WorldWideScience

Sample records for cell adhesion molecule-1

  1. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf;

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects and...... 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P < 0.001) and increased in GHD patients during GH treatment, compared with placebo [net difference between groups 151.8 microg/liter (95...

  2. Pathogenic Actions of Cell Adhesion Molecule 1 in Pulmonary Emphysema and Atopic Dermatitis

    OpenAIRE

    Yoneshige, Azusa; Hagiyama, Man; Fujita, Mitsugu; Ito, Akihiko

    2015-01-01

    Cell adhesion mediated by adhesion molecules is of central importance in the maintenance of tissue homeostasis. Therefore, altered expression of adhesion molecules leads to the development of various tissue disorders involving cell activation, degeneration, and apoptosis. Nevertheless, it still remains unclear what initiates the altered expression of adhesion molecules and how the subsequent pathological cascades proceed. In this regard, cell adhesion molecule 1 (CADM1) is one of the candidat...

  3. Correlation of Serum Concentrations of Soluble Thrombomodulin, Soluble Vascular Cell Adhesion Molecule-1,Intracellular Adhesion Molecule -1 And E-Selectin In Patients WithSystemic Lupus Erythematosus

    OpenAIRE

    Malak., A. Mohsen*, Magda.A.Gamil*,Maha. I.Shehata

    2003-01-01

    To date no specific serological parameters are available to assess disease activity in systemic lupus erythematosus (SLE). The objective of this study was to correlate serum levels of thrombomodulin (TM), intracellular adhesion molecule-1 sICAM-1, vascular cell adhesion molecule-1 sVCAM-1, and E-selectin with standard laboratory tests and clinical indices of disease activity in 40 patients with SLE and 20 apparently healthy persons as controls. According to British Isles Lupus Assessment Grou...

  4. Intercellular Cell Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1, and Regulated on Activation Normal T Cell Expressed and Secreted Are Expressed by Human Breast Carcinoma Cells and Support Eosinophil Adhesion and Activation

    OpenAIRE

    Ali, Shahina; Kaur, Jaswinder; Patel, Kamala D.

    2000-01-01

    Eosinophils are usually associated with parasitic and allergic diseases; however, eosinophilia is also observed in several types of human tumors, including breast carcinomas. In this study we examined several human breast carcinoma cell lines for adhesion molecule expression and the ability to bind and activate eosinophils. MDA-MB-435S and MDA-MB-468 cells constitutively expressed both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and this expressio...

  5. Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line

    DEFF Research Database (Denmark)

    Holland, J; Owens, T

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1) (CD54) is an adhesion molecule of the immunoglobulin superfamily. The interaction between ICAM-1 on B lymphocytes and leukocyte function-associated antigen 1 on T cells plays a major role in several aspects of the immune response, including T-dependent B...

  6. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    OpenAIRE

    Lu, T T; Yan, L G; Madri, J. A.

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell sprea...

  7. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets

    OpenAIRE

    Cicmil, Milenko; Stevens, Jo; Leduc, Mireille; Bon, Cassian; Gibbins, Jonathan M.

    2002-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the r...

  8. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    Science.gov (United States)

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  9. Inhibitors of 5-lipoxygenase inhibit expression of intercellular adhesion molecule-1 in human melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Yin WANG; Bin ZHOU; Ji LI; Yong-bing CAO; Xin-sheng CHEN; Ming-he CHENG; Ming YIN

    2004-01-01

    AIM: To study the effect of 5-lipoxygenase inhibitors on the expression of intercellular adhesion molecule-1 (ICAM-1) in melanoma cells. METHODS: ICAM-1 protein of human melanoma cell a375 was detected by enzyme-linked immunosorbent, flow cytometry and Western blot analysis. Level of ICAM-1 mRNA in a375 was evaluated by Northern blot analysis. Adhesion of a375 to endothelial cell EC304 was analyzed by isotopic tracing. RESULTS:5-Lipoxygenase inhibitors nordihydroguaiaretic acid, AA861 and MK886, could suppress the expression of ICAM-1 protein as well as of its mRNA in a375 cells and reduce the adhesion of a375 to EC304. CONCLUSION:5-Lipoxygenase inhibitors can inhibit the expression of ICAM-1 in human melanoma cells and may be valuable for treatment of melanoma metastasis.

  10. Intercellular Adhesion Molecule 1 Promotes HIV-1 Attachment but Not Fusion to Target Cells

    OpenAIRE

    Naoyuki Kondo; Melikyan, Gregory B.

    2012-01-01

    Incorporation of intercellular adhesion molecule 1 (ICAM-1) into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1). At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachme...

  11. Correlation of Serum Concentrations of Soluble Thrombomodulin, Soluble Vascular Cell Adhesion Molecule-1,Intracellular Adhesion Molecule -1 And E-Selectin In Patients WithSystemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Malak., A. Mohsen*, Magda.A.Gamil*,Maha. I.Shehata

    2003-09-01

    Full Text Available To date no specific serological parameters are available to assess disease activity in systemic lupus erythematosus (SLE. The objective of this study was to correlate serum levels of thrombomodulin (TM, intracellular adhesion molecule-1 sICAM-1, vascular cell adhesion molecule-1 sVCAM-1, and E-selectin with standard laboratory tests and clinical indices of disease activity in 40 patients with SLE and 20 apparently healthy persons as controls. According to British Isles Lupus Assessment Group (BILAG disease activity index, the 40 patients were divided into two groups, the first consisted of 22 with active disease, and the second consisted of 18 patients with inactive SLE. Serum sTM, sICAM-1, sVCAM-I, and E-selectin were measured in their sera, using enzyme linked immuonosorbent assay (ELISA technique.C-reactiv protein (CRP, Erythrocyte sedimentation rates (ESR and serum creatinines were measured by standard laboratory tests. Total leukocytic count and hemoglobin concentration were detected by coulter counter. Levels of sTM and sVCAM were highly elevated in the group of patients with active SLE as compared to the inactive one (P0.05. In SLE, the BILAG disease activity index, ESR and serum creatinine correlated best with sTM, sVCAM-1 and E-selectin levels while there was a weak association between CRP levels and the adhesion molecules, and no correlation between CRP level and disease activity. In conclusion, sTM and sVCAM were the most important serological indices of disease activity in SLE and might be valuable serological parameters for monitoring therapy.

  12. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    International Nuclear Information System (INIS)

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  13. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  14. Intercellular adhesion molecule 1 promotes HIV-1 attachment but not fusion to target cells.

    Directory of Open Access Journals (Sweden)

    Naoyuki Kondo

    Full Text Available Incorporation of intercellular adhesion molecule 1 (ICAM-1 into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1. At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachment to cells in a temperature-dependent manner. It exerted a marginal effect on virus binding in the cold, but enhanced binding up to 4-fold at physiological temperature. ICAM-1-independent attachment in the cold was readily reversible upon subsequent incubation at elevated temperature, whereas ICAM-1-bearing particles were largely retained by cells. The better virus retention resulted in a proportional increase in HIV-1 internalization and fusion, suggesting that ICAM-1 did not specifically accelerate endocytosis or fusion steps. We also measured the rates of CD4 engagement, productive endocytosis and HIV-endosome fusion using specific fusion inhibitors. These rates were virtually independent of the presence of ICAM-1 in viral particles. Importantly, irrespective of the presence of ICAM-1, HIV-1 escaped from the low temperature block, which stopped virus endocytosis and fusion, much later than from a membrane-impermeant fusion inhibitor targeting surface-accessible particles. This result, along with the complete inhibition of HIV-1 fusion by a small molecule dynamin inhibitor, implies this virus enters lymphoid cells used in this study via endocytosis and that this pathway is not altered by the viral ICAM-1. Our data highlight the role of ICAM-1 in stabilizing the HIV-1 attachment to LFA-1 expressing cells, which leads to a proportional enhancement of the receptor-mediated uptake and fusion with endosomes.

  15. Platelet endothelial cell adhesion molecule-1 polymorphism in patients with bronchial asthma.

    Directory of Open Access Journals (Sweden)

    Ebrahim Nadi

    2012-12-01

    Full Text Available Asthma is considered as a chronic inflammatory airway disease and defined as increased tracheobronchial responsiveness to variety of stimuli. Edema and inflammatory cell infiltration in airway is observed in the asthmatic patients. One of the essential changes in inflammation is adhesion of leukocyte to endothelium and transmigration of leukocytes to the sites of inflammation. Unfortunately, little is known about the role of platelet endothelial cell adhesion molecule-1 (PECAM-1 polymorphism in asthma inflammatory process. The purpose of this study was to determine whether PECAM-1 polymorphisms affect the risk of asthma or not.Forty-five asthmatic patients (including 27 men and 18 women and 45 healthy volunteers (11 men and 34 women were studied. To determine the severity of the asthmas situation, a questionnaire was prepared asking the following information: age, sex, clinical signs and symptoms and past medical history. All subjects were genotyped for PECAM-1 polymorphism by using amplification refractory mutation system -polymerase chain reaction (ARMS-PCR. The genotype distribution of PECAM-1 80 Val/Met polymorphism in all asthmatic patients were Val/Val while non asthmatic controls were 95.6% Val/Val and 4.4% Val/Met. However, these differences were not statistically significant (p<0.05. The allele and genotype frequencies of PECAM-1 125 Val/Leu polymorphism were significantly different between asthmatic patients and controls. On the other hand, the presence of 125 Leu allele was associated with an increasing risk of asthma with an odds ratio of 2.8 (95% CI; 1.5-5.3, p=0.002. Our findings suggest that the PECAM-1 125 Val/leu polymorphism might be a genetic factor that may be associated with asthma.

  16. Expression of intercellular adhesion molecule-1 in rat heart with ischemia/reperfusion and limitation of infarct size by treatment with antibodies against cell adhesion molecules.

    OpenAIRE

    Yamazaki, T; Seko, Y; Tamatani, T; Miyasaka, M.; Yagita, H; Okumura, K.; R. Nagai; Yazaki, Y

    1993-01-01

    To elucidate the mechanism(s) of myocardial reperfusion injury, we investigated the roles of cell adhesion molecules on both leukocytes and vascular endothelial cells in the reperfused myocardia. We found that within 2 hours after reperfusion leukocytes began to infiltrate into the rat myocardia subjected to 30 minutes of ischemia and clarified, for the first time, that the expression of intercellular adhesion molecule-1 was enhanced on the capillary and venous endothelial cells from 8 to 96 ...

  17. Intercellular adhesion molecule-1 and gelatinase expression in human peritoneal mesothelial cells during propagation in culture.

    NARCIS (Netherlands)

    Sikkink, C.J.J.M.; Reijnen, M.M.P.J.; Duffhues, B.A.; Man, B.M. de; Lomme, R.M.L.M.; Goor, H. van

    2009-01-01

    Mesothelial cells are involved in a variety of biological processes, which include the formation of peritoneal adhesions. The cultures of human peritoneal mesothelial cells comprise an important tool to investigate the behavior and functions of mesothelial cells. Very little is known about the diffe

  18. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    Science.gov (United States)

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation. PMID:24470464

  19. Effects of Estrogen Level on the Function of Vascular Endothelial Cells and Expression of Vascular Cell Adhesion Molecule - 1φ

    Institute of Scientific and Technical Information of China (English)

    WU Saizhu(吴赛珠); LIU Jiangguo(刘建国); TAN Jiayu(谭家余); ZHoU Kexiang(周可祥); Gorge D Webb; WEI Heming(隗和明); GUO Zhiguang(郭志刚)

    2002-01-01

    Objectives To ob- serve the effect of different estrogen levels on the se- cretory function of vascular endothelial cells of female rats, and study the effect of modulation of estrogen level on the expression of vascular cell adhesion molecule - 1 and the concentration of estrogen receptorin vascular endothelial cells. Methods Radioim-munology was used to measure the serum concentrationof endothelin and PGI2, and copper-cadmium re-duction was employed to measure the serum content ofnitrogen monoxide. Radioligand binding and flowcy-tometry were used to measure the expression of estrogenreceptor and vascular cell adhesion molecule (VCAM-1 ) of vascular endothelial cells respectively. Re-sults 1. The serum concentration of nitric oxide andPGI2 decreased when the ovaries of female rats wereremoved. In ovariectomized rats, given estrogen, theconcentration rose ( P < 0.05), but the plasma con-centration of endothelin was adverse to it. 2. Theconcentration of estrogen receptor of vascular endothe-lial cells decreased remarkably when the ovaries of fe-male rats were removed. When given estrogen, it in-creased. 3. The percent of expressed VCAM - 1 in-creased siguificantly after interleukin- lβoperated onthe cells, but 17 - βestradiol at 3 × 10-8 ~ 10-6 mol/lall decreased the percent. Conclusions Estrogenlevel can influence the secretion of nitrogen monoxide,PGI2 and endothlin of vascular endothelial cells, andalso influence the concentration of estrogen receptor ofvascular endothelial cells. 17 -β Estradiol at 3 × 10-8~ 10-6 M can decrease the elevation of VCAM - 1 ofvascular endothelial cells induced by interleukin - 1 β.

  20. Adhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow

    Directory of Open Access Journals (Sweden)

    Yang H

    2011-09-01

    Full Text Available Hong Yang, Xiaoyan Xiong, Lie Zhang, Chunhui Wu, Yiyao LiuDepartment of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of ChinaAbstract: The expression of certain endothelial cell adhesion molecules is increased during endothelial dysfunction or inflammatory activation. This has led to the concept of using microbubbles for targeted molecular imaging or drug delivery. In this approach, microbubbles with a specific ligand to receptors expressed at the site of specific diseases are constructed. The present study aimed to engineer a novel type of bio-functionalized microbubbles (vascular cell adhesion molecule 1 [VCAM-1]-targeted microbubbles, and determine whether VCAM-1-targeted microbubbles exhibit specific adhesion to lipopolysaccharide (LPS-activated endothelial cells. Our data showed that VCAM-1expression was significantly upregulated in both LPS-activated endothelial cells in vitro and endothelium in a rat atherosclerosis model in vivo. Targeted microbubbles were designed by conjugating anti-VCAM-1 monoclonal antibodies to the shell of microbubbles using biotin–avidin bridging chemistry methods. Microbubble adhesion to endothelial cells was assessed in a flow chamber at two shear stress conditions (6.3 and 10.4 dynes/cm2. Our data showed that microbubble adhesion depends on both the surface anti-VCAM-1 antibody densities and the exposed shear stresses. Adhesion of VCAM-1-targeted microbubbles onto LPS-activated endothelial cells increased with the surface antibody densities, and decreased with the exposed shear stresses. These findings showed that the specific ligand-carrying microbubbles have considerable potential in targeted ultrasound molecular imaging or ultrasound-assisted drug/gene delivery applications.Keywords: targeted microbubbles, VCAM-1, adhesion, HUVEC-CS, shear flow

  1. The influence of propofol on the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in reoxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Leucocytes are a pivotal component of the inflammatory cascade that results in tissue injury in a large group of disorders. Free radical production and endothelial activation promote leucocyte-endothelium interactions via endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) which augment these processes, particularly in the setting of reperfusion injury. Propofol has antioxidant properties which may attenuate the increased expression of these molecules that is observed. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia, then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg mL(-1) or propofol 5 microg mL(-1), for 4 h after reoxygenation and were examined for ICAM-1 and VCAM-1 expression. RESULTS: Hypoxia did not increase the expression of ICAM-1\\/VCAM-1. ICAM-1 expression peaked 12 h after reoxygenation (21.75(0.6) vs. 9.6(1.3), P = 0.02). Propofol, but not Diprivan, prevented this increase (8.2(2.9) vs. 21.75(0.6), P = 0.009). VCAM-1 expression peaked 24 h after reoxygenation (9.8(0.9) vs. 6.6(0.6), P = 0.03). Propofol and Diprivan prevented this increase, with no difference between the two treatments observed (4.3(0.3) and 6.4(0.5) vs. 9.8(0.9), P = 0.001, 0.02, respectively). CONCLUSION: These effects are likely to be attributable to the antioxidant properties of propofol, and suggest that propofol may have a protective role in disorders where free radical mediated injury promotes leucocyte-endothelium adhesive interactions.

