WorldWideScience

Sample records for cell anchorage-independent growth

  1. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A.; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  2. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    Science.gov (United States)

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Valdivia, Natalia; Bravo, Denisse; Huerta, Hernán; Henriquez, Soledad; Gabler, Fernando; Vega, Margarita; Romero, Carmen; Calderon, Claudia; Owen, Gareth I.; Leyton, Lisette; Quest, Andrew F. G.

    2015-01-01

    Caveolin-1 (CAV1) has been implicated both in tumor suppression and progression, whereby the specific role appears to be context dependent. Endometrial cancer is one of the most common malignancies of the female genital tract; however, little is known about the role of CAV1 in this disease. Here, we first determined by immunohistochemistry CAV1 protein levels in normal proliferative human endometrium and endometrial tumor samples. Then using two endometrial cancer cell lines (ECC: Ishikawa and Hec-1A) we evaluated mRNA and protein levels of CAV1 by real time qPCR and Western blot analysis, respectively. The role of CAV1 expression in ECC malignancy was further studied by either inducing its expression in endometrial cancer cells with the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (4β-TPA) or decreasing expression using short-hairpin RNA constructs, and then evaluating the effects of these changes on ECC proliferation, transmigration, matrigel invasion, and colony formation in soft agar. Immunohistochemical analysis of endometrial epithelia revealed that substantially higher levels of CAV1 were present in endometrial tumors than the normal proliferative epithelium. Also, in Ishikawa and Hec-1A endometrial cancer cells CAV1 expression was readily detectable. Upon treatment with 4β-TPA CAV1 levels increased and coincided with augmented cell transmigration, matrigel invasion, as well as colony formation in soft agar. Reduction of CAV1 expression using short-hairpin RNA constructs ablated these effects in both cell types whether treated or not with 4β-TPA. Alternatively, CAV1 expression appeared not to modulate significantly proliferation of these cells. Our study shows that elevated CAV1, observed in patients with endometrial cancer, is linked to enhanced malignancy of endometrial cancer cells, as evidenced by increased migration, invasion and anchorage-independent growth. The online version of this article (doi:10.1186/s12885-015-1477-5) contains

  4. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    Science.gov (United States)

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  5. Inhibition of Curcumin on ZAKα Activity Resultant in Apoptosis and Anchorage-Independent Growth in Cancer Cells.

    Science.gov (United States)

    Lee, Jin-Sun; Wang, Tsu-Shing; Lin, Ming Cheng; Lin, Wei-Wen; Yang, Jaw-Ji

    2017-10-31

    Curcumin, a popular yellow pigment of the dietary spice turmeric, has been reported to inhibit cell growth and to induce apoptosis in a wide variety of cancer cells. Although numerous studies have investigated anticancer effects of curcumin, the precise molecular mechanism of action remains unidentified. Whereas curcumin mediates cell survival and apoptosis through mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling cascades, its impact on the upstream regulation of MAPK is unclear. The leucine-zipper and sterile-α motif kinase alpha (ZAKα), a mitogen-activated protein kinase kinase kinase (MAP3K), activates the c-Jun N-terminal kinase (JNK) and NF-κB pathway. This paper investigated the prospective involvement of ZAKα in curcumin-induced effects on cancer cells. Our results suggest that the antitumor activity of curcumin is mediated via a mechanism involving inhibition of ZAKα activity.

  6. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Hildegard I.D.; Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu

    2013-11-15

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer.

  7. X-linked inhibitor of apoptosis protein (XIAP) regulation of cyclin D1 protein expression and cancer cell anchorage-independent growth via its E3 ligase-mediated protein phosphatase 2A/c-Jun axis.

    Science.gov (United States)

    Cao, Zipeng; Zhang, Ruowen; Li, Jingxia; Huang, Haishan; Zhang, Dongyun; Zhang, Jingjie; Gao, Jimin; Chen, Jingyuan; Huang, Chuanshu

    2013-07-12

    The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target.

  8. Diacylglycerol kinase α mediates 17-β-estradiol-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line through the G protein-coupled estrogen receptor GPR30.

    Science.gov (United States)

    Filigheddu, Nicoletta; Sampietro, Sara; Chianale, Federica; Porporato, Paolo E; Gaggianesi, Miriam; Gregnanin, Ilaria; Rainero, Elena; Ferrara, Michele; Perego, Beatrice; Riboni, Francesca; Baldanzi, Gianluca; Graziani, Andrea; Surico, Nicola

    2011-12-01

    Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Altered regulation of c-jun and its involvement in anchorage-independent growth of human lung cancers.

    Science.gov (United States)

    Maeno, K; Masuda, A; Yanagisawa, K; Konishi, H; Osada, H; Saito, T; Ueda, R; Takahashi, T

    2006-01-12

    The c-jun oncogene is frequently overexpressed in non-small-cell lung cancers (NSCLC), but its functional involvement in lung cancer development has not been clearly elucidated. In this study, we found that among the immediate-early serum responsible genes, exemplified by c-jun, c-fos and c-myc, induction of c-jun in a human bronchial epithelial cell line, BEAS-2B, was dependent on anchorage, in contrast to clear induction of c-fos and c-myc under both anchorage-dependent and -independent conditions. In fact, forced expression of c-jun in BEAS-2B cells significantly increased cell viability and colony formation in soft agar. Furthermore, we also found that such anchorage-dependent regulation of c-jun was lost in a significant fraction of human lung cancer cell lines. Interestingly, suppressed anchorage-independent but not anchorage-dependent growth was noted by constitutive expression of a dominant-negative c-jun mutant in a lung cancer cell line showing dysregulated and sustained c-jun expression in the absence of anchorage. These findings suggest that dysregulated c-jun expression may be involved in the acquisition of anchorage independence in the process of human lung carcinogenesis.

  10. Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase.

    Science.gov (United States)

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl(2)) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5-50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5-5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.

  11. A genetic screen for anchorage-independent proliferation in mammalian cells identifies a membrane-bound neuregulin.

    Directory of Open Access Journals (Sweden)

    Davide Danovi

    2010-07-01

    Full Text Available Anchorage-independent proliferation is a hallmark of oncogenic transformation and is thought to be conducive to proliferation of cancer cells away from their site of origin. We have previously reported that primary Schwann cells expressing the SV40 Large T antigen (LT are not fully transformed in that they maintain a strict requirement for attachment, requiring a further genetic change, such as oncogenic Ras, to gain anchorage-independence. Using the LT-expressing cells, we performed a genetic screen for anchorage-independent proliferation and identified Sensory and Motor Neuron Derived Factor (SMDF, a transmembrane class III isoform of Neuregulin 1. In contrast to oncogenic Ras, SMDF induced enhanced proliferation in normal primary Schwann cells but did not trigger cellular senescence. In cooperation with LT, SMDF drove anchorage-independent proliferation, loss of contact inhibition and tumourigenicity. This transforming ability was shared with membrane-bound class III but not secreted class I isoforms of Neuregulin, indicating a distinct mechanism of action. Importantly, we show that despite being membrane-bound signalling molecules, class III neuregulins transform via a cell intrinsic mechanism, as a result of constitutive, elevated levels of ErbB signalling at high cell density and in anchorage-free conditions. This novel transforming mechanism may provide new targets for cancer therapy.

  12. MiR-193b, downregulated in Ewing Sarcoma, targets the ErbB4 oncogene to inhibit anchorage-independent growth.

    Directory of Open Access Journals (Sweden)

    Colin Moore

    Full Text Available Ewing Sarcoma is an aggressive, oncofusion-driven, malignant neoplasm of bone and soft tissue affecting predominantly children and young adults. Seeking to identify potential novel therapeutic targets/agents for this disease, our previous studies uncovered microRNAs regulated by EWS/Fli1, the most common oncofusion, with growth modulatory properties. In the present study, we sought to identify EWS/Fli1-repressed, growth suppressive, microRNAs potentially amenable to replacement in Ewing Sarcoma cells. Eight microRNAs (143, 153, 184, 193b, 195, 203, 206 and 223 were selected for evaluation as EWS/Fli1-repressed and underexpressed in Ewing Sarcoma cells, and reported to be growth suppressive in other pediatric or/and adult cancers. The selected miRs, and appropriate non-targeting controls, were introduced into two different Ewing Sarcoma cell lines (A673 and SK-ES-1, and effects on growth were examined using a high and low-density growth assay. MiR-193b was growth inhibitory in both assays and cell lines. In subsequent analyses, we found that stable overexpression of miR-193b also inhibits anchorage-independent growth in both A673 and SK-ES-1 cells. We further show that miR-193b negatively regulates expression of the ErbB4 oncogene in A673 and SK-ES-1 cells, and that depletion of ErbB4 is itself inhibitory to anchorage-independent growth in the same cell lines. Together, our studies show that the EWS/Fli1-repressed miR-193b is growth suppressive in Ewing Sarcoma, and identify ErbB4 as a target gene and candidate mediator of this growth suppression.

  13. Molecular mechanisms of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced inverted U-shaped dose responsiveness in anchorage independent growth and cell proliferation of human breast epithelial cells with stem cell characteristics

    International Nuclear Information System (INIS)

    Ahn, Nam-Shik; Hu, Hongbo; Park, Jin-Sung; Park, Joon-Suk; Kim, Jong-Sik; An, Sungwhan; Kong, Gu; Aruoma, Okezie I.; Lee, Yong-Soon; Kang, Kyung-Sun

    2005-01-01

    Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has a variety of carcinogenic and noncarcinogenic effects in experimental animals, its role in human carcinogenicity remain controversial. A simian virus 40-immortalized cell line from normal human breast epithelial cells with stem cells and luminal characteristics (M13SV1) was used to study whether TCDD can induce AIG positive colony formation and cause increased cell numbers in a inverted U-shaped dose-response manner. TCDD activated Akt, ERK2, and increased the expression of CYP1A1, PAI-2, IL-lb mRNA, and ERK2 protein levels. TCDD was able to increased phosphorylation and expression of ERK2 in same dose-response manner as AIG positive colony formation. Thus, TCDD induced tumorigenicity in M13SV1, possibly through the phosphorylation of ERK2 and/or Akt. Further, cDNA microarray with 7448 sequence-verified clones was used to profile various gene expression patterns after treatment of TCDD. Three clear patterns could be delineated: genes that were dose-dependently up-regulated, genes expressed in either U-shape and/or inverted U-shape. The fact that these genes are intrinsically related to breast epithelial cell proliferation and survival clearly suggests that they may be involved in the TCDD-induced breast tumorigenesis

  14. The G Protein-Coupled Estrogen Receptor-1, GPER-1, Promotes Fibrillogenesis via a Shc-Dependent Pathway Resulting in Anchorage-Independent Growth

    Science.gov (United States)

    Magruder, Hilary T.; Quinn, Jeffrey A.; Schwartzbauer, Jean E.; Reichner, Jonathan; Huang, Allan

    2016-01-01

    The G protein-coupled estrogen receptor-1, GPER-1, coordinates fibronectin (FN) matrix assembly and release of heparan-bound epidermal growth factor (HB-EGF). This mechanism of action results in the recruitment of FN-engaged integrin α5β1 to fibrillar adhesions and the formation of integrin α5β1-Shc adaptor protein complexes. Here, we show that GPER-1 stimulation of murine 4 T1 or human SKBR3 breast cancer cells with 17β-estradiol (E2β) promotes the formation of focal adhesions and actin stress fibers and results in increased cellular adhesion and haptotaxis on FN, but not collagen. These actions are also induced by the xenoestrogen, bisphenol A, and the estrogen receptor (ER) antagonist, ICI 182, 780, but not the inactive stereoisomer, 17α-estradiol (E2α). In addition, we show that GPER-1 stimulation of breast cancer cells allows for FN-dependent, anchorage-independent growth and FN fibril formation in “hanging drop” assays, indicating that these GPER-1-mediated actions occur independently of adhesion to solid substrata. Stable expression of Shc mutant Y317F lacking its primary tyrosyl phosphorylation site disrupts E2β-induced focal adhesion and actin stress fiber formation and abolishes E2β-enhanced haptotaxis on FN and anchorage-dependent growth. Collectively, these data demonstrate that E2β action via GPER-1 enhances cellular adhesivity and FN matrix assembly and allows for anchorage-independent growth, cellular events that may allow for cellular survival, and tumor progression. PMID:25096985

  15. Parthenolide reduces the frequency of ABCB5-positive cells and clonogenic capacity of melanoma cells from anchorage independent melanospheres

    Science.gov (United States)

    Czyz, Malgorzata; Koprowska, Kamila; Sztiller-Sikorska, Malgorzata

    2013-01-01

    Growing evidence suggests that the cancer stem cell phenotype in melanoma is dynamically regulated. Therefore, effective therapies have to target simultaneously bulk tumor cells and melanoma stem-like cells. The aim of the present study was to investigate the effects of parthenolide on heterogeneous cancer cell populations from anchorage-independent melanospheres. Cells derived from nodular melanoma specimens were grown under serum-free sphere-forming conditions. The effects of parthenolide on cellular viability, immunophenotype and self-renewing capacity were assessed with cells from dissociated melanospheres. Its penetration capacity was evaluated with intact melanospheres. In melanoma cells that survived treatment with parthenolide, a different immunophenotype than that in untreated control was found. The frequency of cells expressing the ABCB5 transporter was markedly reduced. Most importantly, melanoma cells that survived parthenolide treatment lost their self-renewing capacity. Significantly lower influence of drug on cellular viability and frequency of ABCB5-positive cells was observed in intact melanospheres. The potential clinical significance of our findings is based on the ability of parthenolide to affect both bulk and melanoma stem-like cells with clonogenic capacity and high expression of the ABCB5 transporter. Its low penetration capacity, however, may limit its action to easily accessible melanoma cells, either circulating in the blood or those in the vicinity to blood vessels within the tumor. Because of limited penetration capacity of parthenolide, this drug should be further explored as a part of multimodal therapies rather than as a stand-alone therapeutic agent. PMID:23192276

  16. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro.

    Directory of Open Access Journals (Sweden)

    Pheruza Tarapore

    Full Text Available Human exposure to bisphenol A (BPA is ubiquitous. Animal studies found that BPA contributes to development of prostate cancer, but human data are scarce. Our study examined the association between urinary BPA levels and Prostate cancer and assessed the effects of BPA on induction of centrosome abnormalities as an underlying mechanism promoting prostate carcinogenesis. The study, involving 60 urology patients, found higher levels of urinary BPA (creatinine-adjusted in Prostate cancer patients (5.74 µg/g [95% CI; 2.63, 12.51] than in non-Prostate cancer patients (1.43 µg/g [95% CI; 0.70, 2.88] (p = 0.012. The difference was even more significant in patients <65 years old. A trend toward a negative association between urinary BPA and serum PSA was observed in Prostate cancer patients but not in non-Prostate cancer patients. In vitro studies examined centrosomal abnormalities, microtubule nucleation, and anchorage-independent growth in four Prostate cancer cell lines (LNCaP, C4-2, 22Rv1, PC-3 and two immortalized normal prostate epithelial cell lines (NPrEC and RWPE-1. Exposure to low doses (0.01-100 nM of BPA increased the percentage of cells with centrosome amplification two- to eight-fold. Dose responses either peaked or reached the plateaus with 0.1 nM BPA exposure. This low dose also promoted microtubule nucleation and regrowth at centrosomes in RWPE-1 and enhanced anchorage-independent growth in C4-2. These findings suggest that urinary BPA level is an independent prognostic marker in Prostate cancer and that BPA exposure may lower serum PSA levels in Prostate cancer patients. Moreover, disruption of the centrosome duplication cycle by low-dose BPA may contribute to neoplastic transformation of the prostate.

  17. Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TA Reflects Molecular Switch in Commitment to Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Tan, Ruimin; Opresko, Lee K.; Quesenberry, Ryan D.; Bandyopadhyay, Somnath; Chrisler, William B.; Weber, Thomas J.

    2009-11-01

    We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely non-overlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) and D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired non-tumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1 and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.

  18. Chlamydia induces anchorage independence in 3T3 cells and detrimental cytological defects in an infection model.

    Directory of Open Access Journals (Sweden)

    Andrea E Knowlton

    Full Text Available Chlamydia are gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV. We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect.

  19. Inhibition of Anchorage-Independent Proliferation and G0/G1 Cell-Cycle Regulation in Human Colorectal Carcinoma Cells by 4,7-Dimethoxy-5-Methyl-l,3-Benzodioxole Isolated from the Fruiting Body of Antrodia camphorate

    Directory of Open Access Journals (Sweden)

    Hsiu-Man Lien

    2011-01-01

    Full Text Available In this study, 4,7-dimethoxy-5-methyl-l,3-benzodioxole (SY-1 was isolated from three different sources of dried fruiting bodies of Antrodia camphorate (AC. AC is a medicinal mushroom that grows on the inner heartwood wall of Cinnamomum kanehirai Hay (Lauraceae, an endemic species that is used in Chinese medicine for its anti-tumor and immunomodulatory properties. In this study, we demonstrated that SY-1 profoundly decreased the proliferation of human colon cancer cells (COLO 205 through G0/G1 cell-cycle arrest (50–150 μM and induction of apoptosis (>150 μM. Cell-cycle arrest induced by SY-1 was associated with a significant increase in levels of p53, p21/Cip1 and p27/Kip1, and a decrease in cyclins D1, D3 and A. In contrast, SY-1 treatment did not induce significant changes in G0/G1 phase cell-cycle regulatory proteins in normal human colonic epithelial cells (FHC. The cells were cultured in soft agar to evaluate anchorage-independent colony formation, and we found that the number of transformed colonies was significantly reduced in the SY-1-treated COLO 205 cells. These findings demonstrate for the first time that SY-1 inhibits human colon cancer cell proliferation through inhibition of cell growth and anchorage-independent colony formation in soft agar. However, the detailed mechanisms of these processes remain unclear and will require further investigation.

  20. Characterization of mutagen-activated cellular oncogenes that confer anchorage independence to human fibroblasts and tumorigenicity to NIH 3T3 cells: Sequence analysis of an enzymatically amplified mutant HRAS allele

    International Nuclear Information System (INIS)

    Stevens, C.W.; Manoharan, T.H.; Fahl, W.E.

    1988-01-01

    Treatment of diploid human fibroblasts with an alkylating mutagen has been shown to induce stable, anchorage-independent cell populations at frequencies consistent with an activating mutation. After treatment of human foreskin fibroblasts with the mutagen benzo[α]pyrene (±)anti-7,8-dihydrodiol 9,10-epoxide and selection in soft agar, 17 anchorage-independent clones were isolated and expanded, and their cellular DNA was used to cotransfect NIH 3T3 cells along with pSV2neo. DNA from 11 of the 17 clones induced multiple NIH 3T3 cell tumors in recipient nude mice. Southern blot analyses showed the presence of human Alu repetitive sequences in all of the NIH 3T3 tumor cell DNAs. Intact, human HRAS sequences were observed in 2 of the 11 tumor groups, whereas no hybridization was detected when human KRAS or NRAS probes were used. Slow-migrating ras p21 proteins, consistent with codon 12 mutations, were observed in the same two NIH 3T3 tumor cell groups that contained the human HRAS bands. Genomic DNA from one of these two human anchorage-independent cell populations (clone 21A) was used to enzymatically amplify a portion of exon 1 of the HRAS gene. The results demonstrate that exposure of normal human cells to a common environmental mutagen yields HRAS GC → TA codon 12 transversions that have been commonly observed in human tumors

  1. Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA

    International Nuclear Information System (INIS)

    Smits, H.L.; Raadsheer, E.; Rood, I.; Mehendale, S.; Slater, R.M.; van der Noordaa, J.; Ter Schegget, J.

    1988-01-01

    Human embryonic fibroblasts with a large deletion (11p11.11p15.1) in the short arm of one chromosome 11 (del-11 cells) appeared to be susceptible to transformation by early human papillomavirus type 16 (HPV-16) DNA, whereas diploid human embryonic fibroblasts were not. This difference in susceptibility might be explained by the absence of a tumor suppressor gene located within the deleted part on the short arm of chromosome 11. The presence of abundant viral early-gene transcripts in transformed cells suggests that transformation was induced by an elevated level of an HPV-16 early-gene product(s). The low transcriptional activity of HPV-16 in diploid cells may indicate that cellular genes affect viral transcription. Interruption of the HPV-16 E2 early open reading frame is probably required for high-level HPV-16 early-gene expression driven from the homologous enhancer-promoter region

  2. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla

    2011-01-01

    of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D...

  3. Mek activity is required for ErbB2 expression in breast cancer cells detached from the extracellular matrix.

    Science.gov (United States)

    Khan, Iman A; Yoo, Byong H; Rak, Janusz; Rosen, Kirill V

    2017-12-01

    Detachment of non-malignant epithelial cells from the extracellullar matrix (ECM) triggers their growth arrest and apoptosis. Conversely, carcinoma cells can grow without adhesion to the ECM. This capacity for anchorage-independent growth is thought to be critical for tumor progression. ErbB2/Her2 oncoprotein is overproduced by a significant fraction of breast cancers and promotes anchorage-independent tumor cell growth by poorly understood mechanisms. In an effort to understand them we found that in order to produce ErbB2, detached breast cancer cells require the activity of an ErbB2 effector protein kinase Mek and that Mek-driven ErbB2 expression is neccesary for anchorage-independent growth of such cells. We observed that Mek inhibition does not alter ErbB2 mRNA levels in detached cancer cells and that ErbB2 protein loss induced by this inhibition can be blocked by a lysosomal inhibitor. We also noticed that an increase of the density of cancer cells detached from the ECM downregulates a Mek effector protein kinase Erk and causes ErbB2 loss. Those cells that survive after ErbB2 loss display resistance to trastuzumab, an anti-ErbB2 antibody used for ErbB2-positive breast cancer treatment. Thus, Mek-induced ErbB2 stabilization in detached breast cancer cells is critical for their ability to grow anchorage-independently and their trastuzumab sensitivity.

  4. Molecular and functional analysis of anchorage independent, treatment-evasive neuroblastoma tumorspheres with enhanced malignant properties: A possible explanation for radio-therapy resistance.

    Science.gov (United States)

    Abou-Antoun, Tamara J; Nazarian, Javad; Ghanem, Anthony; Vukmanovic, Stanislav; Sandler, Anthony D

    2018-01-01

    Despite significant advances in cancer treatment and management, more than 60% of patients with neuroblastoma present with very poor prognosis in the form of metastatic and aggressive disease. Solid tumors including neuroblastoma are thought to be heterogeneous with a sub-population of stem-like cells that are treatment-evasive with highly malignant characteristics. We previously identified a phenomenon of reversible adaptive plasticity (RAP) between anchorage dependent (AD) cells and anchorage independent (AI) tumorspheres in neuroblastoma cell cultures. To expand our molecular characterization of the AI tumorspheres, we sought to define the comprehensive proteomic profile of murine AD and AI neuroblastoma cells. The proteomic profiles of the two phenotypic cell populations were compared to each other to determine the differential protein expression and molecular pathways of interest. We report exclusive or significant up-regulation of tumorigenic pathways expressed by the AI tumorspheres compared to the AD cancer cells. These pathways govern metastatic potential, enhanced malignancy and epithelial to mesenchymal transition. Furthermore, radio-therapy induced significant up-regulation of specific tumorigenic and proliferative proteins, namely survivin, CDC2 and the enzyme Poly [ADP-ribose] polymerase 1. Bio-functional characteristics of the AI tumorspheres were resistant to sutent inhibition of receptor tyrosine kinases (RTKs) as well as to 2.5 Gy radio-therapy as assessed by cell survival, proliferation, apoptosis and migration. Interestingly, PDGF-BB stimulation of the PDGFRβ led to transactivation of EGFR and VEGFR in AI tumorspheres more potently than in AD cells. Sutent inhibition of PDGFRβ abrogated this transactivation in both cell types. In addition, 48 h sutent treatment significantly down-regulated the protein expression of PDGFRβ, MYCN, SOX2 and Survivin in the AI tumorspheres and inhibited tumorsphere self-renewal. Radio-sensitivity in AI

  5. Molecular and functional analysis of anchorage independent, treatment-evasive neuroblastoma tumorspheres with enhanced malignant properties: A possible explanation for radio-therapy resistance

    Science.gov (United States)

    Nazarian, Javad; Ghanem, Anthony; Vukmanovic, Stanislav; Sandler, Anthony D.

    2018-01-01

    Despite significant advances in cancer treatment and management, more than 60% of patients with neuroblastoma present with very poor prognosis in the form of metastatic and aggressive disease. Solid tumors including neuroblastoma are thought to be heterogeneous with a sub-population of stem-like cells that are treatment-evasive with highly malignant characteristics. We previously identified a phenomenon of reversible adaptive plasticity (RAP) between anchorage dependent (AD) cells and anchorage independent (AI) tumorspheres in neuroblastoma cell cultures. To expand our molecular characterization of the AI tumorspheres, we sought to define the comprehensive proteomic profile of murine AD and AI neuroblastoma cells. The proteomic profiles of the two phenotypic cell populations were compared to each other to determine the differential protein expression and molecular pathways of interest. We report exclusive or significant up-regulation of tumorigenic pathways expressed by the AI tumorspheres compared to the AD cancer cells. These pathways govern metastatic potential, enhanced malignancy and epithelial to mesenchymal transition. Furthermore, radio-therapy induced significant up-regulation of specific tumorigenic and proliferative proteins, namely survivin, CDC2 and the enzyme Poly [ADP-ribose] polymerase 1. Bio-functional characteristics of the AI tumorspheres were resistant to sutent inhibition of receptor tyrosine kinases (RTKs) as well as to 2.5 Gy radio-therapy as assessed by cell survival, proliferation, apoptosis and migration. Interestingly, PDGF-BB stimulation of the PDGFRβ led to transactivation of EGFR and VEGFR in AI tumorspheres more potently than in AD cells. Sutent inhibition of PDGFRβ abrogated this transactivation in both cell types. In addition, 48 h sutent treatment significantly down-regulated the protein expression of PDGFRβ, MYCN, SOX2 and Survivin in the AI tumorspheres and inhibited tumorsphere self-renewal. Radio-sensitivity in AI

  6. Systematic analysis of secreted proteins reveals synergism between IL6 and other proteins in soft agar growth of MCF10A cells.

    Science.gov (United States)

    Van Huffel, Sofie C; Tham, Jill M; Zhang, Xiaoqian; Lim, Kohpang; Yang, Chunxuan; Tan, Yikloo; Ong, Felicia; Lee, Ian; Hong, Wanjin

    2011-03-25

    Breast cancer, the most common malignancy in women, still holds many secrets. The causes for non-hereditary breast cancer are still unknown. To elucidate any role for circulating naturally secreted proteins, a screen of secreted proteins' influence of MCF10A cell anchorage independent growth was set up. To systematically screen secreted proteins for their capacity to transform mammalian breast epithelial cells, a soft agar screen of MCF10A cells was performed using a library of ~ 470 secreted proteins. A high concentration of infecting viral particles was used to obtain multiple infections in individual cells to specifically study the combined effect of multiple secreted proteins. Several known breast cancer factors, such as Wnt, FGF and IL were retained, as well as factors that were previously unknown to have a role in breast cancer, such as paraoxonase 1 and fibroblast growth factor binding protein 2. Additionally, a combinatory role of Interleukin 6 with other factors in MCF10A anchorage-independent growth is demonstrated. The transforming effect of combinations of IL6 with other secreted proteins allows studying the transformation of mammary epithelial cells in vitro, and may also have implications in in vivo studies where secreted proteins are upregulated or overexpressed.

  7. Peroxisome Proliferator-Activated Receptor-γ Inhibits Transformed Growth of Non-Small Cell Lung Cancer Cells through Selective Suppression of Snail

    Directory of Open Access Journals (Sweden)

    Rashmi Choudhary

    2010-03-01

    Full Text Available Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ inhibits transformed growth of non-small cell lung cancer (NSCLC cell lines in vitro and in vivo. We have demonstrated that activation of PPARγ promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-κB. The Snail family of transcription factors, which includes Snail (Snail1, Slug (Snail2, and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARγ activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARγ activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARγ activators.

  8. Identification of a single chromosome in the normal human genome essential for suppression of hamster cell transformation.

    OpenAIRE

    Stoler, A; Bouck, N

    1985-01-01

    Normal human fibroblasts were fused to carcinogen-transformed baby hamster kidney (BHK) cells and found to be able to suppress the anchorage-independent transformed phenotype of the hamster cells. This suppression was not due to interspecies incompatibility, for transformation could be effectively expressed in hybrids if either the human or the BHK parent had initially been transformed by a dominantly acting viral genome. Upon growth of suppressed hybrids, loss of human chromosomes was accomp...

  9. Forced Trefoil Factor Family Peptide 3 (TFF3) Expression Reduces Growth, Viability, and Tumorigenicity of Human Retinoblastoma Cell Lines.

    Science.gov (United States)

    Große-Kreul, Jan; Busch, Maike; Winter, Claudia; Pikos, Stefanie; Stephan, Harald; Dünker, Nicole

    2016-01-01

    Trefoil factor family (TFF) peptides have been shown to effect cell proliferation, apoptosis, migration and invasion of normal cells and various cancer cell lines. In the literature TFF peptides are controversially discussed as tumor suppressors and potential tumor progression factors. In the study presented, we investigated the effect of TFF3 overexpression on growth, viability, migration and tumorigenicity of the human retinoblastoma cell lines Y-79, WERI-Rb1, RBL-13 and RBL-15. As revealed by WST-1 and TUNEL assays as well as DAPI and BrdU cell counts, recombinant human TFF3 significantly lowers retinoblastoma cell viability and increases apoptosis levels. Transient TFF3 overexpression likewise significantly increases RB cell apoptosis. Stable, lentiviral TFF3 overexpression lowers retinoblastoma cell viability, proliferation and growth and significantly increases cell death in retinoblastoma cells. Blockage experiments using a broad-spectrum caspase inhibitor and capase-3 immunocytochemistry revealed the involvement of caspases in general and of caspase-3 in particular in TFF3 induced apoptosis in retinoblastoma cell lines. Soft agarose and in ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF3 overexpression influences anchorage independent growth and significantly decreases the size of tumors forming from retinoblastoma cells. Our study demonstrates that forced TFF3 expression exerts a significant pro-apoptotic, anti-proliferative, and tumor suppressive effect in retinoblastoma cells, setting a starting point for new additive chemotherapeutic approaches in the treatment of retinoblastoma.

  10. Viral Small T Oncoproteins Transform Cells by Alleviating Hippo-Pathway-Mediated Inhibition of the YAP Proto-oncogene

    Directory of Open Access Journals (Sweden)

    Hung Thanh Nguyen

    2014-08-01

    Full Text Available Primary human cells can be transformed into tumor cells by a defined set of genetic alterations including telomerase, oncogenic RasV12, and the tumor suppressors p53 and pRb. SV40 small T (ST is required for anchorage-independent growth in vitro and in vivo. Here, we identify the Hippo tumor suppressor pathway as a critical target of ST in cellular transformation. We report that ST uncouples YAP from the inhibitory activity of the Hippo pathway through PAK1-mediated inactivation of NF2. Membrane-tethered activated PAK is sufficient to bypass the requirement for ST in anchorage-independent growth. PAK acts via YAP to mediate the transforming effects of ST. Activation of endogenous YAP is required for ST-mediated transformation and is sufficient to bypass ST in anchorage-independent growth and xenograft tumor formation. Our findings uncover the Hippo tumor suppressor pathway as a final gatekeeper to transformation and tumorigenesis of primary cells.

  11. RNAi-mediated knock-down of arylamine N-acetyltransferase-1 expression induces E-cadherin up-regulation and cell-cell contact growth inhibition.

    Directory of Open Access Journals (Sweden)

    Jacky M Tiang

    Full Text Available Arylamine N-acetyltransferase-1 (NAT1 is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics.

  12. Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo.

    Directory of Open Access Journals (Sweden)

    Martin F Dietrich

    2010-04-01

    Full Text Available The low-density lipoprotein (LDL receptor gene family is a highly conserved group of membrane receptors with diverse functions in developmental processes, lipoprotein trafficking, and cell signaling. The low-density lipoprotein (LDL receptor-related protein 1b (LRP1B was reported to be deleted in several types of human malignancies, including non-small cell lung cancer. Our group has previously reported that a distal extracellular truncation of murine Lrp1b that is predicted to secrete the entire intact extracellular domain (ECD is fully viable with no apparent phenotype.Here, we have used a gene targeting approach to create two mouse lines carrying internally rearranged exons of Lrp1b that are predicted to truncate the protein closer to the N-terminus and to prevent normal trafficking through the secretary pathway. Both mutations result in early embryonic lethality, but, as expected from the restricted expression pattern of LRP1b in vivo, loss of Lrp1b does not cause cellular lethality as homozygous Lrp1b-deficient blastocysts can be propagated normally in culture. This is similar to findings for another LDL receptor family member, Lrp4. We provide in vitro evidence that Lrp4 undergoes regulated intramembraneous processing through metalloproteases and gamma-secretase cleavage. We further demonstrate negative regulation of the Wnt signaling pathway by the soluble extracellular domain.Our results underline a crucial role for Lrp1b in development. The expression in mice of truncated alleles of Lrp1b and Lrp4 with deletions of the transmembrane and intracellular domains leads to release of the extracellular domain into the extracellular space, which is sufficient to confer viability. In contrast, null mutations are embryonically (Lrp1b or perinatally (Lrp4 lethal. These findings suggest that the extracellular domains of both proteins may function as a scavenger for signaling ligands or signal modulators in the extracellular space, thereby

  13. Parabens enable suspension growth of MCF-10A immortalized, non-transformed human breast epithelial cells.

    Science.gov (United States)

    Khanna, Sugandha; Darbre, Philippa D

    2013-05-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10(-4) M methylparaben, 10(-5) M n-propylparaben or 10(-5) M n-butylparaben resulted in a greater number of colonies per dish (P paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Downregulation of Cyclophilin A by siRNA diminishes non-small cell lung cancer cell growth and metastasis via the regulation of matrix metallopeptidase 9

    Directory of Open Access Journals (Sweden)

    Qian Zhe

    2012-10-01

    Full Text Available Abstract Background Cyclophilin A (CypA is a cytosolic protein possessing peptidyl-prolyl isomerase activity that was recently reported to be overexpressed in several cancers. Here, we explored the biology and molecular mechanism of CypA in non-small cell lung cancer (NSCLC. Methods The expression of CypA in human NSCLC cell lines was detected by real-time reverse transcription PCR. The RNA interference-mediated knockdown of CypA was established in two NSCLC cell lines (95C and A549. 239836 CypA inhibitor was also used to suppress CypA activity. Tumorigenesis was assessed based on cellular proliferation, colony formation assays, and anchorage-independent growth assays; metastasis was assessed based on wound healing and transwell assays. Results Suppression of CypA expression inhibited the cell growth and colony formation of A549 and 95C cells. CypA knockdown resulted in the inhibition of cell motility and invasion. Significantly, we show for the first time that CypA increased NSCLC cell invasion by regulating the activity of secreted matrix metallopeptidase 9 (MMP9. Likewise, suppression of CypA with 239836 CypA inhibitor decreased cell proliferation and MMP9 activity. Conclusions The suppression of CypA expression was correlated with decreased NSCLC cell tumorigenesis and metastasis.

  15. Differential effects of human papillomavirus type 6, 16, and 18 DNAs on immortalization and transformation of human cervical epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pecoraro, G.; Morgan, D.; Defendi, V. (New York Univ. Medical Center, NY (USA))

    1989-01-01

    The human papillomaviruses (HPVs) are associated with specific benign and malignant lesions of the skin and mucosal epithelia. Cloned viral DNAs from HPV types 6b, 16, and 18 associated with different pathological manifestations of genital neoplasia in vivo were introduced into primary human cervical epithelial cells by electroporation. Cells transfected with HPV16 or HPV18 DNA acquired indefinite lifespans, distinct morphological alterations, and anchorage-independent growth (HPV18), and contain integrated transcriptionally active viral genomes. HPV6b or plasmid electroporated cells senesced at low passage. The alterations in growth and differentiation of the cells appear to reflect the progressive oncogenic processes that result in cervical carcinoma in vivo.

  16. The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth.

    NARCIS (Netherlands)

    Spanos, W.C.; Hoover, A.; Harris, G.F.; Wu, S.; Strand, G.L.; Anderson, M.E.; Klingelhutz, A.J.; Hendriks, W.J.A.J.; Bossler, A.D.; Lee, J.H.

    2008-01-01

    The human papillomavirus (HPV) oncogene E6 has been shown to perform multiple functions (p53 degradation, telomerase activation, etc.) that play a role in oncogenic transformation. Beyond known E6 functions, an undefined mechanism that allows cellular invasion requires the E6 PDZ binding motif

  17. Bcl-2 and N-Myc Coexpression Increases IGF-IR and Features of Malignant Growth in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Rama Jasty

    2001-01-01

    Full Text Available The bcl-2 and c-myc oncogenes cooperate to transform multiple cell types. In the pediatric malignancy NB2, Bcl2 is highly expressed. In tumors with a poor prognosis, N-Myc, a protein homologous to c-Myc, is overexpressed as a result of gene amplification. The present study was designed to determine whether Bcl-2 cooperates with N-Myc to bestow a tumorigenic phenotype to neuroblastoma (NB cells. NB cell lines that at baseline express neither Bcl-2 nor N-Myc were stably transfected to express these gene products. In this model, we found Bcl-2 rescues N-Myc-expressing cells from apoptosis induced by serum withdrawal. Coexpression of Bcl-2 and N-Myc supports growth in low serum conditions and anchorage-independent growth in soft agar. Similarly, in vivo tumorigenic and angiogenic activity was dependent on coexpression. Our data further suggests that the mechanism underlying these changes involves the receptor for insulin growth factor type I (IGF-IR.

  18. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    Science.gov (United States)

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications.

  19. Control of tissue growth and cell transformation by the Salvador/Warts/Hippo pathway.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    Full Text Available The Salvador-Warts-Hippo (SWH pathway is an important regulator of tissue growth that is frequently subverted in human cancer. The key oncoprotein of the SWH pathway is the transcriptional co-activator, Yes-associated protein (YAP. YAP promotes tissue growth and transformation of cultured cells by interacting with transcriptional regulatory proteins via its WW domains, or, in the case of the TEAD1-4 transcription factors, an N-terminal binding domain. YAP possesses a putative transactivation domain in its C-terminus that is necessary to stimulate transcription factors in vitro, but its requirement for YAP function has not been investigated in detail. Interestingly, whilst the WW domains and TEAD-binding domain are highly conserved in the Drosophila melanogaster YAP orthologue, Yorkie, the majority of the C-terminal region of YAP is not present in Yorkie. To investigate this apparent conundrum, we assessed the functional roles of the YAP and Yorkie C-termini. We found that these regions were not required for Yorkie's ability to drive tissue growth in vivo, or YAP's ability to promote anchorage-independent growth or resistance to contact inhibition. However, the YAP transactivation domain was required for YAP's ability to induce cell migration and invasion. Moreover, a role for the YAP transactivation domain in cell transformation was uncovered when the YAP WW domains were mutated together with the transactivation domain. This shows that YAP can promote cell transformation in a flexible manner, presumably by contacting transcriptional regulatory proteins either via its WW domains or its transactivation domain.

