WorldWideScience

Sample records for cell anchorage-independent growth

  1. PAX2 regulates ADAM10 expression and mediates anchorage-independent cell growth of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sophia Boyoung Lee

    Full Text Available PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression.

  2. Retention of prolyl hydroxylase PHD2 in the cytoplasm prevents PHD2-induced anchorage-independent carcinoma cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Jokilehto, Terhi [Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku (Finland); Turku Graduate School of Biomedical Sciences, Turku (Finland); Hoegel, Heidi [Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku (Finland); Heikkinen, Pekka [Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku (Finland); Turku Graduate School of Biomedical Sciences, Turku (Finland); Rantanen, Krista [Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku (Finland); Elenius, Klaus [Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Turku (Finland); Department of Medical Biochemistry and Genetics, University of Turku and Turku University Hospital, Turku (Finland); Sundstroem, Jari [Department of Pathology, University of Turku and Turku University Hospital, Turku (Finland); Jaakkola, Panu M. [Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku (Finland); Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Turku (Finland)

    2010-04-15

    Cellular oxygen tension is sensed by a family of prolyl hydroxylases (PHD1-3) that regulate the degradation of hypoxia-inducible factors (HIF-1{alpha} and -2{alpha}). The PHD2 isoform is considered as the main downregulator of HIF in normoxia. Our previous results have shown that nuclear translocation of PHD2 associates with poorly differentiated tumor phenotype implying that nuclear PHD2 expression is advantageous for tumor growth. Here we show that a pool of PHD2 is shuttled between the nucleus and the cytoplasm. In line with this, accumulation of wild type PHD2 in the nucleus was detected in human colon adenocarcinomas and in cultured carcinoma cells. The PHD2 isoforms showing high nuclear expression increased anchorage-independent carcinoma cell growth. However, retention of PHD2 in the cytoplasm inhibited the anchorage-independent cell growth. A region that inhibits the nuclear localization of PHD2 was identified and the deletion of the region promoted anchorage-independent growth of carcinoma cells. Finally, the cytoplasmic PHD2, as compared with the nuclear PHD2, less efficiently downregulated HIF expression. Forced HIF-1{alpha} or -2{alpha} expression decreased and attenuation of HIF expression increased the anchorage-independent cell growth. However, hydroxylase-inactivating mutations in PHD2 had no effect on cell growth. The data imply that nuclear PHD2 localization promotes malignant cancer phenotype.

  3. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion.

    Science.gov (United States)

    Vigil, Dominico; Kim, Tai Young; Plachco, Ana; Garton, Andrew J; Castaldo, Linda; Pachter, Jonathan A; Dong, Hanqing; Chen, Xin; Tokar, Brianna; Campbell, Sharon L; Der, Channing J

    2012-10-15

    Evidence is emerging that the closely related ROCK1 and ROCK2 serine/threonine kinases support the invasive and metastatic growth of a spectrum of human cancer types. Therefore, inhibitors of ROCK are under preclinical development. However, a key step in their development involves the identification of genetic biomarkers that will predict ROCK inhibitor antitumor activity. One identified mechanism for ROCK activation in cancer involves the loss of function of the DLC1 tumor suppressor gene, which encodes a GTPase activating protein (RhoGAP) for the RhoA and RhoC small GTPases. DLC-1 loss may lead to hyperactivation of RhoA/C and its downstream effectors, the ROCK kinases. We therefore determined whether loss of DLC-1 protein expression identifies non-small cell lung carcinoma (NSCLC) cell lines whose growth and invasion phenotypes are sensitive to ROCK inhibition. We identified and characterized a novel small molecule pharmacologic inhibitor of ROCK and additionally applied genetic approaches to impair ROCK1 and/or ROCK2 activity, and we determined that although NSCLC anchorage-dependent growth was ROCK-independent, both anchorage-independent growth and Matrigel invasion were ROCK-dependent. However, loss of DLC-1 expression did not correlate with ROCK activation or with OXA-06 sensitivity. Unexpectedly, suppression of ROCK1 or ROCK2 expression alone was sufficient to impair anchorage-independent growth, supporting their nonoverlapping roles in oncogenesis. Mechanistically, the block in anchorage-independent growth was associated with accumulation of cells in the G(0)-G(1) phase of the cell cycle, but not increased anoikis. We conclude that ROCK may be a useful therapeutic target for NSCLC.

  4. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  5. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.

    Science.gov (United States)

    Jiang, Lei; Shestov, Alexander A; Swain, Pamela; Yang, Chendong; Parker, Seth J; Wang, Qiong A; Terada, Lance S; Adams, Nicholas D; McCabe, Michael T; Pietrak, Beth; Schmidt, Stan; Metallo, Christian M; Dranka, Brian P; Schwartz, Benjamin; DeBerardinis, Ralph J

    2016-04-14

    Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM). Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism. Here we identify an unconventional pathway that supports redox homeostasis and growth during adaptation to anchorage independence. We observed that detachment from monolayer culture and growth as anchorage-independent tumour spheroids was accompanied by changes in both glucose and glutamine metabolism. Specifically, oxidation of both nutrients was suppressed in spheroids, whereas reductive formation of citrate from glutamine was enhanced. Reductive glutamine metabolism was highly dependent on cytosolic isocitrate dehydrogenase-1 (IDH1), because the activity was suppressed in cells homozygous null for IDH1 or treated with an IDH1 inhibitor. This activity occurred in absence of hypoxia, a well-known inducer of reductive metabolism. Rather, IDH1 mitigated mitochondrial ROS in spheroids, and suppressing IDH1 reduced spheroid growth through a mechanism requiring mitochondrial ROS. Isotope tracing revealed that in spheroids, isocitrate/citrate produced reductively in the cytosol could enter the mitochondria and participate in oxidative metabolism, including oxidation by IDH2. This generates NADPH in the mitochondria, enabling cells to mitigate mitochondrial ROS and maximize growth. Neither IDH1 nor IDH2 was necessary for monolayer growth, but deleting either one enhanced mitochondrial ROS and reduced spheroid size, as did deletion of the mitochondrial citrate transporter protein. Together, the data indicate that adaptation to anchorage independence requires a fundamental change in citrate metabolism, initiated by IDH1-dependent reductive carboxylation and culminating in suppression of mitochondrial ROS.

  6. Di-Ethylhexylphthalate (DEHP Modulates Cell Invasion, Migration and Anchorage Independent Growth through Targeting S100P in LN-229 Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Nicole Sims

    2014-05-01

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive brain cancer with a median survival of 1–2 years. The treatment of GBM includes surgical resection, radiation and chemotherapy, which minimally extends survival. This poor prognosis necessitates the identification of novel molecular targets associated with glioblastoma. S100P is associated with drug resistance, metastasis, and poor clinical outcomes in many malignancies. The functional role of S100P in glioblastoma has not been fully investigated. In this study, we examined the role of S100P mediating the effects of the environmental contaminant, DEHP, in glioblastoma cells (LN-229 by assessing cell proliferation, apoptosis, anchorage independent growth, cell migration and invasion following DEHP exposure. Silencing S100P and DEHP treatment inhibited LN-229 glioblastoma cell proliferation and induced apoptosis. Anchorage independent growth study revealed significantly decreased colony formation in shS100P cells. We also observed reduced cell migration in cells treated with DEHP following S100P knockdown. Similar results were observed in spheroid formation and expansion. This study is the first to demonstrate the effects of DEHP on glioblastoma cells, and implicates S100P as a potential therapeutic target that may be useful as a drug response biomarker.

  7. Elevated p21-Activated Kinase 2 Activity Results in Anchorage-Independent Growth and Resistance to Anticancer Drug–Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2009-03-01

    Full Text Available p21-Activated kinase 2 (PAK-2 seems to be a regulatory switch between cell survival and cell death signaling. We have shown previously that activation of full-length PAK-2 by Rac or Cdc42 stimulates cell survival, whereas caspase activation of PAK-2 to the proapoptotic PAK-2p34 fragment is involved in the cell death response. In this study, we present a role of elevated activity of full-length PAK-2 in anchorage-independent growth and resistance to anticancer drug–induced apoptosis of cancer cells. Hs578T human breast cancer cells that have low levels of PAK-2 activity were more sensitive to anticancer drug–induced apoptosis and showed higher levels of caspase activation of PAK-2 than MDA-MB435 and MCF-7 human breast cancer cells that have high levels of PAK-2 activity. To examine the role of elevated PAK-2 activity in breast cancer, we have introduced a conditionally active PAK-2 into Hs578T human breast cells. Conditional activation of PAK-2 causes loss of contact inhibition and anchorage-independent growth of Hs578T cells. Furthermore, conditional activation of PAK-2 suppresses activation of caspase 3, caspase activation of PAK-2, and apoptosis of Hs578T cells in response to the anticancer drug cisplatin. Our data suggest a novel mechanism by which full-length PAK-2 activity controls the apoptotic response by regulating levels of activated caspase 3 and thereby its own cleavage to the proapoptotic PAK-2p34 fragment. As a result, elevated PAK-2 activity interrupts the apoptotic response and thereby causes anchorage-independent survival and growth and resistance to anticancer drug–induced apoptosis.

  8. Leucine zipper structure of TSC-22 (TGF-beta stimulated clone-22) markedly inhibits the anchorage-independent growth of salivary gland cancer cells.

    Science.gov (United States)

    Hino, Satoshi; Kawamata, Hitoshi; Omotehara, Fumie; Uchida, Daisuke; Begum, Nasima-Mila; Yoshida, Hideo; Sato, Mitsunobu; Fujimori, Takahiro

    2002-01-01

    Several investigators have demonstrated that TGF-beta stimulated clone-22 (TSC-22) regulates cell growth and differentiation, and cell death. TSC-22 is a putative transcriptional regulator containing a leucine zipper-like structure and a nuclear export signal. We previously showed the cytoplasmic localization of TSC-22 and the nuclear translocation of TSC-22 concomitant with induction of apoptosis in salivary gland cancer cells. In the present study, we attempted to identify the active domain of TSC-22 protein that regulated the biological functions of TSC-22. We constructed three mammalian expression vectors, which could produce full length TSC-22 only in cytoplasm, the leucine zipper structure of TSC-22 in both cytoplasm and nucleus, and the leucine zipper structure only in nucleus. Then, we transfected a salivary gland cancer cell line, HSG with these expression vectors, and investigated the growth profile of the transfectants. None of the TSC-22 constructs inhibited the monolayer growth and the anchorage-dependent colony formation of HSG cells. However, the leucine zipper structure of TSC-22 markedly inhibited the anchorage-independent colony formation of HSG cells (pway ANOVA). Full length TSC-22 also suppressed the anchorage-independent colony formation of HSG cells, although the effect of full length TSC-22 was much lower than those of the leucine zipper constructs. These observations suggest that the leucine zipper structure in TSC-22 protein is an active domain that negatively regulates the growth of salivary gland cancer cells.

  9. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth

    Institute of Scientific and Technical Information of China (English)

    Julia Schultz; Peter Lorenz; Gerd Gross; Saleh Ibrahim; Manfred Kunz

    2008-01-01

    A microRNA expression screen was performed analyzing 157 different microRNAs in laser-microdissected tissues from benign melanocytic nevi (n=10) and primary malignant melanomas (n=10),using quantitative real-time PCR.Differential expression was found for 72 microRNAs.Members of the let-7 family of microRNAs were significantly downregulated in primary melanomas as compared with benign nevi,suggestive for a possible role of these molecules as tumor suppressors in malignant melanoma.Interestingly,similar findings had been described for lung and colon cancer.Overexpression of let-7b in melanoma cells in vitro downregulated the expression of cyclins D1,D3,and A,and cyclin-dependent kinase (Cdk) 4,all of which had been described to play a role in melanoma development.The effect oflet-7b on protein expression was due to targeting of 3'-untranslated regions (3'UTRs) of individual mRNAs,as exemplified by reporter gene analyses for cyclin DI.In line with its downmodulating effects on cell cycle regulators,let-7b inhibited cell cycle progression and anchorage-independent growth of melanoma cells.Taken together,these findings not only point to new regulatory mechanisms of early melanoma development,but also may open avenues for future targeted therapies of this tumor.

  10. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    Science.gov (United States)

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  11. Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6.

    Science.gov (United States)

    Foran, Eilis; Garrity-Park, Megan M; Mureau, Coralie; Newell, John; Smyrk, Thomas C; Limburg, Paul J; Egan, Laurence J

    2010-04-01

    Inflammatory bowel disease is characterized by chronic inflammation which predisposes to colorectal cancer. The mechanisms by which inflammation promotes tumorigenesis are not fully known. We aimed to investigate the links between colonic inflammation and tumorigenesis via epigenetic gene silencing. Colon cancer specimens were assessed for the expression of DNA methyltransferase-1 (DNMT-1) using immunohistochemistry. Colorectal carcinoma cell lines were assessed for DNMT1 expression, methylcytosine content, promoter methylation, gene expression, and tumorigenesis in response to interleukin (IL)-6. DNMT1 was expressed at higher levels in both the peritumoral stroma and tumor in inflammatory bowel disease-associated cancers compared with sporadic colon cancers. IL-6 treatment of colon cancer cells resulted in an increase in DNMT1 expression, independent of de novo gene expression. IL-6 increased the methylation of promoter regions of genes associated with tumor suppression, adhesion, and apoptosis resistance. Expression of a subset of these genes was downregulated by IL-6, an effect that was prevented by preincubation with 5-azadeoxycytidine, a DNMT1 inhibitor. Anchorage-independent growth and migration of colon cancer cells was also increased by IL-6 in a 5-azadeoxycytidine-sensitive manner. Our results indicate that DNMT-mediated gene silencing may play a role in inflammation-associated colon tumorigenesis.

  12. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Hildegard I.D.; Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu

    2013-11-15

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer.

  13. CD45/CD11b Positive Subsets of Adult Lung Anchorage-Independent Cells Harness Epithelial Stem Cells

    OpenAIRE

    2012-01-01

    Compensatory growth is mediated by multiple cell types that interact during organ repair. To elucidate the relationship between the stem/progenitor cells that proliferate or differentiate and the somatic cells of lung, we utilized a novel ex vivo pneumoexplant system. Applying this technique, we identified a sustained culture of repopulating adult progenitors in the form of free floating anchorage-independent cells (AICs). AICs did not express integrin proteins α5, β3, and β7, and constituted...

  14. Overexpressed EDIL3 predicts poor prognosis and promotes anchorage-independent tumor growth in human pancreatic cancer

    Science.gov (United States)

    Feng, Ming-Xuan; Wang, Ya-Hui; Yang, Xiao-Mei; He, Ping; Tian, Guang-Ang; Zhang, Xiao-Xin; Li, Qing; Cao, Xiao-Yan; Huo, Yan-Miao; Yang, Min-Wei; Fu, Xue-Liang; Li, Jiao; Liu, De-Jun; Dai, Miao; Wen, Shan-Yun; Gu, Jian-Ren; Hong, Jie; Hua, Rong; Zhang, Zhi-Gang; Sun, Yong-Wei

    2016-01-01

    Epidermal Growth Factor-like repeats and Discoidin I-Like Domains 3 (EDIL3), an extracellular matrix (ECM) protein associated with vascular morphogenesis and remodeling, is commonly upregulated in multiple types of human cancers and correlates with tumor progression. However, its expression pattern and underlying cellular functions in pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. In current study, we observed that expression of EDIL3 was significantly up-regulated in PDAC compared with normal controls in both cell lines and clinical specimens. In addition, elevated EDIL3 expression was positively correlated with patients’ TNM stage and T classification. Kaplan-Meier analysis indicated that high EDIL3 expression was significantly associated with shorter overall survival times in PDAC patients. Multivariate Cox regression analysis confirmed EDIL3 expression, age, lymph node metastasis and histological differentiation as independent prognostic factors in PDAC. Knockdown of EDIL3 showed no significant influence on cell viability, migration, invasion and starvation-induced apoptosis, but compromised anoikis resistance and anchorage independent tumor growth of PDAC cells. Meanwhile, treatment with recombinant EDIL3 protein markedly promoted anoikis resistance and anchorage independent tumor growth. Mechanistically, we demonstrated that altered protein expression of Bcl-2 family might contribute to the oncogenic activities of EDIL3. In conclusion, this study provides evidences that EDIL3 is a potential predictor and plays an important role in anchorage independent tumor growth of PDAC and EDIL3-related pathways might represent a novel therapeutic strategy for treatment of pancreatic cancer. PMID:26735172

  15. CD45/CD11b Positive Subsets of Adult Lung Anchorage-Independent Cells Harness Epithelial Stem Cells

    Science.gov (United States)

    Peter, Yakov; Sen, Namita; Levantini, Elena; Keller, Steven; Ingenito, Edward P; Ciner, Aaron; Sackstein, Robert; Shapiro, Steven D

    2015-01-01

    Compensatory growth is mediated by multiple cell types that interact during organ repair. To elucidate the relationship between the stem/progenitor cells that proliferate or differentiate and the somatic cells of lung, we utilized a novel ex vivo pneumoexplant system. Applying this technique, we identified a sustained culture of repopulating adult progenitors in the form of free floating anchorage-independent cells (AICs). AICs did not express integrin proteins α5, β3, and β7, and constituted 37% of the total culture at day 14, yielding a mixed yet conserved population that recapitulated RNA expression patterns of the healthy lung. AICs exhibited rapid proliferation manifested by a marked 60-fold increase in cell numbers by day 21. Over 50% of the AIC population was cKit+ or double-positive for CD45+ and CD11b+ antigenic determinants, consistent with cells of hematopoietic origin. The latter subset was found to be enriched with prosurfactant protein-C and SCGB1A1 expressing putative stem cells and with aquaporin-5 producing cells, characteristic of terminally differentiated alveolar epithelial type-1 pneumocytes. AICs undergo remodeling to form a cellular lining at the air/gel interface, and TGFβ1 treatment modifies protein expression, implying direct-differentiation of this population. These data confirm the active participation of clonogenic hematopietic stem cells in a mammalian model of lung repair and validate mixed stem/somatic cell cultures, which embrace sustained cell viability, proliferation, and differentiation, for use in studies of compensatory pulmonary growth. PMID:22585451

  16. Chlamydia induces anchorage independence in 3T3 cells and detrimental cytological defects in an infection model.

    Directory of Open Access Journals (Sweden)

    Andrea E Knowlton

    Full Text Available Chlamydia are gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV. We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect.

  17. fau and its ubiquitin-like domain (FUBI) transforms human osteogenic sarcoma (HOS) cells to anchorage-independence.

    Science.gov (United States)

    Rossman, Toby G; Visalli, Melissa A; Komissarova, Elena V

    2003-03-27

    Arsenite is the most likely carcinogenic form of arsenic in the environment. Previously, expression cloning for cDNAs whose overexpression confers arsenite-resistance in Chinese hamster V79 cells identified two genes: fau and a novel gene, asr2. The fau gene encodes a ubiquitin-like protein (here called FUBI) fused to the ribosomal S30 protein. Since the expression of the fox sequence (antisense to fau) increased the tumorigenicity of a mouse sarcoma virus, it was proposed that fau might be a tumor suppressor gene. We intended to test its ability to block arsenite-induced transformation of human osteogenic sarcoma (HOS) cells to anchorage-independence. Instead, we found that overexpressing fau itself was able to transform HOS cells. When the two domains were expressed separately, only FUBI was transforming and only the S30 domain conferred arsenite resistance. An incidental finding was the transforming activity of the selectable marker, hyg. FUBI belongs to the ubiquitin-like protein group that is capable of forming conjugates to other proteins, although none have so far been identified. Alternatively, FUBI may act as a substitute or inhibitor of ubiquitin, to which it is most closely related, or to close ubiquitin-like relatives UCRP, FAT10, and/or Nedd8.

  18. Doxycycline-Regulated p16(MTS1) Expression Suppresses the Anchorage-Independence and Tumorigenicity of Breast Cancer Cell Lines that Lack Endogenous p16.

    Science.gov (United States)

    Todd, Maria C; Langan, Thomas A; Sclafani, Robert A

    2017-01-01

    The RB pathway controls the critical transition from G1 into S phase of the mammalian cell cycle. Deregulation of the RB pathway by means of RB or p16 inactivation has been implicated in the development of virtually all human cancers. Such findings have led to the view that the loss of RB-mediated regulation at the G1/S checkpoint is a precondition for human malignancy. Our analysis of the RB-positive MCF-7 and ZR75.1 breast cancer cell lines revealed a lack of endogenous p16 protein expression as a result of the homozygous deletion and methylation of the p16 gene at the CDKN2A locus, respectively. We employed the TET-OFF inducible expression system to investigate the effects of non-growth inhibitory levels of functional p16 protein upon the in vitro and in vivo transformed properties of the MCF-7 and ZR75.1 cell lines. Stable transfectants of MCF-7 and ZR75.1 cells were isolated that expressed different levels of p16 protein in the absence of doxycycline (DOX) but continued to proliferate in culture. Transfectants that expressed modest levels of p16 (relative to SV40 T antigen-transformed HBL-100 breast epithelial cells) demonstrated a marked suppression of anchorage-independent growth in soft agar. Further, the induction of moderate and high levels of p16 (relative to HBL-100) resulted in the suppression of tumorigenicity of both MCF-7 and ZR75.1 cells as assayed by injection into nude mice. From these data, we concluded that RB pathway restoration by non-growth inhibitory levels of p16 protein was sufficient to revert breast cancer cells to a non-transformed and non-tumorigenic state.

  19. Doxycycline-Regulated p16MTS1 Expression Suppresses the Anchorage-Independence and Tumorigenicity of Breast Cancer Cell Lines that Lack Endogenous p16

    Science.gov (United States)

    Todd, Maria C; Langan, Thomas A; Sclafani, Robert A

    2017-01-01

    The RB pathway controls the critical transition from G1 into S phase of the mammalian cell cycle. Deregulation of the RB pathway by means of RB or p16 inactivation has been implicated in the development of virtually all human cancers. Such findings have led to the view that the loss of RB-mediated regulation at the G1/S checkpoint is a precondition for human malignancy. Our analysis of the RB-positive MCF-7 and ZR75.1 breast cancer cell lines revealed a lack of endogenous p16 protein expression as a result of the homozygous deletion and methylation of the p16 gene at the CDKN2A locus, respectively. We employed the TET-OFF inducible expression system to investigate the effects of non-growth inhibitory levels of functional p16 protein upon the in vitro and in vivo transformed properties of the MCF-7 and ZR75.1 cell lines. Stable transfectants of MCF-7 and ZR75.1 cells were isolated that expressed different levels of p16 protein in the absence of doxycycline (DOX) but continued to proliferate in culture. Transfectants that expressed modest levels of p16 (relative to SV40 T antigen-transformed HBL-100 breast epithelial cells) demonstrated a marked suppression of anchorage-independent growth in soft agar. Further, the induction of moderate and high levels of p16 (relative to HBL-100) resulted in the suppression of tumorigenicity of both MCF-7 and ZR75.1 cells as assayed by injection into nude mice. From these data, we concluded that RB pathway restoration by non-growth inhibitory levels of p16 protein was sufficient to revert breast cancer cells to a non-transformed and non-tumorigenic state.

  20. Down-regulation of Survivin by Antisense Oligonucleotides Increases Apoptosis, Inhibits Cytokinesis and Anchorage-Independent Growth

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2000-05-01

    Full Text Available Survivin, a member of the inhibitor of apoptosis protein (IAP family, is detected in most common human cancers but not in adjacent normal cells. Previous studies suggest that survivin associates with the mitotic spindle and directly inhibits caspase activity. To further investigate the function of survivin, we used a survivin antisense (AS oligonucleotide to downregulate survivin expression in normal and cancer cells. We found that inhibition of survivin expression increased apoptosis and polyploidy while decreasing colony formation in soft agar. Immunohistochemistry showed that cells without survivin can initiate the cleavage furrow and contractile ring, but cannot complete cytokinesis, thus resulting in multinucleated cells. These findings indicate that survivin plays important roles in a late stage of cytokinesis, as well as in apoptosis.

  1. KSHV MicroRNAs Repress Tropomyosin 1 and Increase Anchorage-Independent Growth and Endothelial Tube Formation.

    Directory of Open Access Journals (Sweden)

    Philippe Kieffer-Kwon

    Full Text Available Kaposi's sarcoma (KS is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi's sarcoma-associated herpesvirus (KSHV. In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1 were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3' untranslated region (UTR of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC by inhibiting anoikis (apoptosis after cell detachment, enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis.

  2. Missense mutations in pyruvate kinase M2 promote cancer metabolism, oxidative endurance, anchorage independence, and tumor growth in a dominant negative manner.

    Science.gov (United States)

    Iqbal, Mohd Askandar; Siddiqui, Farid Ahmad; Chaman, Noor; Gupta, Vibhor; Kumar, Bhupender; Gopinath, Prakasam; Bamezai, Rameshwar N K

    2014-03-21

    The present study was designed to examine the functional relevance of two heterozygous mutations (H391Y and K422R), observed earlier by us in the Bloom syndrome condition. Cells stably expressing exogenous wild-type or mutant PKM2 (K422R or H391Y) or co-expressing both wild type and mutant (PKM2-K422R or PKM2-H391Y) were assessed for cancer metabolism and tumorigenic potential. Interestingly, cells co-expressing PKM2 and mutant (K422R or H391Y) showed significantly aggressive cancer metabolism as compared with cells expressing either wild-type or mutant PKM2 independently. A similar trend was observed for oxidative endurance, tumorigenic potential, cellular proliferation, and tumor growth. These observations signify the dominant negative nature of mutations. Remarkably, PKM2-H391Y co-expressed cells showed a maximal effect on all the studied parameters. Such a dominant negative impaired function of PKM2 in tumor development is not known; this study demonstrates for the first time the possible predisposition of Bloom syndrome patients with impaired PKM2 activity to cancer and the importance of studying genetic variations in PKM2 in the future to understand their relevance in cancer in general.

  3. Classically activated macrophages promote anchorage-dependent and anchorage-independent clone formation of breast cancer cells%经典激活巨噬细胞促进乳腺癌细胞贴壁和非贴壁克隆形成

    Institute of Scientific and Technical Information of China (English)

    陈静琦; 朱必胜; 侯开连

    2013-01-01

    目的 探讨经典激活巨噬细胞(M1)对乳腺癌细胞贴壁和非贴壁克隆形成的影响,进一步阐明M1促乳腺癌进展的作用.方法 用密度梯度离心法,从健康成人外周血中分离单个核细胞,体外诱导M1.在乳腺癌细胞与巨噬细胞的无血清共培养体系中,做平板克隆实验;在M1-乳腺癌细胞软琼脂培养体系中,做非贴壁克隆形成实验,检测M1对乳腺癌贴壁克隆和非贴壁克隆形成的影响.结果 在M1的作用下,乳腺癌SK-3rd细胞贴壁克隆和非贴壁克隆形成的能力均增强(P<0.001).结论 M1促进乳腺癌细胞贴壁克隆和非贴壁克隆的形成.%Objective To investigate the effect of activated microphages (M1) on the clone formation of breast cancer cells.Methods Mononuclear cells were isolated from peripheral blood of adult normal subjects by density gradient centrifugation,and M1 was induced in vitro.In the serum-free co-culture system of breast cancer cells and macrophages,the fiat cloning assay was performed and in soft agar culture system of Ml-breast cancer cells,anchorage-independent clone formation assay was performed.Results The anchorage-dependent and anchorage-independent clone formation of SK-3rd breast cancer cells was induced by M1 (P < 0.001).Conclusion M1 promotes anchorage-dependent and anchorage-independent clone formation of breast cancer cells.

  4. The Role of Platelet-Derived Growth Factor C and Its Splice Variant in Breast Cancer

    Science.gov (United States)

    2012-02-01

    In addition, knockdown of PDGFC in MDA-MB-231 cells decreases anchorage independent growth as seen with soft-agar colony formation (Figure 4A...A structural superfamily of growth factors containing a cystine knot motif. Cell 73, 421 (May 7, 1993). 10. S. Rosenkranz, A. Kazlauskas, Evidence...shRNA. B. Soft Agar Colony formation C. WST-1 cell proliferation assay under normal serum containing conditions D. WST-1 cell proliferation assay

  5. Purification of autocrine growth factor from conditioned medium of rat sarcoma (XC) cells.

    Science.gov (United States)

    Checiówna, D; Klein, A

    1996-01-01

    Transformation of rat cells by Rous sarcoma virus(es) induced the release of growth factors into serum-free conditioned media. An PR-RSV-transformed rat cell line, XC, produced and released polypeptide factors which promote anchorage-dependent and anchorage-independent growth of XC cells. One of the autocrine factors of XC cells was purified to homogeneity by four-step procedure: ultrafiltration, ion-exchange chromatography on MonoS, reverse-phase chromatography on Spherisorb ODS2 and gel filtration on Superose 12. The factor gave a single band on SDS-electrophoresis on polyacrylamide gel and was assumed to have a molecular weight of 16 kDa. The factor is a potent mitogen for XC cells; half-maximal stimulation of DNA synthesis was achieved at a concentration of 0.8 ng/ml. The peptide is probably one of the family of EGF-like heparin-binding growth factors.

  6. Antisense EGFR sequence reverses the growth properties of human liver carcinoma cell line BEL-7404 in vitro

    Institute of Scientific and Technical Information of China (English)

    XUYONGHUA; WANLIJIANG; SUFENGPENG; YINGHUACHEN

    1993-01-01

    A recombinant plasmid containing a full length human epidermal growth factor receptor (EGFR) cDNA sequence in antisense orientation was transferred into cells of a human liver carcinoma cell line BEL-7404. Compared with the control cell clone JX-0 transferred with the vector plasmid and the parent BEL-7404 cells, the antisense EGFR transferred cell clone JX-1 showed a decreased EGFR gene expression and reduced significantly the growth potential either in anchorage-dependent or anchorage-independent growth. Furthermore. JX-1 cells appeared to be distinctly dependent on serum concentration for monolayer growth. The results suggested that antisense EGFR could partly block the EGFR gene ex-pression and reverse the malignant growth properties of human liver carcinoma cells in vitro.

  7. Ets-1 controls breast cancer cell balance between invasion and growth.

    Science.gov (United States)

    Furlan, Alessandro; Vercamer, Chantal; Bouali, Fatima; Damour, Isabelle; Chotteau-Lelievre, Anne; Wernert, Nicolas; Desbiens, Xavier; Pourtier, Albin

    2014-11-15

    Ets-1 overexpression in human breast cancers is associated with invasiveness and poor prognosis. By overexpressing Ets-1 or a dominant negative mutant in MMT breast cancer cells, we previously highlighted the key role of Ets-1 in coordinating multiple invasive features of these cells. Interestingly, we also noticed that Ets-1 decreased the density of breast cancer cells cultured in three-dimensional extracellular matrix gels. The 3D context was instrumental to this phenomenon, as such downregulation was not observed in cells grown on two-dimensional plastic or matrix-coated dishes. Ets-1 overexpression was deleterious to anchorage-independent growth of MMT cells in soft agar, a standard model for in vitro tumorigenicity. The relevance of this mechanism was confirmed in vivo, during primary tumor growth and in a metastatic assay of lung colonization. In these models, Ets-1 was associated with epithelial-to-mesenchymal transition features and modulated the ratio of Ki67-positive cells, while hardly affecting in vivo apoptotic cell death. Finally, siRNA-mediated knockdown of Ets-1 in human breast cancer cell lines also decreased colony growth, both in anchorage-independent assays and 3D extracellular matrix cultures. These in vitro and in vivo observations shed light on an unsuspected facet of Ets-1 in breast tumorigenesis. They show that while promoting malignancy through the acquisition of invasive features, Ets-1 also attenuates breast tumor cell growth and could therefore repress the growth of primary tumors and metastases. This work also demonstrates that 3D models may reveal mechanisms of tumor biology that are cryptic in standard 2D models.

  8. Combinatorial treatment using targeted MEK and SRC inhibitors synergistically abrogates tumor cell growth and induces mesenchymal-epithelial transition in non-small-cell lung carcinoma.

    Science.gov (United States)

    Chua, Kian Ngiap; Kong, Li Ren; Sim, Wen Jing; Ng, Hsien Chun; Ong, Weijie Richard; Thiery, Jean Paul; Huynh, Hung; Goh, Boon Cher

    2015-10-01

    Oncogenesis in non-small cell lung cancer (NSCLC) is regulated by a complex signal transduction network. Single-agent targeted therapy fails frequently due to treatment insensitivity and acquired resistance. In this study, we demonstrate that co-inhibition of the MAPK and SRC pathways using a PD0325901 and Saracatinib kinase inhibitor combination can abrogate tumor growth in NSCLC. PD0325901/Saracatinib at 0.25:1 combination was screened against a panel of 28 NSCLC cell lines and 68% of cell lines were found to be sensitive (IC50 cell migration and matrigel invasion. The co-inhibition of MAPK and SRC induced strong G1/G0 cell cycle arrest in the NSCLC lines, inhibited anchorage independent growth and delayed tumor growth in H460 and H358 mouse xenografts. These data provide rationale for further investigating the combination of MAPK and SRC pathway inhibitors in advanced stage NSCLC.

  9. Heterotrimeric G-protein, Gα16, is a critical downstream effector of non-canonical Wnt signaling and a potent inhibitor of transformed cell growth in non small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Sreedevi Avasarala

    Full Text Available G-protein-coupled receptors (GPCR are the largest family of cell surface molecules that play important role/s in a number of biological and pathological processes including cancers. Earlier studies have highlighted the importance of Wnt7a signaling via its cognate receptor Frizzled9, a GPCR, in inhibition of cell proliferation, anchorage-independent growth, and reversal of transformed phenotype in non small cell lung cancer primarily through activation of the tumor suppressor, PPARγ. However, the G-protein effectors that couple to this important tumor suppressor pathway have not been identified, and are of potential therapeutic interest. In this study, by using two independent Wnt7a/Frizzled9-specific read-outs, we identify Gα16 as a novel downstream effector of Wnt7a/Frizzled9 signaling. Interestingly, Gα16 expression is severely down-regulated, both at the messenger RNA levels and protein levels, in many non small cell lung cancer cell lines. Additionally, through gene-specific knock-downs and expression of GTPase-deficient forms (Q212L of Gα16, we also establish Gα16 as a novel regulator of non small cell lung cancer cell proliferation and anchorage-independent cell growth. Taken together, our data not only establish the importance of Gα16 as a critical downstream effector of the non-canonical Wnt signaling pathway but also as a potential therapeutic target for the treatment of non small cell lung cancer.

  10. Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells.

    Science.gov (United States)

    Bagheri-Yarmand, R; Mandal, M; Taludker, A H; Wang, R A; Vadlamudi, R K; Kung, H J; Kumar, R

    2001-08-03

    Etk/Bmx, a member of the Tec family of nonreceptor protein-tyrosine kinases, is characterized by an N-terminal pleckstrin homology domain and has been shown to be a downstream effector of phosphatidylinositol 3-kinase. P21-activated kinase 1 (Pak1), another well characterized effector of phosphatidylinositol 3-kinase, has been implicated in the progression of breast cancer cells. In this study, we characterized the role of Etk in mammary development and tumorigenesis and explored the functional interactions between Etk and Pak1. We report that Etk expression is developmentally regulated in the mammary gland. Using transient transfection, coimmunoprecipitation and glutathione S-transferase-pull down assays, we showed that Etk directly associates with Pak1 via its N-terminal pleckstrin homology domain and also phosphorylates Pak1 on tyrosine residues. The expression of wild-type Etk in a non-invasive human breast cancer MCF-7 cells significantly increased proliferation and anchorage-independent growth of epithelial cancer cells. Conversely, expression of kinase-inactive mutant Etk-KQ suppressed the proliferation, anchorage-independent growth, and tumorigenicity of human breast cancer MDA-MB435 cells. These results indicate that Pak1 is a target of Etk and that Etk controls the proliferation as well as the anchorage-independent and tumorigenic growth of mammary epithelial cancer cells.

  11. Peroxisome proliferator-activated receptor-gamma inhibits transformed growth of non-small cell lung cancer cells through selective suppression of Snail.

    Science.gov (United States)

    Choudhary, Rashmi; Li, Howard; Winn, Robert A; Sorenson, Amber L; Weiser-Evans, Mary C M; Nemenoff, Raphael A

    2010-03-01

    Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits transformed growth of non-small cell lung cancer (NSCLC) cell lines in vitro and in vivo. We have demonstrated that activation of PPARgamma promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-kappaB. The Snail family of transcription factors, which includes Snail (Snail1), Slug (Snail2), and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARgamma activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARgamma activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARgamma activators.

  12. Peroxisome Proliferator-Activated Receptor-γ Inhibits Transformed Growth of Non-Small Cell Lung Cancer Cells through Selective Suppression of Snail

    Directory of Open Access Journals (Sweden)

    Rashmi Choudhary

    2010-03-01

    Full Text Available Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ inhibits transformed growth of non-small cell lung cancer (NSCLC cell lines in vitro and in vivo. We have demonstrated that activation of PPARγ promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-κB. The Snail family of transcription factors, which includes Snail (Snail1, Slug (Snail2, and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARγ activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARγ activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARγ activators.

  13. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  14. Chromosome 6 encoded RNaseT2 protein is a cell growth regulator

    Science.gov (United States)

    Liu, Jinglan; Zhawar, Vikramjit K; Kaur, Gurpreet; Kaur, G Pal; DeRiel, Jon Kimball; Kandpal, Raj P; Athwal, Raghbir S

    2010-01-01

    Abstract We have previously shown by chromosome transfer technique that chromosome 6 alters the phenotype of a variety of tumour cells and SV40 immortalized cells. We present here the phenotypic effects of the ectopic expression of RNaseT2, a highly conserved ribonuclease encoded by chromosome 6q27, in SV40 immortalized cell lines. We contrast our findings with those reported for ovarian carcinoma cell lines and an SV40 immortalized cell line transfected with RNaseT2. Although RNaseT2 expression is elevated in normal diploid fibroblasts approaching senescence (passage 64), forced expression of the gene in immortalized cells does not cause them to senesce. A significant reduction was observed in colony forming efficiency, anchorage independence and growth rate of cells transfected with RNaseT2. The levels of transcripts involved in Akt signalling pathway, cell cycle control and pathways related to cell proliferation decreased 2–10-folds in SV40 immortalized cells in response to RNaseT2 expression. Interestingly, some immortalized cells expressed alternatively spliced transcript variants instead of the full-length RNaseT2 transcript. Our results are consistent with the conclusion that RNaseT2 is a cell growth regulator and it does not induce senescence in SV40 immortalized cell lines. PMID:19382914

  15. Neurotensin, a novel target of Wnt/β-catenin pathway, promotes growth of neuroendocrine tumor cells.

    Science.gov (United States)

    Kim, Ji Tae; Liu, Chunming; Zaytseva, Yekaterina Y; Weiss, Heidi L; Townsend, Courtney M; Evers, B Mark

    2015-03-15

    Wnt/β-catenin signaling plays a pivotal role in regulating cell growth and differentiation by activation of the β-catenin/T-cell factor (TCF) complex and subsequent regulation of a set of target genes that have one or more TCF-binding elements (TBEs). Hyperactivation of this pathway has been implicated in numerous malignancies including human neuroendocrine tumors (NETs). Neurotensin (NT), an intestinal hormone, induces proliferation of several gastrointestinal (GI) cancers including cancers of the pancreas and colon. Here, we analyzed the human NT promoter in silico and found at least four consensus TBEs within the proximal promoter region. Using a combination of ChIP and luciferase reporter assays, we identified one TBE (located ∼900 bp proximal from the transcription start site) that was immunoprecipitated efficiently by TCF4-targeting antibody; mutation of this site attenuated the responsiveness to β-catenin. We also confirmed that the promoter activity and the mRNA and protein expression levels of NT were increased by various Wnt pathway activators and decreased by Wnt inhibitors in NET cell lines BON and QGP-1, which express and secrete NT. Similarly, the intracellular content and secretion of NT were induced by Wnt3a in these cells. Finally, inhibition of NT signaling suppressed cell proliferation and anchorage-independent growth and decreased expression levels of growth-related proteins in NET cells. Our results indicate that NT is a direct target of the Wnt/β-catenin pathway and may be a mediator for NET cell growth.

  16. Viral Small T Oncoproteins Transform Cells by Alleviating Hippo-Pathway-Mediated Inhibition of the YAP Proto-oncogene

    Directory of Open Access Journals (Sweden)

    Hung Thanh Nguyen

    2014-08-01

    Full Text Available Primary human cells can be transformed into tumor cells by a defined set of genetic alterations including telomerase, oncogenic RasV12, and the tumor suppressors p53 and pRb. SV40 small T (ST is required for anchorage-independent growth in vitro and in vivo. Here, we identify the Hippo tumor suppressor pathway as a critical target of ST in cellular transformation. We report that ST uncouples YAP from the inhibitory activity of the Hippo pathway through PAK1-mediated inactivation of NF2. Membrane-tethered activated PAK is sufficient to bypass the requirement for ST in anchorage-independent growth. PAK acts via YAP to mediate the transforming effects of ST. Activation of endogenous YAP is required for ST-mediated transformation and is sufficient to bypass ST in anchorage-independent growth and xenograft tumor formation. Our findings uncover the Hippo tumor suppressor pathway as a final gatekeeper to transformation and tumorigenesis of primary cells.

  17. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8.

    Science.gov (United States)

    Hartman, Zachary C; Poage, Graham M; den Hollander, Petra; Tsimelzon, Anna; Hill, Jamal; Panupinthu, Nattapon; Zhang, Yun; Mazumdar, Abhijit; Hilsenbeck, Susan G; Mills, Gordon B; Brown, Powel H

    2013-06-01

    Triple-negative breast cancers (TNBC) are aggressive with no effective targeted therapies. A combined database analysis identified 32 inflammation-related genes differentially expressed in TNBCs and 10 proved critical for anchorage-independent growth. In TNBC cells, an LPA-LPAR2-EZH2 NF-κB signaling cascade was essential for expression of interleukin (IL)-6, IL-8, and CXCL1. Concurrent inhibition of IL-6 and IL-8 expression dramatically inhibited colony formation and cell survival in vitro and stanched tumor engraftment and growth in vivo. A Cox multivariable analysis of patient specimens revealed that IL-6 and IL-8 expression predicted patient survival times. Together these findings offer a rationale for dual inhibition of IL-6/IL-8 signaling as a therapeutic strategy to improve outcomes for patients with TNBCs.