  2. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    OpenAIRE

    Ying-Bin Wang; Yi Hu; Zhen Li; Ping Wang; Yi-Xue Xue; Yi-Long Yao; Bo Yu; Yun-Hui Liu

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma ...

  3. Involvement of Intercellular Adhesion Molecule-1 Up-Regulation in Bradykinin Promotes Cell Motility in Human Prostate Cancers

    Directory of Open Access Journals (Sweden)

    Chih-Hsin Tang

    2013-06-01

    Full Text Available Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to distant organs. Bradykinin (BK is an inflammatory mediator and has recently been shown to mediate tumor growth and metastasis. The adhesion molecule intercellular adhesion molecule-1 (ICAM-1 plays a critical role during tumor metastasis. The aim of this study was to examine whether BK promotes prostate cancer cell migration via ICAM-1 expression. The motility of cancer cells was increased following BK treatment. Stimulation of prostate cancer cells with BK induced mRNA and protein expression of ICAM-1. Transfection of cells with ICAM-1 small interfering RNA reduced BK-increased cell migration. Pretreatment of prostate cancer cells with B2 receptor, phosphatidylinositol 3-kinase (PI3K, Akt, and activator protein 1 (AP-1 inhibitors or mutants abolished BK-promoted migration and ICAM-1 expression. In addition, treatment with a B2 receptor, PI3K, or Akt inhibitor also reduced BK-mediated AP-1 activation. Our results indicate that BK enhances the migration of prostate cancer cells by increasing ICAM-1 expression through a signal transduction pathway that involves the B2 receptor, PI3K, Akt, and AP-1. Thus, BK represents a promising new target for treating prostate cancer metastasis.

  4. Increased ectodomain shedding of cell adhesion molecule 1 as a cause of type II alveolar epithelial cell apoptosis in patients with idiopathic interstitial pneumonia

    OpenAIRE

    Yoneshige, Azusa; Hagiyama, Man; Inoue, Takao; Mimae, Takahiro; Kato, Takashi; Okada, Morihito; Enoki, Eisuke; Ito, Akihiko

    2015-01-01

    Background Lung alveolar epithelial cell (AEC) apoptosis has attracted attention as an early pathogenic event in the development of idiopathic interstitial pneumonia (IIP); however, the causative mechanism remains unclear. Cell adhesion molecule 1 (CADM1) is an AEC adhesion molecule in the immunoglobulin superfamily. It generates a membrane-associated C-terminal fragment, αCTF, through protease-mediated ectodomain shedding, termed α-shedding. Increased CADM1 α-shedding contributes to AEC apop...

  5. Assessment of glycosylation-dependent cell adhesion molecule 1 as a correlate of allergen-stimulated lymph node activation

    International Nuclear Information System (INIS)

    Early changes in gene expression have been identified by cDNA microarray technology. Analysis of draining auricular lymph node tissue sampled at 48 h following exposure to the potent contact allergen 2,4-dinitrofluorobenzene (DNFB) provided examples of up- and down-regulated genes, including onzin and guanylate binding protein 2, and glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1), respectively. Allergen-induced changes in these three genes were confirmed in dose-response and kinetic analyses using Northern blotting and/or reverse transcription-polymerase chain reaction techniques. The results confirmed that these genes are robust and relatively sensitive markers of early changes provoked in the lymph node by contact allergen. Upon further investigation, it was found that altered expression of the adhesion molecule GlyCAM-1 was not restricted to treatment with DNFB. Topical sensitization of mice to a chemically unrelated contact allergen, oxazolone, was also associated with a decrease in the expression of mRNA for GlyCAM-1. Supplementary experiments revealed that changes in expression of this gene are independent of the stimulation by chemical allergens of proliferative responses by draining lymph node cells. Taken together these data indicate that the expression of GlyCAM-1 is down-regulated rapidly following epicutaneous treatment of mice with chemical allergens, but that this reduction is associated primarily with changes in lymph node cell number, or some other aspect of lymph node activation, rather than proliferation

  6. Pre-diagnostic levels of adiponectin and soluble vascular cell adhesion molecule-1 are associated with colorectal cancer risk

    Institute of Scientific and Technical Information of China (English)

    Mathilde Touvier; Pilar Galan; Sébastien Czernichow; Léopold Fezeu; Namanjeet Ahluwalia; Chantal Julia; Nathalie Charnaux; Angela Sutton; Caroline Méjean; Paule Latino-Martel; Serge Hercberg

    2012-01-01

    AIM:To examine the relationships between pre-diag-nostic biomarkers and colorectal cancer risk and assess their relevance in predictive models.METHODS:A nested case-control study was designed to include all first primary incident colorectal cancer cases diagnosed between inclusion in the SUpplementation en VItamines et Minéraux AntioXydants cohort in 1994 and the end of follow-up in 2007.Cases (n =50) were matched with two randomly selected controis (n =100).Conditional logistic regression models were used to investigate the associations between prediagnostic levels of hs-CRP,adiponectin,leptin,soluble vascular cell adhesion molecule-1 (sVCAM-1),soluble intercellular adhesion molecule-1,E-selectin,monocyte chemoattractant protein-1 and colorectal cancer risk.Area under the receiver operating curves (AUC) and relative integrated discrimination improvement (RIDI) statistics were used to assess the discriminatory poten tial of the models.RESULTS:Plasma adiponectin level was associated with decreased colorectal cancer risk (P for linear trend =0.03).Quartiles of sVCAM-1 were associated with increased colorectal cancer risk (P for linear trend =0.02).No association was observed with any of the other biomarkers.Compared to standard models with known risk factors,those including both adiponectin and sVCAM-1 had substantially improved performance for colorectal cancer risk prediction (P for AUC improvement =0.01,RIDI =26.5%).CONCLUSION:These results suggest that pre-diagnostic plasma adiponectin and sVCAM-1 levels are associated with decreased and increased colorectal cancer risk,respectively.These relationships must be confirmed in large validation studies.

  7. Neutrophils lacking platelet-endothelial cell adhesion molecule-1 exhibit loss of directionality and motility in CXCR2-mediated chemotaxis.

    Science.gov (United States)

    Wu, Yue; Stabach, Paul; Michaud, Michael; Madri, Joseph A

    2005-09-15

    Time-lapsed videomicroscopy was used to study the migration of platelet-endothelial cell adhesion molecule-1-deficient (PECAM-1(-/-)) murine neutrophils undergoing chemotaxis in Zigmond chambers containing IL-8, KC, or fMLP gradients. PECAM-1(-/-) neutrophils failed to translocate up the IL-8, KC, and fMLP gradients. Significant reductions in cell motility and cell spreading were also observed in IL-8 or KC gradients. In wild-type neutrophils, PECAM-1 and F-actin were colocalized at the leading fronts of polarized cells toward the gradient. In contrast, in PECAM-1(-/-) neutrophils, although F-actin also localized to the leading front of migrating cells, F-actin polymerization was unstable, and cycling was remarkably increased compared with that of wild-type neutrophils. This may be due to the decreased cytokine-induced mobilization of the actin-binding protein, moesin, into the cytoskeleton of PECAM-1(-/-) neutrophils. PECAM-1(-/-) neutrophils also exhibited intracellularly dislocalized Src homology 2 domain containing phosphatase 1 (SHP-1) and had less IL-8-induced SHP-1 phosphatase activity. These results suggest that PECAM-1 regulates neutrophil chemotaxis by modulating cell motility and directionality, in part through its effects on SHP-1 localization and activation. PMID:16148090

  8. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome.

    Science.gov (United States)

    Palomo, Iván G; Jaramillo, Julio C; Alarcón, Marcelo L; Gutiérrez, César L; Moore-Carrasco, Rodrigo; Segovia, Fabián M; Leiva, Elba M; Mujica, Verónica E; Icaza, Gloria; Dí, Nora S

    2009-01-01

    Metabolic syndrome (MS) is associated with a high incidence rate of cardiovascular disease. It is characterized by abdominal obesity, elevated blood pressure, atherogenic dyslipidemia [high LDL-c (low density lipoprotein cholesterol) and low HDL-c (high density lipoprotein cholesterol)] and insulin resistance or glucose intolerance. In the context of MS, alterations in the plasmatic levels of some soluble forms of cell adhesion molecules can appear, e.g., soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin) and soluble CD40L (sCD40L). The objective of this study was to compare the serum levels of sVCAM-1, sE-selectin and sCD40L in MS and non-MS groups and to associate these molecules with the diagnostic criteria of MS. A total of 185 non-smokers between 45 and 64 years of age were included. Of these, 93 corresponded to the MS group and the remaining 92 to a non-MS group (according to modified ATP III criteria). The serum concentration of sVCAM-1, sE-selectin and sCD40L was determined by commercial solid phase ELISA. The results were expressed as a median and interquartile range. The MS group showed high levels of sVCAM-1 (558.9 ng/ml; 481.3-667.6 ng/ml) compared with the non-MS group (405.2 ng/ml; 361.0-470.5 ng/ml) (p<0.0001). As well, the median level of sCD40L (3.0 ng/ml; 2.1l-11.7 ng/ml) was significantly higher in the MS group than that in the non-MS group (2.6 ng/ml; 2.3-3.4 ng/ml) (p=0.0061). sE-selectin levels did not differ significantly between the groups: 73.9 ng/ml (58.3-87.0 ng/ml) and 68.5 ng/ml (51.6-97.5 ng/ml) in the MS and non-MS group, respectively. In conclusion, the serum levels of sVCAM-1 and sCD40L, but not sE-selectin, were significantly higher in patients with MS than in subjects that did not present MS. MS may therefore increase the expression of cell adhesion molecules, probably through endothelial activation. PMID:21475854

  9. Study of serum soluble vascular cell adhesion molecule-1 levels in type 2 diabetic patients with diabetic retinopathy

    International Nuclear Information System (INIS)

    To study the change and the correlation of serum soluble vascular cell adhesion molecule-1 (sV-CAM-1) levels with diabetic retinopathy in type 2 diabetic patients, serum sVCAM-1 levels were measured in duplicate by ELISA in 85 type 2 diabetic patients; fundus examination was performed by an ophthalmologist using ophthalmoscope or fundus fluorescein angiography, and the findings were graded as: no signs of diabetic retinopathy (NDR), background diabetic retinopathy (BDR) and proliferative diabetic retinopathy (PDR). Serum sVCAM-1 levels were significantly higher in the PDR and BDR groups than those in the control and NDR groups respectively (P<0.01). NDR group showed significantly increased serum sVCAM-levels compared with control group (P<0.01). In contrast, serum sVCAM-1 levels were not related to the presence of blood glucose, serum insulin levels or known diabetic duration. Authors' results suggest that serum sVCAM-1 might be implicated in the development of the diabetic retinopathy, and could assess the severity of diabetic retinopathy. The measurement of serum sVCAM-1 levels in 2 type diabetic patients may be clinically useful for early diagnosis or treatment of diabetic retinopathy

  10. Expression of intercellular adhesion molecule-1 in UVA-irradiated human skin cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ. (author)

  11. Breast cancer cells compete with hematopoietic stem and progenitor cells for intercellular adhesion molecule 1-mediated binding to the bone marrow microenvironment.

    Science.gov (United States)

    Dhawan, Abhishek; Friedrichs, Jens; Bonin, Malte von; Bejestani, Elham Peshali; Werner, Carsten; Wobus, Manja; Chavakis, Triantafyllos; Bornhäuser, Martin

    2016-08-01

    Adhesion-based cellular interactions involved in breast cancer metastasis to the bone marrow remain elusive. We identified that breast cancer cells directly compete with hematopoietic stem and progenitor cells (HSPCs) for retention in the bone marrow microenvironment. To this end, we established two models of competitive cell adhesion-simultaneous and sequential-to study a potential competition for homing to the niche and displacement of the endogenous HSPCs upon invasion by tumor cells. In both models, breast cancer cells but not non-tumorigenic cells competitively reduced adhesion of HSPCs to bone marrow-derived mesenchymal stromal cells (MSCs) in a tumor cell number-dependent manner. Higher adhesive force between breast cancer cells and MSCs, as compared with HSPCs, assessed by quantitative atomic force microscopy-based single-cell force spectroscopy could partially account for tumor cell mediated reduction in HSPC adhesion to MSCs. Genetic inactivation and blockade studies revealed that homophilic interactions between intercellular adhesion molecule 1 (ICAM-1) expressed on tumor cells and MSCs, respectively, regulate the competition between tumor cells and HSPCs for binding to MSCs. Moreover, tumor cell-secreted soluble ICAM-1(sICAM-1) also impaired HSPC adhesion via blocking CD18-ICAM-1 binding between HSPCs and MSCs. Xenotransplantation studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice revealed reduction of human HSPCs in the bone marrow via metastatic breast cancer cells. These findings point to a direct competitive interaction between disseminated breast cancer cells and HSPCs within the bone marrow micro environment. This interaction might also have implications on niche-based tumor support. Therefore, targeting this cross talk may represent a novel therapeutic strategy. PMID:27207667

  12. Expression of mucosal addressin cell adhesion molecule 1 on vascular endothelium of gastric mucosa in patients with nodular gastritis

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Ohara; Takehiko Koji; Hiroshi Nagura; Shigeru Kohno; Hajime Isomoto; Chun-Yang Wen; Chieko Ejima; Masahiro Murata; Masanobu Miyazaki; Fuminao Takeshima; Yohei Mizuta; Ikuo Murata

    2003-01-01

    AIM: The interaction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) with integrin α4β7 mediates lymphocyte recruitment into mucosa-associated lymphoid tissue (MALT). Nodular gastritis is characterized by a unique military pattern on endoscopy representing increased numbers of lymphoid follicles with germinal center, strongly associated with H pylori infection. The purpose of this study was to address the implication of the MAdCAM-1/integrin β7 pathway in NG.METHODS: We studied 17 patients with NG and H pylori infection and 19 H pylori-positive and 14 H pylori-negative controls. A biopsy sample was taken from the antrum and snap-frozen for immunohistochemical analysis of MAdCAM1 and integrin β7. In simultaneous viewing of serial sections,the percentage of MAdCAM-1-positive to von Willebrand factor-positive vessels was calculated. We also performed immunostaining with anti-CD20, CD4, CD8 and CD68 antibodies to determine the lymphocyte subsets coexpressing integrin β7.RESULTS: Vascular endothelial MAdCAM-1 expression was more enhanced in gastric mucosa with than without H pylori infection. Of note, the percentages of MAdCAM-1-positive vessels were significantly higher in the lamina propria of NG patients than in H pylori-positive controls. Strong expression of MAdCAM-1 was identified adjacent to lymphoid follicles and dense lymphoid aggregates. Integrin β7-expressing mononuclear cells, mainly composed of CD20 and CD4 lymphocytes, were associated with vessels lined with MAdCAM-1-expressing endothelium.CONCLUSION: Our results suggest that the MAdCAM-1/integrin α4β7 homing system may participate in gastric inflammation in response to H pylori-infection and contributes to MALT formation, typically leading to the development of NG.

