation of quantitative and/or semi-quantitative procedures to be applied for in situ XRF analysis and development of complete operating procedures for selected in situ applications, including relevant quality assurance. The CRP covered a period of four years (2000?2003). Twelve laboratories from both developed and developing Member States and the IAEA?s Laboratories participated

  2. Enzyme electrode configurations : for application in biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoju


    ; their effects on the electrode performance were then investigated. It is proposed that the {eta}-{eta} interaction between the PSS{sup -} and the hydrophobic substrate-binding pocket in the vicinity of the T1 Cu site results in a favorable location of the conducting polymer chain of PEDOT-PSS close to the T1 Cu site and thus facilitates the DET of ThL within this particular architecture. The flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) and cellobiose dehydrogense from Corynascus thermophuilus (CtCDH) have been studied to construct different enzyme electrode configurations as bioanodes towards biofuel cell applications. For GcGDH, six Os-containing polymers, whose redox potentials range across a broad potential window between +15 and +489 mV vs. NHE, were used to 'wire' the GcGDH on the graphite electrodes to catalyze the oxidation of glucose. The ratio of GcGDH:Os-polymer in the overall loading onto the electrode surface significantly affected the catalytic performance of the enzyme electrode on the glucose oxidation. Both the Os-polymer and the GcGDH:Os-polymer ratio were optimized for obtaining the maximum current density; a high current density of 493 {mu}A/cm{sup 2} for 30 mM glucose was produced by a GcGDH/Os c modified electrode. DET type biocatalysis of CtCDH on lactose (and glucose) oxidation was accomplished on Au nanoparticle (AuNP) structured electrode. The haem site in the CtCDH enzyme functions as a 'built-in' mediator for communicating the electron transfer between the FAD site and the AuNP surface. The redox potential of the haem site in CtCDH was determined to be E{sub 1/2} = -122 mV vs. Ag/AgCl/KCl(s) (75 mV vs. NHE). The CtCDH/AuNP/Au bioanode can generate a maximum current response for lactose with I{sub max} = 43.3{+-}1.5 ({mu}A/cm{sup 2}) or for glucose with I{sub max} = 31.2{+-}2.3 ({mu}A/cm{sup 2}). The DET type biocatalysis of CtCDH works most efficiently in a more neutral

  3. Synthesis and cell imaging applications of fluorescent mono/di/tri-heterocyclyl-2,6-dicyanoanilines. (United States)

    Pisal, Mahesh M; Annadate, Ritesh A; Athalye, Meghana C; Kumar, Deepak; Chavan, Subhash P; Sarkar, Dhiman; Borate, Hanumant B


    Synthesis of 3,4,5-triheterocyclyl-2,6-dicyanoanilines, starting from heterocyclic aldehydes and 1,2-diheterocycle-substituted ethanones, is described. 2,6-Dicyanoanilines with one or two heterocyclic substituents have also been synthesized. It was found that some of these molecules have selective cell-staining properties useful for cell imaging applications. The compounds 1g, 10f and 11 were found to stain cytoplasm of the cells in contact but not the nucleus while the compound 12 showed affinity to apoptotic cells resulting in blue fluorescence. The cell imaging results with compound 12 were similar to Annexin V-FITC, a known reagent containing recombinant Annexin V conjugated to green-fluorescent FITC dye, used for detection of apoptotic cells. These compounds were found to be non-cytotoxic and have potential application as cell imaging agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Classification of Hydrogels Based on Their Source: A Review and Application in Stem Cell Regulation (United States)

    Khansari, Maziyar M.; Sorokina, Lioudmila V.; Mukherjee, Prithviraj; Mukhtar, Farrukh; Shirdar, Mostafa Rezazadeh; Shahidi, Mahnaz; Shokuhfar, Tolou


    Stem cells are recognized by their self-renewal ability and can give rise to specialized progeny. Hydrogels are an established class of biomaterials with the ability to control stem cell fate via mechanotransduction. They can mimic various physiological conditions to influence the fate of stem cells and are an ideal platform to support stem cell regulation. This review article provides a summary of recent advances in the application of different classes of hydrogels based on their source (e.g., natural, synthetic, or hybrid). This classification is important because the chemistry of substrate affects stem cell differentiation and proliferation. Natural and synthetic hydrogels have been widely used in stem cell regulation. Nevertheless, they have limitations that necessitate a new class of material. Hybrid hydrogels obtained by manipulation of the natural and synthetic ones can potentially overcome these limitations and shape the future of research in application of hydrogels in stem cell regulation.

  5. Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center (United States)

    Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.


    NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.

  6. Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices. (United States)

    Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo


    In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.