  18. Enhanced invasion and tumor growth of fibroblast growth factor 8b-overexpressing MCF-7 human breast cancer cells.

    Science.gov (United States)

    Ruohola, J K; Viitanen, T P; Valve, E M; Seppänen, J A; Loponen, N T; Keskitalo, J J; Lakkakorpi, P T; Härkönen, P L

    2001-05-15

    Fibroblast growth factor 8 (FGF-8) is a secreted heparin-binding protein, which has mitogenic and transforming activity. Increased expression of FGF-8 has been found in human breast cancer, and it has a potential autocrine role in its progression. Human FGF-8 is alternatively spliced to generate four protein isoforms (a, b, e, and f). Isoform b has been shown to be the most transforming. In this work, we studied the role of FGF-8b in the growth (in vitro and in vivo) of MCF-7 human breast cancer cells, which proliferate in an estrogen-dependent manner. Constitutive overexpression of FGF-8b in MCF-7 cells down-regulated FGF-8b-binding receptors FGF receptor (FGFR) 1IIIc, FGFR2IIIc, and FGFR4 found to be expressed in these cells. FGF-8b overexpression led to an increase in the anchorage-independent proliferation rate in suspension culture and colony formation in soft agar, when MCF-7 cells were cultured with or without estradiol. FGF-8b also provided an additional growth advantage for cells stimulated with estradiol. In addition, FGF-8b-transfected cells invaded more actively through Matrigel than did control cells. This was possibly due to the increased secretion of matrix metalloproteinase 9. In vivo, FGF-8b-transfected MCF-7 cells formed faster growing tumors than vector-only-transfected cells when xenografted into nude mice. The tumors formed by FGF-8b-transfected cells were more vascular than the tumors formed by vector-only-transfected cells. In conclusion, FGF-8b expression confers a growth advantage to MCF-7 breast carcinoma cells, both in vitro and in vivo. In addition to stimulation of proliferation, this growth advantage probably arises from increased invasion and tumor vascularization induced by FGF-8b. The results suggest that FGF-8b signaling may be an important factor in the regulation of tumorigenesis and progression of human breast cancer.

  19. Deficiency in the 15 kDa Selenoprotein Inhibits Human Colon Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Ryuta Tobe

    2011-09-01

    Full Text Available Selenium is an essential micronutrient for humans and animals, and is thought to provide protection against some forms of cancer. These protective effects appear to be mediated, at least in part, through selenium-containing proteins (selenoproteins. Recent studies in a mouse colon cancer cell line have shown that the 15 kDa selenoprotein (Sep15 may also play a role in promoting colon cancer. The current study investigated whether the effects of reversing the cancer phenotype observed when Sep15 was removed in mouse colon cancer cells, were recapitulated in HCT116 and HT29 human colorectal carcinoma cells. Targeted down-regulation of Sep15 using RNAi technology in these human colon cancer cell lines resulted in similarly decreased growth under anchorage-dependent and anchorage-independent conditions. However, the magnitude of reduction in cell growth was much less than in the mouse colon cancer cell line investigated previously. Furthermore, changes in cell cycle distribution were observed, indicating a delayed release of Sep15 deficient cells from the G0/G1 phase after synchronization. The potential mechanism by which human colon cancer cells lacking Sep15 revert their cancer phenotype will need to be explored further.

  20. The Neurofibromatosis 2 Tumor Suppressor Gene Product, Merlin, Regulates Human Meningioma Cell Growth by Signaling through YAP

    Directory of Open Access Journals (Sweden)

    Katherine Striedinger

    2008-11-01

    Full Text Available Neurofibromatosis type 2 (NF2 is an autosomal dominant disorder characterized by the occurrence of schwannomas and meningiomas. Several studies have examined the ability of the NF2 gene product, merlin, to function as a tumor suppressor in diverse cell types; however, little is known about merlin growth regulation in meningiomas. In Drosophila, merlin controls cell proliferation and apoptosis by signaling through the Hippo pathway to inhibit the function of the transcriptional coactivator Yorkie. The Hippo pathway is conserved in mammals. On the basis of these observations, we developed human meningioma cell lines matched for merlin expression to evaluate merlin growth regulation and investigate the relationship between NF2 status and Yes-associated protein (YAP, the mammalian homolog of Yorkie. NF2 loss in meningioma cells was associated with loss of contact-dependent growth inhibition, enhanced anchorage-independent growth and increased cell proliferation due to increased S-phase entry. In addition, merlin loss in both meningioma cell lines and primary tumors resulted in increased YAP expression and nuclear localization. Finally, siRNA-mediated reduction of YAP in NF2-deficient meningioma cells rescued the effects of merlin loss on cell proliferation and S-phase entry. Collectively, these results represent the first demonstration that merlin regulates cell growth in human cancer cells by suppressing YAP.

  1. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling.

    Science.gov (United States)

    Sliva, D; Jedinak, A; Kawasaki, J; Harvey, K; Slivova, V

    2008-04-22

    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer cells. The growth inhibition of MDA-MB-231 cells is mediated by the cell cycle arrest at S phase through the upregulation of p27(Kip1) expression. Phellinus linteus also suppressed invasive behaviour of MDA-MB-231 cells by the inhibition of cell adhesion, cell migration and cell invasion through the suppression of secretion of urokinase-plasminogen activator from breast cancer cells. In addition, PL markedly inhibited the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells, through the downregulation of secretion of vascular endothelial growth factor from MDA-MB-231 cells. These effects are mediated by the inhibition of serine-threonine kinase AKT signalling, because PL suppressed phosphorylation of AKT at Thr(308) and Ser(473) in breast cancer cells. Taken together, our study suggests potential therapeutic effect of PL against invasive breast cancer.

  2. mad—overexpression down regulates the malignant growth and p53 mediated apoptosis in human hepatocellular carcinoma BEL—7404 cells

    Institute of Scientific and Technical Information of China (English)

    ZHANHUA; YONGHUAXU

    1999-01-01

    Mad protein has been shown as an antagonist of cMyc protein in some cell lines.The effect of Mad protein to the malignant phenotype of human hepatoma BEL-7404 cell line was investigated experimentally.An eukarryotic vector pCDNA Ⅲ containing full ORF fragment of mad cDNA was transfected into targeted cells.Under G418 selection,stable Mad-overexpressed cells were cloned.Studies on the effect of Mad over-expression in cell proliferation and cell cycle revealed that cell morphology of the Mad-overexpressed BEL-7404-M1 cells was significantly different from the parent and control vector transfected cells.DNA synthesis,cell proliferation and anchorage-independent growth in soft-agar of the madtransfected cells were partially inhibited in comparison to control cells.Flos cytometry analysis indicated that mad over-expression might block more transfectant cells at G0/G1 phase,resulting in the retardation of cell proliferation.RT-PCR detected a marked inhibition of the expression of cdc25A,an important regulator gene of G0/G1 to S phase in cell cycle.It was also found that Mad protein overexpression could greatly suppress p53-mediated apoptosis in BEL-74040M1 cells in the absence of serume.Thus,Mad proteins may function as a negative regulator antagonizing c-Myc activity in the control of cell growth and apoptosis in human hepatocellular carcinoma BEL-7404 cells.

  3. Forced Trefoil Factor Family Peptide 3 (TFF3) Expression Reduces Growth, Viability, and Tumorigenicity of Human Retinoblastoma Cell Lines.

    Science.gov (United States)

    Große-Kreul, Jan; Busch, Maike; Winter, Claudia; Pikos, Stefanie; Stephan, Harald; Dünker, Nicole

    2016-01-01

    Trefoil factor family (TFF) peptides have been shown to effect cell proliferation, apoptosis, migration and invasion of normal cells and various cancer cell lines. In the literature TFF peptides are controversially discussed as tumor suppressors and potential tumor progression factors. In the study presented, we investigated the effect of TFF3 overexpression on growth, viability, migration and tumorigenicity of the human retinoblastoma cell lines Y-79, WERI-Rb1, RBL-13 and RBL-15. As revealed by WST-1 and TUNEL assays as well as DAPI and BrdU cell counts, recombinant human TFF3 significantly lowers retinoblastoma cell viability and increases apoptosis levels. Transient TFF3 overexpression likewise significantly increases RB cell apoptosis. Stable, lentiviral TFF3 overexpression lowers retinoblastoma cell viability, proliferation and growth and significantly increases cell death in retinoblastoma cells. Blockage experiments using a broad-spectrum caspase inhibitor and capase-3 immunocytochemistry revealed the involvement of caspases in general and of caspase-3 in particular in TFF3 induced apoptosis in retinoblastoma cell lines. Soft agarose and in ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF3 overexpression influences anchorage independent growth and significantly decreases the size of tumors forming from retinoblastoma cells. Our study demonstrates that forced TFF3 expression exerts a significant pro-apoptotic, anti-proliferative, and tumor suppressive effect in retinoblastoma cells, setting a starting point for new additive chemotherapeutic approaches in the treatment of retinoblastoma.

  4. Forced Trefoil Factor Family Peptide 3 (TFF3) Expression Reduces Growth, Viability, and Tumorigenicity of Human Retinoblastoma Cell Lines

    Science.gov (United States)

    Winter, Claudia; Pikos, Stefanie; Stephan, Harald; Dünker, Nicole

    2016-01-01

    Trefoil factor family (TFF) peptides have been shown to effect cell proliferation, apoptosis, migration and invasion of normal cells and various cancer cell lines. In the literature TFF peptides are controversially discussed as tumor suppressors and potential tumor progression factors. In the study presented, we investigated the effect of TFF3 overexpression on growth, viability, migration and tumorigenicity of the human retinoblastoma cell lines Y-79, WERI-Rb1, RBL-13 and RBL-15. As revealed by WST-1 and TUNEL assays as well as DAPI and BrdU cell counts, recombinant human TFF3 significantly lowers retinoblastoma cell viability and increases apoptosis levels. Transient TFF3 overexpression likewise significantly increases RB cell apoptosis. Stable, lentiviral TFF3 overexpression lowers retinoblastoma cell viability, proliferation and growth and significantly increases cell death in retinoblastoma cells. Blockage experiments using a broad-spectrum caspase inhibitor and capase-3 immunocytochemistry revealed the involvement of caspases in general and of caspase-3 in particular in TFF3 induced apoptosis in retinoblastoma cell lines. Soft agarose and in ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF3 overexpression influences anchorage independent growth and significantly decreases the size of tumors forming from retinoblastoma cells. Our study demonstrates that forced TFF3 expression exerts a significant pro-apoptotic, anti-proliferative, and tumor suppressive effect in retinoblastoma cells, setting a starting point for new additive chemotherapeutic approaches in the treatment of retinoblastoma. PMID:27626280

  5. Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo.

    Directory of Open Access Journals (Sweden)

    Martin F Dietrich

    Full Text Available BACKGROUND: The low-density lipoprotein (LDL receptor gene family is a highly conserved group of membrane receptors with diverse functions in developmental processes, lipoprotein trafficking, and cell signaling. The low-density lipoprotein (LDL receptor-related protein 1b (LRP1B was reported to be deleted in several types of human malignancies, including non-small cell lung cancer. Our group has previously reported that a distal extracellular truncation of murine Lrp1b that is predicted to secrete the entire intact extracellular domain (ECD is fully viable with no apparent phenotype. METHODS AND PRINCIPAL FINDINGS: Here, we have used a gene targeting approach to create two mouse lines carrying internally rearranged exons of Lrp1b that are predicted to truncate the protein closer to the N-terminus and to prevent normal trafficking through the secretary pathway. Both mutations result in early embryonic lethality, but, as expected from the restricted expression pattern of LRP1b in vivo, loss of Lrp1b does not cause cellular lethality as homozygous Lrp1b-deficient blastocysts can be propagated normally in culture. This is similar to findings for another LDL receptor family member, Lrp4. We provide in vitro evidence that Lrp4 undergoes regulated intramembraneous processing through metalloproteases and gamma-secretase cleavage. We further demonstrate negative regulation of the Wnt signaling pathway by the soluble extracellular domain. CONCLUSIONS AND SIGNIFICANCE: Our results underline a crucial role for Lrp1b in development. The expression in mice of truncated alleles of Lrp1b and Lrp4 with deletions of the transmembrane and intracellular domains leads to release of the extracellular domain into the extracellular space, which is sufficient to confer viability. In contrast, null mutations are embryonically (Lrp1b or perinatally (Lrp4 lethal. These findings suggest that the extracellular domains of both proteins may function as a scavenger for

  6. Suppression of cell growth and invasion by miR-205 in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Hailong Wu; Shoumin Zhu; Yin-Yuan Mo

    2009-01-01

    MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in breast tumor compared to the matched normal breast tissue. Similarly, breast cancer cell lines, including MCF-7 and MDA-MB-231, express a lower level miR-205 than the non-malignant MCF-10A cells. Of interest, ectopic expression of miR-205 significantly inhibits cell proliferation and anchorage independent growth, as well as cell invasion. Furthermore, miR-205 was shown to suppress lung metastasis in an animal model. Finally, western blot combined with the luciferase reporter assays demonstrate that ErbB3 and vascular endothelial growth factor A (VEGF-A) are direct targets for miR-205, and this miR-205-mediated suppression is likely through the direct interaction with the putative miR-205 binding site in the 3'-untranslated region (3'-UTR) of ErbB3 and VEGF-A. Together, these results suggest that miR-205 is a tumor suppressor in breast cancer.

  7. Inhibitory Effect of CT120B, an Alternative Splice Variant of CT120A,on Lung Cancer Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Dong-Ning PAN; Jin-Jun LI; Lin WEI; Ming YAO; Da-Fang WAN; Jian-Ren GU

    2005-01-01

    The expression product of ct120a, a novel gene isolated from human chromosome 17p13.3in our laboratory, was predicted to have seven transmembrane domains and could cause malignant transformation of mouse NIH3T3 cells. There existed an mRNA splicing variant of ct120a, namely ct120b,which had a 96-nucleotide deletion and produced an in-frame loss of 32 amino acids from codon 136 to codon 167 of CT120A. The CT120B protein was predicted to have six transmembrane domains. In this study, we observed that the green fluorescent protein-tagged CT120B was localized on plasma membrane and in cytoplasm in SPC-A-1 cells. The expression of CT120B/A in normal lung tissue and in lung cancer cells was also examined. Results showed that the stable CT120B overexpression in SPC-A-1 cells resulted in a reduction of cell growth rate, and inhibited tumorigenecity and anchorage-independent growth in nude mice. The functions of CT120A and CT120B for cell growth appeared antagonistic. We suggested that the delayed G1/S phase transition might contribute to the inhibitory activities of CT120B on cell growth and that the deleted 32 amino acids missing in CT120B might be essential for the oncogenetic activities of CT120A.

  8. Parabens enable suspension growth of MCF-10A immortalized, non-transformed human breast epithelial cells.

    Science.gov (United States)

    Khanna, Sugandha; Darbre, Philippa D

    2013-05-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10(-4) M methylparaben, 10(-5) M n-propylparaben or 10(-5) M n-butylparaben resulted in a greater number of colonies per dish (P paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis.

  9. Downregulation of Cyclophilin A by siRNA diminishes non-small cell lung cancer cell growth and metastasis via the regulation of matrix metallopeptidase 9

    Directory of Open Access Journals (Sweden)

    Qian Zhe

    2012-10-01

    Full Text Available Abstract Background Cyclophilin A (CypA is a cytosolic protein possessing peptidyl-prolyl isomerase activity that was recently reported to be overexpressed in several cancers. Here, we explored the biology and molecular mechanism of CypA in non-small cell lung cancer (NSCLC. Methods The expression of CypA in human NSCLC cell lines was detected by real-time reverse transcription PCR. The RNA interference-mediated knockdown of CypA was established in two NSCLC cell lines (95C and A549. 239836 CypA inhibitor was also used to suppress CypA activity. Tumorigenesis was assessed based on cellular proliferation, colony formation assays, and anchorage-independent growth assays; metastasis was assessed based on wound healing and transwell assays. Results Suppression of CypA expression inhibited the cell growth and colony formation of A549 and 95C cells. CypA knockdown resulted in the inhibition of cell motility and invasion. Significantly, we show for the first time that CypA increased NSCLC cell invasion by regulating the activity of secreted matrix metallopeptidase 9 (MMP9. Likewise, suppression of CypA with 239836 CypA inhibitor decreased cell proliferation and MMP9 activity. Conclusions The suppression of CypA expression was correlated with decreased NSCLC cell tumorigenesis and metastasis.

  10. ABI3 ectopic expression reduces in vitro and in vivo cell growth properties while inducing senescence

    Directory of Open Access Journals (Sweden)

    Riggins Gregory J

    2011-01-01

    Full Text Available Abstract Background Mounting evidence has indicated that ABI3 (ABI family member 3 function as a tumor suppressor gene, although the molecular mechanism by which ABI3 acts remains largely unknown. Methods The present study investigated ABI3 expression in a large panel of benign and malignant thyroid tumors and explored a correlation between the expression of ABI3 and its potential partner ABI3-binding protein (ABI3BP. We next explored the biological effects of ABI3 ectopic expression in thyroid and colon carcinoma cell lines, in which its expression was reduced or absent. Results We not only observed that ABI3 expression is reduced or lost in most carcinomas but also that there is a positive correlation between ABI3 and ABI3BP expression. Ectopic expression of ABI3 was sufficient to lead to a lower transforming activity, reduced tumor in vitro growth properties, suppressed in vitro anchorage-independent growth and in vivo tumor formation while, cellular senescence increased. These responses were accompanied by the up-regulation of the cell cycle inhibitor p21 WAF1 and reduced ERK phosphorylation and E2F1 expression. Conclusions Our result links ABI3 to the pathogenesis and progression of some cancers and suggests that ABI3 or its pathway might have interest as therapeutic target. These results also suggest that the pathways through which ABI3 works should be further characterized.

  11. Bcl-2 and N-Myc Coexpression Increases IGF-IR and Features of Malignant Growth in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Rama Jasty

    2001-01-01

    Full Text Available The bcl-2 and c-myc oncogenes cooperate to transform multiple cell types. In the pediatric malignancy NB2, Bcl2 is highly expressed. In tumors with a poor prognosis, N-Myc, a protein homologous to c-Myc, is overexpressed as a result of gene amplification. The present study was designed to determine whether Bcl-2 cooperates with N-Myc to bestow a tumorigenic phenotype to neuroblastoma (NB cells. NB cell lines that at baseline express neither Bcl-2 nor N-Myc were stably transfected to express these gene products. In this model, we found Bcl-2 rescues N-Myc-expressing cells from apoptosis induced by serum withdrawal. Coexpression of Bcl-2 and N-Myc supports growth in low serum conditions and anchorage-independent growth in soft agar. Similarly, in vivo tumorigenic and angiogenic activity was dependent on coexpression. Our data further suggests that the mechanism underlying these changes involves the receptor for insulin growth factor type I (IGF-IR.

  12. Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt's lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV.

    OpenAIRE

    1994-01-01

    During cultivation of the Epstein-Barr virus (EBV)-positive Burkitt's lymphoma (BL) line Akata, it was noted that EBV DNA is lost from some of the cells. Isolation of EBV-positive and EBV-negative clones with the same origin made it possible to examine the effects of EBV in BL cells. The results indicate that malignant phenotypes of BL, such as growth in low serum, anchorage-independent growth in soft agar, and tumorigenicity in nude mice, are dependent on the presence of EBV genomes and unde...

  13. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.

    Science.gov (United States)

    Choi, Eun-Sun; Cho, Sung-Dae; Shin, Ji-Ae; Kwon, Ki Han; Cho, Nam-Pyo; Shim, Jung-Hyun

    2012-10-01

    For thousands of years in Asia, Althaea rosea Cavanil (ARC) and Plantago major L. (PML) have been used as powerful non-toxic therapeutic agents that inhibit inflammation. However, the anticancer mechanisms and molecular targets of ARC and PML are poorly understood, particularly in epidermal growth factor (EGF)-induced neoplastic cell transformation. The aim of this study was to evaluate the chemopreventive effects and mechanisms of the methanol extracts from ARC (MARC) and PML (MPML) in EGF-induced neoplastic cell transformation of JB6 P+ mouse epidermal cells using an MTS assay, anchorage-independent cell transformation assay and western blotting. Our results showed that MARC and MPML significantly suppressed neoplastic cell transformation by inhibiting the kinase activity of the EGF receptor (EGFR). The activation of EGFR by EGF was suppressed by MARC and MPML treatment in EGFR(+/+) cells, but not in EGFR(-/-) cells. In addition, MARC and MPML inhibited EGF-induced cell proliferation in EGFR-expressing murine embryonic fibroblasts (EGFR(+/+)). These results strongly indicate that EGFR targeting by MARC and MPML may be a good strategy for chemopreventive or chemotherapeutic applications.

  14. H-ras-transformed NRK-52E renal epithelial cells have altered growth, morphology, and cytoskeletal structure that correlates with renal cell carcinoma in vivo.

    Science.gov (United States)

    Best, C J; Tanzer, L R; Phelps, P C; Merriman, R L; Boder, G G; Trump, B F; Elliget, K A

    1999-04-01

    We studied the effect of the ras oncogene on the growth kinetics, morphology, cytoskeletal structure, and tumorigenicity of the widely used NRK-52E rat kidney epithelial cell line and two H-ras oncogene-transformed cell lines, H/1.2-NRK-52E (H/1.2) and H/6.1-NRK-52E (H/6.1). Population doubling times of NRK-52E, H/1.2, and H/6.1 cells were 28, 26, and 24 h, respectively, with the transformed cells reaching higher saturation densities than the parent cells. NRK-52E cells had typical epithelial morphology with growth in colonies. H/1.2 and H/6.1 cell colonies were more closely packed, highly condensed, and had increased plasma membrane ruffling compared to parent cell colonies. NRK-52E cells showed microfilament, microtubule, and intermediate filament networks typical of epithelial cells, while H/1.2 and H/6.1 cells showed altered cytoskeleton architecture, with decreased stress fibers and increased microtubule and intermediate filament staining at the microtubule organizing center. H/1.2 and H/6.1 cells proliferated in an in vitro soft agar transformation assay, indicating anchorage-independence, and rapidly formed tumors in vivo with characteristics of renal cell carcinoma, including mixed populations of sarcomatoid, granular, and clear cells. H/6.1 cells consistently showed more extensive alterations of growth kinetics, morphology, and cytoskeleton than H/1.2 cells, and formed tumors of a more aggressive phenotype. These data suggest that analysis of renal cell characteristics in vitro may have potential in predicting tumor behavior in vivo, and significantly contribute to the utility of these cell lines as in vitro models for examining renal epithelial cell biology and the role of the ras proto-oncogene in signal transduction involving the cytoskeleton.

  15. Anchorage-independent growth of pocket protein-deficient murine fibroblasts requires bypass of G2 arrest and can be accomplished by expression of TBX2

    NARCIS (Netherlands)

    Vormer, Tinke L; Foijer, Floris; Wielders, Camiel L C; te Riele, Hein

    2008-01-01

    Mouse embryonic fibroblasts (MEFs) deficient for pocket proteins (i.e., pRB/p107-, pRB/p130-, or pRB/p107/p130-deficient MEFs) have lost proper G(1) control and are refractory to Ras(V12)-induced senescence. However, pocket protein-deficient MEFs expressing Ras(V12) were unable to exhibit anchorage-

  16. The anoikis effector Bit1 displays tumor suppressive function in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Xin Yao

    Full Text Available The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1 protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC tissues.

  17. The anoikis effector Bit1 displays tumor suppressive function in lung cancer cells.

    Science.gov (United States)

    Yao, Xin; Jennings, Scott; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Davis, Mya; Chen, Renwei; Davenport, Ian; Biliran, Hector

    2014-01-01

    The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1) protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES) protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC) tissues.

  18. Chemical Carcinogen (Hydrazine, Polynuclear Hydrocarbon and/or Synthetic Jet Fuel Components) Induced Carcinogenesis of Human Cells, In Vitro

    Science.gov (United States)

    1981-08-01

    human cells by UV and X- raya . Abstracts. Fifth Annual Meeting of American Society for Photo- biology, San Juan , Puerto Rico, 1977, p. 110. 8 D.A. Reigner...15GT8) at a fluence rate " of 1.2 J - m-’ • sec - 1. The fluence rate was measured by a Blak-Ray UV meter (UV Products, International, San Gabriel, CA...transformation of human cells to anchorage-independent growth. Cancer Res., 40 (1980) 1934-1939. 4 H.F. Stich, R.H.C. San , J.A. Miller and E.C. Miller

  19. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricio; Soto, Nicolás [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Jorge [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Mendoza, Pablo [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Natalia [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Quest, Andrew F.G. [Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Torres, Vicente A., E-mail: vatorres@med.uchile.cl [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile)

    2015-08-21

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo.

  20. Depletion of OLFM4 gene inhibits cell growth and increases sensitization to hydrogen peroxide and tumor necrosis factor-alpha induced-apoptosis in gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Rui-hua

    2012-04-01

    Full Text Available Abstract Background Human olfactomedin 4 (OLFM4 gene is a secreted glycoprotein more commonly known as the anti-apoptotic molecule GW112. OLFM4 is found to be frequently up-regulated in many types of human tumors including gastric cancer and it was believed to play significant role in the progression of gastric cancer. Although the function of OLFM4 has been indicated in many studies, recent evidence strongly suggests a cell or tissue type-dependent role of OLFM4 in cell growth and apoptosis. The aim of this study is to examine the role of gastric cancer-specific expression of OLFM4 in cell growth and apoptosis resistance. Methods OLFM4 expression was eliminated by RNA interference in SGC-7901 and MKN45 cells. Cell proliferation, anchorage-independent growth, cell cycle and apoptosis were characterized in vitro. Tumorigenicity was analyzed in vivo. The apoptosis and caspase-3 activation in response to hydrogen peroxide (H2O2 or tumor necrosis factor-alpha (TNF α were assessed in the presence or absence of caspase inhibitor Z-VAD-fmk. Results The elimination of OLFM4 protein by RNA interference in SGC-7901 and MKN45 cells significantly inhibits tumorigenicity both in vitro and in vivo by induction of cell G1 arrest (all P 2O2 or TNF α-induced apoptosis and caspase-3 activity (all P 2O2 or TNF α-induced apoptosis in OLFM4 knockdown cells (all P Conclusion Our study suggests that depletion of OLFM4 significantly inhibits tumorigenicity of the gastric cancer SGC-7901 and MKN45 cells. Blocking OLFM4 expression can sensitize gastric cancer cells to H2O2 or TNF α treatment by increasing caspase-3 dependent apoptosis. A combination strategy based on OLFM4 inhibition and anticancer drugs treatment may provide therapeutic potential in gastric cancer intervention.

  1. Establishment and characterization of a new feline mammary cancer cell line, FkMTp.

    Science.gov (United States)

    Borges, Ana; Adega, Filomena; Chaves, Raquel

    2016-08-01

    Studies on tumours in domestic animals are believed to greatly contribute to a better understanding of similar diseases in humans. Comparative studies have shown that feline mammary carcinomas share important features with human breast cancers, including a similar biological behaviour and histological appearance. In the present study we have established and characterized at different cellular levels one feline mammary cancer cell line, FkMTp, derived from a cat mammary carcinoma. The FkMTp cell line revealed to be a promising resource and tool to study tumour microevolution and all the mechanisms and processes involved in carcinogenesis from the tumour (primary culture) to the immortalized cell line. Several assays were conducted to assess the growth behaviour, differentiated morphology, anchorage independent growth in soft agar, wound-healing invasion and migration of the cell line across time (from the primary culture until the 160th passage). FkMTp revealed increased levels of anchorage independence, migration and invasion according to the course of time as well as different numbers of ploidy. These results demonstrate and validate the in vitro tumorigenicity of the FkMTp cell line. During the cell line establishment, it was cryopreserved approximately every six passages, including the tumour primary culture, allowing now the possibility to access almost any specific momento of the tumour progression.

  2. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  3. Human adipose stromal cells (ASC for the regeneration of injured cartilage display genetic stability after in vitro culture expansion.

    Directory of Open Access Journals (Sweden)

    Simona Neri

    Full Text Available Mesenchymal stromal cells are emerging as an extremely promising therapeutic agent for tissue regeneration due to their multi-potency, immune-modulation and secretome activities, but safety remains one of the main concerns, particularly when in vitro manipulation, such as cell expansion, is performed before clinical application. Indeed, it is well documented that in vitro expansion reduces replicative potential and some multi-potency and promotes cell senescence. Furthermore, during in vitro aging there is a decrease in DNA synthesis and repair efficiency thus leading to DNA damage accumulation and possibly inducing genomic instability. The European Research Project ADIPOA aims at validating an innovative cell-based therapy where autologous adipose stromal cells (ASCs are injected in the diseased articulation to activate regeneration of the cartilage. The primary objective of this paper was to assess the safety of cultured ASCs. The maintenance of genetic integrity was evaluated during in vitro culture by karyotype and microsatellite instability analysis. In addition, RT-PCR array-based evaluation of the expression of genes related to DNA damage signaling pathways was performed. Finally, the senescence and replicative potential of cultured cells was evaluated by telomere length and telomerase activity assessment, whereas anchorage-independent clone development was tested in vitro by soft agar growth. We found that cultured ASCs do not show genetic alterations and replicative senescence during the period of observation, nor anchorage-independent growth, supporting an argument for the safety of ASCs for clinical use.

  4. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell.

    Science.gov (United States)

    Yang, Qian; Feng, Fan; Zhang, Fan; Wang, Chunping; Lu, Yinying; Gao, Xudong; Zhu, Yunfeng; Yang, Yongping

    2013-12-01

    Long interspersed nucleotide element (LINE)-1 ORF-1p is encoded by the human pro-oncogene LINE-1. It is involved in the development and progression of several human carcinomas, such as hepatocellular carcinoma and lung and breast cancers. The hepatocyte growth factor (HGF)/ETS-1 signaling pathway is involved in regulation of cancer cell proliferation, metastasis and invasion. The biological function of the interaction between LINE-1 ORF-1p and the HGF/ETS-1 signaling pathway in regulation of human breast cancer proliferation remains largely unknown. Here, we showed that LINE-1 ORF-1p enhanced ETS-1 transcriptional activity and increased expression of downstream genes of ETS-1. Interaction between ETS-1 and LINE-1 ORF-1p was identified by immunoprecipitation assays. LINE-1 ORF-1p modulated ETS-1 activity through cytoplasm/nucleus translocation and recruitment to the ETS-1 binding element in the MMP1 gene promoter. We also showed that LINE-1 ORF-1p promoted proliferation and anchorage-independent growth of MDA-MB-231 breast cancer cells. By investigating a novel role of the LINE-1 ORF-1p in the HGF/ETS-1 signaling pathway and MDA-MB-231 cells, we demonstrated that LINE-1 ORF-1p may be a novel ETS-1 coactivator and molecular target for therapy of human triple negative breast cancer.

  5. Genomic amplification upregulates estrogen-related receptor alpha and its depletion inhibits oral squamous cell carcinoma tumors in vivo.

    Science.gov (United States)

    Tiwari, Ankana; Swamy, Shivananda; Gopinath, Kodaganur S; Kumar, Arun

    2015-12-07

    The ESRRA gene encodes a transcription factor and regulates several genes, such as WNT11 and OPN, involved in tumorigenesis. It is upregulated in several cancers, including OSCC. We have previously shown that the tumor suppressor miR-125a targets ESRRA, and its downregulation causes upregulation of ESRRA in OSCC. Upregulation of ESRRA in the absence of downregulation of miR-125a in a subset of OSCC samples suggests the involvement of an alternative mechanism. Using TaqMan(®) copy number assay, here we report for the first time that the genomic amplification of ESRRA causes its upregulation in a subset of OSCC samples. Ectopic overexpression of ESRRA led to accelerated cell proliferation, anchorage-independent cell growth and invasion, and inhibited apoptosis. Whereas, knockdown of ESRRA expression by siRNA led to reduced cell proliferation, anchorage-independent cell growth and invasion, and accelerated apoptosis. Furthermore, the delivery of a synthetic biostable ESRRA siRNA to OSCC cells resulted in regression of xenografts in nude mice. Thus, the genomic amplification of ESRRA is another novel mechanism for its upregulation in OSCC. Based on our in vitro and in vivo experiments, we suggest that targeting ESRRA by siRNA could be a novel therapeutic strategy for OSCC and other cancers.

  6. Genotoxic and cell-transformation effects of multi-walled carbon nanotubes (MWCNT) following in vitro sub-chronic exposures.

    Science.gov (United States)

    Vales, Gerard; Rubio, Laura; Marcos, Ricard

    2016-04-05

    BEAS-2B cells were sub-chronically exposed (up to 4 weeks) to low doses of multi-walled carbon nanotubes (MWCNT, NM403). Genotoxic effects were evaluated using the comet and the micronucleus (MN) assays at three different time-points. The expression of different interleukins (IL) such as IL-1B, IL-6 and IL-8, as well as HO-1 as stress marker, was assessed after 3 weeks treatments. As a hallmark biomarker of cell-transforming ability we used the soft-agar assay, which detects anchorage-independent cell growth. Our results show high levels of intracellular reactive oxygen species (ROS) associated to MWCNT exposure. Nevertheless, an important proportion of these ROS levels seems to be associated to solubilized metals contaminants present in NM403, more than to the internalized MWCNT. No primary DNA damage was obtained in the Comet assay although significant levels of chromosome damage were detected using the micronucleus assay. A significant decrease in the expression of the studied cytokines was observed and significant increases in the number of induced colonies were obtained when the ability of induce anchorage-independent growth was determined. These results show that chromosome damage and reducing inflammatory signalling correlated with an increase in attachment-independent growth associated with sub-chronic MWCNT exposure.

  7. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  8. Pleiotrophin Transforms NIH 3T3 Cells and Induces Tumors in Nude Mice

    Science.gov (United States)

    Chauhan, Anil K.; Li, Yue-Sheng; Deuel, Thomas F.

    1993-01-01

    The pleiotrophin (PTN) gene (Ptn) encodes an 18-kDa protein that is highly conserved among mammalian species and that functions as a weak mitogen and promotes neurite-outgrowth activity in vitro. To further investigate the role PTN plays in regulating cell growth, we overexpressed the bovine PTN cDNA and now show that PTN phenotypically transforms NIH 3T3 cells, as evidence by increased cell number at confluence, focus formation, anchorage-independent growth, and tumor formation in the nude muse. The results demonstrate that the Ptn gene has the potential to regulate NIH 3T3 cell growth and suggest that PTN may influence abnormal cell growth in vivo.

  9. Effect of p27KIP1 on cell cycle and apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zheng; Wei-Zhong Wang; Kai-Zong Li; Wen-Xian Guan; Wei Yan

    2005-01-01

    AIM: To elucidate the effect of p27KIP1 on cell cycle and apoptosis regulation in gastric carcinoma cells.METHODS: The whole length of p27KIP1 cDNA was transfected into human gastric cancer cell line SCG7901by lipofectamine. Expression of p27KIP1 protein or mRNA was analyzed by Western blot and RNA dot blotting,respectively. Effect of p27KIP1 on cell growth was observed by MTT assay and anchorage-independent growth in soft agar. Tumorigenicity in nude mice was used to assess the in vivo biological effect of p27KIP1. Flow cytometry,TUNEL, and electron microscopy were used to assess the effect of p27KIP1 on cell cycle and apoptosis.RESULTS: Expression of p27KIP1 protein or mRNA increased evidently in SCG7901 cells transfected with p27KIP1. The cell growth was reduced by 31% at 48 h after induction with zinc determined by cell viability assay. The alteration of cell malignant phenotype was evidently indicated by the loss of anchorage-independent growth ability in soft agar. The tumorigenicity in nude mice was reduced evidently (0.55±0.14 cm vs 1.36±0.13crn, P<0.01). p27KIP1 overexpression caused cell arrest with 36% increase (from 33.7% to 69.3%,P<0.01) in G1 population. Prolonged p27KIP1 expression induced apoptotic cell death reflected by pre-G1 peak in the histogram of FACS, which was also confirmed by TUNEL assay and electron microscopy.CONCLUSION: p27KIP1 can prolong cell cycle in G1phase and lead to apoptosis. p27KIP1 may be a good candidate for cancer gene therapy.

  10. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  11. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  12. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells.

    Directory of Open Access Journals (Sweden)

    Hyunsook An

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC; however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705. Furthermore, interleukin-6 (IL-6-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  13. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells.

    Science.gov (United States)

    An, Hyunsook; Kim, Ji Young; Oh, Eunhye; Lee, Nahyun; Cho, Youngkwan; Seo, Jae Hong

    2015-01-01

    Triple-negative breast cancer (TNBC) is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC); however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705). Furthermore, interleukin-6 (IL-6)-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  14. Effect of receptor-selective retinoids on growth and differentiation pathways in mouse melanoma cells.

    Science.gov (United States)

    Desai, S H; Boskovic, G; Eastham, L; Dawson, M; Niles, R M

    2000-05-15

    Treatment of B16 mouse melanoma cells with all-trans-retinoic acid (ATRA) results in inhibition of cell proliferation and induction of differentiation. Accompanying these events is an induction of retinoic acid receptor beta (RARbeta) expression, an increase in protein kinase Calpha (PKCalpha) expression, and enhanced activator protein-1 (AP-1) transcriptional activity. These cells express nuclear RARalpha and RARgamma and nuclear retinoid X receptors (RXR) alpha and beta constitutively. We tested the ability of receptor-selective retinoids to induce the biochemical changes found in ATRA-treated melanoma cells and also tested their effectiveness in decreasing anchorage-dependent and -independent growth. The RXR-selective ligand (2E,4E)-6-(5,6,7,8-tetrahydro-3,5,5,8, 8-pentamethyl-2-naphthalenyl)-3,7-dimethyl-2,4,6-octatrienoic acid (SR11246) was most effective at inhibiting anchorage-dependent growth, whereas the RARgamma-selective ligand 6-[(5,6,7, 8-tetrahydro-5,5,8, 8-tetramethyl-2-naphthalenyl)(hydroxyimino)methyl]-2-naphthalen ecarbo xylic acid (SR11254) was most potent at inhibiting anchorage-independent growth. In contrast, 4-(5,6,7,8-tetrahydro-5,5, 8,8-tetramethyl-2-naphthalenecarboxamido)-benzoic acid (Am580), an RARalpha-selective ligand, was the most effective receptor-selective agonist for inducing RARbeta mRNA and increasing the amount of PKCalpha protein. All of the retinoids induced a concentration-dependent increase in AP-1 transcriptional activity, with little difference in effectiveness among the receptor-selective retinoids. A synergistic increase in the amount of PKCalpha was found when an RAR-selective agonist was combined with an RXR-selective agonist. One possible explanation for this result is that an RXR-RAR heterodimer in which both receptors are liganded is required for maximum expression of this critical component of the ATRA-induced differentiation pathway. Our data suggest that synthetic retinoids can activate different growth and

  15. Down-regulation of Yes Associated Protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Caroline H Diep

    Full Text Available BACKGROUND: The Hippo pathway regulates organ size by inhibiting cell proliferation and promoting cell apoptosis upon its activation. The Yes Associated Protein 1 (YAP1 is a nuclear effector of the Hippo pathway that promotes cell growth as a transcription co-activator. In human cancer, the YAP1 gene was reported as amplified and over-expressed in several tumor types. METHODS: Immunohistochemical staining of YAP1 protein was used to assess the expression of YAP1 in pancreatic tumor tissues. siRNA oligonucleotides were used to knockdown the expression of YAP1 and their effects on pancreatic cancer cells were investigated using cell proliferation, apoptosis, and anchorage-independent growth assays. The Wilcoxon signed-rank, Pearson correlation coefficient, Kendall's Tau, Spearman's Rho, and an independent two-sample t (two-tailed test were used to determine the statistical significance of the data. RESULTS: Immunohistochemistry studies in pancreatic tumor tissues revealed YAP1 staining intensities were moderate to strong in the nucleus and cytoplasm of the tumor cells, whereas the adjacent normal epithelial showed negative to weak staining. In cultured cells, YAP1 expression and localization was modulated by cell density. YAP1 total protein expression increased in the nuclear fractions in BxPC-3 and PANC-1, while it declined in HPDE6 as cell density increased. Additionally, treatment of pancreatic cancer cell lines, BxPC-3 and PANC-1, with YAP1-targeting siRNA oligonucleotides significantly reduced their proliferation in vitro. Furthermore, treatment with YAP1 siRNA oligonucleotides diminished the anchorage-independent growth on soft agar of pancreatic cancer cells, suggesting a role of YAP1 in pancreatic cancer tumorigenesis. CONCLUSIONS: YAP1 is overexpressed in pancreatic cancer tissues and potentially plays an important role in the clonogenicity and growth of pancreatic cancer cells.

  16. Cell Growth Enhancement

    Science.gov (United States)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  17. DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control.

    Science.gov (United States)

    Chang, P-C; Chi, C-W; Chau, G-Y; Li, F-Y; Tsai, Y-H; Wu, J-C; Wu Lee, Y-H

    2006-03-30

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide and is highly correlated with hepatitis virus infection. Our previous report shows that a DEAD box RNA helicase, DDX3, is targeted and regulated by hepatitis C virus (HCV) core protein, which implicates the involvement of DDX3 in HCV-related HCC development. In this study, the potential role of DDX3 in hepatocarcinogenesis is investigated by examining its expression in surgically excised human HCC specimens. Here we report the differential deregulation of DDX3 expression in hepatitis virus-associated HCC. A significant downregulation of DDX3 expression is found in HCCs from hepatitis B virus (HBV)-positive patients, but not from HCV-positive ones, compared to the corresponding nontumor tissues. The expression of DDX3 is differentially regulated by the gender and, moreover, there is a tendency that the downregulation of DDX3 expression in HCCs is more frequent in males than in females. Genetic knockdown of DDX3 with small interfering RNAs (siRNA) in a nontransformed mouse fibroblast cell line, NIH-3T3, results in a premature entry to S phase and an enhancement of cell growth. This enhanced cell cycle progression is linked to the upregulation of cyclin D1 and the downregulation of p21(WAF1) in the DDX3 knockdown cells. In addition, constitutive reduction of DDX3 expression increases the resistance of NIH-3T3 cells to serum depletion-induced apoptosis and enhances the ras-induced anchorage-independent growth, indicating the involvement of DDX3 in cell growth control. These findings together with the previous study suggest that the deregulation of DDX3, a DEAD box RNA helicase with cell growth-regulatory functions, is involved in HBV- and HCV-associated pathogenesis.