  20. Silencing the Snail-dependent RNA splice regulator ESRP1 drives malignant transformation of human pulmonary epithelial cells. | Office of Cancer Genomics

    Science.gov (United States)

    Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated including in non-small cell lung cancer (NSCLC). Here we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo.

  1. Autocrine Human Growth Hormone Promotes Invasive and Cancer Stem Cell-Like Behavior of Hepatocellular Carcinoma Cells by STAT3 Dependent Inhibition of CLAUDIN-1 Expression

    Directory of Open Access Journals (Sweden)

    Yi-Jun Chen

    2017-06-01

    Full Text Available Despite progress in diagnosis and treatment of hepatocellular carcinoma (HCC, the clinical outcome is still unsatisfactory. Increased expression of human growth hormone (hGH in HCC has been reported and is associated with poor survival outcome in HCC patients. Herein, we investigated the mechanism of the oncogenic effects of hGH in HCC cell lines. In vitro functional assays demonstrated that forced expression of hGH in these HCC cell lines promoted cell proliferation, cell survival, anchorage-independent growth, cell migration, and invasion, as previously reported. In addition, forced expression of hGH promoted cancer stem cell (CSC-like properties of HCC cells. The increased invasive and CSC-like properties of HCC cells with forced expression of hGH were mediated by inhibition of the expression of the tight junction component CLAUDIN-1. Consistently, depletion of CLAUDIN-1 expression increased the invasive and CSC-like properties of HCC cell lines. Moreover, forced expression of CLAUDIN-1 abrogated the acquired invasive and CSC-like properties of HCC cell lines with forced expression of hGH. We further demonstrated that forced expression of hGH inhibited CLAUDIN-1 expression in HCC cell lines via signal transducer and activator of transcription 3 (STAT3 mediated inhibition of CLAUDIN-1 transcription. Hence, we have elucidated a novel hGH-STAT3-CLAUDIN-1 axis responsible for invasive and CSC-like properties in HCC. Inhibition of hGH should be considered as a therapeutic option to hinder progression and relapse of HCC.

  2. Autocrine Human Growth Hormone Promotes Invasive and Cancer Stem Cell-Like Behavior of Hepatocellular Carcinoma Cells by STAT3 Dependent Inhibition of CLAUDIN-1 Expression.

    Science.gov (United States)

    Chen, Yi-Jun; You, Ming-Liang; Chong, Qing-Yun; Pandey, Vijay; Zhuang, Qiu-Shi; Liu, Dong-Xu; Ma, Lan; Zhu, Tao; Lobie, Peter E

    2017-06-15

    Despite progress in diagnosis and treatment of hepatocellular carcinoma (HCC), the clinical outcome is still unsatisfactory. Increased expression of human growth hormone (hGH) in HCC has been reported and is associated with poor survival outcome in HCC patients. Herein, we investigated the mechanism of the oncogenic effects of hGH in HCC cell lines. In vitro functional assays demonstrated that forced expression of hGH in these HCC cell lines promoted cell proliferation, cell survival, anchorage-independent growth, cell migration, and invasion, as previously reported. In addition, forced expression of hGH promoted cancer stem cell (CSC)-like properties of HCC cells. The increased invasive and CSC-like properties of HCC cells with forced expression of hGH were mediated by inhibition of the expression of the tight junction component CLAUDIN-1. Consistently, depletion of CLAUDIN-1 expression increased the invasive and CSC-like properties of HCC cell lines. Moreover, forced expression of CLAUDIN-1 abrogated the acquired invasive and CSC-like properties of HCC cell lines with forced expression of hGH. We further demonstrated that forced expression of hGH inhibited CLAUDIN-1 expression in HCC cell lines via signal transducer and activator of transcription 3 (STAT3) mediated inhibition of CLAUDIN-1 transcription. Hence, we have elucidated a novel hGH-STAT3-CLAUDIN-1 axis responsible for invasive and CSC-like properties in HCC. Inhibition of hGH should be considered as a therapeutic option to hinder progression and relapse of HCC.

  3. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricio; Soto, Nicolás [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Jorge [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Mendoza, Pablo [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Natalia [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Quest, Andrew F.G. [Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Torres, Vicente A., E-mail: vatorres@med.uchile.cl [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile)

    2015-08-21

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo.

  4. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  5. A small molecule disruptor of Rb/Raf-1 interaction inhibits cell proliferation, angiogenesis, and growth of human tumor xenografts in nude mice.

    Science.gov (United States)

    Kinkade, Rebecca; Dasgupta, Piyali; Carie, Adam; Pernazza, Daniele; Carless, Melanie; Pillai, Smitha; Lawrence, Nicholas; Sebti, Said M; Chellappan, Srikumar

    2008-05-15

    Although it is well established that cyclin-dependent kinases phosphorylate and inactivate Rb, the Raf-1 kinase physically interacts with Rb and initiates the phosphorylation cascade early in the cell cycle. We have identified an orally active small molecule, Rb/Raf-1 disruptor 251 (RRD-251), that potently and selectively disrupts the Rb/Raf-1 but not Rb/E2F, Rb/prohibitin, Rb/cyclin E, and Rb/HDAC binding. The selective inhibition of Rb/Raf-1 binding suppressed the ability of Rb to recruit Raf-1 to proliferative promoters and inhibited E2F1-dependent transcriptional activity. RRD-251 inhibited anchorage-dependent and anchorage-independent growth of human cancer cells and knockdown of Rb with short hairpin RNA or forced expression of E2F1 rescued cells from RRD-251-mediated growth arrest. P.o. treatment of mice resulted in significant tumor growth suppression only in tumors with functional Rb, and this was accompanied by inhibition of angiogenesis, inhibition of proliferation, decreased phosphorylated Rb levels, and inhibition of Rb/Raf-1 but not Rb/E2F1 binding in vivo. Thus, selective targeting of Rb/Raf-1 interaction seems to be a promising approach for developing novel chemotherapeutic agents.

  6. Differential retention of tumor- and differentiation-suppressor functions in cells derived from a human squamous cell carcinoma.

    Science.gov (United States)

    Jaffe, D R; Montero-Puerner, Y; Beckett, M A; Cowan, J M; Weichselbaum, R R; Diamond, A M

    1992-01-01

    Three morphologically distinct cell lines--F.2a, V, and B.2--were isolated from a single human squamous cell carcinoma. Although all three cell lines can grow indefinitely in culture, they differ in a number of important transformation-related phenotypes. Only B.2 is strongly tumorigenic when injected into the flanks of nude mice, and only V can efficiently grow in semisolid media. The dominance of these traits was investigated by generating somatic cell hybrids among the three cell lines. F.2a was able to suppress the tumorigenicity of B.2 cells, whereas B.2 inhibited the capacity for anchorage-independent growth of V, the latter trait being a function of the ability of these epithelial cells to differentiate when deprived of support. The influence of exogenously added growth factors was also evaluated. This study indicates that the particular tumor we examined consisted of a heterogeneous population of cells with distinct growth and differentiation capacities.

  7. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    International Nuclear Information System (INIS)

    Yu Dehua; Fan, Wufang; Liu, Guohong; Nguy, Vivian; Chatterton, Jon E.; Long Shilong; Ke, Ning; Meyhack, Bernd; Bruengger, Adrian; Brachat, Arndt; Wong-Staal, Flossie; Li, Qi-Xiang

    2006-01-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showed that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties

  8. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    International Nuclear Information System (INIS)

    Jiang, Jiahua; Jedinak, Andrej; Sliva, Daniel

    2011-01-01

    Highlights: ► Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. ► CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. ► GDNT inhibits expression of CDC20 in breast cancer cells. ► GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. ► GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  9. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  10. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  11. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  12. PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness.

    Science.gov (United States)

    Wang, Xin; Jung, Youn-Sang; Jun, Sohee; Lee, Sunhye; Wang, Wenqi; Schneider, Andrea; Sun Oh, Young; Lin, Steven H; Park, Bum-Joon; Chen, Junjie; Keyomarsi, Khandan; Park, Jae-Il

    2016-02-04

    Cancer stem cells (CSCs) contribute to tumour heterogeneity, therapy resistance and metastasis. However, the regulatory mechanisms of cancer cell stemness remain elusive. Here we identify PCNA-associated factor (PAF) as a key molecule that controls cancer cell stemness. PAF is highly expressed in breast cancer cells but not in mammary epithelial cells (MECs). In MECs, ectopic expression of PAF induces anchorage-independent cell growth and breast CSC marker expression. In mouse models, conditional PAF expression induces mammary ductal hyperplasia. Moreover, PAF expression endows MECs with a self-renewing capacity and cell heterogeneity generation via Wnt signalling. Conversely, ablation of endogenous PAF induces the loss of breast cancer cell stemness. Further cancer drug repurposing approaches reveal that NVP-AUY922 downregulates PAF and decreases breast cancer cell stemness. Our results unveil an unsuspected role of the PAF-Wnt signalling axis in modulating cell plasticity, which is required for the maintenance of breast cancer cell stemness.

  13. Human papillomavirus 16 (HPV16 enhances tumor growth and cancer stemness of HPV-negative oral/oropharyngeal squamous cell carcinoma cells via miR-181 regulation

    Directory of Open Access Journals (Sweden)

    Sung Hee Lee

    2015-12-01

    Full Text Available High-risk human papillomaviruses (e. g., HPV16, HPV18 are closely associated with the development of head and neck cancers including oral/oropharyngeal squamous cell carcinoma (OSCC. We previously demonstrated immortalization of normal human oral keratinocytes by introducing high-risk HPV whole genome, suggesting that HPV infection plays an important role in the early stage of oral carcinogenesis. Although HPV infection may occur in different stages of cancer development, roles of HPV in exacerbating malignant phenotypes in already-transformed cells in the context of cancer stemness are not clearly defined. In this study, we investigated the role of HPV16 in promoting the virulence of HPV-negative OSCC. Introducing HPV16 whole genome in HPV-negative OSCC increased malignant growth and self-renewal capacity, a key characteristic of cancer stem cells (CSCs. HPV16 also enhanced other CSC properties, including aldehyde dehydrogenase 1 (ALDH1 activity, migration/invasion, and CSC-related factor expression. Mechanistically, we found that HPV16 inhibited the expression of miR-181a and miR-181d (miR-181a/d at the transcriptional level. Ectopic expression of miR-181a/d decreased anchorage independent growth and CSC phenotype of HPV16-transfected OSCC. Furthermore, silencing of miR-181a/d target genes, i. e., K-ras and ALDH1, abrogated the effects of HPV16 in HPV16-transfected OSCC, supporting the functional importance of HPV16/miR-181a/d axis in HPV-mediated oral carcinogenesis. Our study suggests that high-risk HPV infection further promotes malignancy in HPV-negative OSCC by enhancing cancer stemness via miR-181a/d regulation. Consequently, miR-181a/d may represent a novel therapeutic agent for the treatment of HPV-positive OSCC. Keywords: HPV, OSCC, cancer stem cells, miR-181

  14. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  15. Radiation Response of Cancer Stem-Like Cells From Established Human Cell Lines After Sorting for Surface Markers

    International Nuclear Information System (INIS)

    Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.; McKenna, W. Gillies; Brunner, Thomas B.

    2009-01-01

    Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (γ-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement with primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual γ-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.

  16. Anticancer and antimetastatic activities of Renieramycin M, a marine tetrahydroisoquinoline alkaloid, in human non-small cell lung cancer cells.

    Science.gov (United States)

    Halim, Hasseri; Chunhacha, Preedakorn; Suwanborirux, Khanit; Chanvorachote, Pithi

    2011-01-01

    Renieramycin M, has been shown to exhibit promising anticancer activity against some cancer cell lines; however, the underlying mechanism remains unknown. Renieramycin M was isolated from the blue sponge Xestospongia sp. Anticancer and antimetastatic activities of renieramycin M were investigated in human non-small cell lung cancer cells. Renieramycin M treatment caused p53 activation, which subsequently down-regulated anti-apoptotic MCL-1 and BCL-2 proteins, while the level of pro-apoptotic BAX protein was not altered. The subtoxic concentrations of renieramycin M significantly decreased invasion and migration abilities of cancer cells. In addition, this compound showed a strong inhibitory effect on anchorage-independent growth of the cells. These results reveal that renieramycin M induced lung cancer cells apoptosis through p53-dependent pathway and the compound may inhibit progression and metastasis of lung cancer cells.

  17. Growth and phenotypic characteristics of human nevus cells in culture.

    Science.gov (United States)

    Mancianti, M L; Herlyn, M; Weil, D; Jambrosic, J; Rodeck, U; Becker, D; Diamond, L; Clark, W H; Koprowski, H

    1988-02-01

    Nevus cells were isolated from the three cutaneous components, epidermis, basal layer, and dermis, of nonmalignant pigmented lesions and were cultured separately in the presence or absence of the phorbol ester 12-0-tetradecanoyl phorbol-13-acetate in medium that supports the rapid proliferation of melanocytic cells. The separation procedure used provided cultures that were essentially free from normal melanocytes (dermis) or fibroblasts (epidermis). In short term culture, nevus cells of all skin compartments expressed markers associated with differentiated melanocytes, such as presence of premelanosomes and melanosomes and elevated tyrosinase levels. Nevus cells also expressed melanoma-associated antigens, such as NGF-receptor, transferrin-related p97, proteoglycan, and HLA-DR as detected with monoclonal antibodies. After several subpassages, cells showed a decreased expression of melanoma-associated antigens, decreased tyrrosinase levels, and melanosomes could no longer be detected. Morphologically, these cells were similar to fibroblasts. The disappearance of melanoma-associated cell surface antigens was concomitant with the appearance of a melanocyte-associated 145 kd protein that might serve as a marker of fibroblast-like differentiation in nevus cells and normal melanocytes. Nevus cell cultures grown in the presence of 12-0-tetradecanoyl phorbol-13-acetate maintained a stable differentiated phenotype throughout their lifespan. As reported earlier, nevus cells in culture, irrespective of the presence or absence of 12-0-tetradecanoyl phorbol-13-acetate, have a finite lifespan in vitro, grow anchorage-independent in soft agar, but do not form tumors when xenografted to nude mice. These studies demonstrate that nevus cells isolated from the epidermal, basal layer, and dermal components of lesional skin can serve as models to characterize the initial steps of tumor progression in a human cell system.

  18. Glycerol-3-phosphate acyltranferase-2 behaves as a cancer testis gene and promotes growth and tumorigenicity of the breast cancer MDA-MB-231 cell line.

    Directory of Open Access Journals (Sweden)

    Magali Pellon-Maison

    Full Text Available The de novo synthesis of glycerolipids in mammalian cells begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferase (GPAT. GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions. Because it is aberrantly expressed in multiple myeloma, it has been proposed as a novel cancer testis gene. Using a bioinformatics approach, we found that GPAT2 is highly expressed in melanoma, lung, prostate and breast cancer, and we validated GPAT2 expression at the protein level in breast cancer by immunohistochemistry. In this case GPAT2 expression correlated with a higher histological grade. 5-Aza-2' deoxycytidine treatment of human cells lines induced GPAT2 expression suggesting epigenetic regulation of gene expression. In order to evaluate the contribution of GPAT2 to the tumor phenotype, we silenced its expression in MDA-MB-231 cells. GPAT2 knockdown diminished cell proliferation, anchorage independent growth, migration and tumorigenicity, and increased staurosporine-induced apoptosis. In contrast, GPAT2 over-expression increased cell proliferation rate and resistance to staurosporine-induced apoptosis. To understand the functional role of GPAT2, we performed a co-expression analysis in mouse and human testis and found a significant association with semantic terms involved in cell cycle, DNA integrity maintenance, piRNA biogenesis and epigenetic regulation. Overall, these results indicate the GPAT2 would be directly associated with the control of cell proliferation. In conclusion, we confirm GPAT2 as a cancer testis gene and that its expression contributes to the tumor phenotype of MDA-MB-231 cells.

  19. NBPF1, a tumor suppressor candidate in neuroblastoma, exerts growth inhibitory effects by inducing a G1 cell cycle arrest

    International Nuclear Information System (INIS)

    Andries, Vanessa; Vandepoele, Karl; Staes, Katrien; Berx, Geert; Bogaert, Pieter; Van Isterdael, Gert; Ginneberge, Daisy; Parthoens, Eef; Vandenbussche, Jonathan; Gevaert, Kris; Roy, Frans van

    2015-01-01

    NBPF1 (Neuroblastoma Breakpoint Family, member 1) was originally identified in a neuroblastoma patient on the basis of its disruption by a chromosomal translocation t(1;17)(p36.2;q11.2). Considering this genetic defect and the frequent genomic alterations of the NBPF1 locus in several cancer types, we hypothesized that NBPF1 is a tumor suppressor. Decreased expression of NBPF1 in neuroblastoma cell lines with loss of 1p36 heterozygosity and the marked decrease of anchorage-independent clonal growth of DLD1 colorectal carcinoma cells with induced NBPF1 expression further suggest that NBPF1 functions as tumor suppressor. However, little is known about the mechanisms involved. Expression of NBPF was analyzed in human skin and human cervix by immunohistochemistry. The effects of NBPF1 on the cell cycle were evaluated by flow cytometry. We investigated by real-time quantitative RT-PCR the expression profile of a panel of genes important in cell cycle regulation. Protein levels of CDKN1A-encoded p21 CIP1/WAF1 were determined by western blotting and the importance of p53 was shown by immunofluorescence and by a loss-of-function approach. LC-MS/MS analysis was used to investigate the proteome of DLD1 colon cancer cells with induced NBPF1 expression. Possible biological interactions between the differentially regulated proteins were investigated with the Ingenuity Pathway Analysis tool. We show that NBPF is expressed in the non-proliferative suprabasal layers of squamous stratified epithelia of human skin and cervix. Forced expression of NBPF1 in HEK293T cells resulted in a G1 cell cycle arrest that was accompanied by upregulation of the cyclin-dependent kinase inhibitor p21 CIP1/WAF1 in a p53-dependent manner. Additionally, forced expression of NBPF1 in two p53-mutant neuroblastoma cell lines also resulted in a G1 cell cycle arrest and CDKN1A upregulation. However, CDKN1A upregulation by NBPF1 was not observed in the DLD1 cells, which demonstrates that NBPF1 exerts cell

  20. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    International Nuclear Information System (INIS)

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-01-01

    Highlights: → Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. → UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. → UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm 2 ) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  1. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways

    Science.gov (United States)

    Leve, Fernanda; Peres-Moreira, Rubem J.; Binato, Renata; Abdelhay, Eliana; Morgado-Díaz, José A.

    2015-01-01

    Lysophosphatidic acid (LPA) plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by LPA to regulate the mechanisms involved in the progression of colorectal cancer (CRC). We have used three cell line models of CRC, and initially analyzed the expression profile of LPA receptors (LPAR). Then, we treated the cells with LPA and events related to their tumorigenic potential, such as migration, invasion, anchorage-independent growth, proliferation as well as apoptosis and cell cycle were evaluated. We used the Chip array technique to analyze the global gene expression profiling that occurs after LPA treatment, and we identified cell signaling pathways related to the cell cycle. The inhibition of these pathways verified the conclusions of the transcriptomic analysis. We found that the cell lines expressed LPAR1, -2 and -3 in a differential manner and that 10 μM LPA did not affect cell migration, invasion and anchorage-independent growth, but it did induce proliferation and cell cycle progression in HCT-116 cells. Although LPA in this concentration did not induce transcriptional activity of β-catenin, it promoted the activation of Rho and STAT-3. Moreover, ROCK and STAT-3 inhibitors prevented LPA-induced proliferation, but ROCK inhibition did not prevent STAT-3 activation. Finally, we observed that LPA regulates the expression of genes related to the cell cycle and that the combined inhibition of ROCK and STAT-3 prevented cell cycle progression and increased the LPA-induced expression of cyclins E1, A2 and B1 to a greater degree than either inhibitor alone. Overall, these results demonstrate that LPA increases the proliferative potential of colon adenocarcinoma HCT-116 cells through a mechanism involving cooperation between the Rho-ROCK and STAT3 pathways involved in cell

  2. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Giacinti Cristina

    2005-12-01

    relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Conclusion Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype.

  3. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  4. WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer.

    Science.gov (United States)

    Yoshikawa, Hirohide; Matsubara, Kenichi; Zhou, Xiaoling; Okamura, Shu; Kubo, Takahiko; Murase, Yaeko; Shikauchi, Yuko; Esteller, Manel; Herman, James G; Wei Wang, Xin; Harris, Curtis C

    2007-11-01

    We found aberrant DNA methylation of the WNT10B promoter region in 46% of primary hepatocellular carcinoma (HCC) and 15% of colon cancer samples. Three of 10 HCC and one of two colon cancer cell lines demonstrated low or no expression, and 5-aza-2'deoxycytidine reactivated WNT10B expression with the induction of demethylation, indicating that WNT10B is silenced by DNA methylation in some cancers, whereas WNT10B expression is up-regulated in seven of the 10 HCC cell lines and a colon cancer cell line. These results indicate that WNT10B can be deregulated by either overexpression or silencing in cancer. We found that WNT10B up-regulated beta-catenin/Tcf activity. However, WNT10B-overexpressing cells demonstrated a reduced growth rate and anchorage-independent growth that is independent of the beta-catenin/Tcf activation, because mutant beta-catenin-transduced cells did not suppress growth, and dominant-negative hTcf-4 failed to alleviate the growth suppression by WNT10B. Although WNT10B expression alone inhibits cell growth, it acts synergistically with the fibroblast growth factor (FGF) to stimulate cell growth. WNT10B is bifunctional, one function of which is involved in beta-catenin/Tcf activation, and the other function is related to the down-regulation of cell growth through a different mechanism. We suggest that FGF switches WNT10B from a negative to a positive cell growth regulator.

  5. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  6. Ezrin mediates c-Myc actions in prostate cancer cell invasion

    DEFF Research Database (Denmark)

    Chuan, Yin Choy; Iglesias Gato, Diego; Fernandez-Perez, L

    2010-01-01

    The forced overexpression of c-Myc in mouse prostate and in normal human prostate epithelial cells results in tumor transformation with an invasive phenotype. How c-Myc regulates cell invasion is poorly understood. In this study, we have investigated the interplay of c-Myc and androgens...... in the regulation of prostate cancer cell invasion. We found that c-Myc induces cell invasion and anchorage-independent growth by regulating ezrin protein expression in the presence of androgens. The activity of the ezrin promoter is controlled by androgens through c-Myc, which binds to a phylogenetically conserved...... E-Box located in the proximal promoter region. Besides, we also show that ezrin is an important regulator of c-Myc protein levels. These effects are achieved through androgen-induced changes in ezrin phosphorylation, which results in the regulation of downstream signals. These downstream signals...

  7. Antitumor Effects of Lidocaine on Human Breast Cancer Cells: AnIn VitroandIn VivoExperimental Trial.

    Science.gov (United States)

    Chamaraux-Tran, Thiên-Nga; Mathelin, Carole; Aprahamian, Marc; Joshi, Girish P; Tomasetto, Catherine; Diemunsch, Pierre; Akladios, Cherif

    2018-01-01

    Retrospective studies have suggested a protective effect of regional anesthesia against recurrence after cancer surgery. But confirmation of the in vivo antitumor effects is lacking. We examined the in vitro antitumor effects of lidocaine on various breast cancer cell lines and then assessed these properties in vivo at clinically relevant concentrations. In vitro experiments: normal breast epithelial cells (NBEC) MCF-10A and three tumor breast epithelial cells (TBEC) lines (MCF-7 luminal A, MDA-MB-231 triple-negative and SKBr3 HER2 positive) were exposed to increasing concentrations of lidocaine. Cell viability, migration and anchorage-independent growth were assessed by MTT, wound healing, and soft-agar growth assays. In vivo experiments: 6-week-old severe combined immunodeficient mice were injected intraperitoneally with MDA-MB-231 cells and were treated with intraperitoneal lidocaine or phosphate-buffered saline. The mice were euthanized when they reached experimental endpoints or sacrificed to determine peritoneal carcinomatosis index and global tumor volumes. Lidocaine reduced the viability of all the cell lines, inhibited migration of TBEC compared to the NBEC, and compromised the anchorage-independent growth of the triple-negative cells. Intraperitoneal lidocaine improved survival of mice with MDA-MB-231 peritoneal carcinomatosis using doses that are consistent with the current clinical settings for analgesia. In agreement with the notion that local anesthesia may be beneficial for cancer therapy, lidocaine has a protective effect against breast cancer cells in experimental studies. However, the beneficial impact of local anesthetics on breast cancer needs to be strengthened by additional preclinical and clinical trials. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Sublethal concentrations of the platinum(II) complex [Pt(O,O'-acac)(gamma-acac)(DMS)] alter the motility and induce anoikis in MCF-7 cells.

    Science.gov (United States)

    Muscella, Antonella; Calabriso, Nadia; Vetrugno, Carla; Urso, Loredana; Fanizzi, Francesco Paolo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2010-07-01

    We showed previously that a new Pt(II) complex ([Pt(O,O'-acac)(gamma-acac)(DMS)]) exerted high and fast apoptotic processes in MCF-7 cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also able to exert anoikis and alter the migration ability of MCF-7 cells, and to show some of the signalling events leading to these alterations. Cells were treated with sublethal doses of [Pt(O,O'-acac)(gamma-acac)(DMS)], and the efficiency of colony initiation and anchorage-independent growth was assayed; cell migration was examined by in vitro culture wounding assay. Gelatin zymography for MMP-2 and -9 activities, Western blottings of MMPs, MAPKs, Src, PKC-epsilon and FAK, after [Pt(O,O'-acac)(gamma-acac)(DMS)] treatment, were also performed. Sub-cytotoxic drug concentrations decreased the: (i) anchorage-dependent and -independent growth; (ii) migration ability; and (iii) expression and activity of MMP-2 and MMP-9. [Pt(O,O'-acac)(gamma-acac)(DMS)] provoked the generation of reactive oxygen species (ROS), and the activation of p38MAPK, Src and PKC-epsilon. p38MAPK phosphorylation, cell anoikis and migration due to [Pt(O,O'-acac)(gamma-acac)(DMS)] were blocked by PKC-epsilon inhibition. Furthermore, Src inhibition blocked the [Pt(O,O'-acac)(gamma-acac)(DMS)]-provoked activation of PKC-epsilon, while ROS generation blockage inhibited the activation of Src, and also the decrement of phosphorylated FAK observed in detached [Pt(O,O'-acac)(gamma-acac)(DMS)]-treated cells. Sublethal concentrations of [Pt(O,O'-acac)(gamma-acac)(DMS)] induced anoikis and prevented events leading to metastasis via alterations in cell migration, anchorage independency, stromal interactions and MMP activity. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] may be a promising therapeutic agent for preventing growth and metastasis of breast cancer.

  9. CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents.

    Directory of Open Access Journals (Sweden)

    Anthony Bruce

    Full Text Available The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae and human progesterone receptor membrane component 1 (PGRMC1, have revealed that conserved tyrosine (Y 73, Y79, aspartic acid (D 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G at D86 (D86G within its cytochrome b5 heme-binding (cyt-b5 domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs, we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1 and drug metabolism (CYP3A4. CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR, while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1 levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin, with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to

  10. UCI-VULV-1, a vulvar squamous carcinoma cell line.

    Science.gov (United States)

    Carpenter, P M; Gamboa-Vujicic, G; Mascarello, J T; Wilczynski, S; Bhaumik, M; Dorion, G; Manetta, A

    1995-05-01

    Squamous carcinoma of the vulva (SCV) is an uncommon neoplasm of uncertain etiology. There is evidence that there are two subgroups of SCV, one associated with human papilloma virus (HPV) and a second HPV-negative group. The UCI-VULV-1 cell line, obtained from a lymph node metastasis of an SCV, grows with a population doubling time of approximately 60 hr. The saturation density is 10(5) cells/cm2. The cell line does not exhibit anchorage independence and is weakly tumorigenic. The cells range in appearance from an abundant spindle cell to a less common larger, flat cell. All of the cells are immunoreactive for high-molecular-weight keratin, but only the flat cells, which form squamous pearls in vivo, are immunoreactive for low-molecular-weight keratin. The cell line expresses epidermal growth factor (EGF), transforming growth factor-alpha, the EGF receptor, and p53 protein. Polymerase chain reaction revealed no HPV DNA within the cells. Early passage cells exhibited karyotypic heterogeneity with few similarities to previous described SCV karyotypes. The cells display sensitivity to cis-platinum in concentrations toxic to many ovarian and cervical carcinoma lines. UCI-VULV-1 may be helpful for studying the properties of the HPV-negative form of SCV.

  11. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young H. [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Apolo, Andrea B. [Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Agarwal, Piyush K.; Bottaro, Donald P., E-mail: dbottaro@helix.nih.gov [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2014-11-25

    There is mounting evidence of oncogenic hepatocyte growth factor (HGF)/Met signaling in urothelial carcinoma (UC) of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID) mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  12. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  13. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  14. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  15. Overexpression of PGC‑1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein.

    Science.gov (United States)

    Shin, Sung-Won; Yun, Seong-Hoon; Park, Eun-Seon; Jeong, Jin-Sook; Kwak, Jong-Young; Park, Joo-In

    2015-03-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC‑1α), a coactivator interacting with multiple transcription factors, regulates several metabolic processes. Although recent studies have focused on the role of PGC‑1α in cancer, the underlying molecular mechanism has not been clarified. Therefore, we evaluated the role of PGC‑1α in cell proliferation and tumorigenesis using human embryonic kidney (HEK)293 cells and colorectal cancer cells. We established stable HEK293 cell lines expressing PGC‑1α and examined cell proliferation, anchorage-independent growth, and oncogenic potential compared to parental HEK293 cells. To identify the molecular PGC‑1α targets for increased cell proliferation and tumorigenesis, the GeneFishing™ DEG (differentially expressed genes) screening system was used. Western blot analysis and immunofluorescence staining were performed for a regulated gene product to confirm the results. Forced expression of PGC‑1α in HEK293 cells promoted cell proliferation and anchorage-independent growth in soft agar. In addition, HEK293 cells that highly expressed PGC‑1α showed enhanced tumor formation when subcutaneously injected into the bilateral flanks of immunodeficient mice. The results of the GeneFishing DEG screening system identified one upregulated gene (Acyl-CoA binding protein; ACBP). Real-time RT-PCR, western blot analysis, and immunofluorescence staining showed that ACBP was markedly increased in HEK293 cells stably overexpressing PGC‑1α (PGC‑1α-HEK293 cells) compared to those expressing an empty vector. In PGC‑1α, ACBP, and specificity protein 1 (Sp1) siRNA knockdown experiments in PGC‑1α-HEK293 and SNU-C4 cells, we also observed inhibition of cell proliferation, reduced expression of antioxidant enzymes, and increased H2O2-induced reactive oxygen species production and apoptosis. These findings suggest that PGC‑1α may promote cell proliferation and tumorigenesis through upregulation of ACBP

  16. Upregulated Expression of a Unique Gene by Hepatitis B x Antigen Promotes Hepatocellular Growth and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhaorui Lian

    2003-05-01

    Full Text Available Hepatitis B x antigen (HBxAg is a trans-activating protein that may be involved in hepatocarcinogenesis, although few natural effectors of HBxAg that participate in this process have been identified. To identify additional effectors, whole cell RNA isolated from HBxAg-positive and HBxAg-negative HepG2 cells were compared by polymerase chain reaction select cDNA subtraction, and one clone, upregulated gene, clone 11 (URG11, was chosen for further characterization. Elevated levels of URG11 mRNA and protein were observed in HBxAg-positive compared to HBxAg-negative HepG2 cells. Costaining was observed in infected liver (P<.01. URG11 stimulated cell growth in culture (P<.01, anchorage-independent growth in soft agar (P<.001, and accelerated tumor formation (P<.01, and yielded larger tumors (P<.02 in SCID mice injected subcutaneously with HepG2 cells. These data suggest that URG11 is a natural effector of HBxAg that may promote the development of hepatocellular carcinoma.

  17. Reversible adaptive plasticity: A mechanism for neuroblastoma cell heterogeneity and chemo-resistance

    Directory of Open Access Journals (Sweden)

    Lina eChakrabarti

    2012-08-01

    Full Text Available We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD or sphere forming, anchorage independent (AI growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  18. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved...... in beta cell differentiation and proliferation may lead to new ways of forming beta cells for treatment of diabetes in man....

  19. Efficacy and mechanism of action of Proellex, an antiprogestin in aromatase overexpressing and Letrozole resistant T47D breast cancer cells.

    Science.gov (United States)

    Gupta, Akash; Mehta, Rajeshwari; Alimirah, Fatouma; Peng, Xinjian; Murillo, Genoveva; Wiehle, Ronald; Mehta, Rajendra G

    2013-01-01

    Aromatase inhibitors (AI) are considered as a first line therapy for ER+PR+ breast cancers. However, many patients acquire resistance to AI. In this study, we determined the response of antiprogestin CDB-4124 (Proellex) on the aromatase overexpressing and Letrozole resistant cell lines and also studies its mechanism of action in inhibition of breast cancer cell proliferation. For these studies we generated aromatase overexpressing T47D (T47Darom) and respective control (T47Dcon) breast cancer cell lines by stable transfection with plasmid containing CYP19A1 gene, or empty vector respectively. Letrozole resistant cell line (T47DaromLR) was generated by incubating T47Darom for 75 weeks in the presence of 10 μM Letrozole. Cell proliferation was determined by MTT or crystal violet assays. Gene expressions were quantified by QRT-PCR whereas proteins were identified by western blot analyses, flow cytometry and immunofluorescence staining. Aromatase activity was determined by estradiol ELISA. The effects of Proellex on the anchorage independent growth were measured by soft agar colony formation. Statistical differences between the various groups were determined by Student's 't' test or ANOVA followed by Bonferroni's post hoc test. Results showed that T47Darom and T47DaromLR cell lines had significantly higher aromatase expression (mRNA; 80-90 fold and protein) and as a result exhibited increased aromatization of testosterone to estradiol as compared to T47Dcon. Both these cell lines showed enhanced growth in the presence of Testosterone (50-60%). In T47DaromLR cells increased PR-B and EGFR expression as compared to T47Dcon cells was observed. Proellex and other known aromatase inhibitors (Letrozole, Anastrozole, and Exemestane) inhibited testosterone induced cell proliferation and anchorage independent growth of T47Darom cells. Cell growth inhibition was significantly greater when cells were treated with Proellex alone or in combination with other AIs as compared to AIs

  20. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    Science.gov (United States)

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  1. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved......Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...

  2. Human Sarcoma growth is sensitive to small-molecule mediated AXIN stabilization.

    Directory of Open Access Journals (Sweden)

    Alessandra De Robertis

    Full Text Available Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas.

  3. Human Sarcoma growth is sensitive to small-molecule mediated AXIN stabilization.

    Science.gov (United States)

    De Robertis, Alessandra; Mennillo, Federica; Rossi, Marco; Valensin, Silvia; Tunici, Patrizia; Mori, Elisa; Caradonna, Nicola; Varrone, Maurizio; Salerno, Massimiliano

    2014-01-01

    Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas.

  4. Serglycin is implicated in the promotion of aggressive phenotype of breast cancer cells.

    Science.gov (United States)

    Korpetinou, Angeliki; Skandalis, Spyros S; Moustakas, Aristidis; Happonen, Kaisa E; Tveit, Heidi; Prydz, Kristian; Labropoulou, Vassiliki T; Giannopoulou, Efstathia; Kalofonos, Haralambos P; Blom, Anna M; Karamanos, Nikos K; Theocharis, Achilleas D

    2013-01-01

    Serglycin is a proteoglycan expressed by some malignant cells. It promotes metastasis and protects some tumor cells from complement system attack. In the present study, we show for the first time the in situ expression of serglycin by breast cancer cells by immunohistochemistry in patients' material. Moreover, we demonstrate high expression and constitutive secretion of serglycin in the aggressive MDA-MB-231 breast cancer cell line. Serglycin exhibited a strong cytoplasmic staining in these cells, observable at the cell periphery in a thread of filaments near the cell membrane, but also in filopodia-like structures. Serglycin was purified from conditioned medium of MDA-MB-231 cells, and represented the major proteoglycan secreted by these cells, having a molecular size of ~ 250 kDa and carrying chondroitin sulfate side chains, mainly composed of 4-sulfated (~ 87%), 6-sulfated (~ 10%) and non-sulfated (~ 3%) disaccharides. Purified serglycin inhibited early steps of both the classical and the lectin pathways of complement by binding to C1q and mannose-binding lectin. Stable expression of serglycin in less aggressive MCF-7 breast cancer cells induced their proliferation, anchorage-independent growth, migration and invasion. Interestingly, over-expression of serglycin lacking the glycosaminoglycan attachment sites failed to promote these cellular functions, suggesting that glycanation of serglycin is a pre-requisite for its oncogenic properties. Our findings suggest that serglycin promotes a more aggressive cancer cell phenotype and may protect breast cancer cells from complement attack supporting their survival and expansion.

  5. Serglycin is implicated in the promotion of aggressive phenotype of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Angeliki Korpetinou

    Full Text Available Serglycin is a proteoglycan expressed by some malignant cells. It promotes metastasis and protects some tumor cells from complement system attack. In the present study, we show for the first time the in situ expression of serglycin by breast cancer cells by immunohistochemistry in patients' material. Moreover, we demonstrate high expression and constitutive secretion of serglycin in the aggressive MDA-MB-231 breast cancer cell line. Serglycin exhibited a strong cytoplasmic staining in these cells, observable at the cell periphery in a thread of filaments near the cell membrane, but also in filopodia-like structures. Serglycin was purified from conditioned medium of MDA-MB-231 cells, and represented the major proteoglycan secreted by these cells, having a molecular size of ~ 250 kDa and carrying chondroitin sulfate side chains, mainly composed of 4-sulfated (~ 87%, 6-sulfated (~ 10% and non-sulfated (~ 3% disaccharides. Purified serglycin inhibited early steps of both the classical and the lectin pathways of complement by binding to C1q and mannose-binding lectin. Stable expression of serglycin in less aggressive MCF-7 breast cancer cells induced their proliferation, anchorage-independent growth, migration and invasion. Interestingly, over-expression of serglycin lacking the glycosaminoglycan attachment sites failed to promote these cellular functions, suggesting that glycanation of serglycin is a pre-requisite for its oncogenic properties. Our findings suggest that serglycin promotes a more aggressive cancer cell phenotype and may protect breast cancer cells from complement attack supporting their survival and expansion.