  13. CXC chemokine ligand 12/Stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1

    OpenAIRE

    Tung Shui-Yi; Chang Shun-Fu; Chou Ming-Hui; Huang Wen-Shih; Hsieh Yung-Yu; Shen Chien-Heng; Kuo Hsing-Chun; Chen Cheng-Nan

    2012-01-01

    Abstract Background The CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) and CXC receptor 4 (CXCR4) axis is involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. Interaction between CRC cells and endothelium is a key event in tumor progression. The aim of this study was to investigate the effect of SDF-1 on the adhesion of CRC cells. Methods Human CRC DLD-1 cells were used to study the effect of SDF-1 on intercellular adhesion m...

  14. Leptin Resistance Contributes to Obesity in Mice with Null Mutation of Carcinoembryonic Antigen-related Cell Adhesion Molecule 1.

    Science.gov (United States)

    Heinrich, Garrett; Russo, Lucia; Castaneda, Tamara R; Pfeiffer, Verena; Ghadieh, Hilda E; Ghanem, Simona S; Wu, Jieshen; Faulkner, Latrice D; Ergün, Süleyman; McInerney, Marcia F; Hill, Jennifer W; Najjar, Sonia M

    2016-05-20

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid β-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice. PMID:27002145

  15. Angiogenic Effect of Intercellular Adhesion Molecule-1

    Institute of Scientific and Technical Information of China (English)

    DENG Chenguo; ZHANG Duanlian; SHAN Shengguo; WU Jingwen; YANG Hong; YU Ying

    2007-01-01

    In order to investigate the angiogenic effect of intercellular adhesion molecule-1 (ICAM-1), two parts of experiment were performed. Chick embryo chorioallantoic membrane (CAM) assay was used for in vivo angiogenic research. The chick embryos were divided into 4 groups: ICAM-1 group (divided into 3 subgroups, Ⅰ, Ⅱ and Ⅲ) for screening the angiogenic effect of ICAM-1 by adding different concentrations of ICAM-1 (0.1, 0.2 and 0.3 μg/μL) 5 μL into the chick embryo CAMs on the day 10 after incubation for every subgroup; Anti-ICAM-1 group A (divided into 2 subgroups, Ⅰ and Ⅱ) by adding different concentrations of Anti-ICAM-1 (1:100, 1:50) 5 μL into the chick embryo CAMs on the day 10 after incubation for every subgroup to evaluate the effect of ICAM-1 on the survival of microvessels through observing whether Anti-ICAM-1 could induce involution of the microvessels on CAMs; Anti-ICAM-1 group B (divided into 2 subgroups, Ⅰ and Ⅱ ) by adding different concentrations of Anti-ICAM-1 (1:100, 1:50) 5 μL into the chick embryo CAMs on the day 6 after incubation for every subgroup to evaluate whether ICAM-1 involved in embryonic angiogenesis through observing the growth of microvessels on CAMs; Control group: ICAM-1 or Anti-ICAM-1 was substituted by PBS 5 μL on the day 10 or day 6 after incubation. Three days later, the CAMs were photographed in vivo, excised, sectioned and the number of microvessels was counted. In ICAM-1 group, there was increased number of microvessels arranged radially with "spoked-wheel" pattern around the gelatin sponges. The new microvessels growing perpendicularly to gelatin sponges were observed. The number of the microvessels growing in the CAM mesenchymes around the sponges in 3 subgroups was higher than that in control group (P<0.01), however, there was no significant difference among the 3 subgroups (P>0.05). In anti-ICAM-1 group A, the radially arranged microvessels were very unclear around the sponges contrast to that of ICAM

  16. Adhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow

    OpenAIRE

    Liu, Yiyao

    2011-01-01

    Hong Yang, Xiaoyan Xiong, Lie Zhang, Chunhui Wu, Yiyao LiuDepartment of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of ChinaAbstract: The expression of certain endothelial cell adhesion molecules is increased during endothelial dysfunction or inflammatory activation. This has led to the concept of using microbubbles for targeted molecular imaging or drug delivery. In this approach, mic...

  17. The neutrophil-specific antigen CD177 is a counter-receptor for platelet endothelial cell adhesion molecule-1 (CD31).

    Science.gov (United States)

    Sachs, Ulrich J H; Andrei-Selmer, Cornelia L; Maniar, Amudhan; Weiss, Timo; Paddock, Cathy; Orlova, Valeria V; Choi, Eun Young; Newman, Peter J; Preissner, Klaus T; Chavakis, Triantafyllos; Santoso, Sentot

    2007-08-10

    Human neutrophil-specific CD177 (NB1 and PRV-1) has been reported to be up-regulated in a number of inflammatory settings, including bacterial infection and granulocyte-colony-stimulating factor application. Little is known about its function. By flow cytometry and immunoprecipitation studies, we identified platelet endothelial cell adhesion molecule-1 (PECAM-1) as a binding partner of CD177. Real-time protein-protein analysis using surface plasmon resonance confirmed a cation-dependent, specific interaction between CD177 and the heterophilic domains of PECAM-1. Monoclonal antibodies against CD177 and against PECAM-1 domain 6 inhibited adhesion of U937 cells stably expressing CD177 to immobilized PECAM-1. Transendothelial migration of human neutrophils was also inhibited by these antibodies. Our findings provide direct evidence that neutrophil-specific CD177 is a heterophilic binding partner of PECAM-1. This interaction may constitute a new pathway that participates in neutrophil transmigration. PMID:17580308

  18. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells.

    Science.gov (United States)

    Osawa, M; Masuda, M; Harada, N; Lopes, R B; Fujiwara, K

    1997-03-01

    Fluid flow triggers signal transducing events, modulates gene expression, and remodels cytoskeletal structures in vascular endothelial cells (ECs). However, the primary steps of mechanoreception are still unknown. We have recently reported that a glycoprotein is rapidly tyrosine-phosphorylated in bovine ECs exposed to fluid flow or osmotic shock. Here were cloned a 3.4 kb cDNA encoding this protein and found that this was bovine PECAM-1. The tyrosine-phosphorylation level of PECAM-1 immunoprecipitated from mechanically stimulated bovine or human ECs increased. The PECAM-1 phosphorylation was not induced by reagents that triggered Ca2+ mobilization in ECs. An autophosphorylatable band comigrating with c-Src was co-immunoprecipitated with anti-PECAM-1, and c-Src phosphorylated and bound to a GST fusion protein containing the PECAM-1 cytoplasmic domain. A spliced mRNA form lacking amino acid residues 703-721 in the cytoplasmic domain was also expressed in bovine ECs, c-Src neither phosphorylated nor bound to the fusion protein containing the spliced PECAM-1 cytoplasmic domain which lacked one (Tyr 713) of the six tyrosine residues in the PECAM-1 cytoplasmic domain. These results suggest that the YSEI motif containing Tyr 713 is the Src phosphorylation/binding site. Our study is the first demonstration of inducible tyrosine phosphorylation of PECAM-1 and suggests involvement of PECAM-1 and Src family kinases in the sensing/signal transduction of mechanical stimuli in ECs. PMID:9084985

  19. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells...

  20. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    Science.gov (United States)

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release. PMID:27454856

  1. Identification of Fer Tyrosine Kinase Localized on Microtubules as a Platelet Endothelial Cell Adhesion Molecule-1 Phosphorylating Kinase in Vascular Endothelial CellsV⃞

    OpenAIRE

    Kogata, Naoko; Masuda, Michitaka; Kamioka, Yuji; Yamagishi, Akiko; Endo, Akira; Okada, Masato; Mochizuki, Naoki

    2003-01-01

    Platelet endothelial adhesion molecule-1 (PECAM-1) is a part of intercellular junctions and triggers intracellular signaling cascades upon homophilic binding. The intracellular domain of PECAM-1 is tyrosine phosphorylated upon homophilic engagement. However, it remains unclear which tyrosine kinase phosphorylates PECAM-1. We sought to isolate tyrosine kinases responsible for PECAM-1 phosphorylation and identified Fer as a candidate, based on expression cloning. Fer kinase specifically phospho...

  2. Expression of platelet-endothelial cell adhesion molecule-1 in human umbilical vein endothelial cells by exposure to advanced glycosylation end products and inflammatory mediators

    Institute of Scientific and Technical Information of China (English)

    孟丹; 刘乃丰

    2003-01-01

    Objective To determine whether advanced glycosylation end products modified bovine serum albumin (AGEs-BSA) affects endothelial cell lateral junction protein, platelet-endothelial cell adhesion molecule-1 (PECAM-1) in the presence or absence of inflammatory mediators.Methods Cultured human umbilical vein endothelial cells (HUVECs) were exposed to AGEs-BSA for 6, 12, 24, and 36 hours, and exposed to AGEs-BSA glycosylated with different concentrations of glucose, tumor necrosis factord-α (TNF-α), interferon (IFN-γ), TNF-α+IFN-γ and AGEs-BSA+TNF-α for 24 hours, respectively. Expression of PECAM-1 mRNA was measured by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) with β-actin as an internal standard, and sequencing of RT-PCR products was performed to confirm the specificity of amplification for PECAM-1 gene. The endothelial cell surface expression of PECAM-1 was determined by flow cytometry (FCM).Results There were no significant changes in the expression of PECAM-1 mRNA and protein when the cells were exposed to AGEs-BSA with different concentrations or periods (P> 0.05). However, PECAM-1 expression was reduced in the cells treated with TNF-α, IFN-γ, TNF-α+IFN-γ and AGEs-BSA+TNF-α. The level of PECAM-1 treated with AGEs-BSA+TNF-α was lower than that of TNF-α treated alone (P<0.01).Conclusions AGEs-BSA had no effect on the expression of PECAM-1 mRNA and protein in cultured HUVEC. With the presence of inflammatory mediator TNF-α, AGEs-BSA decreased the level of PECAM-1, which might reduce the adhesion interaction between adjacent endothelial cells, enhance the permeability of endothelial cells, and might be implicated in the endothelial dysfunction and pathogenesis of atherosclerosis in patients with diabetes mellitus. The significance of this phenomenon in intracellular signal transduction remains to be determined.

  3. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  4. Clinical and experimental studies regarding the expression and diagnostic value of carcinoembryonic antigen-related cell adhesion molecule 1 in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a multifunctional Ig-like cell adhesion molecule that has a wide range of biological functions. According to previous reports, serum CEACAM1 is dysregulated in different malignant tumours and associated with tumour progression. However, the serum CEACAM1 expression in non-small-cell lung carcinomas (NSCLC) is unclear. The different expression ratio of CEACAM1-S and CEACAM1-L isoform has seldom been investigated in NSCLC. This research is intended to study the serum CEACAM1 and the ratio of CEACAM1-S/L isoforms in NSCLC. The expression of the serum CEACAM1 was determined by enzyme-linked immunosorbent assay. The protein expression and the location of CEACAM1 in tumours were observed by immunohistochemical staining. The CEACAM1 mRNA levels in tumour and normal adjacent tissues were measured using quantitative real-time PCR, and the expression patterns and the rate of CEACAM1-S and CEACAM1-L were analysed by reverse transcription-PCR. Serum CEACAM1 levels were significantly higher in NSCLC patients compared with that from normal healthy controls (P <0.0001). 17 patients (81%) among 21 showed high expression of CEACAM1 by immunohistochemical staining. Although no significant differences were found between tumour and normal tissues on mRNA expression levels of CEACAM1 (P >0.05), the CEACAM1-S and the CEACAM1-S/L (S: L) ratios were significantly higher in tumour than normal tissues (P <0.05). Our data indicated that the serum levels of CEACAM1 could discriminate lung cancer patients from health donors and that CEACAM1 might be a useful marker in early diagnosis of NSCLC. Moreover, our results showed that the expression patterns of CEACAM1 isoforms could be changed during oncogenesis, even when total CEACAM1 in tumour tissues did not show significant changes. Our study suggested that the expression ratios of CEACAM1-S/CEACAM1-L might be a better diagnostic indicator in NSCLC than the quantitative

  5. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    Science.gov (United States)

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  6. Elevated circulating vascular cell Adhesion Molecule-1 (sVCAM-1) is associated with concurrent depressive symptoms and cerebral white matter Hyperintensities in older adults

    OpenAIRE

    Tchalla, Achille E.; Wellenius, Gregory A.; Sorond, Farzaneh A.; Travison, Thomas G.; Dantoine, Thierry; Lipsitz, Lewis A.

    2015-01-01

    Background: Circulating vascular adhesion molecule-1 (sVCAM-1) is a presumed marker of endothelial activation and dysfunction, but little is known about its association with mood. We hypothesized that elevated plasma concentrations of sVCAM-1 may be a marker of depressive symptoms due to cerebral vascular disease. Methods: We studied 680 community-dwelling participants in the MOBILIZE Boston Study, aged 65 years and older. sICAM-1 and sVCAM-1 were measured by ELISA assay and depressive sympto...

  7. Detection of vascular cell adhesion molecule-1 expression with USPIO-enhanced molecular MRI in a mouse model of cerebral ischemia

    International Nuclear Information System (INIS)

    Vascular damage plays a critical role after stroke, leading notably to edema, hemorrhages and stroke recurrence. Tools to characterize the vascular lesion are thus a real medical need. In this context, the specific nano-particular contrast agent P03011, an USPIO (ultra-small superparamagnetic iron oxide) conjugated to a peptide that targets VCAM-1 (vascular cell adhesion molecule-1), was developed to detect this major component of the vascular inflammatory response. This study aimed to make the proof of concept of the capacity of this targeted USPIO to detect VCAM-1 with MRI after cerebral ischemia in mouse. The time course of VCAM-1 expression was first examined by immunohistochemistry in our model of cerebral ischemia-reperfusion. Secondly, P03011 or non-targeted USPIO P03007 were injected 5 h after ischemia (100 mmol iron kg-1; i.v.) and in vivo and ex vivo MRI were performed 24 h after ischemia onset. Double labeling immunofluorescence was then performed on brain slices in order to detect both USPIO and VCAM-1. VCAM-1 expression was significantly up-regulated 24 h after ischemia in our model. In animals receiving P03011, both in vivo and ex vivo MRI performed 24 h after ischemia onset showed hypointense foci which could correspond to iron particles. Histological analysis showed a co-localization of the targeted USPIO and VCAM-1. This study demonstrates that VCAM-1 detection is possible with the USPIO P03011 in a model of cerebral ischemia. This kind of contrast agent could be an interesting clinical tool to characterize ischemic lesions in terms of vascular damage. (authors)

  8. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  9. Expression profile of vascular cell adhesion molecule-1 (CD106) in inflammatory foci using rhenium-188 labelled monoclonal antibody in mice.