  18. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells

    Science.gov (United States)

    Chi, Mengna; Evans, Hamish; Gilchrist, Jackson; Mayhew, Jack; Hoffman, Alexander; Pearsall, Elizabeth Ann; Jankowski, Helen; Brzozowski, Joshua Stephen; Skelding, Kathryn Anne

    2016-01-01

    Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional kinase that controls a range of cellular functions, including proliferation, differentiation and apoptosis. The biological properties of CaMKII are regulated by multi-site phosphorylation. However, the role that CaMKII phosphorylation plays in cancer cell metastasis has not been examined. We demonstrate herein that CaMKII expression and phosphorylation at T286 is increased in breast cancer when compared to normal breast tissue, and that increased CAMK2 mRNA is associated with poor breast cancer patient prognosis (worse overall and distant metastasis free survival). Additionally, we show that overexpression of WT, T286D and T286V forms of CaMKII in MDA-MB-231 and MCF-7 breast cancer cells increases invasion, migration and anchorage independent growth, and that overexpression of the T286D phosphomimic leads to a further increase in the invasive, migratory and anchorage independent growth capacity of these cells. Pharmacological inhibition of CaMKII decreases MDA-MB-231 migration and invasion. Furthermore, we demonstrate that overexpression of T286D, but not WT or T286V-CaMKII, leads to phosphorylation of FAK, STAT5a, and Akt. These results demonstrate a novel function for phosphorylation of CaMKII at T286 in the control of breast cancer metastasis, offering a promising target for the development of therapeutics to prevent breast cancer metastasis. PMID:27605043

  19. Tetraploid cells produced by absence of substrate adhesion during cytokinesis are limited in their proliferation and enter senescence after DNA replication.

    Science.gov (United States)

    De Santis Puzzonia, Marco; Gonzalez, Laetitia; Ascenzi, Sonia; Cundari, Enrico; Degrassi, Francesca

    2016-01-01

    Tetraploidy has been proposed as an intermediate state in neoplastic transformation due to the intrinsic chromosome instability of tetraploid cells. Despite the identification of p53 as a major factor in growth arrest of tetraploid cells, it is still unclear whether the p53-dependent mechanism for proliferation restriction is intrinsic to the tetraploid status or dependent on the origin of tetraploidy. Substrate adherence is fundamental for cytokinesis completion in adherent untransformed cells. Here we show that untransformed fibroblast cells undergoing mitosis in suspension produce binucleated tetraploid cells due to defective cleavage furrow constriction that leads to incomplete cell abscission. Binucleated cells obtained after loss of substrate adhesion maintain an inactive p53 status and are able to progress into G1 and S phase. However, binucleated cells arrest in G2, accumulate p53 and are not able to enter mitosis as no tetraploid metaphases were recorded after one cell cycle time. In contrast, tetraploid metaphases were found following pharmacological inhibition of Chk1 kinase, suggesting the involvement of the ATR/Chk1 pathway in the G2 arrest of binucleated cells. Interestingly, after persistence in the G2 phase of the cell cycle, a large fraction of binucleated cells become senescent. These findings identify a new pathway of proliferation restriction for tetraploid untransformed cells that seems to be specific for loss of adhesion-dependent cytokinesis failure. This involves Chk1 and p53 activation during G2. Inhibition of growth and entrance into senescence after cytokinesis in suspension may represent an important mechanism to control tumor growth. In fact, anchorage independent growth is a hallmark of cancer and it has been demonstrated that binucleated transformed cells can enter a cycle of anchorage independent growth.

  20. Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer

    Directory of Open Access Journals (Sweden)

    Létourneau Isabelle J

    2012-08-01

    Full Text Available Abstract Background Cell line models have proven to be effective tools to investigate a variety of ovarian cancer features. Due to the limited number of cell lines, particularly of the serous subtype, the heterogeneity of the disease, and the lack of cell lines that model disease progression, there is a need to further develop cell line resources available for research. This study describes nine cell lines derived from three ovarian cancer cases that were established at initial diagnosis and at subsequent relapse after chemotherapy. Methods The cell lines from three women diagnosed with high-grade serous ovarian cancer (1369, 2295 and 3133 were derived from solid tumor (TOV and ascites (OV, at specific time points at diagnosis and relapse (R. Primary treatment was a combination of paclitaxel/carboplatin (1369, 3133, or cisplatin/topotecan (2295. Second line treatment included doxorubicin, gemcitabine and topotecan. In addition to molecular characterization (p53, HER2, the cell lines were characterized based on cell growth characteristics including spheroid growth, migration potential, and anchorage independence. The in vivo tumorigenicity potential of the cell lines was measured. Response to paclitaxel and carboplatin was assessed using a clonogenic assay. Results All cell lines had either a nonsense or missense TP53 mutations. The ability to form compact spheroids or aggregates was observed in six of nine cell lines. Limited ability for migration and anchorage independence was observed. The OV3133(R cell line, formed tumors at subcutaneous sites in SCID mice. Based on IC50 values and dose response curves, there was clear evidence of acquired resistance to carboplatin for TOV2295(R and OV2295(R2 cell lines. Conclusion The study identified nine new high-grade serous ovarian cancer cell lines, derived before and after chemotherapy that provides a unique resource for investigating the evolution of this common histopathological subtype of ovarian

  1. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways

    Science.gov (United States)

    Leve, Fernanda; Peres-Moreira, Rubem J.; Binato, Renata; Abdelhay, Eliana; Morgado-Díaz, José A.

    2015-01-01

    Lysophosphatidic acid (LPA) plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by LPA to regulate the mechanisms involved in the progression of colorectal cancer (CRC). We have used three cell line models of CRC, and initially analyzed the expression profile of LPA receptors (LPAR). Then, we treated the cells with LPA and events related to their tumorigenic potential, such as migration, invasion, anchorage-independent growth, proliferation as well as apoptosis and cell cycle were evaluated. We used the Chip array technique to analyze the global gene expression profiling that occurs after LPA treatment, and we identified cell signaling pathways related to the cell cycle. The inhibition of these pathways verified the conclusions of the transcriptomic analysis. We found that the cell lines expressed LPAR1, -2 and -3 in a differential manner and that 10 μM LPA did not affect cell migration, invasion and anchorage-independent growth, but it did induce proliferation and cell cycle progression in HCT-116 cells. Although LPA in this concentration did not induce transcriptional activity of β-catenin, it promoted the activation of Rho and STAT-3. Moreover, ROCK and STAT-3 inhibitors prevented LPA-induced proliferation, but ROCK inhibition did not prevent STAT-3 activation. Finally, we observed that LPA regulates the expression of genes related to the cell cycle and that the combined inhibition of ROCK and STAT-3 prevented cell cycle progression and increased the LPA-induced expression of cyclins E1, A2 and B1 to a greater degree than either inhibitor alone. Overall, these results demonstrate that LPA increases the proliferative potential of colon adenocarcinoma HCT-116 cells through a mechanism involving cooperation between the Rho-ROCK and STAT3 pathways involved in cell

  2. Redifferentiation of human hepatoma cells (SMMC-7721) induced by two new highly oxygenated bisabolane-type sesquiterpenes

    Indian Academy of Sciences (India)

    Ruidong Miao; Juan Wei; Q I Zhang; Venkateswara Sajja; Jinbo Yang; Qin Wang

    2008-12-01

    Bisabolane-type sesquiterpenes are a class of biologically active compounds that has antitumour, antifungal, antibacterial, antioxidant and antivenom properties. We investigated the effect of two new highly oxygenated bisabolane-type sesquiterpenes (HOBS) isolated from Cremanthodium discoideum (C. discoideum) on tumour cells. Our results showed that HOBS induced morphological differentiation and reduced microvilli formation on the cell surface in SMMC-7721 cells. Flow cytometry analysis demonstrated that HOBS could induce cell-cycle arrest in the G1 phase. Moreover, HOBS was able to increase tyrosine--ketoglutarate transaminase activity, decrease -foetoprotein level and -glutamyl transferase activity. In addition, we found that HOBS inhibited the anchorage-independent growth of SMMC-7721 cells in a dose-dependent manner. Taken together, all the above observations indicate that HOBS might be able to normalize malignant SMMC-7721 cells by inhibiting cell proliferation and inducing redifferentiation.

  3. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  4. Glycerol-3-phosphate acyltranferase-2 behaves as a cancer testis gene and promotes growth and tumorigenicity of the breast cancer MDA-MB-231 cell line.

    Directory of Open Access Journals (Sweden)

    Magali Pellon-Maison

    Full Text Available The de novo synthesis of glycerolipids in mammalian cells begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferase (GPAT. GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions. Because it is aberrantly expressed in multiple myeloma, it has been proposed as a novel cancer testis gene. Using a bioinformatics approach, we found that GPAT2 is highly expressed in melanoma, lung, prostate and breast cancer, and we validated GPAT2 expression at the protein level in breast cancer by immunohistochemistry. In this case GPAT2 expression correlated with a higher histological grade. 5-Aza-2' deoxycytidine treatment of human cells lines induced GPAT2 expression suggesting epigenetic regulation of gene expression. In order to evaluate the contribution of GPAT2 to the tumor phenotype, we silenced its expression in MDA-MB-231 cells. GPAT2 knockdown diminished cell proliferation, anchorage independent growth, migration and tumorigenicity, and increased staurosporine-induced apoptosis. In contrast, GPAT2 over-expression increased cell proliferation rate and resistance to staurosporine-induced apoptosis. To understand the functional role of GPAT2, we performed a co-expression analysis in mouse and human testis and found a significant association with semantic terms involved in cell cycle, DNA integrity maintenance, piRNA biogenesis and epigenetic regulation. Overall, these results indicate the GPAT2 would be directly associated with the control of cell proliferation. In conclusion, we confirm GPAT2 as a cancer testis gene and that its expression contributes to the tumor phenotype of MDA-MB-231 cells.

  5. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET.

    Science.gov (United States)

    Ding, Liang-Hao; Park, Seongmi; Xie, Yang; Girard, Luc; Minna, John D; Story, Michael D

    2015-09-01

    The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RAS(V12) (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy

  6. Cancer stem cell marker CD90 inhibits ovarian cancer formation via β3 integrin

    Science.gov (United States)

    Chen, Wei-Ching; Hsu, Hui-Ping; Li, Chung-Yen; Yang, Ya-Ju; Hung, Yu-Hsuan; Cho, Chien-Yu; Wang, Chih-Yang; Weng, Tzu-Yang; Lai, Ming-Derg

    2016-01-01

    Cancer stem cell (CSC) markers have been identified for CSC isolation and proposed as therapeutic targets in various types of cancers. CD90, one of the characterized markers in liver and gastric cancer, is shown to promote cancer formation. However, the underexpression level of CD90 in ovarian cancer cells and the evidence supporting the cellular mechanism have not been investigated. In the present study, we found that the DNA copy number of CD90 is correlated with mRNA expression in ovarian cancer tissue and the ovarian cancer patients with higher CD90 have good prognosis compared to the patients with lower CD90. Although the expression of CD90 in human ovarian cancer SKOV3 cells enhances the cell proliferation by MTT and anchorage-dependent growth assay, CD90 inhibits the anchorage-independent growth ability in vitro and tumor formation in vivo. CD90 overexpression suppresses the sphere-forming ability and ALDH activity and enhances the cell apoptosis, indicating that CD90 may reduce the cell growth by the properties of CSC and anoikis. Furthermore, CD90 reduces the expression of other CSC markers, including CD133 and CD24. The inhibition of CD133 is attenuated by the mutant CD90, which is replaced with RLE domain into RLD domain. Importantly, the CD90-regulated inhibition of CD133 expression, anchorage-independent growth and signal transduction of mTOR and AMPK are restored by the β3 integrin shRNA. Our results provide evidence that CD90 mediates the antitumor formation by interacting with β3 integrin, which provides new insight that can potentially be applied in the development of therapeutic strategies in ovarian cancer. PMID:27633757

  7. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  8. Neoplastic transformation of a human prostate epithelial cell line by the v-Ki-ras oncogene.

    Science.gov (United States)

    Parda, D S; Thraves, P J; Kuettel, M R; Lee, M S; Arnstein, P; Kaighn, M E; Rhim, J S; Dritschilo, A

    1993-01-01

    Investigations of mechanisms of human prostate carcinogenesis are limited by the unavailability of a suitable in vitro model system. We have demonstrated that an immortal, but nontumorigenic, human epithelial cell line (267B1) established from fetal prostate tissue can be malignantly transformed by a biological carcinogen, and can serve as a useful model for investigations of the progression steps of carcinogenesis. Activated Ki-ras was introduced into 267B1 cells by infection with the Kirsten murine sarcoma virus. Morphological alterations and anchorage-independent growth were observed; when cells were injected into nude mice, poorly differentiated adenocarcinomas developed. These findings represent the first evidence of malignant transformation of human prostate epithelial cells in culture, and support a role for Ki-ras activation in a multistep process for prostate neoplastic transformation.

  9. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α.

    Science.gov (United States)

    Wang, Hong; Bian, Shengjie; Yang, Chung S

    2011-12-01

    (-)-Epigallocatechin-3-gallate (EGCG) has been reported to affect many cellular regulatory pathways. This study aims to determine whether EGCG could target microRNA (miRNA), one of the mechanisms for cells to achieve subtle change in multiple targets. We found that, in both human and mouse lung cancer cells in culture, EGCG specifically upregulated the expression of miR-210, a major miRNA regulated by HIF-1α. Furthermore, we found that overexpression of miR-210 led to reduced cell proliferation rate and anchorage-independent growth as well as reduced sensitivity to EGCG. On the mechanisms of miR-210 regulation by EGCG, we demonstrated that the regulation was mediated through the hypoxia-response element in miR-210 promoter. Consistently, the upregulation of miR-210 was found to be correlated with the stabilized HIF-1α in lung cancer cell lines after EGCG treatment. This EGCG-induced stabilization of HIF-1α was further shown by the stabilization of HA-tagged HIF-1α but not the P402A/P564A-mutated HIF-1α by EGCG, suggesting that EGCG targets the oxygen-dependent degradation (ODD) domain. Direct evidence was obtained by affinity binding assay showing that EGCG specifically binds HIF-1α with a K(d) = 3.47 μM. This result suggests that EGCG binding interferes with the hydroxylation of key Pro residues in the ODD domain, preventing HIF-1α from the Pro hydroxylation-dependent ubiquitination and subsequent proteosome-mediated degradation. In summary, our results demonstrated, for the first time, the elevation of miR-210 by EGCG in lung cancer cell lines and this is mediated by the stabilization of HIF-1α. This event contributes to the anticancer activity of EGCG.

  10. METCAM/MUC18 augments migration, invasion, and tumorigenicity of human breast cancer SK-BR-3 cells.

    Science.gov (United States)

    Zeng, Guofang; Cai, Shaoxi; Liu, Yuan; Wu, Guang-Jer

    2012-01-15

    Previous research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as a promoter or a suppressor in the development of human breast cancer by MCF7, MDA-MB-231, and MDA-MB-468. To resolve these conflicting results we have investigated the role of this CAM in the progression of the three aforementioned cell lines plus one additional human breast cancer cell line, SK-BR-3. We transfected the SK-BR-3 cells with human METCAM/MUC18 cDNA to obtain G418-resistant clones, which expressed different levels of the protein and which were used to test the effect of human METCAM/MUC18 expression on in vitro motility, invasiveness, anchorage-independent colony formation in soft agar, disorganized growth in a 3D basement membrane culture assay, and in vivo tumorigenesis in athymic nude mice. Enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, and anchorage-independent colony formation of SK-BR-3 cells and favored disorganized growth of the cells in 3D basement membrane culture. Enforced expression also increased tumorigenicity and final tumor weights of SK-BR-3 clones/cells after subcutaneous injection of the cells under the left third nipple of female athymic nude mice. To understand the mechanisms, we also determined the expression of several downstream key effectors in the tumors. Tumor cells from METCAM/MUC18 expressing clones exhibited elevated expression of an anti-apoptotic and survival index (Bcl2), an aerobic glycolysis index (LDH-A), and pro-angiogenesis indexes (VEGF and VAGFR2). We concluded that human METCAM/MUC18 promotes the development of breast cancer cells by increasing an anti-apoptosis and survival pathway and augmenting aerobic glycolysis and angiogenesis.

  11. Annexin A6 contributes to the invasiveness of breast carcinoma cells by influencing the organization and localization of functional focal adhesions

    Energy Technology Data Exchange (ETDEWEB)

    Sakwe, Amos M., E-mail: asakwe@mmc.edu [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Koumangoye, Rainelli; Guillory, Bobby [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Ochieng, Josiah [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Center for Aids Health Disparity Research, Meharry Medical College, Nashville, TN 37208 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN (United States)

    2011-04-01

    The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation.

  12. c-Myc Transforms Human Mammary Epithelial Cells through Repression of the Wnt Inhibitors DKK1 and SFRP1▿ †

    Science.gov (United States)

    Cowling, Victoria H.; D'Cruz, Celina M.; Chodosh, Lewis A.; Cole, Michael D.

    2007-01-01

    c-myc is frequently amplified in breast cancer; however, the mechanism of myc-induced mammary epithelial cell transformation has not been defined. We show that c-Myc induces a profound morphological transformation in human mammary epithelial cells and anchorage-independent growth. c-Myc suppresses the Wnt inhibitors DKK1 and SFRP1, and derepression of DKK1 or SFRP1 reduces Myc-dependent transforming activity. Myc-dependent repression of DKK1 and SFRP1 is accompanied by Wnt target gene activation and endogenous T-cell factor activity. Myc-induced mouse mammary tumors have repressed SFRP1 and increased expression of Wnt target genes. DKK1 and SFRP1 inhibit the transformed phenotype of breast cancer cell lines, and DKK1 inhibits tumor formation. We propose a positive feedback loop for activation of the c-myc and Wnt pathways in breast cancer. PMID:17485441

  13. β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Jinhua Xu

    Full Text Available Our previous data illustrated that activation of the canonical Wnt signaling pathway was enriched in triple-negative breast cancer and associated with reduced overall survival in all patients. To determine whether Wnt signaling may be a promising therapeutic target for triple-negative breast cancer, we investigated whether β-catenin was necessary for tumorigenic behaviors in vivo and in vitro. β-catenin expression level was significantly reduced in two human triple-negative breast cancer cell lines, MDA-MB-231 and HCC38, using lentiviral delivery of β-catenin-specific small hairpin RNAs (shRNAs. Upon implantation of the cells in the mammary fat pad of immunocompromised mice, we found that β-catenin shRNA HCC38 cells formed markedly smaller tumors than control cells and grew much more slowly. In in vitro assays, β-catenin silencing significantly reduced the percentage of Aldefluor-positive cells, a read-out of the stem-like cell population, as well as the expression of stem cell-related target genes including Bmi-1 and c-Myc. β-catenin-knockdown cells were also significantly impaired in their ability to migrate in wound-filling assays and form anchorage-independent colonies in soft agar. β-catenin-knockdown cells were more sensitive to chemotherapeutic agents doxorubicin and cisplatin. Collectively, these data suggest that β-catenin is required for triple-negative breast cancer development by controlling numerous tumor-associated properties, such as migration, stemness, anchorage-independent growth and chemosensitivity.

  14. β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells.

    Science.gov (United States)

    Xu, Jinhua; Prosperi, Jenifer R; Choudhury, Noura; Olopade, Olufunmilayo I; Goss, Kathleen H

    2015-01-01

    Our previous data illustrated that activation of the canonical Wnt signaling pathway was enriched in triple-negative breast cancer and associated with reduced overall survival in all patients. To determine whether Wnt signaling may be a promising therapeutic target for triple-negative breast cancer, we investigated whether β-catenin was necessary for tumorigenic behaviors in vivo and in vitro. β-catenin expression level was significantly reduced in two human triple-negative breast cancer cell lines, MDA-MB-231 and HCC38, using lentiviral delivery of β-catenin-specific small hairpin RNAs (shRNAs). Upon implantation of the cells in the mammary fat pad of immunocompromised mice, we found that β-catenin shRNA HCC38 cells formed markedly smaller tumors than control cells and grew much more slowly. In in vitro assays, β-catenin silencing significantly reduced the percentage of Aldefluor-positive cells, a read-out of the stem-like cell population, as well as the expression of stem cell-related target genes including Bmi-1 and c-Myc. β-catenin-knockdown cells were also significantly impaired in their ability to migrate in wound-filling assays and form anchorage-independent colonies in soft agar. β-catenin-knockdown cells were more sensitive to chemotherapeutic agents doxorubicin and cisplatin. Collectively, these data suggest that β-catenin is required for triple-negative breast cancer development by controlling numerous tumor-associated properties, such as migration, stemness, anchorage-independent growth and chemosensitivity.

  15. Inhibition of signal transducer and activator of transcription 3 expression by RNA interference suppresses invasion through inducing anoikis in human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yu Fan; You-Li Zhang; Ying Wu; Wei Zhang; Yin-Huan Wang; Zhao-Ming Cheng; Hua Li

    2008-01-01

    AIM: To investigate the roles and mechanism of signal transducer and activator of transcription 3 (STAT3) in invasion of human colon cancer cells by RNA interference. METHODS: Small interfering RNA (siRNA) targeting Signal transducer and activator of transcription 3 (STAT3) was transfected into HT29 colon cancer cells. STAT3 protein level and DNA-binding activity of STAT3 was evaluated by western blotting and electrophoretic mobility shift assay (EMSA), respectively. We studied the anchorage-independent growth using colony formation in soft agar, and invasion using the boyden chamber model, anoikis using DNA fragmentation assay and terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), respectively. Western blot assay was used to observe the protein expression of Bcl-xL and survivin in colon cancer HT29 cells. RESULTS: RNA interference (RNAi) mediated by siRNA leads to suppression of STAT3 expression in colon cancer cell lines. Suppression of STAT3 expression by siRNA could inhibit anchorage-independent growth, and invasion ability, and induces anoikis in the colon cancer cell line HT29. It has been shown that knockdown of STAT3 expression by siRNA results in a reduction in expression of Bcl-xL and survivin in HT29 cells. CONCLUSION: These results suggest that STAT3 siRNA can inhibit the invasion ability of colon cancer cells through inducing anoikis, which antiapoptotic genes survivin and Bcl-xL contribute to regulation of anoikis. These studies indicate STAT3 siRNA could be a useful therapeutic tool for the treatment of colon cancer.

  16. Targeting DDR2 in head and neck squamous cell carcinoma with dasatinib.

    Science.gov (United States)

    von Mässenhausen, Anne; Sanders, Christine; Brägelmann, Johannes; Konantz, Martina; Queisser, Angela; Vogel, Wenzel; Kristiansen, Glen; Duensing, Stefan; Schröck, Andreas; Bootz, Friedrich; Brossart, Peter; Kirfel, Jutta; Lengerke, Claudia; Perner, Sven

    2016-11-15

    Squamous cell carcinoma of the head and neck (HNSCC) is the tenth most common tumor entity in men worldwide. Nevertheless therapeutic options are mostly limited to surgery and radio-chemotherapy resulting in 5-year survival rates of around 50%. Therefore new therapeutic options are urgently needed. During the last years, targeting of receptor tyrosine kinases has emerged as a promising strategy that can complement standard therapeutical approaches. Here, we aimed at investigating if the receptor tyrosine kinase DDR2 is a targetable structure in HNSCC. DDR2 expression was assessed on a large HNSCC cohort (554 patients) including primary tumors, lymph node metastases and recurrences and normal mucosa as control. Subsequently, DDR2 was stably overexpressed in two different cell lines (FaDu and HSC-3) using lentiviral technology. Different tumorigenic properties such as proliferation, migration, invasion, adhesion and anchorage independent growth were assessed with and without dasatinib treatment using in-vitro cell models and in-vivo zebrafish xenografts. DDR2 was overexpressed in all tumor tissues when compared to normal mucosa. DDR2 overexpression led to increased migration, invasion, adhesion and anchorage independent growth whereas proliferation remained unaltered. Upon dasatinib treatment migration, invasion and adhesion could be inhibited in-vitro and in-vivo whereas proliferation was unchanged. Our data suggest treatment with dasatinib as a promising new therapeutic option for patients suffering from DDR2 overexpressing HNSCC. Since dasatinib is already FDA-approved we propose to test this drug in clinical trials so that patients could directly benefit from this new treatment option.

  17. MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression.

    Science.gov (United States)

    Christenson, Jessica L; Butterfield, Kiel T; Spoelstra, Nicole S; Norris, John D; Josan, Jatinder S; Pollock, Julie A; McDonnell, Donald P; Katzenellenbogen, Benita S; Katzenellenbogen, John A; Richer, Jennifer K

    2017-04-01

    Triple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model. In this study, we identified the transgenic MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mouse mammary gland carcinoma model of breast cancer and Met-1 cells derived from this model as tools to study the role of AR in breast cancer progression. AR protein expression was examined in late-stage primary tumors and lung metastases from MMTV-PyMT mice as well as in Met-1 cells by immunohistochemistry (IHC). Sensitivity of Met-1 cells to the AR agonist dihydrotestosterone (DHT) and anti-androgen therapy was examined using cell viability, migration/invasion, and anchorage-independent growth assays. Late-stage primary tumors and lung metastases from MMTV-PyMT mice and Met-1 cells expressed abundant nuclear AR protein, while negative for estrogen and progesterone receptors. Met-1 sensitivity to DHT and AR antagonists demonstrated a reliance on AR for survival, and AR antagonists inhibited invasion and anchorage-independent growth. These data suggest that the MMTV-PyMT model and Met-1 cells may serve as valuable tools for mechanistic studies of the role of AR in disease progression and how anti-androgens affect the tumor microenvironment.

  18. CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents.

    Directory of Open Access Journals (Sweden)

    Anthony Bruce

    Full Text Available The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae and human progesterone receptor membrane component 1 (PGRMC1, have revealed that conserved tyrosine (Y 73, Y79, aspartic acid (D 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G at D86 (D86G within its cytochrome b5 heme-binding (cyt-b5 domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs, we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1 and drug metabolism (CYP3A4. CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR, while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1 levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin, with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to

  19. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laurila, Eeva; Vuorinen, Elisa [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Fimlab Laboratories, Biokatu 4, 33520 Tampere (Finland); Savinainen, Kimmo; Rauhala, Hanna [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Kallioniemi, Anne, E-mail: anne.kallioniemi@uta.fi [Institute of Biomedical Technology, FIN-33014 University of Tampere and BioMediTech, Biokatu 6, 33520 Tampere (Finland); Fimlab Laboratories, Biokatu 4, 33520 Tampere (Finland)

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.

  20. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young H. [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Apolo, Andrea B. [Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Agarwal, Piyush K.; Bottaro, Donald P., E-mail: dbottaro@helix.nih.gov [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2014-11-25

    There is mounting evidence of oncogenic hepatocyte growth factor (HGF)/Met signaling in urothelial carcinoma (UC) of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID) mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  1. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder

    Directory of Open Access Journals (Sweden)

    Young H. Lee

    2014-11-01

    Full Text Available There is mounting evidence of oncogenic hepatocyte growth factor (HGF/Met signaling in urothelial carcinoma (UC of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  2. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder.

    Science.gov (United States)

    Lee, Young H; Apolo, Andrea B; Agarwal, Piyush K; Bottaro, Donald P

    2014-11-25

    There is mounting evidence of oncogenic hepatocyte growth factor (HGF)/Met signaling in urothelial carcinoma (UC) of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID) mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  3. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stephanie M Wittig-Blaich

    2011-07-01

    Full Text Available The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.

  4. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    Science.gov (United States)

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  5. CD24 suppresses malignant phenotype by downregulation of SHH transcription through STAT1 inhibition in breast cancer cells.

    Science.gov (United States)

    Suyama, Kumi; Onishi, Hideya; Imaizumi, Akira; Shinkai, Kentaro; Umebayashi, Masayo; Kubo, Makoto; Mizuuchi, Yusuke; Oda, Yoshinao; Tanaka, Masao; Nakamura, Masafumi; Katano, Mitsuo

    2016-04-28

    Hedgehog (Hh) signaling has been found to be activated in breast cancer stem cells (BCSCs). However, the precise role of the BCSCs marker, CD24, remains unclear. Here, we describe a relationship between CD24 and Sonic Hedgehog (SHH), and reveal a role for this relationship in the induction of a malignant phenotype of breast cancer. CD24 siRNA-transfected breast cancer cells (BCCs) demonstrated higher expression of SHH and GLI1, increased anchorage-independent proliferation, and enhanced invasiveness and superior tumorigenicity compared with control. Conversely, CD24 forced-expressing BCCs possessed decreased SHH and GLI1 expression, anchorage-independent proliferation, and invasiveness. Suppression of SHH decreased invasiveness through inhibition of matrix metalloproteinase (MMP)-2 expression, GLI1 expression, anchorage-independent proliferation, tumorigenicity, and tumor volume in vivo in CD24 siRNA transfected BCCs. DNA microarray analysis identified STAT1 as a relationship between CD24 and SHH. CD24 siRNA-transfected BCCs with concurrent STAT1 inhibition exhibited decreased SHH expression, invasiveness, anchorage-independent proliferation, tumorigenicity, and tumor volume in vivo. These results suggest that CD24 suppresses development of a malignant phenotype by down-regulating SHH transcription through STAT1 inhibition. CD24 gene transfer or STAT1 inhibition may represent new effective therapeutic strategies to target refractory breast cancer.

  6. Antidiabetic thiazolidinediones induce ductal differentiation but not apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Elisabetta Ceni; Tommaso Mello; Mirko Tarocchi; David W Crabb; Anna Caldini; Pietro Invernizzi; Calogero Surrenti; Stefano Milani; Andrea Galli

    2005-01-01

    AIM: Thiazolidinediones (TZD) are a new class of oral antidiabetic drugs that have been shown to inhibit growth of same epithelial cancer cells. Although TZD were found to be ligands for peroxisome proliferator-activated receptor γ (PPARγ), the mechanism by which TZD exert their anticancer effect is presently unclear. In this study,we analyzed the mechanism by which TZD inhibit growth of human pancreatic carcinoma cell lines in order to evaluate the potential therapeutic use of these drugs in pancreatic adenocarcinoma.METHODS: The effects of TZD in pancreatic cancer cells were assessed in anchorage-independent growth assay.Expression of PPARγ was measured by reverse-transcription polymerase chain reaction and confirmed by Western blot analysis. PPARγ activity was evaluated by transient reporter gene assay. Flow cytometry and DNA fragmentationassay were used to determine the effect of TZD on cell cycle progression and apoptosis respectively. The effect of TZD on ductal differentiation markers was performed by Western blot.RESULTS: Exposure to TZD inhibited colony formation in a PPARγ-dependent manner. Growth inhibition was linked to G1 phase cell cycle arrest through induction of the ductal differentiation program without any increase of the apoptotic rate.CONCLUSION: TZD treatment in pancreatic cancer cells has potent inhibitory effects on growth by a PPAR-dependent induction of pacreatic ductal differentiation.

  7. Overexpression of PGC‑1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein.

    Science.gov (United States)

    Shin, Sung-Won; Yun, Seong-Hoon; Park, Eun-Seon; Jeong, Jin-Sook; Kwak, Jong-Young; Park, Joo-In

    2015-03-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC‑1α), a coactivator interacting with multiple transcription factors, regulates several metabolic processes. Although recent studies have focused on the role of PGC‑1α in cancer, the underlying molecular mechanism has not been clarified. Therefore, we evaluated the role of PGC‑1α in cell proliferation and tumorigenesis using human embryonic kidney (HEK)293 cells and colorectal cancer cells. We established stable HEK293 cell lines expressing PGC‑1α and examined cell proliferation, anchorage-independent growth, and oncogenic potential compared to parental HEK293 cells. To identify the molecular PGC‑1α targets for increased cell proliferation and tumorigenesis, the GeneFishing™ DEG (differentially expressed genes) screening system was used. Western blot analysis and immunofluorescence staining were performed for a regulated gene product to confirm the results. Forced expression of PGC‑1α in HEK293 cells promoted cell proliferation and anchorage-independent growth in soft agar. In addition, HEK293 cells that highly expressed PGC‑1α showed enhanced tumor formation when subcutaneously injected into the bilateral flanks of immunodeficient mice. The results of the GeneFishing DEG screening system identified one upregulated gene (Acyl-CoA binding protein; ACBP). Real-time RT-PCR, western blot analysis, and immunofluorescence staining showed that ACBP was markedly increased in HEK293 cells stably overexpressing PGC‑1α (PGC‑1α-HEK293 cells) compared to those expressing an empty vector. In PGC‑1α, ACBP, and specificity protein 1 (Sp1) siRNA knockdown experiments in PGC‑1α-HEK293 and SNU-C4 cells, we also observed inhibition of cell proliferation, reduced expression of antioxidant enzymes, and increased H2O2-induced reactive oxygen species production and apoptosis. These findings suggest that PGC‑1α may promote cell proliferation and tumorigenesis through upregulation of ACBP

  8. Reversible adaptive plasticity: A mechanism for neuroblastoma cell heterogeneity and chemo-resistance

    Directory of Open Access Journals (Sweden)

    Lina eChakrabarti

    2012-08-01

    Full Text Available We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD or sphere forming, anchorage independent (AI growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  9. Overexpression of the dynein light chain km23-1 in human ovarian carcinoma cells inhibits tumor formation in vivo and causes mitotic delay at prometaphase/metaphase.

    Science.gov (United States)

    Pulipati, Nageswara R; Jin, Qunyan; Liu, Xin; Sun, Baodong; Pandey, Manoj K; Huber, Jonathan P; Ding, Wei; Mulder, Kathleen M

    2011-08-01

    km23-1 is a dynein light chain that was identified as a TGFβ receptor-interacting protein. To investigate whether km23-1 controls human ovarian carcinoma cell (HOCC) growth, we established a tet-off inducible expression system in SKOV-3 cells in which the expression of km23-1 is induced upon doxycycline removal. We found that forced expression of km23-1 inhibited both anchorage-dependent and anchorage-independent growth of SKOV-3 cells. More importantly, induction of km23-1 expression substantially reduced the tumorigenicity of SKOV-3 cells in a xenograft model in vivo. Fluorescence-activated cell sorting analysis of SKOV-3 and IGROV-1 HOCCs demonstrated that the cells were accumulating at G2/M. Phospho-MEK, phospho-ERK and cyclin B1 were elevated, as was the mitotic index, suggesting that km23-1 suppresses HOCCs growth by inducing a mitotic delay. Immunofluorescence analyses demonstrated that the cells were accumulating at prometaphase/metaphase with increases in multipolar and multinucleated cells. Further, although the mitotic spindle assembly checkpoint protein BubR1 was present at the prometaphase kinetochore in Dox+/- cells, it was inappropriately retained at the metaphase kinetochore in Dox- cells. Thus, the mechanism by which high levels of km23-1 suppress ovarian carcinoma growth in vitro and inhibit ovary tumor formation in vivo appears to involve a BubR1-related mitotic delay.

  10. On size and growth of cells

    CERN Document Server

    Boudaoud, A

    2002-01-01

    Understanding how growth induces form is a longstanding biological question. Many studies concentrated on the shapes of plant cells, fungi or bacteria. Some others have shown the importance of the mechanical properties of bacterial walls and plant tissues in pattern formation. Here I sketch a simple physical picture of cell growth. The study is focussed on isolated cells that have walls. They are modeled as thin elastic shells containing a liquid, which pressure drives the growth as generally admitted for bacteria or plant cells. Requiring mechanical equilibrium leads to estimations of typical cell sizes, in quantitative agreement with compiled data including bacteria, cochlear outer hair, fungi, yeast, root hair and giant alga cells.

  11. A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication

    NARCIS (Netherlands)

    Fanwoua, J.; Visser, de P.H.B.; Heuvelink, E.; Yin, X.; Struik, P.C.; Marcelis, L.F.M.

    2013-01-01

    In this study, we developed a model of tomato (Solanum lycopersicum L.) fruit growth integrating cell division, cell growth and endoreduplication. The fruit was considered as a population of cells grouped in cell classes differing in their initial cell age and cell mass. The model describes fruit gr

  12. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available BACKGROUND: Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. METHODS AND FINDINGS: Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. CONCLUSIONS: Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  13. Apoptotic HPV positive cancer cells exhibit transforming properties.

    Directory of Open Access Journals (Sweden)

    Emilie Gaiffe

    Full Text Available Previous studies have shown that DNA can be transferred from dying engineered cells to neighboring cells through the phagocytosis of apoptotic bodies, which leads to cellular transformation. Here, we provide evidence of an uptake of apoptotic-derived cervical cancer cells by human mesenchymal cells. Interestingly, HeLa (HPV 18+ or Ca Ski (HPV16+ cells, harboring integrated high-risk HPV DNA but not C-33 A cells (HPV-, were able to transform the recipient cells. Human primary fibroblasts engulfed the apoptotic bodies effectively within 30 minutes after co-cultivation. This mechanism is active and involves the actin cytoskeleton. In situ hybridization of transformed fibroblasts revealed the presence of HPV DNA in the nucleus of a subset of phagocytosing cells. These cells expressed the HPV16/18 E6 gene, which contributes to the disruption of the p53/p21 pathway, and the cells exhibited a tumorigenic phenotype, including an increased proliferation rate, polyploidy and anchorage independence growth. Such horizontal transfer of viral oncogenes to surrounding cells that lack receptors for HPV could facilitate the persistence of the virus, the main risk factor for cervical cancer development. This process might contribute to HPV-associated disease progression in vivo.

  14. The Inhibitory Effects of an Antisense u-PAR Vector on Invasion of Highly Invasive Human Prostate Carcinoma PC-3M Cell Subclones

    Institute of Scientific and Technical Information of China (English)

    廖国宁; 李清芬; 冯友梅; 邓耀祖; 李卓娅; 龚非力; 马丁

    2003-01-01

    Summary: To observe the inhibitory effects of an antisense u-PAR vector on invasion of highly inva-sive PC-3M cell subclones, the effects of the antisense u-PAR on activity of MMP-9 in those highlyinvasive cell subclones were detected by a quantitative RT-PCR and zymography. The monolayer in-vasion assay and colony formation assay in soft agar were used. And tumorigenesis rate and invasionsby the cell subclones with or without the antisense u-PAR were observed in nude mice. It was foundthat in vitro growth of highly invasive PC-3M cell subclones transfected with the antisense u-PARwas declined, and the ability of anchorage-independent growth of those cell subclones was found de-creased sharply, with the inhibiting rate becoming 79 % and 60 %, respectively. Although the anti-sense u-PAR didn't change MMP-9 gene transcription, they could inhibit the activation of MMP-9 ofhighly invasive PC-3M cell subclones. Moreover, the tumorigenesis rate of the cell subclones with theantisense u-PAR decreased and the growth of a neoplasm also slowed down. Thet tests showed thedifference between experimental and control groups was statistically significant (P<0. 01). The anti-sense u-PAR vector could not only inhibit the invasion ability of highly invasive PC-3M cell subclonesin vitro but also restrain the growth of those cell subclones in vivo.

  15. Human Sarcoma growth is sensitive to small-molecule mediated AXIN stabilization.

    Directory of Open Access Journals (Sweden)

    Alessandra De Robertis

    Full Text Available Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas.

  16. Stochastic Gompertz model of tumour cell growth.

    Science.gov (United States)

    Lo, C F

    2007-09-21

    In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.

  17. MEK-dependent IL-8 induction regulates the invasiveness of triple-negative breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Lee, Jeongmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Interleukin-8 (IL-8) serves as a prognostic marker for breast cancer, and its expression level correlates with metastatic breast cancer and poor prognosis. Here, we investigated the levels of IL-8 expression in a variety of breast cancer cells and the regulatory mechanism of IL-8 in triple-negative breast cancer (TNBC) cells. Our results showed that IL-8 expression correlated positively with overall survival in basal-type breast cancer patients. The levels of IL-8 mRNA expression and protein secretion were significantly increased in TNBC cells compared with non-TNBC cells. In addition, the invasiveness of the TNBC cells was dramatically increased by IL-8 treatment and then augmented invasion-related proteins such as matrix metalloproteinase (MMP)-2 or MMP-9. We observed that elevated IL-8 mRNA expression and protein secretion were suppressed by a specific MEK1/2 inhibitor, UO126. In contrast, the overexpression of constitutively active MEK significantly increased the level of IL-8 mRNA expression in BT474 non-TNBC cells. Finally, we investigated the effect of UO126 on the tumorigenecity of TNBC cells. Our results showed that anchorage-independent growth, cell invasion, and cell migration were also decreased by UO126 in TNBC cells. As such, we demonstrated that IL-8 expression is regulated through MEK/ERK-dependent pathways in TNBC cells. A diversity of MEK blockers, including UO126, may be promising for treating TNBC patients.

  18. Trefoil factor 3 (TFF3) enhances the oncogenic characteristics of prostate carcinoma cells and reduces sensitivity to ionising radiation.

    Science.gov (United States)

    Perera, Omesha; Evans, Angharad; Pertziger, Mikhail; MacDonald, Christa; Chen, Helen; Liu, Dong-Xu; Lobie, Peter E; Perry, Jo K

    2015-05-28

    Trefoil factor 3 (TFF3) is a secreted protein which functions in mucosal repair of the gastrointestinal tract. This is achieved through the combined stimulation of cell migration and prevention of apoptosis and anoikis, thus facilitating repair. Deregulated TFF3 expression at the gene and protein level is implicated in numerous cancers. In prostate cancer TFF3 has previously been reported as a potential biomarker, overexpressed in a subset of primary and metastatic cases. Here we investigated the effect of increased TFF3 expression on prostate cancer cell behaviour. Oncomine analysis demonstrated that TFF3 mRNA expression was upregulated in prostate cancer compared to normal tissue. Forced-expression models were established in the prostate cancer cell lines, DU145 and PC3, by stable transfection of an expression vector containing the TFF3 cDNA. Forced expression of TFF3 significantly increased total cell number and cell viability, cell proliferation and cell survival. In addition, TFF3 enhanced anchorage independent growth, 3-dimensional colony formation, wound healing and cell migration compared to control transfected cell lines. We also observed reduced sensitivity to ionising radiation in stably transfected cell lines. In dose response experiments, forced expression of TFF3 significantly enhanced the regrowth of PC3 cells following ionising radiation compared with control transfected cells. In addition, TFF3 enhanced clonogenic survival of DU145 and PC3 cells. These studies indicate that targeting TFF3 for the treatment of prostate cancer warrants further investigation.