  7. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells. (United States)

    Xie, Jian; Zhao, Cui-E; Lin, Zong-Qiong; Gu, Pei-Yang; Zhang, Qichun


    To meet the ever-increasing requirements for the next generation of sustainable and versatile energy-related devices, conjugated polymers, which have potential advantages over small molecules and inorganic materials, are among the most promising types of green candidates. The properties of conjugated polymers can be tuned through modification of the structure and incorporation of different functional moieties. In addition, superior performances can be achieved as a result of the advantages of nanostructures, such as their large surface areas and the shortened pathways for charge transfer. Therefore, nanostructured conjugated polymers with different properties can be obtained to be applied in different energy-related organic devices. This review focuses on the application and performance of the recently reported nanostructured conjugated polymers for high-performance devices, including rechargeable lithium batteries, microbial fuel cells (MFCs), thermoelectric generators, and photocatalytic systems. The design strategies, reaction mechanisms, advantages, and limitations of nanostructured conjugated polymers are further discussed in each section. Finally, possible routes to improve the performances of the current systems are also included in the conclusion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multiscale Computational Fluid Dynamics: Methodology and Application to PECVD of Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Marquis Crose


    Full Text Available This work focuses on the development of a multiscale computational fluid dynamics (CFD simulation framework with application to plasma-enhanced chemical vapor deposition of thin film solar cells. A macroscopic, CFD model is proposed which is capable of accurately reproducing plasma chemistry and transport phenomena within a 2D axisymmetric reactor geometry. Additionally, the complex interactions that take place on the surface of a-Si:H thin films are coupled with the CFD simulation using a novel kinetic Monte Carlo scheme which describes the thin film growth, leading to a multiscale CFD model. Due to the significant computational challenges imposed by this multiscale CFD model, a parallel computation strategy is presented which allows for reduced processing time via the discretization of both the gas-phase mesh and microscopic thin film growth processes. Finally, the multiscale CFD model has been applied to the PECVD process at industrially relevant operating conditions revealing non-uniformities greater than 20% in the growth rate of amorphous silicon films across the radius of the wafer.

  9. Multi-level hp-finite cell method for embedded interface problems with application in biomechanics. (United States)

    Elhaddad, Mohamed; Zander, Nils; Bog, Tino; Kudela, László; Kollmannsberger, Stefan; Kirschke, Jan; Baum, Thomas; Ruess, Martin; Rank, Ernst


    This work presents a numerical discretization technique for solving 3-dimensional material interface problems involving complex geometry without conforming mesh generation. The finite cell method (FCM), which is a high-order fictitious domain approach, is used for the numerical approximation of the solution without a boundary-conforming mesh. Weak discontinuities at material interfaces are resolved by using separate FCM meshes for each material sub-domain and weakly enforcing the interface conditions between the different meshes. Additionally, a recently developed hierarchical hp-refinement scheme is used to locally refine the FCM meshes to resolve singularities and local solution features at the interfaces. Thereby, higher convergence rates are achievable for nonsmooth problems. A series of numerical experiments with 2- and 3-dimensional benchmark problems is presented, showing that the proposed hp-refinement scheme in conjunction with the weak enforcement of the interface conditions leads to a significant improvement of the convergence rates, even in the presence of singularities. Finally, the proposed technique is applied to simulate a vertebra-implant model. The application showcases the method's potential as an accurate simulation tool for biomechanical problems involving complex geometry, and it demonstrates its flexibility in dealing with different types of geometric description. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Improved Solar Cell Efficiency Through the Use of an Additive Nanostructure-Based Optical Downshifter: Final Subcontract Report, January 28, 2010 -- February 28, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kurtin, J.


    This final report summarizes all SpectraWatt's progress in achieving a boost in solar cell efficiency using an optical downshifter. Spectrawatt's downshifting technology is based on a nanostructured material system which absorbs high energy (short wavelength) light and reemits it at a lower energy (long wavelength) with high efficiency. This system has shown unprecedented performance parameters including near unity quantum yield and high thermal stability.

  11. Direct heat applications of geothermal energy in The Geysers/Clear Lake region. Volume I. Geotechnical assessment, agribusiness applications, socioeconomic assessment, engineering assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)


    Discussion is presented under the following section headings: background and some technical characteristics of geothermal resources; geology and geohydrology, geophysics, and, conclusions regarding availability of geothermal energy for nonelectric uses; agricultural assessment of Lake County, site assessment for potential agricultural development, analysis of potential agricultural applications, special application of low cost geothermal energy to algae harvesting, development of an integrated agribusiness, geothermal complex in Lake County, analysis of individual enterprises, and, recommendations for subsequent work; demographic characteristics, economic condition and perspective of Lake County, economic impact of geothermal in Lake County, social and economic factors related to geothermal resource development, socioeconomic impact of nonelectric uses of geothermal energy, and, identification of direct heat applications of geothermal energy for Lake County based on selected interviews; cost estimate procedure, example, justification of procedure, and, typical costs and conclusions; and, recommended prefeasibility and feasibility studies related to construction of facilities for nonelectric applications of geothermal resource utilization. (JGB)

  12. Development of materials for fuel cell application by radiation technology

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Junju; Lee, Gyoungja; Lee, Byung Cheol; Shin, Junhwa; Nho, Youngchang; Kang, Philhyun; Sohn, Joon Yong; Rang, Uhm Young