    Science.gov (United States)

    Kairemo, K J; Strömberg, S; Nikula, T K; Karonen, S L

    1998-06-01

    Rhenium (Re)-188 is a generator (W-188/Re-188) produced high energy beta-emitter suitable for radionuclide therapy (T1/2 is 16.9 hrs and Emax 2.1 MeV (range 11 mm)). We have labelled monoclonal antibody (MAb) raised against vascular cell adhesion molecule-1 (VCAM-1) with Re-188 using glucoheptonate chelation technique and SnCl2 as reducing agent. The labelling efficiency, free perrhenate and reduced Re were controlled with thin layer chromatography and the purification of Re-188-MoAbs was performed using gel filtration. Our results indicate that Re-188-labelled antibodies remain in vitro stable and the labelling purity is > 90%. We also have applied these Re-188-MoAbs for detection of inflammatory disease in a mouse. The effective half-lives of organs of interest after an injection of Re-188-anti-VCAM1 were as follows: blood 5.2 hr, kidney 4.7 hr, and liver 9.6 hr. Re-188-anti-VCAM-1 was found to accumulate mainly in kidney and liver. One hour after the injection, the kidney contained in average as high as 12.5% and the liver 2.8 ID/g tissue. After 6 hr, the kidney contained 5.5% ID/g and the liver 2.6% ID/g. At 24 hr, the kidney uptake was 0.5% ID/g and the liver uptake 0.8% ID/g, respectively. The inflamed foci, subcutaneous lesions in the footpad skin, were visualized using gamma camera. From the distribution data the uptakes in the inflamed foci as follows: at 1 hr 2.18 (inflammation) and 1.72% ID/g (control), at 6 hr 1.42 (inflammation) and 0.85% ID/g (control), and at 24 hr 0.17 (inflammation) and 0.084% ID/g (control), respectively. Anti-VCAM-1 MAb showed better targeting as compared to control MoAbs in inflammation (caused by E.coli lipoplysaccaride). In conclusion, Re-188 is suitable for MAb labelling, and MAb against VCAM-1 may be used for detection of local inflammatory disease. PMID:9762472

  10. Intercellular adhesion molecule-1 in patients with idiopathic interstitial pneumonia.

    Directory of Open Access Journals (Sweden)

    Takehara H

    2001-08-01

    Full Text Available This study focuses on a possible role of intercellular adhesion molecule-1 (ICAM-1 in interstitial pulmonary diseases. We determined a soluble form of ICAM-1 in serum and bronchoalveolar lavage fluid (BALF using ELISA in patients with usual interstitial pneumonia (UIP, bronchiolitis obliterance organizing pneumonia (BOOP, or nonspecific interstitial pneumonia (NSIP. In addition, we investigated the expression of ICAM-1 in the lung tissues of these patients by means of immunohistochemical staining. Serum levels of soluble ICAM-1 were significantly higher in patients with UIP or NSIP than in healthy subjects, and were also high in patients with BOOP. The soluble ICAM-1 in BALF tended to be higher in patients with UIP, BOOP, or NSIP than in normal subjects. A significant correlation was seen between soluble levels of ICAM-1 in serum and BALF. In the immunostaining of ICAM-1 of the lung tissues, ICAM-1 expression was more pronounced in patients with UIP than in those with BOOP or NSIP. The increased expression of ICAM-1 was seen in type II alveolar epithelium and vascular endothelium in patients with interstitial pneumonia. A positive correlation was observed between the degree of ICAM-1 expression in the lung tissues and the BALF levels of soluble ICAM-1. The expression of ICAM-1 in type II alveolar epithelium suggests that ICAM-1 plays a specific role in the fibrotic process of the lung, and that the measurement of soluble ICAM-1 in sera and BALF could be a useful marker for evaluating the progression of fibrosis.

  11. Neutrophil Transmigration Mediated by the Neutrophil-Specific Antigen CD177 Is Influenced by the Endothelial S536N Dimorphism of Platelet Endothelial Cell Adhesion Molecule-1

    OpenAIRE

    Bayat, Behnaz; Werth, Silke; Sachs, Ulrich J. H.; Newman, Debra K.; Newman, Peter J.; Santoso, Sentot

    2010-01-01

    The human neutrophil-specific adhesion molecule CD177 (also known as the NB1 alloantigen) becomes upregulated on the cell surface in a number of inflammatory settings. We recently showed that CD177 functions as a novel heterophilic counterreceptor for the endothelial junctional protein PECAM-1 (CD31), an interaction that is mediated by membrane-proximal PECAM-1 IgD 6, which is known to harbor an S536N single nucleotide polymorphism of two major isoforms V98N536G643 and L98S536R643 and a yet-t...

  12. Neutrophil transmigration mediated by the neutrophil-specific antigen CD177 is influenced by the endothelial S536N dimorphism of platelet endothelial cell adhesion molecule-1.

    Science.gov (United States)

    Bayat, Behnaz; Werth, Silke; Sachs, Ulrich J H; Newman, Debra K; Newman, Peter J; Santoso, Sentot

    2010-04-01

    The human neutrophil-specific adhesion molecule CD177 (also known as the NB1 alloantigen) becomes upregulated on the cell surface in a number of inflammatory settings. We recently showed that CD177 functions as a novel heterophilic counterreceptor for the endothelial junctional protein PECAM-1 (CD31), an interaction that is mediated by membrane-proximal PECAM-1 IgD 6, which is known to harbor an S(536)N single nucleotide polymorphism of two major isoforms V(98)N(536)G(643) and L(98)S(536)R(643) and a yet-to-be-determined region on CD177. In vitro transendothelial migration experiments revealed that CD177(+) neutrophils migrated significantly faster through HUVECs expressing the LSR, compared with the VNG, allelic variant of PECAM-1 and that this correlated with the decreased ability of anti-PECAM-1 Ab of ITIM tyrosine phosphorylation in HUVECs expressing the LSR allelic variant relative to the VNG allelic variant. Moreover, engagement of PECAM-1 with rCD177-Fc (to mimic heterophilic CD177 binding) suppressed Ab-induced tyrosine phosphorylation to a greater extent in cells expressing the LSR isoform compared with the VNG isoform, with a corresponding increased higher level of beta-catenin phosphorylation. These data suggest that heterophilic PECAM-1/CD177 interactions affect the phosphorylation state of PECAM-1 and endothelial cell junctional integrity in such a way as to facilitate neutrophil transmigration in a previously unrecognized allele-specific manner. PMID:20194726

  13. Potential of mZD7349-conjugated PLGA nanoparticles for selective targeting of vascular cell-adhesion molecule-1 in inflamed endothelium.

    Science.gov (United States)

    Imanparast, Fatemeh; Paknejad, Maliheh; Faramarzi, Mohammad Ali; Kobarfard, Farzad; Amani, Amir; Doosti, Mahmood

    2016-07-01

    Early diagnosis and restoring normal function of dysfunctional endothelium is an attractive strategy for prevention of inflammatory diseases such as atherosclerosis. Inhibition of cell adhesion in the process of atherosclerosis plaque formation, mediated by peptide antagonists of very late antigen-4 (VLA-4) has already been developed and evaluated both in vitro and in vivo. In this study, for the first time, modified ZD7349 (mZD7349) peptide, as an antagonist for VLA-4, was used for targeting fluorescein isothiocyanate-loaded poly (DL-lactic-co-glycolic acid) nanoparticles (FITC-PLGA NPs). Rate of binding and internalization of mZD7349-NPs to activated human umbilical vein endothelial cells (HUVECs) were compared with that of untargeted. Effects of temperature reduction and clathrin-mediated endocytosis inhibitor (0.45M sucrose) were also studied on the binding and internalization of mZD7349-NPs and NPs. Results showed that binding of the conjugated NPs could be significantly blocked by pre-incubating cells with the free peptide, suggesting that the binding of NPs is mediated by attaching the surface peptide to VCAM-1 on HUVECs. Also, conjugated FITC-loaded NPs were shown to be rapidly endocytosized to a greater extent than the unconjugated ones. The binding and internalization of mZD7349-NPs and NPs were slowed down at low temperature and in the presence of sucrose with greater reductions for mZD7349-NPs. To conclude, the peptide-NPs targeting the VCAM-1 is suggested as a theranostic carrier for lesions upregulating VCAM-1. PMID:27105996

  14. The carbon monoxide releasing molecule (CORM-3) inhibits expression of vascular cell adhesion molecule-1 and E-selectin independently of haem oxygenase-1 expression

    NARCIS (Netherlands)

    Song, H.; Bergstrasser, C.; Rafat, N.; Hoeger, S.; Schmidt, M.; Endres, N.; Goebeler, M.; Hillebrands, J. L.; Brigelius-Flohe, R.; Banning, A.; Beck, G.; Loesel, R.; Yard, B. A.

    2009-01-01

    Background and purpose: Although carbon monoxide (CO) can modulate inflammatory processes, the influence of CO on adhesion molecules is less clear. This might be due to the limited amount of CO generated by haem degradation. We therefore tested the ability of a CO releasing molecule (CORM-3), used i

  15. Functional Implication of the Hydrolysis of Platelet Endothelial Cell Adhesion Molecule 1 (CD31) by Gingipains of Porphyromonas gingivalis for the Pathology of Periodontal Disease

    OpenAIRE

    Yun, Peter L. W.; DeCarlo, Arthur A.; Chapple, Cheryl C.; Hunter, Neil

    2005-01-01

    Periodontitis is a response of highly vascularized tissues to the adjacent microflora of dental plaque. Progressive disease has been related to consortia of anaerobic bacteria, with the gram-negative organism Porphyromonas gingivalis particularly implicated. The gingipains, comprising a group of cysteine proteinases and associated hemagglutinin domains, are major virulence determinants of this organism. As vascular expression of leukocyte adhesion molecules is a critical determinant of tissue...

  16. Influence of glycated low density lipoprotein on the proliferation,expression of intercellular adhesion molecule-1,von Willebrand factor of human umbilical endothelial cells

    Institute of Scientific and Technical Information of China (English)

    LU Jun; LIU Hui-ying; ZHANG Xiu-zhen; LEI Tao

    2009-01-01

    @@ Diabetes mellitus known as its macro-and microangiopathy has caused thousands of mortality per year.Recent researches showed that hyperglycemia,advanced glycation end products(AGEs)and some other factors acted on the process of atherogenesis.AGEs can combine with receptors of AGEs(RAGEs),which exist on the vascular endothelium,smooth muscle cells,macrophage,lymphocyte and so on.

  17. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R; Craig, Alister; Hviid, Lars; Jensen, Anja T R

    2013-01-01

    been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLβ expression and e.g. cerebral malaria are needed before the DBLβ domains can be put forward as...... purity, yield, fold, ability to bind DBLβ, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM‑1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields........ Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...

  18. Retinal Vascular Endothelial Growth Factor Induces Intercellular Adhesion Molecule-1 and Endothelial Nitric Oxide Synthase Expression and Initiates Early Diabetic Retinal Leukocyte Adhesion in Vivo

    OpenAIRE

    Joussen, Antonia M; Poulaki, Vassiliki; Qin, Wenying; Kirchhof, Bernd; Mitsiades, Nicholas; Wiegand, Stanley J; Rudge, John; George D. Yancopoulos; Adamis, Anthony P.

    2002-01-01

    Leukocyte adhesion to the diabetic retinal vasculature results in early blood-retinal barrier breakdown, capillary nonperfusion, and endothelial cell injury and death. Previous work has shown that intercellular adhesion molecule-1 (ICAM-1) and CD18 are required for these processes. However the relevant in vivo stimuli for ICAM-1 and CD18 expression in diabetes remain unknown. The current study investigated the causal role of endogenous vascular endothelial growth factor (VEGF) and nitric oxid...

  19. Influence of rapid atrial pacing on the expression of vascular cell adhesion molecule-1 in canines%心房快速起搏对犬血管细胞黏附分子-1表达的影响

    Institute of Scientific and Technical Information of China (English)

    李佳; 葛海龙; 陈光远; 高倩萍; 孙俊峰; 李元十; 朱立群; 曹君娴; 富路

    2011-01-01

    目的 研究心房快速起搏犬模型血管细胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)的表达.方法 选用成年健康杂种犬13条,随机分为两组:快速起搏组7条,假手术组6条.两组均开胸于右心耳缝植AOO型起搏器,快速起搏组以400 bpm起搏6周,假手术组不起搏.应用酶联免疫法测定血清VCAM-1水平,采用逆转录-多聚酶链反应(RT-PCR)测定左房组织的VCAM-1 mRNA表达水平,同时进行左房的病理分析.结果 快速起搏组犬起搏6周后的血清VCAM-1水平明显高于假手术组(t=11.63,P<0.01),左房的VCAM-1 mRNA表达水平明显高于假手术组,增高32.1%(t=2.49,P=0.03);病理结果示快速起搏组犬左房心肌细胞变性.结论 心房快速起搏可引起犬血清VCAM-1及左房VCAM-1 mRNA表达水平增高.VCAM-1可能参与心房损伤时的心肌重构过程.%Objective To invesligale the expression of vascular cell adhesion molecule - 1 (VCAM - 1) in canines who received lasling rapid alrial pacing. Methods 13 canines were randomly divided inlo Lwo groups; sham - operaled group ( n = 6 ) and alrial pacing group ( n = 7) . A pacemaker ( A00) was implanled Lo the right alrial appendage in each of the dogs. The dogs in alrial pacing group were paced at 400 bpm for 6 weeks while those in the sham - operaled group were not paced. Serum VCAM - 1 level was lesled by ELISA kit. VCAM - 1 gene expression in myocardium of left alrium were analyzed al the mRNA by reverse Iranscriplion polymerase chain reaction. The lefl alrium were also analyzed by palhology. Results Compared with the sham - operaled group, lasling alrial pacing rapidly increased the level of serum VCAM - 1 and the expression of VCAM - 1 al mRNA level in lefl alrium significanlly(P < 0. 05 ). Palhology showed that cell degeneralion existed in the lefl alrium in dogs of alrial pacing group. Conclusion Lasling alrial pacing rapidly can significantly increase the expression of serum VCAM - 1 and VCAM - 1 al m

  20. Serum Soluble Intercellular Adhesion Molecule-1 Level in Acute Lymphoblastic Leukemia in Children

    International Nuclear Information System (INIS)

    Impaired migration of leucocytes is a characteristic feature of leukemia. Knowledge of the mechanisms of leukemic cells migration has expanded greatly in recent years. Leukocyte infiltrates are formed in surrounding tissues due to changes in chemokines and adhesion molecules concentrations. The present study included 45 patients with acute lymphoblastic leukemia (ALL). The mean of their ages was 6.10±4.39 years. They were 29 males and 16 females. They were chosen from those attending the Oncology Clinic and inpatient wards of the National Cancer Institute, Cairo University. They were classified into 3 groups according to the disease activity: Group I: Comprised 15 newly diagnosed cases of ALL. Group II: Consisted of 15 cases of ALL during relapse period. Group III included 15 cases of ALL during complete remission. Also, 15 apparently healthy children with matched age and sex as a control group (group IV). All the studied cases were subjected to thorough clinical examination as well as the following investigations: complete blood picture, bone marrow biopsy and estimation of serum intercellular adhesion molecule-1 (sICAM-1) by ELISA.The results of this study revealed that serum ICAM-l showed no significant changes in its value on comparing group I (newly diagnosed cases) and group II (cases during relapse). On the other hand, a significant higher level of sICAM-1 was observed on comparing groups I and II with group III (cases during remission) separately (P0.05).From this it was concluded that the levels of serum soluble intercellular circulating adhesion molecule ICAM-1 can be utilized for monitoring disease activity of ALL and its response to treatment, as well as for early detection of relapse.

  1. Association of Intercellular Adhesion Molecule 1 (ICAM1 with Diabetes and Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    HarvestFGu

    2013-01-01

    Full Text Available Diabetes and diabetic nephropathy are complex diseases affected by genetic and environmental factors. Identification of the susceptibility genes and investigation of their roles may provide useful information for better understanding of the pathogenesis and for developing novel therapeutic approaches. Intercellular adhesion molecule 1 (ICAM1 is a cell surface glycoprotein expressed on endothelial cells and leukocytes in the immune system. The ICAM1 gene is located on chromosome 19p13 within the linkage region of diabetes. In the recent years, accumulating reports have implicated that genetic polymorphisms in the ICAM1 gene are associated with diabetes and diabetic nephropathy. Serum ICAM1 levels in diabetes patients and the icam1 gene expression in kidney tissues of diabetic animals are increased compared to the controls. Therefore, ICAM1 may play a role in the development of diabetes and diabetic nephropathy. In this review, we present genomic structure, variation and regulation of the ICAM1 gene, summarized genetic and biological studies of this gene in diabetes and diabetic nephropathy and discussed about the potential application using ICAM1 as a biomarker and target for prediction and treatment of diabetes and diabetic nephropathy.