  19. The contribution of heavy metals in cigarette smoke condensate to malignant transformation of breast epithelial cells and in vivo initiation of neoplasia through induction of a PI3K–AKT–NFκB cascade

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Purusottam; Preet, Ranjan; Das, Dipon; Satapathy, Shakti Ranjan [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India); Siddharth, Sumit [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India); Department of Infection Biology, Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751021 (India); Choudhuri, Tathagata [Department of Infection Biology, Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751021 (India); Wyatt, Michael D. [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC (United States); Kundu, Chanakya Nath, E-mail: cnkundu@gmail.com [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India)

    2014-01-01

    Cigarette smoking is a crucial factor in the development and progression of multiple cancers including breast. Here, we report that repeated exposure to a fixed, low dose of cigarette smoke condensate (CSC) prepared from Indian cigarettes is capable of transforming normal breast epithelial cells, MCF-10A, and delineate the biochemical basis for cellular transformation. CSC transformed cells (MCF-10A-Tr) were capable of anchorage-independent growth, and their anchorage dependent growth and colony forming ability were higher compared to the non-transformed MCF-10A cells. Increased expression of biomarkers representative of oncogenic transformation (NRP-1, Nectin-4), and anti-apoptotic markers (PI3K, AKT, NFκB) were also noted in the MCF-10A-Tr cells. Short tandem repeat (STR) profiling of MCF-10A and MCF-10A-Tr cells revealed that transformed cells acquired allelic variation during transformation, and had become genetically distinct. MCF-10A-Tr cells formed solid tumors when implanted into the mammary fat pads of Balb/c mice. Data revealed that CSC contained approximately 1.011 μg Cd per cigarette equivalent, and Cd (0.0003 μg Cd/1 × 10{sup 7} cells) was also detected in the lysates from MCF-10A cells treated with 25 μg/mL CSC. In similar manner to CSC, CdCl{sub 2} treatment in MCF-10A cells caused anchorage independent colony growth, higher expression of oncogenic proteins and increased PI3K–AKT–NFκB protein expression. An increase in the expression of PI3K–AKT–NFκB was also noted in the mice xenografts. Interestingly, it was noted that CSC and CdCl{sub 2} treatment in MCF-10A cells increased ROS. Collectively, results suggest that heavy metals present in cigarettes of Indian origin may substantially contribute to tumorigenesis by inducing intercellular ROS accumulation and increased expression of PI3K, AKT and NFκB proteins. - Highlights: • Repeated exposure of CSC causes malignant transformation in MCF-10A. • MCF-10A-Tr cells showed a distinct

  20. The effect pathway of retinoic acid through regulation of retinoic acid receptor in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Qiao Wu; Zheng-Ming Chen; Wen-Jin Su

    2001-01-01

    AIM To evaluate the role of RARa gene in mediating the growth inhibitory effect of ail-trans retinoic acid (ATRA)on gastric cancer cells.``METHODS The expression levels of retinoic acid receptors (RARs) in gastric cancer cells were detected by Northern blot. Transient transfection and chlorophenicol acetyl transferase (CAT) assay were used to show the transcriptional activity of β retinoic acid response element (βRARE) and AP-l activity. Cell growth inhibition was determined by MTT assay and anchorage-independent growth assay, respectively. Stable transfection was performed by the method of Lipofectamine, and the cells were screened by G418.``RESULTS ATRA could induce expression level of RARα in MGC80-3, BGCC8823 and SGC-7901 cells obviously,resulting in growth inhibition of these cell lines. After sense RARa gene was transfected into MKN-45 cells that expressed rather Iow level of RARα and could not be induced by ATRA, the cell growth was inhibited by ATRA markedly. In contrast, when antisense RARα gene was transfected into BGC-825 cells, a little inhibitory effect by ATRA was seen, compared with the parallel BGC-823cells. In transient transfection assay, ATRA effectively induced transcriptional activity of βRARE in MGC80-3,BGC.823, SGC-7902 and MKN/RARa cell lines, but not in MKN-45 and BGC/aRARa cell lines. Similar results were observed in measuring anti-AP-l activity by ATRA in these cancer cell lines.``CONCLUSION ATRA inhibits the growth of gastric cancer cells by up-regulating the level of RARa; RARa is the major mediator of ATRA action in gastric cancer cells; and adequate level of RAPa is required for ATRA effect on gastric cancer cells.``

  1. TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation

    Directory of Open Access Journals (Sweden)

    Ward Yvona

    2008-07-01

    Full Text Available Abstract Introduction Signaling downstream of Ras is mediated by three major pathways, Raf/ERK, phosphatidylinositol 3 kinase (PI3K, and Ral guanine nucleotide exchange factor (RalGEF. Ras signal transduction pathways play an important role in breast cancer progression, as evidenced by the frequent over-expression of the Ras-activating epidermal growth factor receptors EGFR and ErbB2. Here we investigated which signal transduction pathways downstream of Ras contribute to EGFR-dependent transformation of telomerase-immortalized mammary epithelial cells HME16C. Furthermore, we examined whether a highly transcriptionally regulated ERK pathway target, PHLDA1 (TDAG51, suggested to be a tumor suppressor in breast cancer and melanoma, might modulate the transformation process. Methods Cellular transformation of human mammary epithelial cells by downstream Ras signal transduction pathways was examined using anchorage-independent growth assays in the presence and absence of EGFR inhibition. TDAG51 protein expression was down-regulated by interfering small hairpin RNA (shRNA, and the effects on cell proliferation and death were examined in Ras pathway-transformed breast epithelial cells. Results Activation of both the ERK and PI3K signaling pathways was sufficient to induce cellular transformation, which was accompanied by up-regulation of EGFR ligands, suggesting autocrine EGFR stimulation during the transformation process. Only activation of the ERK pathway was sufficient to transform cells in the presence of EGFR inhibition and was sufficient for tumorigenesis in xenografts. Up-regulation of the PHLDA1 gene product, TDAG51, was found to correlate with persistent ERK activation and anchorage-independent growth in the absence or presence of EGFR inhibition. Knockdown of this putative breast cancer tumor-suppressor gene resulted in increased ERK pathway activation and enhanced matrix-detached cellular proliferation of Ras/Raf transformed cells. Conclusion

  2. A diterpenoid derivative 15-oxospiramilactone inhibits Wnt/β-catenin signaling and colon cancer cell tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Haiyang Liu; Sheng Wang; Xiaojiang Hao; Lin Li

    2011-01-01

    The Wnt/β-catenin signaling pathway is a highly conserved pathway in organism evolution and regulates many biological processes. Aberrant activation of the Wnt/β-catenin signaling pathway is closely related to tumorigenesis.In order to identify potent small molecules to treat the over-activated Wnt signaling-mediated cancer, such as colon cancer, we established a mammalian cell line-based reporter gene screening system. The screen revealed a diterpenoid derivative, 15-oxospiramilactone(NC043)that inhibits Wnt3a or LiCl-stimulated Top-flash reporter activity in HEK293T cells and growth of colon cancer cells, SW480 and Caco-2. Treatment of SW480 cells with NC043 led to decreases in the mRNA and/or protein expression of Wnt target genes Axin2, Cyclin Dl and Survivin, as well as decreases in the protein levels of Cdc25c and Cdc2.NC043 did not affect the cytosol-nuclear distribution and protein level of soluble β-catenin, but decreased β-catenin/TCF4 association in SW480 cells. Moreover, NC043 inhibited anchorage-independent growth and xenograft tumorigenesis of SW480 cells. Collectively these results demonstrate that NC043 is a novel small molecule that inhibits canonical Wnt signaling downstream of P-catenin stability and may be a potential compound for treating colorectal cancer.

  3. Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong-Yeon Cho

    Full Text Available Autophagy is a critical cellular process required for maintaining cellular homeostasis in health and disease states, but the molecular mechanisms and impact of autophagy on cancer is not fully understood. Here, we found that Sox2, a key transcription factor in the regulation of the "stemness" of embryonic stem cells and induced-pluripotent stem cells, strongly induced autophagic phenomena, including intracellular vacuole formation and lysosomal activation in colon cancer cells. The activation occurred through Sox2-mediated ATG10 gene expression and resulted in the inhibition of cell proliferation and anchorage-independent colony growth ex vivo and tumor growth in vivo. Further, we found that Sox2-induced-autophagy enhanced cellular senescence by up-regulating tumor suppressors or senescence factors, including p16(INK4a, p21 and phosphorylated p53 (Ser15. Notably, knockdown of ATG10 in Sox2-expressing colon cancer cells restored cancer cell properties. Taken together, our results demonstrated that regulation of autophagy mediated by Sox2 is a mechanism-driven novel strategy to treat human colon cancers.

  4. Tomato fruit growth : integrating cell division, cell growth and endoreduplication by experimentation and modelling

    NARCIS (Netherlands)

    Fanwoua, J.

    2012-01-01

    Keywords: cell division, cell growth, cell endoreduplication, fruit growth, genotype, G×E interaction, model, tomato. Fruit size is a major component of fruit yield and quality of many crops. Variations in fruit size can be tremendous due to genotypic and environmental factors. The mechanisms

  5. HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis

    Directory of Open Access Journals (Sweden)

    Bitu Carolina

    2012-04-01

    Full Text Available Abstract Background HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. However, members of this family demonstrated oncogenic properties in some malignancies. The present study investigated whether genes of the HOXA cluster play a role in oral cancer. Methods In order to identify differentially expressed HOXA genes, duplex RT-PCR in oral samples from healthy mucosa and squamous cell carcinoma was used. The effects of HOXA1 on proliferation, apoptosis, adhesion, invasion, epithelial-mesenchymal transition (EMT and anchorage-independent growth were assessed in cells with up- and down-regulation of HOXA1. Immunohistochemical analysis using a tissue microarray (TMA containing 127 oral squamous cell carcinomas (OSCC was performed to determine the prognostic role of HOXA1 expression. Results We showed that transcripts of HOXA genes are more abundant in OSCC than in healthy oral mucosa. In particular, HOXA1, which has been described as one of the HOX members that plays an important role in tumorigenesis, was significantly more expressed in OSCCs compared to healthy oral mucosas. Further analysis demonstrated that overexpression of HOXA1 in HaCAT human epithelial cells promotes proliferation, whereas downregulation of HOXA1 in human OSCC cells (SCC9 cells decreases it. Enforced HOXA1 expression in HaCAT cells was not capable of modulating other events related to tumorigenesis, including apoptosis, adhesion, invasion, EMT and anchorage-independent growth. A high number of HOXA1-positive cells was significantly associated with T stage, N stage, tumor differentiation and proliferative potential of the tumors, and was predictive of poor survival. In multivariate analysis, HOXA1 was an independent prognostic factor for OSCC patients (HR: 2.68; 95% CI: 1.59-2.97; p = 0.026. Conclusion Our findings indicate that HOXA1 may contribute to oral carcinogenesis

  6. Purification of a high molecular weight form of epidermal growth factor from urine of breast cancer patients.

    Science.gov (United States)

    Eckert, K; Granetzny, A; Fischer, J; Grosse, R

    1989-01-01

    A high molecular weight form of epidermal growth factor (EGF) was detected by means of an EGF radio-receptor assay and an anchorage-independent growth assay in the urine of breast cancer patients. Preliminary data indicate that the activity of this growth factor is associated with lymph node status and tumor size and that the activity becomes reduced after removal of the primary tumor. The EGF-related polypeptide was purified to homogeneity by a combination of Sephadex G-25 and Bio Gel P-30 chromatography followed by binding to, and elution from, EGF receptor rich A431 cells. Final purification was achieved after isoelectric focusing by following the biological activity of eluted polypeptides. A polypeptide of a pI of 3.4 was identified to carry EGF-like activity. This polypeptide migrated as a single band of 43 kDa in SDS-PAGE. Its biological activity was neutralized by a specific anti-hEGF-antibody indicating an immunological relationship with hEGF.

  7. Shape of growth cells in directional solidification.

    Science.gov (United States)

    Pocheau, A; Georgelin, M

    2006-01-01

    The purpose of this study is to characterize experimentally the whole shape of the growth cells displayed in directional solidification and its evolution with respect to control parameters. A library of cells is first built up from observation of directional solidification of a succinonitrile alloy in a large range of pulling velocity, cell spacing, and thermal gradient. Cell boundaries are then extracted from these images and fitted by trial functions on their whole profile, from cell tip to cell grooves. A coherent evolution of the fit parameters with the control parameters is evidenced. It enables us to characterize the whole cell shape by a single function involving only two parameters which vary smoothly in the control parameter space. This, in particular, evidences a continuous evolution of the cell geometry at the cell to dendrite transition which denies the existence of a change of branch of solutions at the occurrence of sidebranching. More generally, this global determination of cell shape complemented with a previous determination of the position of cells in the thermal field (the cell tip undercooling) provides a complete characterization of growth solutions and of their evolutions in this system. It thus brings about a relevant framework for testing and improving theoretical and numerical understanding of cell shapes and cell stability in directional solidification.

  8. YThe BigH3 Tumor Suppressor Gene in Radiation-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Science.gov (United States)

    Zhao, Y.; Shao, G.; Piao, C.; Hei, T.

    Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate

  9. Role of bentonite clays on cell growth.

    Science.gov (United States)

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions.

  10. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    Science.gov (United States)

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  11. Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth.

    Science.gov (United States)

    Balsa-Martinez, Eduardo; Puigserver, Pere

    2015-11-19

    In this issue and the October 15th issue of Molecular Cell, studies by Montal et al. (2015) and Vincent et al. (2015) report that certain types of cancer cells utilize the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxykinase 2 (PCK2) to reprogram anabolic metabolism and support cell growth.

  12. A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression.

    Science.gov (United States)

    Anastas, J N; Biechele, T L; Robitaille, M; Muster, J; Allison, K H; Angers, S; Moon, R T

    2012-08-09

    By analyzing public data sets of gene expression in human breast cancers we observed that increased levels of transcripts encoding the planar cell polarity (PCP) proteins SCRIB and VANGL1 correlate with increased risk of patient relapse. Experimentally, we found that reducing expression of SCRIB by short-hairpin RNAs (shRNAs) reduces the growth of human breast cancer cells in xenograft assays. To investigate SCRIB-associated proteins that might participate in the responses of breast cancer cells to altered levels of SCRIB, we used mass spectrometry and confocal microscopy. These studies reveal that SCRIB is present in at least two unique protein complexes: (1) a complex of SCRIB, ARHGEF, GIT and PAK (p21-activated kinase), and (2) a complex of SCRIB, NOS1AP and VANGL. Focusing on NOS1AP, we observed that NOS1AP colocalizes with both SCRIB and VANGL1 along cellular protrusions in metastatic breast cancer cells, but does not colocalize with either SCRIB or VANGL1 at cell junctions in normal breast cells. We investigated the effects of shRNA-mediated knockdown of NOS1AP and SCRIB in vitro, and found that reducing NOS1AP and SCRIB slows breast cancer cell migration and prevents the establishment of leading-trailing polarity. We also find that reduction of NOS1AP enhances anchorage-independent growth. Collectively these data point to the relevance of NOS1AP and SCRIB protein complexes in breast cancer.

  13. The pituitary growth hormone cell in space

    Science.gov (United States)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  14. Antitumorigenic effect of atmospheric-pressure dielectric barrier discharge on human colorectal cancer cells via regulation of Sp1 transcription factor

    Science.gov (United States)

    Han, Duksun; Cho, Jin Hyoung; Lee, Ra Ham; Bang, Woong; Park, Kyungho; Kim, Minseok S.; Shim, Jung-Hyun; Chae, Jung-Il; Moon, Se Youn

    2017-02-01

    Human colorectal cancer cell lines (HT29 and HCT116) were exposed to dielectric barrier discharge (DBD) plasma at atmospheric pressure to investigate the anticancer capacity of the plasma. The dose- and time-dependent effects of DBDP on cell viability, regulation of transcription factor Sp1, cell-cycle analysis, and colony formation were investigated by means of MTS assay, DAPI staining, propidium iodide staining, annexin V–FITC staining, Western blot analysis, RT-PCR analysis, fluorescence microscopy, and anchorage-independent cell transformation assay. By increasing the duration of plasma dose times, significant reductions in the levels of both Sp1 protein and Sp1 mRNA were observed in both cell lines. Also, expression of negative regulators related to the cell cycle (such as p53, p21, and p27) was increased and of the positive regulator cyclin D1 was decreased, indicating that the plasma treatment led to apoptosis and cell-cycle arrest. In addition, the sizes and quantities of colony formation were significantly suppressed even though two cancer promoters, such as TPA and epidermal growth factor, accompanied the plasma treatment. Thus, plasma treatment inhibited cell viability and colony formation by suppressing Sp1, which induced apoptosis and cell-cycle arrest in these two human colorectal cancer cell lines.

  15. Vapor Crystal Growth (VCG) experiment Cell

    Science.gov (United States)

    1992-01-01

    The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.

  16. Control of cell cycle and cell growth by molecular chaperones.

    Science.gov (United States)

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  17. Silencing of CD44 gene expression in human 143-B osteosarcoma cells promotes metastasis of intratibial tumors in SCID mice.

    Directory of Open Access Journals (Sweden)

    Ana Gvozdenovic

    Full Text Available Osteosarcoma (OS is the most frequent primary malignant bone cancer in children and adolescents with a high propensity for lung metastasis. Therefore, it is of great importance to identify molecular markers leading to increased metastatic potential in order to devise more effective therapeutic strategies that suppress metastasis, the major cause of death in OS. CD44, the principal receptor for the extracellular matrix component hyaluronan (HA, is frequently found overexpressed in tumor cells and has been implicated in metastatic spread in various cancer types. Here, we investigated the effects of stable shRNA-mediated silencing of CD44 gene products on in vitro and in vivo metastatic properties of the highly metastatic human 143-B OS cell line. In vitro, CD44 knockdown resulted in a 73% decrease in the adhesion to HA, a 57% decrease in the migration rate in a trans-filter migration assay, and a 28% decrease in the cells' capacity for anchorage-independent growth in soft agar compared to the control cells, implicating that CD44 expression contributes to the metastatic activity of 143-B cells. However, making use of an orthotopic xenograft OS mouse model, we demonstrated that reduced CD44 expression facilitated primary tumor growth and formation of pulmonary metastases. The enhanced malignant phenotype was associated with decreased adhesion to HA and reduced expression of the tumor suppressor merlin in vivo. In conclusion, our study identified CD44 as a metastasis suppressor in this particular experimental OS model.

  18. Persistent exposure to Mycoplasma induces malignant transformation of human prostate cells.

    Directory of Open Access Journals (Sweden)

    Kazunori Namiki

    Full Text Available Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including those of the prostate. The American Cancer Society, estimates that approximately 20% of all worldwide cancers are caused by infection. Mycoplasma, a genus of bacteria that lack a cell wall, are among the few prokaryotes that can grow in close relationship with mammalian cells, often without any apparent pathology, for extended periods of time. In this study, the capacity of Mycoplasma genitalium, a prevalent sexually transmitted infection, and Mycoplasma hyorhinis, a mycoplasma found at unusually high frequency among patients with AIDS, to induce a malignant phenotype in benign human prostate cells (BPH-1 was evaluated using a series of in vitro and in vivo assays. After 19 weeks of culture, infected BPH-1 cells achieved anchorage-independent growth and increased migration and invasion. Malignant transformation of infected BPH-1 cells was confirmed by the formation of xenograft tumors in athymic mice. Associated with these changes was an increase in karyotypic entropy, evident by the accumulation of chromosomal aberrations and polysomy. This is the first report describing the capacity of M. genitalium or M. hyorhinis infection to lead to the malignant transformation of benign human epithelial cells and may serve as a model to further study the relationship between prostatitis and prostatic carcinogenesis.

  19. Loss of RASSF2 Enhances Tumorigencity of Lung Cancer Cells and Confers Resistance to Chemotherapy

    Directory of Open Access Journals (Sweden)

    Jennifer Clark

    2012-01-01

    Full Text Available RASSF2 is a novel pro-apoptotic effector of K-Ras that is frequently inactivated in a variety of primary tumors by promoter methylation. Inactivation of RASSF2 enhances K-Ras-mediated transformation and overexpression of RASSF2 suppresses tumor cell growth. In this study, we confirm that RASSF2 and K-Ras form an endogenous complex, validating that RASSF2 is a bona fide K-Ras effector. We adopted an RNAi approach to determine the effects of inactivation of RASSF2 on the transformed phenotype of lung cancer cells containing an oncogenic K-Ras. Loss of RASSF2 expression resulted in a more aggressive phenotype that was characterized by enhanced cell proliferation and invasion, decreased cell adhesion, the ability to grow in an anchorage-independent manner and cell morphological changes. This enhanced transformed phenotype of the cells correlated with increased levels of activated AKT, indicating that RASSF2 can modulate Ras signaling pathways. Loss of RASSF2 expression also confers resistance to taxol and cisplatin, two frontline therapeutics for the treatment of lung cancer. Thus we have shown that inactivation of RASSF2, a process that occurs frequently in primary tumors, enhances the transforming potential of activated K-Ras and our data suggests that RASSF2 may be a novel candidate for epigenetic-based therapy in lung cancer.

  20. CAP1 (Cyclase-Associated Protein 1) Exerts Distinct Functions in the Proliferation and Metastatic Potential of Breast Cancer Cells Mediated by ERK.

    Science.gov (United States)

    Zhang, Haitao; Zhou, Guo-Lei

    2016-05-13

    The actin-regulating protein CAP1 is implicated in the invasiveness of human cancers. However, the exact role remains elusive and controversial given lines of conflicting evidence. Moreover, a potential role in the proliferative transformation has largely been overlooked. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that CAP1 exerts cell type-dependent functions in the invasiveness of breast cancer cells. Depletion of CAP1 in the metastatic MDA-MB-231 and BT-549 cancer cells stimulated the metastatic potential while it actually inhibited it in the non-metastatic MCF-7 cancer cells or in normal cells. Moreover, we demonstrate functions for CAP1 in cancer cell proliferation and anchorage-independent growth, again in a cell context-dependent manner. Importantly, we identify pivotal roles for the ERK-centered signaling in mediating both CAP1 functions. Phosphor mutants of CAP1 at the S307/S309 regulatory site had compromised rescue effects for both the invasiveness and proliferation in CAP1-knockdown cells, suggesting that CAP1 likely mediates upstream cell signals to control both functions. These novel mechanistic insights may ultimately open up avenues for strategies targeting CAP1 in the treatment of breast cancer, tailored for specific types of the highly diverse disease.

  1. Expression of microRNA-30c via lentivirus vector inhibits the proliferation and enhances the sensitivity of highly aggressive ccRCC Caki-1 cells to anticancer agents

    Science.gov (United States)

    Yang, Honglin; Song, Erlin; Shen, Guorong; Zhu, Tonghua; Jiang, Tingwang; Shen, Hao; Niu, Liping; Wang, Biao; Lu, Zhaoyang; Qian, Jianping

    2017-01-01

    The clear cell renal cell carcinoma (ccRCC) is one of the most fatal urologic tumors, and the prognosis remains very poor for advanced or metastatic ccRCC. This study reveals the roles of microRNA (miR)-30c in regulating a highly aggressive ccRCC cell line proliferation by targeting MTA-1, which is a key mediator for human cancer metastasis. Results from quantitative real-time polymerase chain reaction showed that the expression of MTA-1, the target of miR-30c, was significantly higher in metastatic ccRCC specimens than in nonmetastatic ccRCC or nontumor specimens. Accordingly, endogenous miR-30c is at a much lower level in highly aggressive ccRCC Caki-1 cells than nontumor or ccRCC cell lines. Expression of miR-30c via lentivirus vector inhibits the proliferation, anchorage-independent growth, in vitro invasion or migration, or in vivo growth of Caki-1 cells by repressing MTA-1 protein expression. miR-30c also enhances the sensitivity of Caki-1 cells to anticancer agents, including sorafenib and paclitaxel. These data reveal the potential application of miR-30c and that its targeting gene, MTA-1, would be a potential target in metastatic ccRCC treatment. PMID:28203091

  2. Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells.

    Science.gov (United States)

    Fassi Fehri, Lina; Mak, Tim N; Laube, Britta; Brinkmann, Volker; Ogilvie, Lesley A; Mollenkopf, Hans; Lein, Michael; Schmidt, Timo; Meyer, Thomas F; Brüggemann, Holger

    2011-01-01

    Prostate cancer (PCa) is the second leading cause of male cancer deaths in the Western world. Mounting evidence has revealed that chronic inflammation can be an important initiating factor of PCa. Recent work has detected the anaerobic Gram-positive bacterium Propionibacterium acnes in cancerous prostates, but with wide-ranging detection rates. Here, using in situ immunofluorescence (ISIF), P. acnes was found in 58 out of 71 (81.7%) tested cancerous prostate tissue samples, but was absent from healthy prostate tissues (20 samples) and other cancerous tissue biopsies (59 mamma carcinoma samples). Live P. acnes bacteria were isolated from cancerous prostates and cocultured with the prostate epithelial cell line RWPE1. Microarray analysis showed that the host cell responded to P. acnes with a strong multifaceted inflammatory response. Active secretion of cytokines and chemokines, such as IL-6 and IL-8, from infected cells was confirmed. The host cell response was likely mediated by the transcriptional factors NF-κB and STAT3, which were both activated upon P. acnes infection. The P. acnes-induced host cell response also included the activation of the COX2-prostaglandin, and the plasminogen-matrix metalloproteinase pathways. Long-term exposure to P. acnes altered cell proliferation, and enabled anchorage-independent growth of infected epithelial cells, thus initiating cellular transformation. Our results suggest that P. acnes infection could be a contributing factor to the initiation or progression of PCa.

  3. The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models

    Science.gov (United States)

    Mizuma, Masamichi; Rasheed, Zeshaan A.; Yabuuchi, Shinichi; Omura, Noriyuki; Campbell, Nathaniel R.; de Wilde, Roeland F.; De Oliveira, Elizabeth; Zhang, Qing; Puig, Oscar; Matsui, William; Hidalgo, Manuel; Maitra, Anirban; Rajeshkumar, NV

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, with most patients facing an adverse clinical outcome. Aberrant Notch pathway activation has been implicated in the initiation and progression of PDAC, specifically the aggressive phenotype of the disease. We used a panel of human PDAC cell lines, as well as patient-derived PDAC xenografts to determine whether pharmacological targeting of Notch pathway could inhibit PDAC growth and potentiate gemcitabine sensitivity. MRK-003, a potent and selective γ-secretase inhibitor, treatment is effective against PDAC as evidenced by the down-regulation of nuclear Notch1 intracellular domain (N1ICD), inhibition of anchorage independent growth, and reduction of tumor-initiating cells capable of extensive self-renewal. Pre-treatment of PDAC cells with MRK-003 in cell culture significantly inhibited the subsequent engraftment in immunocompromised mice. MRK-003 monotherapy significantly blocked tumor growth in 5 of 9 (56%) PDAC xenografts. A combination of MRK-003 and gemcitabine showed enhanced antitumor effects compared to gemcitabine in 4 of 9 (44%) PDAC xenografts, reduced tumor cell proliferation and induced both apoptosis and intra-tumoral necrosis. Gene expression analysis of untreated tumors indicated that up-regulation of nuclear factor kappa B (NFκB) pathway components were predictive of sensitivity to MRK-003, while up-regulation in B-cell receptor (BCR) signaling and nuclear factor erythroid-derived 2-like 2 (NRF2) pathway correlated with response to the combination of MRK-003 with gemcitabine. Our findings strengthen the rationale for small molecule inhibition of Notch signaling as a therapeutic strategy in PDAC. PMID:22752426

  4. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  5. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by ou

  6. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH......). Receptors for both GH and PRL are expressed in islet cells and are upregulated during pregnancy. By mutational analysis we have identified different functional domains of the cytoplasmic part of the GH receptor. Thus the mitotic signaling only requires the membrane proximal part of the receptor...

  7. Induction of the adenoma-carcinoma progression and Cdc25A-B phosphatases by the trefoil factor TFF1 in human colon epithelial cells.

    Science.gov (United States)

    Rodrigues, S; Rodrigue, C M; Attoub, S; Fléjou, J F; Bruyneel, E; Bracke, M; Emami, S; Gespach, C

    2006-10-26

    TFF1 is overexpressed in inflammatory diseases and human cancers of the digestive and urogenital systems. To examine the transforming potential of TFF1 in human colon epithelial cells, premalignant PC/AA/C1 adenoma cells (PC) derived from a patient with familial adenomatous polyposis (FAP) were transformed by the TFF1 cDNA and used as a model of the adenoma-carcinoma transition. Constitutive expression of TFF1 increased anchorage-independent cell growth in soft agar, and induced or potentiated the growth of colon PC-TFF1 and kidney MDCKts.src-TFF1 tumor xenografts in athymic mice. This resulted in reduction of thapsigargin-induced apoptosis and promotion of collagen type I invasion through several oncogenic pathways. Using the differential display approach to identify TFF1 target genes, we found that the dual specific phosphatases Cdc25A and B implicated in cell cycle transitions are strongly upregulated under active forms in both PC-TFF1 and HCT8/S11-TFF1 colon cancer cells. Accordingly, TFF1 expression is absent in normal human colon crypts but is induced in correlation with Cdc25a and b transcript levels and tumor grade in familial and sporadic colon adenomas and carcinomas. We propose that TFF1 and Cdc25A-B cooperate with other dominant oncogenic pathways to induce the adenoma and adenocarcinoma transitions. Agents that target TFF1/Cdc25 signaling pathways may be useful for treating patients with TFF1-positive solid tumors.

  8. Malignant transformation of human gastric epithelium cells via reactive oxygen species production and Wnt/β-catenin pathway activation following 40-week exposure to ochratoxin A.

    Science.gov (United States)

    Jia, Xin; Cui, Jinfeng; Meng, Xinxing; Xing, Lingxiao; Shen, Haitao; Wang, Juan; Liu, Jing; Wang, Yuan; Lian, Weiguang; Zhang, Xianghong

    2016-03-01

    Ochratoxin A (OTA), one of the most abundant food-contaminating mycotoxins, is a possible carcinogenic to humans. We previously demonstrated that OTA treatment induced oxidative damage in human gastric epithelium cells (GES-1) in vitro. In this study, we found that long-term OTA treatment could result in increased proliferation, migration, and invasion abilities of GES-1 cells and induce anchorage-independent growth of cells in soft agar. Inoculation of OTA-treated GES-1 cells resulted in the formation of tumor xenografts in Balb/c nude mice in vivo, confirming that long-term OTA treatment can induce the malignant transformation of GES-1 cells. In addition, we found that long-term OTA treatment induced oxidative stress and activated the Wnt/β-catenin pathway, including the nuclear transition of β-catenin and the upregulation of the downstream molecules of the pathway. Finally, pretreatment with the antioxidant N-acetyl-L-cysteine (NAC) inhibited ROS formation and activation of the Wnt pathway in OTA-transformed GES-1 cells, which decreased the tumor formation abilities of these cells after inoculation in nude mice. These findings suggest that long-term OTA exposure induces the malignant transformation of GES-1 cells via intracellular ROS production and activation of the Wnt/β-catenin signaling pathway.

  9. Rad6 upregulation promotes stem cell-like characteristics and platinum resistance in ovarian cancer

    Science.gov (United States)

    Somasagara, Ranganatha R.; Tripathi, Kaushlendra; Spencer, Sebastian M.; Clark, David W.; Barnett, Reagan; Bachaboina, Lavanya; Scalici, Jennifer; Rocconi, Rodney P.; Piazza, Gary A.; Palle, Komaraiah

    2015-01-01

    Ovarian cancer is the fifth most deadly cancer in women in the United States and despite advances in surgical and chemotherapeutic treatments survival rates have not significantly improved in decades. The poor prognosis for ovarian cancer patients is largely due to the extremely high (80%) recurrence rate of ovarian cancer and because the recurrent tumors are often resistant to the widely utilized platinum-based chemotherapeutic drugs. In this study, expression of Rad6, an E2 ubiquitin-conjugating enzyme, was found to strongly correlate with ovarian cancer progression. Furthermore, in ovarian cancer cells Rad6 was found to stabilize β-catenin promoting stem cell-related characteristics, including expression of stem cell markers and anchorage-independent growth. Cancer stem cells can promote chemoresistance, tumor recurrence and metastasis, all of which are limiting factors in treating ovarian cancer. Thus it is significant that Rad6 overexpression led to increased resistance to the chemotherapeutic drug carboplatin and correlated with tumor cell invasion. These findings show the importance of Rad6 in ovarian cancer and emphasize the need for further studies of Rad6 as a potential target for the treatment of ovarian cancer. PMID:26679603

  10. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  11. Oct4 mediates tumor initiating properties in oral squamous cell carcinomas through the regulation of epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Lo-Lin Tsai

    Full Text Available BACKGROUND: Overexpression of Oct4, an important transcription factor of embryonic stem cells (ESC, has been reported in several cancers. The aim of this study was to determine the emerging role of Oct4 in oral squamous cell carcinoma (OSCC both in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDING: Tumourigenic activity and molecular mechanisms of Oct4 overexpression or knockdown by lentiviral infection in OSCC was investigated in vitro and in vivo. Initially, we demonstrated that Oct4 expression was increased in OSCC cell lines as compared to a normal oral epithelial cell line SG. Overexpression of Oct4 was demonstrated to enhance cell proliferation, invasiveness, anchorage-independent growth and xenotransplantation tumourigenicity. These findings were coupled with epithelial-mesenchymal transition (EMT transformation in OSCCs. In contrast, the silence of Oct4 significantly blocked the xenograft tumorigenesis of OSCC-derived cancer stem cells (OSCC-CSCs and significantly improved the recipient survival. Clinically, the level of Oct4 expression was higher in recurrent and metastatic OSCC specimens but lower in primary OSCC specimens. CONCLUSION/SIGNIFICANCE: Our results suggest that Oct4-mediated tumorigenecity is associated with the regulation of EMT. Oct4 might be a therapeutic target for OSCC.

  12. JAC, a direct target of oncogenic transcription factor Jun, is involved in cell transformation and tumorigenesis.

    Science.gov (United States)

    Hartl, M; Reiter, F; Bader, A G; Castellazzi, M; Bister, K

    2001-11-20

    Using subtractive hybridization techniques, we have isolated a gene termed JAC that is strongly and specifically activated in avian fibroblasts transformed by the v-jun oncogene of avian sarcoma virus 17 (ASV17), but not in cells transformed by other oncogenic agents. Furthermore, JAC is highly expressed in cell lines derived from jun-induced avian fibrosarcomas. Kinetic analysis using a doxycycline-controlled conditional cell transformation system showed that expression of the 0.8-kb JAC mRNA is induced rapidly upon activation of the oncogenic v-jun allele. Nucleotide sequence analysis and transcriptional mapping revealed that the JAC gene contains two exons, with the longest ORF confined to exon 2. The deduced 68-amino acid chicken JAC protein is rich in cysteine residues and displays 37% sequence identity to mammalian high-sulfur keratin-associated proteins. The promoter region of JAC contains a consensus (5'-TGACTCA-3') and a nonconsensus (5'-TGAGTAA-3') AP-1 binding site in tandem, which are both specifically bound by the Gag-Jun hybrid protein encoded by ASV17. Mutational analysis revealed that the two AP-1 sites confer strong transcriptional activation by Gag-Jun in a synergistic manner. Ectopic expression of JAC in avian fibroblasts leads to anchorage-independent growth, strongly suggesting that deregulation of JAC is an essential event in jun-induced cell transformation and tumorigenesis.

  13. Budding yeast colony growth study based on circular granular cell

    Science.gov (United States)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  14. Genotoxicity of Cytolethal Distending Toxin (CDT on isogenic human colorectal cell lines: potential promoting effects for colorectal carcinogenesis

    Directory of Open Access Journals (Sweden)

    Vanessa eGraillot

    2016-03-01

    Full Text Available The composition of the human microbiota influences tumorigenesis, notably in colorectal cancer (CRC. Pathogenic Escherichia coli possesses a variety of virulent factors, among them the Cytolethal Distending Toxin (CDT. CDT displays dual DNase and phosphatase activities and induces DNA double strand breaks, cell cycle arrest and apoptosis in a broad range of mammalian cells. As CDT could promote malignant transformation, we investigated the cellular outcomes induced by acute and chronic exposures to E. coli CDT in normal human colon epithelial cells (HCECs. Moreover, we conducted a comparative study between isogenic derivatives cell lines of the normal HCECs in order to mimic the mutation of three major genes found in CRC genetic models: APC, KRAS and TP53. Our results demonstrate that APC and p53 deficient cells showed impaired DNA damage response after CDT exposure, whereas HCECs expressing oncogenic KRASV12 were more resistant to CDT. Compared to normal HCECs, the precancerous derivatives exhibit hallmarks of malignant transformation after a chronic exposure to CDT. HCECs defective in APC and p53 showed enhanced anchorage independent growth and genetic instability, assessed by the micronucleus formation assay. In contrast, the ability to grow independently of anchorage was not impacted by CDT chronic exposure in KRASV12 HCECs, but micronucleus formation is dramatically increased. Thus CDT does not initiate CRC by itself, but may have promoting effects in premalignant HCECs, involving different mechanisms in function of the genetic alterations associated to CRC.

  15. Gene expression analysis of microtubule affinity-regulating kinase 2 in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Erin A. Marshall

    2015-12-01

    Full Text Available Lung cancer is the leading cause of cancer death worldwide, and has a five-year survival rate of 18% [1]. MARK2 is a serine/threonine-protein kinase, and is a key component in the phosphorylation of microtubule-associated proteins [2,3]. A recent study published by Hubaux et al. found that microtubule affinity-regulating kinase 2 (MARK2 showed highly frequent DNA and RNA level disruption in lung cancer cell lines and independent non-small cell lung cancer (NSCLC cohorts [4]. These alterations result in the acquisition of oncogenic properties in cell lines, such as increased viability and anchorage-independent growth. Furthermore, a microarray-based transcriptome analysis of three short hairpin RNA (shRNA-mediated MARK2 knockdown lung adenocarcinoma cell lines (GEO#: GSE57966 revealed an association between MARK2 gene expression and cell cycle activation and DNA damage response. Here, we present a detailed description of transcriptome analysis to support the described role of MARK2 in promoting a malignant phenotype.

  16. Bounds on bacterial cell growth rates

    CERN Document Server

    Landy, Jonathan

    2013-01-01

    Recent experiments have shown that rod-like bacteria in nutrient-rich media grow in length at an exponential rate. Here, I point out that it is the elongated shape of these bacteria that allows for this behavior. Further, I show that when a bacterium's growth is limited by some nutrient -- taken in by the cell through a diffusion-to-capture process -- its growth is suppressed: In three-dimensional geometries, the length $L$ is bounded by $\\log L \\lesssim t^{1/2}$, while in two dimensions the length is bounded by a power-law form. Fits of experimental growth curves to these predicted, sub-exponential forms could allow for direct measures of quantities relating to cellular metabolic rates.

  17. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.

    Directory of Open Access Journals (Sweden)

    Nitin Patel

    Full Text Available Prostate cancer (PCa is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT. Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC, a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.

  18. Circadian rhythm and cell population growth

    CERN Document Server

    Clairambault, Jean; Lepoutre, Thomas

    2010-01-01

    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronothera...

  19. The far-upstream element-binding protein 2 is correlated with proliferation and doxorubicin resistance in human breast cancer cell lines.

    Science.gov (United States)

    Wang, Ying-Ying; Gu, Xiao-Ling; Wang, Chao; Wang, Hua; Ni, Qi-Chao; Zhang, Chun-Hui; Yu, Xia-Fei; Yang, Li-Yi; He, Zhi-Xian; Mao, Guo-Xin; Yang, Shu-Yun

    2016-07-01

    Far-upstream element (FUSE)-binding protein 2 (FBP2) was a member of single-stranded DNA-binding protein family; it played an important role in regulating transcription and post-transcription and is involved in the regulation of C-MYC gene expression in liver tumors. However, the role of FBP2 in breast cancer and its mechanism has not been studied yet. Here, we discovered that FBP2 was up-regulated in breast cancer tissues and breast cancer cell lines. Moreover, immunohistochemistry analysis demonstrated that up-regulated FBP2 was highly associated with tumor grade, Ki-67, and poor prognosis, which was an independent prognostic factor for survival of breast cancer patients. At the cellular level, we found that FBP2 was correlated with cell cycle progression by accelerating G1/S transition, and knockdown of FBP2 could weaken cell proliferation, anchorage-independent cell growth, while enhancing the sensitivity of breast cancer cells to doxorubicin. More importantly, we found that activation of PI3K/AKT pathway could phosphorylate FBP2, and then make FBP2 shuttle from cytoplasm into the nucleus, which was the main mechanism of breast cancer cell proliferation and drug resistance. Taken together, our findings supported the notion that FBP2 might via PI3K/AKT pathway influence breast cancer progression and drug resistance, which might provide a new target for the design of anti-cancer drugs for breast cancer patients.

  20. Selection of metastatic breast cancer cells based on adaptability of their metabolic state.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis

  1. Alterations of FHIT Gene and P16 Gene in Nickel Transformed Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG JI; JIA-KUN CHEN; JIA-CHUN LU; ZHONG-LIANG WU; FEI YI; SU-MEI FENG

    2006-01-01

    To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immoral human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared with that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P<0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in p16 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.

  2. INHIBITION OF PROLIFERATION OF HUMAN BREAST CANCER MCF-7 CELLS BY SMALL INTERFERENCE RNA AGAINST LRP16 GENE

    Institute of Scientific and Technical Information of China (English)

    韩为东; 赵亚力; 李琦; 母义明; 李雪; 宋海静; 陆祖谦

    2004-01-01

    Objective: Our previous studies have firstly demonstrated that 17(-E2 up-regulates LRP16 gene expression in human breast cancer MCF-7 cells, and ectopic expression of the LRP16 gene promotes MCF-7 cells proliferation. Here, the effects of the LRP16 gene expression on growth of MCF-7 human breast cancer cells and the mechanism were further studied by establishing two stably LRP16-inhibitory MCR-7 cell lines. Methods: Hairpin small interference RNA (siRNA) strategy, by which hairpin siRNA was released by U6 promoter and was mediated by pLPC-based retroviral vector, was adopted to knockdown endogenous LRP16 level in MCF-7 cells. And the hairpin siRNA against green fluorescence protein (GFP) was used as the negative control. The suppressant efficiency of the LRP16 gene expression was confirmed by Nothern blot. Cell proliferation assay and soft agar colony formation assay were used to determine the status of the cells proliferation. Cell cycle checkpoints including cyclin E and cyclin D1 were examined by Western blot. Results: The results from cell proliferation assays suggested that down-regulation of LRP16 gene expression is capable of inhibiting MCF-7 breast cancer cell growth and down-regulation of the LRP16 gene expression is able to inhibit anchorage-independent growth of breast cancer cells in soft agar. We also demonstrated that cyclin E and cyclin D1 proteins were much lower in the LRP16-inhibitory cells than in the control cells. Conclusion: These data suggest that LRP16 gene play an important role in MCF-7 cells proliferation by regulating the pathway of the G1/S transition and may function as an important modulator in regulating the process of tumorigenesis in human breast.