  6. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    Science.gov (United States)

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  8. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    International Nuclear Information System (INIS)

    Powell, Ashley A; Akare, Sandeep; Qi, Wenqing; Herzer, Pascal; Jean-Louis, Samira; Feldman, Rebecca A; Martinez, Jesse D

    2006-01-01

    There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

  9. Functional inhibition of Ubiquitin conjugating Enzyme (UBE2C) reduces proliferation and sensitizes cervical and breast cancer cells to radiation, doxorubicin, tamoxifen and letrozole

    International Nuclear Information System (INIS)

    Bose, Mayil Vahanan; Rawat, Akhilesh; Gopisetty, Gopal; Thangarajan, Rajkumar; Ganesharaja, Selvaluxmy

    2014-01-01

    Cervical cancer is the second most common cancer in women, worldwide. About 80% of cervical cancer cases occur in developing countries. Breast cancer has overtaken cervical cancer in most of the urban centers in India. In recent years, interest in the role of Ubiquitin conjugating Enzyme E2C (UBE2C) in cancer has shown a dramatic increase. Several studies have reported UBE2C as a potential oncogene and therapeutic target. The objective of the study was to elucidate radiation and chemo-sensitivity in response to functional inhibition of UBE2C in cervical and breast cancer cell lines. Taqman Real time PCR was performed to measure UBE2C levels in cervical and breast cancer cell lines. A dominant negative form of UBE2C (DN-UBE2C) was used to functionally inhibit wild type UBE2C. Cell proliferation and anchorage independent growth were measured by colorimetric assay and soft agar assay respectively. Radiation and chemo response of cell lines were assessed by colorimetric assay and clonogenic assay. Difference in sensitivity to radiation was observed among the cervical cancer cell lines studied. The growth rate of SiHa and HeLa transfected with DN- UBE2C was significantly reduced compared to vector control. Further, DN-UBE2C mediated radio-sensitivity was correlated with a significant decrease in resistance to radiation by SiHa and HeLa cells after transfection when compared to control cultures. Similarly, both the growth rate and the anchorage independent growth of MCF7 and MDAMB231 cells transfected with DN-UBE2C were significantly reduced compared to cells transfected with vector alone. MCF7 and MDAMB231 cells expressing DN-UBE2C were significantly more sensitive to different doses of radiation and doxorubicin compared to controls. In addition, DN-UBE2C transfected MCF7 cells were more sensitive to inhibition by tamoxifen and letrozole compared to vector controls. These results suggest that UBE2C can be used as a potential therapeutic target for cervical and breast

  10. Elastic Deformations During Bacterial Cell Growth

    Science.gov (United States)

    Huang, K. C.

    2010-03-01

    The wide variety of shapes and sizes found in bacterial species is almost universally defined by the cell wall, which is a cross-linked network of the material peptidoglycan. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. In previous work, we have shown that the spatial organization of the peptidoglycan network can change the mechanical equilibrium of the cell wall and result in changes in cell shape. However, experimental data on the mechanical properties of peptidoglycan is currently limited. Here, we describe a straightforward, inexpensive approach for extracting the mechanical properties of bacterial cells in gels of user-defined stiffness, using only optical microscopy to match growth kinetics to the predictions of a continuum model of cell growth. Using this simple yet general methodology, we have measured the Young's modulus for bacteria ranging across a wide variety of shapes, sizes, and cell wall thicknesses, and our method can easily be extended to other commonly studied bacteria. This method makes it possible to rapidly determine how changes in genotype and biochemistry affect the mechanical properties of the cell wall, and may be particularly relevant for studying the relationship between cell shape and structure, the genetic and molecular control of the mechanical properties of the cell wall, and the identification of antibiotics and other small molecules that affect and specifically modify the mechanical properties of the cell wall. Our work also suggests that bacteria may utilize peptidoglycan synthesis to transduce mechanosensory signals from local environment.

  11. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  12. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells.

    Science.gov (United States)

    Shi, Ying; Liu, Na; Lai, Weiwei; Yan, Bin; Chen, Ling; Liu, Shouping; Liu, Shuang; Wang, Xiang; Xiao, Desheng; Liu, Xiaoli; Mao, Chao; Jiang, Yiqun; Jia, Jiantao; Liu, Yating; Yang, Rui; Cao, Ya; Tao, Yongguang

    2018-05-28

    Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The contribution of heavy metals in cigarette smoke condensate to malignant transformation of breast epithelial cells and in vivo initiation of neoplasia through induction of a PI3K–AKT–NFκB cascade

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Purusottam; Preet, Ranjan; Das, Dipon; Satapathy, Shakti Ranjan [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India); Siddharth, Sumit [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India); Department of Infection Biology, Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751021 (India); Choudhuri, Tathagata [Department of Infection Biology, Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751021 (India); Wyatt, Michael D. [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC (United States); Kundu, Chanakya Nath, E-mail: cnkundu@gmail.com [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India)

    2014-01-01

    Cigarette smoking is a crucial factor in the development and progression of multiple cancers including breast. Here, we report that repeated exposure to a fixed, low dose of cigarette smoke condensate (CSC) prepared from Indian cigarettes is capable of transforming normal breast epithelial cells, MCF-10A, and delineate the biochemical basis for cellular transformation. CSC transformed cells (MCF-10A-Tr) were capable of anchorage-independent growth, and their anchorage dependent growth and colony forming ability were higher compared to the non-transformed MCF-10A cells. Increased expression of biomarkers representative of oncogenic transformation (NRP-1, Nectin-4), and anti-apoptotic markers (PI3K, AKT, NFκB) were also noted in the MCF-10A-Tr cells. Short tandem repeat (STR) profiling of MCF-10A and MCF-10A-Tr cells revealed that transformed cells acquired allelic variation during transformation, and had become genetically distinct. MCF-10A-Tr cells formed solid tumors when implanted into the mammary fat pads of Balb/c mice. Data revealed that CSC contained approximately 1.011 μg Cd per cigarette equivalent, and Cd (0.0003 μg Cd/1 × 10{sup 7} cells) was also detected in the lysates from MCF-10A cells treated with 25 μg/mL CSC. In similar manner to CSC, CdCl{sub 2} treatment in MCF-10A cells caused anchorage independent colony growth, higher expression of oncogenic proteins and increased PI3K–AKT–NFκB protein expression. An increase in the expression of PI3K–AKT–NFκB was also noted in the mice xenografts. Interestingly, it was noted that CSC and CdCl{sub 2} treatment in MCF-10A cells increased ROS. Collectively, results suggest that heavy metals present in cigarettes of Indian origin may substantially contribute to tumorigenesis by inducing intercellular ROS accumulation and increased expression of PI3K, AKT and NFκB proteins. - Highlights: • Repeated exposure of CSC causes malignant transformation in MCF-10A. • MCF-10A-Tr cells showed a distinct

  14. The contribution of heavy metals in cigarette smoke condensate to malignant transformation of breast epithelial cells and in vivo initiation of neoplasia through induction of a PI3K–AKT–NFκB cascade

    International Nuclear Information System (INIS)

    Mohapatra, Purusottam; Preet, Ranjan; Das, Dipon; Satapathy, Shakti Ranjan; Siddharth, Sumit; Choudhuri, Tathagata; Wyatt, Michael D.; Kundu, Chanakya Nath

    2014-01-01

    Cigarette smoking is a crucial factor in the development and progression of multiple cancers including breast. Here, we report that repeated exposure to a fixed, low dose of cigarette smoke condensate (CSC) prepared from Indian cigarettes is capable of transforming normal breast epithelial cells, MCF-10A, and delineate the biochemical basis for cellular transformation. CSC transformed cells (MCF-10A-Tr) were capable of anchorage-independent growth, and their anchorage dependent growth and colony forming ability were higher compared to the non-transformed MCF-10A cells. Increased expression of biomarkers representative of oncogenic transformation (NRP-1, Nectin-4), and anti-apoptotic markers (PI3K, AKT, NFκB) were also noted in the MCF-10A-Tr cells. Short tandem repeat (STR) profiling of MCF-10A and MCF-10A-Tr cells revealed that transformed cells acquired allelic variation during transformation, and had become genetically distinct. MCF-10A-Tr cells formed solid tumors when implanted into the mammary fat pads of Balb/c mice. Data revealed that CSC contained approximately 1.011 μg Cd per cigarette equivalent, and Cd (0.0003 μg Cd/1 × 10 7 cells) was also detected in the lysates from MCF-10A cells treated with 25 μg/mL CSC. In similar manner to CSC, CdCl 2 treatment in MCF-10A cells caused anchorage independent colony growth, higher expression of oncogenic proteins and increased PI3K–AKT–NFκB protein expression. An increase in the expression of PI3K–AKT–NFκB was also noted in the mice xenografts. Interestingly, it was noted that CSC and CdCl 2 treatment in MCF-10A cells increased ROS. Collectively, results suggest that heavy metals present in cigarettes of Indian origin may substantially contribute to tumorigenesis by inducing intercellular ROS accumulation and increased expression of PI3K, AKT and NFκB proteins. - Highlights: • Repeated exposure of CSC causes malignant transformation in MCF-10A. • MCF-10A-Tr cells showed a distinct STR profile and

  15. Aspirin suppresses growth in PI3K-mutant breast cancer by activating AMPK and inhibiting mTORC1 signaling

    Science.gov (United States)

    Henry, Whitney S.; Laszewski, Tyler; Tsang, Tiffany; Beca, Francisco; Beck, Andrew H.; McAllister, Sandra S.; Toker, Alex

    2016-01-01

    Despite the high incidence of oncogenic mutations in PIK3CA, the gene encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), PI3K inhibitors have yielded little clinical benefit for breast cancer patients. Recent epidemiological studies have suggested a therapeutic benefit from aspirin intake in cancers harboring oncogenic PIK3CA. Here we show that mutant PIK3CA-expressing breast cancer cells have greater sensitivity to aspirin-mediated growth suppression than their wild-type counterparts. Aspirin decreased viability and anchorage-independent growth of mutant PIK3CA breast cancer cells independently of its effects on cyclooxygenase-2 (COX-2) and nuclear factor-kappa B (NF-κB). We ascribed the effects of aspirin to AMP-activated protein kinase (AMPK) activation, mammalian target of rapamycin complex 1 (mTORC1) inhibition, and autophagy induction. In vivo, oncogenic PIK3CA-driven mouse mammary tumors treated daily with aspirin resulted in decreased tumor growth kinetics, while combination therapy of aspirin and a PI3K inhibitor further attenuated tumor growth. Our study supports evaluation of aspirin and PI3K pathway inhibitors as combination therapy for targeting breast cancer. PMID:27940576

  16. Stress-induced cleavage of Myc promotes cancer cell survival

    Science.gov (United States)

    Conacci-Sorrell, Maralice; Ngouenet, Celine; Anderson, Sarah; Brabletz, Thomas; Eisenman, Robert N.

    2014-01-01

    Evasion of apoptosis is critical in Myc-induced tumor progression. Here we report that cancer cells evade death under stress by activating calpain-mediated proteolysis of Myc. This generates Myc-nick, a cytoplasmic, transcriptionally inactive cleavage product of Myc. We found conversion of Myc into Myc-nick in cell lines and tissues derived from multiple cancers. In colon cancer, the production of Myc-nick is enhanced under stress conditions such as hypoxia and nutrient deprivation. Under these conditions, ectopic expression of Myc-nick promotes anchorage-independent growth and cell survival at least in part by promoting autophagy. Myc-nick also delays colon cancer cell death after treatment with chemotherapeutic drugs such as etoposide, cisplatin, and imatinib. Furthermore, colon cancer cells expressing a cleavage-resistant form of Myc undergo extensive apoptosis but are rescued by overexpression of Myc-nick. We also found that ectopic expression of Myc-nick results in the induction of the actin-bundling protein fascin, formation of filopodia, and increased cell motility—all mediators of tumor metastasis. Myc-nick-induced survival, autophagy, and motility require Myc box II (MBII), a region of Myc-nick that recruits acetyltransferases that in turn modify cytoplasmic proteins, including α-tubulin and ATG3. Our results suggest that Myc-nick-induced survival and motility contribute to colon cancer progression and metastasis. PMID:24696454

  17. Hypomethylating agents synergize with irinotecan to improve response to chemotherapy in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Anup Sharma

    Full Text Available Colorectal cancer (CRC is the second leading cause of cancer death in the United States. In the metastatic setting, the majority of patients respond to initial therapies but eventually develop resistance and progress. In this study, we test the hypothesis that priming with epigenetic therapy sensitizes CRC cell lines, which were previously resistant to subsequent chemotherapeutic agents. When multiple CRC cell lines are first exposed to 500 nM of the DNA demethylating agent, 5-aza-cytidine (AZA in-vitro, and the cells then established as in-vivo xenografts in untreated NOD-SCID mice; there is an enhanced response to cytotoxic chemotherapy with agents commonly used in CRC treatment. For irinotecan (IRI, growth diminished by 16-62 fold as assessed, by both proliferation (IC50 and anchorage independent cell growth soft agar assays. Treatment of resistant HCT116 cell line along with in-vivo, for CRC line xenografts, AZA plus IRI again exhibits this synergistic response with significant improvement in survival and tumor regression in the mice. Genome-wide expression correlates changes in pathways for cell adhesion and DNA repair with the above responses. A Phase 1/2 clinical trial testing this concept is already underway testing the clinical efficacy of this concept in IRI resistant, metastatic CRC (NCT01896856.

  18. Malignant transformation of non-neoplastic Barrett's epithelial cells through well-defined genetic manipulations.

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2010-09-01

    Full Text Available Human Barrett's cancer cell lines have numerous, poorly-characterized genetic abnormalities and, consequently, those lines have limited utility as models for studying the early molecular events in carcinogenesis. Cell lines with well-defined genetic lesions that recapitulate various stages of neoplastic progression in Barrett's esophagus would be most useful for such studies.To develop such model cell lines, we started with telomerase-immortalized, non-neoplastic Barrett's epithelial (BAR-T cells, which are spontaneously deficient in p16, and proceeded to knock down p53 using RNAi, to activate Ras by introducing oncogenic H-Ras(G12V, or both. BAR-T cells infected with either p53 RNAi or oncogenic H-Ras(G12V alone maintained cell-to-cell contact inhibition and did not exhibit anchorage-independent growth in soft agar. In contrast, the combination of p53 RNAi knockdown with expression of oncogenic H-Ras(G12V transformed the p16-deficient BAR-T cells, as evidenced by their loss of contact inhibition, by their formation of colonies in soft agar, and by their generation of tumors in immunodeficient mice.Through these experiments, we have generated a number of transformed and non-transformed cell lines with well-characterized genetic abnormalities recapitulating various stages of carcinogenesis in Barrett's esophagus. These lines should be useful models for the study of carcinogenesis in Barrett's esophagus, and for testing the efficacy of chemopreventive and chemotherapeutic agents.

  19. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  20. Mechanistic Studies of Oligonucleotide Aptamers With Potent Antiproliferative and Pro-Apoptotic Activity Against Prostate Cancer Cells

    Science.gov (United States)

    2007-05-01

    ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus -infected cells. J Virol, 1998. 72(8): p. 6699-709. 61...NCL is found abundantly in the nucleolus of growing eukaryotic cells, cellular localization of the Flag-NCL molecule was confirmed in the transfected...of FLAG- tagged PRMT5 can transform NIH-3T3 cells, such that they proliferated faster than wild type cells and could grow in an anchorage-independent

  1. Beta-catenin: A Potential Survival Marker of Breast Cancer Stem Cells

    Science.gov (United States)

    2006-09-01

    presented here, we suggest that the Wnt/ß-catenin signaling pathway may be an attractive target for directed anti-stem cell therapeutics . Although ß...explore mechanisms of therapeutic resistance in the mammary gland. 6 Results COMMA-D ß-geo Sca1 + cells are capable of self-renewal and...similar to neurospheres, four in 1000 cells isolated from a normal reduction mammoplasty survive in anchorage-independent conditions, and were able

  2. Therapeutic effects of antibiotic drug tigecycline against cervical squamous cell carcinoma by inhibiting Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Li, Hui; Jiao, Shun; Li, Xin; Banu, Hasina; Hamal, Shreejana; Wang, Xianrong

    2015-01-01

    Aberrant activation of the Wnt/β-catenin signaling pathway is common in human cervical cancers and has great potential therapeutic value. We show that tigecycline, a FDA-approved antibiotic drug, targets cervical squamous cell carcinoma through inhibiting Wnt/β-catenin signaling pathway. Tigecycline is effective in inducing apoptosis, inhibiting proliferation and anchorage-independent colony formation of Hela cells. The inhibitory effects of tigecycline are further enhanced upon combination with paclitaxel, a most commonly used chemotherapeutic drug for cervical cancer. In a cervical xenograft model, tigecycline inhibits tumor growth as a single agent and its combination with paclitaxel significantly inhibits more tumor growth throughout the duration of treatment. We further show that tigecycline decreases level of both cytoplasmic and nuclear β-catenin and suppressed Wnt/β-catenin-mediated transcription through increasing levels of Axin 1 in Hela cells. In addition, stabilization or overexpression of β-catenin using pharmacological and genetic approaches abolished the effects of tigecycline in inhibiting proliferation and inducing apoptosis of Hela cells. Our study suggests that tigecycline is a useful addition to the treatment armamentarium for cervical cancer and targeting Wnt/β-catenin represents a potential therapeutic strategy in cervical cancer. - Highlights: • We repurposed the antibiotic drug tigecycline for cervical cancer treatment. • Tigecycline is effectively against cervical cancer cells in vitro and in vivo. • Combination of tigecycline and paclitaxel is synergistic in targeting Hela cells. • Tigecycline acts on Hela cells through inhibiting Wnt/β-catenin signaling.

  3. Therapeutic effects of antibiotic drug tigecycline against cervical squamous cell carcinoma by inhibiting Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Jiao, Shun [Department of Obstetrics and Gynaecology, JingZhou Hospital Affiliated to Huazhong University of Science and Technology, Jingzhou (China); Li, Xin [Department of Obstetrics and Gynaecology, RenMin Hospital of Wuhan University, Wuhan (China); Banu, Hasina; Hamal, Shreejana [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Wang, Xianrong, E-mail: Dr.XianRong.Wang@hotmail.com [Department of Obstetrics and Gynaecology, JingZhou Hospital Affiliated to Huazhong University of Science and Technology, Jingzhou (China)

    2015-11-06

    Aberrant activation of the Wnt/β-catenin signaling pathway is common in human cervical cancers and has great potential therapeutic value. We show that tigecycline, a FDA-approved antibiotic drug, targets cervical squamous cell carcinoma through inhibiting Wnt/β-catenin signaling pathway. Tigecycline is effective in inducing apoptosis, inhibiting proliferation and anchorage-independent colony formation of Hela cells. The inhibitory effects of tigecycline are further enhanced upon combination with paclitaxel, a most commonly used chemotherapeutic drug for cervical cancer. In a cervical xenograft model, tigecycline inhibits tumor growth as a single agent and its combination with paclitaxel significantly inhibits more tumor growth throughout the duration of treatment. We further show that tigecycline decreases level of both cytoplasmic and nuclear β-catenin and suppressed Wnt/β-catenin-mediated transcription through increasing levels of Axin 1 in Hela cells. In addition, stabilization or overexpression of β-catenin using pharmacological and genetic approaches abolished the effects of tigecycline in inhibiting proliferation and inducing apoptosis of Hela cells. Our study suggests that tigecycline is a useful addition to the treatment armamentarium for cervical cancer and targeting Wnt/β-catenin represents a potential therapeutic strategy in cervical cancer. - Highlights: • We repurposed the antibiotic drug tigecycline for cervical cancer treatment. • Tigecycline is effectively against cervical cancer cells in vitro and in vivo. • Combination of tigecycline and paclitaxel is synergistic in targeting Hela cells. • Tigecycline acts on Hela cells through inhibiting Wnt/β-catenin signaling.

  4. Nerve growth factor interactions with mast cells.

    Science.gov (United States)

    Kritas, S K; Caraffa, A; Antinolfi, P; Saggini, A; Pantalone, A; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Conti, P

    2014-01-01

    Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.

  5. Transformation of non-cancerous human breast epithelial cell line MCF10A by the tobacco-specific carcinogen NNK.

    Science.gov (United States)

    Mei, Jianxun; Hu, Hongbo; McEntee, Michael; Plummer, Howard; Song, Ping; Wang, Hwa-Chain R

    2003-05-01

    Repeated treatments of non-cancerous human breast epithelial cells MCF10A with a low dose of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induced the development of cancerous cells. NNK-transformed MCF10A cells acquired cancerous properties including anchorage-independent cell growth and increased cell motility. Cellular transformation of MCF10A cells was accompanied by a loss of responsiveness to 17beta-estradiol and decreased rate of cell proliferation. NNK-transformed MCF10A cells were also tumorigenic in immunodifficient mice. Studies of changes in the regulation of intracellular signaling pathways revealed that the upstream Erk pathway was down-regulated in the NNK-transformed cells. Our data provide the first evidence suggesting that the tobacco carcinogen NNK is competent to induce malignant transformation of non-cancerous human breast epithelial cells. Our findings suggest that the tobacco carcinogen NNK may contribute to early events in human breast carcinogenesis.

  6. A Unique Model System for Tumor Progression in GBM Comprising Two Developed Human Neuro-Epithelial Cell Lines with Differential Transforming Potential and Coexpressing Neuronal and Glial Markers

    Directory of Open Access Journals (Sweden)

    Anjali Shiras

    2003-11-01

    Full Text Available The molecular mechanisms involved in tumor progression from a low-grade astrocytoma to the most malignant glioblastoma multiforme (GBM have been hampered due to lack of suitable experimental models. We have established a model of tumor progression comprising of two cell lines derived from the same astrocytoma tumor with a set of features corresponding to low-grade glioma (as in HNGC-1 and high-grade GBM (as in HNGC-2. The HNGC-1 cell line is slowgrowing, contact-inhibited, nontumorigenic, and noninvasive, whereas HNGC-2 is a rapidly proliferating, anchorage-independent, highly tumorigenic, and invasive cell line. The proliferation of cell lines is independent of the addition of exogenous growth factors. Interestingly, the HNGC-2 cell line displays a near-haploid karyotype except for a disomy of chromosome 2. The two cell lines express the neuronal precursor and progenitor markers vimentin, nestin, MAP-2, and NFP160, as well as glial differentiation protein S100μ. The HNGC-1 cell line also expresses markers of mature neurons like Tuj1 and GFAP, an astrocytic differentiation marker, hence contributing toward a more morphologically differentiated phenotype with a propensity for neural differentiation in vitro. Additionally, overexpression of epidermal growth factor receptor and c-erbB2, and loss of fibronectin were observed only in the HNGC-2 cell line, implicating the significance of these pathways in tumor progression. This in vitro model system assumes importance in unraveling the cellular and molecular mechanisms in differentiation, transformation, and gliomagenesis.

  7. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    Science.gov (United States)

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  8. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  9. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  10. The Role of a Novel Protease NES1 in Breast Cancer

    National Research Council Canada - National Science Library

    Band, Vimla

    2001-01-01

    ...). IVGG sequence is required for salt bridge formation. Transfection of NESl cDNA into NESl-negative breast cancer cell line suppressed the anchorage-independent growth and tumor formation in nude mice...

  11. RYK promotes the stemness of glioblastoma cells via the WNT/ β-catenin pathway.

    Science.gov (United States)

    Adamo, Assunta; Fiore, Danilo; De Martino, Fabio; Roscigno, Giuseppina; Affinito, Alessandra; Donnarumma, Elvira; Puoti, Ilaria; Ricci Vitiani, Lucia; Pallini, Roberto; Quintavalle, Cristina; Condorelli, Gerolama

    2017-02-21

    Glioblastoma multiforme (GBM) is characterized by a strong self-renewal potential and a poor differentiation state. Since receptor-like tyrosine kinase (RYK) activates the WNT/β-catenin pathway essential for cancer stem cell maintenance, we evaluated its contribution in conferring stemness to GBM cells. Here, we report that Ryk (related-to-receptor tyrosine kinase), an atypical tyrosine kinase receptor, is upregulated in samples from GBM patients as well as in GSCs. Ryk overexpression confers stemness properties to GBM cells through the modulation of the canonical Wnt signaling and by promoting the activation of pluripotency-related transcription factor circuitry and neurosphere formation ability. In contrast, siRNA-mediated knockdown of Ryk expression suppresses this stem-like phenotype. Rescue experiments reveal that stemness-promoting activity of Ryk is attributable, at least in part, to β-catenin stabilization. Furthermore, Ryk overexpression improves cell motility and anchorage independent cell growth. Taken together, our findings demonstrate that Ryk promotes stem cell-like and tumorigenic features to glioma cells its essential for the maintenance of GSCs and could be a target of novel therapies.

  12. CDO, A Robo-related Cell Surface Protein that Mediates Myogenic Differentiation

    Science.gov (United States)

    Kang, Jong-Sun; Mulieri, Philip J.; Miller, Cary; Sassoon, David A.; Krauss, Robert S.

    1998-01-01

    CDO, a member of the Ig/fibronectin type III repeat subfamily of transmembrane proteins that includes the axon guidance receptor Robo, was identified by virtue of its down-regulation by the ras oncogene. We report here that one prominent site of cdo mRNA expression during murine embryogenesis is the early myogenic compartment (newly formed somites, dermomyotome and myotome). CDO is expressed in proliferating and differentiating C2C12 myoblasts and in myoblast lines derived by treating 10T1/2 fibroblasts with 5-azacytidine, but not in parental 10T1/2 cells. Overexpression of CDO in C2C12 cells accelerates differentiation, while expression of secreted soluble extracellular regions of CDO inhibits this process. Oncogenic Ras is known to block differentiation of C2C12 cells via downregulation of MyoD. Reexpression of CDO in C2C12/Ras cells induces MyoD; conversely, MyoD induces CDO. Reexpression of either CDO or MyoD rescues differentiation of C2C12/Ras cells without altering anchorage-independent growth or morphological transformation. CDO and MyoD are therefore involved in a positive feedback loop that is central to the inverse relationship between cell differentiation and transformation. It is proposed that CDO mediates, at least in part, the effects of cell–cell interactions between muscle precursors that are critical in myogenesis. PMID:9786951

  13. Expression of transforming and mutational phenotypes in golden hamster embryo cells after X-irradiation

    International Nuclear Information System (INIS)

    Watanabe, Masami; Suzuki, Keiji

    1989-01-01

    It is well known that the transforming phenotypes gradually express during subculturing after treatment of chemical carcinogens. However we have a few information about radiation-carcinogenesis. In this study, we investigated that the dynamics of expression of transforming phenotypes in X-ray induced transformants of golden hamster embryo (GHE) cells. GHE cells expressed several transforming phenotypes after X-irradiation. Although morphological change was a transit phenotype expressed soon after X-irradiation, the only progeny of them expressed the other transforming phenotypes, such as anchorage-independent growth, immortality and tumorigenicity, during extensive subculturing in GHE cells. No transformants showed activation of any oncogenic genes by DNA transfection assay using NIH 3T3 cells. Numerical chromosome changes, however, may affect neoplastic progression and trisomy of chromosome 3 may play an important role in tumorigenicity. We also compared proteins of normal and transformed GHE cells with SDS-PAGE. Protein band with MW of approximately 240 Kd were absent in transformed GHE cells. Thus, chromosome number and the expression of cellular proteins may be altered in radiation induced transformed cells. More detail studies are undergoing. (author)

  14. Influence of radiosterilized cells on cells L1210 growth

    International Nuclear Information System (INIS)

    Malaise, E.P.; Decheva-Ninova, Z.; Tubiana, M.

    1975-01-01

    The effect of cells sterilized by acute X-irradiation is investigated on the growth of L 1210 cells. For this purpose young male mice DBA 2 are injected intraperitoneally or hypodermically with suspension of either live cells or live and sterile cells. The effect is considered according to survival time of treated animals and the number of leukemic cells examined in dynamics after their intraperitoneal incorporation or according to tumor size after their hypodermical incorporation. In both cases the incorporation of sterile cells has an inhibitory effect - life duration of treated mice is increased. This common effect disappears if animals are previously irradiated with 350 R. The sterile cells have also a local stimulating effect when incorporated hypodermically - time for their duplication is reduced from 15,8 to 13,7 hours. This stimulation is much more expressed when the recipients are previously irradiated - the time for tumor cells duplication being 12,2 hours. Direct stimulating effect of sterilized cells is not established when they are intraperitoneally incorporated. (author)

  15. ESE-1/ELF3 mRNA expression associates with poor survival outcomes in HER2+breast cancer patients and is critical for tumorigenesis in HER2+breast cancer cells.

    Science.gov (United States)

    Kar, Adwitiya; Gutierrez-Hartmann, Arthur

    2017-09-19

    ESE-1/Elf3 and HER2 appear to establish a positive feedback regulatory loop, but the precise role of ESE-1 in HER2 + breast tumorigenesis remains unknown. Analyzing public repositories, we found that luminal B and HER2 subtype patients with high ESE-1 mRNA levels displayed worse relapse free survival. We stably knocked down ESE-1 in HER2 + luminal B BT474 cells and HER2 subtype SKBR3 cells, which resulted in decreased cell proliferation, colony formation, and anchorage-independent growth in vitro . Stable ESE-1 knockdown inhibited HER2-dependent signaling in BT474 cells and inhibited mTOR activation in SKBR3 cells, but reduced Akt signaling in both cell types. Expression of a constitutively-active Myr-Akt partially rescued the anti-proliferative effect of ESE-1 knockdown in both cell lines. Furthermore, ESE-1 knockdown inhibited cyclin D1, resulting in a G1 delay in both cell lines. Finally, ESE-1 knockdown completely inhibited BT474 cell xenograft tumors in NOD/SCID female mice, which correlated with reduced in vitro tumorsphere formation. Taken together, these results reveal the ESE-1 controls transformation via distinct upstream signaling mechanisms in SKBR3 and BT474 cells, which ultimately impinge on Akt and cyclin D1 in both cell types to regulate cell proliferation. Particularly significant is that ESE-1 controls tumorigenesis and is associated with worse clinical outcomes in HER2 breast cancer.

  16. Downregulation of TRAF2 mediates NIK-induced pancreatic cancer cell proliferation and tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Heike Döppler

    Full Text Available BACKGROUND: Increased levels of NF-κB are hallmarks of pancreatic ductal adenocarcinoma (PDAC and both classical and alternative NF-κB activation pathways have been implicated. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that activation of the alternative pathway is a source for the high basal NF-κB activity in PDAC cell lines. Increased activity of the p52/RelB NF-κB complex is mediated through stabilization and activation of NF-κB-inducing kinase (NIK. We identify proteasomal downregulation of TNF receptor-associated factor 2 (TRAF2 as a mechanism by which levels of active NIK are increased in PDAC cell lines. Such upregulation of NIK expression and activity levels relays to increased proliferation and anchorage-independent growth, but not migration or survival of PDAC cells. CONCLUSIONS/SIGNIFICANCE: Rapid growth is one characteristic of pancreatic cancer. Our data indicates that the TRAF2/NIK/NF-κB2 pathway regulates PDAC cell tumorigenicity and could be a valuable target for therapy of this cancer.

  17. Hazard assessment of three haloacetic acids, as byproducts of water disinfection, in human urothelial cells.

    Science.gov (United States)

    Marsà, Alicia; Cortés, Constanza; Hernández, Alba; Marcos, Ricard

    2018-04-07

    Disinfection by-products (DBPs) are compounds produced in the raw water disinfection processes. Although increased cancer incidence has been associated with exposure to this complex mixture, the carcinogenic potential of individual DBPs remains not well known; thus, further studies are required. Haloacetic acids (HAAs) constitute an important group among DBPs. In this study, we have assessed the in vitro carcinogenic potential of three HAAs namely chloro-, bromo-, and iodoacetic acids. Using a long-term (8 weeks) and sub-toxic doses exposure scenario, different in vitro transformation markers were evaluated using a human urothelial cell line (T24). Our results indicate that long-term exposure to low doses of HAAs did not reproduce the genotoxic effects observed in acute treatments, where oxidative DNA damage was induced. No changes in the transformation endpoints analyzed were observed, as implied by the absence of significant morphological, cell growth rate and anchorage-independent cell growth pattern modifications. Interestingly, HAA-long-term exposed cells developed resistance to oxidative stress damage, what would explain the observed differences between acute and long-term exposure conditions. Accordingly, data obtained under long-term exposure to sub-toxic doses of HAAs could be more accurate, in terms of risk assessment, than under acute exposure scenarios. Copyright © 2018. Published by Elsevier Inc.

  18. GGNBP2 acts as a tumor suppressor by inhibiting estrogen receptor α activity in breast cancer cells.

    Science.gov (United States)

    Lan, Zi-Jian; Hu, YunHui; Zhang, Sheng; Li, Xian; Zhou, Huaxin; Ding, Jixiang; Klinge, Carolyn M; Radde, Brandie N; Cooney, Austin J; Zhang, Jin; Lei, Zhenmin

    2016-07-01

    Gametogenetin-binding protein 2 (GGNBP2) is encoded in human chromosome 17q12-q23, a region known as a breast and ovarian cancer susceptibility locus. GGNBP2, also referred to ZFP403, has a single C2H2 zinc finger and a consensus LxxLL nuclear receptor-binding motif. Here, we demonstrate that GGNBP2 expression is reduced in primary human breast tumors and in breast cancer cell lines, including T47D, MCF-7, LCC9, LY2, and MDA-MB-231 compared with normal, immortalized estrogen receptor α (ERα) negative MCF-10A and MCF10F breast epithelial cells. Overexpression of GGNBP2 inhibits the proliferation of T47D and MCF-7 ERα positive breast cancer cells without affecting MCF-10A and MCF10F. Stable GGNBP2 overexpression in T47D cells inhibits 17β-estradiol (E2)-stimulated proliferation as well as migration, invasion, anchorage-independent growth in vitro, and xenograft tumor growth in mice. We further demonstrate that GGNBP2 protein physically interacts with ERα, inhibits E2-induced activation of estrogen response element-driven reporter activity, and attenuates ER target gene expression in T47D cells. In summary, our in vitro and in vivo findings suggest that GGNBP2 is a novel breast cancer tumor suppressor functioning as a nuclear receptor corepressor to inhibit ERα activity and tumorigenesis.

  19. Functional interaction between human papillomavirus type 16 E6 and E7 oncoproteins and cigarette smoke components in lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Muñoz

    Full Text Available The smoking habit is the most important, but not a sufficient cause for lung cancer development. Several studies have reported the human papillomavirus type 16 (HPV16 presence and E6 and E7 transcripts expression in lung carcinoma cases from different geographical regions. The possible interaction between HPV infection and smoke carcinogens, however, remains unclear. In this study we address a potential cooperation between tobacco smoke and HPV16 E6 and E7 oncoproteins for alterations in proliferative and tumorigenic properties of lung epithelial cells. A549 (alveolar, tumoral and BEAS-2B (bronchial, non-tumoral cell lines were stably transfected with recombinant pLXSN vectors expressing HPV16 E6 and E7 oncoproteins and exposed to cigarette smoke condensate (CSC at different concentrations. HPV16 E6 and E7 expression was associated with loss of p53 stability, telomerase (hTERT and p16(INK4A overexpression in BEAS-2B cells as demonstrated by quantitative real-time polymerase chain reaction (qRT-PCR and western blotting (WB. In A549 cells we observed downregulation of p53 but not a significant increase of hTERT transcripts. In addition, the HPV16 E6/E7 transfected cell lines showed an increased proliferation rate and anchorage-independent growth in a HPV16 E6 and E7 expression-dependent manner. Moreover, both HPV16 E6/E7 and mock transfected cells showed an increased proliferation rate and anchorage-independent growth in the presence of 0.1 and 10 µg/mL CSC. However, this increase was significantly greater in HPV16 E6/E7 transfected cells (p<0.001. Data were confirmed by FCSE proliferation assay. The results obtained in this study are suggestive of a functional interaction between tobacco smoke and HPV16 E6/E7 oncoproteins for malignant transformation and tumorigenesis of lung epithelial cells. More studies are warranted in order to dissect the molecular mechanisms involved in this cooperation.

  20. Activation of Akt/GSK3β and Akt/Bcl-2 signaling pathways in nickel-transformed BEAS-2B cells.

    Science.gov (United States)

    Pan, Jing-Ju; Chang, Qing-Shan; Wang, Xin; Son, Young-Ok; Liu, Jiankang; Zhang, Zhuo; Bi, Yong-Yi; Shi, Xianglin

    2011-11-01

    The Akt signaling pathway has been implicated in a wide range of cellular functions involving cell survival and proliferation, angiogenesis, metabolism and cell migration. Accumulating evidence suggests that Akt perturbations play an important role in human malignancy. Here, we investigated Akt perturbation in nickel-transformed cells. Chronic treatment of human bronchial epithelial BEAS-2B cells with low doses of nickel chloride resulted in cell transformation demonstrated by anchorage-independent (AI) growth, increased cell growth and alterations of cell growth pattern. Western blot assays show that phosphorylation of Akt at Ser473, but not that of p38, JNK and ERK, was increased in nickel-transformed cells compared with controls. Inhibition of Akt or PI3K by pharmacological or biochemical interference suppressed nickel AI growth and cell growth of transformed cells. Activation of Akt led to inhibition of GSK3β by phosphorylation at Ser9 in nickel-transformed cells. In addition, two major anti-apoptotic proteins of the Bcl family, Bcl-2 and Bcl-XL, were increased in nickel-transformed cells. By employing the small interfering RNA technique (siRNA), our results showed that siRNA Akt attenuated the expression of Bcl-2 and Bcl-XL in nickel-transformed cells, indicating that induction of Bcl-2 and Bcl-XL was likely mediated through Akt. ROS generation was decreased in nickel-transformed cells compared with controls. Moreover, down-regulation of retinoblastoma protein (Rb) was observed in nickel-transformed cells. Taken together, these findings demonstrate that activation of Akt, followed by GSK3β inhibition and Bcl-2, Bcl-XL up-regulation and decrease of ROS generation, along with a synergistic effect of Rb down-regulation may cause apoptosis resistance, contributing to the overall mechanism of nickel carcinogenesis.

  1. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival. PMID:25616580

  2. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.