  2. Association between two single base polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease

    Science.gov (United States)

    Habibi, Manijeh; Naderi, Nosratllah; Farnood, Alma; Balaii, Hedieh; Dadaei, Tahereh; Almasi, Shohreh; Zojaji, Homayoun; Asadzadeh Aghdae, Hamid; Zali, Mohammad Reza

    2016-01-01

    Aim: The present study evaluated the association between G241R and K469E polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease in Iranian population. Background: Inflammatory bowel disease including ulcerative colitis and Crohn’s disease, is a chronic idiopathic inflammatory disease of the gastrointestinal tract. There are two single base polymorphisms of intercellular adhesion molecule 1gene, G241R and K469E, reported to be associated with inflammatory disorders. Patients and methods: In this case-control study, 156 inflammatory bowel disease patients (110 ulcerative colitis and 46 Crohn’s disease patients) and 131 healthy controls were enrolled. Two polymorphisms of intercellular adhesion molecule 1 gene, including G241R and K469E, were assessed by polymerase chain reaction followed by restriction fragment length polymorphism. Results: The E469 allele of K469E polymorphism was significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 1.83; 95% CI: 1.13 to 2.96). The mutant homozygote genotype of K469E polymorphism (E/E) was also significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 4.23; 95% CI: 1.42 to 12.59). No difference was observed in the frequency of K469E polymorphism among ulcerative colitis patients compared to controls. There were no significant differences in genotype and allele frequencies of G241R polymorphism among ulcerative colitis and Crohn’s disease patients compared to control subjects. Conclusion: According to our findings, K469E polymorphism of intercellular adhesion molecule 1 gene may probably participate in the pathogenesis of Crohn’s disease in Iran. PMID:27099667

  3. Cadmium exposure, intercellular adhesion molecule-1 and peripheral artery disease: a cohort and an experimental study

    OpenAIRE

    Fagerberg, Björn; Bergström, Göran; Borén, Jan; Barregard, Lars

    2013-01-01

    Objectives Cadmium exposure has been found to be associated with atherosclerotic plaques in the carotid arteries and with circulating levels of the proatherogenic intercellular adhesion molecule-1 (ICAM-1). The research questions were (1) if blood and urinary cadmium levels are associated with low ankle-brachial index (ABI) as a measure of peripheral artery disease in a longitudinal study and (2) if ICAM-1 mediates proatherogenic effects of cadmium exposure. Design A prospective, observationa...

  4. Expression of intercellular adhesion molecule-1and HLA-DR antigens in uveitis

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    目的:研究细胞间粘附分子-1(intellular adhesion molecule-1,ICAM-1)和人体组织相关抗原(human leudocyte antigen,HLA-DR)在萄萄膜炎免疫反应中的作用.方法:应用免疫组织化学染色检查20只正常眼和54例葡萄糖膜炎眼球摘除眼(其中外源性33例和内源性21例)的脉络膜和视网膜组织中ICAM-1和HLA-DR的表达.结果:正常眼的脉络膜和视网膜组织没有ICAM-1的阳性染色,没有或较少有HLA-DR的表达,葡萄膜炎眼中二者有增高表达(P<0.01),而外源性和内源性葡萄膜炎眼组间表达统计学上无显著差异(P>0.05).结论:ICAM-1、HLA-DR分子能够介导白细胞和炎症部位组织细胞的识别和粘附,二者的共同表达说明它们在葡萄糖膜炎脉络膜视网膜组织的免疫性损伤中具有重要意义.%Objective :To study the effects of intercellular adhesion molecule-1 (ICAM-1) and human leukocyte antigen (HAL-DR) on the immunopathologic process of uveitis. Methods:Imn- munohistochemical techniques were applied to detect their expression in eyes of both the health (20 cases from eye bank) and patients with uveitis (54 cases with 54 eyes which included 33 ex- ogenous uveitis and 21 endogenous one). Results:Both the two ant igens were detectable in the choroidal and retinal tissues in eyes of uveitis while all the normal eyes showed negative expres- sion of ICAM-1 and negative or little expression of HLA-DR (P<0. 01). However,there was no statistically significant difference between exogenous and endogenous types (P>0. 05). Conclu- sion: Both ICAM-1 and HLA-DR may be responsible for cell recognition and binding in the in- flarnmatory tissues. The co-expression of ICAM-1 and HAL-DR showed that these two factors might play an important role in the immunologic damage of the choroid and retina in uveitis.

  5. Intercellular Adhesion Molecule-1 Levels in Experimental Brain Injury and the Effects of Alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Nilgun Senol

    2014-06-01

    Full Text Available Aim: The mechanisms, responsible for the secondary injuries occuring after acute injury of the brain are; release of nitrous oxide which is an inflammatory mediator, abnormal formation of free oxygen radicals and excessive stimulation of excitatory aminoacids. In this study, it is aimed to investigate changes in intercellular adhesion molecule levels in the brain, that occur subsequent to blunt head trauma, and after administration of an antioxidant agent, vitamin E. Material and Method: In this study, rats were divided into 4 groups. In group A; rats had only skin incision, group B; rats were traumatized after the skin incision, group C; isotonic (30mg/kg was given intraperitoneally after 30 minutes of the trauma, group D; alpha-tocopherol (30mg/kg was given intraperitoneally, after 30 minutes of the trauma. All the rats in these groups were sacrified after 24 hours. Biparietal and bifrontal lobs were taken about 3x5x1mm tickness and intercellular adhesion molecule-1 levels were studied by enzyme-linked immunosorbent assay kit. Results: As the result of the statistical analysis, it is detected that although there is an increase in intercellular adhesion molecule levels in brain parenchyma after trauma, it is statistically unsignificant. However, as the traumatized group and the group given alpha-tocopherol after trauma was compared, a statistically significant decrease in intercellular adhesion molecule-1 levels in the alpha-tocopherol given group was seen. Discussion: Alpha-tocopherol, an antioxidant agent, causes decrease in intercellular adhesion molecule levels, by decreasing inflammation.

  6. Soluble intercellular adhesion molecule-1 for stable and acute phases of idiopathic pulmonary fibrosis

    OpenAIRE

    Okuda, Ryo; Matsushima, Hidekazu; Aoshiba, Kazutetsu; Oba, Tomohiro; Kawabe, Rie; Honda, Koujiro; Amano, Masako

    2015-01-01

    The levels of soluble intercellular adhesion molecule-1 (sICAM-1) have been reported to increase in patients with idiopathic pulmonary fibrosis. However, the utility of sICAM-1 has not been reported in detail. The aim of this study was to investigate whether sICAM-1 was a useful biomarker for stable idiopathic pulmonary fibrosis (IPF) and early phase of acute exacerbation of IPF. The patients who were diagnosed with IPF between 2013 and 2015 were enrolled. The levels of sICAM-1 and other inte...

  7. Association of serum soluble intercellular cell adhesion molecule-1, soluble vascular cell adhesion molecule-1 and hypersensitivity-CRP levels with peripheral vascular disease of lower limbs in patients with type 2 diabetes mellitus%2型糖尿病患者血清可溶性细胞间和血管细胞黏附分子1及CRP与下肢血管病变的关系

    Institute of Scientific and Technical Information of China (English)

    谭擎缨; 王静; 阮芸; 阮勇; 王秀景; 姚佳琦; 姚乐燕

    2013-01-01

    Objective To investigate the association of serum levels of soluble intercellular cell adhesion molecule-1 (sICAM-1),soluble vascular cell adhesion molecule-1 (sVCAM-1) and high sensitivity C-reactive protein (hs-CRP) with peripheral vascular disease of lower limbs in patients with type 2 diabetes mellitus (T2DM).Methods One hundred and thirty T2DM patients admitted from October 2011 to October 2012,and 30 age/sex-matched healthy subjects were enrolled in the study.The serum levels of sICAM-1,sVCAM-1,hs-CRP and other clinical parameters were measured; the peripheral blood vessels of lower limbs were examined with color Doppler ultrasonography.Based on the extent of angiopathy of lower limbs T2DM patients were classified as normal vascular group (n =26),mild angiopathy group (n =45),moderate/severe angiopathy group (n =59).Results The serum levels of sICAM-1 and sVCAM-1 in moderate/ severe angiopathy group of T2DM patients were higher than those in mild angiopathy group,normal vascular group and healthy controls (t:4.15-8.93,all P <0.05) ; the serum levels of hs-CRP in moderate/severe angiopathy group were higher than those in mild angiopathy group,normal vascular group and healthy controls (t:2.18-4.27,all P < 0.05).The serum sICAM-1 level was positively correlated with total cholesterol (TC),low density lipoprotein cholesterol (LDL-C) and sVCAM-1.The serum sVCAM-1 level was positively correlated with course of disease,systolic blood pressure and CRP.Conclusions Serum levels of sICAM-1,sVCAM-1 and hs-CRP are correlated with the extent of angiopathy of lower limbs in T2DM patients,and the elevated sICAM-1 ; sVCAM-1 and hs-CRP levels are also associated with hyper blood pressure,dislipidemia and chronic inflammation.%目的 探讨2型糖尿病患者血清可溶性细胞间黏附分子1(sICAM-1)、血管细胞黏附分子1(sVCAM-1)及高敏CRP(hsCRP)水平与下肢大血管病变程度的关系.方法 对130例2型糖尿病患者(糖尿病组)与30例年龄匹配

  8. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    International Nuclear Information System (INIS)

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist β-naphthoflavone (β-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist α-naphthoflavone (α-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with β-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis

  9. Clinical evaluation of serum concentrations of intercellular adhesion molecule-1 in patients with colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Kang; Fang Wang; Jin-Dong Xie; Jun Cao; Pei-Zhong Xian

    2005-01-01

    AIM: To investigate the correlation between the serum soluble intercellular adhesion molecule-1 (sICAM-1) and the clinicopathologic features and to evaluate the possible prognostic significance of sICAM-1 concentration in colorectal cancer.METHODS: A total of 56 patients (mean age 57.3 years)having transitional cell carcinoma of the colorectal and 25 control patients (mean age 42.6 years) were enrolled in the study. The serum samples of the patients were obtained on the day before surgery. Sera were obtained by centrifugation, and stored at -80 ℃ until assay. Serumconcentrations of ICAM-1 were measured with enzymelinked immunoassay. Differences between the two groups were analyzed by Student's t-test.RESULTS: No significant increase of serum sICAM-1 could be demonstrated in the Dukes A1 patients (352.63±61.82μg/L) compared to the control group (345.72±49.81 μg/L,P>0.05), Dukes A1 patients (352.63±61.82 μg/L)compared to Dukes A2,3 patients (491.17±86.36 μg/L,P<0.05). Furthermore, the patients with Dukes B had significantly higher serum concentrations of sICAM-1than those of the control group (496.82±93.04 μg/L vs 345.72±49.81 μg/L, P<0.01). Compared with Dukes A2,3,B colorectal cancer patients, patients with more advanced clinical stage (Dukes C and D) had higher levels of sICAM-1 (743.68±113.74 μg/L vs491.17±86.36 μg/L and 496.82±93.04 μg/L, P<0.001). The difference was statistically significant in sICAM-1 levels between patients with positive lymph node status and those without lymph node involvement (756.25±125.57 μg/L vs445.62±69.18 μg/L, P<0.001).Patients with poorly differentiated colorectal cancer had a higher level of sICAM-1 than those with differentiated and highly differentiated cancer (736.49±121.97 μg/Lvs 410.23±67.47 μg/L, P<0.001).CONCLUSION: In this study, serum ICAM-1 levels were found to be related to tumor presence, clinical stages,and grade. Increased ICAM-1 in patients with colorectal cancer which should

  10. Effect of rosuvastatin on serum high-sensitive C-reactive protein and cell adhesion molecules-1 in elderly patients with primary hypertension%瑞舒伐他汀对老年原发性高血压患者超敏C反应蛋白和细胞间黏附分子-1的影响

    Institute of Scientific and Technical Information of China (English)

    谢文超; 李平; 陈坚; 林智海

    2013-01-01

    目的 探讨瑞舒伐他汀对老年原发性高血压患者超敏C反应蛋白(hs-CRP)和细胞间黏附分子-1(ICAM-1)的影响.方法 将44例患者随机分为常规治疗组和瑞舒伐他汀组.常规组采用氨氯地平治疗,如血压未达标则加用缬沙坦和比索洛尔至血压达标.治疗组在常规组治疗基础上加用瑞舒伐他汀片10 mg/d,连用4周.治疗前、后采用双抗体夹心ABC-ELISA法检测血清hs-CRP和ICAM-1浓度并进行统计学比较.结果 与治疗前相比,两组治疗后4周血清hs-CRP和ICAM-1水平显著下降,差异有统计学意义(P<0.01).治疗后4周,瑞舒伐他汀组的血清hs-CRP和ICAM-1水平比常规治疗组下降更多,差异有统计学意义(分别为t=2.1267,P=-0.0333; t=5.7905,P=-0.0000).结论 瑞舒伐他汀等他汀类药物可降低老年原发性高血压患者血清hs-CRP和ICAM-1等促炎性细胞因子的水平,减轻高血压患者的血管内炎症.%Objective To discussion the effect of rosuvastatin on serum high-sensitive C-reactive protein and cell adhesion molecules-1 in elderly patients with primary hypertension. Methods 44 elderly patients with primary hypertension were randomly divided into rosuvastatin group (n=22) and control group (n=22). Patients in control group were treated with amlodipine only or combine with valsartan bisoprolol together in order to control the blood pressure. Patients in rosuvastatin group were treated with rosuvastatin 10 mg/d base on the control group. Before and after rosuvastatin treatment, the serum high-sensitive C-reactive protein and cell adhesion molecules-1 level were measured, which were treated with group comparisons. Results The serum high-sensitive C-reactive protein and cell adhesion molecules-1 level both in control group and rosuvastatin group were decreased statistically after drug treatment. Compared with the control group, the serum high-sensitive C-reactive protein and cell adhesion molecules-1 level in rosuvastatin group were

  11. Effect of spironolactone on renal and intercellular adhesion molecule-1 expression in Type 2 diabetic rats

    International Nuclear Information System (INIS)

    Objective: To observe the influence of spironolactone on the serum and urine intercellular adhesion molecule-1 (ICAM-1) level, and the change of renal structure and function of type 2 diabetic rats. Methods: 30 healthy male SD rats were chosen 10 of them were randomly selected as normal controls (group NC) n=10; Then these rats were randomly divided into type 2 diabetes group (group DM) n=10 and type 2 diabetes + spironolactone treated group (group SPI) n=10. After 8 weeks, the levels of blood glucose, serum lipids, urine biochemical, renal pathological changes were examined; while the serum and urine ICAM-1 levels changes were also detected. Results: 1. Compared with group NC, the levels of fBG and HbA1c were significantly increased in group DM and group SPI (P0.05). 2. After 8 weeks,the levels of ACR, URBP, UICAM-1, SICAM-1 and kidney/body weight ratio in group DM and group SPI were higher than group NC (P<0.05); the five indexes were significantly lower in group SPI compared with group DM (P<0.05). In addition, UICAM-1 excretion rate and SICAM-1 level showed positive correlations with ACR, URBP excretion rate and kidney/body weight ratio (P<0.01). 3. Pathology showed that the extent of glomerular lesions in rats in group SPI apparently reduced, ICAM-1 expression was decreased compared with that in group DM (P<0.01). Conclusion: Spironolactone can definitely protect type 2 diabetic kidney,and this protective effect was independent on the hypoglycemic effect. The mechanisms might be associated with its inhibition effect on ICAM-1 expression and its excretion. (authors)

  12. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules

    OpenAIRE

    1991-01-01

    Cytokines such as interleukin 1 (IL-1) promote adhesiveness in human umbilical vein endothelial cells for leukocytes including basophils, eosinophils, and neutrophils, and induce expression of adherence molecules including ICAM-1 (intercellular adhesion molecule-1), ELAM-1 (endothelial-leukocyte adhesion molecule-1), and VCAM-1 (vascular cell adhesion molecule-1). In the present study, blocking monoclonal antibodies (mAb) recognizing ICAM-1, ELAM-1, and VCAM-1 have been used to compare their ...