  3. Nerve growth factor interactions with mast cells.

    Science.gov (United States)

    Kritas, S K; Caraffa, A; Antinolfi, P; Saggini, A; Pantalone, A; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Conti, P

    2014-01-01

    Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.

  4. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  5. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  6. Inihibition of cripto-1 on invasion of human colon cancer cell%特异性siRNA下调Cr-1基因表达对人结直肠癌细胞侵袭的影响

    Institute of Scientific and Technical Information of China (English)

    朱祥; 马圭; 祁卫东; 蒋鹏程; 范钰

    2012-01-01

    Objective To study the effects of cripto-1 (Cr-1 )small interfering RNA(siRNA)on invasion of colon cancer cell. Methods After human colon cancer cell line SW480 were transfected by Cr-1 siRNA, the mRNA and protein of Cr-1 -were determined by real time RT-PCR and Western Blot assay, respectively. The anchorage-independent growth was exmined by clon formation in soft agar,and invasion ability was e-valuated by boyden chamber model. Results The siRNA could down-regulate the level of mRNA and protein of Cr-1 in a dose- and time- dependent manner. Suppression of of Cr-1 expression can inhibit anchorage-independent growth in a dose-dependent manner, and invasion ability of breast cancer cell. Conclusion Cr-1 gene might play an important role in development of human colon cancer,and down-regulation by Cr-1 siRNA could inhibit invasion of human colon cancer cell.%目的 探讨RNA干扰(RNA interference,RNAi)沉默Cr-1(Cr-1)基因对人结直肠癌细胞侵袭的影响.方法 应用Cr-1 基因小干扰RNA(small interfering RNA,siRNA)转染处理结直肠癌SW480细胞后,分别采用荧光实时定量RT-PCR和蛋白质印迹检测Cr-1基因mRNA和蛋白水平,分别采用软琼脂集落培养试验和Boyden小室模型试验检测癌细胞的锚着不依赖性增殖和侵袭能力.结果 siRNA转染组Cr-1 mRNA和蛋白水平明显下调,且呈浓度和时间依赖性(P<0.05).体外试验发现,Cr-1 siRNA可有效抑制结直肠癌细胞集落生长和侵袭能力,且与浓度相关(P<0.05).结论 Cr-1在结直肠癌细胞侵袭中起着重要的作用,采用Cr-1 siRNA转染可抑制结直肠癌细胞侵袭.

  7. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    Science.gov (United States)

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.

  8. Myc post-transcriptionally induces HIF1 protein and target gene expression in normal and cancer cells

    Science.gov (United States)

    Doe, Megan R.; Ascano, Janice; Kaur, Mandeep; Cole, Michael D.

    2012-01-01

    c-Myc is frequently overexpressed in tumors and plays an important role in the regulation of cancer metabolism. Hypoxia-inducible factor-1 (HIF1), the master regulator of the hypoxic response, enhances tumorigenesis and influences metabolism via upregulation of the glycolytic pathway and suppression of mitochondrial respiration. Together, deregulated Myc and HIF1 cooperate to lend metabolic advantages to proliferating cancer cells and contribute to the Warburg Effect. Here we show that overexpression of Myc significantly stabilizes the alpha subunit of HIF1 (HIF1alpha) under normoxic conditions and enhances HIF1alpha accumulation under hypoxic conditions in cells. Post-transcriptional regulation of HIF1α by Myc led to the induction of HIF1α gene targets. Normoxic HIF1α protein expression was also dependent on Myc. Functionally; HIF1α expression was required for Myc-induced anchorage-independent growth and cell proliferation. Myc-dependent stabilization of HIF1α involved either disruption of binding to the VHL complex or post-translational protein modifications. Taken together, our findings uncover a previously uncharacterized regulatory relationship between Myc and HIF1 that has important implications for cancer metabolism and development. PMID:22186139

  9. NIH 3T3 cells malignantly transformed by mot—2 show inactivation and cytoplasmic sequestration of the p53 protein

    Institute of Scientific and Technical Information of China (English)

    WADHWA; SYUICHITAKANO; 等

    1999-01-01

    In previous studies we have reported that a high level of expression of mot-2 protein results in malignant transformation of NIH 3T3 cells as analyzed by anchorage independent growth and nude mice assays [Kaul et al.,Oncogene,17,907-11,1998].Mot-2 was found to interact with tumor suppressor protein p53.The transient overexpression of mot-2 was inhibitory to transcriptional activation function of p53 [Wadhwa et al.,J.Biol.Chem.,273,2958691,1998].We demonstrate here that mot-2 transfected stable clone of NIH 3T3 that showed malignant properties indeed show inactivation of p53 function as assayed by exogenous p53 dependent reporter.The expression level of p53 in response to UV-irradiation was lower in NIH 3T3/mot-2 as compared to NIH 3T3 cells and also exhibited delay in reachingpeak.Furthermore,upon serum starvation p53 was seen to translocate to the nucleus in NIH 3T3,but not in its mot-3 derivative.The data suggests that mot-2 mediated cytoplasmic sequestration and inactivation of p53 may operate,at least in part,for malignant phenotype of NIH 3T3/mot-2 cells.

  10. [Stem cells and growth factors in wound healing].

    Science.gov (United States)

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  11. Conditional Inactivation of Pten with EGFR Overexpression in Schwann Cells Models Sporadic MPNST

    Directory of Open Access Journals (Sweden)

    Vincent W. Keng

    2012-01-01

    Full Text Available The genetic mechanisms involved in the transformation from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis-type-1- (NF1-associated or sporadic malignant peripheral nerve sheath tumors (MPNSTs remain unclear. It is hypothesized that many genetic changes are involved in transformation. Recently, it has been shown that both phosphatase and tensin homolog (PTEN and epidermal growth factor receptor (EGFR play important roles in the initiation of peripheral nerve sheath tumors (PNSTs. In human MPNSTs, PTEN expression is often reduced, while EGFR expression is often induced. We tested if these two genes cooperate in the evolution of PNSTs. Transgenic mice were generated carrying conditional floxed alleles of Pten, and EGFR was expressed under the control of the 2′,3′-cyclic nucleotide 3′phosphodiesterase (Cnp promoter and a desert hedgehog (Dhh regulatory element driving Cre recombinase transgenic mice (Dhh-Cre. Complete loss of Pten and EGFR overexpression in Schwann cells led to the development of high-grade PNSTs. In vitro experiments using immortalized human Schwann cells demonstrated that loss of PTEN and overexpression of EGFR cooperate to increase cellular proliferation and anchorage-independent colony formation. This mouse model can rapidly recapitulate PNST onset and progression to high-grade PNSTs, as seen in sporadic MPNST patients.

  12. Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apc(min/+) mice through altered Wnt receptor signaling.

    Science.gov (United States)

    Guo, Huabei; Nagy, Tamas; Pierce, Michael

    2014-11-01

    Deletion of GnT-V (MGAT5), which synthesizes N-glycans with β(1,6)-branched glycans, reduced the compartment of cancer stem cells (CSC) in the her-2 mouse model of breast cancer, leading to delay of tumor onset. Because GnT-V levels are also commonly up-regulated in colon cancer, we investigated their regulation of colon CSC and adenoma development. Anchorage-independent cell growth and tumor formation induced by injection of colon tumor cells into NOD/SCID mice were positively associated with GnT-V levels, indicating regulation of proliferation and tumorigenicity. Using Apc(min/+) mice with different GnT-V backgrounds, knock-out of GnT-V had no significant effect on the number of adenoma/mouse, but adenoma size was significantly reduced and accompanied increased survival of Apc(min/+) mice with GnT-V deletion (p cells, we found that FZD-7 receptors expressed N-linked β(1,6) branching, indicating that FZD-7 can be modified by GnT-V. The aberrant Wnt signaling observed after modulating GnT-V levels is likely to result from altered N-linked β(1,6) branching on FZD-7, thereby affecting Wnt signaling, the compartment of CSC, and tumor progression.

  13. The ethanolic extract of bark from Salix aegyptiaca L. inhibits the metastatic potential and epithelial to mesenchymal transition of colon cancer cell lines.

    Science.gov (United States)

    Enayat, Shabnam; Banerjee, Sreeparna

    2014-01-01

    Willow bark extracts have been used for centuries as a natural pain killer. Recently their potential as anticancer agents has been reported. We have shown the high antioxidant activity, phenolic and flavonoid content in the ethanolic extract of bark (EEB) from Salix aegyptiaca, a species endogenous to the Middle East. We have also reported that incubation with EEB resulted in a reduction in cell proliferation through the induction of apoptosis and cell cycle arrest via the inhibition of phosphatidyl inositol 3-kinase/Protein kinase B and mitogen activated protein kinases signaling pathways as strongly as commercial inhibitors. The current study demonstrates the robust inhibition of anchorage-independent growth, motility, migration, and adhesion of colon cancer cell lines HCT-116 and HT-29 by EEB. These in vitro functional changes were accompanied by a restoration of E-cadherin expression, a reduction in EGFR, SNAI1, SNAI2, and Twist1 and the matrix metalloproteases MMP9 and MMP2. Many of these proteins are involved in the process of epithelial to mesenchymal transition, which is considered as a critical step in the progression of noninvasive tumor cells into malignant, metastatic carcinomas. We therefore propose that EEB from Salix aegyptiaca is a potent nutraceutical causing cancer chemoprevention by inhibiting epithelial to mesenchymal transition and can be consumed for its health promoting effects.

  14. Microtubule Affinity-Regulating Kinase 2 is associated with DNA damage response and cisplatin resistance in non-small cell lung cancer

    Science.gov (United States)

    Hubaux, Roland; Thu, Kelsie L.; Vucic, Emily A.; Pikor, Larissa A.; Kung, Sonia H.Y.; Martinez, Victor D.; Mosslemi, Mitra; Becker-Santos, Daiana D.; Gazdar, Adi F.; Lam, Stephen; Lam, Wan L.

    2015-01-01

    Microtubule affinity-regulating kinases (MARKs) are involved in several cellular functions but few studies have correlated MARK kinase expression with cancer, and none have explored their role in lung cancer. In this study, we identified MARK2 as frequently disrupted by DNA hypomethylation and copy gain, resulting in concordant overexpression in independent lung tumor cohorts and we demonstrate a role for MARK2 in lung tumor biology. Manipulation of MARK2 in lung cell lines revealed its involvement in cell viability and anchorage-independent growth. Analyses of both manipulated cell lines and clinical tumor specimens identified a potential role for MARK2 in cell cycle activation and DNA repair. Associations between MARK2 and the E2F, Myc/Max, and NF-κB pathways were identified by luciferase assays and in-depth assessment of the NF-κB pathway suggests a negative association between MARK2 expression and NF-κB due to activation of non-canonical NF-κB signaling. Finally, we show that high MARK2 expression levels correlate with resistance to cisplatin, a standard first line chemotherapy for lung cancer. Collectively, our work supports a role for MARK2 in promoting malignant phenotypes of lung cancer and potentially modulating response to the DNA damaging chemotherapeutic, cisplatin. PMID:25907283

  15. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  16. HuR knockdown changes the oncogenic potential of oral cancer cells.

    Science.gov (United States)

    Kakuguchi, Wataru; Kitamura, Tetsuya; Kuroshima, Takeshi; Ishikawa, Makoto; Kitagawa, Yoshimasa; Totsuka, Yasunori; Shindoh, Masanobu; Higashino, Fumihiro

    2010-04-01

    HuR binds to AU-rich element-containing mRNA to protect them from rapid degradation. Here, we show that knockdown of HuR changes the oncogenic properties of oral cancer cells. Oral squamous cell carcinoma cell lines, HSC-3 and Ca9.22, which express HuR protein and cytoplasmic AU-rich element mRNA more abundantly than normal cells, were subjected to HuR knockdown. In the HuR-knockdown cancer cells, the cytoplasmic expression of c-fos, c-myc, and COX-2 mRNAs was inhibited compared with those in cells that had been transfected with a control small interfering RNA, and the half-lives of these mRNAs were shorter than those of their counterparts in the control cells. HuR-knockdown cells failed to make colonies in soft agar, suggesting that the cells had lost their ability for anchorage-independent cell growth. Additionally, the motile and invasive activities of the cells decreased remarkably by HuR knockdown. Furthermore, the expression of cell cycle-related proteins, such as cyclin A, cyclin B1, cyclin D1, and cyclin-dependent kinase 1, was reduced in HuR-knockdown cancer cells, and HuR bound to cdk1 mRNA to stabilize it. These findings suggest that HuR knockdown changes the features of oral cancer cells, at least in part, by affecting their cell cycle and shows potential as an effective therapeutic approach.

  17. Silencing the mannose 6-phosphate/IGF-II receptor differentially affects tumorigenic properties of normal breast epithelial cells.

    Science.gov (United States)

    Caixeiro, Nicole J; Martin, Janet L; Scott, Carolyn D

    2013-12-01

    Although loss of the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR) in breast cancer is believed to play a role in tumorigenesis, it has not been demonstrated that M6P/IGF-IIR loss is sufficient to confer a malignant phenotype in an untransformed cell. We investigated the impact of M6P/IGF-IIR silencing using phenotypically normal (MCF-10A) and oncogenically transformed (MCF-10T, the c-Ha-ras transformed derivative of MCF-10A) human breast epithelial cell lines as model systems. In both cell lines, silencing of M6P/IGF-IIR increased cell proliferation and motility, with the effects being more pronounced in MCF-10A cells. Although anchorage-independent growth was increased by M6P/IGF-IIR silencing in MCF-10T cells, MCF-10A cells did not acquire the ability to grow in soft agar. Conversely, reduced M6P/IGF-IIR expression increased the invasive potential of MCF-10A cells, but did not enhance the already high rate of invasion of MCF-10T cells. M6P/IGF-IIR silencing had no effect on basal or IGF-II-stimulated IGF-I receptor (IGF-IR) or AKT phosphorylation in either cell line, but both were abrogated by IGF-IR kinase inhibition, which also reduced the stimulatory effect of M6P/IGF-IIR silencing on proliferation under basal and IGF-II-stimulated conditions in both cell lines. However, cell motility was neither stimulated by IGF-II nor reduced by IGF-IR inhibition, suggesting that potentiation of specific tumorigenic features in response to M6P/IGF-IIR silencing involves IGF-II- dependent and -independent mechanisms. Collectively, these data suggest that M6P/IGF-IIR silencing alone is insufficient to confer a tumorigenic phenotype, but can enhance tumorigenicity in an already transformed cell.

  18. Tumorigenicity of IL-1α– and IL-1β–Deficient Fibrosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Irina Nazarenko

    2008-06-01

    Full Text Available Analyzing the growth of fibrosarcoma lines derived from IL-1α–, IL-1β–, or IL-1αβ–knockout (−/− mice in the immunocompetent host revealed that tumor-derived IL-1α and IL-1β exert strong and opposing effects on immune response induction, which prohibited the evaluation of a potential impact on tumorigenicity. Therefore, in vivo growth of IL-1–deficient tumor lines was evaluated in nu/nu mice and was compared with in vitro growth characteristics. All IL-1–deficient fibrosarcoma lines grow in immunocompromised mice. However, IL-1α−/−β–competent (comp lines grow more aggressively, efficiently induce angiogenesis, and recruit inflammatory cells. Despite stronger tumorigenicity of IL-1βcomp lines, IL-1α strengthens anchorage-independent growth, but both IL-1α and IL-1β support drug resistance. Corresponding to the aggressive growth, IL-1βcomp cells display increased matrix adhesion, motility, and cable formation on matrigel, likely supported by elevated αv/β3 and matrix metalloproteinase expression. Recruitment of myeloid cells requires IL-1β but is regulated by IL-1α, because inflammatory chemokine and cytokine expression is stronger in IL-1α−/−βcomp than in IL-1wt lines. This regulatory effect of tumorderived IL-1α is restricted to the tumor environment and does not affect systemic inflammatory response induction by tumor-derived IL-1β. Both sarcoma cell–derived IL-1α and IL-1β promote tumor growth. However, IL-1α exerts regulatory activity on the tumor cell–matrix cross-talk, and only IL-1β initiates systemic inflammation.

  19. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  20. Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells.

    Science.gov (United States)

    Debeb, Bisrat G; Cohen, Evan N; Boley, Kimberly; Freiter, Erik M; Li, Li; Robertson, Fredika M; Reuben, James M; Cristofanilli, Massimo; Buchholz, Thomas A; Woodward, Wendy A

    2012-07-01

    Basal breast cancer, common among patients presenting with inflammatory breast cancer (IBC), has been shown to be resistant to radiation and enriched in cancer stem cells. The Notch pathway plays an important role in self-renewal of breast cancer stem cells and contributes to inflammatory signaling which promotes the breast cancer stem cell phenotype. Herein, we inhibited Notch signaling using a gamma secretase inhibitor, RO4929097, in an in vitro model that enriches for cancer initiating cells (3D clonogenic assay) and conventional 2D clonogenic assay to compare the effect on radiosensitization of the SUM149 and SUM190 IBC cell lines. RO4929097 downregulated the Notch target genes Hes1, Hey1, and HeyL, and showed a significant reduction in anchorage independent growth in SUM190 and SUM149. However, the putative self-renewal assay mammosphere formation efficiency was increased with the drug. To assess radiosensitization of putative cancer stem cells, cells were exposed to increasing doses of radiation with or without 1 μM RO4929097 in their standard (2D) and self-renewal enriching (3D) culture conditions. In the conventional 2D clonogenic assay, RO4929097 significantly sensitized SUM190 cells to ionizing radiation and has a modest radiosensitization effect in SUM149 cells. In the 3D clonogenic assays, however, a radioprotective effect was seen in both SUM149 and SUM190 cells at higher doses. Both cell lines express IL-6 and IL-8 cytokines known to mediate the efficacy of Notch inhibition and to promote self-renewal of stem cells. We further showed that RO429097 inhibits normal T-cell synthesis of some inflammatory cytokines, including TNF-α, a potential mediator of IL-6 and IL-8 production in the microenvironment. These data suggest that additional targeting agents may be required to selectively target IBC stem cells through Notch inhibition, and that evaluation of microenvironmental influences may shed further light on the potential effects of this inhibitor.

  1. Phenotypes and karyotypes of human malignant mesothelioma cell lines.

    Directory of Open Access Journals (Sweden)

    Vandana Relan

    Full Text Available BACKGROUND: Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. METHODS: Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. RESULTS: Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30-72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5-17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. CONCLUSION: These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of

  2. Effects of aluminium chloride and aluminium chlorohydrate on DNA repair in MCF10A immortalised non-transformed human breast epithelial cells.

    Science.gov (United States)

    Farasani, A; Darbre, P D

    2015-11-01

    Use of underarm aluminium (Al)-based antiperspirant salts may be a contributory factor in breast cancer development. At the 10th Keele meeting, Al was reported to cause anchorage-independent growth and double strand DNA breaks in MCF10A immortalised non-transformed human breast epithelial cells. We now report that exposure of MCF10A cells to Al chloride or Al chlorohydrate also compromised DNA repair systems. Long-term (19-21 weeks) exposure to Al chloride or Al chlorohydrate at a 10(-4) M concentration resulted in reduced levels of BRCA1 mRNA as determined by real-time RT-PCR and BRCA1 protein as determined by Western immunoblotting. Reduced levels of mRNA for other DNA repair genes (BRCA2, CHK1, CHK2, Rad51, ATR) were also observed using real-time RT-PCR. Loss of BRCA1 or BRCA2 gene function has long been associated with inherited susceptibility to breast cancer but these results suggest that exposure to aluminium-based antiperspirant salts may also reduce levels of these key components of DNA repair in breast epithelial cells. If Al can not only damage DNA but also compromise DNA repair systems, then there is the potential for Al to impact on breast carcinogenesis.

  3. Expression of selected pathway-marker genes in human urothelial cells exposed chronically to a non-cytotoxic concentration of monomethylarsonous acid

    Directory of Open Access Journals (Sweden)

    Matthew Medeiros

    2014-01-01

    Full Text Available Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa at concentrations 20-fold less than arsenite. MMA(III was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A previous microarray analysis revealed only minor changes in gene expression at 1 and 2 months of chronic exposure to MMA(III, contrasting with substantial changes observed at 3 months of exposure. To address the lack of information between 2 and 3 months of exposure (the critical period of transformation, the expression of select pathway marker genes was measured by PCR array analysis on a weekly basis. Cell proliferation rate, anchorage-independent growth, and tumorigenicity in SCID mice were also assessed to determine the early, persistent phenotypic changes and their association with the changes in expression of these selected marker genes. A very similar pattern of alterations in these genes was observed when compared to the microarray results, and suggested that early perturbations in cell signaling cascades, immunological pathways, cytokine expression, and MAPK pathway are particularly important in driving malignant transformation. These results showed a strong association between the acquired phenotypic changes that occurred as early as 1–2 months of chronic MMA(III exposure, and the observed gene expression pattern that is indicative of the earliest stages in carcinogenesis.

  4. Modulation of the BRCA1 Protein and Induction of Apoptosis in Triple Negative Breast Cancer Cell Lines by the Polyphenolic Compound Curcumin

    Directory of Open Access Journals (Sweden)

    Danica L. Rowe

    2009-09-01

    Full Text Available In the current study, we sought to examine the effects of curcumin in a specific type of breast cancer called triple negative breast cancer. These cancers lack expression of the estrogen and progesterone receptors and do not over-express HER2. Current treatment for triple negative breast cancers is limited to cytotoxic chemotherapy, and upon relapse, there are not any therapies currently available. We demonstrate here that the bioactive food compound curcumin induces DNA damage in triple negative breast cancer cells in association with phosphorylation, increased expression, and cytoplasmic retention of the BRCA1 protein. In addition, curcumin promotes apoptosis and prevents anchorage-independent growth and migration of triple negative breast cancer cells. Apoptosis and BRCA1 modulation were not observed in non-transformed mammary epithelial cells, suggesting curcumin may have limited non-specific toxicity. This study suggests that curcumin and potentially curcumin analogues should be tested further in the context of triple negative breast cancer. These results are novel, having never been previously reported, and suggest that curcumin could provide a novel, non-toxic therapy, which could lead to improved survival for patients with triple negative breast cancer. Curcumin should be studied further in this subset of breast cancer patients, for whom treatment options are severely limited.

  5. The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Bedal, Konstanze B; Grässel, Susanne; Spanier, Gerrit; Reichert, Torsten E; Bauer, Richard J

    2015-11-01

    Collagen XVI, a fibril-associated collagen with interrupted triple helix (FACIT) collagen, is involved in oral squamous cell carcinoma (OSCC) and glioblastoma progression. The NC11 domain of collagen XVI has been described previously with a strong implication in physiological processes. We detected the non-collagenous (NC) 11-domain in supernatants of OSCC cells after recombinant expression of full-length collagen XVI and in sera from OSCC patients and healthy individuals. Stable expression of NC11-green fluorescent protein (GFP) fusion protein in OSCC cells initiated proliferation control and block of anchorage-independent growth. Moreover, the NC11 domain triggered the generation of tubular-like net structures on laminin-rich matrix in contrast to mock-GFP control cells and cells expressing full-length collagen XVI. Taqman® quantitative PCR and diaminobenzidine staining in 2D- and 3D cell culture revealed a significantly increased gene and protein expression of VEGFR1, VEGFR2 and uPAR in recombinant NC11-GFP-expressing cells. Specific VEGF receptor inhibition with Axitinib or fetal calf serum heat inactivation prevented formation of tubular-like net structures. Accordantly, NC11-GFP coated culture slides led to an increase of focal adhesion contact formation and the upregulation of VEGFR1 and uPAR in three different non-transfected OSCC cell lines. In summary, we suggest that the NC11 domain of collagen XVI is a potential biomarker for OSCC and triggers vasculogenic mimicry via upregulation of endothelial receptors VEGFR1, VEGFR2 and uPAR in 2D- and 3D OSCC cell culture conditions.

  6. MEK activity controls IL-8 expression in tamoxifen-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Although tamoxifen reduces disease progression, tamoxifen resistance occurs during the course of estrogen receptor-positive [ER+] breast cancer treatment. In the present study, we investigated the possibility that interleukin-8 (IL-8) is a prognostic marker for tamoxifen resistance and aimed to clarify the regulation of IL-8 expression in tamoxifen-resistant cells. Clinically, IL-8 expression is positively correlated with survival in luminal A type breast cancer patients, but not in luminal B type breast cancer patients. In addition, the levels of IL-8 mRNA and protein expression were significantly increased in tamoxifen-resistant (TamR) cells compared to tamoxifen-sensitive (TamS) cells. To determine the regulatory mechanism of IL-8 expression in TamR cells, we analyzed the activities of signaling molecules. Our results showed that the phosphorylation levels of MEK and Akt were markedly increased in TamR cells, but there was no change in the phosphorylation level of p38 MAPK. On the contrary, we observed that elevated IL-8 mRNA expression was suppressed by a specific MEK1/2 inhibitor, UO126, but not by the specific PI-3K inhibitor LY294002, in TamR cells, whereas, we found that overexpression of constitutively active-MEK (CA-MEK) significantly increased the levels of IL-8 mRNA expression in TamS cells. Finally, we investigated the effect of the specific CXCR1/2 inhibitor SB225002 on anchorage-independent growth of TamR cells, and found that the growth was completely suppressed by SB225002. Taken together, our results demonstrate that IL-8 expression is regulated through a MEK/ERK-dependent pathway in TamR cells, suggesting that IL-8 and its receptors may be promising therapeutic targets for overcoming tamoxifen resistance.

  7. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  8. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yoshizaki Yumiko

    2010-03-01

    Full Text Available Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF gene via peroxisome proliferator-activated receptor γ (PPARγ; VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC. Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.

  9. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the a

  10. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels.

    Directory of Open Access Journals (Sweden)

    Aejaz Sayeed

    Full Text Available Dynamic crosstalk between growth factor receptors, cell adhesion molecules and extracellular matrix is essential for cancer cell migration and invasion. Integrins are transmembrane receptors that bind extracellular matrix proteins and enable cell adhesion and cytoskeletal organization. They also mediate signal transduction to regulate cell proliferation and survival. The type 1 insulin-like growth factor receptor (IGF-IR mediates tumor cell growth, adhesion and inhibition of apoptosis in several types of cancer. We have previously demonstrated that β1 integrins regulate anchorage-independent growth of prostate cancer (PrCa cells by regulating IGF-IR expression and androgen receptor-mediated transcriptional functions. Furthermore, we have recently reported that IGF-IR regulates the expression of β1 integrins in PrCa cells. We have dissected the mechanism through which IGF-IR regulates β1 integrin expression in PrCa. Here we report that IGF-IR is crucial for PrCa cell growth and that β1 integrins contribute to the regulation of proliferation by IGF-IR. We demonstrate that β1 integrin regulation by IGF-IR does not occur at the mRNA level. Exogenous expression of a CD4 - β1 integrin cytoplasmic domain chimera does not interfere with such regulation and fails to stabilize β1 integrin expression in the absence of IGF-IR. This appears to be due to the lack of interaction between the β1 cytoplasmic domain and IGF-IR. We demonstrate that IGF-IR stabilizes the β1 subunit by protecting it from proteasomal degradation. The α5 subunit, one of the binding partners of β1, is also downregulated along with β1 upon IGF-IR knockdown while no change is observed in the expression of the α2, α3, α4, α6 and α7 subunits. Our results reveal a crucial mechanistic role for the α5β1 integrin, downstream of IGF-IR, in regulating cancer growth.

  11. Alterations of EGFR, p53 and PTEN that mimic changes found in basal-like breast cancer promote transformation of human mammary epithelial cells.

    Science.gov (United States)

    Pires, Maira M; Hopkins, Benjamin D; Saal, Lao H; Parsons, Ramon E

    2013-03-01

    Breast cancer can be classified into different molecular subtypes with varying clinical and pathological characteristics. The basal-like breast cancer subtype represents one of the most aggressive and lethal types of breast cancer, and due to poor mechanistic understanding, it lacks targeted therapy. Many basal-like breast cancer patient samples display alterations of established drivers of cancer development, including elevated expression of EGFR, p53 inactivating mutations and loss of expression of the tumor suppressor PTEN; however, their contribution to human basal-like breast cancer pathogenesis remains ill-defined. Using non-transformed human mammary epithelial cells, we set out to determine whether altering EGFR, p53 and PTEN in different combinations could contribute to basal-like breast cancer progression through transformation of cells. Altering PTEN in combination with either p53 or EGFR in contrast to any of the single alterations caused increased growth of transformed colonies in soft agar. Concomitantly modifying all three genes led to the highest rate of cellular proliferation and the greatest degree of anchorage-independent colony formation. Results from our effort to engineer a model of BBC expressing alterations of EGFR, p53 and PTEN suggest that these changes are cooperative and likely play a causal role in basal-like breast cancer pathogenesis. Consideration should be given to targeting EGFR and restoring p53 and PTEN signaling simultaneously as a strategy for treatment of this subtype of breast cancer.

  12. The metastasis inducer CCN1 (CYR61) activates the fatty acid synthase (FASN)-driven lipogenic phenotype in breast cancer cells

    Science.gov (United States)

    Menendez, Javier A.; Vellon, Luciano; Espinoza, Ingrid; Lupu, Ruth

    2016-01-01

    The angiogenic inducer CCN1 (Cysteine-rich 61, CYR61) is differentially activated in metastatic breast carcinomas. However, little is known about the precise mechanisms that underlie the pro-metastatic actions of CCN1. Here, we investigated the impact of CCN1 expression on fatty acid synthase (FASN), a metabolic oncogene thought to provide cancer cells with proliferative and survival advantages. Forced expression of CCN1 in MCF-7 cells robustly up-regulated FASN protein expression and also significantly increased FASN gene promoter activity 2- to 3-fold, whereas deletion of the sterol response element-binding protein (SREBP) binding site in the FASN promoter completely abrogated CCN1-driven transcriptional activation. Pharmacological blockade of MAPK or PI-3'K activation similarly prevented the ability of CCN1 to induce FASN gene activation. Pharmacological inhibition of FASN activity with the mycotoxin cerulenin or the small compound C75 reversed CCN1-induced acquisition of estrogen independence and resistance to hormone therapies such as tamoxifen and fulvestrant in anchorage-independent growth assays. This study uncovers FASNdependent endogenous lipogenesis as a new mechanism controlling the metastatic phenotype promoted by CCN1. Because estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer, this previously unrecognized CCN1-driven lipogenic phenotype represents a novel metabolic target to clinically manage metastatic disease progression.

  13. Constitutive CCND1/CDK2 activity substitutes for p53 loss, or MYC or oncogenic RAS expression in the transformation of human mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Damian J Junk

    Full Text Available Cancer develops following the accumulation of genetic and epigenetic alterations that inactivate tumor suppressor genes and activate proto-oncogenes. Dysregulated cyclin-dependent kinase (CDK activity has oncogenic potential in breast cancer due to its ability to inactivate key tumor suppressor networks and drive aberrant proliferation. Accumulation or over-expression of cyclin D1 (CCND1 occurs in a majority of breast cancers and over-expression of CCND1 leads to accumulation of activated CCND1/CDK2 complexes in breast cancer cells. We describe here the role of constitutively active CCND1/CDK2 complexes in human mammary epithelial cell (HMEC transformation. A genetically-defined, stepwise HMEC transformation model was generated by inhibiting p16 and p53 with shRNA, and expressing exogenous MYC and mutant RAS. By replacing components of this model, we demonstrate that constitutive CCND1/CDK2 activity effectively confers anchorage independent growth by inhibiting p53 or replacing MYC or oncogenic RAS expression. These findings are consistent with several clinical observations of luminal breast cancer sub-types that show elevated CCND1 typically occurs in specimens that retain wild-type p53, do not amplify MYC, and contain no RAS mutations. Taken together, these data suggest that targeted inhibition of constitutive CCND1/CDK2 activity may enhance the effectiveness of current treatments for luminal breast cancer.

  14. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Science.gov (United States)

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  15. Activating the expression of human K-rasG12D stimulates oncogenic transformation in transgenic goat fetal fibroblast cells.

    Directory of Open Access Journals (Sweden)

    Jianhua Gong

    Full Text Available Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency, hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established.

  16. Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells.

    Science.gov (United States)

    Yeh, D-W; Chen, Y-S; Lai, C-Y; Liu, Y-L; Lu, C-H; Lo, J-F; Chen, L; Hsu, L-C; Luo, Y; Xiang, R; Chuang, T-H

    2016-05-01

    Sustained activation of nuclear factor-κB (NF-κB) in cancer cells has been shown to promote inflammation, expansion of cancer stem cell (CSC) population, and tumor development. In contrast, recent studies reveal that CSCs exhibit increased inflammation due to constitutive NF-κB activation; however, the underlying molecular mechanism remains unclear. In the present study, the analysis of microarray data revealed upregulation of NF-κB-regulated pro-inflammatory genes and downregulation of copper metabolism MURR1 domain-containing 1 (COMMD1) during the enrichment for stemness in SAS head and neck squamous-cell carcinoma (HNSCC) cells. The 3'-UTR of COMMD1 mRNA contains microRNA (miR)-205 target site. Parallel studies with HNSCC and NSCLC cells indicated that miR-205 is upregulated upon NF-κB activation and suppresses COMMD1 expression in stemness-enriched cancer cells. COMMD1 negatively regulates the inflammatory responses induced by TLR agonists, IL-1β, and TNF-α by targeting RelA for degradation. The shRNA-mediated downregulation of COMMD1 in cancer cells enhanced inflammatory response, generating favorable conditions for macrophage recruitment. In addition, genes associated with stemness were also upregulated in these cells, which exhibited increased potential for anchorage-independent growth. Furthermore, COMMD1 downregulation promoted in vivo tumorigenesis and tumor growth, and tumors derived from COMMD1-knockdown cells displayed elevated level of NF-κB activation, increased expression of inflammatory- and stemness-associated genes, and contain expanded population of tumor-associated leukocytes and stemness-enriched cancer cells. These results suggest that COMMD1 downregulation by miR-205 promotes tumor development by modulating a positive feedback loop that amplifies inflammatory- and stemness-associated properties of cancer cells.

  17. Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth.

    Science.gov (United States)

    Kostantin, Elie; Hardy, Serge; Valinsky, William C; Kompatscher, Andreas; de Baaij, Jeroen H F; Zolotarov, Yevgen; Landry, Melissa; Uetani, Noriko; Martínez-Cruz, Luis Alfonso; Hoenderop, Joost G J; Shrier, Alvin; Tremblay, Michel L

    2016-05-13

    The oncogenic phosphatase of regenerating liver 2 (PRL-2) has been shown to regulate intracellular magnesium levels by forming a complex through an extended amino acid loop present in the Bateman module of the CNNM3 magnesium transporter. Here we identified highly conserved residues located on this amino acid loop critical for the binding with PRL-2. A single point mutation (D426A) of one of those critical amino acids was found to completely disrupt PRL-2·human Cyclin M 3 (CNNM3) complex formation. Whole-cell voltage clamping revealed that expression of CNNM3 influenced the surface current, whereas overexpression of the binding mutant had no effect, indicating that the binding of PRL-2 to CNNM3 is important for the activity of the complex. Interestingly, overexpression of the CNNM3 D426A-binding mutant in cancer cells decreased their ability to proliferate under magnesium-deprived situations and under anchorage-independent growth conditions, demonstrating a PRL-2·CNNM3 complex-dependent oncogenic advantage in a more stringent environment. We further confirmed the importance of this complex in vivo using an orthotopic xenograft breast cancer model. Finally, because molecular modeling showed that the Asp-426 side chain in CNNM3 buries into the catalytic cavity of PRL-2, we showed that a PRL inhibitor could abrogate complex formation, resulting in a decrease in proliferation of human breast cancer cells. In summary, we provide evidence that this fundamental regulatory aspect of PRL-2 in cancer cells could potentially lead to broadly applicable and innovative therapeutic avenues.

  18. Growth kinetics of Thiobacillus ferrooxidans in bioelectrochemical cell

    Institute of Scientific and Technical Information of China (English)

    李宏煦; 王淀佐; 邱冠周; 胡岳华

    2004-01-01

    Thiobacillus ferrooxidans might be the most important bacteria used in biometallurgy. The foundation way of its growth process is oxidizing ferrous in order to obtain energy needed for metabolism, but the variation of ferrous concentration and mixed potential of the culture media would have crucial effect on the bacteria growth.Based on the characteristics of Thiobacillus ferrooxidans growth and redox potential of ferric and ferrous, an electrochemical cell was designed conventionally to study growth rule and the relationship between redox potential and bacteria growth was built up, and some growth kinetics of Thiobacillus ferrooxidans were elucidated. It demonstrates that the variation of open potential of electrochemical cell △E shows the growth tendency of Thiobacillus ferrooxidans, at the initial growth stage, the value of △E increases slowly, when at logistic growth stage, it increases drastically, and the growth rate of bacteria is linear with the oxidation rate of ferrous. The bacteria growth kinetics model is proposed using Monod and Michealis-Menten equation, and the kinetics parameters are got. The consistence of the measured and the calculated results proves that it is proper to use the proposed kinetics model and the electrochemical cell method to describe the growth rule of Thiobacillus ferrooxidans.

  19. HAb18G/CD147 cell-cell contacts confer resistance of a HEK293 subpopulation to anoikis in an E-cadherin-dependent manner

    Directory of Open Access Journals (Sweden)

    Zhu Ping

    2010-04-01

    resistance to anoikis implicates PI3K pathway in a highly relevant cell model (HEK293ar. Understanding of the role of HAb18G/CD147 cell-cell contacts in anoikis resistance may help in understanding the survival of cells in anchorage-independent growth, such as cells in tumor metastasis and suspension culture produced for biomedical engineering. Our results also contribute to a better understanding of the biology of HEK293 cell spheroids, a major workhorse for producing human therapeutic agents and viral vaccines.

  20. Growth of children with Langerhans cell histiocytosis

    NARCIS (Netherlands)

    A.C.J. van den Hoek (A. C J); A. Karstens (A.); R.M. Egeler (Maarten); K. Hählen (Karel)

    1995-01-01

    textabstractConclusion: GH deficiency is not a common manifestation of LCH in childhood and GH provocation tests are only indicated when there is a poor or decelerating growth rate. In our patients the number of organs involved and/or the treatment modality did not influence the growth in all but on

  1. Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens.

    Science.gov (United States)

    Rathore, Kusum; Wang, Hwa-Chain Robert

    2012-03-01

    Sporadic breast cancers are mainly attributable to long-term exposure to environmental factors, via a multi-year, multi-step, and multi-path process of tumorigenesis involving cumulative genetic and epigenetic alterations in the chronic carcinogenesis of breast cells from a non-cancerous stage to precancerous and cancerous stages. Epidemiologic and experimental studies have suggested that green tea components may be used as preventive agents for breast cancer control. In our research, we have developed a cellular model that mimics breast cell carcinogenesis chronically induced by cumulative exposures to low doses of environmental carcinogens. In this study, we used our chronic carcinogenesis model as a target system to investigate the activity of green tea catechin extract (GTC) at non-cytotoxic levels in intervention of cellular carcinogenesis induced by cumulative exposures to pico-molar 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P). We identified that GTC, at a non-cytotoxic, physiologically achievable concentration of 2.5 µg/mL, was effective in suppressing NNK- and B[a]P-induced cellular carcinogenesis, as measured by reduction of the acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth, increased cell mobility, and acinar-conformational disruption. We also detected that intervention of carcinogen-induced elevation of reactive oxygen species (ROS), increase of cell proliferation, activation of the ERK pathway, DNA damage, and changes in gene expression may account for the mechanisms of GTC's preventive activity. Thus, GTC may be used in dietary and chemoprevention of breast cell carcinogenesis associated with long-term exposure to low doses of environmental carcinogens.

  2. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells.

    Science.gov (United States)

    Giordano, Cinzia; Vizza, Donatella; Panza, Salvatore; Barone, Ines; Bonofiglio, Daniela; Lanzino, Marilena; Sisci, Diego; De Amicis, Francesca; Fuqua, Suzanne A W; Catalano, Stefania; Andò, Sebastiano

    2013-06-01

    Obesity condition confers risks to breast cancer development and progression, and several reports indicate that the adipokine leptin, whose synthesis and plasma levels increase with obesity, might play an important role in modulating breast cancer cell phenotype. Functional crosstalk occurring between leptin and different signaling molecules contribute to breast carcinogenesis. In this study, we show, in different human breast cancer cell lines, that leptin enhanced the expression of a chaperone protein Hsp90 resulting in increased HER2 protein levels. Silencing of Hsp90 gene expression by RNA interference abrogated leptin-mediated HER2 up-regulation. Leptin effects were dependent on JAK2/STAT3 activation, since inhibition of this signaling cascade by AG490 or ectopic expression of a STAT3 dominant negative abrogated leptin-induced HER2 and Hsp90 expressions. Functional experiments showed that leptin treatment significantly up-regulated human Hsp90 promoter activity. This occurred through an enhanced STAT3 transcription factor binding to its specific responsive element located in the Hsp90 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Analysis of HER2, Akt and MAPK phosphorylation levels revealed that leptin treatment amplified the responsiveness of breast cancer cells to growth factor stimulation. Furthermore, we found that long-term leptin exposure reduced sensitivity of breast cancer cells to the antiestrogen tamoxifen. In the same experimental conditions, the combined treatment of tamoxifen with the Hsp90 inhibitor 17-AAG completely abrogated leptin-induced anchorage-independent breast cancer cell growth. In conclusion, our results highlight, for the first time, the ability of the adipocyte-secreted factor leptin to modulate Hsp90/HER2 expressions in breast cancer cells providing novel insights into the molecular mechanism linking obesity to breast cancer growth and progression.