    1990-01-01

    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  3. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  4. The motor protein KIF14 inhibits tumor growth and cancer metastasis in lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Pei-Fang Hung

    Full Text Available The motor protein kinesin superfamily proteins (KIFs are involved in cancer progression. The depletion of one of the KIFs, KIF14, might delay the metaphase-to-anaphase transition, resulting in a binucleated status, which enhances tumor progression; however, the exact correlation between KIF14 and cancer progression remains ambiguous. In this study, using loss of heterozygosity and array comparative genomic hybridization analyses, we observed a 30% loss in the regions surrounding KIF14 on chromosome 1q in lung adenocarcinomas. In addition, the protein expression levels of KIF14 in 122 lung adenocarcinomas also indicated that approximately 30% of adenocarcinomas showed KIF14 down-regulation compared with the expression in the bronchial epithelial cells of adjacent normal counterparts. In addition, the reduced expression of KIF14 mRNA or proteins was correlated with poor overall survival (P = 0.0158 and <0.0001, respectively, and the protein levels were also inversely correlated with metastasis (P<0.0001. The overexpression of KIF14 in lung adenocarcinoma cells inhibited anchorage-independent growth in vitro and xenograft tumor growth in vivo. The overexpression and silencing of KIF14 also inhibited or enhanced cancer cell migration, invasion and adhesion to the extracellular matrix proteins laminin and collagen IV. Furthermore, we detected the adhesion molecules cadherin 11 (CDH11 and melanoma cell adhesion molecule (MCAM as cargo on KIF14. The overexpression and silencing of KIF14 enhanced or reduced the recruitment of CDH11 in the membrane fraction, suggesting that KIF14 might act through recruiting adhesion molecules to the cell membrane and modulating cell adhesive, migratory and invasive properties. Thus, KIF14 might inhibit tumor growth and cancer metastasis in lung adenocarcinomas.

  5. The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models

    Science.gov (United States)

    Mizuma, Masamichi; Rasheed, Zeshaan A.; Yabuuchi, Shinichi; Omura, Noriyuki; Campbell, Nathaniel R.; de Wilde, Roeland F.; De Oliveira, Elizabeth; Zhang, Qing; Puig, Oscar; Matsui, William; Hidalgo, Manuel; Maitra, Anirban; Rajeshkumar, NV

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, with most patients facing an adverse clinical outcome. Aberrant Notch pathway activation has been implicated in the initiation and progression of PDAC, specifically the aggressive phenotype of the disease. We used a panel of human PDAC cell lines, as well as patient-derived PDAC xenografts to determine whether pharmacological targeting of Notch pathway could inhibit PDAC growth and potentiate gemcitabine sensitivity. MRK-003, a potent and selective γ-secretase inhibitor, treatment is effective against PDAC as evidenced by the down-regulation of nuclear Notch1 intracellular domain (N1ICD), inhibition of anchorage independent growth, and reduction of tumor-initiating cells capable of extensive self-renewal. Pre-treatment of PDAC cells with MRK-003 in cell culture significantly inhibited the subsequent engraftment in immunocompromised mice. MRK-003 monotherapy significantly blocked tumor growth in 5 of 9 (56%) PDAC xenografts. A combination of MRK-003 and gemcitabine showed enhanced antitumor effects compared to gemcitabine in 4 of 9 (44%) PDAC xenografts, reduced tumor cell proliferation and induced both apoptosis and intra-tumoral necrosis. Gene expression analysis of untreated tumors indicated that up-regulation of nuclear factor kappa B (NFκB) pathway components were predictive of sensitivity to MRK-003, while up-regulation in B-cell receptor (BCR) signaling and nuclear factor erythroid-derived 2-like 2 (NRF2) pathway correlated with response to the combination of MRK-003 with gemcitabine. Our findings strengthen the rationale for small molecule inhibition of Notch signaling as a therapeutic strategy in PDAC. PMID:22752426

  6. The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts

    International Nuclear Information System (INIS)

    Bandopadhayay, Pratiti; Thomas, David M; Algar, Elizabeth; Ekert, Paul G; Jabbour, Anissa M; Riffkin, Christopher; Salmanidis, Marika; Gordon, Lavinia; Popovski, Dean; Rigby, Lin; Ashley, David M; Watkins, David N

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53 +/- and p53 -/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT

  7. Silencing the Snail-dependent RNA splice regulator ESRP1 drives malignant transformation of human pulmonary epithelial cells.

    Science.gov (United States)

    Walser, Tonya C; Jing, Zhe; Tran, Linh M; Lin, Ying Q; Yakobian, Natalie; Wang, Gerald; Krysan, Kostyantyn; Zhu, Li X; Sharma, Sherven; Lee, Mi-Heon; Belperio, John A; Ooi, Aik T; Gomperts, Brigitte N; Shay, Jerry W; Larsen, Jill E; Minna, John D; Hong, Long-Sheng; Fishbein, Michael C; Dubinett, Steven M

    2018-02-05

    Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated including in non-small cell lung cancer (NSCLC). Here we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo. Snail-mediated transformation relied upon silencing of the tumor suppressive RNA splicing regulatory protein ESRP1. In clinical specimens of NSCLC, ESRP1 loss was documented in Snail-expressing premalignant pulmonary lesions. Mechanistic investigations showed that Snail drives malignant progression in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing microRNAs are inhibited. Collectively, our results show how ESRP1 loss is a critical event in lung carcinogenesis, and they identify new candidate directions for targeted therapy of NSCLC. Copyright ©2018, American Association for Cancer Research.

  8. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma.

    Science.gov (United States)

    Williams, Christopher S; Zhang, Baolin; Smith, J Joshua; Jayagopal, Ashwath; Barrett, Caitlyn W; Pino, Christopher; Russ, Patricia; Presley, Sai H; Peng, DunFa; Rosenblatt, Daniel O; Haselton, Frederick R; Yang, Jin-Long; Washington, M Kay; Chen, Xi; Eschrich, Steven; Yeatman, Timothy J; El-Rifai, Wael; Beauchamp, R Daniel; Chang, Min S

    2011-10-01

    The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.

  9. B-cell lymphoma 6 protein stimulates oncogenicity of human breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Qiang; Kong, Xiang-jun; Xu, Xiao-chun; Lobie, Peter E; Zhu, Tao; Wu, Zheng-sheng; Liu, Xue; Yan, Hong; He, Yin-huan; Ye, Shan; Cheng, Xing-wang; Zhu, Gui-lu; Wu, Wen-yong; Wang, Xiao-nan

    2014-01-01

    B-cell lymphoma 6 (BCL6) protein, an evolutionarily conserved zinc finger transcription factor, showed to be highly expressed in various human cancers in addition to malignancies in the lymphoid system. This study investigated the role of BCL6 expression in breast cancer and its clinical significance in breast cancer patients. Expression of BCL6 protein was assessed using in situ hybridization and immunohistochemistry in 127 breast cancer patients and 50 patients with breast benign disease as well as in breast cell lines. Expression of BCL6 was restored or knocked down in two breast cancer cell lines (MCF-7 and T47D) using BCL6 cDNA and siRNA, respectively. The phenotypic change of these breast cancer cell lines was assessed using cell viability MTT, Transwell invasion, colony formation, and flow cytometry assays and in a xenograft mice model. Luciferase reporter gene, immunoblot, and qRT-PCR were used to investigate the molecular events after manipulated BCL6 expression in breast cancer cells. BCL6 protein was highly expressed in breast cancer cell lines and tissue specimens and expression of BCL6 protein was associated with disease progression and poor survival of breast cancer patients. In vitro, the forced expression of BCL6 results in increased proliferation, anchorage-independent growth, migration, invasion and survival of breast cancer cell lines, whereas knockdown of BCL6 expression reduced these oncogenic properties of breast cancer cells. Moreover, forced expression of BCL6 increased tumor growth and invasiveness in a nude mouse xenograft model. At the gene level, BCL6 was a target gene of miR-339-5p. Expression of BCL6 induced expression of CXCR4 and cyclinD1 proteins. The current study demonstrated the oncogenic property of BCL6 in breast cancer and further study could target BCL6 as a novel potential therapeutic strategy for breast cancer

  10. The cytoskeleton in plant and fungal cell tip growth

    NARCIS (Netherlands)

    Geitmann, A.; Emons, A.M.C.

    2000-01-01

    Tip-growing cells have a particular lifestyle that is characterized by the following features: (1) the cells grow in one direction, forming a cylindrical tube; (2) tip-growing cells are able to penetrate their growth environment, thus having to withstand considerable external forces; (3) the growth

  11. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the

  12. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  13. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    International Nuclear Information System (INIS)

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-01-01

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  14. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Emeli M., E-mail: Emeli.Nilsson@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Brokken, Leon J.S., E-mail: Leon.Brokken@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Haerkoenen, Pirkko L., E-mail: Pirkko.Harkonen@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden)

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  15. Genotoxicity of Cytolethal Distending Toxin (CDT on isogenic human colorectal cell lines: potential promoting effects for colorectal carcinogenesis

    Directory of Open Access Journals (Sweden)

    Vanessa eGraillot

    2016-03-01

    Full Text Available The composition of the human microbiota influences tumorigenesis, notably in colorectal cancer (CRC. Pathogenic Escherichia coli possesses a variety of virulent factors, among them the Cytolethal Distending Toxin (CDT. CDT displays dual DNase and phosphatase activities and induces DNA double strand breaks, cell cycle arrest and apoptosis in a broad range of mammalian cells. As CDT could promote malignant transformation, we investigated the cellular outcomes induced by acute and chronic exposures to E. coli CDT in normal human colon epithelial cells (HCECs. Moreover, we conducted a comparative study between isogenic derivatives cell lines of the normal HCECs in order to mimic the mutation of three major genes found in CRC genetic models: APC, KRAS and TP53. Our results demonstrate that APC and p53 deficient cells showed impaired DNA damage response after CDT exposure, whereas HCECs expressing oncogenic KRASV12 were more resistant to CDT. Compared to normal HCECs, the precancerous derivatives exhibit hallmarks of malignant transformation after a chronic exposure to CDT. HCECs defective in APC and p53 showed enhanced anchorage independent growth and genetic instability, assessed by the micronucleus formation assay. In contrast, the ability to grow independently of anchorage was not impacted by CDT chronic exposure in KRASV12 HCECs, but micronucleus formation is dramatically increased. Thus CDT does not initiate CRC by itself, but may have promoting effects in premalignant HCECs, involving different mechanisms in function of the genetic alterations associated to CRC.

  16. Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anupam Kumar

    Full Text Available Recent observations that aberrant expression of tissue transglutaminase (TG2 promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF7 and MCF7/RT as a model system, we determined the impact of TG2 expression on cell growth, cell survival, invasion, and differentiation. Our results show that TG2 expression promotes drug resistance and invasive functions by inducing epithelial-mesenchymal transition (EMT. Thus, TG2 expression supported anchorage-independent growth of mammary epithelial cells in soft-agar, disrupted the apical-basal polarity, and resulted in disorganized acini structures when grown in 3D-culture. At molecular level, TG2 expression resulted in loss of E-cadherin and increased the expression of various transcriptional repressors (Snail1, Zeb1, Zeb2 and Twist1. Tumor growth factor-beta (TGF-β failed to induce EMT in cells lacking TG2 expression, suggesting that TG2 is a downstream effector of TGF-β-induced EMT. Moreover, TG2 expression induced stem cell-like phenotype in mammary epithelial cells as revealed by enrichment of CD44(+/CD24(-/low cell populations. Overall, our studies show that aberrant expression of TG2 is sufficient for inducing EMT in epithelial cells and establish a strong link between TG2 expression and progression of metastatic breast disease.

  17. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.

    Directory of Open Access Journals (Sweden)

    Nitin Patel

    Full Text Available Prostate cancer (PCa is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT. Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC, a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.

  18. The Target of Rapamycin and Mechanisms of Cell Growth

    Directory of Open Access Journals (Sweden)

    Andrew R. Tee

    2018-03-01

    Full Text Available Mammalian target of rapamycin (mTOR, now referred to as mechanistic target of rapamycin is considered as the master regulator of cell growth. A definition of cell growth is a build-up of cellular mass through the biosynthesis of macromolecules. mTOR regulation of cell growth and cell size is complex, involving tight regulation of both anabolic and catabolic processes. Upon a growth signal input, mTOR enhances a range of anabolic processes that coordinate the biosynthesis of macromolecules to build cellular biomass, while restricting catabolic processes such as autophagy. mTOR is highly dependent on the supply of nutrients and energy to promote cell growth, where the network of signalling pathways that influence mTOR activity ensures that energy and nutrient homeostasis are retained within the cell as they grow. As well as maintaining cell size, mTOR is fundamental in the regulation of organismal growth. This review examines the complexities of how mTOR complex 1 (mTORC1 enhances the cell’s capacity to synthesis de novo proteins required for cell growth. It also describes the discovery of mTORC1, the complexities of cell growth signalling involving nutrients and energy supply, as well as the multifaceted regulation of mTORC1 to orchestrate ribosomal biogenesis and protein translation.

  19. Chemopreventive effect of punicalagin, a novel tannin component isolated from Terminalia catappa, on H-ras-transformed NIH3T3 cells.

    Science.gov (United States)

    Chen, Pin-Shern; Li, Jih-Heng

    2006-05-05

    Terminalia catappa and its major tannin component, punicalagin, have been characterized to possess antioxidative and anti-genotoxic activities. However, their effects on reactive oxygen species (ROS) mediated carcinogenesis are still unclear. In the present study, H-ras-transformed NIH3T3 cells were used to evaluate the chemopreventive effect of T. catappa water extract (TCE) and punicalagin. In the cell proliferation assay, TCE and punicalagin suppressed the proliferation of H-ras-transformed NIH3T3 cells with a dose-dependent manner but only partially affected non-transformed NIH3T3 cells proliferation. The differential cytotoxicity of TCE/punicalagin on the H-ras-transformed and non-transformed NIH3T3 cells indicated the selectivity of TCE/punicalagin against H-ras induced transformation. TCE or punicalagin treatment reduced anchorage-independent growth that could be due to a cell cycle arrest at G0/G1 phase. The intracellular superoxide level, known to modulate downstream signaling of Ras protein, was decreased by punicalagin treatments. The levels of phosphorylated JNK-1 and p38 were also decreased with punicalagin treatments. Thus, the chemopreventive effect of punicalagin against H-ras induced transformation could result from inhibition of the intracellular redox status and JNK-1/p38 activation.

  20. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    International Nuclear Information System (INIS)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon; Lim, Eun-Jung; An, Sungkwan; Park, Myung-Jin; Hyun, Jin-Won; Suh, Yongjoon; Kim, Min-Jung; Lee, Su-Jae

    2011-01-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133 + cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  1. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    It also led to marked accumulation of intracellular reactive oxygen species (ROS), a breaker of DNA strand in HCT116 cells. ..... regulating cell proliferation described in the literature have been related to malignant transformation [12]. Thus, we assumed that bergenin-induced cell growth inhibition was due to cell cycle arrest.

  2. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2 Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yu Zhao

    Full Text Available China accounts for almost half of the total number of liver cancer cases and deaths worldwide, and hepatocellular carcinoma (HCC is the most primary liver cancer. Snail family transcriptional repressor 2 (SNAI2 is known as an epithelial to mesenchymal transition-inducing transcription factor that drives neoplastic epithelial cells into mesenchymal phenotype. However, the roles of endogenous SNAI2 remain controversial in different types of malignant tumors. Herein, we surprisingly identify that anchorage-independent growth, including the formation of tumor sphere and soft agar colony, is significantly increased when SNAI2 expression is inhibited by shRNAs in HCC cells. Suppression of SNAI2 suffices to up-regulate several cancer stem genes. Although unrelated to the metastatic ability, SNAI2 inhibition does increase the efflux of Hoechst 33342 and enhance multidrug resistance in vitro and in vivo. In agreement with this data, we demonstrate for the first time that decreasing SNAI2 level can transcriptionally upregulate several ATP binding cassette (ABC transporter genes such as ABCB1. Moreover, ABC transporters' inhibitor verapamil can rescue the multidrug resistance induced by SNAI2 inhibition. Our results implicate that SNAI2 behaves as a tumor suppressor by inhibiting multidrug resistance via suppressing ABC transporter genes in HCC cells.

  3. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Armesilla-Diaz, Alejandro, E-mail: aarmesilla@cib.csic.es [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain); Elvira, Gema; Silva, Augusto [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain)

    2009-12-10

    Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, a shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.

  4. Growth of Walled Cells: From Shells to Vesicles

    Science.gov (United States)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  5. On the growth of walled cells: From shells to vesicles.

    Science.gov (United States)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  6. Separating growth from elastic deformation during cell enlargement

    Energy Technology Data Exchange (ETDEWEB)

    Proseus, T.E.; Boyer, J.S. (Univ. of Delaware, Lewes, DE (United States). Coll. of Marine Studies); Ortega, J.K.E. (Univ. of Colorado, Denver, CO (United States). Dept. of Mechanical Engineering)

    1999-02-01

    Plants change size by deforming reversibly (elastically) whenever turgor pressure changes, and by growing. The elastic deformation is independent of growth because it occurs in nongrowing cells. Its occurrence with growth has prevented growth from being observed alone. The authors investigated whether the two processes could be separated in internode cells of Chara corallina Klien ex Willd., em R.D.W. by injecting or removing cell solution with a pressure probe to change turgor while the cell length was continuously measured. Cell size changed immediately when turgor changed, and growth rates appeared to be altered. Low temperature eliminated growth but did not alter the elastic effects. This allowed elastic deformation measured at low temperature to be subtracted from elongation at warm temperature in the same cell. After te subtraction, growth alone could be observed for the first time. Alternations in turgor caused growth to change rapidly to a new, steady rate with no evidence of rapid adjustments in wall properties. This turgor response, together with the marked sensitivity of growth to temperature, suggested that the growth rate was not controlled by inert polymer extension but rather by the biochemical reactions that include a turgor-sensitive step.

  7. MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration.

    Science.gov (United States)

    Zhu, Jie; Cui, Liang; Xu, Axiang; Yin, Xiaotao; Li, Fanglong; Gao, Jiangping

    2017-03-07

    Myeloid ecotropic viral integration site 1 (MEIS1) protein plays a synergistic causative role in acute myeloid leukemia (AML). However, MEIS1 has also shown to be a potential tumor suppressor in some other cancers, such as non-small-cell lung cancer (NSCLC) and prostate cancer. Although multiple roles of MEIS1 in cancer development and progression have been identified, there is an urgent demand to discover more functions of this molecule for further therapeutic design. MEIS1 was overexpressed via adenovirus vector in clear cell renal cell carcinoma (ccRCC) cells. Western blot and real-time qPCR (quantitative Polymerase Chain Reaction) was performed to examine the protein and mRNA levels of MEIS1. Cell proliferation, survival, in vitro migration and invasion were tested by MTT, colony formation, soft-agar, transwell (in vitro invasion/migration) assays, and tumor in vivo growthwas measured on nude mice model. In addition, flow-cytometry analysis was used to detect cell cycle arrest or non-apoptotic cell death of ccRCC cells induced by MEIS1. MEIS1 exhibits a decreased expression in ccRCC cell lines than that in non-tumor cell lines. MEIS1 overexpression inhibits ccRCC cells proliferation and induces G1/S arrest concomitant with marked reduction of G1/S transition regulators, Cyclin D1 and Cyclin A. Moreover, MEIS1-1 overexpression also induces non-apoptotic cell death of ccRCC cells via decreasing the levels of pro-survival regulators Survivin and BCL-2. Transwell migration assay (TMA) shows that MEIS1 attenuates in vitro invasion and migration of ccRCC cells with down-regulated epithelial-mesenchymal transition (EMT) process. Further, in nude mice model, MEIS1 inhibits the in vivo growth of Caki-1 cells. By investigating the role of MEIS1 in ccRCC cells' survival, proliferation, anchorage-independent growth, cell cycle progress, apoptosis and metastasis, in the present work, we propose that MEIS1 may play an important role in clear cell renal cell carcinoma (cc

  8. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber).

    Science.gov (United States)

    Liang, Sitai; Mele, James; Wu, Yuehong; Buffenstein, Rochelle; Hornsby, Peter J

    2010-08-01

    The naked mole-rat (NMR, Heterocephalus glaber) is a long-lived mammal in which spontaneous cancer has not been observed. To investigate possible mechanisms for cancer resistance in this species, we studied the properties of skin fibroblasts from the NMR following transduction with oncogenes that cause cells of other mammalian species to form malignant tumors. Naked mole-rat fibroblasts were transduced with a retrovirus encoding SV40 large T antigen and oncogenic Ras(G12V). Following transplantation of transduced cells into immunodeficient mice, cells rapidly entered crisis, as evidenced by the presence of anaphase bridges, giant cells with enlarged nuclei, multinucleated cells, and cells with large number of chromosomes or abnormal chromatin material. In contrast, similarly transduced mouse and rat fibroblasts formed tumors that grew rapidly without crisis. Crisis was also observed after > 40 population doublings in SV40 TAg/Ras-expressing NMR cells in culture. Crisis in culture was prevented by additional infection of the cells with a retrovirus encoding hTERT (telomerase reverse transcriptase). SV40 TAg/Ras/hTERT-expressing NMR cells formed tumors that grew rapidly in immunodeficient mice without evidence of crisis. Crisis could also be induced in SV40 TAg/Ras-expressing NMR cells by loss of anchorage, but after hTERT transduction, cells were able to proliferate normally following loss of anchorage. Thus, rapid crisis is a response of oncogene-expressing NMR cells to growth in an in vivo environment, which requires anchorage independence, and hTERT permits cells to avoid crisis and to achieve malignant tumor growth. The unique reaction of NMR cells to oncogene expression may form part of the cancer resistance of this species.

  9. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K

    1994-01-01

    MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...

  10. Phenotypic diversity of patient-derived melanoma populations in stem cell medium.

    Science.gov (United States)

    Sztiller-Sikorska, Malgorzata; Hartman, Mariusz L; Talar, Beata; Jakubowska, Justyna; Zalesna, Izabela; Czyz, Malgorzata

    2015-06-01

    Melanomas are highly heterogeneous tumors and there is no treatment effective at achieving long-term remission for metastatic melanoma patients. Thus, an appropriate model system for studying melanoma biology and response to drugs is necessary. It has been shown that composition of the medium is a critical factor in preserving the complexity of the tumor in in vitro settings, and melanospheres maintained in stem cell medium are a good model in this respect. In the present study, we observed that not all nodular melanoma patient-derived cell populations grown in stem cell medium were capable of forming melanospheres, and cell aggregates and anchorage-independent single-cell cultures emerged instead. Self-renewing capacity and unlimited growth potential indicated the presence of cells with stem-like properties in all patient-derived populations but immunophenotype and MITF expression exhibited variability. Enhanced MITF expression and activity was observed in melanospheres in comparison with cell aggregates and single-cell culture, and hypoxic-like conditions that increased the ability of single-cell population to form melanospheres enhanced MITF expression and cell pigmentation as well. Thus, MITF seems to be a critical transcription factor for formation of both patient-derived and hypoxia-induced melanospheres. After 2 years of continuous culturing, melanospheres progressively underwent transition into cell aggregates that was accompanied by changes in expression of several MITF-dependent genes associated with melanogenesis and survival and alterations in the composition of subpopulations but not in the frequency of ABCB5-positive cells. Several biological properties of parent tumor are well preserved in patient-derived melanospheres, but during prolonged culturing the heterogeneity is substantially lost when the melanospheres are substituted by cell aggregates. This should be considered when cell aggregates instead of melanospheres are used in the study of

  11. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells

    Science.gov (United States)

    Maggio, Savannah; Takeda, Kazuyo; Stark, Felicity; Meierovics, Anda I.; Yabe, Idalia; Cowley, Siobhan C.

    2015-01-01

    The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells). Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS) and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI) via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates. PMID:26379269

  12. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Savannah Maggio

    Full Text Available The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells. Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates.

  13. HIV-1 matrix protein p17 and its variants promote human triple negative breast cancer cell aggressiveness.

    Science.gov (United States)

    Caccuri, Francesca; Giordano, Francesca; Barone, Ines; Mazzuca, Pietro; Giagulli, Cinzia; Andò, Sebastiano; Caruso, Arnaldo; Marsico, Stefania

    2017-01-01

    The introduction of cART has changed the morbidity and mortality patterns affecting HIV-infected (HIV + ) individuals. The risk of breast cancer in HIV + patients has now approached the general population risk. However, breast cancer has a more aggressive clinical course and poorer outcome in HIV + patients than in general population, without correlation with the CD4 or virus particles count. These findings suggest a likely influence of HIV-1 proteins on breast cancer aggressiveness and progression. The HIV-1 matrix protein (p17) is expressed in different tissues and organs of successfully cART-treated patients and promotes migration of different cells. Variants of p17 (vp17s), characterized by mutations and amino acid insertions, differently from the prototype p17 (refp17), also promote B-cell proliferation and transformation. Wound-healing assay, matrigel-based invasion assay, and anchorage-independent proliferation assay were employed to compare the biological activity exerted by refp17 and three different vp17s on the triple-negative human breast cancer cell line MDA-MB 231. Intracellular signaling was investigated by western blot analysis. Motility and invasiveness increased in cells treated with both refp17 and vp17s compared to untreated cells. The effects of the viral proteins were mediated by binding to the chemokine receptor CXCR2 and activation of the ERK1/2 signaling pathway. However, vp17s promoted MDA-MB 231 cell growth and proliferation in contrast to refp17-treated or not treated cells. In the context of the emerging role of the microenvironment in promoting and supporting cancer cell growth and metastatic spreading, here we provide the first evidence that exogenous p17 may play a crucial role in sustaining breast cancer cell migration and invasiveness, whereas some p17 variants may also be involved in cancer cell growth and proliferation.

  14. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  15. Another Brick in the Cell Wall: Biosynthesis Dependent Growth Model

    Science.gov (United States)

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper. PMID:24066142

  16. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  17. Organophosphorous pesticides and estrogen induce transformation of breast cells affecting p53 and c-Ha-ras genes.

    Science.gov (United States)

    Calaf, Gloria M; Echiburu-Chau, Carlos; Roy, Debasish

    2009-11-01

    Cancer progression has been associated with an increase in genomic instability indicated by inactivation of tumor suppressor genes and activation of oncogenes. Epidemiological and experimental evidence has implicated estrogens in the etiology of breast cancer. To study environmental organophosphorous pesticides is of interest since evidence indicate that pesticides may enhance cell division, increasing the risk of breast cancer. The aim was to evaluate the effects of these pesticides, such as parathion and malathion in the presence of estrogen on malignant transformation as well as on genomic instability, that is in the frequency of loss of heterozygosity (LOH) and microsatellite instability (MSI). The MCF-10F immortalized human breast epithelial cell line, that was treated with parathion or malathion alone and in combination with estrogen was used. These studies indicated that either pesticide alone or in combination with estrogen induced malignant transformation as shown by anchorage-independent growth capability and invasive characteristics in comparison to control. Such malignant phenotypic characteristics were corroborated by significant (Pmutations in c-Ha-ras for codons 12 and 61. LOH was observed in codon 12 in the presence of estrogen or malathion alone. Parathion alone and combined with estrogen induced MSI in codon 61. It can be concluded that the organophosphorous pesticides parathion and malathion induced malignant transformation of breast cells through genomic instability altering p53 and c-Ha-ras, considered pivotal to cancer process.

  18. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines.

    Science.gov (United States)

    Stolze, Britta; Reinhart, Stefanie; Bulllinger, Lars; Fröhling, Stefan; Scholl, Claudia

    2015-02-23

    KRAS mutations occur in one third of human cancers and cluster in several hotspots, with codons 12 and 13 being most commonly affected. It has been suggested that the position and type of amino acid exchange influence the transforming capacity of mutant KRAS proteins. We used MCF10A human mammary epithelial cells to establish isogenic cell lines that express different cancer-associated KRAS mutations (G12C, G12D, G12V, G13C, G13D, A18D, Q61H, K117N) at physiological or elevated levels, and investigated the biochemical and functional consequences of the different variants. The overall effects of low-expressing mutants were moderate compared to overexpressed variants, but allowed delineation of biological functions that were related to specific alleles rather than KRAS expression level. None of the mutations induced morphological changes, migratory abilities, or increased phosphorylation of ERK, PDK1, and AKT. KRAS-G12D, G12V, G13D, and K117N mediated EGF-independent proliferation, whereas anchorage-independent growth was primarily induced by K117N and Q61H. Both codon 13 mutations were associated with increased EGFR expression. Finally, global gene expression analysis of MCF10A-G13D versus MCF10A-G12D revealed distinct transcriptional changes. Together, we describe a useful resource for investigating the function of multiple KRAS mutations and provide insights into the differential effects of these variants in MCF10A cells.

  19. Effects of several physiochemical factors on cell growth and gallic ...

    African Journals Online (AJOL)

    The production of gallic acid in cell suspension culture of Acer ginnala Maxim was studied. Some physiochemical factors and chemical substances effect on the cell growth and the production of gallic acid were investigated. Cells harvested from plant tissue culture were extracted and applied to high performance liquid ...

  20. Ultrafine particles of Ulmus davidiana var. japonica induce apoptosis of gastric cancer cells via activation of caspase and endoplasmic reticulum stress.

    Science.gov (United States)

    Ahn, Joungjwa; Lee, Jong Suk; Yang, Kyung Mi

    2014-06-01

    Small-sized particles are more suitable for targeted delivery and are therapeutically more effective than large-sized particles. In this study, we investigated the anticancer effects of ultrafine particles of Ulmus davidiana var. japonica (ufUJ) on human gastric cancer cell lines SNU-1, SNU-216, and SNU-484. ufUJ induced apoptosis by the proteolytic activation of caspase-9, caspase-6, and caspase-3 and cleavage of poly (ADP-ribose) polymerase. The expression levels of the endoplasmic reticulum stress-related protein BiP markedly increased after ufUJ treatment. BiP knockdown decreased ufUJ-induced cell death. ufUJ-induced apoptosis was inhibited by the caspase-3 inhibitor z-DEVD-fmk, caspase-6 inhibitor z-VEID-fmk, and caspase-9 inhibitor z-LEHD-fmk, and by siRNAs against caspases 3, 6, and 9. Gastric cancer cells did not show anchorage-independent growth in the presence of ufUJ. However, cells treated with caspase inhibitors showed an enhanced colony-forming ability. These findings may be helpful in the prevention of gastric cancer and in the development of functional foods.

  1. Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE

    International Nuclear Information System (INIS)

    Tannheimer, Stacey L; Rehemtulla, Alnawaz; Ethier, Stephen P

    2000-01-01

    three times more transformed foci in soft agar than C1 variants (both IIIb), whereas full length FGFR2 and FGFR1 (both IIIc variants) showed no transforming activity [4]. Previous studies [5,6] have found amplification and overexpression of FGFR2 in 5-10% of primary breast cancer specimens. A recent study [7] done using a tissue array consisting of 372 primary breast cancer specimens found a 5% incidence of FGFR2 amplification. To our knowledge, none of the HBC cell lines studied thus far have an FGFR2 gene amplification, although overexpression of FGFR2 message and protein has been documented for some breast cancer cell lines [6,8,9]. SUM-52PE is a breast cancer cell line previously isolated in our laboratory that grows under serum-free and epidermal growth factor-free conditions, has high levels of tyrosine-phosphorylated membrane proteins, and has the capacity to invade and grow under anchorage-independent conditions [10,11,12]. This cell line exhibits all of the important hallmarks of transformed, highly malignant cells. Therefore, SUM-52PE was used as a model to study the diversity of FGFR2 expression in a breast cancer cell line that has true amplification and overexpression of FGFR2. This study was conducted to examine the degree of FGFR2 amplification and overexpression in the breast cancer cell line SUM-52PE. Subsequent sequencing and characterization of individual FGFR2 variants cloned from the SUM-52PE cell line was completed to determine the complexity of FGFR2 alternative splicing in the context of a highly metastatic breast cancer cell line. Southern, Northern and Western blot analyses were done in order to determine the degree of FGFR2 amplification and overexpression in the breast cancer cell line SUM-52PE. Individual FGFR2 variants were cloned out of SUM-52PE using FGFR2-specific primers in a reverse transcription (RT) polymerase chain reaction (PCR). FGFR2 cDNAs were characterized by restriction fragment analysis, sequencing and transient transfection

  2. Normal rat kidney cells secrete both phosphorylated and nonphosphorylated forms of osteopontin showing different physiological properties

    International Nuclear Information System (INIS)

    Nemir, M.; DeVouge, M.W.; Mukherjee, B.B.

    1989-01-01

    We have reported previously that the 69-kDa major phosphoprotein, secreted by normal rat kidney (NRK) cells, is osteopontin, a glycosylated bone matrix protein. Here we show that this 69-kDa osteopontin is secreted by NRK cells in both phosphorylated (pp69) and nonphosphorylated (np69) forms, with estimated isoelectric points of 3.8 and 4.5, respectively. Electrophoretic analysis of radioiodinated cell surface proteins immunoprecipitated with an anti-69-kDa osteopontin serum, demonstrates that the 69-kDa osteopontin is also present on the cell surface, but only its phosphorylated form (pp69) shows such cell surface association. Because osteopontin mediates cell adhesion and spreading, and contains an Arg-Gly-Asp-Ser cell-binding sequence, our observations strongly suggest that the cell surface localization of pp69 osteopontin is receptor-mediated, and the modification by phosphorylation may be crucial for its receptor binding activity. We also report that antisera directed against either fibronectin or 69-kDa osteopontin co-immunoprecipitate both np69 osteopontin and fibronectin as a heat-dissociable complex. In contrast, pp69 osteopontin does not co-precipitate with fibronectin. Furthermore, compared to NRK cells, vanadyl sulfate-treated NRK cells which acquire a reversible transformed phenotype, including anchorage-independent growth, show increased levels of pp69 on the cell surface, concomitant with significantly decreased levels of pp69 and elevated levels of np69 in the conditioned media. The data presented here establish transformation sensitivity of NRK cell-secreted osteopontin with respect to its secretion and cell surface localization, and demonstrate that phosphorylated and nonphosphorylated forms of osteopontin have different physiological properties, which may regulate the functional roles of this extracellular matrix protein

  3. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. MEK activity controls IL-8 expression in tamoxifen-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Although tamoxifen reduces disease progression, tamoxifen resistance occurs during the course of estrogen receptor-positive [ER+] breast cancer treatment. In the present study, we investigated the possibility that interleukin-8 (IL-8) is a prognostic marker for tamoxifen resistance and aimed to clarify the regulation of IL-8 expression in tamoxifen-resistant cells. Clinically, IL-8 expression is positively correlated with survival in luminal A type breast cancer patients, but not in luminal B type breast cancer patients. In addition, the levels of IL-8 mRNA and protein expression were significantly increased in tamoxifen-resistant (TamR) cells compared to tamoxifen-sensitive (TamS) cells. To determine the regulatory mechanism of IL-8 expression in TamR cells, we analyzed the activities of signaling molecules. Our results showed that the phosphorylation levels of MEK and Akt were markedly increased in TamR cells, but there was no change in the phosphorylation level of p38 MAPK. On the contrary, we observed that elevated IL-8 mRNA expression was suppressed by a specific MEK1/2 inhibitor, UO126, but not by the specific PI-3K inhibitor LY294002, in TamR cells, whereas, we found that overexpression of constitutively active-MEK (CA-MEK) significantly increased the levels of IL-8 mRNA expression in TamS cells. Finally, we investigated the effect of the specific CXCR1/2 inhibitor SB225002 on anchorage-independent growth of TamR cells, and found that the growth was completely suppressed by SB225002. Taken together, our results demonstrate that IL-8 expression is regulated through a MEK/ERK-dependent pathway in TamR cells, suggesting that IL-8 and its receptors may be promising therapeutic targets for overcoming tamoxifen resistance.

  5. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    Lee, Jae-Suk; Kaibara, M.; Iwaki, M.; Sasabe, H.; Suzuki, Y.; Kusakabe, M.

    1992-01-01

    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na + , N 2 + , O 2 + , Ar + and Kr + were implanted to the polymer surface with ion fluences between 1 x 10 15 and 3 x 10 17 ions/cm 2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  6. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  7. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cai Shao-xi

    2011-03-01

    Full Text Available Abstract Background Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells. Methods Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein. MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody. Results In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis, and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture. Conclusion These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.

  8. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  9. Critical telomerase activity for uncontrolled cell growth

    Science.gov (United States)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  10. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  11. Modulation of the BRCA1 Protein and Induction of Apoptosis in Triple Negative Breast Cancer Cell Lines by the Polyphenolic Compound Curcumin

    Directory of Open Access Journals (Sweden)

    Danica L. Rowe

    2009-09-01

    Full Text Available In the current study, we sought to examine the effects of curcumin in a specific type of breast cancer called triple negative breast cancer. These cancers lack expression of the estrogen and progesterone receptors and do not over-express HER2. Current treatment for triple negative breast cancers is limited to cytotoxic chemotherapy, and upon relapse, there are not any therapies currently available. We demonstrate here that the bioactive food compound curcumin induces DNA damage in triple negative breast cancer cells in association with phosphorylation, increased expression, and cytoplasmic retention of the BRCA1 protein. In addition, curcumin promotes apoptosis and prevents anchorage-independent growth and migration of triple negative breast cancer cells. Apoptosis and BRCA1 modulation were not observed in non-transformed mammary epithelial cells, suggesting curcumin may have limited non-specific toxicity. This study suggests that curcumin and potentially curcumin analogues should be tested further in the context of triple negative breast cancer. These results are novel, having never been previously reported, and suggest that curcumin could provide a novel, non-toxic therapy, which could lead to improved survival for patients with triple negative breast cancer. Curcumin should be studied further in this subset of breast cancer patients, for whom treatment options are severely limited.

  12. Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma

    Science.gov (United States)

    Chaturvedi, Aashi; Hoffman, Laura M.; Jensen, Christopher C.; Lin, Yi-Chun; Grossmann, Allie H.; Randall, R. Lor; Lessnick, Stephen L.; Welm, Alana L.; Beckerle, Mary C.

    2014-01-01

    Ewing sarcoma is the second-most-common bone cancer in children. Driven by an oncogenic chromosomal translocation that results in the expression of an aberrant transcription factor, EWS/FLI, the disease is typically aggressive and micrometastatic upon presentation. Silencing of EWS/FLI in patient-derived tumor cells results in the altered expression of hundreds to thousands of genes and is accompanied by dramatic morphological changes in cytoarchitecture and adhesion. Genes encoding focal adhesion, extracellular matrix, and actin regulatory proteins are dominant targets of EWS/FLI-mediated transcriptional repression. Reexpression of genes encoding just two of these proteins, zyxin and α5 integrin, is sufficient to restore cell adhesion and actin cytoskeletal integrity comparable to what is observed when the EWS/FLI oncogene expression is compromised. Using an orthotopic xenograft model, we show that EWS/FLI-induced repression of α5 integrin and zyxin expression promotes tumor progression by supporting anchorage-independent cell growth. This selective advantage is paired with a tradeoff in which metastatic lung colonization is compromised. PMID:25057021

  13. Expression of selected pathway-marker genes in human urothelial cells exposed chronically to a non-cytotoxic concentration of monomethylarsonous acid

    Directory of Open Access Journals (Sweden)

    Matthew Medeiros

    2014-01-01

    Full Text Available Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa at concentrations 20-fold less than arsenite. MMA(III was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A previous microarray analysis revealed only minor changes in gene expression at 1 and 2 months of chronic exposure to MMA(III, contrasting with substantial changes observed at 3 months of exposure. To address the lack of information between 2 and 3 months of exposure (the critical period of transformation, the expression of select pathway marker genes was measured by PCR array analysis on a weekly basis. Cell proliferation rate, anchorage-independent growth, and tumorigenicity in SCID mice were also assessed to determine the early, persistent phenotypic changes and their association with the changes in expression of these selected marker genes. A very similar pattern of alterations in these genes was observed when compared to the microarray results, and suggested that early perturbations in cell signaling cascades, immunological pathways, cytokine expression, and MAPK pathway are particularly important in driving malignant transformation. These results showed a strong association between the acquired phenotypic changes that occurred as early as 1–2 months of chronic MMA(III exposure, and the observed gene expression pattern that is indicative of the earliest stages in carcinogenesis.