  13. Soluble intercellular adhesion molecule-1 for stable and acute phases of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Okuda, Ryo; Matsushima, Hidekazu; Aoshiba, Kazutetsu; Oba, Tomohiro; Kawabe, Rie; Honda, Koujiro; Amano, Masako

    2015-01-01

    The levels of soluble intercellular adhesion molecule-1 (sICAM-1) have been reported to increase in patients with idiopathic pulmonary fibrosis. However, the utility of sICAM-1 has not been reported in detail. The aim of this study was to investigate whether sICAM-1 was a useful biomarker for stable idiopathic pulmonary fibrosis (IPF) and early phase of acute exacerbation of IPF. The patients who were diagnosed with IPF between 2013 and 2015 were enrolled. The levels of sICAM-1 and other interstitial pneumonia markers were measured. In this study, 30 patients with stable IPF and 11 patients with acute exacerbation of IPF were collected. Mean sICAM-1 levels were 434 ± 139 ng/mL for the stable phase of IPF, 645 ± 247 ng/mL for early phase of acute exacerbation of IPF, 534 ± 223 ng/mL for connective tissue disease-associated interstitial pneumonia, 221 ± 42 for chronic obstructive pulmonary disease, and 150 ± 32 ng/mL in healthy volunteers. For the stable phase of IPF, sICAM-1 levels correlated with Krebs von den Lungen-6 (KL-6) (r value: 0.41; p value: 0.036). Mean sICAM-1 levels were significantly higher in patients with early phase of acute exacerbation of IPF than with stable phase of IPF (p = 0.0199). Multiple logistic analyses indicated that the predictors for early phase of acute exacerbation of IPF were only sICAM-1 and C-reactive protein (odds ratio: 1.0093; 1.6069). In patients with stable IPF, sICAM-1 levels correlated with KL-6; sICAM-1 might be a predictive indicator for prognosis. In the early phase of acute exacerbation of IPF, sICAM-1 might be more useful for diagnosis than other interstitial pneumonia markers. PMID:26543791

  14. Nitric Oxide-Enhanced Molecular Imaging of Atheroma using Vascular Cellular Adhesion Molecule 1-Targeted Echogenic Immunoliposomes.

    Science.gov (United States)

    Kim, Hyunggun; Kee, Patrick H; Rim, Yonghoon; Moody, Melanie R; Klegerman, Melvin E; Vela, Deborah; Huang, Shao-Ling; McPherson, David D; Laing, Susan T

    2015-06-01

    The aim of this study was to determine whether pre-treatment with nitric oxide-loaded echogenic liposomes (NO-ELIP) plus ultrasound can improve highlighting by molecularly targeted (anti-vascular cell adhesion molecule 1 [VCAM-1]) ELIP of atheroma components. Atherosclerotic animals were treated with anti-VCAM-1-ELIP or immunoglobulin (IgG)-ELIP. Each group was selected at random to receive pre-treatment with standard ELIP plus ultrasound, NO-ELIP without ultrasound and NO-ELIP plus ultrasound. Intravascular ultrasound highlighting data for the same arterial segments were collected before and after treatment. Pre-treatment with NO-ELIP plus ultrasound resulted in a significant increase in acoustic enhancement by anti-VCAM-1-ELIP (21.3 ± 1.5% for gray-scale value, 53.9 ± 3.1% for radiofrequency data; p < 0.001 vs. IgG-ELIP, p < 0.05 vs. pre-treatment with standard ELIP plus ultrasound or NO-ELIP without ultrasound). NO-ELIP plus ultrasound can improve highlighting of atheroma by anti-VCAM-1 ELIP. This NO pre-treatment strategy may be useful in optimizing contrast agent delivery to the vascular wall for both diagnostic and therapeutic applications. PMID:25819469

  15. Nitric Oxide-Enhanced Molecular Imaging of Atheroma using Vascular Cellular Adhesion Molecule-1 Targeted Echogenic Immunoliposomes

    Science.gov (United States)

    Kim, Hyunggun; Kee, Patrick H.; Rim, Yonghoon; Moody, Melanie R.; Klegerman, Melvin E.; Vela, Deborah; Huang, Shao-Ling; McPherson, David D.; Laing, Susan T.

    2015-01-01

    This study aimed to demonstrate whether pretreatment with nitric-oxide loaded echogenic liposomes (NO-ELIP) plus ultrasound can improve highlighting by molecularly targeted [anti-vascular cell adhesion molecule-1 (VCAM-1)] ELIP of atheroma components. Atherosclerotic animals were treated with anti-VCAM-1 ELIP or immunoglobulin (IgG)-ELIP. Each group was randomized to receive pretreatment with standard ELIP plus ultrasound, NO-ELIP without ultrasound, or NO-ELIP plus ultrasound. Intravascular ultrasound highlighting data of the same arterial segments were collected before and after treatment. Pretreatment with NO-ELIP plus ultrasound demonstrated a significant increase in acoustic enhancement by anti-VCAM-1 ELIP (21.3 ± 1.5% for gray scale value, 53.9 ± 3.1% for radiofrequency data; p<0.001 vs. IgG-ELIP, p<0.05 vs. pretreatment with standard ELIP plus ultrasound or NO-ELIP without ultrasound). NO-ELIP plus ultrasound can improve highlighting of atheroma by anti-VCAM-1 ELIP. This NO pretreatment strategy may be useful for optimizing contrast agent delivery to the vascular wall for both diagnostic and therapeutic applications. PMID:25819469

  16. A study of soluble intercellular adhesion molecule-1 in sera of patients with thyroid diseases

    International Nuclear Information System (INIS)

    Objective: Markedly elevated serum soluble intercellular adhesion molecule 1 (sICAM-1) level has recently been reported in patients with autoimmune thyroid disease (AITD). The aim of this study was to investigate the clinical significance of sICAM-1 serum level in patients with different thyroid diseases. Methods: A total of 616 patients were recruited, consisting of 557 Graves' disease (CD), 33 untreated Hashimoto's thyroiditis (HT), 17 untreated simple goiter (SG) and 9 nontoxic nodular goiter (NTNG). Control was a group of 273 healthy individuals with no prior history of thyroid disease. Their serum sICAM-1 levels were measured by 125I-sICAM-1 radioimmunoassay. If sICAM-1 levels of every group fit normal distribution, statistical difference was calculated by ANOVA or t-test; if not, then rank sum test (Kruskal-Wallis or Mann-Whitney) was used. Results: There was no statistically significant difference among the SG [(173.82 ± 59.50) μg/L], NTNG [(159.31 ± 28.73) μg/L] and control [(149.89 ± 39.45) μg/L] groups; whereas the levels in both untreated GD [(255.04 ± 82.40) μg/L] and HT[(227.22 ± 77.08) μg/L] groups were elevated and statistically significant by comparison with the control group (Z=-9.401, -5.902, respectively; both with P 2=88.257, P<0.01). In stable euthyroid patients receiving ATD, a steady trend of gradual decline in sICAM-1 levels was found. When ATD treatment lasted ≥19 months, the sICAM-1 levels in GD patients with and without ophthalmopathy [(211.58 ± 53.58) μg/L and (189.50 ± 39.99) μg/L, respectively] were significantly decreased when compared with the corresponding pair of new-onset groups [(287.36 ± 79.20) μg/L and (244.75 ± 81.58) μg/L, F=9.986, 3.398, respectively; all P<0.05] but remained persistently elevated over the control group even after stopping ATD treatment (Z=-3.813, P<0.05). Conclusions: The sICAM-1 assay is of great importance in the diagnosis of AITD and detection of the associated abnormal immune status

  17. Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine.

    LENUS (Irish Health Repository)

    Lan, Wei

    2012-02-03

    Endothelial cells play a key role in ischemia reperfusion injury. We investigated the effects of lidocaine on activated human umbilical vein endothelial cell (HUVEC) interleukin (IL)-1beta, IL-6, and IL-8 concentrations and intercellular adhesion molecule-1 (ICAM-1) expression. HUVECs were pretreated with different concentrations of lidocaine (0 to 0.5 mg\\/mL) for 60 min, thereafter tumor necrosis factor-alpha was added at a concentration of 2.5 ng\\/mL and the cells incubated for 4 h. Supernatants were harvested, and cytokine concentrations were analyzed by enzyme-linked immunosorbent assay. Endothelial ICAM-1 expression was analyzed by using flow cytometry. Differences were assessed using analysis of variance and post hoc unpaired Student\\'s t-test where appropriate. Lidocaine (0.5 mg\\/mL) decreased IL-1beta (1.89 +\\/- 0.11 versus 4.16 +\\/- 1.27 pg\\/mL; P = 0.009), IL-6 (65.5 +\\/- 5.14 versus 162 +\\/- 11.5 pg\\/mL; P < 0.001), and IL-8 (3869 +\\/- 785 versus 14,961 +\\/- 406 pg\\/mL; P < 0.001) concentrations compared with the control. IL-1beta, IL-6, and IL-8 concentrations in HUVECs treated with clinically relevant plasma concentrations of lidocaine (0.005 mg\\/mL) were similar to control. ICAM-1 expression on lidocaine-treated (0.05 mg\\/mL) HUVECs was less than on controls (198 +\\/- 52.7 versus 298 +\\/- 50.3; Mean Channel Fluorescence; P < 0.001). Activated endothelial IL-1beta, IL-6, and IL-8 concentrations and ICAM-1 expression are attenuated only by lidocaine at concentrations larger than clinically relevant concentrations.

  18. Effects of anisodamine on the expressions of vascular endothelial growth factor and intercellular adhesion molecule 1 in experimental infusion phlebitis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-xiang; WANG Peng; ZHANG Qiu-shi; PAN Xue; ZHAO Qing-xia; WANG Xiao-kai

    2012-01-01

    Background Infusion phlebitis is the most common side effect of clinical intravenous drug therapy and several clinical studies have demonstrated that anisodamine can effectively prevent the occurrence of infusion phlebitis.This study was designed to investigate effects of anisodamine on the expressions of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in a rabbit model of infusion phlebitis and to analyze the mechanisms of anisodamine effect on the prevention and treatment of experimental infusion phlebitis.Methods Twenty-four specific pathogen-free male Japanese white rabbits were randomly assigned to the control group,the model group,the magnesium sulfate group and the anisodamine group.The rabbit model of infusion phlebitis,induced by intravenous administration,was established and expressions of VEGF and ICAM-1 were determined and contrasted with the control group treated with normal saline.We evaluated expression by histopathology,immunohistochemistry,reverse transcription-polymerase chain reaction,and Western blotting assay.Results Pathohistological changes of the model group were observed,such as loss of venous endothelial cells,inflammatory cell infiltration,edema and thrombus.The magnesium sulfate group and the anisodamine group showed significant protective effects on vascular congestion,inflammatory cell infiltration,proliferation,swelling of endothelium and perivascular hemorrhage.The model group showed the highest expressions of VEGF and ICAM-1 of the four groups (P<0.01).On the contrary,anisodamine alleviated the inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1 compared with the model group (P <0.01).There was no significant difference in the expressions of VEGF and ICAM-1 between the magnesium sulfate group and the anisodamine group (P >0.05).Conclusion Anisodamine alleviates inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1,and shows

  19. Nitric oxide pretreatment enhances atheroma component highlighting in vivo with intercellular adhesion molecule-1-targeted echogenic liposomes.

    Science.gov (United States)

    Kee, Patrick H; Kim, Hyunggun; Huang, Shaoling; Laing, Susan T; Moody, Melanie R; Vela, Deborah; Klegerman, Melvin E; McPherson, David D

    2014-06-01

    We present an ultrasound technique for the detection of inflammatory changes in developing atheromas. We used contrast-enhanced ultrasound imaging with (i) microbubbles targeted to intercellular adhesion molecule-1 (ICAM-1), a molecule of adhesion involved in inflammatory processes in lesions of atheromas in New Zealand White rabbits, and (ii) pretreatment with nitric oxide-loaded microbubbles and ultrasound activation at the site of the endothelium to enhance the permeability of the arterial wall and the penetration of ICAM-1-targeted microbubbles. This procedure increases acoustic enhancement 1.2-fold. Pretreatment with nitric oxide-loaded echogenic liposomes and ultrasound activation can potentially facilitate the subsequent penetration of targeted echogenic liposomes into the arterial wall, thus allowing improved detection of inflammatory changes in developing atheromas. PMID:24613216

  20. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    DEFF Research Database (Denmark)

    Brown, Alan; Turner, Louise; Christoffersen, Stig;

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The...

  1. Dermatan sulfate activates nuclear factor-κb and induces endothelial and circulating intercellular adhesion molecule-1

    OpenAIRE

    Penc, Stanley F.; Pomahac, Bohdan; Eriksson, Elof; Detmar, Michael; Gallo, Richard L

    1999-01-01

    Proteoglycans (PGs) can influence cell behaviors through binding events mediated by their glycosaminoglycan (GAG) chains. This report demonstrates that chondroitin sulfate B, also known as dermatan sulfate (DS), a major GAG released during the inflammatory phase of wound repair, directly activates cells at the physiologic concentrations of DS found in wounds. Cultured human dermal microvascular endothelial cells exposed to DS responded with rapid nuclear translocation of nuclear factor-κB (NF...

  2. Soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) in scleroderma skin

    DEFF Research Database (Denmark)

    Søndergaard, Klaus; Deleuran, Mette; Heickendorff, Lene; Zachariae, Hugh; Stengaard-Pedersen, Kristian; Deleuran, Bent Winding

    1998-01-01

    In order to investigate whether soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) were present in scleroderma skin, and to compare their levels to concentrations measured in plasma and clinical parameters, we examined suction blister fluid and plasma...... from 13 patients with systemic sclerosis and 11 healthy volunteers. Suction blisters and biopsies were from the transition zone between normal skin and scleroderma, and uninvolved abdominal skin. The levels of sICAM-1 and sIL-2R were significantly increased in both plasma and suction blister fluid from...... systemic sclerosis patients compared with healthy volunteers. ICAM-1 was localized to vessels and perivascular mononuclear infiltrates by immunohistochemical methods. IL-2R was expressed by CD3-positive cells. The elevated levels of sICAM-1 and sIL-2R in suction blister fluid point towards activation of...

  3. Early Detection of Junctional Adhesion Molecule-1 (JAM-1 in the Circulation after Experimental and Clinical Polytrauma

    Directory of Open Access Journals (Sweden)

    Stephanie Denk

    2015-01-01

    Full Text Available Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1 was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18 during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score. The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.