  3. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Yang JIAO; Chun-min GE; Qing-hui MENG; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2007-01-01

    Aim: To investigate the anticancer activity of dihydroartemisinin (DHA), a deriva-tive of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Methods: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Results: Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cyto-toxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. Conclusion: The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  4. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K;

    1994-01-01

    lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1......MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...

  5. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  6. Another brick in the cell wall: biosynthesis dependent growth model.

    Science.gov (United States)

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  7. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  8. How does cell size regulation affect population growth?

    CERN Document Server

    Lin, Jie

    2016-01-01

    The proliferation of a growing microbial colony is well characterized by the population growth rate. However, at the single-cell level, isogenic cells often exhibit different cell-cycle durations. For evolutionary dynamics, it is thus important to establish the connection between the population growth rate and the heterogeneous single-cell generation time. Existing theories often make the assumption that the generation times of mother and daughter cells are independent. However, it has been shown that to maintain a bounded cell size distribution, cells that grow exponentially at the single-cell level need to adopt cell size regulation, leading to a negative correlation of mother-daughter generation time. In this work, we construct a general framework to describe the population growth in the presence of size regulation. We derive a formula for the population growth rate, which only depends on the variability of single-cell growth rate, independent of other sources of noises. Our work shows that a population ca...

  9. Growth-stimulatory effect of resveratrol in human cancer cells.

    Science.gov (United States)

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  10. Isolation and characterization of calcium sensing receptor null cells: a highly malignant and drug resistant phenotype of colon cancer.

    Science.gov (United States)

    Singh, Navneet; Liu, Guangming; Chakrabarty, Subhas

    2013-05-01

    The expression of calcium sensing receptor (CaSR) in the human colonic crypt epithelium is linked to cellular differentiation while its lack of expression is associated with undifferentiated and invasive colon carcinoma. Human colon carcinoma cell lines contain small subpopulations (10-20%) that do not express CaSR (termed CaSR null cells). Here, we report on the isolation, propagation, maintenance and characterization of CaSR null cells from the CBS and HCT116 human colon carcinoma cell lines. CaSR null cells grew as three-dimensional non-adherent spherical clusters with increased propensity for anchorage independent growth, cellular proliferation and invasion of matrigels. CaSR null cells were highly resistant to fluorouracil and expressed abundant amount of thymidylate synthase and survivin. Molecular profiling by real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blots showed a high level of expression of the previously reported cancer stem cell markers CD133, CD44 and Nanog in CaSR null cells. A significant increase in the expression of epithelial-mesenchymal transitional molecules and transcription factors was also observed. These include N-cadherin, β-catenin, vimentin, fibronectin, Snail1, Snail2, Twist and FOXC2. The expression of the tumor suppressive E-cadherin and miR145, on the other hand, was greatly reduced while expression of the oncogenic microRNAs: miR21, miR135a and miR135b was significantly up-regulated. CaSR null cells possess a myriad of cellular and molecular features that drive and sustain the malignant phenotype. We conclude that CaSR null constitutes a highly malignant and drug resistant phenotype of colon cancer.

  11. Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage.

    Science.gov (United States)

    Annangi, Balasubramanyam; Bach, Jordi; Vales, Gerard; Rubio, Laura; Marcos, Ricard; Hernández, Alba

    2015-03-01

    A weak aspect of the in vitro studies devoted to get information on the toxic, genotoxic and carcinogenic properties of nanomaterials is that they are usually conducted under acute-exposure and high-dose conditions. This makes difficult to extrapolate the results to human beings. To overcome this point, we have evaluated the cell transforming ability of cobalt nanoparticles (CoNPs) after long-term exposures (12 weeks) to sub-toxic doses (0.05 and 0.1 µg/mL). To get further information on whether CoNPs-induced oxidative DNA damage is relevant for CoNPs carcinogenesis, the cell lines selected for the study were the wild-type mouse embryonic fibroblast (MEF Ogg1(+/+)) and its isogenic Ogg1 knockout partner (MEF Ogg1(-)(/)(-)), unable to properly eliminate the 8-OH-dG lesions from DNA. Our initial short-term exposure experiments demonstrate that low doses of CoNPs are able to induce reactive oxygen species (ROS) and that MEF Ogg1(-)(/)(-) cells are more sensitive to CoNPs-induced acute toxicity and oxidative DNA damage. On the other hand, long-term exposures of MEF cells to sub-toxic doses of CoNPs were able to induce cell transformation, as indicated by the observed morphological cell changes, significant increases in the secretion of metalloproteinases (MMPs) and anchorage-independent cell growth ability, all cancer-like phenotypic hallmarks. Interestingly, such changes were significantly dependent on the cell line used, the Ogg1(-)(/)(-) cells being particularly sensitive. Altogether, the data presented here confirms the potential carcinogenic risk of CoNPs and points out the relevance of ROS and Ogg1 genetic background on CoNPs-associated effects.

  12. Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations.

    Science.gov (United States)

    Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo

    2016-01-01

    Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs.

  13. Activation of phospholipase D activity in transforming growth factor—beta—induced cell growth inhibition

    Institute of Scientific and Technical Information of China (English)

    ZHOUBINGHONG; JUNSONGCHEN; 等

    2000-01-01

    Cells regulate phospholipase D(PLD) activity in response to numerous extracellular signals.Here,we investigated the involvement of PLD activity in transforming growth factor-β(TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1)-mediated growth inhibition of epithelial cells.TGF-β1 inhibits the growth of MDCK,Mv1Lu,and A-549 cells.In the presence of 0.4% butanol,TGF-β1 induces an increase in the formation of phosphatidylbutanol,a unique product catalyzed by PLD.TGF-β1 also induces an increase in phosphatidic acid (PA) level in A-549 and MDCK cells.TGF-β1 induces an increase in the levels of DAG labeled with [3H]-myristic acid in A-549 and MDCK cells but not in Mv1Lu cells.No increase of DAG was observed in cells prelabeled with [3H]-arachidonic acid.The data presented suggest that PLD activation is involved in the TGF-β1-induced cell growth inhibition.

  14. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells.

    Science.gov (United States)

    Sastry, K S R; Al-Muftah, M A; Li, Pu; Al-Kowari, M K; Wang, E; Ismail Chouchane, A; Kizhakayil, D; Kulik, G; Marincola, F M; Haoudi, A; Chouchane, L

    2014-12-01

    Emerging evidence suggests that the resistance of cancer stem cells (CSC) to many conventional therapies is one of the major limiting factors of cancer therapy efficacy. Identification of mechanisms responsible for survival and self-renewal of CSC will help design new therapeutic strategies that target and eliminate both differentiated cancer cells and CSC. Here we demonstrated the potential role of proapoptotic protein BAD in the biology of CSC in melanoma, prostate and breast cancers. We enriched CD44(+)/CD24(-) cells (CSC) by tumorosphere formation and purified this population by FACS. Both spheres and CSC exhibited increased potential for proliferation, migration, invasion, sphere formation, anchorage-independent growth, as well as upregulation of several stem cell-associated markers. We showed that the phosphorylation of BAD is essential for the survival of CSC. Conversely, ectopic expression of a phosphorylation-deficient mutant BAD induced apoptosis in CSC. This effect was enhanced by treatment with a BH3-mimetic, ABT-737. Both pharmacological agents that inhibit survival kinases and growth factors that are involved in drug resistance delivered their respective cytotoxic and protective effects by modulating the BAD phosphorylation in CSC. Furthermore, the frequency and self-renewal capacity of CSC was significantly reduced by knocking down the BAD expression. Consistent with our in vitro results, significant phosphorylation of BAD was found in CD44(+) CSC of 83% breast tumor specimens. In addition, we also identified a positive correlation between BAD expression and disease stage in prostate cancer, suggesting a role of BAD in tumor advancement. Our studies unveil the role of BAD in the survival and self-renewal of CSC and propose BAD not only as an attractive target for cancer therapy but also as a marker of tumor progression.

  15. Silencing of reversion-inducing cysteine-rich protein with Kazal motifs stimulates hyperplastic phenotypes through activation of epidermal growth factor receptor and hypoxia-inducible factor-2α.

    Directory of Open Access Journals (Sweden)

    You Mie Lee

    Full Text Available Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb, but decreased the expression of p21(cip1, p27(kip1, and p16(ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.

  16. Combined drug action of 2-phenylimidazo[2,1-b]benzothiazole derivatives on cancer cells according to their oncogenic molecular signatures.

    Directory of Open Access Journals (Sweden)

    Alessandro Furlan

    Full Text Available The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in

  17. Aurora-A controls cancer cell radio- and chemoresistance via ATM/Chk2-mediated DNA repair networks.

    Science.gov (United States)

    Sun, Huizhen; Wang, Yan; Wang, Ziliang; Meng, Jiao; Qi, Zihao; Yang, Gong

    2014-05-01

    High expression of Aurora kinase A (Aurora-A) has been found to confer cancer cell radio- and chemoresistance, however, the underlying mechanism is unclear. In this study, by using Aurora-A cDNA/shRNA or the specific inhibitor VX680, we show that Aurora-A upregulates cell proliferation, cell cycle progression, and anchorage-independent growth to enhance cell resistance to cisplatin and X-ray irradiation through dysregulation of DNA damage repair networks. Mechanistic studies showed that Aurora-A promoted the expression of ATM/Chk2, but suppressed the expression of BRCA1/2, ATR/Chk1, p53, pp53 (Ser15), H2AX, γH2AX (Ser319), and RAD51. Aurora-A inhibited the focus formation of γH2AX in response to ionizing irradiation. Treatment of cells overexpressing Aurora-A and ATM/Chk2 with the ATM specific inhibitor KU-55933 increased the cell sensitivity to cisplatin and irradiation through increasing the phosphorylation of p53 at Ser15 and inhibiting the expression of Chk2, γH2AX (Ser319), and RAD51. Further study revealed that BRCA1/2 counteracted the function of Aurora-A to suppress the expression of ATM/Chk2, but to activate the expression of ATR/Chk1, pp53, γH2AX, and RAD51, leading to the enhanced cell sensitivity to irradiation and cisplatin, which was also supported by the results from animal assays. Thus, our data provide strong evidences that Aurora-A and BRCA1/2 inversely control the sensitivity of cancer cells to radio- and chemotherapy through the ATM/Chk2-mediated DNA repair networks, indicating that the DNA repair molecules including ATM/Chk2 may be considered for the targeted therapy against cancers with overexpression of Aurora-A.

  18. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  19. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signallin

  20. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, TW; Twickler, TB

    2004-01-01

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling pathway

  1. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  2. Adaptation to optimal cell growth through self-organized criticality.

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2012-05-18

    A simple cell model consisting of a catalytic reaction network is studied to show that cellular states are self-organized in a critical state for achieving optimal growth; we consider the catalytic network dynamics over a wide range of environmental conditions, through the spontaneous regulation of nutrient transport into the cell. Furthermore, we find that the adaptability of cellular growth to reach a critical state depends only on the extent of environmental changes, while all chemical species in the cell exhibit correlated partial adaptation. These results are in remarkable agreement with the recent experimental observations of the present cells.

  3. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Sarah K Johnson; Randy S Haun

    2009-01-01

    AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses.Changes in cell survival and signal transduction were evaluated after mitogen activated protein kinase and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum depr ivat ion, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.

  4. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  5. TOR and paradigm change: cell growth is controlled.

    Science.gov (United States)

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients.

  6. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    OpenAIRE

    Yoshizaki Yumiko; Kumei Shima; Tanno Sachie; Motomura Wataru; Yoshizaki Takayuki; Tanno Satoshi; Okumura Toshikatsu

    2010-01-01

    Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and...

  7. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth

    Institute of Scientific and Technical Information of China (English)

    Guido Schumacher; Marijke Oidtmann; Anne Rueggeberg; Dietmar Jacob; Sven Jonas; Jan M. Langrehr; Ruth Neuhaus; Marcus Bahra; Peter Neuhaus

    2005-01-01

    AIM: Standard immunosuppression after organ transplantation stimulates tumor growth. Sirolimus has a strong antiproliferative and a tumor inhibiting effect. The purpose is to assess the effect on tumor growth of the immunosuppressive compounds sirolimus and tacrolimus alone and in combination on cells of human hepatocellular carcinoma.METHODS: We used the human cell lines SK-Hep 1 and Hep 3B derived from hepatocellular carcinoma. Proliferation analyses after treatment with sirolimus, tacrolimus, or the combination of both were performed. FACS analyses were done to reveal cell cycle changes and apoptotic cell death. The expression of apoptosis-related proteins was estimated by Western blots.RESULTS: Sirolimus alone or combined with tacrolimus inhibited the growth of both cell lines after 5 d by up to 35% in SK-Hep 1 cells, and by up to 68% in Hep 3B cells at 25 ng/mL. Tacrolimus alone stimulated the growth by 12% after 5 ng/mL and by 25% after 25 ng/mL in Hep 3B cells. We found an increase of apoptotic Hep 3B cells from 6 to 16%, and a G1-arrest in SK-Hep 1 cells with an increase of cells from 61 to 82%, when sirolimus and tacrolimus were combined. Bcl-2 was down-regulated in Hep 3B, but not in SK-Hep 1 cells after combined treatment.CONCLUSION: Sirolimus appears to inhibit the growth of hepatocellular carcinoma cells alone and in combination with tacrolimus. Sirolimus seems to inhibit the growth stimulation of tacrolimus.

  8. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation.

    Directory of Open Access Journals (Sweden)

    Masao Takeuchi

    Full Text Available Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN; these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5, which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1, the cell surface receptor for hedgehog (Hh signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional

  9. γ-Synuclein confers both pro-invasive and doxorubicin-mediated pro-apoptotic properties to the colon adenocarcinoma LS 174T cell line.

    Science.gov (United States)

    Goh, Kai-Wey; Say, Yee-How

    2015-09-01

    γ-synuclein, a neuronal protein of the synuclein family, is involved in carcinogenesis. To investigate its role in colorectal cancer carcinogenesis, we overexpressed γ-synuclein in LS 174T colon adenocarcinoma cell line (termed LS 174T-γsyn). When compared with untransfected/mock transfectants, LS 174T-γsyn had higher mobility in scratch wound assay, tend to scatter more in cell-scattering assay, and had enhanced lamellipodia and filopodia formation in cell-spreading assay. Enhanced adhesion of LS 174T-γsyn to fibronectin and collagen and significantly higher proliferation rate showed that γ-synuclein was able to increase extracellular matrix interaction and promoted proliferation of LS 174T. Higher invasiveness of LS 174T-γsyn was evidenced by enhanced invasion to the bottom of the basement membrane in Boyden chamber assay. However, LS 174T-γsyn were significantly more vulnerable to doxorubicin, vincristine and hydrogen peroxide insults, via apoptotic cell death. LS 174T-γsyn also had reduced anchorage-independent growth as shown by reduced colony formation and reduced anoikis resistance. We found that overexpression of γ-synuclein confers both pro-invasive and doxorubicin-mediated pro-apoptotic properties to LS 174T, where the former was mediated through enhanced cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation, while the latter involved hepatocyte growth factor (HGF) downregulation and subsequent downstream signalling pathways possibly involving extracellular signal-regulated kinases (ERK)1/2, p38α, c-Jun N-terminal kinase (JNK) pan and Signal Transducers and Activators of Transcription (STATs). This unexpected contrasting finding as compared to other similar studies on colon cancer cell lines might be correlated with the degree of tumour advancement from which the cell lines were derived from.

  10. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N;

    1989-01-01

    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...... biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells....... It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell....

  11. Critical telomerase activity for uncontrolled cell growth

    Science.gov (United States)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  12. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate.

    OpenAIRE

    Ohlsson, C.; Nilsson, A; Isaksson, O; Lindahl, A

    1992-01-01

    To study the effect of locally infused growth hormone (GH) or insulin-like growth factor I(IGF-I) on slowly cycling cells in the germinal cell layer of the tibial growth plate, osmotic minipumps delivering 14.3 microCi of [3H]thymidine per day were implanted s.c. into hypophysectomized rats, and GH (1 microgram) or IGF-I (10 micrograms) was injected daily through a cannula implanted in the proximal tibia. The opposite leg served as a control. After 12 days of treatment, the osmotic minipumps ...

  13. Involvement of the antioxidative property of morusin in blocking phorbol ester-induced malignant transformation of JB6 P(+) mouse epidermal cells.

    Science.gov (United States)

    Cheng, Pai-Shan; Hu, Chao-Chin; Wang, Chau-Jong; Lee, Yean-Jang; Chung, Wei-Chia; Tseng, Tsui-Hwa

    2017-02-25

    Chemoprevention has been acknowledged as an important and practical strategy for managing cancer. We have previously synthesized morusin, a prenylated flavonoid that exhibits anti-cancer progression activity. In the present study, we evaluated the anti-cancer promotion potential of morusin by using the mouse epidermal JB6 P(+) cell model. Extensive evidence shows that tumor promotion by phorbol esters is due to the stimulation of reactive oxygen species (ROS). Therefore, the effect of morusin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ROS production was assessed. Noncytotoxic concentrations of morusin were found to dose-dependently reduce TPA-induced ROS production. Moreover, morusin inhibited TPA-induced activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) activation, which can mediate cell proliferation and malignant transformation. Furthermore, morusin inhibited the TPA upregulation of cyclooxygenase 2 (COX-2), which may be regulated by AP-1 and NF-κB. In addition, noncytotoxic concentrations of morusin reduced the TPA-promoted cell growth of JB6 P(+) cells and inhibited TPA-induced malignant properties, such as cytoskeletal rearrangement and cell migration of JB6 P(+) cells. Similar to the effects of glutathione (GSH) pretreatment, morusin inhibited TPA-induced expression of N-cadeherin and vimentin, which are malignant cell surface proteins. Finally, morusin treatment dose-dependently suppressed the TPA-induced anchorage-independent cell transformation of JB6 P(+) cells. In conclusion, our results evidence that morusin possesses anti-cancer promotion potential because of its antioxidant property, which mediates multiple transformation-associated gene expression.

  14. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    Science.gov (United States)

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  15. Molecular mobility of scaffolds' biopolymers influences cell growth.

    Science.gov (United States)

    Podlipec, Rok; Gorgieva, Selestina; Jurašin, Darija; Urbančič, Iztok; Kokol, Vanja; Strancar, Janez

    2014-09-24

    Understanding biocompatibility of materials and scaffolds is one of the main challenges in the field of tissue engineering and regeneration. The complex nature of cell-biomaterial interaction requires extensive preclinical functionality testing by studying specific cell responses to different biomaterial properties, from morphology and mechanics to surface characteristics at the molecular level. Despite constant improvements, a more general picture of biocompatibility is still lacking and tailormade scaffolds are not yet available. The scope of our study was thus the investigation of the correlation of fibroblast cell growth on different gelatin scaffolds with their morphological, mechanical as well as surface molecular properties. The latter were thoroughly investigated via polymer molecular mobility studied by site-directed spin labeling and electron paramagnetic resonance spectroscopy (EPR) for the first time. Anisotropy of the rotational motion of the gelatin side chain mobility was identified as the most correlated quantity with cell growth in the first days after adhesion, while weaker correlations were found with scaffold viscoelasticity and no correlations with scaffold morphology. Namely, the scaffolds with highly mobile or unrestricted polymers identified with the cell growth being five times less efficient (N(cells) = 60 ± 25 mm(-2)) as compared to cell growth on the scaffolds with considerable part of polymers with the restricted rotational motion (N(cells) = 290 ± 25 mm(-2)). This suggests that molecular mobility of scaffold components could play an important role in cell response to medical devices, reflecting a new aspect of the biocompatibility concept.

  16. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...

  17. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S;

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...

  18. Virtual microstructural leaf tissue generation based on cell growth modeling

    NARCIS (Netherlands)

    Abera, M.K.; Retta, M.A.; Verboven, P.; Nicolai, B.M.; Berghuijs, H.; Struik, P.

    2016-01-01

    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the shap

  19. Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram; Chen, Albert H.; Dolinski, Brian; Xu, Youyuan; Keilhack, Heike; Nguyen, Thi; Wiznerowicz, Maciej; Li, Lixia; Lutterbach, Bart A.; Chi, An; Paweletz, Cloud; Allison, Timothy; Yan, Youwei; Munshi, Sanjeev K.; Klippel, Anke; Kraus, Manfred; Bobkova, Ekaterina V.; Deshmukh, Sujal; Xu, Zangwei; Mueller, Uwe; Szewczak, Alexander A.; Pan, Bo-Sheng; Richon, Victoria; Pollock, Roy; Blume-Jensen, Peter; Northrup, Alan; Andersen, Jannik N. (Merck)

    2013-11-20

    Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.

  20. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    Institute of Scientific and Technical Information of China (English)

    Tetsuya Shimizu; Takashi Tajiri; Shigeki Yokomuro; Yoshiaki Mizuguchi; Yutaka Kawahigashi; Yasuo Arima; Nobuhiko Taniai; Yasuhiro Mamada; Hiroshi Yoshida; Koho Akimaru

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholangiocarcinoma (ICC).METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells.RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3.CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion.TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1.

  1. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  2. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    Science.gov (United States)

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  3. Nicotine overrides DNA damage-induced G1/S restriction in lung cells.

    Directory of Open Access Journals (Sweden)

    Takashi Nishioka

    Full Text Available As an addictive substance, nicotine has been suggested to facilitate pro-survival activities (such as anchorage-independent growth or angiogenesis and the establishment of drug resistance to anticancer therapy. Tobacco smoking consists of a variety of carcinogens [such as benzopyrene (BP and nitrosamine derivatives] that are able to cause DNA double strand breaks. However, the effect of nicotine on DNA damage-induced checkpoint response induced by genotoxins remains unknown. In this study, we investigated the events occurred during G(1 arrest induced by γ-radiation or BP in nicotine-treated murine or human lung epithelial cells. DNA synthesis was rapidly inhibited after exposure to γ-radiation or BP treatment, accompanied with the activation of DNA damage checkpoint. When these cells were co-treated with nicotine, the growth restriction was compromised, manifested by upregulation of cyclin D and A, and attenuation of Chk2 phosphorylation. Knockdown of cyclin D or Chk2 by the siRNAs blocked nicotine-mediated effect on DNA damage checkpoint activation. However, nicotine treatment appeared to play no role in nocodazole-induced mitotic checkpoint activation. Overall, our study presented a novel observation, in which nicotine is able to override DNA damage checkpoint activated by tobacco-related carcinogen BP or γ-irradiation. The results not only indicates the potentially important role of nicotine in facilitating the establishment of genetic instability to promote lung tumorigenesis, but also warrants a dismal prognosis for cancer patients who are smokers, heavily exposed second-hand smokers or nicotine users.

  4. Growth and cell wall changes in rice roots during spaceflight.

    Science.gov (United States)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Tanimoto, Eiichi

    2003-08-01

    We analyzed the changes in growth and cell wall properties of roots of rice (Oryza sativa L. cv. Koshihikari) grown for 68.5, 91.5, and 136 h during the Space Shuttle STS-95 mission. In space, most of rice roots elongated in a direction forming a constant mean angle of about 55 degrees with the perpendicular base line away from the caryopsis in the early phase of growth, but later the roots grew in various directions, including away from the agar medium. In space, elongation growth of roots was stimulated. On the other hand, some of elasticity moduli and viscosity coefficients were higher in roots grown in space than on the ground, suggesting that the cell wall of space-grown roots has a lower capacity to expand than the controls. The levels of both cellulose and the matrix polysaccharides per unit length of roots decreased greatly, whereas the ratio of the high molecular mass polysaccharides in the hemicellulose fraction increased in space-grown roots. The prominent thinning of the cell wall could overwhelm the disadvantageous changes in the cell wall mechanical properties, leading to the stimulation of elongation growth in rice roots in space. Thus, growth and the cell wall properties of rice roots were strongly modified under microgravity conditions during spaceflight.

  5. Methyl sulfone induces loss of metastatic properties and reemergence of normal phenotypes in a metastatic cloudman S-91 (M3 murine melanoma cell line.

    Directory of Open Access Journals (Sweden)

    Joan McIntyre Caron

    Full Text Available BACKGROUND: The most deadly form of cancer is not lung or colon, breast or prostate; it is any cancer that has become metastatic. Mortality due to metastatic melanoma, one of the most aggressive and deadly cancers, has increased steadily over the last several decades. Unfortunately, the arsenal of chemotherapeutic agents available today is most often unsuccessful at extending and improving the life expectancy of afflicted individuals. We sought to identify an effective and nontoxic agent against metastatic melanoma. METHODOLOGY/PRINCIPAL FINDINGS: We chose to study Cloudman S-91 mouse melanoma cells (sub-clone M3, CCL53.1 because these cells are highly aggressive and metastatic, representing one of the deadliest types of cancer. Melanoma cells also had an experimental advantage because their morphology, which is easily monitored, relates to the physiology of metastatic cells and normal melanocytes. We chose to test methyl sulfone as a chemotherapeutic agent for two reasons. Because of its chemical structure, we speculated a potential anti-cancer activity by targeting microtubules. Equally important, methyl sulfone has a well-established safety profile in humans. Surprisingly, we found that malignant melanoma cells exposed to methyl sulfone demonstrated the loss of phenotypes characteristic of malignant cells, and the reemergence of phenotypes characteristic of healthy melanocytes. Briefly, over time methyl sulfone induced contact inhibition, loss of ability to migrate through an extracellular matrix, loss of anchorage-independent growth, proper wound healing followed by contact inhibition, irreversible senescence followed by arborization with melanosomes in arbors as seen in normal melanocytes. CONCLUSIONS/SIGNIFICANCE: Methyl sulfone may have clinical potential as a non-toxic agent effective against metastatic melanoma. Additionally, methyl sulfone has promise as a tool to explore molecular mechanisms of metastatic transformation as well as

  6. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor)

    Energy Technology Data Exchange (ETDEWEB)

    Winkles, J.A.; Friesel, R.; Burgess, W.H.; Howk, R.; Mehlman, T.; Weinstein, R.; Maciag, T.

    1987-10-01

    The control of vascular endothelial and muscle cell proliferation is important in such processes as tumor angiogenesis, wound healing, and the pathogenesis of atherosclerosis. Class I heparin-binding growth factor (HBGF-I) is a potent mitogen and chemoattractant for human endothelial cells in vitro and will induce angiogenesis in vivo. RNA gel blot hybridization experiments demonstrate that cultured human vascular smooth muscle cells, but not human umbilical cells also synthesize an HBGF-I mRNA. Smooth muscle cells also synthesize an HBGF-I-like polypeptide since (i) extract prepared from smooth muscle cells will compete with /sup 125/I-labeled HBGF-I for binding to the HBGF-I cell surface receptor, and (ii) the competing ligand is eluted from heparin-Sepharose affinity resin at a NaCl concentration similar to that required by purified bovine brain HBGF-I and stimulates endothelial cell proliferation in vitro. Furthermore, like endothelial cells, smooth muscle cells possess cell-surface-associated HBGF-I receptors and respond to HBGF-I as a mitogen. These results indicate the potential for an additional autocrine component of vascular smooth muscle cell growth control and establish a vessel wall source of HBGF-I for endothelial cell division in vivo.

  7. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  8. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    Science.gov (United States)

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  9. Autocrine growth regulation of human glomerular mesangial cells is primarily mediated by basic fibroblast growth factor.

    OpenAIRE

    Francki, A.; Uciechowski, P.; Floege, J; von der Ohe, J.; Resch, K.; Radeke, H. H.

    1995-01-01

    For various forms of human glomerulonephritis a close relationship between inflammatory injury and a local mesangial proliferative response has been described. Herein, we used primary cultures of human glomerular mesangial cells (HMCs) from five different donors to determine the autocrine growth-inducing capacity of their supernatants after stimulation with different cytokines and lipopolysaccharide (LPS) to determine whether this effect is due to basic fibroblast growth factor (bFGF). The ba...

  10. The MRL proteins: adapting cell adhesion, migration and growth.

    Science.gov (United States)

    Coló, Georgina P; Lafuente, Esther M; Teixidó, Joaquin

    2012-01-01

    MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.

  11. The cell growth suppressor, mir-126, targets IRS-1.

    Science.gov (United States)

    Zhang, Jin; Du, Ying-ying; Lin, Yi-feng; Chen, Ya-ting; Yang, Lu; Wang, Hui-jun; Ma, Duan

    2008-12-05

    miRNAs are a family of approximately 22-nuleotide-long noncoding RNAs involved in the formation and progress of tumors. Since traditional methods for the detection of miRNAs expression have many disadvantages, we developed a simple method called polyA RT PCR. With this method, we detected a series of miRNAs and found that mir-126 is one of the miRNAs underexpressed in breast cancer cells. Flow cytometry analysis showed that mir-126 inhibited cell cycle progression from G1/G0 to S. Further studies revealed that mir-126 targeted IRS-1 at the translation level. Knocking down of IRS-1 suppresses cell growth in HEK293 and breast cancer cell MCF-7, which recapitulates the effects of mir-126. In conclusion, we developed a simple method for high-throughput screening of miRNAs and found that mir-126, a cell growth suppressor, targets IRS-1.

  12. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors

    Science.gov (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1988-01-01

    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  13. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate.

    Science.gov (United States)

    Ohlsson, C; Nilsson, A; Isaksson, O; Lindahl, A

    1992-10-15

    To study the effect of locally infused growth hormone (GH) or insulin-like growth factor I(IGF-I) on slowly cycling cells in the germinal cell layer of the tibial growth plate, osmotic minipumps delivering 14.3 microCi of [3H]thymidine per day were implanted s.c. into hypophysectomized rats, and GH (1 microgram) or IGF-I (10 micrograms) was injected daily through a cannula implanted in the proximal tibia. The opposite leg served as a control. After 12 days of treatment, the osmotic minipumps were removed, and three rats in each group were given GH (20 micrograms/day, s.c.) for an additional 14 days to chase the labeled cells out of the proliferative layers. Labeled cells remained in the germinal layer, in the perichondrial ring, and on the surface of the articular cartilage close to the epiphyseal plate. GH administered together with labeled thymidine significantly increased the number of labeled cells in the germinal cell layer compared to that in the control leg (ratio = 1.95 +/- 0.13), whereas IGF-I showed no stimulatory effect (ratio = 0.96 +/- 0.04). Therefore GH but not IGF-I stimulates the multiplication of the slowly cycling (label-retaining) cells in the germinal layer of the epiphyseal plate. IGF-I acts only on the proliferation of the resulting chondrocytes.

  14. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  15. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  16. Replicating vesicles as models of primitive cell growth and division.

    Science.gov (United States)

    Hanczyc, Martin M; Szostak, Jack W

    2004-12-01

    Primitive cells, lacking the complex bio-machinery present in modern cells, would have had to rely on the self-organizing properties of their components and on interactions with their environment to achieve basic cellular functions such as growth and division. Many bilayer-membrane vesicles, depending on their composition and environment, can exhibit complex morphological changes such as growth, fusion, fission, budding, internal vesicle assembly and vesicle-surface interactions. The rich dynamic properties of these vesicles provide interesting models of how primitive cellular replication might have occurred in response to purely physical and chemical forces.

  17. Biciliated ependymal cell proliferation contributes to spinal cord growth.

    Science.gov (United States)

    Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel

    2012-10-15

    Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [(3) H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord.

  18. Cell longevity and sustained primary growth in palm stems.

    Science.gov (United States)

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  19. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  20. DUAL ION EXPOSURE VS. SPLIT-DOSE EXPOSURES IN HUMAN CELL NEOPLASTIC TRANSFORMATION.

    Energy Technology Data Exchange (ETDEWEB)

    BENNETT, P.V.; CUTTER, N.C.; SUTHERLAND, B.M.

    2006-06-05

    Since radiation fields of space contain many-fold more protons than high atomic number, high energy (HZE) particles, cells in astronaut crews will experience on average several proton hits before an HZE hit. Thus radiation regimes of proton exposure before HZE particle exposure simulate space radiation exposure, and measurement of the frequency of neoplastic transformation of human primary cells to anchorage-independent growth simulates in initial step in cancer induction. Previously our group found that exposure to 20 cGy 1 GeV/n protons followed within about 1 hr by a HZE ion (20 cGy 1 GeV/n Fe or Ti ions) hit gave about a 3-fold increase in transformation frequency ([1]). To provide insight into the H-HZE induced increased transformation frequencies, we asked if split doses of the same ion gave similar increased transformation frequencies. However, the data show that the split dose of 20 cGy plus 20 cGy of either H or HZE ions gave about the same effect as the 40 cGy uninterrupted dose, quite different from the effect of the mixed ion H + HZE irradiation. We also asked if lower proton doses than 20 cGy followed 15 minutes later by 20 cGy of HZE ions gave greater than additive transformation frequencies. Substantial increases in transformation levels were observed for all proton doses tested, including 1 cGy. These results point to the signal importance of protons in affecting the effect of space radiation on human cells.

  1. Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells

    Directory of Open Access Journals (Sweden)

    Roshni S. Kalkur

    2014-09-01

    Full Text Available For the first time we show the effects of deuterium oxide on cell growth and vesicle transport in rat basophilic leukemia (RBL-2H3 cells. RBL-2H3 cells cultured with 15 moles/L deuterium showed decreased cell growth which was attributed to cells not doubling their DNA content. Experimental observations also showed an increase in vesicle speed for cells cultured in deuterium oxide. This increase in vesicle speed was not observed in deuterium oxide cultures treated with a microtubule-destabilizing drug, suggesting that deuterium oxide affects microtubule-dependent vesicle transport.

  2. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    , the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus......Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... with a monoclonal mouse antibody and EGF with polyclonal rabbit antiserum. Thirty-five of the tumours were positive for TGF-alpha and 26 of the tumours for EGF. None of the poorly differentiated tumours was positive for EGF, but they all were for TGF-alpha. In sections including normal differentiated oral mucosa...

  3. Investigation of the in vitro therapeutic efficacy of nilotinib in immortalized human NF2-null vestibular schwannoma cells.

    Directory of Open Access Journals (Sweden)

    Nesrin Sabha

    Full Text Available Vestibular schwannomas (VS are a common posterior fossa brain tumor, and though benign can cause significant morbidity, particularly loss of hearing, tinnitus, vertigo and facial paralysis. The current treatment options for VS include microsurgical resection, stereotactic radiosurgery or close surveillance monitoring, with each treatment option carrying associated complications and morbidities. Most importantly, none of these options can definitively reverse hearing loss or tinnitus. Identification of a novel medical therapy, through the use of targeted molecular inhibition, is therefore a highly desirable treatment strategy that may minimize complications arising from both tumor and treatment and more importantly be suitable for patients whose options are limited with respect to surgical or radiosurgical interventions. In this study we chose to examine the effect of Nilotinib on VS. Nilotinib (Tasigna® is a second-generation receptor tyrosine kinase (RTK inhibitor with a target profile similar to that of imatinib (Gleevec®, but increased potency, decreased toxicity and greater cellular and tissue penetration. Nilotinib targets not only the BCR-ABL oncoprotein, but also platelet-derived growth factor (PDGF receptor signalling. In this preclinical study, the human NF2-null schwannoma cell line HEI-193 subjected to nilotinib inhibition demonstrated decreased viability, proliferation and anchorage-independent growth, and increased apoptosis. A daily dose of nilotinib for 5 days inhibited HEI-I93 proliferation at a clinically-relevant concentration in a dose-dependent manner (IC(50 3-5 µmol/L in PDGF-stimulated cells. These anti-tumorigenic effects of nilotinib were correlated to inhibited activation of PDGFR-α and PDGFR-β and major downstream signalling pathways. These experiments support a therapeutic potential for Nilotinib in VS.

  4. Interdependence of cell growth and gene expression: origins and consequences.

    Science.gov (United States)

    Scott, Matthew; Gunderson, Carl W; Mateescu, Eduard M; Zhang, Zhongge; Hwa, Terence

    2010-11-19

    In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.

  5. Two-dimension tissue growth model based on circular granular cells for cells with small overlap

    CERN Document Server

    Viridi, Sparisoma; Aprianti, Devi; Haris, Luman; Haryanto, Freddy

    2014-01-01

    Tissue growth can be modeled in two dimension by only using circular granular cells, which can grow and produce child. Linear spring-dashpot model is used to bind the cells with a cut-off interaction range of 1.1 times sum of radii of interacted cells. Simulation steps must be divided into explicit and implicit ones due to cell growing stage and cell position rearrangement. This division is aimed to avoid simulation problem. Only in the explicit steps time changes is performed. Large cells overlap is chosen as termination condition of tissue growth. Only some cells configuration can growth to infinite time without encountering the large cells overlap. These configurations, and the other also, are presented in this work.

  6. Estrogens and Insulin-Like Growth Factor 1 Modulate Neoplastic Cell Growth in Human Cholangiocarcinoma

    Science.gov (United States)

    Alvaro, Domenico; Barbaro, Barbara; Franchitto, Antonio; Onori, Paolo; Glaser, Shannon S.; Alpini, Gianfranco; Francis, Heather; Marucci, Luca; Sterpetti, Paola; Ginanni-Corradini, Stefano; Onetti Muda, Andrea; Dostal, David E.; De Santis, Adriano; Attili, Adolfo F.; Benedetti, Antonio; Gaudio, Eugenio

    2006-01-01

    We investigated the expression of estrogen receptors (ERs), insulin-like growth factor 1 (IGF-1), and IGF-1R (receptor) in human cholangiocarcinoma and cholangiocarcinoma cell lines (HuH-28, TFK-1, Mz-ChA-1), evaluating the role of estrogens and IGF-1 in the modulation of neoplastic cell growth. ER-α, ER-β, IGF-1, and IGF-1R were expressed (immunohistochemistry) in all biopsies (18 of 18) of intrahepatic cholangiocarcinoma. ER-α was expressed (Western blot) only by the HuH-28 cell line (intrahepatic cholangiocarcinoma), whereas ER-β, IGF-1, and IGF-1R were expressed in the three cell lines examined. In serum-deprived HuH-28 cells, serum readmission induced stimulation of cell proliferation that was inhibited by ER and IGF-1R antagonists. 17β-Estradiol and IGF-1 stimulated proliferation of HuH-28 cells to a similar extent to that of MCF7 (breast cancer) but greater than that of TFK-1 and Mz-ChA-1, inhibiting apoptosis and exerting additive effects. These effects of 17β-estradiol and IGF-1 were associated with enhanced protein expression of ER-α, phosphorylated (p)-ERK1/2 and pAKT but with decreased expression of ER-β. Finally, transfection of IGF-1R anti-sense oligonucleotides in HuH-28 cells markedly decreased cell proliferation. In conclusion, human intrahepatic cholangiocarcinomas express receptors for estrogens and IGF-1, which cooperate in the modulation of cell growth and apoptosis. Modulation of ER and IGF-1R could represent a strategy for the management of cholangiocarcinoma. PMID:16936263

  7. FH535 inhibited migration and growth of breast cancer cells.

    Science.gov (United States)

    Iida, Joji; Dorchak, Jesse; Lehman, John R; Clancy, Rebecca; Luo, Chunqing; Chen, Yaqin; Somiari, Stella; Ellsworth, Rachel E; Hu, Hai; Mural, Richard J; Shriver, Craig D

    2012-01-01

    There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN) breast cancer cell lines (MDA-MB231 and HCC38) in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231) but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3) when cultured in three dimensional (3D) type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  8. FH535 inhibited migration and growth of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joji Iida

    Full Text Available There is substantial evidence indicating that the WNT signaling pathway is activated in various cancer cell types including breast cancer. Previous studies reported that FH535, a small molecule inhibitor of the WNT signaling pathway, decreased growth of cancer cells but not normal fibroblasts, suggesting this pathway plays a role in tumor progression and metastasis. In this study, we tested FH535 as a potential inhibitor for malignant phenotypes of breast cancer cells including migration, invasion, and growth. FH535 significantly inhibited growth, migration, and invasion of triple negative (TN breast cancer cell lines (MDA-MB231 and HCC38 in vitro. We demonstrate that FH535 was a potent growth inhibitor for TN breast cancer cell lines (HCC38 and MDA-MB-231 but not for other, non-TN breast cancer cell lines (MCF-7, T47D or SK-Br3 when cultured in three dimensional (3D type I collagen gels. Western blotting analyses suggest that treatment of MDA-MB-231 cells with FH535 markedly inhibited the expression of NEDD9 but not activations of FAK, Src, or downstream targets such as p38 and Erk1/2. We demonstrated that NEDD9 was specifically associated with CSPG4 but not with β1 integrin or CD44 in MDA-MB-231 cells. Analyses of gene expression profiles in breast cancer tissues suggest that CSPG4 expression is higher in Basal-type breast cancers, many of which are TN, than any other subtypes. These results suggest not only a mechanism for migration and invasion involving the canonical WNT-signaling pathways but also novel strategies for treating patients who develop TN breast cancer.

  9. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  10. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either...... and temporal control of epithelial proliferation....