  14. Effects of aluminium chloride and aluminium chlorohydrate on DNA repair in MCF10A immortalised non-transformed human breast epithelial cells.

    Science.gov (United States)

    Farasani, A; Darbre, P D

    2015-11-01

    Use of underarm aluminium (Al)-based antiperspirant salts may be a contributory factor in breast cancer development. At the 10th Keele meeting, Al was reported to cause anchorage-independent growth and double strand DNA breaks in MCF10A immortalised non-transformed human breast epithelial cells. We now report that exposure of MCF10A cells to Al chloride or Al chlorohydrate also compromised DNA repair systems. Long-term (19-21 weeks) exposure to Al chloride or Al chlorohydrate at a 10(-4) M concentration resulted in reduced levels of BRCA1 mRNA as determined by real-time RT-PCR and BRCA1 protein as determined by Western immunoblotting. Reduced levels of mRNA for other DNA repair genes (BRCA2, CHK1, CHK2, Rad51, ATR) were also observed using real-time RT-PCR. Loss of BRCA1 or BRCA2 gene function has long been associated with inherited susceptibility to breast cancer but these results suggest that exposure to aluminium-based antiperspirant salts may also reduce levels of these key components of DNA repair in breast epithelial cells. If Al can not only damage DNA but also compromise DNA repair systems, then there is the potential for Al to impact on breast carcinogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Extracellular vesicle-mediated phenotype switching in malignant and non-malignant colon cells

    International Nuclear Information System (INIS)

    Mulvey, Hillary E.; Chang, Audrey; Adler, Jason; Del Tatto, Michael; Perez, Kimberly; Quesenberry, Peter J.; Chatterjee, Devasis

    2015-01-01

    Extracellular vesicles (EVs) are secreted from many cells, carrying cargoes including proteins and nucleic acids. Research has shown that EVs play a role in a variety of biological processes including immunity, bone formation and recently they have been implicated in promotion of a metastatic phenotype. EVs were isolated from HCT116 colon cancer cells, 1459 non-malignant colon fibroblast cells, and tumor and normal colon tissue from a patient sample. Co-cultures were performed with 1459 cells and malignant vesicles, as well as HCT116 cells and non-malignant vesicles. Malignant phenotype was measured using soft agar colony formation assay. Co-cultures were also analyzed for protein levels using mass spectrometry. The importance of 14-3-3 zeta/delta in transfer of malignant phenotype was explored using siRNA. Additionally, luciferase reporter assay was used to measure the transcriptional activity of NF-κB. This study demonstrates the ability of EVs derived from malignant colon cancer cell line and malignant patient tissue to induce the malignant phenotype in non-malignant colon cells. Similarly, EVs derived from non-malignant colon cell lines and normal patient tissue reversed the malignant phenotype of HCT116 cells. Cells expressing an EV-induced malignant phenotype showed increased transcriptional activity of NF-κB which was inhibited by the NF--κB inhibitor, BAY117082. We also demonstrate that knock down of 14-3-3 zeta/delta reduced anchorage-independent growth of HCT116 cells and 1459 cells co-cultured with HCT derived EVs. Evidence of EV-mediated induction of malignant phenotype, and reversal of malignant phenotype, provides rational basis for further study of the role of EVs in tumorigenesis. Identification of 14-3-3 zeta/delta as up-regulated in malignancy suggests its potential as a putative drug target for the treatment of colorectal cancer

  16. Phosphoinositide turnover in cell growth and transformation

    International Nuclear Information System (INIS)

    Fleischman, L.F.

    1987-01-01

    Interaction of cells with various stimuli triggers a common signal transduction pathway involving breakdown and resynthesis of the minor membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP 2 ). Hydrolysis of PIP 2 by phospholipase C generates two key catabolites-inositol-1,4,5-trisphosphate (IP 3 ) and diacylglycerol (DAG)-which mediate and amplify cellular responses. These studies provide evidence for potential involvement of this pathway in oncogenic transformation and cell cycle progression. Altered levels of PIP 2 and its breakdown products were found in cells transformed by ras oncogenes, in contrast to untransformed counterparts. Steady-state levels of PIP 2 , DAG and inositol phosphates were measured in NIH 3T3 and NRK cells metabolically labelled with 3 H-glycerol and 3 H-inositol. DAG and inositol phosphate levels were significantly elevated by 2.5-3 fold in the transformed cells while levels of PIP 2 were decreased. These findings suggest that the ras protein may activate phospholipase C. Elevated DAG content in the transformed cells was also measured by phosphorylation of DAG using a partially purified DAG kinase, indicating that the differences seen could not be attributed to differences in labelling between the cell lines

  17. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  18. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  19. Leptin Regulation of Mammary Cell Growth

    National Research Council Canada - National Science Library

    Pighetti, Gina

    2000-01-01

    .... The studies of this proposal were designed to test the hypothesis that the interaction of leptin with its receptor regulates normal and pathologic mammary epithelial cell proliferation and/or differentiation...

  20. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  1. Establishment and characterization of a telomerase immortalized porcine luteal cells.

    Science.gov (United States)

    Zhang, Liang; Huang, Yong; Wang, Zhenyu; Luo, Xiaomao; Zhang, Hongling; Du, Qian; Chang, Lingling; Zhao, Xiaomin; Tong, Dewen

    2017-05-01

    Luteal cells play a crucial role in pregnancy through secreting progesterone to maintain pregnancy and support of fetus. However, low cellular yields and inability to passage primary porcine luteal cells (PLCs) in vitro limit the luteal cell study. Therefore, developing an immortalized porcine luteal cell line is necessary for studying luteal cells activity and function in different diseases. In this study, primary PLCs were obtained from gilts at day 30 to day 50 of gestation and immortalized by human telomerase reverse transcriptase (hTERT). The porcine corpus luteal cell line (hTERT-PLCs) expressed hTERT gene steady, maintained high hTERT activity and normal karyotype. The phase contrast microscope and transmission electron microscope observation showed primary PLCs and hTERT-PLCs were polygonal and exhibited abundant mitochondria, smooth endoplasmic reticulum and lipid droplets. 3β hydroxysteroid dehydrogenase (3βHSD) and Oil-Red-O staining showed that hTERT-PLCs at passage 30 and 50 were similar to primary PLCs. The hTERT-PLCs expressed steroidogenesis-related proteins, enzymes and receptors, such as steroidogenic acute regulatory protein, P450 cholesterol side-chain cleavage, 3βHSD, 20αHSD, luteinizing hormone receptor, progesterone receptor, prolactin receptor, estrogen receptorα/β, as well as primary PLCs. Consequently, hTERT-PLCs could secret progesterone and exhibited similar responses to luteinizing hormone and prostaglandin F2α as primary PLCs. In addition, the hTERT-PLCs did not show neoplastic transformation or anchorage independent growth. In summary, we developed an immortalized porcine luteal cell line which maintained its originally morphological, biological and functional characteristics. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  3. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M.

    2011-01-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75 NTR , a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75 NTR . For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75 NTR . This latter signaling through p75 NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75 NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  4. Virtual microstructural leaf tissue generation based on cell growth modeling

    NARCIS (Netherlands)

    Abera, M.K.; Retta, M.A.; Verboven, P.; Nicolai, B.M.; Berghuijs, H.; Struik, P.

    2016-01-01

    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the

  5. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Jianhua Gong

    Full Text Available Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency, hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  6. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert, E-mail: hcrwang@utk.edu

    2013-09-06

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive

  7. Mechanical characterization of yeast cells: effects of growth conditions.

    Science.gov (United States)

    Overbeck, A; Kampen, I; Kwade, A

    2015-10-01

    Industrial biotechnology uses microbiological cells to produce a wide range of products. While the organisms in question are well understood regarding their genetic and molecular properties, less is known about their mechanical properties. Previous work has established a testing procedure for single Saccharomyces cerevisiae cells using a Nanoindenter equipped with a Flat Punch probe, allowing the compression between two parallel surfaces. The resulting force-displacement curves clearly showed the bursting of the cells and served to determine characteristic values such as the bursting force, bursting energy and relative deformation. This study examined the mechanical characteristics of yeast cells under the influence of varying cultivation parameters, namely the pH value, temperature, aeration rate, stirrer speed and culture medium composition. It was observed that only temperature and medium composition showed significant effect on the mechanical properties of the cells. Higher temperatures during cultivation caused lower bursting forces and energies. Further analysis of the data showed that the mechanical characteristics of the cells were only influenced by parameters which also had an influence on the growth rate. In conclusion, higher growth rates result in a lower mechanical strength of the yeast cells. This study provides data on the influence of growth conditions on the mechanical properties of yeast cells. Single cell compression tests on Saccharomyces cerevisiae cells indicate that higher growth rates result in a lower mechanical strength of the cells. As in biotechnological processes mechanical degradation is often part of the downstream process to release the product from the micro-organisms, the knowledge about the mechanical properties of the cells is relevant for process optimization. © 2015 The Society for Applied Microbiology.

  8. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  9. Tempol inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and apoptosis.

    Science.gov (United States)

    Han, Yong Hwan; Park, Woo Hyun

    2012-03-01

    A stable nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-osyl (Tempol) is widely used as an antioxidant in vitro and in vivo. In this study, we investigated the effects of Tempol on the growth of As4.1 juxtaglomerular cells in relation to cell cycle and cell death. Tempol dose-dependently decreased the growth of As4.1 cells with an IC50 of ~1 mM at 48 h. DNA flow cytometry analysis and BrdU staining indicated that Tempol induced S phase arrest, which is accompanied by a downregulation of cyclin A. Tempol also induced apoptotic cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆Ψm), an activation of caspase-3 and cleavage of poly(ADP-ribose)polymerase-1 (PARP-1). Furthermore, Tempol increased reactive oxygen species (ROS) levels, and the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). MEK and JNK inhibitors significantly attenuated a growth inhibition in Tempol-treated As4.1 cells. In conclusion, Tempol inhibited the growth of As4.1 cells via cell cycle arrest and apoptosis. Tempol also activated ERK and JNK signaling, which was responsible for cell growth inhibition. Our present data provide useful information for the toxicological effects of Tempol in juxtaglomerular cells in relation to cell growth inhibition and cell death.

  10. 17β-estradiol exerts anticancer effects in anoikis-resistant hepatocellular carcinoma cell lines by targeting IL-6/STAT3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seulki, E-mail: sl10f@naver.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Lee, Minjong, E-mail: minjonglee2@naver.com [Division of Gastroenterology, Department of Internal Medicine, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do (Korea, Republic of); Kim, Jong Bin, E-mail: kkimjp@hanmail.net [Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912 (United States); Jo, Ara, E-mail: loveara0315@naver.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Cho, Eun Ju, E-mail: creatioex@gmail.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Yu, Su Jong, E-mail: ydoctor2@hanmail.net [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Lee, Jeong-Hoon, E-mail: pindra@empal.com [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Yoon, Jung-Hwan, E-mail: yoonjh@snu.ac.kr [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of); Kim, Yoon Jun, E-mail: yoonjun@snu.ac.kr [Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799 (Korea, Republic of)

    2016-05-13

    17β-Estradiol (E2) has been proven to exert protective effects against HCC; however, its mechanism on HCC proliferation and suppression of invasion remains to be further explored. Because HCC up-regulates serum Interleukin-6 (IL-6) levels and Signal Transducer and Activator of Transcription 3 (STAT3), molecular agents that attenuate IL-6/STAT3 signaling can potentially suppress HCC development. In this study, we examined involvement of E2 in anoikis resistance that induces invasion capacities and chemo-resistance. Huh-BAT and HepG2 cells grown under anchorage-independent condition were selected. The anoikis-resistant (AR) cells showed stronger chemo-resistance against sorafenib, doxorubicin, 5-fluorouracil and cisplatin compared to adherent HCC cells. AR HCC cells exhibited decreased expression of E-cadherin and increased expression of the N-cadherin and vimentin compared to adherent HCC cells. We then demonstrated that E2 suppressed cell proliferation in AR HCC cells. IL-6 treatment enhanced invasive characteristics, and E2 reversed it. Regarding mechanism of E2, it decreased in the phosphorylation of STAT3 that overexpressed on AR HCC cells. The inhibitory effect of E2 on cell growth was accompanied with cell cycle arrest at G2/M phase and caspase-3/9/PARP activation through c-Jun N-terminal Kinase (JNK) phosphorylation. Taken together, these findings suggested that E2 inhibited the proliferation of AR HCC cells through down-regulation of IL-6/STAT3 signaling. Thus, E2 can be a potential therapeutic drug for treatment of metastatic or chemo-resistant HCC. -- Highlights: •Anoikis-resistant HCC cells characterized chemo-resistant and metastatic potentials. •17β-Estradiol down-regulated IL-6/STAT3 signaling in anoikis-resistant HCC cells. •17β-Estradiol suppressed cell proliferation by inducing G2/M phase arrest and apoptosis though JNK phosphorylation.

  11. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    , the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus......Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases....

  12. Growth inhibitory effects of quercetin on bladder cancer cell.

    Science.gov (United States)

    Ma, Li; Feugang, Jean Magloire; Konarski, Patricia; Wang, Jian; Lu, Jianzhong; Fu, Shengjun; Ma, Baoliang; Tian, Binqiang; Zou, Changping; Wang, Zhingping

    2006-09-01

    Quercetin, a flavonoid found in many fruits and vegetables, belongs to an extensive class of polyphenolic compounds. Previous studies reported that quercetin inhibits the proliferation of various cancer cells and tumor growth in animal models. We investigated the growth inhibition and colony formation of quercetin on three bladder cancer cells (EJ, J82 and T24). The expression of tumor suppressor genes and oncogenes such as P53, Survivin, PTEN, as well as the methylation status of these genes was also evaluated. We observed that quercetin induced apoptosis in bladder cancer cells in a time- and dose-dependent manner. Quercetin (100 micromolars) significantly inhibited EJ, T24 and J82 cell growth accompanied by an increase in the G0/G1 phase. In all cell lines, quercetin decreased the expression of mutant P53 and Survivin proteins. However, there was no change in the level of PTEN protein. Moreover, the DNA methylation levels of the estrogen receptor (Er-beta), P16INK4a and RASSF1A were strongly decreased (from 35 to 70%) in the quercetin-treated group compared to the control. In conclusion, our study suggested that quercetin inhibits growth, colony formation and hypermethylation of bladder cancer cell lines. Quercetin-induced apoptosis might be associated with a decrease in mutant P53 and Survivin proteins.

  13. Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer

    Science.gov (United States)

    Hillebrand, Larissa E.; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas

    2016-01-01

    Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45−, showed a high tumorigenicity compared to non-CD24+CD90+CD45− cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45− TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45− cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45− cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas. PMID:27542270

  14. Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival.

    Directory of Open Access Journals (Sweden)

    Virginia Espina

    Full Text Available BACKGROUND: While it is accepted that a majority of invasive breast cancer progresses from a ductal carcinoma in situ (DCIS precursor stage, very little is known about the factors that promote survival of DCIS neoplastic cells within the hypoxic, nutrient deprived intraductal microenvironment. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the hypothesis that fresh human DCIS lesions contain pre-existing carcinoma precursor cells. We characterized these cells by full genome molecular cytogenetics (Illumina HumanCytoSNP profile, and signal pathway profiling (Reverse Phase Protein Microarray, 59 endpoints, and demonstrated that autophagy is required for survival and anchorage independent growth of the cytogenetically abnormal tumorigenic DCIS cells. Ex vivo organoid culture of fresh human DCIS lesions, without enzymatic treatment or sorting, induced the emergence of neoplastic epithelial cells exhibiting the following characteristics: a spontaneous generation of hundreds of spheroids and duct-like 3-D structures in culture within 2-4 weeks; b tumorigenicity in NOD/SCID mice; c cytogenetically abnormal (copy number loss or gain in chromosomes including 1, 5, 6, 8, 13, 17 compared to the normal karyotype of the non-neoplastic cells in the source patient's breast tissue; d in vitro migration and invasion of autologous breast stroma; and e up-regulation of signal pathways linked to, and components of, cellular autophagy. Multiple autophagy markers were present in the patient's original DCIS lesion and the mouse xenograft. We tested whether autophagy was necessary for survival of cytogenetically abnormal DCIS cells. The lysosomotropic inhibitor (chloroquine phosphate of autophagy completely suppressed the generation of DCIS spheroids/3-D structures, suppressed ex vivo invasion of autologous stroma, induced apoptosis, suppressed autophagy associated proteins including Atg5, AKT/PI3 Kinase and mTOR, eliminated cytogenetically abnormal spheroid forming

  15. Oncofetal Chondroitin Sulfate Glycosaminoglycans are Key Players in Integrin Signaling and Tumor Cell Motility

    Science.gov (United States)

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Christensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M.; Grem, Jean L.; Hollingsworth, Michael A.; Holst, Peter J.; Theander, Thor; Sorensen, Poul H.; Daugaard, Mads; Salanti, Ali

    2016-01-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum. We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion and anchorage-independent growth of tumor cells in vitro. Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns, revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin β1 (ITGB1) and integrin α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core CS synthesis enzymes Beta-1,3-Glucuronyltransferase 1 (B3GAT1) and Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and pre-incubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. Implications The cancer specific expression of oncofetal chondroitin sulfate aids in metastatic phenotypes and is a candidate target for therapy. PMID:27655130

  16. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  17. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    Science.gov (United States)

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  18. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors

    Science.gov (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1988-01-01

    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  19. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    Science.gov (United States)

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  20. SPONTANEOUS TRANSFORMATION OF CULTURED PORCINE BONE MARROW STROMAL CELLS

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Li, Haisheng

    activity detection assay and analysis of the expression of p53, Fas and c- Myc genes. Multipotency was investigated by biochemical and histological assays and analysis of gene expression. RESULTS BMSC showed a change in appearance, from the initial spindle shape to a more flatted morphology then to small...... contact shape. After additional passages, BMSC gradually acquired recovery of proliferating capacity and transformation properties such as anchorage-independent growth, chromosomal abnormality, and abnormal gene expression. The expression of P53 and Fas was decreased, while the expression of c-Myc gene...

  1. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  2. Slug increases sensitivity to tubulin-binding agents via the downregulation of βIII and βIVa-tubulin in lung cancer cells.

    Science.gov (United States)

    Tamura, Daisuke; Arao, Tokuzo; Nagai, Tomoyuki; Kaneda, Hiroyasu; Aomatsu, Keiichi; Fujita, Yoshihiko; Matsumoto, Kazuko; De Velasco, Marco A; Kato, Hiroaki; Hayashi, Hidetoshi; Yoshida, Shuhei; Kimura, Hideharu; Maniwa, Yoshimasa; Nishio, Wataru; Sakai, Yasuhiro; Ohbayashi, Chiho; Kotani, Yoshikazu; Nishimura, Yoshihiro; Nishio, Kazuto

    2013-04-01

    Transcription factor Slug/SNAI2 (snail homolog 2) plays a key role in the induction of the epithelial mesenchymal transition in cancer cells; however, whether the overexpression of Slug mediates the malignant phenotype and alters drug sensitivity in lung cancer cells remains largely unclear. We investigated Slug focusing on its biological function and involvement in drug sensitivity in lung cancer cells. Stable Slug transfectants showed typical morphological changes compared with control cells. Slug overexpression did not change the cellular proliferations; however, migration activity and anchorage-independent growth activity with an antiapoptotic effect were increased. Interestingly, stable Slug overexpression increased drug sensitivity to tubulin-binding agents including vinorelbine, vincristine, and paclitaxel (5.8- to 8.9-fold increase) in several lung cancer cell lines but did not increase sensitivity to agents other than tubulin-binding agents. Real-time RT-PCR (polymerase chain reaction) and western blotting revealed that Slug overexpression downregulated the expression of βIII and βIVa-tubulin, which is considered to be a major factor determining sensitivity to tubulin-binding agents. A luciferase reporter assay confirmed that Slug suppressed the promoter activity of βIVa-tubulin at a transcriptional level. Slug overexpression enhanced tumor growth, whereas Slug overexpression increased drug sensitivity to vinorelbine with the downregulation of βIII and βIV-tubulin in vivo. Immunohistochemistry of Slug with clinical lung cancer samples showed that Slug overexpression tended to be involved in response to tubulin-binding agents. In conclusion, our data indicate that Slug mediates an aggressive phenotype including enhanced migration activity, anoikis suppression, and tumor growth, but increases sensitivity to tubulin-binding agents via the downregulation of βIII and βIVa-tubulin in lung cancer cells.

  3. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N

    1989-01-01

    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...... biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells...... was accompanied with a continuous increase in insulin release to the culture medium reaching a 10- 20-fold increase after 2-3 months with a half-maximal effect at about 10 ng/ml human GH. The biosynthesis of (pro)insulin was markedly increased with a normal rate of conversion of proinsulin to insulin...

  4. HMGA1 Expression in Human Hepatocellular Carcinoma Correlates with Poor Prognosis and Promotes Tumor Growth and Migration in in vitro Models.

    Science.gov (United States)

    Andreozzi, Mariacarla; Quintavalle, Cristina; Benz, David; Quagliata, Luca; Matter, Matthias; Calabrese, Diego; Tosti, Nadia; Ruiz, Christian; Trapani, Francesca; Tornillo, Luigi; Fusco, Alfredo; Heim, Markus H; Ng, Charlotte Ky; Pallante, Pierlorenzo; Terracciano, Luigi M; Piscuoglio, Salvatore

    2016-12-01

    HMGA1 is a non-histone nuclear protein that regulates cellular proliferation, invasion and apoptosis and is overexpressed in many carcinomas. In this study we sought to explore the expression of HMGA1 in HCCs and cirrhotic tissues, and its effect in in vitro models. We evaluated HMGA1 expression using gene expression microarrays (59 HCCs, of which 37 were matched with their corresponding cirrhotic tissue and 5 normal liver donors) and tissue microarray (192 HCCs, 108 cirrhotic tissues and 79 normal liver samples). HMGA1 expression was correlated with clinicopathologic features and patient outcome. Four liver cancer cell lines with stable induced or knockdown expression of HMGA1 were characterized using in vitro assays, including proliferation, migration and anchorage-independent growth. HMGA1 expression increased monotonically from normal liver tissues to cirrhotic tissue to HCC (P<.01) and was associated with Edmondson grade (P<.01). Overall, 51% and 42% of HCCs and cirrhotic tissues expressed HMGA1, respectively. Patients with HMGA1-positive HCCs had earlier disease progression and worse overall survival. Forced expression of HMGA1 in liver cancer models resulted in increased cell growth and migration, and vice versa. Soft agar assay showed that forced expression of HMGA1 led to increased foci formation, suggesting an oncogenic role of HMGA1 in hepatocarcinogenesis. HMGA1 is frequently expressed in cirrhotic tissues and HCCs and its expression is associated with high Edmondson grade and worse prognosis in HCC. Our results suggest that HMGA1 may act as oncogenic driver of progression, implicating it in tumor growth and migration potential in liver carcinogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Fibroblast growth factor signaling in embryonic and cancer stem cells

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Petr; Dvořáková, D.; Hampl, Aleš

    2006-01-01

    Roč. 580, - (2006), s. 2869-2874 ISSN 0014-5793 R&D Projects: GA MŠk 1M0538; GA ČR GA301/03/1122 Institutional research plan: CEZ:AV0Z50390512 Keywords : Fibroblast growth factor 2 * Embryonic stem cell * Hematopoietic progenitor cell Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.372, year: 2006

  6. Metabolic pathways promoting cancer cell survival and growth.

    Science.gov (United States)

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  7. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  8. [Screening of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) by cDNA microarray and influence of overexpression of PAG1 on biologic behavior of human metastatic prostatic cancer cell line in vitro].

    Science.gov (United States)

    Yu, Wen-juan; Wang, Yue-wei; Xie, Zhi-gang; You, Jiang-feng; Wang, Jie-liang; Cui, Xiang-lin; Pei, Fei; Zheng, Jie

    2010-02-01

    To screen for novel gene(s) associated with tumor metastasis, and to investigate the effect of overexpression of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) on the biological behaviors of human prostatic cancer cell line PC-3M-1E8 in vitro. Four cDNA microarrays were constructed using cDNA library of prostatic cancer cells PC-3M-1E8 (high metastatic potential), PC-3M-2B4 (low metastatic potential), lung cancer cells PG-BE1 (high metastatic potential)and PG-LH7 (low metastatic potential)to screen genes which were differentially expressed according to their different metastatic properties. From a battery of differentially expressed genes, PAG1, which was markedly downregulated in both high metastatic sublines of PC-3M and PG was chosen for further investigation. Real-time PCR and Western blot were used to confirm the gene expression of PAG1 at mRNA and protein levels. Full-length coding sequence of human PAG1 was subcloned into plasmid pcDNA3.0 and the recombinant plasmids were stably transfected into PC-3M-1E8. The cell proliferation ability, anchorage-independent growth, cell cycle distribution, apoptosis rates and invasive ability were detected by MTT, and in addition, soft agar colony formation, flow cytometry analysis and matrigel invasion assay using Boyden chamber were also carried out respectively. All experiments contained pcDNA3.0-PAG1-transfected clones, vector transfected clones and non-transfected parental cells. A total of 327 differentially expressed genes were obtained between the high and low metastatic sublines of PC-3M cells, including 123 upregulated and 204 downregulated genes in PC-3M-1E8. A total of 281 genes, including 167 upregulated and 114 downregulated genes were obtained in PG-BE1 cells. Nine genes were simultaneously downregulated and 8 genes were upregulated in both high metastatic cell lines of PC-3M and PG. The expression of PAG1 at mRNA and protein level were decreased in the high metastatic subline PC-3M-1

  9. Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth.

    Science.gov (United States)

    Zaidi, Sayyed K; Lian, Jane B; van Wijnen, Andre; Stein, Janet L; Stein, Gary S

    2017-01-01

    Epigenetic control of gene expression contributes to dynamic responsiveness of cellular processes that include cell cycle, cell growth and differentiation. Mitotic gene bookmarking, retention of sequence-specific transcription factors at target gene loci, including the RUNX regulatory proteins, provide a novel dimension to epigenetic regulation that sustains cellular identity in progeny cells following cell division. Runx transcription factor retention during mitosis coordinates physiological control of cell growth and differentiation in a broad spectrum of biological conditions, and is associated with compromised gene expression in pathologies that include cancer.

  10. The cytoskeleton in plant cell growth: lessons from root hairs

    NARCIS (Netherlands)

    Ketelaar, M.J.; Emons, A.M.C.

    2001-01-01

    In this review, we compare expansion of intercalary growing cells, in which growth takes place over a large surface, and root hairs, where expansion occurs at the tip only. Research that pinpoints the role of the cytoskeleton and the cytoplasmic free calcium in both root hairs and intercalary

  11. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  12. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells.

    Science.gov (United States)

    Watanabe, Takahiro; Sugaya, Makoto; Atkins, April M; Aquilino, Elisabeth A; Yang, Aparche; Borris, Debra L; Brady, John; Blauvelt, Andrew

    2003-06-01

    Tumor spindle cells in all clinical types of Kaposi's sarcoma (KS) are infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Although KSHV contains more than 80 genes, only a few are expressed in tumor spindle cells, including latency-associated nuclear antigen (LANA) and k-cyclin (kCYC). To assess the oncogenic potential of LANA and kCYC, primary human umbilical vein endothelial cells (HUVEC) and murine NIH 3T3 cells were stably transduced by using recombinant retroviruses expressing these genes or the known viral oncogene simian virus 40 large T antigen (LTAg). Interestingly, LANA-transduced HUVEC proliferated faster and demonstrated a greatly prolonged life span (mean +/- standard deviation, 38.3 +/- 11.0 passages) than untransduced cells and vector-transduced cells (<20 passages). By contrast, kCYC-transduced HUVEC did not proliferate faster or live longer than control cells. LANA- and kCYC-transduced HUVEC, but not LTAg-transduced HUVEC, retained the ability to form normal vessel-like structures in an in vitro model of angiogenesis. In cellular assays of transformation, LANA- and kCYC-transduced NIH 3T3 cells demonstrated minimal or no anchorage-independent growth in soft agar and no tumorigenicity when injected into nude mice, unlike LTAg-transduced NIH 3T3 cells. Lastly, gene expression profiling revealed down-regulation, or silencing, of a number of genes within LANA-transduced HUVEC. Taken together, these results suggest that KSHV LANA is capable of inducing prolonged life span, but not transformation, in primary human cells. These findings may explain why LANA-expressing spindle cells proliferate within KS tumors, yet most often do not demonstrate biologic characteristics of transformation or true malignant conversion.

  13. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  14. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs

  16. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either......Epidermal growth factor (EGF), a low-molecular-weight polypeptide (G. Carpenter and S. Cohen, 1979, Annu. Rev. Biochem. 48, 193-216), stimulates the proliferation and keratinisation of cultured embryonic epidermis (S. Cohen, 1965, Dev. Biol. 12, 394-407) and promotes epidermal growth, thickening......, and keratinisation when injected into neonatal mice (S. Cohen and G.A. Elliott, 1963, J. Invest. Dermatol, 40, 1-5). We have determined the distribution of the available receptors for epidermal growth factor in rat skin using autoradiography following incubation of explants with 125I-labelled mouse EGF. EGF...

  17. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W

    2007-01-01

    Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients....... The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant...... T cells enhance proliferation of the malignant cells in an SE- and MHC class II-dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4(+) T-cell lines also enhance proliferation of the malignant cells. The growth...

  18. Growth and development after hematopoietic cell transplant in children.

    Science.gov (United States)

    Sanders, J E

    2008-01-01

    Hematopoietic cell transplantation (HCT) following high-dose chemotherapy or chemoradiotherapy for children with malignant or nonmalignant hematologic disorders has resulted in an increasing number of long-term disease-free survivors. The preparative regimens include high doses of alkylating agents, such as CY with or without BU, and may include TBI. These agents impact the neuroendocrine system in growing children and their subsequent growth and development. Children receiving high-dose CY or BUCY have normal thyroid function, but those who receive TBI-containing regimens may develop thyroid function abnormalities. Growth is not impacted by chemotherapy-only preparative regimens, but TBI is likely to result in growth hormone deficiency and decreased growth rates that need to be treated with synthetic growth hormone therapy. Children who receive high-dose CY-only have normal development through puberty, whereas those who receive BUCY have a high incidence of delayed pubertal development. Following fractionated TBI preparative regimens, approximately half of the patients have normal pubertal development. These data demonstrate that the growth and development problems after HCT are dependent upon the preparative regimen received. All children should be followed for years after HCT for detection of growth and development abnormalities that are treatable with appropriate hormone therapy.

  19. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    2010-09-01

    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  20. TOR and paradigm change: cell growth is controlled.

    Science.gov (United States)

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients. © 2016 Hall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures.

    Directory of Open Access Journals (Sweden)

    Alessandro Furlan

    Full Text Available The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in

  2. DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells.

    Science.gov (United States)

    Shafiei, F; Rahnama, F; Pawella, L; Mitchell, M D; Gluckman, P D; Lobie, P E

    2008-04-17

    Directed by microarray analyses, we report that autocrine human growth hormone (hGH) increased the mRNA and protein expression of DNA methyltransferase 1 (DNMT1), DNMT3A and DNMT3B in mammary carcinoma cells. Autocrine hGH stimulation of DNMT3A and DNMT3B expression was mediated by JAK2 and Src kinases, and treatment of mammary carcinoma cells with the DNMT inhibitor, 5'-aza-2'-deoxycytidine (AZA), abrogated autocrine hGH-stimulated cellular proliferation, apoptosis and anchorage-independent growth. AZA reversed the epitheliomesenchymal transition of mammary carcinoma cells induced by autocrine hGH, to an epithelioid morphology and abrogated cell migration stimulated by autocrine hGH. Autocrine hGH-stimulated hypermethylation of the first exon of the PLAKOGLOBIN gene and AZA abrogated the ability of autocrine hGH to repress plakoglobin gene transcription. Small interfering RNA (siRNA)-mediated depletion of the individual DNMT molecules did not release autocrine hGH repression of PLAKOGLOBIN promoter activity nor did individual DNMT depletion affect autocrine hGH-stimulated migration. However, concomitant siRNA-mediated depletion of both DNMT3A and DNMT3B abrogated hypermethylation of the PLAKOGLOBIN gene stimulated by autocrine hGH and subsequent repression of plakoglobin gene transcription and increased cell migration. Thus, the autocrine hGH-stimulated increases in DNMT3A and DNMT3B expression mediate repression of plakoglobin gene transcription by direct hypermethylation of its promoter and consequent phenotypic conversion of mammary carcinoma cells. Autocrine hGH, therefore, utilizes DNA methylation as a mechanism to exert its oncogenic effects in mammary carcinoma cells.

  3. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  4. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  5. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    Science.gov (United States)

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  6. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    markedly with age. This decrease in receptor number is similar in trend to the known drop in basal cell [3H]thymidine labelling index which occurs over the same time period. The data suggest that the distribution of EGF receptors and EGF cell surface receptor number in skin are important in the spatial......, and keratinisation when injected into neonatal mice (S. Cohen and G.A. Elliott, 1963, J. Invest. Dermatol, 40, 1-5). We have determined the distribution of the available receptors for epidermal growth factor in rat skin using autoradiography following incubation of explants with 125I-labelled mouse EGF. EGF...... receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either...

  7. Senescent Fibroblasts Promote Neoplastic Transformation of Partially Transformed Ovarian Epithelial Cells in a Three-dimensional Model of Early Stage Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kate Lawrenson

    2010-04-01

    Full Text Available Most epithelial ovarian cancers are diagnosed postmenopausally, although the well-established epidemiological risk factors (parity, oral contraceptive use are premenopausal. We hypothesized that accumulation of senescent fibroblasts, together with concomitant loss of presenescent fibroblasts within the ovarian cortex, promotes initiation and early development of ovarian cancer from ovarian surface epithelial (OSE cells. To test this, we established immortalized OSE (IOSE cell lines that mimic early neoplastic transformation by overexpressing the CMYC oncogene (IOSECMYC and normal ovarian presenescent (PSN and senescent (SEN fibroblast cell lines. We then evaluated the ability of PSN and SEN fibroblasts to transform IOSE and IOSECMYC after coculture. SEN fibroblasts significantly enhanced neoplastic development of IOSECMYC cells; there was an up to 15-fold increase in migration of IOSECMYC cells cocultured with SEN fibroblasts compared with PSN fibroblasts. Conditioned medium from SEN fibroblasts promoted anchorage-independent growth of IOSECMYC cells. We studied fibroblast-epithelial cell interactions in heterotypic three-dimensional spheroid models. Dual immunohistochemical staining of spheroids for a proliferation marker (MIB-1 and cytokeratin-18 indicated that SEN fibroblasts induce approximately a five-fold increase in proliferation of IOSECMYC cells relative to cocultures with PSN fibroblasts. SEN, but not PSN fibroblasts, also induced nuclear atypia in epithelial cells in three-dimensional spheroids. These data suggest for the first time that the accumulation of senescent, or loss of presenescent fibroblasts, can promote neoplastic development of partially transformed OSE cells in vitro and illustrates the power of using three-dimensional heterotypic modeling to gain better insights into the etiology underlying the development of epithelial ovarian cancer.

  8. Silencing of reversion-inducing cysteine-rich protein with Kazal motifs stimulates hyperplastic phenotypes through activation of epidermal growth factor receptor and hypoxia-inducible factor-2α.

    Directory of Open Access Journals (Sweden)

    You Mie Lee

    Full Text Available Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb, but decreased the expression of p21(cip1, p27(kip1, and p16(ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.

  9. In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model

    International Nuclear Information System (INIS)

    Pasco, Sylvie; Ramont, Laurent; Venteo, Lydie; Pluot, Michel; Maquart, Francois-Xavier; Monboisse, Jean-Claude

    2004-01-01

    Our previous studies demonstrated that a synthetic peptide encompassing residues 185-203 of the noncollagenous (NC1) domain of the α3 chain of type IV collagen, named tumstatin, inhibits in vitro melanoma cell proliferation and migration. In the present study, B16F1 melanoma cells were stably transfected to overexpress the complete tumstatin domain (Tum 1-232) or its C-terminal part, encompassing residues 185-203 (Tum 183-232). Tumstatin domain overexpression inhibited B16F1 in vitro cell proliferation, anchorage-independent growth, and invasive properties. For studying the in vivo effect of overexpression, representative clones were subcutaneously injected into the left side of C57BL6 mice. In vivo tumor growth was decreased by -60% and -56%, respectively, with B16F1 cells overexpressing Tum 1-232 or Tum 183-232 compared to control cells. This inhibitory effect was associated with a decrease of in vivo cyclin D1 expression. We also demonstrated that the overexpression of Tum 1-232 or Tum 183-232 induced an in vivo down-regulation of proteolytic cascades involving matrix metalloproteinases (MMPs), especially the production or activation of MMP-2, MMP-9, MMP-13, as well as MMP-14. The plasminogen activation system was also altered in tumors with a decrease of urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) and a strong increase of plasminogen activator inhibitor-1 (PAI-1). Collectively, our results demonstrate that tumstatin or its C-terminal antitumor fragment, Tum 183-232, inhibits in vivo melanoma progression by triggering an intracellular transduction pathway, which involves a cyclic AMP (cAMP)-dependent mechanism

  10. Modeling bacterial population growth from stochastic single-cell dynamics.

    Science.gov (United States)

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  11. Video Bioinformatics Analysis of Human Embryonic Stem Cell Colony Growth

    Science.gov (United States)

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-01-01

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion. PMID:20495527

  12. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  13. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  14. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  15. Fibroblast growth factor-10 is a mitogen for urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bagai, Shelly; Rubio, Eric; Cheng, Jang-Fang; Sweet, Robert; Thomas, Regi; Fuchs, Elaine; Grady, Richard; Mitchell, Michael; Bassuk, James A.

    2002-02-01

    Fibroblast Growth Factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.