  4. Milk IgA responses are augmented by antigen delivery to the mucosal addressin cellular adhesion molecule 1.

    Science.gov (United States)

    Johnson, Susan; Bourges, Dorothee; Wijburg, Odilia; Strugnell, Richard A; Lew, Andrew M

    2006-07-01

    The mucosal addressin cellular adhesion molecule 1 (MAdCAM) is expressed on the venules of the gut associated lymphoid tissue (GALT); it is also expressed on the venules of the lobules of the mammary gland. We have previously found that MAdCAM-targeting using a rat anti-MAdCAM monoclonal Ab as both antigen and targeting moiety resulted in an enhanced local IgA gut response. We therefore surmised that such targeting may also enhance IgA responses in the mammary gland. We show that our model antigen localizes to the lobules of the mammary glands as well as the GALT, but not to the draining lymph nodes and that targeting MAdCAM results in secretory IgA responses in the milk. We provide evidence that this milk IgA Ab is of a secretory nature and is consistent with derivation from gut plasmablasts that have migrated to the mammary gland. Targeting MAdCAM may be a way for a novel vaccine strategy that affords protection to the mammary gland and the suckling neonate. PMID:16723174

  5. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  6. Inflammatory mediators and cell adhesion molecules as indicators of severity of atherosclerosis: the Rotterdam Study

    OpenAIRE

    de Maat, Moniek; Bots, Michiel; Breteler, Monique; Meijer, John; Kiliaan, Amanda; Witteman, Jacqueline; Hofman, Albert

    2002-01-01

    textabstractInflammatory mediators and soluble cell adhesion molecules predict cardiovascular events. It is not clear whether they reflect the severity of underlying atherosclerotic disease. Within the Rotterdam Study, we investigated the associations of C-reactive protein (CRP), interleukin-6 (IL-6), soluble intercellular adhesion molecule-1, and soluble vascular cell adhesion molecule-1 with noninvasive measures of atherosclerosis. Levels of CRP were assessed in a random sample of 1317 part...

  7. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca

    OpenAIRE

    Catarina F. P. Teixeira; Stella R. Zamuner

    2002-01-01

    It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (I...

  8. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  9. Cell adhesion molecules and hyaluronic acid as markers of inflammation, fibrosis and response to antiviral therapy in chronic hepatitis C patients

    Directory of Open Access Journals (Sweden)

    Esther Granot

    2001-01-01

    Full Text Available Objective: Cell adhesion molecules (intracellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1 and hyaluronic acid, markers of inflammation and fibrosis were monitored in hepatitis C patients to determine whether changes in plasma levels, during antiviral treatment, can predict long-term response to therapy.

  10. Mild hypothermia effects on intercellular adhesion molecule-1 and serum interleukin-6 expression in brain tissues of a rat focal ischemia model

    Institute of Scientific and Technical Information of China (English)

    Shengqi Fu; Lei Yang; Shuling Zhang; Shilong Sun; Xingai Mao

    2008-01-01

    BACKGROUND: Previous studies have confirmed the neuroprotective effect of mild hypothermia on ischemic brain injury.OBJECTIVE: To investigate the effects of mild hypothermia on intercellular adhesion molecule-1 expression and serum interleukin-6 levels in ischemic brain tissues of focal brain ischemia rats, and to explore the neuroprotective effects of mild hypothermia on ischemic brain injury.DESIGN, TIME AND SETTING: A randomized, controlled, neurobiological experiment was performed at the Central Laboratory, First Affiliated Hospital, Xinxiang Medical College, China from February to July 2006.MATERIALS: Thirty healthy, adult, Sprague Dawley rats were used to establish middle cerebral artery occlusion models using the suture method. The immunohistochemistry (streptavidin-biotin-peroxidase complex method) kit was purchased from Boster, China. Interleukin-6 radioimmunoassay was supplied by Institute of Radioimmunity, Technology Development Center, General Hospital of Chinese PLA. METHODS: The rats were equally and randomly assigned into mild hypothermia and control groups, and middle cerebral artery occlusion models were established. The rectal temperature was maintained at (37 ± 0.5)℃ in the control group. In the mild hypothermia group, the rectal temperature was maintained at (33±1)℃.MAIN OUTCOME MEASURES: At 12 hours after model establishment, the ischemic brain hemispheres were coronally sliced at the level of the optic chiasm. The number of intercellular adhesion molecule- 1 -positive vessels per high-power field was observed with an optical microscope. Serum interleukin-6 levels were measured by radioimmunoassay.RESULTS: Compared with the control group, intercellular adhesion molecule-I and serum interleukin-6 expressions were significantly decreased in ischemic brain tissues of the mild hypothermia group (P < 0.01).CONCLUSION: Mild hypothermia exhibits a neuroprotective effect by reducing serum interleukin-6 and intercellular adhesion molecule- 1

  11. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  12. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    OpenAIRE

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to hu...

  13. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link with the...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  14. Selective cell adhesion inhibitors: Barbituric acid based alpha4beta7--MAdCAM inhibitors.

    Science.gov (United States)

    Harriman, Geraldine C; Brewer, Matthias; Bennett, Robert; Kuhn, Cyrille; Bazin, Marc; Larosa, Greg; Skerker, Paul; Cochran, Nancy; Gallant, Debra; Baxter, Deborah; Picarella, Dominic; Jaffee, Bruce; Luly, Jay R; Briskin, Michael J

    2008-04-01

    A novel series of barbituric acid derivatives were identified as selective inhibitors of alpha4beta7 MAdCAM (mucosal addressin cell adhesion molecule-1) interactions via a high throughput screening exercise. These inhibitors were optimized to submicromolar potencies in whole cell adhesion assays, retaining their selectivity over alpha4beta1 VCAM. PMID:18331794

  15. Antidiabetic Rosiglitazone Reduces Soluble Intercellular Adhesion Molecule-1 Level in Type 2 Diabetic Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2008-12-01

    Full Text Available Background. We investigated the level of soluble adhesion molecules in diabetic patients and the effect of the peroxisome proliferator-activated receptor-γ (PPAR-γ agonist rosiglitazone on plasma levels of adhesion molecules and an inflammation marker in type 2 diabetic patients with coronary artery disease (CAD after percutaneous coronary intervention (PCI. Methods. A total of 116 diabetic patients with CAD who had undergone PCI were randomized to receive rosiglitazone (4 mg/d or not for 6 months. Plasma levels of soluble intercellular adhesion molecules (sICAM-1 and P-selectin (sP-selectin were measured on ELISA. Results. After 6-month rosiglitazone treatment, plasma levels of sICAM-1 were lower than baseline and control group levels (370.4 (332.4–421.9 pg/mL versus 423.5 (327.4–500.3 pg/mL and 404.6 (345.2–483.4 pg/mL, P<.001. In addition, plasma levels of C-reactive protein were significantly reduced from baseline levels. However, plasma level of sP-selectin was not significantly lowered with rosiglitazone treatment than with control treatment after 6-month follow-up. Conclusions. Rosiglitazone reduces chronic inflammatory responses and improves levels of markers of endothelial dysfunction in patients with diabetes and CAD. PPAR-γ agonist may have a beneficial effect on the vascular endothelium through its anti-inflammatory mechanism and may be useful as therapy in patients undergoing PCI.

  16. Notch-Mediated Cell Adhesion

    OpenAIRE

    Akihiko Murata; Shin-Ichi Hayashi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of...

  17. FRET based quantification and screening technology platform for the interactions of leukocyte function-associated antigen-1 (LFA-1 with intercellular adhesion molecule-1 (ICAM-1.

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    Full Text Available The interaction between leukocyte function-associated antigen-1(LFA-1 and intercellular adhesion molecule-1 (ICAM-1 plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple 'in solution' steady state fluorescence resonance energy transfer (FRET technique to obtain the dissociation constant (Kd of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction.

  18. Psychological stress increases expression of aortic plaque intercellular adhesion molecule-1 and serum inflammatory cytokines in atherosclerotic rabbit model

    Institute of Scientific and Technical Information of China (English)

    Muwei Li; Xianpei Wang; Lei Yang; Chuanyu Gao; Yexin Ma

    2008-01-01

    Plaque rupture,platelet aggregation,and thrombogenesis are the main mechanisms of acute coronary syndrome (ACS),and inflammation factors play key roles in plaque unstability.Psychological stress promotes acute inflammatory response,leading to increased circulating levels of C-reactive protein (CRP),IL-6,and serum intercellular adhesion molecule (sICAM)-1.But it is not clear that whether psychological stress has a direct effect on atherosclerotic plaque stability.The purpose of this study was to investigate effects of chronic psychological stress on inflammatory marker (ICAM-1 ) in atherosclerotic plaque,and inflammatory markers in peripheral blood.Materials and methods Sixty male rabbits were randomized into 2 groups:the control group (n =10) and the atherosclerotic group (n =50).The latter were fed on high fatty diet and were given a large dose of vitamin D3 (3 600 000IU/kg) via intraperitoneal injection.After 8 weeks,the atherosclerotic model was estaslished.Then the 50 atherosclerotic model rabbits were divided into 3 subgroups:no-stress subgroup (n = 16),physiological stress subgroup (n = 16) and psychological stress subgroup (n =18).In physiological stress subgroup and psychological stress subgroup,drinking was cut from twice a day to once a day.At the same time,psychological stress subgroup was given empty bottle stress,and this process lasted for 2 weeks.One hour after the last stress,the blood samples were collected and the serum levels of CRP,IL-6 amd ICAM-1 were tested by radioimmunoassay or enzyme linked immunosorbent assay.The aorta and heart were extracted for pathology examination,and the express of ICAM-1 was tested by immunohistochemical examination.Results (1) After effective atherosclerotic animal model construction,the expression of ICAM-1 in aorta was higher in atherosclerotic group than that in control group (P<0.01),and was notably higher in psychological stress subgroup than that in no-stress subgroup or in physiological stress subgroup (2

  19. 糖基化终产物刺激大鼠骨髓内皮细胞表达细胞间粘附分子-1的机制探讨%The mechanism of intercellular adhesion molecule-1 expression in endothelial cells stimulated by advanced glycosylation end products

    Institute of Scientific and Technical Information of China (English)

    余路; 邱鸿鑫; 王亚平; 司良毅; 吴珊; 祝继华

    2001-01-01

    AIM: To explore the relationship between intercellular adhesionmolecule-1(ICAM-1)expression in endothelial cells(EC) and advanced glycosylation end products(AGEs) stimulation. METHODS: Murine bone marrow derived ECs was stimulated by AGEs after pretreated with anti-AGEs, anti-IL-1β and N-acetylcysteine(NAC),then SOD activity and ICAM-1 concentration and adhesion rate(AR) were evaluated. RESULTS: ECs which expressed ICAM-1[(0.65±0.14) vs (0.11±0.02)] induced by AGEs showed lower SOD activity [(0.69±0.19)×103 U/L vs (1.71±0.42)×103 U/L]. The ICAM-1 expression as well as the increase of AR caused by AGEs stimulation could be suppressed by anti-AGEs(0.12±0.01) and NAC(0.11±0.05). Anti-IL-1β had no influence on these changes. CONCLUSION: AGEs could induce endothelial cells to express ICAM-1 in vitro, most probably due to the formation of free radicals. Besides, AGEs may stimulate other cells to secrete cytokines resulting in ICAM-1 expression in endothelial cells.%目的:探讨糖基化终产物(AGEs)致内皮细胞表达细胞间粘附分子-1(ICAM-1)与自由基产生之间的关系。方法:内皮细胞(EC)用抗AGEs抗体、抗IL-1β多抗、N-乙酰半胱氨酸(NAC)预处理1h后AGEs作用6h,测定IL-1β、超氧化物歧化酶(SOD)、ICAM-1、内皮细胞-中性粒细胞粘附率。结果:AGEs刺激后ICAM-1表达增加[吸光度(A)为0.65±0.14vs0.11±0.02]的内皮细胞SOD活性降低[(0.69±0.19)×103U/Lvs(1.71±0.42)×103U/L]。ICAM-1的增加可被抗AGEs抗体[吸光度(A)为(0.12±0.01)]、NAC[吸光度(A)为(0.11±0.05)]和抗ICAM-1抗体[吸光度(A)为(0.10±0.04)]抑制。外源性IL-1β也可刺激内皮细胞表达ICAM-1[吸光度(A)为(0.72±0.23)]。结论:AGEs刺激内皮细胞表达ICAM-1可能与其导致细胞自由基的产生有关;AGEs还可通过刺激其他细胞产生细胞因子间接作用于EC,参与促进ICAM-1表达。

  20. 血清E选择素、sVCM-1在糖调节受损患者中的水平分析%Analysis Serum Levels of E-selection and Soluble Vascular Cell Adhesion Molecule-1 in Patients with Impaired Glucose Regulation

    Institute of Scientific and Technical Information of China (English)

    王绪山; 徐桂玲; 王敏; 宋凤英

    2014-01-01

    目的:探讨 E 选择素(E‐selectin)、可溶性血管细胞黏附分子‐1(sVCM‐1)在糖调节受损(IGR)患者血清中的水平。方法:根据空腹血糖(FPG)及2h 血糖(2hPG )水平,分为正常糖耐量组(NGT 组,35例),空腹血糖受损组(IFG组,25例)、糖耐量减低组(IGT 组,23例)、空腹血糖受损合并糖耐量减低组(IFG + IGT 组,26例)和2型糖尿病组(DM 组,18例)。均为体检中新发现者。结果:血清中 E‐selectin 水平在各组中比较显示,除 IFG 组与 IGT 组两组水平无明显差异外(P >0.05),其他各组血清中 E‐selectin 水平比较差异均具有统计学意义(P <0.01);而血清中sVCM‐1水平在各组中比较差异均具有统计学意义(P<0.01)。结论:动态观察血清中 E‐selectin 、sVCM‐1的水平,可以早期采取相应的干预措施,防止和延缓血管内皮的损伤和 DM 的发生发展,预防心血管事件的发生。%Objective :To investigate the serum levels of E‐selection and soluble vascular cell adhesion molecule‐1 in pa‐tients with impaired glucose regulation .Methods :According to the Fasting serum glucose(FPG) and 2‐hour serum glu‐cose(2hPG ) levels ,divided into the normal glucose tolerance group (NGT group ,35 cases) ,impaired fasting glucose group(IFG group ,25 cases) ,impaired glucose tolerance group(IGT group ,23 cases) ,impaired fasting glucose with im‐paired glucose tolerance group(IFG + IGT group ,26 cases)and Diabetes mellitus Type‐2 group(DM group ,18 cases) , were found in physical examination above all .Results :The level of E‐selectin in serum compared in each group ,but no significant difference in IFG group and IGT group two group level (P > 0 .05) ,the level of E‐selectin in serum com‐pared with other group differences were statistically significant (P < 0 .01) ;while the sVCM‐1 level in serum in each group compared the

  1. Cocaine-associated retiform purpura: a C5b-9-mediated microangiopathy syndrome associated with enhanced apoptosis and high levels of intercellular adhesion molecule-1 expression.