  11. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    Science.gov (United States)

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  12. How to Foster an Understanding of Growth and Cell Division

    Science.gov (United States)

    Kruger, Dirk; Fleige, Jennifer; Riemeier, Tanja

    2006-01-01

    The study presents the frequencies of students' conceptions of growth and cell division before and after one hour of instruction. The investigation supplements qualitative results by directing attention to those conceptions which might occur most frequently to students: teachers can then concentrate their preparation on practical requirements. A…

  13. The in vitro and in vivo anti-cancer activities of a standardized quassinoids composition from Eurycoma longifolia on LNCaP human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kind Leng Tong

    Full Text Available Quassinoids are a group of diterpenoids found in plants from the Simaroubaceae family. They are also the major bioactive compounds found in Eurycoma longifolia which is commonly used as traditional medicine in South East Asia to treat various ailments including sexual dysfunction and infertility. These uses are attributed to its ability to improve testosterone level in men. Chronic consumption of E. longifolia extracts has been reported to increase testosterone level in men and animal model but its effect on prostate growth remains unknown. Therefore, the present study investigates the effects of a standardized total quassinoids composition (SQ40 containing 40% of the total quassinoids found in E. longifolia on LNCaP human prostate cancer cell line. SQ40 inhibited LNCaP cell growth at IC50 value of 5.97 μg/mL while the IC50 on RWPE-1 human prostate normal cells was 59.26 μg/mL. SQ40 also inhibited 5α-dihydrotestosterone-stimulated growth in LNCaP cells dose-dependently. The inhibitory effect of SQ40 in anchorage-independent growth of LNCaP cells was also demonstrated using soft agar assay. SQ40 suppressed LNCaP cell growth via G0/G1 phase arrest which was accompanied by the down-regulation of CDK4, CDK2, Cyclin D1 and Cyclin D3 and up-regulation of p21Waf1/Cip1 protein levels. SQ40 at higher concentrations or longer treatment duration can cause G2M growth arrest leading to apoptotic cell death as demonstrated by the detection of poly(ADP-ribose polymerase cleavage in LNCaP cells. Moreover, SQ40 also inhibited androgen receptor translocation to nucleus which is important for the transactivation of its target gene, prostate-specific antigen (PSA and resulted in a significant reduction of PSA secretion after the treatment. In addition, intraperitoneal injection of 5 and 10 mg/kg of SQ40 also significantly suppressed the LNCaP tumor growth on mouse xenograft model. Results from the present study suggest that the standardized total quassinoids

  14. Electrical impedance characterization of cell growth on interdigitated microelectrode array.

    Science.gov (United States)

    Lee, Gi Hyun; Pyun, Jae-Chul; Cho, Sungbo

    2014-11-01

    Electrical cell-substrate impedance sensing is a method for label-free and real-time monitoring of biological cells, which has been increasingly employed in the diagnostic and pharmaceutical industries. In this study, we fabricated an interdigitated electrode (IDE) array, which consists of 10 fingers, with a length of 1.2 mm, width of 50 μm, spacing of 50 μm, and thickness of 75 nm. The impedance spectra of the fabricated IDE were measured without or with cells in the frequency range of 100 Hz to 100 kHz using a lock-in amplifier based system and characterized by equivalent circuit modelling. Regarding the total impedance as a series resistance (R) and capacitance (C) model, R and C parameters were traced at a selected frequency during cell growth. It was able to monitor cell adherence and proliferation dependent on the behaviours and characteristics of cells on the fabricated IDE array by monitoring RC parameters. The degree of changes in RC value during cell growth was dependent on the type of cells used.

  15. Regulated growth of diatom cells on self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    Kobayashi Koichi

    2007-03-01

    Full Text Available Abstract We succeeded in regulating the growth of diatom cells on chemically modified glass surfaces. Glass surfaces were functionalized with -CF3, -CH3, -COOH, and -NH2 groups using the technique of self-assembled monolayers (SAM, and diatom cells were subsequently cultured on these surfaces. When the samples were rinsed after the adhesion of the diatom cells on the modified surfaces, the diatoms formed two dimensional arrays; this was not possible without the rinsing treatment. Furthermore, we examined the number of cells that grew and their motility by time-lapse imaging in order to clarify the interaction between the cells and SAMs. We hope that our results will be a basis for developing biodevices using living photosynthetic diatom cells.

  16. Effect of acute exercise on prostate cancer cell growth.

    Science.gov (United States)

    Rundqvist, Helene; Augsten, Martin; Strömberg, Anna; Rullman, Eric; Mijwel, Sara; Kharaziha, Pedram; Panaretakis, Theocharis; Gustafsson, Thomas; Östman, Arne

    2013-01-01

    Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum) and after completed exercise (exercise serum). The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  17. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  18. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  19. Cell lineages, growth and repair of the mouse heart.

    Science.gov (United States)

    Lescroart, Fabienne; Meilhac, Sigolène M

    2012-01-01

    The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.

  20. Suppressing The Growth Of Dendrites In Secondary Li Cells

    Science.gov (United States)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  1. Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Chao Chen

    Full Text Available Initiation, growth, recurrence, and metastasis of head and neck squamous cell carcinomas (HNSCC have been related to the behavior of cancer stem cells (CSC that can be identified by their aldehyde-dehydrogenase-isoform-1 (ALDH1 activity. We quantified and enriched ALDH1(+ cells within HNSCC cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT. Spheroid culture enriched CSC from five HNSCC cell lines by up to 5-fold. In spheroid-derived cells (SDC and the parental monolayer-derived cell line ALDH1, CD44, CD24, E-Cadherin, α-SMA, and Vimentin expression was compared by flow-cytometry and immunofluorescence together with proliferation and cell cycle analysis. Invasion activity was evaluated by Matrigel assay and expression of stemness-related transcription factors (TF Nanog, Oct3/4, Sox2 and EMT-related genes Snail1 and 2, and Twist by real-time PCR. All cell lines formed spheroids that could self-renew and be serially re-passaged. ALDH1 expression was significantly higher in SDC. ALDH1(+ cells showed increased colony-formation. The proportion of cells with a putative CSC marker constellation of CD44(+/CD24(- was highly variable (0.5% to 96% in monolayer and spheroid cultures and overlapped in 0%-33% with the CD44(+/CD24(-/ALDH1(+ cell subset. SDC had significantly higher invading activity. mRNA of the stemness-related genes Sox2, Nanog, and Oct3/4 was significantly increased in SDC of all cell lines. Twist was significantly increased in two while Snail2 showed a significant increase in one and a significant decrease in SDC of two cell lines. SDC had a higher G0 phase proportion, showed high-level expression of α-SMA and Vimentin, but significantly decreased E-Cadherin expression. HNSCC-lines harbor potential CSC, characterized by ALDH1 and stemness marker TF expression as well as properties like invasiveness, quiescence, and EMT. CSC can be

  2. Two-dimensional diffusion limited system for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs.

  3. Dislocation-mediated growth of bacterial cell walls

    CERN Document Server

    Amir, Ariel

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference (Garner et al., Science (2011), Dominguez-Escobar et al. Science (2011), van Teeffelen et al. PNAS (2011). We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall.

  4. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available BACKGROUND: The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. CONCLUSIONS/SIGNIFICANCE: These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  5. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    Science.gov (United States)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  6. University of Texas MD Anderson: Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  7. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    Science.gov (United States)

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  8. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  9. Probabilistic model of microbial cell growth, division, and mortality.

    Science.gov (United States)

    Horowitz, Joseph; Normand, Mark D; Corradini, Maria G; Peleg, Micha

    2010-01-01

    After a short time interval of length deltat during microbial growth, an individual cell can be found to be divided with probability Pd(t)deltat, dead with probability Pm(t)deltat, or alive but undivided with the probability 1-[Pd(t)+Pm(t)]deltat, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat's properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population's size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a "shoulder," and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data.

  10. 42% 500X Bi-Facial Growth Concentrator Cells

    Science.gov (United States)

    Wojtczuk, S.; Chiu, P.; Zhang, X.; Pulver, D.; Harris, C.; Siskavich, B.

    2011-12-01

    Data are presented from three-junction concentrator photovoltaic cells using a new cell architecture (1.9 eV InGaP top cell lattice-matched to a 1.42 eV GaAs middle cells on one side of a infrared-transparent GaAs wafer with a lattice-mismatched 0.95 eV InGaAs bottom cell grown isolated on the wafer backside). The cell uses a new epitaxial bifacial growth (BFG) technique. The impetus is to replace the 0.67 eV Ge bottom cell in the standard three junction InGaP/GaAs/Ge tandems with a higher bandgap 0.95 eV InGaAs cell that boosts the bottom cell voltage by about 40% while maintaining a simple high-yield cell process without use of complex large area epitaxial liftoff or wafer bonding steps used to make similar cell stacks. Efficiency was independently-verified by NREL for a 1 cm×1 cm cell (42.3% at 406 suns, with Voc 3.452V, 87.1% FF and 1xJsc of 14.07 mA/cm2, at 25 °C AM1.5D, 100 mW/cm2), which was the world record at the time of the CPV-7 conference. No degradation was seen during concentrated solar operation after a 2000 hr 165C burn-in and PbSn solder tests. Average efficiency of 1 cm2 cells designed for 500 suns at 1018 suns was 40.5% (Spire test, 25 °C, spectrally corrected flash simulator). Measured efficiency temperature coefficient for gen2 cells is -0.06%/°C, similar to InGaP/GaAs/Ge tandems.

  11. The Theaflavin Monomers Inhibit the Cancer Cells Growth in Vitro

    Institute of Scientific and Technical Information of China (English)

    You-Ying TU; An-Bin TANG; Naoharu WATANABE

    2004-01-01

    The inhibition effects of tea theaflavins complex (TFs), theaflavin-3-3 '-digallate (TFDG),theaflavin-3'-gallate (TF2B), and an unidentified compound (UC) on the growth of human liver cancer BEL-7402 cells, gastric cancer MKN-28 cells and acute promyelocytic leukemia LH-60 cells were investigated.TFs was obtained through the catalysis of catechins with immobilized polyphenols oxidase. TFDG, TF2B and UC were isolated from TFs with high speed countercurrent chromatography (HSCCC). The results showed that TF2B significantly inhibited the growth of all three kinds of cancer cells, TFs, TFDG and UC had some effect on BEL-7402 and MKN-28, but little activity on LH-60. The inhibition effects of TF2B, TFDG, and UC on BEL-7402 and MKN-28 were stronger than TFs. The relationship coefficients between monomer concentration and its inhibition rate against MKN-28 and BEL-7402 were 0.87 and 0.98 for TF2B, 0.96 and 0.98 for UC, respectively. The IC50 values ofTFs, TF2B, and TFDG were 0.18, 0.11, and 0.16 mM on BEL-7402 cells, and 1.11, 0.22, and 0.25 mM on MKN-28 cells respectively.

  12. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  13. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  14. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  15. Growth dynamics and cyclin expression in cutaneous T-cell lymphoma cell lines

    Directory of Open Access Journals (Sweden)

    Edyta Biskup

    2010-05-01

    Full Text Available We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa, Sézary syndrome (SeAx, and CD30+ lympho-proliferative diseases (Mac1, Mac2a, JK. Mac1 and Mac2a had the highest growth rate (doubling time 18-28 h, >90% cycling cells whereas SeAx was proliferating slowly (doub-ling time 55 h, approximately 35% cycling cells. Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma.

  16. Linking pseudouridine synthases to growth, development and cell competition.

    Science.gov (United States)

    Tortoriello, Giuseppe; de Celis, José F; Furia, Maria

    2010-08-01

    Eukaryotic pseudouridine synthases direct RNA pseudouridylation and bind H/ACA small nucleolar RNA (snoRNAs), which, in turn, may act as precursors of microRNA-like molecules. In humans, loss of pseudouridine synthase activity causes dyskeratosis congenita (DC), a complex systemic disorder characterized by cancer susceptibility, failures in ribosome biogenesis and telomere stability, and defects in stem cell formation. Considering the significant interest in deciphering the various molecular consequences of pseudouridine synthase failure, we performed a loss of function analysis of minifly (mfl), the pseudouridine synthase gene of Drosophila, in the wing disc, an advantageous model system for studies of cell growth and differentiation. In this organ, depletion of the mfl-encoded pseudouridine synthase causes a severe reduction in size by decreasing both the number and the size of wing cells. Reduction of cell number was mainly attributable to cell death rather than reduced proliferation, establishing that apoptosis plays a key role in the development of the loss of function mutant phenotype. Depletion of Mfl also causes a proliferative disadvantage in mosaic tissues that leads to the elimination of mutant cells by cell competition. Intriguingly, mfl silencing also triggered unexpected effects on wing patterning and cell differentiation, including deviations from normal lineage boundaries, mingling of cells of different compartments, and defects in the formation of the wing margin that closely mimic the phenotype of reduced Notch activity. These results suggest that a component of the pseudouridine synthase loss of function phenotype is caused by defects in Notch signalling.

  17. Yes is a central mediator of cell growth in malignant mesothelioma cells.

    Science.gov (United States)

    Sato, Ayami; Sekine, Miki; Virgona, Nantiga; Ota, Masako; Yano, Tomohiro

    2012-11-01

    The constitutive activation of the Src family kinases (SFKs) has been established as a poor prognostic factor in malignant mesothelioma (MM), however, the family member(s) which contribute to the malignancy have not been defined. This study aimed to identify the SFK member(s) contributing to cell growth using RNA interference in various MM cell lines. Silencing of Yes but not of c-Src or Fyn in MM cells leads to cell growth suppression. This suppressive effect caused by Yes silencing mainly depends on G1 cell cycle arrest and partly the induction of apoptosis. Also, the knockout of Yes induces the inactivation of β-catenin signaling and subsequently decreases the levels of cyclin D necessary for G1-S transition in the cell cycle. In addition, Yes knockout has less effect on cell growth suppression in β-catenin-deficient H28 MM cells compared to other MM cells which express the catenin. Overall, we conclude that Yes is a central mediator for MM cell growth that is not shared with other SFKs such as c-Src.

  18. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China); Chiu, Chien-Chih [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Su, Chun-Li [Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan (China); Chen, Kwun-Min [Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan (China); Fang, Kang, E-mail: kangfang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China)

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  19. Studies of siRNA MTA1 on anoikis of human bladder cancer cell line BIU-87%RNA干扰沉默MTA1基因对膀胱癌细胞失巢凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    崔飞伦; 邱镇; 胡建鹏; 范钰

    2012-01-01

    目的:观察RNA干扰沉默MTA1基因对膀胱癌细胞株BIU-87增殖和失巢凋亡的影响.方法:构建针对MTA1基因的小干扰RNA(small interfering RNA,siRNA),应用MTA1 siRNA转染处理人膀胱癌细胞株BIU-87后,分别采用实时定量PCR和蛋白质印迹法检测MTA1基因mRNA和蛋白的表达,采用软琼脂集落培养试验检测锚着不依赖性增殖,琼脂糖凝胶电泳和流式细胞术检测BIU-87细胞失巢凋亡.结果:与对照组比较,MTA1 siRNA转染组MTA1 mRNA和蛋白水平明显下降,且呈浓度依赖性(P<0.01).MTA1 siRNA转染组软琼脂集落形成数明显减少,且与浓度相关(P<0.01).琼脂糖凝胶电泳和流式细胞术结果显示,MTA1 siRNA转染可诱导BIU-87细胞失巢凋亡,且与浓度相关(P<0.01).结论:MTA1 siRNA可抑制膀胱癌细胞株BIU-87增殖,诱导失巢凋亡可能是其机制之一.%Objective: To observe the effects of MTA1 small interfering RNA(siRNA)on anchorage in-dependent growth and anoikis of bladder cancer cell line BIU -87. Methods: After construction of the MTA1 gene eukaryotic expression vector of siRNA and transfected to the bladder cancer cell line BIU -87, the ex-pression of MTA1 gene was detected by real-time PCR and western blot; to detect anchorage independent growth using clon formation in soft agar , and anoikis using DNA fragmentation assay and flow cytometry as -say,respectively. Results; The level of mRNA and protein of MTA1 of groups transfectd with siRNA were decreased markedly in a time-and dose-dependent manner. MTA1 siRNA can inhibit anchorage independent growth in a dose-dependent manner. MTA1 can reduced the resistance to anoikis of BIU -87 cells in a dose-and time-dependent manner. Conclusion; MTA1 siRNA can inhibit the growth of bladder cancer cell line BIU-87 through inducing anoikis.

  20. Single-cell level analysis of megakaryocyte growth and development.

    Science.gov (United States)

    Leysi-Derilou, Younes; Duchesne, Carl; Garnier, Alain; Pineault, Nicolas

    2012-04-01

    Several fundamental questions regarding cell growth and development can be answered by recording and analyzing the history of cells and their progeny. Herein, long-term and large-field live cell imaging was used to study the process of megakaryopoiesis at the single cell level (n = 9300) from human CD34+ cord blood (CB) in the presence of thrombopoietin (TPO) or the cytokine cocktail BS1 with or without nicotinamide (NIC). Comparative analyses revealed that the cocktail BS1 increased the mitotic and proplatelet rate of diploid and polyploid cells, respectively. Conversely, only NIC treatment increased the endomitotic rate of megakaryocytes (MKs) leading to the formation of CB-MKs with ploidy level frequently observed with BM-MKs. However, NIC failed to enhance platelet production. Rather, a 7- and 31-fold reduction in proplatelet formation was observed in tetraploid and octaploid CB-MKs, respectively, and ex vivo platelet production output was reduced by half due to a reduction in MK output in NIC cultures. Unexpectedly, a significant fraction of di- and polyploid CB-MKs were seen to undergo complete proplatelet regression. Though rare (cells that could at times resume normal development. The cell tracking data was then used to investigate the impact of "developmental fate" and ploidy on cell cycling time, and to identify potential developmental patterns. These analyses revealed that cell fate and ploidy level have major impacts on the cell cycling time of the cells, and that four recurrent cell lineage patterns could be identified for CD34+ cells undergoing MK differentiation.

  1. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    Science.gov (United States)

    2011-10-01

    analyzed data on tumor progression in these genetically modified animals and completed the staining of different markers of tumor growth (FGF/ FGFR ...H) . Original magnifications: X400 (A-H) 6. FGF, FGFRs and markers differentiating normal and mammary tumor cells We also continued to...oncogene or the absence of FGF2. Figure 5 Immunohistochemistry (IHC) of FGFR in mammary cancer. Staining confirmed the presence of FGFR1

  2. Inferring time derivatives including cell growth rates using Gaussian processes

    Science.gov (United States)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  3. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  4. Bacterial actin and tubulin homologs in cell growth and division.

    Science.gov (United States)

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  5. Genomic imprinting in development, growth, behavior and stem cells.

    Science.gov (United States)

    Plasschaert, Robert N; Bartolomei, Marisa S

    2014-05-01

    Genes that are subject to genomic imprinting in mammals are preferentially expressed from a single parental allele. This imprinted expression of a small number of genes is crucial for normal development, as these genes often directly regulate fetal growth. Recent work has also demonstrated intricate roles for imprinted genes in the brain, with important consequences on behavior and neuronal function. Finally, new studies have revealed the importance of proper expression of specific imprinted genes in induced pluripotent stem cells and in adult stem cells. As we review here, these findings highlight the complex nature and developmental importance of imprinted genes.

  6. HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Amy Belton

    Full Text Available BACKGROUND: Although metastatic colon cancer is a leading cause of cancer death worldwide, the molecular mechanisms that enable colon cancer cells to metastasize remain unclear. Emerging evidence suggests that metastatic cells develop by usurping transcriptional networks from embryonic stem (ES cells to facilitate an epithelial-mesenchymal transition (EMT, invasion, and metastatic progression. Previous studies identified HMGA1 as a key transcription factor enriched in ES cells, colon cancer, and other aggressive tumors, although its role in these settings is poorly understood. METHODS/PRINCIPAL FINDINGS: To determine how HMGA1 functions in metastatic colon cancer, we manipulated HMGA1 expression in transgenic mice and colon cancer cells. We discovered that HMGA1 drives proliferative changes, aberrant crypt formation, and intestinal polyposis in transgenic mice. In colon cancer cell lines from poorly differentiated, metastatic tumors, knock-down of HMGA1 blocks anchorage-independent cell growth, migration, invasion, xenograft tumorigenesis and three-dimensional colonosphere formation. Inhibiting HMGA1 expression blocks tumorigenesis at limiting dilutions, consistent with depletion of tumor-initiator cells in the knock-down cells. Knock-down of HMGA1 also inhibits metastatic progression to the liver in vivo. In metastatic colon cancer cells, HMGA1 induces expression of Twist1, a gene involved in embryogenesis, EMT, and tumor progression, while HMGA1 represses E-cadherin, a gene that is down-regulated during EMT and metastatic progression. In addition, HMGA1 is among the most enriched genes in colon cancer compared to normal mucosa. CONCLUSIONS: Our findings demonstrate for the first time that HMGA1 drives proliferative changes and polyp formation in the intestines of transgenic mice and induces metastatic progression and stem-like properties in colon cancer cells. These findings indicate that HMGA1 is a key regulator, both in metastatic

  7. Polyamines in relation to growth in carrot cell cultures.

    Science.gov (United States)

    Fallon, K M; Phillips, R

    1988-09-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed.

  8. Polyamines in Relation to Growth in Carrot Cell Cultures 1

    Science.gov (United States)

    Fallon, Kevin M.; Phillips, Richard

    1988-01-01

    Changes in polyamine metabolism were investigated in relation to growth of cell suspension cultures of carrot (Daucus carota, cv Chantenay). Changes in levels of the major amines putrescine and spermidine throughout the culture period correlated poorly with changes in fresh weight, but a closer correlation with the minor component spermine was observed. The arginine decarboxylase (ADC) inhibitor difluoromethylarginine (DFMA) strongly and specifically inhibited ADC activity in the supernatant, reduced the major amine (putrescine) by 95% and the total amine content by 80%. It had no effect on cell number and stimulated fresh weight by over 25% through increased cell expansion. Spermine content, in contrast, increased with DFMA concentration in parallel with fresh weight increases. Difluoromethylornithine strongly inhibited ornithine decarboxylase activity in the pellet, but had little effect on either polyamine levels or culture growth. It was concluded that little evidence for a correlation between free polyamines and cell number in carrot cultures could be detected, but that a possible correlation between spermine content and cell expansion was observed. PMID:16666271

  9. Photoresist Derived Carbon for Growth and Differentiation of Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Tie Zou

    2007-08-01

    Full Text Available Apoptosis or necrosis of neurons in the central nervous system (CNS is thehallmark of many neurodegenerative diseases and Traumatic Brain Injury (TBI. Theinability to regenerate in CNS offers little hope for naturally repairing the damagedneurons. However, with the rapid development of new technologies, regenerative medicineoffers great promises to patients with these disorders. Among many events for furtheradvancement of regenerative medicine, extracellular matrix (ECM plays a critical role forcellular migration and differentiation. To develop a biocompatible and electricallyconductive substrate that can be potentially used to promote growth and regeneration ofneurons and to record intracellular and multisite signals from brain as a probe, a polymericprecursor – SPR 220.7 was fabricated by pyrolysis at temperatures higher than 700 oC.Human Neuroblastoma cells - SK-N-MC, SY5Y, mouse teratocarcinoma cells P-19 and ratPC12 cells were found to attach and proliferate on photoresist derived carbon film.Significantly, neuronal differentiation of PC12 cells induced by NGF was demonstrated byobserving cell shape and size, and measuring the length of neurites under SEM. Our resultsindicated that fabricated carbon could potentially be explored in regenerative medicine forpromoting neuronal growth and differentiation in CNS with neurodegeneration.

  10. DNA Walker-Regulated Cancer Cell Growth Inhibition.

    Science.gov (United States)

    Li, Feiran; Cha, Tae-Gon; Pan, Jing; Ozcelikkale, Altug; Han, Bumsoo; Choi, Jong Hyun

    2016-06-16

    We demonstrate a DNAzyme-based walker system as a controlled oligonucleotide drug AS1411 release platform for breast cancer treatment. In this system, AS1411 strands are released from fuel strands as a walker moves along its carbon nanotube track. The release rate and amount of anticancer oligonucleotides are controlled by the walker operation. With a walker system embedded within the collagen extracellular matrix, we show that this drug release system can be used for in situ cancer cell growth inhibition.

  11. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  12. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    Science.gov (United States)

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  13. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thejaswini Venkatesh

    Full Text Available Mutations in the MCPH1 (microcephalin 1 gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC samples, and observed that 14/71 (19.72% informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22% and 19/25 (76% OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10% tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

  14. Stochastic modeling of cell growth with symmetric or asymmetric division

    Science.gov (United States)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.

  15. Alterations in the growth and adhesion pattern of Vero cells induced by nutritional stress conditions.

    Science.gov (United States)

    Genari, S C; Gomes, L; Wada, M L

    1998-01-01

    The pattern of growth, adhesion and protein synthesis in Vero cells submitted to nutritional stress conditions was investigated. The control cells presented a characteristic pattern, with monolayer growth, while the stressed cells presented multilayered growth, with aggregate or spheroid formation which detached on the flask surface and continued their growth in another region. In the soft agar assay, with reduced amount of nutrients, only the stressed cells presented growth, indicating physical and nutritional independence. A 44-kDa protein was observed in stressed cells and was absent in non-stressed cells. The adhesion index and fibronectin synthesis and distribution were altered in stressed cells. After confluence, control cells presented fibronectin accumulation in lateral cell-cell contact regions, while this fibronectin accumulation pattern was not observed in stressed cells. These alterations may be responsible for the multilayered growth and decreased adhesion index observed in stressed cells which were transformed by nutritional stress conditions.

  16. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells

    Science.gov (United States)

    Hashemnia, Seyyed Mohammad Reza; Atari-Hajipirloo, Somayeh; Roshan-Milani, Shiva; Valizadeh, Nasim; Mahabadi, Sonya; Kheradmand, Fatemeh

    2016-01-01

    Background: The anticancer agent imatinib (IM) is a small molecular analog of ATP that inhibits tyrosine kinase activity of platelet derived growth factors (PDGFs) and stem cell factor (SCF) receptor in cancer cells. However these factors have a key role in regulating growth and development of normal Sertoli, Leydig and germ cells. Objective: The aim of this study was to determine cell viability, PDGF and SCF levels in mouse normal Sertoli cells exposed to IM. Materials and Methods: In this experimental study, the mouse TM4 Sertoli cells were treated with 0, 2.5, 5, 10 and 20 μM IM for 2, 4 or 6 days. The cell viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, One-Way ANOVA was performed. Results: IM showed significant decrease in Sertoli cell viability compared to control group (p=0.001). However, IM increased PDGF and SCF level insignificantly (p>0.05). Conclusion: Results suggested that IM treatment induced a dose dependent reduction of cell viability in Sertoli cells. It seems that treatment with this anticancer drug is involved in the fertility process. Further studies are needed to evaluate the role of PDGF and SCF in this cell. PMID:27738659

  17. Connective tissue growth factor is overexpressed in human hepatocellular carcinoma and promotes cell invasion and growth

    Institute of Scientific and Technical Information of China (English)

    Ming Xiu; Ya-Hui Liu; David R Brigstock; Fang-Hui He; Rui-Juan Zhang; Run-Ping Gao

    2012-01-01

    AIM:To determine the expression characteristics of connective tissue growth factor (CTGF/CCN2) in human hepatocellular carcinoma (HCC) in histology and to elucidate the roles of CCN2 on hepatoma cell cycle progression and metastasis in vitro.METHODS:Liver samples from 36 patients (who underwent hepatic resection for the first HCC between 2006 and 2011) and 6 normal individuals were examined for transforming growth factor β1 (TGF-β1) or CCN2 mRNA by in situ hybridization.Computer image analysis was performed to measure integrated optimal density of CCN2 mRNA-positive cells in carcinoma foci and the surrounding stroma.Fibroblast-specific protein-1 (FSP-1) and E-cadherin were examined to evaluate the process of epithelial to mesenchymal transition,α-smooth muscle actin and FSP-1 were detected to identify hepatic stellate cells,and CD34 was measured to evaluate the extent of vascularization in liver tissues by immunohistochemical staining.CCN2 was assessed for its stimulation of HepG2 cell migration and invasion using commercial kits while flow cytometry was used to determine CCN2 effects on HepG2 cell-cycle.RESULTS:In situ hybridization analysis showed that TGF-β1 mRNA was mainly detected in connective tissues and vasculature around carcinoma foci.In comparison to normal controls,CCN2 mRNA was enhanced 1.9-fold in carcinoma foci (12.36 ± 6.08 vs 6.42 ± 2.35)or 9.4-fold in the surrounding stroma (60.27 ± 28.71 vs 6.42 ± 2.35),with concomitant expression of CCN2 and TGF-β1 mRNA in those areas.Epithelial-mesenchymal transition phenotype related with CCN2 was detected in 12/36 (33.3%) of HCC liver samples at the edges between carcinoma foci and vasculature.Incubation of HepG2 cells with CCN2 (100 ng/mL) resulted in more of the cells transitioning into S phase (23.85 ± 2.35vs 10.94 ± 0.23),and induced a significant migratory (4.0-fold) and invasive (5.7-fold) effect.TGF-β1-induced cell invasion was abrogated by a neutralizing CCN2 antibody showing that CCN2

  18. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.

    Science.gov (United States)

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James

    2012-12-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.

  19. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  20. Intracellular Angiotensin II and cell growth of vascular smooth muscle cells

    NARCIS (Netherlands)

    Filipeanu, CM; Henning, RH; de Zeeuw, D; Nelemans, A

    2001-01-01

    1 We recently demonstrated that intracellular application of Angiotensin II (Angiotensin IIintr) induces rat aorta contraction independent of plasma membrane Angiotensin II receptors. In this study we investigated the effects of Angiotensin IIintr on cell growth in A7r5 smooth muscle cells. 2 DNA-sy

  1. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  2. Salinomycin inhibits the tumor growth of glioma stem cells by selectively suppressing glioma-initiating cells.

    Science.gov (United States)

    Chen, Tunan; Yi, Liang; Li, Fei; Hu, Rong; Hu, Shengli; Yin, Yi; Lan, Chuan; Li, Zhao; Fu, Chuhua; Cao, Liu; Chen, Zhi; Xian, Jishu; Feng, Hua

    2015-04-01

    Glioma‑initiating cells are a small population of cells that have the ability to undergo self‑renewal and initiate tumorigenesis. In the present study, the potential role of salinomycin, a polyether antibiotic, on the suppression of glioma cell growth was investigated. GL261 glioma cells were maintained in a stem‑cell‑like status [GL261 neurospheres (GL261‑NS)] or induced for differentiation [GL261 adherent cells (GL261‑AC)]. It was demonstrated that salinomycin significantly reduced the cell viability of GL261‑NS and GL261‑AC cells in a dose‑dependent manner, with a more substantial inhibition of GL261‑NS proliferation (Psalinomycin on cell growth was more effective than that of 1‑(4‑amino‑2‑methyl‑5‑pyrimid l)‑methyl‑3‑(2‑chloroethyl)‑3‑nitrosourea hydrochloride and vincristine (PSalinomycin depleted GL261‑NS from tumorspheres and induced cell apoptosis. In addition, salinomycin prolonged the median survival time of glioma‑bearing mice (Psalinomycin may preferentially inhibit glioma‑initiated cell growth by inducing apoptosis, suggesting that salinomycin may provide a valuable therapeutic strategy for the treatment of malignant glioma.

  3. Regulation of IGFBP secretion and modulation of cell growth in MDBK cells.

    Science.gov (United States)

    Cohick, W S; Clemmons, D R

    1993-03-01

    The ability of IGF binding proteins (IGFBP) to modulate cell growth and IGF-I responsiveness of epithelial cells was examined using the Madin-Darby bovine kidney (MDBK) cell line. The predominant IGFBP present in conditioned media (CM) of untreated cells was found to be IGFBP-2. Following exposure to forskolin, the abundance of IGFBP-2 in CM was decreased, while IGFBP-3 and -4 were induced. These changes corresponded with alterations in mRNA abundance. Growth of MDBK cells in serum-free media was stimulated by addition of 2.5 to 50 ng/ml of IGF-I in a dose responsive manner. Coincubation with equimolar amounts of IGF-I and exogenous bovine IGFBP-3 potentiated the growth response observed with IGF-I alone. In order to alter endogenous IGFBP-3 secretion, cells were exposed to transfection with an expression vector containing sense IGFBP-3 cDNA. Following selection and amplification with methotrexate, cells underwent a permanent alteration in cell morphology, exhibiting characteristics of transporting epithelia. This was associated with secretion of IGFBP-3 under basal conditions. Secretion of IGFBP-3 was due to expression of endogenous IGFBP-3 and not to expression of the transgene. Cells expressing IGFBP-3 under basal conditions grew slower in serum, but were more responsive to 100 ng/ml of IGF-1 in serum-free media compared to wild-type MDBK cells. The role of IGFBP-3 in mediating these responses requires further study.

  4. A novel tumor-promoting function residing in the 5' non-coding region of vascular endothelial growth factor mRNA.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Masuda

    2008-05-01

    Full Text Available BACKGROUND: Vascular endothelial growth factor-A (VEGF is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s in cancer cells. METHODS AND FINDINGS: Knockdown of VEGF with vegf-targeting small-interfering (si RNAs increased susceptibility of human colon cancer cell line (HCT116 to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs, or mutated 5'UTRs. Using these plasmids, we revealed that the 5'UTR of vegf mRNA possessed anti-apoptotic activity. The 5'UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5'UTR or the mutated 5'UTR. The clones expressing the 5'UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5'UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1 was markedly repressed in the 5'UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes. As a result, the

  5. The development of a new in vitro cell model for studying ESCC metastasis%食道鳞状上皮细胞癌转移体外细胞模型的建立

    Institute of Scientific and Technical Information of China (English)

    蔡贞; 周园; 温淑娟; 谷祯梅; 裘宇容

    2013-01-01

    Objective To develop an in vitro cell model for studying the molecular basis of metastatic process in esophageal squamous cell carcinoma (ESCC). Methods The ESCC cell line HK2 was cultured on non-adherent surface vessel, and the cell subline HK2-AD with a selective survival advantage in non adherent conditions were developed. The invasive and anchorage independent growth abilities of HK2 and HK2-AD were determined by in vitro invasion assay and colony formation assay. The proteomic patterns of HK2 and HK2-AD were analyzed with 2DE coupled with MS/MS. Results The HK2-AD cell line was successfully established. Compared to parental HK2 cells, HK2-AD cells have increased invasive and anchorage-independent growth abilities. The cells that invaded into the lower chamber and the colony formed in soft agar were(16.7±2.5) vs.(28.7±7.4) and (16.8±3.2) vs. (25±5.1) for HK2 and HK2-AD cells respectively. The differences were statistical significance (P<0.05). In addition, the expression of some proteins that involved in cell motility, glycolysis, and cell protection were up-regulated in HK2-AD cells. Conclusion An in vitro 3D cell model of metastasis was established based on anchorage-independent growth ability, which is valuable and easy to operate for further studies on ESCC metastatic process and drug development.%目的 建立一个适宜的食道鳞状上皮细胞癌(ESCC)体外转移研究模型.方法 将ESCC细胞系HK2置于未处理细胞培养皿中培养、传代,筛选出具有非锚定依赖生长能力的细胞株.以体外侵袭实验,软琼脂克隆形成实验比较、验证筛选细胞系与母代细胞的侵袭能力和非锚定依赖生长能力.利用比较蛋白质学的方法分析筛选细胞与母代细胞间的蛋白表达图谱差异.结果 成功筛选出具有较高转移能力并可传代培养的HK2-AD细胞株.HK2和HK2-AD细胞侵袭至小室膜反侧的细胞数分别为(16.7±2.5)和(28.7±7.4),软琼脂集落生成实验表明,HK2和HK2

  6. Role of CaECM25 in cell morphogenesis, cell growth and virulence in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    ZHANG TingTing; LI WanJie; LI Di; WANG Yue; SANG JianLi

    2008-01-01

    Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25△/△ mutants and investigated the role of the gene In morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25△/△ mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.

  7. Role of CaECM25 in cell morphogenesis, cell growth and virulence in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25?/? mutants and investigated the role of the gene in morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25?/? mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.

  8. Sparstolonin B, a novel plant derived compound, arrests cell cycle and induces apoptosis in N-myc amplified and N-myc nonamplified neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar

    Full Text Available Neuroblastoma is one of the most common solid tumors and accounts for ∼ 15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed. Here we examined the anticancer activity of a novel plant-derived compound, sparstolonin B (SsnB; 8,5'-dihydroxy-4-phenyl-5,2'-oxidoisocoumarin using neuroblastoma cell lines of different genetics. SsnB was recently isolated from an aquatic Chinese herb, Sparganium stoloniferum, and tubers of this herb have been used in traditional Chinese medicine for the treatment of several inflammatory diseases and cancers. Our cell viability and morphological analysis indicated that SsnB at 10 µM concentration significantly inhibited the growth of both N-myc amplified (SK-N-BE(2, NGP, and IMR-32 cells and N-myc nonamplified (SH-SY5Y and SKNF-1 cells neuroblastoma cells. The flow cytometric analyses suggested that SsnB arrests the cell cycle progression at G2-M phase in all neuroblastoma cell lines tested. Exposure of SsnB inhibited the compact spheroid formation and reduced the tumorigenicity of SH-SY5Y cells and SK-N-BE(2 cells in in vitro 3-D cell culture assays (anchorage-independent colony formation assay and hanging drop assay. SsnB lowers the cellular level of glutathione (GSH, increases generation of reactive oxygen species and activates the cleavage of caspase-3 whereas co-incubation of a GSH precursor, N-acetylcysteine, along with SsnB attenuates the inhibitory effects of SsnB and increases the neuroblastoma cell viability. Our results for the first time demonstrate that SsnB possesses anticancer activity indicating that SsnB-induced reactive oxygen species generation promotes apoptotic cell death in neuroblastoma cells of different genetic background. Thus these data suggest that SsnB can be a promising drug candidate

  9. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  10. Cell and molecular biology of epidermal growth factor receptor.

    Science.gov (United States)

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  11. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  12. [Peculiarities of growth and development of cultured mucosal cells from the upper respiratory tract stimulated by growth factors].

    Science.gov (United States)

    Chekan, V L; Kvacheva, Z B; Petrova, L G

    2009-01-01

    Specific features of growth and development of cultured mucosal cells from the upper respiratory tract were studied during their in vitro stimulation by keratinocyte growth factor (KGF) and epidermal growth factor (EGF). Phenotypic composition and quantitative characteristics of cultured epithelial cells was investigated with the use of monoclonal CD49F antibodies and flow cytofluorometry. The culture technique makes it possible to obtain a large amount of cells for the evaluation of their pathological changes. Moreover, cell cultures can be used to restore lesioned mucosa of the upper respiratory tract both in experiment and under clinical conditions.

  13. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  14. ARPE-19 cell growth and cell functions in euglycemic culture media.

    Science.gov (United States)

    Heimsath, Ernest G; Unda, Richard; Vidro, Eileen; Muniz, Albert; Villazana-Espinoza, Elia T; Tsin, Andrew

    2006-12-01

    Human retinal pigmented epithelial cells (ARPE-19) grown in euglycemic media (5.5 mM) had lower cell number, significantly different cell morphology, and lower levels of vascular endothelial growth factor (VEGF) in the culture media than those grown in hyperglycemic media (18 mM) customarily used for culturing ARPE-19 cells. Although it has been shown that within a 24-hour period, all-trans retinoic acid significantly reduces VEGF secretion by retinal pigmented epithelial cells (grown in 18 mM glucose), such an inhibitory effect was not observed in cells grown in 5.5 mM glucose. Our results suggest that ARPE-19 cells grown in euglycemic media exhibit distinctly different cell growth, cell differentiation, and cell functions in comparison to cells grown in hyperglycemic media. Because euglycemic conditions provide a physiological glucose environment, this glucose concentration must be included in all future investigations of the mechanism of diabetic retinopathy when studying VEGF secretion by ARPE-19 cells.

  15. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  16. Targeting c-Myc on cell growth and vascular endothelial growth factor expression in IN500 glioblastoma cells

    Institute of Scientific and Technical Information of China (English)

    HU Yu-hua; KONG Shi-qi; KONG Hai-bo; WU Jian-liang; CHEN Ze

    2012-01-01

    Background The level of c-Myc is closely associated with high pathological grade and the poor prognosis of gliomas.Vascular endothelial growth factor (VEGF) is the most important angiogenic factor that potently stimulates the proliferation and migration of vascular endothelial cells.This study aimed to address the biological importance of c-Myc in the development of gliomas,we downregulated the expression of c-Myc in the human glioblastoma cell line IN500 and studied the in vitro effect on cellular growth,proliferation,and apoptosis and the expression of VEGF and the in vivo effect on tumor formation in a xenograft mouse model.Methods IN500△ cells were stably transfected with shRNA-expressing plasmids for either c-Myc (pCMYC-shRNA) or as a control (pCtrl-shRNA).Following establishment of stable cells,the mRNA expressions of c-Myc and VEGF were examined by reverse transcription (RT)-PCR,and c-Myc and VEGF proteins by Western blotting and immunohistochemistry.Cell-cycle progression and apoptosis were determined by flow cytometry.The in vivo effect of targeting c-Myc was determined by subcutaneous injection of stable cells into immunodeficient nude mice.Results The stable transfection of pCMYC-shRNA successfully knocked down the steady-state mRNA and protein levels of c-Myc in IN500,which positively correlated with the downregulation of VEGF.Downregulating c-Myc in vitro also led to G1-S arrest and enhanced apoptosis.In vivo,targeting c-Myc reduced xenograft tumor formation and resulted in significantly smaller tumors.Conclusions c-Myc has multiple functions in glioblastoma development that include regulating cell-cycle,apoptosis,and VEGF expression.Targeting c-Myc expression may be a promising therapy for malignant glioma.

  17. Creating conductive structures for cell growth: growth and alignment of myogenic cell types on polythiophenes.

    Science.gov (United States)

    Breukers, R D; Gilmore, K J; Kita, M; Wagner, K K; Higgins, M J; Moulton, S E; Clark, G M; Officer, D L; Kapsa, R M I; Wallace, G G

    2010-10-01

    Conducting polymers provide suitable substrates for the in vitro study of excitable cells, including skeletal muscle cells, due to their inherent conductivity and electroactivity. The thiophene family of conducting polymers offers unique flexibility for tailoring of polymer properties as a result of the ease of functionalization of the parent monomer. This article describes the preparation of films and electrospun fibers from an ester-functionalized organic solvent-soluble polythiophene (poly-octanoic acid 2-thiophen-3-yl-ethyl ester) and details the changes in properties that result from post-polymerization hydrolysis of the ester linkage. The polymer films supported the proliferation and differentiation of both primary and transformed skeletal muscle myoblasts. In addition, aligned electrospun fibers formed from the polymers provided scaffolds for the guided differentiation of linearly aligned primary myotubes, suggesting their suitability as three-dimensional substrates for the in vitro engineering of skeletal muscle tissue.

  18. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    Science.gov (United States)

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  19. Lidamycin Induces Apoptosis of B-Cell Lymphoma Cells and Inhibits Xenograft Growth in Nude Mice

    Institute of Scientific and Technical Information of China (English)

    Hong Fang; Shenghua Zhang; Qingfang Miao; Dongsheng Xiong; Yongsu Zhen

    2009-01-01

    OBJECTIVE To study the cytotoxicity of Lidamycin (LDM) and its induction of apoptosis in Raji and Daudi cells of B-cell lymphoma, and the inhibition of growth of the lymphoma Raji xenograft in nude mice.METHODS MTT assay was used to observe the inhibition by LDM on the proliferation of the Raji and Daudi cells. Annexin V-FITC/PI double-stain, in combination with flow cytometry (FCM), was used to determine the induction of apoptosis by LDM in Raji cells. The B-cell lymphoma Raji xenograft model in nude mice was set up to detect the in vivo antitumor activity of LDM.RESULTS LDM markedly inhibited the proliferation of the Raji and Daudi cells in vitro, with IC50 values of 7.13×10-11 mol/L and 2.91×10-10 mol/L, respectively. The apoptotic rates of Raji cells were respectively 77.98% and 67.63% at 0.5 nmol/L and 0.25 nmol/L of LDM, indicating an obvious induction of apoptosis in Raji cells. LDM inhibited the formation and growth of human B-cell lymphoma Raji xenograft in nude mice. The inhibition rates of tumor growth were respectively 74.9% and 65.2% in LDM at dosage group of 0.05 mg/kg and 0.025 mg/kg, suggesting an apparent prolongation of survival time in the nude mouse bearing lymphoma.CONCLUSION LDM can effectively induce apoptosis of the B-cell lymphoma cells and inhibit the xenograft growth in nude mice.