  16. Inhibition of cancer cell growth by ruthenium complexes.

    Science.gov (United States)

    Iida, Joji; Bell-Loncella, Elisabeth T; Purazo, Marc L; Lu, Yifeng; Dorchak, Jesse; Clancy, Rebecca; Slavik, Julianna; Cutler, Mary Lou; Shriver, Craig D

    2016-02-12

    Previous studies suggest that certain transition metal complexes, such as cisplatin, are efficacious for treating various cancer types, including ovarian, lung, and breast. In order to further evaluate ruthenium (Ru) complexes as potential anti-cancer agents, we synthesized and evaluated Ru-arene complexes. Two complexes with the general formula [Ru (η (6)-p-cym) (N-N) Cl](+) were tested for their abilities to inhibit cancer cells. The complex with o-phenylenediamine as the N-N ligand (o-PDA) significantly inhibited growth of breast (MDA-MB-231, MCF-7, SKBR-3, and SUM149), lymphoma (Raji), melanoma (Bowes), and osteosarcoma (HT1080); however, the complex with o-benzoquinonediimine (o-BQDI) was ineffective except for SUM149. In contrast, o-PDA failed to inhibit growth of human breast epithelial cells, MCF-10A. Treatment of MDA-MBA-231 cells with o-PDA resulted in a significant reduction of productions of PDGF-AA, GM-CSF, and VEGF-A proteins at the transcriptional levels. Finally, we demonstrated that o-PDA synergistically inhibited MDA-MB-231 cell growth with cyclophosphamide but not doxorubicin or paclitaxel. These results suggest that Ru-arene complexes are promising anti-cancer drugs that inhibit progression and metastasis by blocking multiple processes for breast and other types of cancer.

  17. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  18. γ-Synuclein confers both pro-invasive and doxorubicin-mediated pro-apoptotic properties to the colon adenocarcinoma LS 174T cell line.

    Science.gov (United States)

    Goh, Kai-Wey; Say, Yee-How

    2015-09-01

    γ-synuclein, a neuronal protein of the synuclein family, is involved in carcinogenesis. To investigate its role in colorectal cancer carcinogenesis, we overexpressed γ-synuclein in LS 174T colon adenocarcinoma cell line (termed LS 174T-γsyn). When compared with untransfected/mock transfectants, LS 174T-γsyn had higher mobility in scratch wound assay, tend to scatter more in cell-scattering assay, and had enhanced lamellipodia and filopodia formation in cell-spreading assay. Enhanced adhesion of LS 174T-γsyn to fibronectin and collagen and significantly higher proliferation rate showed that γ-synuclein was able to increase extracellular matrix interaction and promoted proliferation of LS 174T. Higher invasiveness of LS 174T-γsyn was evidenced by enhanced invasion to the bottom of the basement membrane in Boyden chamber assay. However, LS 174T-γsyn were significantly more vulnerable to doxorubicin, vincristine and hydrogen peroxide insults, via apoptotic cell death. LS 174T-γsyn also had reduced anchorage-independent growth as shown by reduced colony formation and reduced anoikis resistance. We found that overexpression of γ-synuclein confers both pro-invasive and doxorubicin-mediated pro-apoptotic properties to LS 174T, where the former was mediated through enhanced cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation, while the latter involved hepatocyte growth factor (HGF) downregulation and subsequent downstream signalling pathways possibly involving extracellular signal-regulated kinases (ERK)1/2, p38α, c-Jun N-terminal kinase (JNK) pan and Signal Transducers and Activators of Transcription (STATs). This unexpected contrasting finding as compared to other similar studies on colon cancer cell lines might be correlated with the degree of tumour advancement from which the cell lines were derived from.

  19. Elevated YKL40 is associated with advanced prostate cancer (PCa) and positively regulates invasion and migration of PCa cells.

    Science.gov (United States)

    Jeet, Varinder; Tevz, Gregor; Lehman, Melanie; Hollier, Brett; Nelson, Colleen

    2014-10-01

    Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa. © 2014 The authors.

  20. Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor.

    Science.gov (United States)

    Scianna, Marco; Merks, Roeland M H; Preziosi, Luigi; Medico, Enzo

    2009-09-07

    The different behaviors of colonies of two cell lines, ARO (thyroid carcinoma-derived cells) and MLP-29 (mouse liver progenitor cells), in response to hepatocyte growth factor (HGF) are described deducing suitable cellular Potts models (CPM). It is shown how increased motility and decreased adhesiveness are responsible for cell-cell dissociation and tissue invasion in the ARO cells. On the other hand, it is shown that, in addition to the biological mechanisms above, it is necessary to include directional persistence in cell motility and HGF diffusion to describe the scattering and the branching processes characteristic of MLP-29 cells.

  1. Zebularine inhibits the growth of A549 lung cancer cells via cell cycle arrest and apoptosis.

    Science.gov (United States)

    You, Bo Ra; Park, Woo Hyun

    2014-11-01

    Zebularine (Zeb) is a DNA methyltransferase (DNMT) inhibitor to that has an anti-tumor effect. Here, we evaluated the anti-growth effect of Zeb on A549 lung cancer cells in relation to reactive oxygen species (ROS) levels. Zeb inhibited the growth of A549 cells with an IC50 of approximately 70 µM at 72 h. Cell cycle analysis indicated that Zeb induced an S phase arrest in A549 cells. Zeb also induced A549 cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm ), Bcl-2 decrease, Bax increase, p53 increase and activation of caspase-3 and -8. In contrast, Zeb mildly inhibited the growth of human pulmonary fibroblast (HPF) normal cells and lead to a G1 phase arrest. Zeb did not induce apoptosis in HPF cells. In relation to ROS level, Zeb increased ROS level in A549 cells and induced glutathione (GSH) depletion. The well-known antioxidant, N-acetyl cysteine (NAC) prevented the death of Zeb-treated A549 cells. Moreover, Zeb increased the level of thioredoxin reductase 1 (TrxR1) in A549 cells. While the overexpression of TrxR1 attenuated death and ROS level in Zeb-treated A549 cells, the downregulation of TrxR1 intensified death and ROS level in these cells. In conclusion, Zeb inhibited the growth of A549 lung cancer cells via cell cycle arrest and apoptosis. The inhibition was influenced by ROS and TrxR1 levels. © 2013 Wiley Periodicals, Inc.

  2. Fluctuation of Parameters in Tumor Cell Growth Model

    Science.gov (United States)

    Ai, Bao-Quan; Wang, Xian-Ju; Liu, Guo-Tao; Liu, Liang-Gang

    2003-07-01

    We study the steady state properties of a logistic growth model in the presence of Gaussian white noise. Based on the corresponding Fokker-Planck equation the steady state solution of the probability distribution function and its extrema have been investigated. It is found that the fluctuation of the tumor birth rate reduces the population of the cells while the fluctuation of predation rate can prevent the population of tumor cells from going into extinction. Noise in the system can induce the phase transition. The project supported by National Natural Science Foundation of China under Grant No. 10275099 and Natural Science Foundation of Guangdong Province of China under Grant Nos. 021707 and 001182

  3. Genomic imprinting in development, growth, behavior and stem cells.

    Science.gov (United States)

    Plasschaert, Robert N; Bartolomei, Marisa S

    2014-05-01

    Genes that are subject to genomic imprinting in mammals are preferentially expressed from a single parental allele. This imprinted expression of a small number of genes is crucial for normal development, as these genes often directly regulate fetal growth. Recent work has also demonstrated intricate roles for imprinted genes in the brain, with important consequences on behavior and neuronal function. Finally, new studies have revealed the importance of proper expression of specific imprinted genes in induced pluripotent stem cells and in adult stem cells. As we review here, these findings highlight the complex nature and developmental importance of imprinted genes.

  4. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...... of the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1......-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed...

  5. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.

    Science.gov (United States)

    Blenis, John

    2017-09-21

    Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  7. The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product.

    Science.gov (United States)

    van der Toorn, Marco; Sewer, Alain; Marescotti, Diego; Johne, Stephanie; Baumer, Karin; Bornand, David; Dulize, Remi; Merg, Celine; Corciulo, Maica; Scotti, Elena; Pak, Claudius; Leroy, Patrice; Guedj, Emmanuel; Ivanov, Nikolai; Martin, Florian; Peitsch, Manuel; Hoeng, Julia; Luettich, Karsta

    2018-03-07

    Cigarette smoking is the leading cause of preventable lung cancer (LC). Reduction of harmful constituents by heating rather than combusting tobacco may have the potential to reduce the risk of LC. We evaluated functional and molecular changes in human bronchial epithelial BEAS-2B cells following a 12-week exposure to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product (cMRTP) in comparison with those following exposure to TPM from the 3R4F reference cigarette. Endpoints linked to lung carcinogenesis were assessed. Four-week 3R4F TPM exposure resulted in crisis and epithelial to mesenchymal transition (EMT) accompanied by decreased barrier function and disrupted cell-to-cell contacts. By week eight, cells regained E-cadherin expression, suggesting that EMT was reversible. Increased levels of inflammatory mediators were noted in cells treated to 3R4F TPM but not in cells treated to the same or a five-fold higher concentration of cMRTP TPM. A 20-fold higher concentration of cMRTP TPM increased oxidative stress and DNA damage and caused reversible EMT. Anchorage-independent growth was observed in cells treated to 3R4F or a high concentration of cMRTP TPM. 3R4F TPM-derived clones were invasive, while cMRTP TPM-derived clones were not. Long-term exposure to TPM from the cMRTP had a lower biological impact on BEAS-2B cells compared with that of exposure to TPM from 3R4F. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Jennifer

    2007-12-01

    Full Text Available Abstract Background Ginger (Zingiber officinale Rosc is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer.

  9. Intracellular Angiotensin II and cell growth of vascular smooth muscle cells

    NARCIS (Netherlands)

    Filipeanu, CM; Henning, RH; de Zeeuw, D; Nelemans, A

    1 We recently demonstrated that intracellular application of Angiotensin II (Angiotensin IIintr) induces rat aorta contraction independent of plasma membrane Angiotensin II receptors. In this study we investigated the effects of Angiotensin IIintr on cell growth in A7r5 smooth muscle cells. 2

  10. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis.

    Science.gov (United States)

    Kelavkar, U P; Nixon, J B; Cohen, C; Dillehay, D; Eling, T E; Badr, K F

    2001-11-01

    The effect of overexpression of 15-lipoxygenase-1 (15-LO-1) was studied in the human prostate cancer cell line, PC-3. Stable PC-3 cell lines were generated by transfection with 15-LO-1-sense (15-LOS), 15-LO-1-antisense (15-LOAS) or vector (Zeo) and selection with Zeocin. After characterization by RT-PCR, western and HPLC, a PC3-15LOS clone was selected that possessed 10-fold 15-LO-1 enzyme activity compared with parental PC-3 cells. The PC3-15LOAS clone displayed little or no 15-LO-1 activity. These PC-3 cell lines were characterized for properties of tumorigenesis. The proliferation rates of the cell lines were as follows: PC3-15LOS > PC-3 = PC3-Zeo > PC3-15LOAS. Addition of a specific 15-LO-1 inhibitor, PD146176, caused a dose-dependent inhibition of proliferation in vitro. Overexpression of 15-LO-1 also caused [(3)H]thymidine incorporation to increase by 4.0-fold (P < 0.01). Compared with parental and PC-3-Zeo cells, PC3-15LOS enhanced whereas PC3-15LOAS reduced the ability of PC-3 cells to grow in an anchorage-independent manner, as assessed by colony formation in soft agar. These data suggested a pro-tumorigenic role for 15-LO-1 in PC-3 cells in vitro. Therefore, to clarify the role of 15-LO-1 in vivo, the effect of 15-LO-1 expression on the growth of tumors in nude mice was investigated. The PC-3 cell lines were inoculated subcutaneously into athymic nude mice. The frequency of tumor formation was increased and the sizes of the tumors formed were much larger in the PC3-15LOS compared with PC3-15LOAS, parental PC-3 and PC-3-Zeo cells. Immunohistochemistry for 15-LO-1 confirmed expression throughout the duration of the experiment. The expression of factor VIII, an angiogenesis marker, in tumor sections was increased in tumors derived from PC3-15LOS cells and decreased in those from PC3-15LOAS cells compared with tumors from parental or Zeo cells. These data further supported the evaluation by ELISA of vascular endothelial growth factor (VEGF) secretion by PC-3

  11. Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram; Chen, Albert H.; Dolinski, Brian; Xu, Youyuan; Keilhack, Heike; Nguyen, Thi; Wiznerowicz, Maciej; Li, Lixia; Lutterbach, Bart A.; Chi, An; Paweletz, Cloud; Allison, Timothy; Yan, Youwei; Munshi, Sanjeev K.; Klippel, Anke; Kraus, Manfred; Bobkova, Ekaterina V.; Deshmukh, Sujal; Xu, Zangwei; Mueller, Uwe; Szewczak, Alexander A.; Pan, Bo-Sheng; Richon, Victoria; Pollock, Roy; Blume-Jensen, Peter; Northrup, Alan; Andersen, Jannik N. (Merck)

    2013-11-20

    Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.

  12. Star-PAP controls HPV E6 regulation of p53 and sensitizes cells to VP-16.

    Science.gov (United States)

    Li, W; Anderson, R A

    2014-02-13

    Cervical cancer is the most common genital malignancy and the high-risk human papillomaviruses (HPV type 16, 18 and 31, and so on) are major agents for its cause. A key switch for the onset of cervical cancers by HPVs is the cellular degradation of the tumor-suppressor p53 that is mediated by the HPV-generated E6 protein. E6 forms a complex with the E3 ubiquitin-ligase E6-associated protein (E6AP) leading to p53 degradation. The components that control E6 expression and the mechanisms for regulation of the expression in host cells remain undefined. Here we show that the nuclear noncanonical poly(A) polymerase (PAP) speckle targeted PIPKIα regulated PAP (Star-PAP) controls E6 mRNA polyadenylation and expression and modulates wild-type p53 levels as well as cell cycle profile in high-risk HPV-positive cells. In the absence of Star-PAP, treatment of cells with the chemotherapeutic drug VP-16 dramatically reduced E6 and increased p53 levels. This diminished both cell proliferation and anchorage-independent growth required for cancer progression, indicating a synergism between VP-16 treatment and the loss of Star-PAP. This identifies Star-PAP as a potential drug target for the treatment of HPV-positive cancer cells. These data provide a mechanistic basis for increasing the sensitivity and efficiency of chemotherapy in the treatment of cancers that have low levels of wild-type p53.

  13. Directing neuronal cell growth on implant material surfaces by microstructuring.

    Science.gov (United States)

    Reich, Uta; Fadeeva, Elena; Warnecke, Athanasia; Paasche, Gerrit; Müller, Peter; Chichkov, Boris; Stöver, Timo; Lenarz, Thomas; Reuter, Günter

    2012-05-01

    For best hearing sensation, electrodes of auditory prosthesis must have an optimal electrical contact to the respective neuronal cells. To improve the electrode-nerve interface, microstructuring of implant surfaces could guide neuronal cells toward the electrode contact. To this end, femtosecond laser ablation was used to generate linear microgrooves on the two currently relevant cochlear implant materials, silicone elastomer and platinum. Silicone surfaces were structured by two different methods, either directly, by laser ablation or indirectly, by imprinting using laser-microstructured molds. The influence of surface structuring on neurite outgrowth was investigated utilizing a neuronal-like cell line and primary auditory neurons. The pheochromocytoma cell line PC-12 and primary spiral ganglion cells were cultured on microstructured auditory implant materials. The orientation of neurite outgrowth relative to the microgrooves was determined. Both cell types showed a preferred orientation in parallel to the microstructures on both, platinum and on molded silicone elastomer. Interestingly, microstructures generated by direct laser ablation of silicone did not influence the orientation of either cell type. This shows that differences in the manufacturing procedures can affect the ability of microstructured implant surfaces to guide the growth of neurites. This is of particular importance for clinical applications, since the molding technique represents a reproducible, economic, and commercially feasible manufacturing procedure for the microstructured silicone surfaces of medical implants. Copyright © 2012 Wiley Periodicals, Inc.

  14. Griseofulvin inhibits the growth of adrenocortical cancer cells in vitro.

    Science.gov (United States)

    Bramann, E L; Willenberg, H S; Hildebrandt, B; Müller-Mattheis, V; Schott, M; Scherbaum, W A; Haase, M

    2013-04-01

    Supernumerary centrosomes and aneuploidy are associated with a malignant phenotype of tumor cells. Centrosomal clustering is a mechanism used by cancer cells with supernumerary centrosomes to solve the threatening problem of multipolar spindles. Griseofulvin is an antifungal substance that interferes with the microtubule apparatus and inhibits centrosomal clustering. It has also been demonstrated that griseofulvin inhibits the growth of tumor cells in vitro and in vivo. However, it is not yet known whether treatment with griseofulvin inhibits growth of adrenocortical tumor cells. We studied the viability and antiproliferative effects of griseofulvin on cultured NCI-H295R adrenocortical carcinoma cells using Wst-1-, BrdUrd-, and [³H]-thymidine assays. For the detection of apoptosis we used a caspase 3/7 cleavage assay and light microscopy techniques. We observed that incubation with griseofulvin for 24-48 h leads to a decrease in the viability and proliferation of NCI-H295R cells in a dose-dependent manner. Significant effects could be observed after incubation with griseofulvin as measured by Wst-1-, BrdUrd-, and [³H]dT- uptake assays. Apoptosis of NCI-H295R cells was increased in a dose-dependent manner up to 4.5-fold after incubation with griseofulvin 40 μM for 24 h as shown by caspase 3/7 cleavage assay and light microscopy. With regard to new treatment strategies for adrenocortical cancer, griseofulvin, and possibly other agents, which interfere with the microtubule apparatus and inhibit centrosomal clustering, may turn out to be interesting targets for further research. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-01-01

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  16. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  17. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  18. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...

  19. Effect of laser modified surface microtopochemistry on endothelial cell growth.

    Science.gov (United States)

    Duncan, A C; Rouais, F; Lazare, S; Bordenave, L; Baquey, Ch

    2007-02-15

    The introduction of microelectronics technology in the area of biological sciences has brought forth previously unforeseeable applications such as DNA or protein biochips, miniaturized, multiparametric biosensors for high performance multianalyte assays, DNA sequencing, biocomputers, and substrates for controlled cell growth (i.e. tissue engineering). We developed and investigated a new method using "cold" excimer laser beam technology combined with microlithographical techniques to create surfaces with well defined 3D microdomains in order to delineate critical microscopic surface features governing cell-material interactions. Microfabricated surfaces with microgrooves 30-3 microm deep, 10 - 1 microm wide spaced 30 microm apart were obtained with micron resolution, by "microsculpturing" polymer model surfaces using a computer controlled laser KrF excimer beam coupled with a microlithographic projection technique. The laser beam after exiting a mask was focused onto the polymer target surface via an optical setup allowing for a 10-fold reduction of the mask pattern. Various 3D micropatterned features were obtained at the micron level. Reproducible submicron features could also be obtained using this method. Subsequently, model human umbilical endothelial cells (HUVEC) were cultured on the laser microfabricated surfaces in order to study the effects of specific microscopic surface features on cell deposition and orientation. Cell deposition patterns were found to be microstructure dependant, and showed cell orientation dependency for features in the cell range dimension, a behaviour significantly different from that of a previously studied cell model (osteoprogenitor cell). This model may be a promising in so far as it is very rapid (a time frame less than a second per square centimeter of micropatterned surface) and provides further insights into the effects of surface microtopography on cell response with possible applications in the field of biosensors

  20. Human keloid cell characterization and inhibition of growth with human Wharton's jelly stem cell extracts.

    Science.gov (United States)

    Fong, Chui-Yee; Biswas, Arijit; Subramanian, Arjunan; Srinivasan, Akshaya; Choolani, Mahesh; Bongso, Ariff

    2014-05-01

    Keloids are firm rubbery growths that grow beyond the boundaries of human wounds and their treatment has met with limited success. Their properties and growth behavior have not been properly characterized and it has been suggested that a benign neoplastic stem cell-like phenotype in an altered cytokine microenvironment drives their uncontrolled cell proliferation. Modification of the stem cell niche may be an attractive approach to its prevention. We studied the growth behavior, stemness, and tumorigenic characteristics of keloid cells in prolonged culture. Since human Wharton's jelly stem cells (hWJSCs) secrete high levels of cytokines and have anti-tumorigenic properties we explored its role on the inhibition of keloid growth in vitro. Keloid cells grew readily in both adherent and sphere culture and expressed high levels of mesenchymal CD and tumor-associated fibroblast (TAF) markers up to passage 10. When they were exposed to repeat doses of hWJSC conditioned medium (hWJSC-CM) and lysate (hWJSC-CL) every 72 h up to 9 days their growth was inhibited with a reduction in CD and TAF marker expression. On Days 3, 6, and 9 treated keloid cells showed linear decreases in cell proliferation (BrdU), increases in Annexin V-FITC and TUNEL-positive cells, interruptions of the cell cycle and inhibition of migration in scratch-wound assays. Immunocytochemistry and qRT-PCR confirmed a significant downregulation of TAF and anti-apoptotic-related gene (SURVIVIN) expression and upregulation of autophagy-related (BAX, ATG5, ATG7, BECLIN-1) gene expression. The results suggest that hWJSCs or molecules secreted by them may be of therapeutic value in the treatment of keloids. © 2013 Wiley Periodicals, Inc.

  1. Cultivating liver cells on printed arrays of hepatocyte growth factor.

    Science.gov (United States)

    Jones, Caroline N; Tuleuova, Nazgul; Lee, Ji Youn; Ramanculov, Erlan; Reddi, A Hari; Zern, Mark A; Revzin, Alexander

    2009-08-01

    Growth factors are commonly present in soluble form during in vitro cell cultivation experiments in order to provide signals for cellular proliferation or differentiation. In contrast to these traditional experiments, we investigated solid-phase presentation of a hepatocyte growth factor (HGF), a protein important in liver development and regeneration, on microarrays of extracellular matrix (ECM) proteins. In our experiments, HGF was mixed in solution with ECM proteins (collagen (I), (IV) or laminin) and robotically printed onto silane-modified glass slides. Primary rat hepatocytes were seeded onto HGF/ECM protein microarrays and formed cellular clusters that corresponded in size to the dimensions of individual protein spots (500 microm diameter). Analysis of liver-specific products, albumin and alpha1-antitrypsin, revealed several fold higher levels of expression of these proteins in hepatocytes cultured on HGF/ECM microarrays compared to cells cultivated on ECM proteins alone. In addition, cultivation of hepatocytes on HGF/ECM protein spots led to spontaneous reorganization of cellular clusters from a monolayer into three-dimensional spheroids. We also investigated the effects of surface-tethered HGF on hepatocytes co-cultivated with stromal cells and observed a significantly higher level of albumin in co-cultures where hepatocytes were stimulated by HGF/ECM spots compared to co-cultures created on ECM protein islands without the growth factor. In summary, our study suggests that incorporation of HGF into ECM protein microarrays has a profound and long-lasting effect on the morphology and phenotype of primary hepatocytes. In the future, the number of growth factors printed on ECM microarrays will be expanded to enable multiplexed and combinatorial screening of inducers of cellular differentiation or proliferation.

  2. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells.

    Science.gov (United States)

    Alvarez-Díaz, Silvia; Valle, Noelia; García, José Miguel; Peña, Cristina; Freije, José M P; Quesada, Víctor; Astudillo, Aurora; Bonilla, Félix; López-Otín, Carlos; Muñoz, Alberto

    2009-08-01

    The active vitamin D metabolite 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] has wide but not fully understood antitumor activity. A previous transcriptomic analysis of 1alpha,25(OH)2D3 action on human colon cancer cells revealed cystatin D (CST5), which encodes an inhibitor of several cysteine proteases of the cathepsin family, as a candidate target gene. Here we report that 1alpha,25(OH)2D3 induced vitamin D receptor (VDR) binding to, and activation of, the CST5 promoter and increased CST5 RNA and protein levels in human colon cancer cells. In cells lacking endogenous cystatin D, ectopic cystatin D expression inhibited both proliferation in vitro and xenograft tumor growth in vivo. Furthermore, cystatin D inhibited migration and anchorage-independent growth, antagonized the Wnt/beta-catenin signaling pathway, and repressed c-MYC expression. Cystatin D repressed expression of the epithelial-mesenchymal transition inducers SNAI1, SNAI2, ZEB1, and ZEB2 and, conversely, induced E-cadherin and other adhesion proteins. CST5 knockdown using shRNA abrogated the antiproliferative effect of 1alpha,25(OH)2D3, attenuated E-cadherin expression, and increased c-MYC expression. In human colorectal tumors, expression of cystatin D correlated with expression of VDR and E-cadherin, and loss of cystatin D correlated with poor tumor differentiation. Based on these data, we propose that CST5 has tumor suppressor activity that may contribute to the antitumoral action of 1alpha,25(OH)2D3 in colon cancer.

  3. RANKL induces organized lymph node growth by stromal cell proliferation.

    Science.gov (United States)

    Hess, Estelle; Duheron, Vincent; Decossas, Marion; Lézot, Frédéric; Berdal, Ariane; Chea, Sylvestre; Golub, Rachel; Bosisio, Mattéo R; Bridal, S Lori; Choi, Yongwon; Yagita, Hideo; Mueller, Christopher G

    2012-02-01

    RANK and its ligand RANKL play important roles in the development and regulation of the immune system. We show that mice transgenic for Rank in hair follicles display massive postnatal growth of skin-draining lymph nodes. The proportions of hematopoietic and nonhematopoietic stromal cells and their organization are maintained, with the exception of an increase in B cell follicles. The hematopoietic cells are not activated and respond to immunization by foreign Ag and adjuvant. We demonstrate that soluble RANKL is overproduced from the transgenic hair follicles and that its neutralization normalizes lymph node size, inclusive area, and numbers of B cell follicles. Reticular fibroblastic and vascular stromal cells, important for secondary lymphoid organ formation and organization, express RANK and undergo hyperproliferation, which is abrogated by RANKL neutralization. In addition, they express higher levels of CXCL13 and CCL19 chemokines, as well as MAdCAM-1 and VCAM-1 cell-adhesion molecules. These findings highlight the importance of tissue-derived cues for secondary lymphoid organ homeostasis and identify RANKL as a key molecule for controlling the plasticity of the immune system.

  4. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  5. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  6. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim.

    Science.gov (United States)

    Park, Sun Hee; Ito, Koichi; Olcott, William; Katsyv, Igor; Halstead-Nussloch, Gwyneth; Irie, Hanna Y

    2015-06-19

    Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human Epidermal Growth Factor 2(+) (Her2(+)) breast cancers. Overexpression of PTK6 enhances anchorage-independent survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective strategy to inhibit growth and survival of Her2(+) breast cancer cells, including those that are relatively resistant to Lapatinib, a targeted therapy for Her2(+) breast cancer, either intrinsically or acquired after continuous drug exposure. To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2(+) breast cancer cell lines (UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6 expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo, as well as the mechanisms responsible for these effects. Lapatinib treatment of "sensitive" Her2(+) cells induces apoptotic cell death and enhances transcript and protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively "resistant" Her2(+) cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6 expression in these "resistant" cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation impairs growth of these cells in in vitro 3-D Matrigel(TM) cultures, and also inhibits growth of Her2(+) primary tumor xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells from apoptosis. PTK6 downregulation

  7. Hematopoietic growth factors including keratinocyte growth factor in allogeneic and autologous stem cell transplantation.

    Science.gov (United States)

    Seggewiss, Ruth; Einsele, Hermann

    2007-07-01

    The aim of hematopoietic stem cell transplantation (HSCT) is to cure patients of malignancies, autoimmune diseases, and immunodeficiency disorders by redirecting the immune system: the often described graft-versus-leukemia (GVL) or graft-versus-tumor (GVT) effects. Unfortunately, fulfillment of this goal is often hampered by relapse of the underlying disease, graft-versus-host disease (GVHD), or severe opportunistic infections, which account for the majority of post-transplantation deaths. Moreover, studies of long-term survivors of transplantation indicate an accelerated immune aging due to the transplantation procedure itself, preceding chemo- or radiotherapy, and acute and chronic GVHD. Significant advances have been made towards overcoming these obstacles by enhancing immune reconstitution with hematopoietic growth factors (HGFs) such as granulocyte colony-stimulating factor (G-CSF) or erythropoietin (EPO) or through the application of cytokines. In addition, there are approaches to promote the thymic-dependent development of naive T cells, which are prepared for the interaction with a multitude of pathogens. Examples are the application of keratinocyte growth factor (KGF), neuroendocrine hormones such as growth hormone or prolactin, sex hormone ablation, or the invention of a three-dimensional artificial thymus based on a cytomatrix. Might these measures result in a higher rate of healthy and fully recovered patients? Here we review progress in each of these areas.

  8. Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs).

    Science.gov (United States)

    Ozsvari, Bela; Sotgia, Federica; Lisanti, Michael P

    2018-02-19

    Tri-phenyl-phosphonium (TPP) is a non-toxic chemical moiety that functionally behaves as a mitochondrial targeting signal (MTS) in living cells. Here, we explored the hypothesis that TPP-related compounds could be utilized to inhibit mitochondria in cancer stem cells (CSCs). We randomly selected 9 TPP-related compounds for screening, using an ATP depletion assay. Based on this approach, five compounds were identified as "positive hits"; two had no detectable effect on ATP production. Remarkably, this represents a >50% hit rate. We validated that the five positive hit compounds all inhibited oxygen consumption rates (OCR), using the Seahorse XFe96 metabolic flux analyzer. Interestingly, these TPP-related compounds were non-toxic and had little or no effect on ATP production in normal human fibroblasts, but selectively targeted adherent "bulk" cancer cells. Finally, these positive hit compounds also inhibited the propagation of CSCs in suspension, as measured functionally using the 3D mammosphere assay. Therefore, these TPP-related compounds successfully inhibited anchorage-independent growth, which is normally associated with a metastatic phenotype. Interestingly, the most effective molecule that we identified contained two TPP moieties (i.e., bis-TPP). More specifically, 2-butene-1,4-bis-TPP potently and selectively inhibited CSC propagation, with an IC-50 TPP, a "dimeric" mitochondrial targeting signal, may be a promising new approach for the chemical eradication of CSCs. Future studies on the efficacy of 2-butene-1,4-bis-TPP and its derivatives are warranted. In summary, we show that TPP-related compounds provide a novel chemical strategy for effectively killing both i) "bulk" cancer cells and ii) CSCs, while specifically minimizing or avoiding off-target side-effects in normal cells. These results provide the necessary evidence that "normal" mitochondria and "malignant" mitochondria are truly biochemically distinct, removing a significant barrier to

  9. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  10. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...

  11. The resveratrol analogue trimethoxystilbene inhibits cancer cell growth by inducing multipolar cell mitosis.

    Science.gov (United States)

    Traversi, Gianandrea; Fiore, Mario; Percario, Zulema; Degrassi, Francesca; Cozzi, Renata

    2017-03-01

    Natural compounds are extensively studied for their potential use in traditional and non-traditional medicine. Several natural and synthetic Resveratrol analogues have shown interesting biological activities in the field of cancer chemoprevention. In the present study, we have focused on the ability of Resveratrol and two methoxylated derivatives (Trimethoxystilbene and Pterostilbene) to inhibit human cancer cell growth particularly analyzing their ability to interfere with tubulin dynamics at mitosis. We show that Trimethoxystilbene, differently from Resveratrol and Pterostilbene, alters microtubule polymerization dynamics in HeLa cells specifically inducing multipolar spindles and mitotic arrest coupled to a reduction of cell growth and an increase in apoptotic death by mitotic catastrophe. This work demonstrates that the structural modification of Rsv causes substantial changes in the mechanism of action of the derivatives. The presence of three extra methyl groups renders Trimethoxy very efficient in impairing cell proliferation by inducing mitotic catastrophe in cancer cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression.

    Science.gov (United States)

    Li, Yanju; Xu, Xiao; Wang, Lihua; Liu, Guangjin; Li, Yanqi; Wu, Xiaobing; Jing, Yongguang; Li, Haiyan; Wang, Guihua

    2015-01-01

    Cellular senescence is linked to aging and tumorigenesis. The senescence of mesenchymal stem cells (MSCs) may influence the tumor growth, metastasis, and angiogenesis by secreting a variety of cytokines and growth factors. The conditioned media of adipose derived MSCs (AD-MSCs) stimulated the proliferation of human LoVo colorectal-cancer cells, and the replicative senescent MSCs had the more obvious effects in comparison to that of premature AD-MSCs. Analysis of the factors secreted in the MSCs culture media determined that senescent MSCs expressed and secreted high levels of galectin-3. Galectin-3 expression correlated with the stimulatory effect of senescent AD-MSCs on LoVo cells proliferation, as knockdown of galectin-3 in senescent AD-MSCs significantly reversed the effect of MSCs-mediated growth stimulation of LoVo cells. Furthermore, the simultaneous addition of recombinant galectin-3 to the co-culture systems partially restored the tumor-promoting effect of the senescent AD-MSCs. Analysis of the mechanisms of senescent MSCs and galectin-3 on LoVo cells signal transduction determined that senescent MSCs and exogenous galectin-3 promoted cell growth by activating the mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase [ERK]1/2) pathway. Senescent MSCs may alter the tissue microenvironment and affect nearby malignant cells via cytokine secretion, and galectin-3 is an important mediator of senescent AD-MSC-mediated stimulation of colon cancer cell growth. Therefore, thorough assessment of AD-MSCs prior to their implementation in clinical practice is warranted.

  13. Influence of Cell-Cell Interactions on the Population Growth Rate in a Tumor

    Science.gov (United States)

    Chen, Yong

    2017-12-01

    The understanding of the macroscopic phenomenological models of the population growth at a microscopic level is important to predict the population behaviors emerged from the interactions between the individuals. In this work, we consider the influence of the population growth rate R on the cell-cell interaction in a tumor system and show that, in most cases especially small proliferative probabilities, the regulative role of the interaction will be strengthened with the decline of the intrinsic proliferative probabilities. For the high replication rates of an individual and the cooperative interactions, the proliferative probability almost has no effect. We compute the dependences of R on the interactions between the cells under the approximation of the nearest neighbor in the rim of an avascular tumor. Our results are helpful to qualitatively understand the influence of the interactions between the individuals on the growth rate in population systems. Supported by the National Natural Science Foundation of China under Grant Nos. 11675008 and 21434001

  14. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  15. Growth of primary embryo cells in a microculture system.

    Science.gov (United States)

    Villa, Max; Pope, Sara; Conover, Joanne; Fan, Tai-Hsi

    2010-04-01

    We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 microm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.

  16. Modification of MCF-10A Cells with Pioglitazone and Serum-Rich Growth Medium Increases Soluble Factors in the Conditioned Medium, Likely Reducing BT-474 Cell Growth

    OpenAIRE

    Khoo, Boon Yin; Miswan, Noorizan; Balaram, Prabha; Nadarajan, Kalpanah; Elstner, Elena

    2012-01-01

    In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively ...

  17. Modification of MCF-10A Cells with Pioglitazone and Serum-Rich Growth Medium Increases Soluble Factors in the Conditioned Medium, Likely Reducing BT-474 Cell Growth

    Directory of Open Access Journals (Sweden)

    Kalpanah Nadarajan

    2012-05-01

    Full Text Available In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.

  18. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    Science.gov (United States)

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2.

  19. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  20. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... lung cancer cell lines express the EGF receptor....... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  1. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    Science.gov (United States)

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  2. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  3. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  4. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  5. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  6. Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Chao Chen

    Full Text Available Initiation, growth, recurrence, and metastasis of head and neck squamous cell carcinomas (HNSCC have been related to the behavior of cancer stem cells (CSC that can be identified by their aldehyde-dehydrogenase-isoform-1 (ALDH1 activity. We quantified and enriched ALDH1(+ cells within HNSCC cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT. Spheroid culture enriched CSC from five HNSCC cell lines by up to 5-fold. In spheroid-derived cells (SDC and the parental monolayer-derived cell line ALDH1, CD44, CD24, E-Cadherin, α-SMA, and Vimentin expression was compared by flow-cytometry and immunofluorescence together with proliferation and cell cycle analysis. Invasion activity was evaluated by Matrigel assay and expression of stemness-related transcription factors (TF Nanog, Oct3/4, Sox2 and EMT-related genes Snail1 and 2, and Twist by real-time PCR. All cell lines formed spheroids that could self-renew and be serially re-passaged. ALDH1 expression was significantly higher in SDC. ALDH1(+ cells showed increased colony-formation. The proportion of cells with a putative CSC marker constellation of CD44(+/CD24(- was highly variable (0.5% to 96% in monolayer and spheroid cultures and overlapped in 0%-33% with the CD44(+/CD24(-/ALDH1(+ cell subset. SDC had significantly higher invading activity. mRNA of the stemness-related genes Sox2, Nanog, and Oct3/4 was significantly increased in SDC of all cell lines. Twist was significantly increased in two while Snail2 showed a significant increase in one and a significant decrease in SDC of two cell lines. SDC had a higher G0 phase proportion, showed high-level expression of α-SMA and Vimentin, but significantly decreased E-Cadherin expression. HNSCC-lines harbor potential CSC, characterized by ALDH1 and stemness marker TF expression as well as properties like invasiveness, quiescence, and EMT. CSC can be

  7. The in vitro and in vivo anti-cancer activities of a standardized quassinoids composition from Eurycoma longifolia on LNCaP human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kind Leng Tong

    Full Text Available Quassinoids are a group of diterpenoids found in plants from the Simaroubaceae family. They are also the major bioactive compounds found in Eurycoma longifolia which is commonly used as traditional medicine in South East Asia to treat various ailments including sexual dysfunction and infertility. These uses are attributed to its ability to improve testosterone level in men. Chronic consumption of E. longifolia extracts has been reported to increase testosterone level in men and animal model but its effect on prostate growth remains unknown. Therefore, the present study investigates the effects of a standardized total quassinoids composition (SQ40 containing 40% of the total quassinoids found in E. longifolia on LNCaP human prostate cancer cell line. SQ40 inhibited LNCaP cell growth at IC50 value of 5.97 μg/mL while the IC50 on RWPE-1 human prostate normal cells was 59.26 μg/mL. SQ40 also inhibited 5α-dihydrotestosterone-stimulated growth in LNCaP cells dose-dependently. The inhibitory effect of SQ40 in anchorage-independent growth of LNCaP cells was also demonstrated using soft agar assay. SQ40 suppressed LNCaP cell growth via G0/G1 phase arrest which was accompanied by the down-regulation of CDK4, CDK2, Cyclin D1 and Cyclin D3 and up-regulation of p21Waf1/Cip1 protein levels. SQ40 at higher concentrations or longer treatment duration can cause G2M growth arrest leading to apoptotic cell death as demonstrated by the detection of poly(ADP-ribose polymerase cleavage in LNCaP cells. Moreover, SQ40 also inhibited androgen receptor translocation to nucleus which is important for the transactivation of its target gene, prostate-specific antigen (PSA and resulted in a significant reduction of PSA secretion after the treatment. In addition, intraperitoneal injection of 5 and 10 mg/kg of SQ40 also significantly suppressed the LNCaP tumor growth on mouse xenograft model. Results from the present study suggest that the standardized total quassinoids

  8. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan

    2008-01-01

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  9. Investigation of the in vitro therapeutic efficacy of nilotinib in immortalized human NF2-null vestibular schwannoma cells.