    The development of the single cell of SOFC with low operation temperature at and below 650 .deg. C(above 400 mW/cm 2 ) Ο The development of fabrication method for the single cell of solid oxide fuel cell (SOFC) by dip-coating of nanoparticles such as NiO, YSZ, Ag, and Ag/C, etc. Ο The optimization of the preparation and performance of SOFC by using nanoparticles. Ο The preparation of samples for SOFC with large dimension. The development of fluoropolymer-based fuel cell membranes with crosslinked structure by radiation grafting technique Ο The development of fuel cell membranes with low methanol permeability via the introduction of novel monomers (e. g. vinylbenzyl chloride and vinylether chloride) by radiation grafting technique Ο The development of hydrocarbon fuel cell membrane by radiation crosslinking technique Ο The structure analysis and the evaluations of the property, performance, and radiation effect of the prepared membranes Ο The optimization of the preparation and performance of DMFC fuel cell membrane via the structure-property analysis (power: above 130 mW/cm 2 /50 cm 2 at 5M methanol) Ο The preparation of samples for MEA stack assembly

  13. Flexible CdTe Solar Cells and Modules: Cooperative Research and Development Final Report, CRADA Number CRD-14-548

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Teresa [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Lucintech and NREL will collaborate to develop flexible CdTe solar cells on flexible glass using sputtering and other deposition technologies. This initial work will be conducted under the DOE funded Foundational Program to Advance Cell Efficiency (FPACE) 1 project, and the interaction with Lucintech will focus on scaling up and transferring the high efficiency cell processes to module production on a pilot line.

  14. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    Directory of Open Access Journals (Sweden)

    Hong Ouyang


    Full Text Available Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD, and retinitis pigmentosa (RP. Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE cells from human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases.

  15. Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy. (United States)

    Rathjen, P D; Lake, J; Whyatt, L M; Bettess, M D; Rathjen, J


    Embryonic stem cells are pluripotent cells derived from the early mouse embryo that can be propagated stably in the undifferentiated state in vitro. They retain the ability to differentiate into all cell types found in an embryonic and adult mouse in vivo, and can be induced to differentiate into many cell types in vitro. Exploitation of ES cell technology for the creation of mice bearing predetermined genetic alterations has received widespread attention because of the sophistication that it brings to the study of gene function in mammals. Analysis of cell differentiation in vitro has also been of value, leading to the identification of novel bioactive factors and the elucidation of cell specification mechanisms. In this paper, we summarise the features of pluripotent cell lines and their applications, foreshadowing the impact that these systems may have on human biology. While the isolation of definitive human pluripotent cell lines has not yet been achieved, potential applications for these cells in the study of human biology, particularly cell specification, can be envisaged. Of particular interest is the possibility that human embryonic stem cells with properties similar to mouse embryonic stem cells might provide a generic system for gene therapy.

  16. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.


    vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions......Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...

  17. Synthesis and Application of Plant Cell Wall Oligogalactans

    DEFF Research Database (Denmark)

    Andersen, Mathias Christian Franch

    The plant cell walls represent almost 50% of the biomass found in plants and are therefore one of the main targets for biotechnological research. Major motivators are their potential as a renewable energy source for transport fuels, as functional foods, and as a source of raw materials to generate...... chemical building blocks for industrial processes. To achieve a sustainable development it is necessary to optimize plant production and utilization. This will require a better understanding of the cell wall structure and function at the molecular level. The cell wall is composed by an intricate network...



    Liu, Xiaowei; Suo, Chunguang; Zhang, Yufeng; Zhang, Haifeng; Dhum, Ch.; Chen, Weiping; Lu, Xuebin


    Submitted on behalf of EDA Publishing Association (; International audience; In view of micro fuel cells, the silicon processes are employed for microfabrication of the micro direct methanol fuel cell (µDMFC). Using the MEMS technology we have successfully made single µDMFC as small as 10mm×8mm×3mm. The main reason for the use of MEMS processes is the prospective potential for miniaturization and economical mass production of small fuel cells. The doub...

  19. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others


    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  20. [Research progress of cell sheet technology and its applications in tissue engineering and regenerative medicine]. (United States)

    Ma, Dongyang; Ren, Liling; Mao, Tianqiu


    Cell sheet engineering is an important technology to harvest the cultured cells in the form of confluent monolayers using a continuous culture method and a physical approach. Avoiding the use of enzymes, expended cells can be harvested together with endogenous extracellular matrix, cell-matrix contacts, and cell-cell contacts. With high efficiency of cell loading ability and without using exogenous scaffolds, cell sheet engineering has several advantages over traditional tissue engineering methods. In this article, we give an overview on cell sheet technology about its applications in the filed of tissue regeneration, including the construction of soft tissues (corneal, mucous membrane, myocardium, blood vessel, pancreas islet, liver, bladder and skin) and hard tissues (bone, cartilage and tooth root). This techonoly is promising to provide a novel strategy for the development of tissue engineering and regenerative medicine. And further works should be carried out on the operability of this technology and its feasibility to construct thick tissues.