  20. Dickkopf3 overexpression inhibits pancreatic cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Yu-Mei Gu; Yi-Hui Ma; Wu-Gan Zhao; Jie Chen

    2011-01-01

    AIM: To elucidate the role of dickkopf3 (Dkk3) in human pancreatic cancer cell growth.METHODS: Dkk3 mRNA and protein expression in human pancreatic cancer cell lines were detected by real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blotting and immunofluorescence. Methylation of the Dkk3 promoter sequence was examined by methylation-specific polymerase chain reaction (MSP) and Dkk3 mRNA expression was determined by real-time RT-PCR after 5-aza-2'-deoxycytidine (5-aza-dC) treatment. The effects of Dkk3 on cancer cell proliferation and in vitro sensitivity to gemcitabine were investigated by CellTiter 96. AQueous One Solution Cell Proliferation Assay (MTS) after transfecting the Dkk3 expression plasmid into human pancreatic cancer cells. The expression of β-catenin, phosphorylated extracellular signal-regulated protein kinases (pERK) and extracellular signal-regulated protein kinases (ERK) was also examined by real-time RT-PCR and Western blotting after upregulating Dkk3 expression in human pancreatic cancer cells.RESULTS: The results show that the expression levels of both Dkk3 mRNA and protein were low in all pancreatic cancer cell lines tested. The Dkk3 promoter sequence was methylated in the MIA PaCa-2 and AsPC-1 cell lines, which showed reduced Dkk3 expression. These two cell lines, which initially had a methylated Dkk3 promoter, showed increased Dkk3 mRNA expression that was dependent upon the dosage and timing of the DNA demethylating agent, 5-aza-dC, treatment (P < 0.05 or P < 0.01). When Dkk3 expression was upregulated following the transfection of a Dkk3 expression plasmid into MIA PaCa-2 cells, the ability of cells to proliferate decreased (P < 0.01), and the expression of β-catenin and pERK was downregulated (P < 0.01). Sensitivity to gemcitabine was enhanced in Dkk3 expression plasmid-transfected cells.CONCLUSION: Our findings, for the first time, implicate Dkk3 as a tumor suppressor in human pancreatic cancer

  1. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells

    Directory of Open Access Journals (Sweden)

    Malik Mohammed T

    2005-01-01

    Full Text Available Abstract Background Pituitary tumor transforming gene1 (PTTG1 is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3 cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293 cells. Results We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. Conclusions Our results

  2. IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells.

    Science.gov (United States)

    Long, Jun; Zhang, Xulong; Wen, Mingjie; Kong, Qingli; Lv, Zhe; An, Yunqing; Wei, Xiao-Qing

    2013-01-01

    Interleukin (IL)-35 is a novel heterodimeric cytokine in the IL-12 family and is composed of two subunits: Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. IL-35 is expressed in T regulatory (Treg) cells and contributes to the immune suppression function of these cells. In contrast, we found that both IL-35 subunits were expressed concurrently in most human cancer cell lines compared to normal cell lines. In addition, we found that TNF-α and IFN-γ stimulation led to increased IL-35 expression in human cancer cells. Furthermore, over-expression of IL-35 in human cancer cells suppressed cell growth in vitro, induced cell cycle arrest at the G1 phase, and mediated robust apoptosis induced by serum starvation, TNF-α, and IFN-γ stimulation through the up-regulation of Fas and concurrent down-regulation of cyclinD1, survivin, and Bcl-2 expression. In conclusion, our results reveal a novel functional role for IL-35 in suppressing cancer activity, inhibiting cancer cell growth, and increasing the apoptosis sensitivity of human cancer cells through the regulation of genes related to the cell cycle and apoptosis. Thus, this research provides new insights into IL-35 function and presents a possible target for the development of novel cancer therapies.

  3. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    Science.gov (United States)

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  4. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  5. Cell Growth Arrest Mediated by STAT Proteins in Breast Cancer Cells

    Science.gov (United States)

    1998-07-01

    pepstatin, and aprotinin (1 (Xg/ml each). Whole cell extracts were immediately subjected to electromobility shift assay. Preparation of membrane and...activation on the cytosol fraction (STAT protein) concentration. Electromobility shift assay (EMSA) The sample after in vitro activation (3 ul) (1 [il...transcription; EGF, epidermal growth factor; NGF, nerve growth factor; EMSA, electromobility shift assay; SIF, sis-inducible factor; SIE, sis

  6. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  7. Growth-limiting role of endothelial cells in endoderm development.

    Science.gov (United States)

    Sand, Fredrik Wolfhagen; Hörnblad, Andreas; Johansson, Jenny K; Lorén, Christina; Edsbagge, Josefina; Ståhlberg, Anders; Magenheim, Judith; Ilovich, Ohad; Mishani, Eyal; Dor, Yuval; Ahlgren, Ulf; Semb, Henrik

    2011-04-15

    Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed. S1P(1) ablation results in compromised growth of several foregut-derived organs, including the stomach, dorsal and ventral pancreas and liver. Within the developing pancreas the reduction in organ size was due to deficient proliferation of Pdx1(+) pancreatic progenitors, whereas endocrine cell differentiation was unaffected. Ablation of endothelial cells in vitro did not mimic the S1P(1) phenotype, instead, increased organ size and hyperbranching were observed. Consistent with a negative role for endothelial cells in endoderm organ expansion, excessive vasculature was discovered in S1P(1)-deficient embryos. Altogether, our results show that endothelial cell hyperplasia negatively influences organ development in several foregut-derived organs.

  8. Physical growth of children with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Mukherjee Malay

    2004-01-01

    Full Text Available Anthropometric measurements were used to study the physical growth of 58 sickle cell disease(SS children with severe clinical manifestations and compared with 86 normal(AA children from Nagpur district of Maharashtra. Both sickle cell disease male and female children were shown to have statistically significant lower weights, heights, sitting heights, mid arm circumferences, skin fold thickness and body mass indexes but not upper/ lower segment ratio as compared to normal children with comparable sex and ages. No significant differences were observed between the male and female children with sickle cell disease or normal for any of the anthropometric measurements. A significant lower values of all the measurements except U/L ratio was observed in the age group of 11-14 years than the earlier age among the sickle cell disease children as compared to the normal children of the same age and sex groups. Thus, these results indicate that as a group, children with sickle cell disease weigh less, are shorter and undernourished as compared to normal children.

  9. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    OpenAIRE

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  10. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  11. Stromal interaction molecule 1 regulates growth, cell cycle, and apoptosis of human tongue squamous carcinoma cells.

    Science.gov (United States)

    Cui, Xiaobo; Song, Laixiao; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Wang, Wei

    2017-04-30

    Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival.

  12. Elastase induces lung epithelial cell autophagy through placental growth factor

    Science.gov (United States)

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  13. Lipid raft involvement in yeast cell growth and death.

    Science.gov (United States)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  14. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  15. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ahmad

    Full Text Available We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  16. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Science.gov (United States)

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  17. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    Science.gov (United States)

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  18. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  19. Three Dimensional Simulation Method in Early Process of Division and Growth for Tumour Cells

    Institute of Scientific and Technical Information of China (English)

    XIA Zhi-qiu; ZHAO Ting-ting

    2014-01-01

    The process of division, growth and death for tumour cell mass in the early is simulated. An integrated GUI is provided for users to set the value of each parameters, which are cell growth rates, cell mass division rates, cell mass death rates, simulate type, maximum running time, polarity and cell colour. It can display the growth process of each cell on result GUI. Also, it can display the values of each parameters for observing and analysing in current life cycle on result GUI, which are cell mass division times, cell mass death rate, cell mass division rate and cell mass growth rate. In the process of simulation, The cell growth rate is described by the approach to combine the exponential model with the linear model. In addition, a linked list data structure to store the tumour cells is used by the cellular automata for a reference to determine the position of each cell. It sets up two linked list to store the cells, one of them save the new small division cells and the other one save the big cell. That can make the painting process of cells on result GUI clearer and more organized. At last, the polarity of tumour growth is described for determining the growth direction of cells.

  20. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    Science.gov (United States)

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  1. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    Science.gov (United States)

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  2. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan

    2008-01-01

    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  3. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Science.gov (United States)

    Turk, Seyhan; Malkan, Umit Yavuz; Ghasemi, Mehdi; Hocaoglu, Helin; Mutlu, Duygu; Gunes, Gursel; Aksu, Salih; Haznedaroglu, Ibrahim Celalettin

    2017-01-01

    Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells. PMID:28293423

  4. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  5. Inhibitory Effect of Melatonin on the Growth of H22 Hepatocarcinoma Cells by Inducing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    泰莉; 王西明; 段秋红; 陈蓓蓓; 何善述

    2004-01-01

    Summary: Whether melatonin not only inhibits the growth of H22 hepatocarcinoma cells but also induces apoptosis in vitro was assessed. The anti-proliferative effects of melatonin on tumor cells was observed by MTT assay and tumor cells growth curve assay. And the apoptosis of the cells was studied by acridine orange fluorescence assay and flow cytometry. The cell cycle of the tumor cells was also observed by flow cytometry. It was found that melatonin could significantly inhibit the growth of H22 hepatocarcinoma cells. Incubated with melatonin, chromatin condensation of the tumor cells was observed by fluorescence microscopy. Compared with control, the percentage of apoptotic cells was increased, and the proportion of G0/S increased but that of G2/M decreased. It was suggested that melatonin could directly inhibit the growth of H22 hepatocarcinoma cells by inducing apoptosis and extending the length of cell cycle of the tumor cells.

  6. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    Directory of Open Access Journals (Sweden)

    Colpo Anna

    2010-10-01

    Full Text Available Abstract Background Glycogen Synthase Kinase-3 (GSK-3 α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM. Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i play distinct roles in cell survival and ii modulate the sensitivity to proteasome inhibitors.

  7. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefano Busti

    2010-06-01

    Full Text Available Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module, the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  8. The monoamine oxidase-A inhibitor clorgyline promotes a mesenchymal-to-epithelial transition in the MDA-MB-231 breast cancer cell line.

    Science.gov (United States)

    Satram-Maharaj, Tamara; Nyarko, Jennifer N K; Kuski, Kelly; Fehr, Kelsey; Pennington, Paul R; Truitt, Luke; Freywald, Andrew; Lukong, Kiven Erique; Anderson, Deborah H; Mousseau, Darrell D

    2014-12-01

    Monoamine oxidase-A (MAO-A) dysfunction has been historically associated with depression. Recently, depression as well as altered MAO-A expression have both been associated with a poor prognosis in cancers, although the mechanism involved remains ambiguous. For example, MAO-A mRNA is repressed across cancers, yet MAO-A protein and levels of serotonin, a substrate of MAO-A implicated in depression, are paradoxically increased in malignancies, including breast cancer. The effect of clorgyline (CLG), a selective inhibitor of MAO-A, on malignant behaviour, expression of transitional markers, and biochemical correlates was examined in two human breast carcinoma cell lines, i.e. the epithelial, oestrogen receptor (ER)-positive MCF-7 cell line and the post-EMT (mesenchymal), ER-negative MDA-MB-231 cell line. CLG exerted little effect on malignant behaviour in MCF-7 cells, but inhibited proliferation and anchorage-independent growth, and increased invasiveness and active migration of MDA-MB-231 cells. CLG induced the expression of the mesenchymal marker vimentin in MCF-7 cells, but not in MDA-MB-231 cells. In contrast, CLG induced the epithelial protein marker E-cadherin in both cell lines, with a more robust effect in MDA-MB-231 cells (where a nuclear E-cadherin signal was also detected). This effect appears to be independent of any canonical Snai1-mediated regulation of E-cadherin mRNA expression. CLG interfered with the β-catenin/[phospho]GSK-3β complex as well as the E-cadherin/β-catenin complex in both cell lines cells, but, again, the effect was more robust in MDA-MB-231 cells. Parallel studies revealed a general lack of effect of CLG on the ER-negative, epithelial Au565 breast cancer cell line. Thus, any effect of CLG on metastatic behaviours appears to rely on the cell's EMT status rather than on the cell's ER status. These data suggest that inactivation of MAO-A triggers a mesenchymal-to-epithelial transition in MDA-MB-231 cells via a non-canonical mechanism

  9. Study on Invasion of Artesunate on Inhibiting Human Colon Cancer Cell SW620

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2013-09-01

    Full Text Available Objective: To observe the invasive effect of Chinese extraction artesunate on human colon cancer cell SW620 and explore its possible mechanisms. Methods: Colon cancer cell SW620 was managed by different concentrations of artesunate, and soft agar colony-cultivating trial was applied to detect anchorage independent proliferation of cancer cells, Boyden chamber model method to detect the invasive capability of cancer cells and Western blot method to detect the change of intercellular adhesion molecule-1 (ICAM-1 proteins. Results: Artesunate can effectively inhibit malignant proliferation and invasive capability of colon cancer cell SW620, and was dose-dependent (P < 0.01. Artesunate can effectively inhibit the expression of cancer cell ICAM-1 gene proteins, and was time- and concentration-dependant (P <0.01. Conclusion: Artesunate can significantly inhibit the invasion of colon cancer cell SW620, which can be related to down-regulation of ICAM-1 protein level.

  10. Arabidopsis TCP20 links regulation of growth and cell division control pathways

    OpenAIRE

    2005-01-01

    During postembryonic plant development, cell division is coupled to cell growth. There is a stringent requirement to couple these processes in shoot and root meristems. As cells pass through meristems, they transit through zones with high rates of cell growth and proliferation during organogenesis. This transition implies a need for coordinate regulation of genes underpinning these two fundamental cell functions. Here, we report a mechanism for coregulation of cell division control genes and ...

  11. RASSF1A expression inhibits cell growth and enhances cell chemosensitivity to mitomycin in BEL-7402 hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Hong-geng; XUE Wan-jiang; QIAN Hai-xin; ZHOU Xiao-jun; QIN Lei; LAN Jing

    2009-01-01

    Background The antitumor role of Ras association domain family 1A (RASSFIA) gene and its potential molecular mechanisms are not well understood. The objective of this study was to observe the antitumor ability of RASSFIA in hepatoceliular carcinoma, and study the mechanisms of cell apoptosis induced by RASSFIA.Methods After stably transfecting a RASSF1A (wild-type or mutant) expression vector into the BEL-7402 hepatocellular carcinoma cell line, RT-PCR and Westem blotting was used to detect the RASSF1A expression levels in recombinant cells. The effects of wild-type RASSF1A on cell growth were observed in vitro by analyzing cell proliferation rate, cell colony formation, and in vivo by analyzing tumorigenesis in nude mice. In addition, the effect of RASSF1A gene expression on the chemosensitivity of human hepatocellular carcinoma cells to antitumor drugs was examined by inhibition of cell proliferation and the percentage of apoptotic cells.Results Wild-type RASSF1A, not the mutant, suppressed cell growth in vitro and in vivo. Re-expression of wild-type RASSF1A could enhance the inhibition of cell proliferation and the percentage of apoptotic cells following cell treatment with mitomycin, but had no significant effect when combined with adriamycin, etoposide, 5-fluorouracil and cisplatJn treatment.Conclusion Wild-type RASSF1A inhibits cell growth and enhances cell chemosensitivity to mitomycin in hepatocellular carcinoma, suggesting that RASSF1A may serve as a new target for gene therapy in hepatocellular carcinoma patients.

  12. Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation

    OpenAIRE

    Sotiropoulos, Athanassia; Ohanna, Mickaël; Kedzia, Cécile; Menon, Ram K.; Kopchick, John J.; Kelly, Paul A; Pende, Mario

    2006-01-01

    Growth hormone (GH) participates in the postnatal regulation of skeletal muscle growth, although the mechanism of action is unclear. Here we show that the mass of skeletal muscles lacking GH receptors is reduced because of a decrease in myofiber size with normal myofiber number. GH signaling controls the size of the differentiated myotubes in a cell-autonomous manner while having no effect on size, proliferation, and differentiation of the myoblast precursor cells. The GH hypertrophic action ...

  13. Epidermal growth factor induces changes of interaction between epidermal growth factor receptor and actin in intact cells

    Institute of Scientific and Technical Information of China (English)

    Wei Song; Haixing Xuan; Qishui Lin

    2008-01-01

    The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with actins in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process.

  14. Analysis of Vero cell growth behavior on microcarrier by means of environmental scanning electron microscopy

    Institute of Scientific and Technical Information of China (English)

    SHAO; Manjun(邵曼君); JIANG; Lei(姜蕾); CONG; Wei(丛威); OUYANG; Fan(欧阳藩)

    2002-01-01

    By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesion and spreading stage.

  15. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  16. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  17. NFkB signaling is important for growth of antiestrogen resistant breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Emdal, Kristina Bennet; Guerra, Barbara;

    2012-01-01

    resistant cell growth and a potential target for re-sensitizing resistant cells to endocrine therapy. We used an MCF-7-derived cell model for antiestrogen resistant breast cancer to investigate dependence on NF¿B signaling for antiestrogen resistant cell growth. We found that targeting NF¿B preferentially...... inhibited resistant cell growth. Antiestrogen resistant cells expressed increased p50 and RelB, and displayed increased phosphorylation of p65 at Ser529 and Ser536. Moreover, transcriptional activity of NF¿B after stimulation with tumor necrosis factor a was enhanced in antiestrogen resistant cell lines...... resistant cells increased sensitivity to tamoxifen treatment. Our data provide evidence that NF¿B signaling is enhanced in antiestrogen resistant breast cancer cells and plays an important role for antiestrogen resistant cell growth and for sensitivity to tamoxifen treatment in resistant cells. Our results...

  18. Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells.

    Science.gov (United States)

    Choo, Wun Hak; Park, Cho Hee; Jung, Shi Eun; Moon, Byeonghak; Ahn, Huiyeon; Ryu, Jung Seok; Kim, Keun-Soo; Lee, Yong Hwa; Yu, Il Je; Oh, Seung Min

    2016-12-01

    To predict carcinogenic potential of AgNPs on the respiratory system, BEAS-2B cells (human bronchial epithelial cells) were chronically exposed to low- and non-cytotoxic dose (0.13 and 1.33μg/ml) of AgNPs for 4months (#40 passages). To assess malignant cell transformation of chronic exposure to AgNPs, several bioassays including anchorage independent agar colony formation, cell migration/invasion assay, and epithelial-mesenchymal transition (EMT) were performed in BEAS-2B cells. Chronic exposure to AgNPs showed a significant increase of anchorage independent agar colony formation and cell migration/invasion. EMT, which is the loss of epithelial markers (E-Cadherin and Keratin) and the gain of mesenchymal marker (N-cadherin and Vimentin), was induced by chronic exposure to AgNPs. These responses indicated that chronic exposure to AgNPs could acquire characteristics of tumorigenic cells from normal BEAS-2B cells. In addition, caspase-3, p-p53, p-p38, and p-JNK were significantly decreased, while p-ERK1/2 was significantly increased. MMP-9 related to cell migration/invasion was upregulated, while a MMP-9 inhibitor, TIMP-1 was down-regulated. These results indicated that BEAS-2B cells exposed to AgNPs could induce anti-apoptotic response/anoikis resistance, and cell migration/invasion by complex regulation of MAPK kinase (p38, JNK, and ERK) and p53 signaling pathways. Therefore, we suggested that long-term exposure to low-dose of AgNPs could enhance malignant cell transformation in non-tumorigenic BEAS-2B cells. Our findings provide useful information needed to assess the carcinogenic potential of AgNPs.

  19. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  20. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  1. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Damodaran, Shima P; Eberhard, Stephan; Boitard, Laurent; Rodriguez, Jairo Garnica; Wang, Yuxing; Bremond, Nicolas; Baudry, Jean; Bibette, Jérôme; Wollman, Francis-André

    2015-01-01

    To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  2. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells.

    Science.gov (United States)

    Payton-Stewart, Florastina; Tilghman, Syreeta L; Williams, LaKeisha G; Winfield, Leyte L

    2014-08-08

    Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα.

  3. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells

    Science.gov (United States)

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-01

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921

  4. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Mandel, Katharina; Yang, Yuanyuan; Schambach, Axel; Glage, Silke; Otte, Anna; Hass, Ralf

    2013-12-01

    Cellular interactions were investigated between human mesenchymal stem cells (MSC) and human breast cancer cells. Co-culture of the two cell populations was associated with an MSC-mediated growth stimulation of MDA-MB-231 breast cancer cells. A continuous expansion of tumor cell colonies was progressively surrounded by MSC(GFP) displaying elongated cell bodies. Moreover, some MSC(GFP) and MDA-MB-231(cherry) cells spontaneously generated hybrid/chimeric cell populations, demonstrating a dual (green fluorescent protein+cherry) fluorescence. During a co-culture of 5-6 days, MSC also induced expression of the GPI-anchored CD90 molecule in breast cancer cells, which could not be observed in a transwell assay, suggesting the requirement of direct cellular interactions. Indeed, MSC-mediated CD90 induction in the breast cancer cells could be partially blocked by a gap junction inhibitor and by inhibition of the notch signaling pathway, respectively. Similar findings were observed in vivo by which a subcutaneous injection of a co-culture of primary MSC with MDA-MB-231(GFP) cells into NOD/scid mice exhibited an about 10-fold increased tumor size and enhanced metastatic capacity as compared with the MDA-MB-231(GFP) mono-culture. Flow cytometric evaluation of the co-culture tumors revealed more than 90% of breast cancer cells with about 3% of CD90-positive cells, also suggesting an MSC-mediated in vivo induction of CD90 in MDA-MB-231 cells. Furthermore, immunohistochemical analysis demonstrated an elevated neovascularization and viability in the MSC/MDA-MB-231(GFP)-derived tumors. Together, these data suggested an MSC-mediated growth stimulation of breast cancer cells in vitro and in vivo by which the altered MSC morphology and the appearance of hybrid/chimeric cells and breast cancer-expressing CD90(+) cells indicate mutual cellular alterations.

  5. Engagement of SIRPα inhibits growth and induces programmed cell death in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Mahban Irandoust

    Full Text Available BACKGROUND: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia. DESIGN AND METHODS: We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs. RESULTS: By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0-M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs. CONCLUSIONS: Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.

  6. Study on Invasion of Artesunate on Inhibiting Human Colon Cancer Cell SW620

    Institute of Scientific and Technical Information of China (English)

    Fan Yu; Zhang Youli; Yao Guangtao; Li Yikui

    2013-01-01

    Objective:To observe the invasive effect of Chinese extraction artesunate on human colon cancer cell SW620 and explore its possible mechanisms. Methods:Colon cancer cell SW620 was managed by different concentrations of artesunate, and soft agar colony-cultivating trial was applied to detect anchorage independent proliferation of cancer cells, Boyden chamber model method to detect the invasive capability of cancer cells and Western blot method to detect the change of intercellular adhesion molecule-1 (ICAM-1) proteins. Results:Artesunate can effectively inhibit malignant proliferation and invasive capability of colon cancer cell SW620, and was dose-dependent (P Conclusion:Artesunate can signiifcantly inhibit the invasion of colon cancer cell SW620, which can be related to down-regulation of ICAM-1 protein level.

  7. Characterization of ascites-derived ovarian tumor cells from spontaneously occurring ovarian tumors of the chicken: evidence for E-cadherin upregulation.

    Directory of Open Access Journals (Sweden)

    Anupama Tiwari

    Full Text Available Ovarian cancer, a highly metastatic disease, is the fifth leading cause of cancer-related deaths in women. Chickens are widely used as a model for human ovarian cancer as they spontaneously develop epithelial ovarian tumors similar to humans. The cellular and molecular biology of chicken ovarian cancer (COVCAR cells, however, have not been studied. Our objectives were to culture COVCAR cells and to characterize their invasiveness and expression of genes and proteins associated with ovarian cancer. COVCAR cell lines (n = 13 were successfully maintained in culture for up to19 passages, cryopreserved and found to be viable upon thawing and replating. E-cadherin, cytokeratin and α-smooth muscle actin were localized in COVCAR cells by immunostaining. COVCAR cells were found to be invasive in extracellular matrix and exhibited anchorage-independent growth forming colonies, acini and tube-like structures in soft agar. Using RT-PCR, COVCAR cells were found to express E-cadherin, N-cadherin, cytokeratin, vimentin, mesothelin, EpCAM, steroidogenic enzymes/proteins, inhibin subunits-α, βA, βB, anti-müllerian hormone, estrogen receptor [ER]-α, ER-β, progesterone receptor, androgen receptor, and activin receptors. Quantitative PCR analysis revealed greater N-cadherin, vimentin, and VEGF mRNA levels and lesser cytokeratin mRNA levels in COVCAR cells as compared with normal ovarian surface epithelial (NOSE cells, which was suggestive of epithelial-mesenchymal transformation. Western blotting analyses revealed significantly greater E-cadherin levels in COVCAR cell lines compared with NOSE cells. Furthermore, cancerous ovaries and COVCAR cell lines expressed higher levels of an E-cadherin cleavage product when compared to normal ovaries and NOSE cells, respectively. Cancerous ovaries were found to express significantly higher ovalbumin levels whereas COVCAR cell lines did not express ovalbumin thus suggesting that the latter did not originate from

  8. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    Science.gov (United States)

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  9. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  10. Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway.

    Science.gov (United States)

    Richardson, Helena E; Portela, Marta

    2017-03-28

    Cell polarity regulation is critical for defining membrane domains required for the establishment and maintenance of the apical-basal axis in epithelial cells (apico-basal polarity), asymmetric cell divisions, planar organization of tissues (planar cell polarity), and the formation of the front-rear axis in cell migration (front-rear polarity). In the vinegar fly, Drosophila melanogaster, cell polarity regulators also interact with the Hippo tissue growth control signaling pathway. In this review we survey the recent Drosophila literature linking cell polarity regulators with the Hippo pathway in epithelial tissue growth, neural stem cell asymmetric divisions and in cell migration in physiological and tumorigenic settings.

  11. Plasticity in sunflower leaf and cell growth under high salinity.

    Science.gov (United States)

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes.

  12. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer.

    Science.gov (United States)

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R; Keng, Peter; Chen, Yuhchyau

    2016-02-09

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133- cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133- sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133- cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133- and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133- and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133- cells.

  13. Transcriptional profiling of ErbB signalling in mammary luminal epithelial cells - interplay of ErbB and IGF1 signalling through IGFBP3 regulation

    Directory of Open Access Journals (Sweden)

    Worthington Jenny

    2010-09-01

    that IGF1-dependent signalling and proliferation were enhanced in ErbB2-overexpressing cells, whilst loss of ErbB2 expression by siRNA silencing reduced IGF1 signalling. Furthermore, IGFBP3 knockdown resulted in basal ERK and Akt activation in luminal epithelial cells and increased invasiveness and anchorage-independent colony formation in SKBR3 cells. Conclusions These data show IGFBP3 as a negative regulator of transformation and that its down-regulation enhances IGF1-dependent signalling. They also show that ErbB2 can up-regulate IGF1-dependent signalling, possibly via the regulated expression of IGFBP3.

  14. Growth pattern of single fission yeast cells is bilinear and depends on temperature and DNA synthesis.

    Science.gov (United States)

    Baumgärtner, Stephan; Tolić-Nørrelykke, Iva M

    2009-05-20

    Cell growth and division have to be tightly coordinated to keep the cell size constant over generations. Changes in cell size can be easily studied in the fission yeast Schizosaccharomyces pombe because these cells have a cylindrical shape and grow only at the cell ends. However, the growth pattern of single cells is currently unclear. Linear, exponential, and bilinear growth models have been proposed. Here we measured the length of single fission yeast cells with high spatial precision and temporal resolution over the whole cell cycle by using time-lapse confocal microscopy of cells with green fluorescent protein-labeled plasma membrane. We show that the growth profile between cell separation and the subsequent mitosis is bilinear, consisting of two linear segments separated by a rate-change point (RCP). The change in growth rate occurred at the same relative time during the cell cycle and at the same relative extension for different temperatures. The growth rate before the RCP was independent of temperature, whereas the growth rate after the RCP increased with an increase in temperature, leading to clear bilinear growth profiles at higher temperatures. The RCP was not directly related to the initiation of growth at the new end (new end take-off). When DNA synthesis was inhibited by hydroxyurea, the RCP was not detected. This result suggests that completion of DNA synthesis is required for the increase in growth rate. We conclude that the growth of fission yeast cells is not a simple exponential growth, but a complex process with precise rates regulated by the events during the cell cycle.

  15. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  16. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth

    DEFF Research Database (Denmark)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2...... adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms...

  17. Thymosin beta 4 induces hair growth via stem cell migration and differentiation.

    Science.gov (United States)

    Philp, Deborah; St-Surin, Sharleen; Cha, Hee-Jae; Moon, Hye-Sung; Kleinman, Hynda K; Elkin, Michael

    2007-09-01

    Thymosin beta 4 is a small 43-amino-acid molecule that has multiple biological activities, including promotion of cell migration angiogenesis, cell survival, protease production, and wound healing. We have found that thymosin beta 4 promotes hair growth in various rat and mice models including a transgenic thymosin beta 4 overexpressing mouse. We have also determined the mechanism by which thymosin beta 4 acts to promote hair growth by examining its effects on follicle stem cell growth, migration, differentiation, and protease production.

  18. Growth arrest specific 2 is up-regulated in chronic myeloid leukemia cells and required for their growth.

    Directory of Open Access Journals (Sweden)

    Haixia Zhou

    Full Text Available Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML, the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2 regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM. GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+ progeny cells (CD34+YFP+ were plated for colony-forming cell (CFC assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3, while affected those of normal hematopoietic cells by 31±1% (n = 2. Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease.

  19. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  20. Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth

    OpenAIRE

    Haixia Zhou; Yue Ge; Lili Sun; Wenjuan Ma; Jie Wu; Xiuyan Zhang; Xiaohui Hu; Eaves, Connie J; Depei Wu; Yun Zhao

    2014-01-01

    Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form o...

  1. Study of wavy laminar growth of human urinary bladder cancer cell line in vitro

    Institute of Scientific and Technical Information of China (English)

    DENG Guo-hong; CONG Yan-guang; LIU Jun-kang; XU Qi-wang; YUAN Ze-tao

    2001-01-01

    To observe the ordered growth behavior of human urinary bladder cancer cell line (BIU) under culture in vitro. Methods: The suspension of BIU cells was spread locally in a culture container. When the cells grew along the wall to form a cellular colony, macroscopic and microscopic observations complemented with measurements of the parameters including expanding diameter, expanding rate, cell shape, average cell density, average cell size, dehydrogenase activity and sensitivity to pH were conducted dynamically. Results: During cell culture, obvious laminar characteristics appeared in localized growing BIU cell colonies and there was difference between the cells of different zones in shape, size, density, dehydrogenase activity and sensitivity to pH. Conclusion: Space closing and bio-dissipation result in self-organization of BIU cells with ordered growth behavior. The present experiment offers a simple, controllable model for the study of wavy growth of human cells.

  2. Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells.

    Science.gov (United States)

    Sakamoto, Takako; Horiguchi, Hyogo; Oguma, Etsuko; Kayama, Fujio

    2010-09-01

    Phytoestrogens have attracted attention as being safer alternatives to hormone replacement therapy (HRT) and as chemopreventive reagents for breast cancer because dietary soy isoflavone intake has been correlated with reduction in risk. To identify safe and effective phytoestrogen candidates for HRT and breast cancer prevention, we investigated the effects of daidzein, genistein, coumestrol, resveratrol and glycitein on cell growth, cell cycle, cyclin D1 expression, apoptosis, Bcl-2/Bax expression ratio and p53-dependent or NF-kappaB-dependent transcriptional activity in MCF-7 breast cancer cells. Phytoestrogens, except for glycitein, significantly enhanced estrogen-response-element-dependent transcriptional activity up to a level similar to that of 17beta-estradiol (E(2)). E(2) increased cell growth significantly, coumestrol increased cell growth moderately, and resveratrol and glycitein reduced cell growth. Phytoestrogens, except for glycitein, stimulated the promotion of cells to G(1)/S transition in cell cycle analysis, similar to E(2). This stimulation was accompanied by transient up-regulation of cyclin D1. While genistein, resveratrol and glycitein all increased apoptosis and reduced the Bcl-2/Bax ratio, resveratrol reduced this ratio more than either genistein or glycitein. Moreover, resveratrol significantly enhanced p53-dependent transcriptional activity, but slightly reduced NF-kappaB-dependent transcriptional activity. On knockdown analysis, genistein, resveratrol and glycitein all reduced the Bcl-2/Bax ratio in the presence of apoptosis-inducing stimuli, and estrogen receptor (ER) alpha silencing had no effect on these reductions. In contrast, in the absence of apoptosis-inducing stimuli, only resveratrol reduced the ratio, and ERalpha silencing abolished this reduction. Thus, resveratrol might be the most promising candidate for HRT and chemoprevention of breast cancer due to its estrogenic activity and high antitumor activity.

  3. Effects of medium nutrition on cell growth and isocamptothecin A and B production by suspension cell culture of Camptotheca acuminata

    Institute of Scientific and Technical Information of China (English)

    Zhang Dongyan; Yu Fang; Bai Fengwu; An Lijia

    2006-01-01

    The effects of initial sucrose concentration, nitrate to ammonium ratio, total N concentration and phosphate concentration in medium on cell growth and isocamptothecin A and B synthesis by suspension cell culture of Camptotheca acuminata were investigated in 250 mL shake flasks. 30 g L-1 sucrose concentration was beneficial to secondary metabolites synthesis. The cell growth and metabolites synthesis were also affected by the ratio of NO-3/NH+4, and nitrate was favourable for cell growth. The maximum dry weight was achieved when nitrate was used as the sole N source. The effect of total initial N on the cell cultures was also investigated with NO-3/NH+4 ratio of 1∶2. The final dry cell weight was similar throughout culture period and 50 mM initial N was favourable for secondary metabolite synthesis. 50 mM initial phosphate concentration facilitated both cell growth and secondary metabolites synthesis.

  4. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  5. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth

    Directory of Open Access Journals (Sweden)

    Celine eFeillet

    2015-05-01

    Full Text Available Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumour growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  6. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth.

    Science.gov (United States)

    Feillet, Celine; van der Horst, Gijsbertus T J; Levi, Francis; Rand, David A; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  7. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Science.gov (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  8. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K;

    1994-01-01

    was observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating...... the growth-suppressive effect of TGF-beta 1, the expression of functional pRb, as characterised by nuclear localisation, was examined by immunocytochemistry. Nuclear association of pRb was only seen in two of the five TGF-beta 1-responsive cell lines. These results indicate that in SCLC pRb is not required...

  9. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  10. The effects of antisense PTEN gene transfection on the growth and invasion of glioma cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-jie; ZHENG Zhao-cong; WANG Ru-mi; WANG Shou-sen; YANG Wei-zhong

    2006-01-01

    Objective:To study the effects of antisense PTEN gene on the growth and invasion of glioma cells. Methods:A pcDNA3. 1/Hygro (-) recombinant plasmid containing antisense PTEN gene fragment was constructed. Glioma cells of primary culture were transfected with antisense PTEN gene vector and stably transfected clones were selected. Then, the different growth and invasion abilities and the different MMP9 mRNA expressions of three kinds of cells were observed, including the transfected cells, untransfected cells and the cells transfected with empty vector. Results :The abilities of growth and invasion of the transfected cells and the expressions of MMP9 mRNA were obviously enhanced. Conclusion: Antisense PTEN gene could have a negative impact on the growth and invasion of primary culture glioma cells.

  11. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  12. Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3K signaling pathways

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-hua; WEI Wei; XU Hao; WANG Yan-yan; WU Wen-xi

    2007-01-01

    Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines can regulate the expression of vascular endothelial growth factor in tumor cells. In this study, we investigated whether hepatocyte growth factor can regulate the expression of vascular endothelial growth factor in colorectal carcinoma cells.Methods Hepatocyte growth factor and vascular endothelial growth factor in human serum were measured by ELISA.The mRNA level of vascular endothelial growth factor was analyzed by reverse transcription-PCR. Western blot assay was performed to evaluate levels of c-Met and several other proteins involved in the MAPK and PI3K signaling pathways in colorectal carcinoma cells.Results Serum hepatocyte growth factor and vascular endothelial growth factor were significantly increased in colorectal carcinoma subjects. In vitro extraneous hepatocyte growth factor markedly increased protein and mRNA levels of vascular endothelial growth factor in colorectal carcinoma cells. Hepatocyte growth factor induced phosphorylation of c-Met, ERK1/2 and AKT in a dose-dependent manner. Specific inhibitors on MEK and PI3K inhibited the hepatocyte growth factor-induced expression of vascular endothelial growth factor in colorectal carcinoma cells.Conclusion This present study indicates that hepatocyte growth factor upregulates the expression of vascular endothelial growth factor in colorectal carcinoma cells via the MEK/ERK and PI3K/AKT signaling pathways.

  13. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells.

    Science.gov (United States)

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B; Biliran, Hector

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial-mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental

  14. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells

    Science.gov (United States)

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B.; Biliran, Hector

    2016-01-01

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental

  15. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space.

    Science.gov (United States)

    Hoson, Takayuki; Soga, Kouichi; Mori, Ryuji; Saiki, Mizue; Nakamura, Yukiko; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    2002-09-01

    We analyzed the growth rate and the cell wall properties of coleoptiles of rice seedlings grown at 23.6 degrees C for 68.5, 91.5 and 136 h during the Space Shuttle STS-95 mission. In space, elongation growth of coleoptiles was stimulated and the cell wall extensibility increased. Also, the levels of the cell wall polysaccharides per unit length of coleoptiles and the relative content of the high molecular mass matrix polysaccharides decreased in space. These differences in the cell wall polysaccharides could be involved in increasing the cell wall extensibility, leading to growth stimulation of rice coleoptiles in space.

  16. Effects of Basic Fibroblast Growth Factor and Insulin-like Growth Factor on Cultured Cartilage Cells from Skate Raja porasa

    Institute of Scientific and Technical Information of China (English)

    樊廷俊; 晋凌云; 汪小锋

    2003-01-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24℃. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  17. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  18. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  19. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  20. Transfection of gene Livin α/β into A549 cells and separate effect on the cell growth

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-guo; LIAO Rong-xia; CHEN Zheng-tang; WANG Zhi-xin; ZHANG Qing; HU Yi-de; WANG Dong-lin

    2005-01-01

    Objective:To express two Livin isoforms (Livin α & β genes) with transfection techniques in A549 cell line respectively in order to observe their effect on growth of cell line. Methods:Two eukaryotic expression vectors of Livin, pcDNA3.1-Livin α & β, were transfected into A549 cell line by electroporation. Then G418-resistant clones were screened. RT-PCR, Northern blot and immunofluorescence cytochemistry were used to detect Livin α & β expression level in the transfected cells. Finally, observation of cell morphology, growth curve assay and colony formation analysis were performed to explore the effect of Livin on growth of the cells. Results:Livin α & β were expressed in transfected A549 cells, and induced a faster cell growth, shorter doubling time and stronger cell colony forming ability, yet had no morphology change.Conclusion:Both isoforms can accelerate the growth of A549 cells, indicating a close relationship between Livin expression and the genesis and development of lung cancer. The expression of Livin α & β in A549 cells provides basis for further study of their different biological functions of anti-apoptosis and of their role in lung cancer cell resistance to radiotherapy and chemotherapy.

  1. Growth factors have a protective effect on neomycin-induced hair cell loss.

    Science.gov (United States)

    Lou, Xiangxin; Yuan, Huihua; Xie, Jing; Wang, Xianliu; Yang, Liangliang; Zhang, Yanzhong

    2015-01-01

    We have demonstrated that selected growth factors are involved in regulating survival and proliferation of progenitor cells derived from the neonatal rat organ of Corti (OC). The protective and regenerative effects of these defined growth factors on the injured organ of Corti were therefore investigated. The organ of Corti dissected from the Wistar rat pups (P3-P5) was split into apical, middle, and basal parts, explanted and cultured with or without neomycin and growth factors. Insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF) protected the inner hair cells (IHCs) and outer hair cells (OHCs) from neomycin ototoxicity. Using EGF, IGF-1, and FGF-2 alone induced no protective effect on the survival of auditory hair cells. Combining 2 growth factors (EGF + IGF-1, EGF + FGF-2, or IGF-1 + FGF-2) gave statistically protective effects. Similarly, combining all three growth factors effectively protected auditory hair cells from the ototoxic insult. None of the growth factors induced regeneration of hair cells in the explants injured with neomycin. Thus various combinations of the three defined factors (IGF-1, FGF-2, and EGF) can protect the auditory hair cells from the neomycin-induced ototoxic damage, but no regeneration was seen. This offers a possible novel approach to the treatment of hearing loss.

  2. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells.

    Science.gov (United States)

    Wang, L; Qin, H; Chen, B; Xin, X; Li, J; Han, H

    2007-01-01

    Human cervical carcinoma is one of the most common malignant tumors, but the mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression are not clear. Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis, but perturbed Notch signaling may contribute to tumorigenesis. We now show that Notch1 is detected in all cervical cancer, including advanced diseases. We also constitutively overexpressed active Notch1 in human cervical carcinoma to explore the effects of Notch1 signaling on human cervical carcinoma cell growth and to investigate the underlying molecular mechanisms. The signaling may participate in the development of human cervical carcinoma cells, but overexpressed active Notch1 inhibits their growth through induction of cell cycle arrest. Increased Notch1 signaling induced a downmodulation of human papillomavirus transcription through suppression of activator protein (AP)-1 activity by upregulation of c-Jun and the decreased expression of c-Fos. Thus, Notch1 signaling plays a key role and exerts dual effects, functioning in context-specific manner.

  3. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  4. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a c