    Directory of Open Access Journals (Sweden)

    Nesrin Sabha

    Full Text Available Vestibular schwannomas (VS are a common posterior fossa brain tumor, and though benign can cause significant morbidity, particularly loss of hearing, tinnitus, vertigo and facial paralysis. The current treatment options for VS include microsurgical resection, stereotactic radiosurgery or close surveillance monitoring, with each treatment option carrying associated complications and morbidities. Most importantly, none of these options can definitively reverse hearing loss or tinnitus. Identification of a novel medical therapy, through the use of targeted molecular inhibition, is therefore a highly desirable treatment strategy that may minimize complications arising from both tumor and treatment and more importantly be suitable for patients whose options are limited with respect to surgical or radiosurgical interventions. In this study we chose to examine the effect of Nilotinib on VS. Nilotinib (Tasigna® is a second-generation receptor tyrosine kinase (RTK inhibitor with a target profile similar to that of imatinib (Gleevec®, but increased potency, decreased toxicity and greater cellular and tissue penetration. Nilotinib targets not only the BCR-ABL oncoprotein, but also platelet-derived growth factor (PDGF receptor signalling. In this preclinical study, the human NF2-null schwannoma cell line HEI-193 subjected to nilotinib inhibition demonstrated decreased viability, proliferation and anchorage-independent growth, and increased apoptosis. A daily dose of nilotinib for 5 days inhibited HEI-I93 proliferation at a clinically-relevant concentration in a dose-dependent manner (IC(50 3-5 µmol/L in PDGF-stimulated cells. These anti-tumorigenic effects of nilotinib were correlated to inhibited activation of PDGFR-α and PDGFR-β and major downstream signalling pathways. These experiments support a therapeutic potential for Nilotinib in VS.

  10. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  11. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefano Busti

    2010-06-01

    Full Text Available Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module, the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  12. Role of DNA lesions and repair in the transformation of human cells

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1987-01-01

    Results of studies on the transformation of diploid human fibroblasts in culture into tumor-forming cells by exposure to chemical carcinogens or radiation indicate that such transformation is multi-stepped process that at least one step, acquisition of anchorage independence, occurs as a mutagenic event. Studies comparing normal-repairing human cells with DNA repair-deficient cells, such as those derived from cancer-prone xeroderma pigmentosum patients, indicate that excision repair in human fibroblasts is essentially an error-free process that the ability to excise potentially cytotoxic, mutagenic, or transforming lesions induced DNA by carcinogens determines their ultimate biological consequences. Cells deficient in excision repair are abnormally sensitive to these agents. Studies with cells treated at various times in the cell cycle show that there is a certain limited amount of time available for DNA repair between the initial exposure and the onset of the cellular event responsible for mutation induction and transformation to anchorage independence. The data suggest that DNA replication on a template containing unexcised lesions (photoproducts, adducts) is the critical event

  13. UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice.

    Science.gov (United States)

    Chaurio, Ricardo; Janko, Christina; Schorn, Christine; Maueröder, Christian; Bilyy, Rostyslav; Gaipl, Udo; Schett, Georg; Berens, Christian; Frey, Benjamin; Munoz, Luis E

    2013-08-01

    The presence of a solid tumor is the result of a complex balance between rejection, tolerance and regeneration in which the interactions of tumor cells with cells of the host immune system contribute strongly to the final outcome. Here we report on a model where lethally UVB-irradiated cells cause accelerated growth of viable tumor cells in vitro and in allogeneic immune competent mice. UVB-irradiated tumor cells alone did not form tumors and failed to induce tolerance for a second challenge with the same allogeneic tumor. Our data show an important role for dying cells in promoting accelerated tumor cell growth of a small number of viable tumor cells in a large inoculum of UVB-irradiated tumor cells. This occurs when viable and dying/dead tumor cells are in close proximity, suggesting that mobile factors contribute to growth promotion. The anti-inflammatory and growth promoting properties of apoptotic cells are based on several independent effects. UVB-irradiated apoptotic cells directly release a growth promoting activity and clearance by macrophages of apoptotic cells is accompanied by the secretion of IL10, TGFß, and PGE2. Growth promotion is even observed with dying heterologous cells implying a conserved mechanism. Future experiments should focus on the effects of dying tumor cells generated in vivo on the outgrowth of surviving tumor cells which is prone to have implications for cancer therapy.

  14. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  15. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  16. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  17. Understanding pollen tube growth: the hydrodynamic model versus the cell wall model

    NARCIS (Netherlands)

    Zonia, L.; Munnik, T.

    2011-01-01

    Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell

  18. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells.

    Science.gov (United States)

    Campbell, Stephanie A; Gromeier, Matthias

    2005-04-01

    Recent advances in our understanding of virus-host interactions have fueled new studies in the field of oncolytic viruses. The first part of this review explained how cell-external factors, such as cellular receptors, influence tumor tropism and specificity of oncolytic virus candidates. In the second part of this review, we focus on cellinternal factors that mediate tumor-specific virus growth. An oncolytic virus must be able to replicate within cancerous cells and kill them without collateral damage to healthy surrounding cells. This desirable property is inherent to some proposed oncolytic viral agents or has been achieved by genetic manipulation in others.

  19. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells.

    Science.gov (United States)

    Yu, Qingxiang; Wang, Xiaoyu; Wang, Li; Zheng, Jia; Wang, Jiang; Wang, Bangmao

    2016-10-01

    Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine. ASNS is deemed as a promising therapeutic target and its expression is associated with the chemotherapy resistance in several human cancers. However, its role in gastric cancer tumorigenesis has not been investigated. In this study, we employed small interfering RNA (siRNA) to transiently knockdown ASNS in two gastric cancer cell lines, AGS and MKN-45, followed by growth rate assay and colony formation assay. Dose response curve analysis was performed in AGS and MKN-45 cells with stable ASNS knockdown to assess sensitivity to cisplatin. Xenograft experiment was performed to examine in vivo synergistic effects of ASNS depletion and cisplatin on tumor growth. Expression level of ASNS was evaluated in human patient samples using quantitative PCR. Kaplan-Meier curve analysis was performed to evaluate association between ASNS expression and patient survival. Transient knockdown of ASNS inhibited cell proliferation and colony formation in AGS and MKN-45 cells. Stable knockdown of ASNS conferred sensitivity to cisplatin in these cells. Depletion of ASNS and cisplatin treatment exerted synergistic effects on tumor growth in AGS xenografts. Moreover, ASNS was found to be up-regulated in human gastric cancer tissues compared with matched normal colon tissues. Low expression of ASNS was significantly associated with better survival in gastric cancer patients. ASNS may contribute to gastric cancer tumorigenesis and may represent a novel therapeutic target for prevention or intervention of gastric cancer.

  20. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  1. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

    Science.gov (United States)

    Lukhele, Sindiswa T; Motadi, Lesetja R

    2016-09-01

    Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.

  2. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.

    Directory of Open Access Journals (Sweden)

    Simone König

    Full Text Available Basal cell carcinoma (BCC belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch. Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.

  3. Plasticity of tumor cell invasion: governance by growth factors and cytokines.

    Science.gov (United States)

    Odenthal, Julia; Takes, Robert; Friedl, Peter

    2016-12-01

    Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells.

    Science.gov (United States)

    He, Xiaoqing; Wang, Liying; Riedel, Heimo; Wang, Kai; Yang, Yong; Dinu, Cerasela Zoica; Rojanasakul, Yon

    2017-03-14

    Lung cancer and pleural mesothelioma are two of the most deadly forms of cancer. The prognosis of lung cancer and mesothelioma is extremely poor due to limited treatment modalities and lack of understanding of the disease mechanisms. We have identified mesothelin as a potentially unique therapeutic target that as a specific advantage appears nonessential in most cell types. Mesothelin (MSLN), a plasma membrane differentiation antigen, is expressed at a high level in many human solid tumors, including 70% of lung cancer and nearly all mesotheliomas. However, the role of MSLN in the disease process and underlying mechanisms is largely unknown. ShRNA knockdown and overexpression of MSLN were performed in human cancer cell lines and corresponding normal cells, respectively. Tumorigenic and metastatic effects of MSLN were examined by tumor sphere formation, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. EMT and CSCs were detected by qPCR array, immunoblotting and flow cytometry. MSLN plays a key role in controlling epithelial-to-mesenchymal transition (EMT) and stem properties of human lung cancer and mesothelioma cells that control their tumorigenicity and metastatic potential. Firstly, MSLN was found to be highly upregulated in non-small cell lung cancer (NSCLC) patient tissues and in lung carcinoma and mesothelioma cell lines. Secondly, genetic knockdown of MSLN significantly reduced anchorage-independent cell growth, tumor sphere formation, cell adhesion, migration and invasion in vitro, as well as tumor formation and metastasis in vivo. Thirdly, ectopic overexpression of MSLN induced the malignant phenotype of non-cancerous cells, supporting its role as an oncogene. Finally, mechanistic studies revealed that knockdown of MSLN reversed EMT and attenuated stem cell properties, in addition to inhibiting tumor growth and metastasis. These results indicate an essential role of MSLN in controlling EMT and stem cell properties of human

  5. Cell binding and growth inhibition by hexachlorophene of decanoate and their reversibility.

    Science.gov (United States)

    Levin, B C; Freese, E

    1978-01-01

    More than 80% of the hexachlorophene added to a Bacillus subtilis culture binds to the cells. Complete growth inhibition requires 6 x 10(5) molecules bound per cell. In contrast, more than 99% decanoate remains in solution and 3.8 x 10(7) molecules bound per cell are needed to inhibit growth. Centrifugation and resuspension of cells in growth medium removes only decanoate, whereas the addition of 1% bovine serum albumin to the growth medium removes both inhibitors from their binding sites on the cells. The addition of untreated cells to a hexachlorophene-treated culture enables the hexachlorophene molecules to redistribute among all the cells with the result that the inhibited cells can resume growth.

  6. Plasticity in sunflower leaf and cell growth under high salinity.

    Science.gov (United States)

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Breviscapine suppresses the growth of non-small cell lung cancer ...

    Indian Academy of Sciences (India)

    Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells.However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimedto study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 and A549 cells ...

  8. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth ...

  9. Aspects of plant cell growth and the actin cytoskeleton : lessons from root hairs

    NARCIS (Netherlands)

    Ruijter, de N.C.A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes.

  10. Regulation of DU145 prostate cancer cell growth by Scm-like with ...

    Indian Academy of Sciences (India)

    2012-12-08

    Dec 8, 2012 ... Collectively, our findings indicate that human SFMBT2 may regulate cell growth via epigenetic regulation of HOXB13 gene expression in DU145 prostate cancer cells. [Lee K, Na W , Maeng J-H, Wu H and Ju B-G 2013 Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2. J.

  11. Andrographolide inhibits growth of acute promyelocytic leukaemia cells by inducing retinoic acid receptor-independent cell differentiation and apoptosis.

    Science.gov (United States)

    Manikam, Shiamala D; Manikam, Shiamala T; Stanslas, Johnson

    2009-01-01

    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2). In elucidating the mechanisms of growth inhibition, a special emphasis was placed on assessing the induction of differentiation and apoptosis by andrographolide in the primary acute promyelocytic leukaemia NB4 cells. The compound was 2- and 3-fold more active in inhibiting the growth of HL-60 and NB4-R2 cells compared with NB4 cells, respectively. At IC50 (concentration at which growth of 50% of the cells (compared with medium only treated control cells) is inhibited; 4.5 microM) the compound exhibited strong cell-differentiating activity in NB4 cells, similar to ATRA (IC50 1.5 microM). In the presence of a pure retinoic acid receptor antagonist AGN193109, the growth inhibition of NB4 cells by ATRA was reversed, whereas the activity of andrographolide was not affected. This clearly suggested that andrographolide's cell differentiating activity to induce growth inhibition of NB4 cells most likely occurred via a retinoic acid receptor-independent pathway. At higher concentration (2xIC50), andrographolide was an efficient inducer of apoptosis in NB4 cells. Taken together, these results suggest andrographolide and its derivatives, apparently with a novel cell differentiating mechanism and with ability to induce apoptosis, might be beneficial in the treatment of primary and ATRA-resistant acute promyelocytic leukaemia.

  12. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  13. The Inhibitory Effect of Ellagic Acid on Cell Growth of Ovarian Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yuan-Chiang Chung

    2013-01-01

    Full Text Available Ellagic acid (EA is able to inhibit the growth of several cancer cells; however, its effect on human ovarian carcinoma cells has not yet been investigated. Ovarian carcinoma ES-2 and PA-1 cells were treated with EA (10~100 μM and assessed for viability, cell cycle, apoptosis, anoikis, autophagy, and chemosensitivity to doxorubicin and their molecular mechanisms. EA inhibited cell proliferation in a dose- and time-dependent manner by arresting both cell lines at the G1 phase of the cell cycle, which were from elevating p53 and Cip1/p21 and decreasing cyclin D1 and E levels. EA also induced caspase-3-mediated apoptosis by increasing the Bax : Bcl-2 ratio and restored anoikis in both cell lines. The enhancement of apoptosis and/or inhibition of autophagy in these cells by EA assisted the chemotherapy efficacy. The results indicated that EA is a potential novel chemoprevention and treatment assistant agent for human ovarian carcinoma.

  14. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  15. Troglitazone inhibits cell growth and induces apoptosis of B-cell acute lymphoblastic leukemia cells with t(14;18).

    Science.gov (United States)

    Takenokuchi, M; Saigo, K; Nakamachi, Y; Kawano, S; Hashimoto, M; Fujioka, T; Koizumi, T; Tatsumi, E; Kumagai, S

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, has been detected in several human leukemia cells. Recent studies reported that PPARgamma ligands inhibit cell proliferation and induce apoptosis in both normal and malignant B-lineage cells. We investigated the expression of PPARgamma and the effects of PPARgamma ligands on UTree-O2, Bay91 and 380, three B-cell acute lymphoblastic leukemia (B-ALL) cell lines with t(14;18), which show a poor prognosis, accompanying c-myc abnormality. Western blot analysis identified expression of PPARgamma protein and real-time PCR that of PPARgamma mRNA on the three cell lines. Troglitazone (TGZ), a synthetic PPARgamma ligand, inhibited cell growth in these cell lines in a dose-dependent manner, which was associated with G(1) cell cycle arrest and apoptosis. We also found this effect PPARgamma independent since PPARgamma antagonists failed to reverse this effect. We assessed the expression of c-myc, an apoptosis-regulatory gene, since c-myc abnormality was detected in most B-ALL cells with t(14;18). TGZ was found to dose-dependently downregulate the expression of c-myc mRNA and c-myc protein in the three cell lines. These results suggest that TGZ inhibits cell growth via induction of G(1) cell cycle arrest and apoptosis in these cell lines and that TGZ-induced apoptosis, at least in part, may be related to the downregulation of c-myc expression. Moreover, the downregulation of c-myc expression by TGZ may depend on a PPARgamma-independent mechanism. Further studies indicate that PPARgamma ligands may serve as a therapeutic agent in B-ALL with t(14;18).

  16. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  17. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    Science.gov (United States)

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  18. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  19. Glycosaminoglycan synthesis and shedding induced by growth factors are cell and compound specific.

    Science.gov (United States)

    Suarez, Eloah R; Nohara, Angela S; Mataveli, Fábio D; de Matos, Leandro L; Nader, Helena B; Pinhal, Maria Aparecida S

    2007-02-01

    The interactions between growth factors and sulphated glycosaminoglycans (GAG) have been extensively studied. The aim of this study is to investigate if growth factors would show specificity of action on the synthesis and shedding of sulphated GAG, using two different cell lines: endothelial and smooth muscle cells. The cells were grown in the presence or absence of growth factors: EGF, FGF2, VEGF121, VEGF165. Transfection assays were also performed using recombinant pcDNA3.1, containing VEGF165 cDNA. In order to analyse the different types of GAG the cells were metabolically labelled with [(35)S]-sulphate. At low doses, VEGF121 was the only growth factor able to increase both the synthesis and secretion of heparan sulphate (HS) in endothelial cells. Over expression of VEGF165 stimulated HS synthesis in both cells. The combined results showed that growth factors affect GAG synthesis in a cell specific and dose dependent manner.

  20. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Directory of Open Access Journals (Sweden)

    Saikali Melody

    2012-07-01

    Full Text Available Abstract Background Sesquiterpene lactones (SL are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan isolated from Achillea falcata and salograviolide A (Sal A isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to

  1. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells.

    Science.gov (United States)

    Saikali, Melody; Ghantous, Akram; Halawi, Racha; Talhouk, Salma N; Saliba, Najat A; Darwiche, Nadine

    2012-07-09

    Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary

  2. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  3. Sparstolonin B, a novel plant derived compound, arrests cell cycle and induces apoptosis in N-myc amplified and N-myc nonamplified neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar

    Full Text Available Neuroblastoma is one of the most common solid tumors and accounts for ∼ 15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed. Here we examined the anticancer activity of a novel plant-derived compound, sparstolonin B (SsnB; 8,5'-dihydroxy-4-phenyl-5,2'-oxidoisocoumarin using neuroblastoma cell lines of different genetics. SsnB was recently isolated from an aquatic Chinese herb, Sparganium stoloniferum, and tubers of this herb have been used in traditional Chinese medicine for the treatment of several inflammatory diseases and cancers. Our cell viability and morphological analysis indicated that SsnB at 10 µM concentration significantly inhibited the growth of both N-myc amplified (SK-N-BE(2, NGP, and IMR-32 cells and N-myc nonamplified (SH-SY5Y and SKNF-1 cells neuroblastoma cells. The flow cytometric analyses suggested that SsnB arrests the cell cycle progression at G2-M phase in all neuroblastoma cell lines tested. Exposure of SsnB inhibited the compact spheroid formation and reduced the tumorigenicity of SH-SY5Y cells and SK-N-BE(2 cells in in vitro 3-D cell culture assays (anchorage-independent colony formation assay and hanging drop assay. SsnB lowers the cellular level of glutathione (GSH, increases generation of reactive oxygen species and activates the cleavage of caspase-3 whereas co-incubation of a GSH precursor, N-acetylcysteine, along with SsnB attenuates the inhibitory effects of SsnB and increases the neuroblastoma cell viability. Our results for the first time demonstrate that SsnB possesses anticancer activity indicating that SsnB-induced reactive oxygen species generation promotes apoptotic cell death in neuroblastoma cells of different genetic background. Thus these data suggest that SsnB can be a promising drug candidate

  4. University of Texas MD Anderson: Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  5. Expression of transforming growth factor-beta (TGF-beta) receptors, TGF-beta 1 and TGF-beta 2 production and autocrine growth control in osteosarcoma cells

    NARCIS (Netherlands)

    Kloen, P.; Jennings, C. L.; Gebhardt, M. C.; Springfield, D. S.; Mankin, H. J.

    1994-01-01

    Transforming growth factor-beta (TGF-beta) is a polypeptide with multiple physiological functions. Isoforms of this growth factor have important roles in control of the cell cycle, in regulation of cell-cell interactions and in growth and development. Malignant transformation has been shown to be

  6. Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells

    NARCIS (Netherlands)

    Peverali, F.A.; Mandriota, S.J.; Ciana, P.; Marelli, R.; Quax, P.; Rifkin, D.B.; Della Valle, G.; Mignatti, P.

    1994-01-01

    Culture medium conditioned by human SK-Hep1 hepatoma cells or mouse S180 sarcoma cells rapidly up-regulates endothelial cell expression of basic fibroblast growth factor (bFGF) and induces formation of capillary-like structures by vascular endothelial cells grown on three-dimensional fibrin gels (in

  7. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thejaswini Venkatesh

    Full Text Available Mutations in the MCPH1 (microcephalin 1 gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC samples, and observed that 14/71 (19.72% informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22% and 19/25 (76% OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10% tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

  8. Dynamic expression of cell surface hydrophobicity during initial yeast cell growth and before germ tube formation of Candida albicans.

    OpenAIRE

    Hazen, B W; Hazen, K C

    1988-01-01

    Expression of cell surface hydrophobicity (CSH) during initial growth of Candida albicans was monitored. CSH of hydrophobic and hydrophilic yeast cells changed within 30 min upon subculture into fresh medium. Morphologic evidence of germination was preceded by expression of CSH. These results indicate that CSH expression is important in C. albicans growth.

  9. Characteristics of MIC-1 antlerogenic stem cells and their effect on hair growth in rabbits.

    Science.gov (United States)

    Cegielski, Marek; Izykowska, Ilona; Chmielewska, Magdalena; Dziewiszek, Wojciech; Bochnia, Marek; Calkosinski, Ireneusz; Dziegiel, Piotr

    2013-01-01

    We characterized growth factors produced by MIC-1 antlerogenic stem cells and attempted to apply those cells to stimulate hair growth in rabbits. We evaluated the gene and protein expression of growth factors by immunocytochemical and molecular biology techniques in MIC-1 cells. An animal model was used to assess the effects of xenogenous stem cells on hair growth. In the experimental group, rabbits were intradermally injected with MIC-1 stem cells, whereas the control group rabbits were given vehicle-only. After 1, 2 and 4 weeks, skin specimen were collected for histological and immunohistochemical tests. MIC-1 antlerogenic stem cells express growth factors, as confirmed at the mRNA and protein levels. Histological and immunohistochemical analysis demonstrated an increase in the number of hair follicles, as well as the amount of secondary hair in the follicles, without an immune response in animals injected intradermally with MIC-1 cells, compared to animals receiving vehicle-alone. MIC-1 cells accelerated hair growth in rabbits due to the activation of cells responsible for the regulation of the hair growth cycle through growth factors. Additionally, the xenogenous cell implant did not induce immune response.

  10. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner.

    Science.gov (United States)

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. The purpose of the present study is to examine the effect of Smurf2 knockdown on the tumorigenic potential of human breast cancer cells emphasizing more on proliferative signaling pathway. siRNAs targeting different regions of the Smurf2 mRNA were employed to knockdown the expression of Smurf2. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth, cell cycle arrest, and cell cycle and cell proliferation related protein expressions upon Smurf2 silencing. Smurf2 silencing in human breast cancer cells resulted in a decreased focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of Smurf2 suppressed cell proliferation. Cell cycle analysis showed that the anti-proliferative effect of Smurf2 siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by decreased expression of cyclin D1and cdk4, followed by upregulation p21 and p27. Furthermore, we demonstrated that silencing of Smurf2 downregulated the proliferation of breast cancer cells by modulating the PI3K- PTEN-AKT-FoxO3a pathway via the scaffold protein CNKSR2 which is involved in RAS-dependent signaling pathways. The present study provides the first evidence that silencing Smurf2 using synthetic siRNAs can regulate the tumorigenic properties of human breast cancer cells in a CNKSR2 dependent manner. Our results

  11. Reduction in placental growth factor impaired gestational beta-cell proliferation through crosstalk between beta-cells and islet endothelial cells.

    Science.gov (United States)

    Xu, Xiaosheng; Shen, Jian

    2016-01-01

    Reduced placental growth factor (PLGF) during pregnancy is known to be a reason for developing preeclampsia (PE) and gestational diabetes mellitus (GDM), but the underlying mechanisms remain unclear. Recently, it has been shown that reduced PLGF may induce GDM through suppressing beta-cell mass growth in a PI3k/Akt signalling-dependent manner. Here, we dissected the interaction between beta-cells and islet endothelial cells in this model. We analysed proliferation of beta-cells and islet endothelial cells at different time points of gestation in mice. We cultured mouse islet endothelial cells (MS1), with or without PLGF. We cultured primary mouse beta-cells in conditioned media from PLGF-treated MS1. We cultured MS1 cells in conditioned media from proliferating beta-cells that were activated with conditioned media from PLGF-treated MS1 cells. We analysed cell proliferation by BrdU incorporation. We analysed cell growth by a MTT assay. We found that during mouse gestation, the increases in cell proliferation occurred earlier in beta-cells than in islet endothelial cells. In vitro, PLGF itself failed to induce proliferation of MS1 cells. However, conditioned media from the PLGF-treated MS1 cells induced beta-cell proliferation, resulting in increases in beta-cell number. Moreover, proliferation of MS1 cells significantly increased when MS1 cells were cultured in conditioned media from proliferating beta-cells activated with conditioned media from PLGF-treated MS1 cells. Thus, our data suggest that gestational PLGF may stimulate islet endothelial cells to release growth factors to promote beta-cell proliferation, and proliferating beta-cells in turn release endothelial cell growth factor to increase proliferation of endothelial cells. PE-associated reduction in PLGF impairs these processes to result in islet growth impairment, and subsequently the onset of GDM.

  12. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Science.gov (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  13. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  14. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    International Nuclear Information System (INIS)

    Greene, Carol Ann; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-01-01

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors

  15. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  16. The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.

    Science.gov (United States)

    Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru

    2017-06-01

    Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  18. SBDS-deficiency results in deregulation of reactive oxygen species leading to increased cell death and decreased cell growth.

    Science.gov (United States)

    Ambekar, Chhaya; Das, Bikul; Yeger, Herman; Dror, Yigal

    2010-12-01

    Shwachman-Diamond syndrome (SDS) is characterized by reduced hematopoietic and exocrine pancreatic cell numbers and a marked propensity for leukemia. Most patients have mutations in the SBDS gene. We previously reported that SBDS-deficient cells overexpress Fas, undergo accelerated spontaneous and Fas-mediated apoptosis and grow slowly. However the mechanism of how SBDS regulates apoptosis remains unknown. Several studies have shown that reactive oxygen species (ROS) regulate cell growth and spontaneous and Fas-mediated cell death. Therefore, we hypothesized that SBDS-deficiency disrupts ROS regulation and subsequently increases sensitivity to Fas stimulation and reduced cell growth. SBDS was knocked down in HeLa cervical cancer cells and TF-1 myeloid cells using short hairpin RNA. ROS levels were evaluated by oxidation of 2',7'-dichlorodihydrofluorescein diacetate. Apoptosis and cell growth were evaluated with and without antioxidants by annexin V/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, respectively. We found that shRNA mediated SBDS-knockdown resulted in a significant increase in ROS levels compared to control cells. Fas stimulation further increased ROS levels in the SBDS-knockdown HeLa cells more than in the controls. Importantly, balancing ROS levels by antioxidants rescued SBDS-deficient cells from spontaneous and Fas-mediated apoptosis and reduced cell growth. ROS levels are increased in SBDS-deficient cells, which leads to increased apoptosis and decreased cell growth. Increased baseline and Fas-mediated ROS levels in SBDS-deficient cells can enhance the sensitivity to Fas stimulation. By balancing ROS levels, antioxidants can improve cell growth and survival in SBDS-deficient cells.

  19. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2.Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation.These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  20. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    Science.gov (United States)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  1. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  2. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    International Nuclear Information System (INIS)

    Yu, Cheng-Chia; Chang, Yu-Chao

    2013-01-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  3. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  4. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3.

    Science.gov (United States)

    Petpiroon, Nareerat; Sritularak, Boonchoo; Chanvorachote, Pithi

    2017-12-29

    The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including

  5. Comparative effects of 4-phenyl-3-butenoic acid and vorinostat on cell growth and signaling.

    Science.gov (United States)

    Burns, Timothy J; Ali, Amna; Matesic, Diane F

    2015-02-01

    4-phenyl-3-butenoic acid (PBA) is a small-molecule anti-inflammatory agent, which has been shown to inhibit growth, increase gap junction intercellular communication and modulate activation of p38 mitogen-activated protein kinase (p38 MAPK) and c-jun n-terminal kinase (JNK) in tumorigenic cells at concentrations that do not similarly affect non-tumorigenic cells. Vorinostat is an anticancer agent structurally similar to PBA. The purpose of this study was to compare the effects of these two agents on JNK and p38 activation, cell growth and gap junction intercellular communication (GJIC). Cell growth, GJIC and western blot analyses were performed utilizing tumorigenic WBras1 and H2009 human carcinoma cells, and non-tumorigenic WBneo3 and human bronchial epithelial (HBE) cells. Both compounds significantly inhibited WBras1 and H2009 tumorigenic cell growth and increased GJIC in WBras1 cells, as previously reported for PBA. Under similar conditions, both compounds increased phosphorylation of p38 MAPK in tumorigenic but not in non-tumorigenic cells and decreased phosphorylation of JNK in tumorigenic cells. However, a decrease in phosphorylation of JNK occurred in non-tumorigenic WBras1 cells following vorinostat treatment but not PBA treatment. Both compounds showed a selective growth inhibition of H2009 human carcinoma over normal HBE lung cells but, unlike PBA, vorinostat significantly decreased cell growth in WBneo3 cells. Overall, PBA exhibited similar effects to vorinostat in tumorigenic cells, while also showing reduced effects on JNK phosphorylation and growth in non-tumorigenic cells compared to ras-transformed cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Growth techniques used to develop CDS/CDTE thin film solar cells ...

    African Journals Online (AJOL)

    Growth techniques used to develop CDS/CDTE thin film solar cells: a review. ... Techniques such as molecular beam epitaxy (MBE), metal organic chemical vapour deposition (MOCVD) called melt growth or Bridgman are well known as high quality semiconductor growth techniques. One of the limitations of these ...

  7. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M

    2008-01-01

    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately activa...

  8. Histamine-stimulated expression of insulin-like growth factors in human glioma cells.

    OpenAIRE

    Van der Ven, L. T.; Van Buul-Offers, S. C.; Gloudemans, T.; Roholl, P. J.; Sussenbach, J. S.; Den Otter, W.

    1997-01-01

    Glioma tumour growth is associated with the expression of insulin-like growth factors I and II (IGFs) and of both type I and type II IGF receptors. It has also been shown that IGFs can stimulate proliferation of cultured glioma cells. We previously reported that histamine too can stimulate the growth of glioma cells in vitro. In this report, we study whether the histamine-induced growth of G47 glioma cells is mediated by the IGFs. We found that histamine stimulates the expression of both IGF-...

  9. the non-genomic effects of high doses of rosiglitazone on cell growth

    African Journals Online (AJOL)

    DR. AMINU

    shown to inhibit cell growth by inducing apoptosis (Mao et al., 2007). This study focused on ER stress-mediated effects on cell growth, viability and apoptosis in .... secondary antibodies. Arrow indicates 105KDa molecular weight bands, which correspond to SERCA2b. Image is representative of three separate experiments ...

  10. Compounds in a particular production lot of tryptic soy broth inhibit Staphylococcus aureus cell growth.

    Science.gov (United States)

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2015-06-01

    Staphylococcus aureus Newman strain and several methicillin-resistant S. aureus (MRSA) clinical isolates were grown on agar plates prepared with conventional lots of tryptic soy broth (TSB). Cell growth of these strains was inhibited on agar plates containing TSB of a particular product lot (lot A), whereas the cell growth of S. aureus RN4220 strain and several other MRSA clinical isolates was not inhibited. The cell growth of a strain of S. epidermidis was also inhibited on agar plates containing TSB of lot A, whereas the cell growth of Bacillus subtilis, Lactococcus lactis, Klebsiella pneumonia, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, and Escherichia coli was not inhibited. Although cell growth of the Newman strain was inhibited on agar plates containing TSB of lot A that was autoclaved in stainless steel or glass containers, cell growth inhibition was not observed when the medium was autoclaved in polypropylene containers. Compounds that inhibited the cell growth of the Newman strain were extracted from a polypropylene tube that was preincubated with liquid medium prepared from TSB of lot A. These findings suggest that polypropylene-binding compounds in TSB of lot A inhibited the cell growth of S. aureus Newman strain, some MRSA clinical isolates, and S. epidermidis.

  11. High-Resolution Transmission Electron Microscopy Observation of Colloidal Nanocrystal Growth Mechanisms using Graphene Liquid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuk, Jong Min; Park, Jungwon; Ercius, Peter; Kim, Kwanpyo; Hellebusch, Danny J.; Crommie, Michael F.; Lee, Jeong Yong; Zettl, A.; Alivisatos, A. Paul

    2011-12-12

    We introduce a new type of liquid cell for in-situ electron microscopy based upon entrapment of a liquid film between layers of graphene. We employ this cell to achieve high-resolution imaging of colloidal platinum nanocrystal growth. The ability to directly image and resolve critical steps at atomic resolution provides new insights into nanocrystal coalescence and reshaping during growth.

  12. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Blagoev, Blagoy; Haack-Sorensen, M.

    2005-01-01

    Closely related signals often lead to very different cellular outcomes. We found that the differentiation of human mesenchymal stem cells into bone-forming cells is stimulated by epidermal growth factor (EGF) but not platelet-derived growth factor (PDGF). We used mass spectrometry-based proteomics...

  13. Breviscapine suppresses the growth of non-small cell lung cancer ...

    Indian Academy of Sciences (India)

    2017-02-10

    Feb 10, 2017 ... Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells. However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimed to study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 ...

  14. Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy

    Science.gov (United States)

    Ziv, Naomi; Siegal, Mark L.; Gresham, David

    2013-01-01

    In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast (Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extracellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation, which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating their molecular genetic dissection. PMID:23938868

  15. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh; Hwang, Pyoung-Han; Yi, Ho-Keun; Nam, Sang-Yun; Lee, Dae-Yeol

    2009-01-01

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  16. Appropriate nonwoven filters effectively capture human peripheral blood cells and mesenchymal stem cells, which show enhanced production of growth factors.

    Science.gov (United States)

    Hori, Hideo; Iwamoto, Ushio; Niimi, Gen; Shinzato, Masanori; Hiki, Yoshiyuki; Tokushima, Yasuo; Kawaguchi, Kazunori; Ohashi, Atsushi; Nakai, Shigeru; Yasutake, Mikitomo; Kitaguchi, Nobuya

    2015-03-01

    Scaffolds, growth factors, and cells are three essential components in regenerative medicine. Nonwoven filters, which capture cells, provide a scaffold that localizes and concentrates cells near injured tissues. Further, the cells captured on the filters are expected to serve as a local supply of growth factors. In this study, we investigated the growth factors produced by cells captured on nonwoven filters. Nonwoven filters made of polyethylene terephthalate (PET), biodegradable polylactic acid (PLA), or chitin (1.2-22 μm fiber diameter) were cut out as 13 mm disks and placed into cell-capturing devices. Human mesenchymal stem cells derived from adipose tissues (h-ASCs) and peripheral blood cells (h-PBCs) were captured on the filter and cultured to evaluate growth factor production. The cell-capture rates strongly depended on the fiber diameter and the number of filter disks. Nonwoven filter disks were composed of PET or PLA fibers with fiber diameters of 1.2-1.8 μm captured over 70% of leukocytes or 90% of h-ASCs added. The production of vascular endothelial growth factor (VEGF), transforming growth factor β1, and platelet-derived growth factor AB were significantly enhanced by the h-PBCs captured on PET or PLA filters. h-ASCs on PLA filters showed significantly enhanced production of VEGF. These enhancements varied with the combination of the nonwoven filter and cells. Because of the enhanced growth factor production, the proliferation of human fibroblasts increased in conditioned medium from h-PBCs on PET filters. This device consisting of nonwoven filters and cells should be investigated further for possible use in the regeneration of impaired tissues.

  17. Connective Tissue Growth Factor Modulates Adult β-Cell Maturity and Proliferation to Promote β-Cell Regeneration in Mice

    Science.gov (United States)

    Riley, Kimberly G.; Pasek, Raymond C.; Maulis, Matthew F.; Peek, Jennifer; Thorel, Fabrizio; Brigstock, David R.; Herrera, Pedro L.

    2015-01-01

    Stimulation of endogenous β-cell expansion could facilitate regeneration in patients with diabetes. In mice, connective tissue growth factor (CTGF) is expressed in embryonic β-cells and in adult β-cells during periods of expansion. We discovered that in embryos CTGF is necessary for β-cell proliferation, and increased CTGF in β-cells promotes proliferation of immature (MafA−) insulin-positive cells. CTGF overexpression, under nonstimulatory conditions, does not increase adult β-cell proliferation. In this study, we tested the ability of CTGF to promote β-cell proliferation and regeneration after partial β-cell destruction. β-Cell mass reaches 50% recovery after 4 weeks of CTGF treatment, primarily via increased β-cell proliferation, which is enhanced as early as 2 days of treatment. CTGF treatment increases the number of immature β-cells but promotes proliferation of both mature and immature β-cells. A shortened β-cell replication refractory period is also observed. CTGF treatment upregulates positive cell-cycle regulators and factors involved in β-cell proliferation, including hepatocyte growth factor, serotonin synthesis, and integrin β1. Ex vivo treatment of whole islets with recombinant human CTGF induces β-cell replication and gene expression changes consistent with those observed in vivo, demonstrating that CTGF acts directly on islets to promote β-cell replication. Thus, CTGF can induce replication of adult mouse β-cells given a permissive microenvironment. PMID:25392241

  18. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior.

    Science.gov (United States)

    Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing

    2017-12-15

    By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.

  19. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-β-susceptible hepatocellular carcinoma cells

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jin-Fang; Chan, Chu-Yan; Lu, Gang; Lin, Marie CM; He, Ming-Liang; Li, Ji-Cheng; Kung, Hsiang-Fu

    2012-01-01

    AIM: To investigate the role of transforming growth factor (TGF)-β-inducible early gene 1 (TIEG1) in TGF-β-induced growth inhibition in hepatocellular carcinoma (HCC) cells. METHODS: Human hepatocyte and HCC cell lines with varied susceptibilities to TGF-β1 were tested by methylthiazoletetrazolium (MTT) assay. The expression changes of Smad2, Smad3, Smad4, Smad7, TIEG1 and TIEG2 gene following treatment with TGF-β1 in a TGF-β-sensitive hepatocyte cell line (MIHA), a TGF-β-sensitive hepatoma cell line (Hep3B) and two TGF-β-insensitive hepatoma cell lines (HepG2 and Bel7404) were examined. SiRNA targeting TIEG1 was transfected into Hep3B cells and the sensitivity of cells to TGF-β1 was examined. Overexpression of TIEG1 was induced by lentiviral-mediated transduction in TGF-β1-resistant hepatoma cell lines (Bel7404 and HepG2). MTT assay and 4’,6-Diamidino-2-phenylindole staining were used to identify cell viability and apoptosis, respectively. The expression level of stathmin was measured by reverse transcriptase polymerase chain reaction and Western-blotting analysis, and stathmin promoter activity by TIEG1 was monitored by a luciferase reporter gene system. RESULTS: TIEG1 was significantly upregulated by TGF-β1 in the TGF-β1-sensitive HCC cell line, Hep3B, but not in the resistant cell lines. The suppression of TIEG1 by siRNAs decreased the sensitivity of Hep3B cells to TGF-β1, whereas the overexpression of TIEG1 mediated growth inhibition and apoptosis in TGF-β1-resistant HCC cell lines, which resembled those of TGF-β1-sensitive HCC cells treated with TGF-β1. Our data further suggested that stathmin was a direct target of TIEG1, as stathmin was significantly downregulated by TIEG1 overexpression, and stathmin promoter activity was inhibited by TIEG1 in a dose-dependent manner. CONCLUSION: Our data suggest that transactivation of TIEG1 conferred growth inhibition of TGF-β-susceptible human HCC cells. PMID:22563190

  20. Combination of imatinib and clotrimazole enhances cell growth inhibition in T47D breast cancer cells.

    Science.gov (United States)

    Motawi, Tarek M K; Sadik, Nermin A H; Fahim, Sally A; Shouman, Samia A

    2015-05-25

    Imatinib mesylate (IM), a tyrosine kinase inhibitor, is used as targeted cancer therapy. However, mono-targeting by IM does not always achieve full tumor eradication and thus it is recommended to combine IM with other anticancer agents. Clotrimazole (CLT) is an antifungal azole derivative with promising anticancer effects due to inhibiting the activity of glycolytic enzymes. The present study aimed to evaluate the effect of combining CLT with IM on breast cancer cell line in an attempt to establish effective new combination. T47D human breast cancer cell line was treated with different concentrations of IM and/or CLT for 48 h. IM-CLT interaction was determined by isobologram equation and combination index. Cell viability was confirmed by measuring LDH activity. As indicators of glycolysis inhibition, the expression of hexokinase-2 (HK-2) and 6-phosphofructo-1-kinase (PFK-1) plus the activity of intracellular lactate dehydrogenase (LDH) and pyruvate kinase (PK) were determined. In addition, glucose consumption and adenosine triphosphate (ATP) production were measured. Moreover, nitric oxide (NO), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-α (HIF-α) were also determined as they are modulators for glycolysis. This study demonstrated that IM or CLT synergistically inhibited cell growth in T47D as shown by combination and dose reduction indices. The combination of 15 μM IM and 20 μM CLT significantly decreased glucose consumption, activity of both PK and intracellular LDH, while increased leaked LDH, VEGF and NO in the medium compared to each drug alone. Furthermore the combination decreased gene expression of HK-2, PFK-1 and ATP content compared to the control. In conclusion, the synergistic effect of CLT on IM cytotoxicity in T47D cell line maybe mediated through inhibition of glycolysis and increasing both NO and VEGF. Further studies are required to confirm the efficiency and safety of this combination. Copyright © 2015 Elsevier

  1. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    International Nuclear Information System (INIS)

    Taub, Mary

    2016-01-01

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10 −5  M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  2. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  3. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  4. Growth control and differentiation in mammary epithelial cells.

    OpenAIRE

    Borellini, F; Oka, T

    1989-01-01

    Growth and differentiation of the mammary gland are controlled by various hormones and other environmental factors. The role of hormones and growth factors in mammary development is discussed with regard to animal species, physiological stages, and the various experimental systems in vitro. In the female embryo, mammary morphogenesis is induced by the mesenchyme and is hormone independent, whereas androgens cause the partial necrosis of mammary epithelium in the male. Ductal growth during ado...

  5. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-05-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.

  6. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    International Nuclear Information System (INIS)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-01-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of 125 I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound 125 I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients

  7. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Kimitoshi Kohno

    2011-10-01

    Full Text Available We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143 regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1, aurora kinase B (AURKB and some minichromosome maintenance complex components (MCM. However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  8. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    International Nuclear Information System (INIS)

    Izumi, Hiroto; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Kuma, Akihiro; Kitamura, Noriaki; Kohno, Kimitoshi

    2011-01-01

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division

  9. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Hiroto, E-mail: h-izumi@med.uoeh-u.ac.jp; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Kuma, Akihiro; Kitamura, Noriaki; Kohno, Kimitoshi [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-19

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  10. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Science.gov (United States)

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  11. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures.

    Science.gov (United States)

    Majack, R A

    1987-07-01

    In culture, vascular smooth muscle cells (SMC) grow in a "hill-and-valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet-derived growth factor-mediated proliferation of these cells in two-dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury.

  12. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  13. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    Purpose: To investigate anticancer effects of bergenin on human colorectal cancer cell lines. Methods: Human colorectal adenocarcinoma cell line HCT116 was treated with various concentrations of bergenin for 24 and 48 h. Cell viability, apoptosis, cell cycle arrest and reactive oxygen species (ROS) level were analyzed ...

  14. One year growth hormone replacement therapy does not alter colonic epithelial cell proliferation in growth hormone deficient adults

    NARCIS (Netherlands)

    Beentjes, JAM; van Gorkom, BAP; Sluiter, WJ; de Vries, Emma; Kleibeuker, JH; Dullaart, RPF

    OBJECTIVE Increased colonic epithelial cell proliferation has been found in various conditions associated with increased risk of colorectal cancer including acromegaly. In a placebo-controlled study we determined the effect of growth hormone (GH) replacement therapy in GH deficient adults on the

  15. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells

    Science.gov (United States)

    Devhare, Pradip; Meyer, Keith; Steele, Robert; Ray, Ratna B; Ray, Ranjit

    2017-01-01

    The current outbreak of Zika virus-associated diseases in South America and its threat to spread to other parts of the world has emerged as a global health emergency. A strong link between Zika virus and microcephaly exists, and the potential mechanisms associated with microcephaly are under intense investigation. In this study, we evaluated the effect of Zika virus infection of Asian and African lineages (PRVABC59 and MR766) in human neural stem cells (hNSCs). These two Zika virus strains displayed distinct infection pattern and growth rates in hNSCs. Zika virus MR766 strain increased serine 139 phosphorylation of histone H2AX (γH2AX), a known early cellular response proteins to DNA damage. On the other hand, PRVABC59 strain upregulated serine 15 phosphorylation of p53, p21 and PUMA expression. MR766-infected cells displayed poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavage. Interestingly, infection of hNSCs by both strains of Zika virus for 24 h, followed by incubation in astrocyte differentiation medium, induced rounding and cell death. However, astrocytes generated from hNSCs by incubation in differentiation medium when infected with Zika virus displayed minimal cytopathic effect at an early time point. Infected hNSCs incubated in astrocyte differentiating medium displayed PARP cleavage within 24–36 h. Together, these results showed that two distinct strains of Zika virus potentiate hNSC growth inhibition by different mechanisms, but both viruses strongly induce death in early differentiating neuroprogenitor cells even at a very low multiplicity of infection. Our observations demonstrate further mechanistic insights for impaired neuronal homeostasis during active Zika virus infection. PMID:29022904

  16. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF - opioid growth factor receptor (OGFr axis

    Directory of Open Access Journals (Sweden)

    Donahue Renee N

    2009-10-01

    Full Text Available Abstract Background Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC is considered more malignant than papillary thyroid carcinoma (PTC, and anaplastic thyroid cancer (ATC is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met5]-enkephalin and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Methods Utilizing human ATC (KAT-18, PTC (KTC-1, and FTC (WRO 82-1 cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX, and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC and WRO 82-1 (FTC tumor cells. Results OGF and OGFr were present in KAT-18 cells. Concentrations of 10-6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival

  17. Effect of growth media modifications on cell biomass and ...

    African Journals Online (AJOL)

    The growth media dependency of S. frigidimarina in terms of its growth behavior in response to modifications made to the media as well as its potential to produce PUFAs was evaluated. S. frigidimarina was cultured in conventional shake-flasks and controlled bioreactors with a batch-type procedure using different media ...

  18. Entropy production of a steady-growth cell with catalytic reactions

    Science.gov (United States)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2014-10-01

    Cells generally convert external nutrient resources to support metabolism and growth. Understanding the thermodynamic efficiency of this conversion is essential to determine the general characteristics of cellular growth. Using a simple protocell model with catalytic reaction dynamics to synthesize the necessary enzyme and membrane components from nutrients, the entropy production per unit-cell-volume growth is calculated analytically and numerically based on the rate equation for chemical kinetics and linear nonequilibrium thermodynamics. The minimal entropy production per unit-cell growth is found to be achieved at a nonzero nutrient uptake rate rather than at a quasistatic limit as in the standard Carnot engine. This difference appears because the equilibration mediated by the enzyme exists only within cells that grow through enzyme and membrane synthesis. Optimal nutrient uptake is also confirmed by protocell models with many chemical components synthesized through a catalytic reaction network. The possible relevance of the identified optimal uptake to optimal yield for cellular growth is also discussed.

  19. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    Science.gov (United States)

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  20. Study on Invasion of Artesunate on Inhibiting Human Colon Cancer Cell SW620

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2013-09-01

    Full Text Available Objective: To observe the invasive effect of Chinese extraction artesunate on human colon cancer cell SW620 and explore its possible mechanisms. Methods: Colon cancer cell SW620 was managed by different concentrations of artesunate, and soft agar colony-cultivating trial was applied to detect anchorage independent proliferation of cancer cells, Boyden chamber model method to detect the invasive capability of cancer cells and Western blot method to detect the change of intercellular adhesion molecule-1 (ICAM-1 proteins. Results: Artesunate can effectively inhibit malignant proliferation and invasive capability of colon cancer cell SW620, and was dose-dependent (P < 0.01. Artesunate can effectively inhibit the expression of cancer cell ICAM-1 gene proteins, and was time- and concentration-dependant (P <0.01. Conclusion: Artesunate can significantly inhibit the invasion of colon cancer cell SW620, which can be related to down-regulation of ICAM-1 protein level.

  1. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    International Nuclear Information System (INIS)

    Hara, H.; Seon, B.K.

    1987-01-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment

  2. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Lucas Felipe de Oliveira

    2015-01-01

    Full Text Available Systemic arterial hypertension (SAH, a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs, which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2 increases their therapeutic effects in spontaneously hypertensive rats (SHRs. Adult female SHRs were administered an intraperitoneal injection of vehicle solution n=10, MSCs cultured in conventional medium (DMEM plus 10% FBS, n=11, or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n=10. Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH.

  3. Turgor, temperature and the growth of plant cells: using Chara corallina as a model system.

    Science.gov (United States)

    Proseus, T E; Zhu, G L; Boyer, J S

    2000-09-01

    Rapid changes in turgor pressure (P:) and temperature (T:) are giving new information about the mechanisms of plant growth. In the present work, single internode cells of the large-celled alga Chara corallina were used as a model for plant growth. P was changed without altering the chemical environment of the wall while observing growth without elastic changes. When P: was measured before any changes, the original growth rate bore no relationship to the original P. However, if P of growing cells was decreased, growth responded immediately without evidence for rapid changes in wall physical properties. Growth occurred only above a 0.3 MPa threshold, and increasing P caused small increases in growth that became progressively larger as P rose, resulting in a curvilinear response overall. The small changes in growth close to the threshold may explain early failures to detect these responses. When T was lowered, the elastic properties of the cell were unaffected, but growth was immediately inhibited. The lower T caused P to decrease, but returning P to its original value did not return growth to its original rate. The decreased P at low T occurred because of T effects on the osmotic potential of the cell. At above-normal P, growth partially resumed at low T Therefore, growth required a P-sensitive process that was also T-sensitive. Because elastic properties were little affected by T, but growth was markedly affected, the process is likely to involve metabolism. The rapidity of its response to P and T probably excludes the participation of changes in gene expression.

  4. cgCorrect: a method to correct for confounding cell-cell variation due to cell growth in single-cell transcriptomics

    Science.gov (United States)

    Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.

    2017-06-01

    Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.

  5. Podoplanin enhances lung cancer cell growth in vivo by inducing platelet aggregation.

    Science.gov (United States)

    Miyata, Kenichi; Takemoto, Ai; Okumura, Sakae; Nishio, Makoto; Fujita, Naoya

    2017-06-22

    Podoplanin/Aggrus, known as a platelet aggregation-inducing factor, is frequently overexpressed in lung squamous cell carcinomas (LSCC) and glioblastomas among other tumours, and its expression has been reported to be correlated with poor prognosis. However, the contribution of podoplanin to malignant progression has been elusive. Here we demonstrate that in podoplanin-positive LSCC cells, their growth was abrogated by podoplanin knockout in vivo but not in vitro. Conversely, ectopic expression of podoplanin promoted cell growth in vivo and facilitated intratumoral platelet activation. Consistently, LSCC cells evoked podoplanin-mediated platelet aggregation (PMPA), and the releasates from platelets during PMPA promoted the growth of LSCC cells in vitro. Phospho-receptor-tyrosine-kinase array analysis revealed that epidermal growth factor receptor (EGFR) phosphorylation of LSCC cells was responsible for the growth promotion induced by platelet releasates. Treatment with an antiplatelet agent or podoplanin-neutralizing antibody depressed the growth of an LSCC tumour xenograft via suppression of EGFR phosphorylation. These results suggested that podoplanin in LSCC enhanced cell growth by inducing PMPA in vivo and contributed to malignant progression.

  6. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  7. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  8. Optimization of dairy sludge for growth of Rhizobium cells.

    Science.gov (United States)

    Singh, Ashok Kumar; Singh, Gauri; Gautam, Digvijay; Bedi, Manjinder Kaur

    2013-01-01

    In this study dairy sludge was evaluated as an alternative cultivation medium for Rhizobium. Growth of bacterial strains at different concentrations of Dairy sludge was monitored. Maximum growth of all strains was observed at 60% Dairy sludge concentration. At 60% optical density (OD) values are 0.804 for Rhizobium trifolii (MTCC905), 0.825 for Rhizobium trifolii (MTCC906), and 0.793 for Rhizobium meliloti (MTCC100). Growth pattern of strains was observed at 60% Dairy sludge along with different synthetic media (tryptone yeast, Rhizobium minimal medium and yeast extract mannitol). Growth in 60% Dairy sludge was found to be superior to standard media used for Rhizobium. Media were optimized using 60% dairy sludge along with different concentrations of yeast extract (1-7 g/L) and mannitol (7-13 g/L) in terms of optical density at different time intervals, that is, 24, 48 and 72 hours. Maximum growth was observed in 6 g/L of yeast extract and 12 g/L of mannitol at 48-hour incubation period in all strains. The important environmental parameters such as pH were optimized using 60% dairy sludge, 60% dairy sludge +6 g/L yeast extract, and 60% dairy sludge +12 g/L mannitol. The maximum growth of all strains was found at pH 7.0. The present study recommends the use of 60% dairy sludge as a suitable growth medum for inoculant production.

  9. Optimization of Dairy Sludge for Growth of Rhizobium Cells

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Singh

    2013-01-01

    Full Text Available In this study dairy sludge was evaluated as an alternative cultivation medium for Rhizobium. Growth of bacterial strains at different concentrations of Dairy sludge was monitored. Maximum growth of all strains was observed at 60% Dairy sludge concentration. At 60% optical density (OD values are 0.804 for Rhizobium trifolii (MTCC905, 0.825 for Rhizobium trifolii (MTCC906, and 0.793 for Rhizobium meliloti (MTCC100. Growth pattern of strains was observed at 60% Dairy sludge along with different synthetic media (tryptone yeast, Rhizobium minimal medium and yeast extract mannitol. Growth in 60% Dairy sludge was found to be superior to standard media used for Rhizobium. Media were optimized using 60% dairy sludge along with different concentrations of yeast extract (1–7 g/L and mannitol (7–13 g/L in terms of optical density at different time intervals, that is, 24, 48 and 72 hours. Maximum growth was observed in 6 g/L of yeast extract and 12 g/L of mannitol at 48-hour incubation period in all strains. The important environmental parameters such as pH were optimized using 60% dairy sludge, 60% dairy sludge +6 g/L yeast extract, and 60% dairy sludge +12 g/L mannitol. The maximum growth of all strains was found at pH 7.0. The present study recommends the use of 60% dairy sludge as a suitable growth medum for inoculant production.

  10. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  11. Modulation of phenotype of human prostatic stromal cells by transforming growth factor-betas.

    Science.gov (United States)

    Hisataki, Toshihiro; Itoh, Naoki; Suzuki, Kazuhiro; Takahashi, Atsushi; Masumori, Naoya; Tohse, Noritsugu; Ohmori, Yuki; Yamada, Shizuo; Tsukamoto, Taiji

    2004-02-01

    We investigated the effects of transforming growth factor (TGF)-betas on morphological and receptor phenotypes, as well as proliferation of four currently established human prostatic myofibroblast cell lines and one commercially available prostatic stromal cell line. The effects of TGF-betas on morphological changes and proliferation of the cells were studied by immunohistochemistry and bromodeoxyuridine assay, respectively. The expression of alpha 1-receptor subtypes was measured by real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and the radioligand binding assay for the receptors was also performed. TGF-betas 1, 2, and 3 induced expression of desmin and myosin of cells of the established cell lines, and significantly inhibited their growth. The alpha 1a-receptor was expressed only in the commercially available cell line and alpha 1b and 1d, in all cell lines. TGF-beta 1 suppressed the expression of all three subtypes of the alpha 1-receptor. The binding sites of cells of all the cell lines were reduced by treatment with this growth factor. TGF-betas may induce human prostatic stromal cells to express the smooth muscle phenotype and inhibited their growth. However, the growth factor reduced the binding sites of the receptor and suppressed mRNA expression of its subtypes, suggesting that morphological and receptor phenotypes may be regulated via more than one pathway by TGF-beta(s). Copyright 2003 Wiley-Liss, Inc.

  12. Silicon bulk growth for solar cells: Science and technology

    Science.gov (United States)

    Kakimoto, Koichi; Gao, Bing; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji

    2017-02-01

    The photovoltaic industry is in a phase of rapid expansion, growing by more than 30% per annum over the last few decades. Almost all commercial solar cells presently use single-crystalline or multicrystalline silicon wafers similar to those used in microelectronics; meanwhile, thin-film compounds and alloy solar cells are currently under development. The laboratory performance of these cells, at 26% solar energy conversion efficiency, is now approaching thermodynamic limits, with the challenge being to incorporate these improvements into low-cost commercial products. Improvements in the optical design of cells, particularly in their ability to trap weakly absorbed light, have also led to increasing interest in thin-film cells based on polycrystalline silicon; these cells have advantages over other thin-film photovoltaic candidates. This paper provides an overview of silicon-based solar cell research, especially the development of silicon wafers for solar cells, from the viewpoint of growing both single-crystalline and multicrystalline wafers.

  13. Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.

    Science.gov (United States)

    Salerno, Marco; Giacomelli, Luca; Larosa, Claudio

    2011-01-06

    Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.

  14. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Blagoev, Blagoy; Haack-Sorensen, M.

    2005-01-01

    Closely related signals often lead to very different cellular outcomes. We found that the differentiation of human mesenchymal stem cells into bone-forming cells is stimulated by epidermal growth factor (EGF) but not platelet-derived growth factor (PDGF). We used mass spectrometry-based proteomics...... it as a possible control point. Indeed, chemical inhibition of PI3K in PDGF-stimulated cells removed the differential effect of the two growth factors, bestowing full differentiation effect onto PDGF. Thus, quantitative proteomics can directly compare entire signaling networks and discover critical differences...

  15. Soft fibrin gels promote selection and growth of tumorigenic cells

    Science.gov (United States)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-08-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.

  16. Cell growth regulation studies on our Biophotonics Workstation

    DEFF Research Database (Denmark)

    Chouliara, Manto; Engay, Einstom; Bañas, Andrew

    2018-01-01

    The past several years have seen an accelerated development of technologies and methods that enable the non-invasive analysis of single cells. These are vital as single cell studies provide important evidence and deepen our understanding of how networks of cells work and evolve. Exploring the ful...

  17. Exposure to nerve growth factor worsens nephrotoxic effect induced by Cyclosporine A in HK-2 cells.

    Directory of Open Access Journals (Sweden)

    Donatella Vizza

    Full Text Available Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkA(NTR and p75(NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 (NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75(NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A.

  18. Autocrine Human Growth Hormone Stimulates Oncogenicity of Endometrial Carcinoma Cells

    OpenAIRE

    Pandey, Vijay; Perry, Jo K.; Mohankumar, Kumarasamypet M.; Kong, Xiang-Jun; Liu, Shu-Min; Wu, Zheng-Sheng; Mitchell, Murray D.; Zhu, Tao; Lobie, Peter E.

    2008-01-01

    Recent published data have demonstrated elevated levels of human GH (hGH) in endometriosis and endometrial adenocarcinoma. Herein, we demonstrate that autocrine production of hGH can enhance the in vitro and in vivo oncogenic potential of endometrial carcinoma cells. Forced expression of hGH in endometrial carcinoma cell lines RL95-2 and AN3 resulted in an increased total cell number through enhanced cell cycle progression and decreased apoptotic cell death. In addition, autocrine hGH express...

  19. CAM and Cell Fate Targeting: Molecular and Energetic Insights into Cell Growth and Differentiation

    Directory of Open Access Journals (Sweden)

    Carlo Ventura

    2005-01-01

    Full Text Available Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence–based CAM.

  20. Isolation and characterization of mink lung epithelial cell mutants resistant to transforming growth factor β

    International Nuclear Information System (INIS)

    Chinkers, M.

    1987-01-01

    Mink lung epithelial cells resistant to growth inhibition by transforming growth factor β (TGF-β) have been isolated by chemical mutagenesis and growth in the presence of platelet extracts enriched in TGF-β. Several resistant clones were isolated, at least one of which stably retained its resistance to TGF-β when grown in the absence of the factor. The cells of this clone were similar to the parent cells in morphology and growth properties. However, unlike the parent cells, the resistant cells did not show any of the following responses to 125 I TGF-β: (1) inhibition of DNA synthesis and proliferation; (2) morphological changes involving increased cell spreading; or (3) stimulation of synthesis of a 48-kilodalton secreted 35 S-protein. The resistant cells do, however, retain a functional TGF-β receptor. The TGF-β resistant cell lines may be useful in genetic studies designed to identify the biochemical events required for inhibition of epithelial cell growth by this factor

  1. Transcriptional profiling of ErbB signalling in mammary luminal epithelial cells - interplay of ErbB and IGF1 signalling through IGFBP3 regulation

    Directory of Open Access Journals (Sweden)

    Worthington Jenny

    2010-09-01

    that IGF1-dependent signalling and proliferation were enhanced in ErbB2-overexpressing cells, whilst loss of ErbB2 expression by siRNA silencing reduced IGF1 signalling. Furthermore, IGFBP3 knockdown resulted in basal ERK and Akt activation in luminal epithelial cells and increased invasiveness and anchorage-independent colony formation in SKBR3 cells. Conclusions These data show IGFBP3 as a negative regulator of transformation and that its down-regulation enhances IGF1-dependent signalling. They also show that ErbB2 can up-regulate IGF1-dependent signalling, possibly via the regulated expression of IGFBP3.

  2. Transcriptional profiling of ErbB signalling in mammary luminal epithelial cells - interplay of ErbB and IGF1 signalling through IGFBP3 regulation

    International Nuclear Information System (INIS)

    Worthington, Jenny; Bertani, Mariana; Chan, Hong-Lin; Gerrits, Bertran; Timms, John F

    2010-01-01

    enhanced in ErbB2-overexpressing cells, whilst loss of ErbB2 expression by siRNA silencing reduced IGF1 signalling. Furthermore, IGFBP3 knockdown resulted in basal ERK and Akt activation in luminal epithelial cells and increased invasiveness and anchorage-independent colony formation in SKBR3 cells. These data show IGFBP3 as a negative regulator of transformation and that its down-regulation enhances IGF1-dependent signalling. They also show that ErbB2 can up-regulate IGF1-dependent signalling, possibly via the regulated expression of IGFBP3

  3. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells.

    Science.gov (United States)

    Cesi, Giulia; Walbrecq, Geoffroy; Zimmer, Andreas; Kreis, Stephanie; Haan, Claude

    2017-06-08

    Most melanoma patients with BRAF V600E positive tumors respond well to a combination of BRAF kinase and MEK inhibitors. However, some patients are intrinsically resistant while the majority of patients eventually develop drug resistance to the treatment. For patients insufficiently responding to BRAF and MEK inhibitors, there is an ongoing need for new treatment targets. Cellular metabolism is such a promising new target line: mutant BRAF V600E has been shown to affect the metabolism. Time course experiments and a series of western blots were performed in a panel of BRAF V600E and BRAF WT /NRAS mut human melanoma cells, which were incubated with BRAF and MEK1 kinase inhibitors. siRNA approaches were used to investigate the metabolic players involved. Reactive oxygen species (ROS) were measured by confocal microscopy and AZD7545, an inhibitor targeting PDKs (pyruvate dehydrogenase kinase) was tested. We show that inhibition of the RAS/RAF/MEK/ERK pathway induces phosphorylation of the pyruvate dehydrogenase PDH-E1α subunit in BRAF V600E and in BRAF WT /NRAS mut harboring cells. Inhibition of BRAF, MEK1 and siRNA knock-down of ERK1/2 mediated phosphorylation of PDH. siRNA-mediated knock-down of all PDKs or the use of DCA (a pan-PDK inhibitor) abolished PDH-E1α phosphorylation. BRAF inhibitor treatment also induced the upregulation of ROS, concomitantly with the induction of PDH phosphorylation. Suppression of ROS by MitoQ suppressed PDH-E1α phosphorylation, strongly suggesting that ROS mediate the activation of PDKs. Interestingly, the inhibition of PDK1 with AZD7545 specifically suppressed growth of BRAF-mutant and BRAF inhibitor resistant melanoma cells. In BRAF V600E and BRAF WT /NRAS mut melanoma cells, the increased production of ROS upon inhibition of the RAS/RAF/MEK/ERK pathway, is responsible for activating PDKs, which in turn phosphorylate and inactivate PDH. As part of a possible salvage pathway, the tricarboxylic acid cycle is inhibited leading to

  4. Raman spectrum reveals Mesenchymal stem cells inhibiting HL60 cells growth

    Science.gov (United States)

    Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; Lu, Xiaoxu; Tian, Jindong; Fan, Jinping; Zhong, Liyun

    2017-04-01

    Though some research results reveals that Mesenchymal stem cells (MSCs) have the ability of inhibiting tumor cells proliferation, it remains controversial about the precise interaction mechanism during MSCs and tumor cells co-culture. In this study, combing Raman spectroscopic data and principle component analysis (PCA), the biochemical changes of MSCs or Human promyelocytic leukemia (HL60) cells during their co-culture were presented. The obtained results showed that some main Raman peaks of HL60 assigned to nucleic acids or proteins were greatly higher in intensity in the late stage of co-culture than those in the early stage of co-culture while they were still lower relative to the control group, implicating that the effect of MSCs inhibiting HL60 proliferation appeared in the early stage but gradually lost the inhibiting ability in the late stage of co-culture. Moreover, some other peaks of HL60 assigned to proteins were decreased in intensity in the early stage of co-culture relative to the control group but rebounded to the level similar to the control group in the late stage, showing that the content and structure changes of these proteins might be generated in the early stage but returned to the original state in the late stage of co-culture. As a result, in the early stage of MSCs-HL60 co-culture, along with the level of Akt phosphorylation of HL60 was lowered relative to its control group, the proliferation rate of HL60 cells was decreased. And in the late stage of co-culture, along with the level of Akt phosphorylation was rebounded, the reverse transfer of Raman peaks within 875-880 cm- 1 appeared, thus MSCs lost the ability to inhibit HL60 growth and HL60 proliferation was increased. In addition, it was observed that the peak at 811 cm- 1, which is a marker of RNA, was higher in intensity in the late stage than that in the control group, indicating that MSCs might be differentiated into myofibroblast-like MSCs. In addition, PCA results also exhibited

  5. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  6. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  7. Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo.

    Science.gov (United States)

    Joel, Mrinal; Mughal, Awais A; Grieg, Zanina; Murrell, Wayne; Palmero, Sheryl; Mikkelsen, Birthe; Fjerdingstad, Hege B; Sandberg, Cecilie J; Behnan, Jinan; Glover, Joel C; Langmoen, Iver A; Stangeland, Biljana

    2015-06-17

    Glioblastomas are invasive therapy resistant brain tumors with extremely poor prognosis. The Glioma initiating cell (GIC) population contributes to therapeutic resistance and tumor recurrence. Targeting GIC-associated gene candidates could significantly impact GBM tumorigenicity. Here, we investigate a protein kinase, PBK/TOPK as a candidate for regulating growth, survival and in vivo tumorigenicity of GICs. PBK is highly upregulated in GICs and GBM tissues as shown by RNA and protein analyses. We knocked down PBK using shRNA vectors and inhibited the function of PBK protein with a pharmacological PBK inhibitor, HITOPK-032. We assessed viability, tumorsphere formation and apoptosis in three patient derived GIC cultures. Gene knockdown of PBK led to decreased viability and sphere formation and in one culture an increase in apoptosis. Treatment of cells with inhibitor HITOPK-032 (5 μM and 10 μM) almost completely abolished growth and elicited a large increase in apoptosis in all three cultures. HI-TOPK-032 treatment (5 mg/kg and 10 mg/kg bodyweight) in vivo resulted in diminished growth of experimentally induced subcutaneous GBM tumors in mice. We also carried out multi-culture assays of cell survival to investigate the relative effects on GICs compared with the normal neural stem cells (NSCs) and their differentiated counterparts. Normal NSCs seemed to withstand treatment slightly better than the GICs. Our study of identification and functional validation of PBK suggests that this candidate can be a promising molecular target for GBM treatment.

  8. Airway epithelial cell-derived insulin-like growth factor-1 triggers skewed CD8(+) T cell polarization.

    Science.gov (United States)

    Zou, Jian-Yong; Huang, Shao-hong; Li, Yun; Chen, Hui-guo; Rong, Jian; Ye, Sheng

    2014-10-01

    Skewed CD8(+) T cell responses are important in airway inflammation. This study investigates the role of the airway epithelial cell-derived insulin-like growth factor 1 (IGF1) in contributing to CD8(+) T cell polarization. Expression of IGF1 in the airway epithelial cell line, RPMI2650 cells, was assessed by quantitative real time RT-PCR and Western blotting. The role of IGF1 in regulating CD8(+) T cell activation was observed by coculture of mite allergen-primed RPMI2650 cells and naïve CD8(+) T cells. CD8(+) T cell polarization was assessed by the carboxyfluorescein succinimidyl ester-dilution assay and the determination of cytotoxic cytokine levels in the culture medium. Exposure to mite allergen, Der p1, increased the expression of IGF1 by RPMI2650 cells. The epithelial cell-derived IGF1 prevented the activation-induced cell death by inducing the p53 gene hypermethylation. Mite allergen-primed RPMI2650 cells induced an antigen-specific CD8(+) T cell polarization. We conclude that mite allergens induce airway epithelial cell line, RPMI2650 cells, to produce IGF1; the latter contributes to antigen-specific CD8(+) T cell polarization. © 2014 International Federation for Cell Biology.

  9. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  10. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells

    International Nuclear Information System (INIS)

    Umehara, Senkei; Hattori, Akihiro; Inoue, Ippei; Yasuda, Kenji

    2007-01-01

    Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells

  11. Lobaplatin inhibits growth of gastric cancer cells by inducing apoptosis

    Science.gov (United States)

    Yin, Chu-Yang; Lin, Xiao-Lin; Tian, Lei; Ye, Ming; Yang, Xin-Ying; Xiao, Xiu-Ying

    2014-01-01

    AIM: To assess the anti-cancer effect of lobaplatin on human gastric cancer cells, and to explore the underlying molecular mechanisms. METHODS: The human gastric cancer cell lines MKN-28, AGS and MKN-45 were used. The cytotoxicity of lobaplatin was detected using an MTS cell proliferation assay. Flow cytometry was used to detect cell apoptosis using Annexin V-FITC Apoptosis Detection Kit. The expression of apoptosis-regulated genes was examined at the protein level using Western blot. RESULTS: Lobaplatin inhibited the proliferation of human gastric cancer cells and induced apoptosis, which may be associated with the up-regulation of Bax expression, poly(ADP-ribose) polymerase (PARP) cleavage, p53 expression and the reduction of Bcl-2 expression. CONCLUSION: The cytotoxicity of lobaplatin may be due to its ability of inducing apoptosis of gastric cancer cells, which would support the potential use of lobaplatin for the therapy of gastric cancer. PMID:25516654

  12. Growth in Agarose of Human Cells Infected with Cytomegalovirus

    Science.gov (United States)

    Lang, David J.; Montagnier, Luc; Latarjet, Raymond

    1974-01-01

    After infection by human cytomegalovirus (CMV), human diploid fibroblasts could grow in agarose medium for several generations. Clones of infected cells grew for weeks, although in every case they ultimately underwent lysis owing to the cytopathic effect of the virus. Virus was inoculated at high dilution and after UV irradiation in an effort to derive cells infected with noninfectious defective particles still capable of inducing cell stimulation. Dilute or irradiated virus occasionally yielded large colonies of replicating cells, although permanent transformation was not observed. One clone derived from UV-CMV-infected cells was passaged four times before undergoing lysis. During these passages the cells exhibited alterations in morphology and orientation. Images PMID:4367907

  13. Growth of single T cells and single thymocytes in a high cloning efficiency filler-cell free microculture system.

    Science.gov (United States)

    Chen, W F; Ewing, T; Scollay, R; Shortman, K

    1988-01-01

    A high cloning-efficiency microculture system is described in which single T cells, stimulated to divide by phorbol ester and calcium ionophore, grow rapidly under the influence of purified growth factors in the absence of other cells. The kinetics of clonal growth has been monitored over a five day period by phase-contrast microscopy. Mature peripheral T cells, and mature subpopulations from the thymus, responded with a cloning efficiency over 80%; they required IL-2 as a minimum but several other factors enhanced growth. Ly2+L3T4- thymocytes (mean doubling time 10.4 hr) grew more rapidly than Ly2-L3T4+ thymocytes (mean doubling time 15.2 hr). Early (Ly2-L3T4-) thymocytes responded with a cloning efficiency of 60%; their efficient growth was dependent on both IL-1 and IL-2. The typical Ly2+L3T4+ cortical thymocyte did not grow under these conditions.

  14. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias.

    Science.gov (United States)

    Yan, Ying; Wieman, Eric A; Guan, Xiuqin; Jakubowski, Ann A; Steinherz, Peter G; O'Reilly, Richard J

    2009-12-29

    We have described a severe combined immunodeficiency (SCID) mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL) and 66 acute myeloid leukemia (AML)) in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8%) displayed an aggressive growth pattern, 14 (10.5%) displayed an indolent growth pattern and 74 (55.6%) did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  15. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  16. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1998-01-01

    ...), phthalate esters, and dioxin have been implicated in this increase. Many xenobiotics such as DDT and PCBs have weak estrogenic activity and may enhance breast cancer formation by an estrogenic effect on breast epithelial cell growth...

  17. Xenobiotic Modulation of Human Mammary Epithelial Cell Gap Junctional Intercellular Communication and Growth

    National Research Council Canada - National Science Library

    Ruch, Randall

    1997-01-01

    ...), phthalate esters, and dioxin have been implicated in this increase. Many xenobiotics such as DDT and PCBs have weak estrogenic activity and may enhance breast cancer formation by an estrogenic effect on breast epithelial cell growth...

  18. Effects of arecoline on cell growth, migration, and differentiation in cementoblasts

    Directory of Open Access Journals (Sweden)

    Yi-Juai Chen

    2015-12-01

    Conclusion: Taken together, these results suggest that arecoline could inhibit cell growth, migration, and differentiation in cementoblasts. Areca quid chewers might be more susceptible to the destruction of periodontium and less responsive to regenerative procedure during periodontal therapy.

  19. The TOR Signaling Pathway in Spatial and Temporal Control of Cell Size and Growth

    Directory of Open Access Journals (Sweden)

    Suam Gonzalez

    2017-06-01

    Full Text Available Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.

  20. Changes of respiration and of specific growth rate during cell cycle of yeast cells of different genealogical age.

    Science.gov (United States)

    Vraná, D

    1988-01-01

    When investigating changes of respiratory activity during the cell cycle of mother and daughter Candida cells significant oscillations of specific rate of oxygen consumption were detected; specific growth rate also varied. The oscillations were less pronounced when the inoculum was obtained from the chemostat at the high dilution rates of 0.25 and 0.35/h.

  1. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth.

    Science.gov (United States)

    Du, Juan; Mansfield, Shawn D; Groover, Andrew T

    2009-12-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX homeobox gene, ARBORKNOX2 (ARK2), which we show influences terminal cell differentiation and cell wall properties during secondary growth. In the early stages of secondary growth, ARK2 is expressed broadly in the cambial zone and in terminally differentiating cell types, before becoming progressively restricted to the cambium. ARK2 overexpression and synthetic miRNA-suppression transgenics reveal positive correlations between ARK2 expression level and the timing of cambium formation, the width of the cambial zone and inhibition of cambial daughter cell differentiation. These phenotypes in turn correlate with changes in the expression of genes affecting transcription, cell division, auxin and cell wall synthesis. Notably, wood properties associated with secondary cell wall synthesis are negatively associated with ARK2 expression, including lignin and cellulose content. Together, our results suggest that ARK2 functions primarily to regulate a complex suite of genes that together influence cell differentiation during secondary growth. We propose that ARK2 may represent a co-evolved transcriptional module that influences complex, adaptive wood properties.

  2. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, T.; Pfeifer, U. (Univ. of Wuerzburg (West Germany))

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  3. Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth

    Directory of Open Access Journals (Sweden)

    Revathi Shekar

    2012-01-01

    Conclusions: Permanent and deciduous teeth are both viable sources of stem cells. The permanent teeth were easier to culture because of a lower chance of contamination with oral microflora. The growth characteristics of the cells obtained from both these sources were similar. However, there was a difference in the ratio of fibroblastoid cells to epithelioid cells between the cultures obtained from the permanent and deciduous teeth.

  4. Growth factor combination for chondrogenic induction from human mesenchymal stem cell

    International Nuclear Information System (INIS)

    Indrawattana, Nitaya; Chen Guoping; Tadokoro, Mika; Shann, Linzi H.; Ohgushi, Hajime; Tateishi, Tetsuya; Tanaka, Junzo; Bunyaratvej, Ahnond

    2004-01-01

    During the last decade, many strategies for cartilage engineering have been emerging. Stem cell induction is one of the possible approaches for cartilage engineering. The mesenchymal stem cells (MSCs) with their pluripotency and availability have been demonstrated to be an attractive cell source. It needs the stimulation with cell growth factors to make the multipluripotent MSCs differentiate into chondrogenic lineage. We have shown particular patterns of in vitro cho