    Science.gov (United States)

    Magro, Cynthia M; Wang, Xuan

    2013-10-01

    Cocaine-associated retiform purpura is a recently described entity characterized by striking hemorrhagic necrosis involving areas of skin associated with administration of cocaine. Levamisole, an adulterant in cocaine, has been suggested as the main culprit pathogenetically. Four cases of cocaine-associated retiform purpura were encountered in the dermatopathology practice of C. M. Magro. The light microscopic findings were correlated with immunohistochemical and immunofluorescence studies. All 4 cases showed a very striking thrombotic diathesis associated with intravascular macrophage accumulation. Necrotizing vasculitis was noted in 1 case. Striking intercellular adhesion molecule-1 (ICAM-1)/CD54 expression in vessel wall along with endothelial expression of caspase 3 and extensive vascular C5b-9 deposition was observed in all biopsies examined. Cocaine-induced retiform purpura is a C5b-9-mediated microvascular injury associated with enhanced apoptosis and prominent vascular expression of ICAM-1, all of which have been shown in prior in vitro and in vivo murine models to be a direct effect of cocaine metabolic products. Antineutrophilic cytoplasmic antibody and antiphospholipid antibodies are likely the direct sequelae of the proapoptotic microenvironment. The inflammatory vasculitic lesion could reflect the downstream end point reflective of enhanced ICAM-1 expression and the development of antineutrophilic cytoplasmic antibody. Levamisole likely works synergistically with cocaine in the propagation of this syndromic complex. PMID:23392134

  2. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  3. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  4. Maternal serum uric acid concentration is associated with the expression of tumour necrosis factor-α and intercellular adhesion molecule-1 in patients with preeclampsia.

    Science.gov (United States)

    Zhao, J; Zheng, D-Y; Yang, J-M; Wang, M; Zhang, X-T; Sun, L; Yun, X-G

    2016-07-01

    We aimed to investigate whether there is a correlation between elevated serum uric acid (SUA) concentration and endothelial inflammatory response in women with preeclampsia (PE). On the basis of clinical and laboratory findings, patients were assigned to three groups: normal blood pressure (Control (Con)), gestational hypertension (GH) and PE (n=50 in each group). SUA concentration was measured by spectrophotometry, and serum tumour necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) levels were measured by enzyme-linked immunosorbent assay. Western blotting and immunohistochemical staining were also used to detect the changes in TNF-α and ICAM-1 expression in subcutaneous fat tissue. PE patients showed significantly higher systolic and diastolic blood pressures compared with Con and GH pregnant women (P=0.02 and P=0.02, respectively). The changes of body mass index (ΔBMI) before and after pregnancy and 24-h urine protein were significantly different among the three groups (P<0.001). Maternal SUA, TNF-α and soluble ICAM-1 (sICAM-1) levels were significantly increased in the patients with PE (P<0.05) compared with the other two groups. Scatterplot analysis revealed that elevated SUA concentration positively correlated with TNF-α and sICAM-1 in pregnant women. Moreover, vessels in subcutaneous fat tissues of preeclamptic patients showed intense TNF-α and ICAM-1 staining compared with Con and GH patients. The results support that, to a certain extent, elevated SUA concentration is significantly associated with inflammation of maternal systemic vasculature as indicated by increased TNF-α and ICAM-1 expression in women with PE. PMID:26511169

  5. Study on the serum levels of soluble intercellular adhesion molecule-1 (sICAM-1) in patients with Helicobacter pylori Infection

    Institute of Scientific and Technical Information of China (English)

    吴勤动; 朱永良; 石益海

    2002-01-01

    Objective: To evaluate the interaction between serum levels of soluble intercellular adhesion molecule-1 (sICAM-1) and Helicobacter pylori (H. pylori) infection in patients with chronic gastritis and peptic ulcer. Methods: The serum levels of sICAM-1 in 205 patients with chronic gastric diseases were detected by ELISA method and the status of H. pylori was determined by histologic examination, RUT, 14C - UBT, and serology. The sera obtained from 18 healthy volunteers served as controls. Results: The serum levels of sICAM-1 were significantly higher in patients with H. pylori positive than those of H. pylori negative (889.43±32.52 ng/ml vs. 747.07±30.45 ng/ml, P<0.05). The serum levels of sICAM-1 in patients with mild, moderate and severe infection of H. pylori were 841.68±72.36 ng/ml, 905.43±37.59 ng/ml and 1012.54±49.34 ng/ml,respectively (P<0.05). The serum levels of sICAM-1 proved to be significantly correlated with the density of H. pylori colonization in gastric mucosa (rs =0.316, P<0.001). The serum levels of sICAM-1 in patients with chronic gastritis and peptic ulcer were significantly higher than those in healthy controls (P<0.05). Conclusions: These results indicated that H. pylori infection up-regulates the expression of sICAM-1.

  6. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    Science.gov (United States)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  7. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-Shih Huang

    2015-12-01

    Full Text Available A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC. Hence, resistin may play a role in CRC development. Fulvic acid (FA, a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative and SW-48 (p53-positive CRC cells and human umbilical vein endothelial cells (HUVECs were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin.

  8. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    Science.gov (United States)

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  9. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms of...

  10. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  11. A role for cell adhesion in beryllium-mediated lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  12. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  13. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells.

    Science.gov (United States)

    Nam, Kung-Woo; Oh, Goo Taeg; Seo, Eun-Kyoung; Kim, Kyeong Ho; Koo, Uk; Lee, Sung-Jin; Mar, Woongchon

    2009-06-22

    The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation. PMID:19429369

  14. Dose-effect relationship between the expression of aortic vascular cell adhesion molecule-1 mRNA and qi-benefiting and blood-activating intervention on atherosclerosis%动脉粥样硬化模型主动脉血管细胞黏附分子1 mRNA表达量与益气活血法干预的量效关系

    Institute of Scientific and Technical Information of China (English)

    张红珍; 李丽

    2007-01-01

    BACKGROUND: In traditional Chinese medicine, both deficiency as primary and excess as secondary and deficiency of qi and blood stasis are common symptoms in dialectical logy of atherosclerosis (AS). Therefore, qi-benefiting drugs are the main component of qi-benefiting and blood-activating intervention. However, the best dose relationship between qi-benefiting and blood-activating drugs needs to be further studied.OBJECTIVE: To observe the effect of qi-benefiting and blood-activating intervention on the expression of aortic vascular cell adhesion molecule-1mRNA (VCAM-1mRNA) in AS models and analyze dose-effect relationship between astragalus and sanchi.DESIGN: Randomized control animal study.SETTING: Shanxi Medical University.MATERIALS: The experiment was carried out in the Shanxi Medical University in April 2005. A total of 60 healthy male Wistar rats were selected in this study. The main reagents were quercetin (Shaanxi Huike Plant Co., Ltd., batch number:20041112), saponins of panax notoginseng (PNS, Kunming Yagechen Pharmaceutical Co., Ltd., batch number:20050118) and ligustrazine (Yuxin Guoji Longyuan Pharmaceutical Co., Ltd., batch number: 20041204).METHODS: Model establishment: Wistar rats were administrated AS feeds (including 10% yolk powder, 5% lard, 0.5% bile salt and 85% basic feed) for 3 months. Grouping and administration: At threedays after suitability feeding, 8 rats were randomly selected, regarded as the normal control group and given general feeds, and other 52 rats were fed with AS feeds. Three months later, 4 rats were randomly selected for the measurements of lipid and aortic tissue. And then, the models were established successfully. In addition, 48 rats were randomly divided into 6 groups. ① Astragalus treatment group: Rats were perfused with 0.1 g/(kg·d) quercetin. ② Sanchi treatment group: Rats were perfused with 0.1 g/(kg·d)PNS. ③ 2∶1 of astragalus/sanchi treatment group: Rats were perfused with 0.1 g/(kg·d) quercetin and 0

  15. Hierarchical Nanopatterns for Cell Adhesion Studies

    OpenAIRE

    Schwieder, Marco

    2008-01-01

    Hierarchical nanopatterned interfaces are an intriguing tool to study clustering processes of proteins like for example integrins that mediate cell adhesion. The aim of this work is the development of innovative methods for the fabrication of hierarchical micro-nanopatterned surfaces and the use of such systems as platforms to study cell adhesion. In the first part of this work different approaches are presented which are suitable for preparing micro-nanopatterned interfaces at a large scale ...

  16. EVALUATION OF THE ROLE OF INTERLEUKIN-8 (IL -8), SOLUBLE INTERCELLULAR ADHESION MOLECULE-1(SICAM-1) AND EOSINOPHIL CATIONIC PROTEIN (ECP) IN PATHOGENESIS OF BRONCHIAL ASTHMA

    International Nuclear Information System (INIS)

    Bronchial asthma remains a leading cause of chronic illness in children. Current theories of the pathogenesis of asthma suggest that airway inflammation is an important determinant of bronchial hyperactivity .The interaction of several inflammatory cells, soluble mediators and adhesion molecules may be important determinants of asthma. Since a better understanding of the underlying mechanisms leading to asthma pathology may yield more specific immunological strategies for the treatment of this disease, this study was designed to investigate the contribution of these markers to airway inflammation. The present study included 25 children with asthma and 15 control children. The asthma cases were 18 males and 7 females ( mean age= 9.36 ± 2.16 years). According to the severity of asthma, patients were classified as mild (n=10), moderate (n=9) and severe (n=6) asthma. They were further classified into allergic asthmatics (extrinsic atopic, n=10) and non-allergic (intrinsic asthmatics, n=15). Estimations of serum levels of IL-8, sICAM-1(by ELISA) and ECP (by flouroimmunoassay) were done. The results of this study revealed that serum levels of IL-8 were significantly higher in asthmatics than in controls. Also, serum levels of it were significantly higher in cases with severe and cases with moderate asthma than in cases with mild asthma. Serum levels of sICAM-1 were significantly higher in asthmatic than in control children, in severe than in moderate, and in both than in mild asthma cases. Levels of ECP were significantly higher in asthmatics than in controls. Also, serum levels of it were related to asthma severity. Furthermore, the three biomarkers showed higher expression in allergic asthmatics versus non- allergies. There were positive correlations of IL-8, sICAM-1, ECP and IgE with each other in asthmatic children that may indicate interaction of these markers in regulation and persistence of inflammatory cascade in asthma through different mechanisms. In

  17. Micropatterning cell adhesion on polyacrylamide hydrogels.

    Science.gov (United States)

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  18. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Research highlights: → STIM1 and TRPC1 are expressed in EPCs. → Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. → TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  19. Cell adhesion molecules: detection with univalent second antibody

    OpenAIRE

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against c...

  20. The role of the cytokines and cell-adhesion molecules on the immunopathology of acute appendicitis

    International Nuclear Information System (INIS)

    To study the local expression of the proinflammatory cytokine such as interferon gamma and anti-inflammatory cytokine like interleukin-10 (IL-10) and their role in cell adhesion molecules (CAM) expression on the surface of endothelial cell at the site of inflammation in acute appendicitis. The local expression of these cytokines and CAM was correlated with clinical findings to shed light on their role in the pathogenesis of acute appendicitis. Thirty-five patients with acute appendicitis and 6 apparently normal appendices were removed incidentally from individuals presented with problems other than appendicitis, were included in this prospective study. They were attendant of the emergency room in Al-Khadhumiyah Teaching Hospital in Baghdad, from October 2003 to September 2004. Cell adhesion molecules (intracellular adhesion molecule-1 [ICAM-l], ICAM-3 and vascular cell adhesion molecule-1 [VCAM-1]) were detected by immunohistochemistry while IL-10 and interferon gamma were detected by in situ hybridization. The specimens were classified into 5 groups; early acute appendicitis, phlegmonous appendicitis, ulcero-phlegmonousappendicitis, and gangrenous appendicitis, and the fifth group included specimens that showed no histopathological changes, defined as histologically normal appendix. Intracellular adhesion molecule-1, VCAM-I, IL-10 and interferon gamma were expressed weakly in the control group, while ICAM-3 was not detected in the control group. The average score for ICAM-I, VCAM-1 and the percentage of cells expressing IL-l0 and interferon gamma were significantly higher in the patient groups when compared with the control group. Intracellular adhesion molecule-3 was expressed in the patient group. The kinetics of CAM expression were tightly correlated to the balance between IL-10 and interferon gamma especially after 12.5 hours from the first symptoms experienced by the patients. The interferon gamma was the main player and the most significant factor that leads

  1. Comparative effect of genistein and daidzein on the expression of MCP-1, eNOS, and cell adhesion molecules in TNF-α-stimulated HUVECs

    OpenAIRE

    Cho, Hye Yeon; Park, Chung Mu; Kim, Mi Jeong; Chinzorig, Radnaabazar; Cho, Chung Won; Song, Young Sun

    2011-01-01

    We compared the effects of genistein and daidzein on the expression of chemokines, cell adhesion molecules (CAMs), and endothelial nitric oxide synthase (eNOS) in tumor necrosis factor (TNF)-α-stimulated human umbilical vascular endothelial cells (HUVECs). TNF-α exposure significantly increased expression of monocyte chemoattractant protein (MCP)-1, vascular adhesion molecule (VCAM)-1, and intercellular adhesion molecule-1. Genistein significantly decreased MCP-1 and VCAM-1 production in a do...

  2. Structural basis of cell-cell adhesion by NCAM

    DEFF Research Database (Denmark)

    Kasper, C; Rasmussen, H; Kastrup, Jette Sandholm Jensen; Ikemizu, S; Jones, E Y; Berezin, V; Bock, E; Larsen, I K

    2000-01-01

    The neural cell adhesion molecule NCAM, a member of the immunoglobulin superfamily, mediates cell-cell recognition and adhesion via a homophilic interaction. NCAM plays a key role during development and regeneration of the nervous system and is involved in synaptic plasticity associated with memory...

  3. Cell adhesion on cellulose nanofibrils

    OpenAIRE

    Liljeström, Anna

    2016-01-01

    Cellulose nanofibrils (CNF) is an emerging biomaterial suitable for medical research. CNF hydrogel has been used as a three dimensional platforms for cell culture. This thesis aims to understand how human liver carcinoma (HepG2) cells interact with CNF. Measurements were performed with Quartz crystal microbalance with dissipation in order to quantify cell adsorption on CNF. Furthermore, the effect of the cell medium on the viscoelastic properties of CNF and on cell-CNF interactions were ...

  4. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    Science.gov (United States)

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation. PMID:17294835

  5. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    OpenAIRE

    Rita Salánki; Csaba Hős; Norbert Orgovan; Beatrix Péter; Noémi Sándor; Zsuzsa Bajtay; Anna Erdei; Robert Horvath; Bálint Szabó

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduc...

  6. Polyphenols from Artemisia annua L Inhibit Adhesion and EMT of Highly Metastatic Breast Cancer Cells MDA-MB-231.

    Science.gov (United States)

    Ko, Young Shin; Lee, Won Sup; Panchanathan, Radha; Joo, Young Nak; Choi, Yung Hyun; Kim, Gon Sup; Jung, Jin-Myung; Ryu, Chung Ho; Shin, Sung Chul; Kim, Hye Jung

    2016-07-01

    Recent evidence suggests that polyphenolic compounds from plants have anti-invasion and anti-metastasis capabilities. The Korean annual weed, Artemisia annua L., has been used as a folk medicine for treatment of various diseases. Here, we isolated and characterized polyphenols from Korean A. annua L (pKAL). We investigated anti-metastatic effects of pKAL on the highly metastatic MDA-MB-231 breast cancer cells especially focusing on cancer cell adhesion to the endothelial cell and epithelial-mesenchymal transition (EMT). Firstly, pKAL inhibited cell viability of MDA-MB-231 cells in a dose-dependent manner, but not that of human umbilical vein endothelial cells (ECs). Polyphenols from Korean A. annua L inhibited the adhesion of MDA-MB-231 cells to ECs through reducing vascular cell adhesion molecule-1 expression of MDA-MB-231 and ECs, but not intracellular adhesion molecule-1 at the concentrations where pKAL did not influence the cell viability of either MDA-MB-231 cells nor EC. Further, pKAL inhibited tumor necrosis factor-activated MDA-MB-231 breast cancer cell invasion through inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9 and EMT. Moreover, pKAL inhibited phosphorylation of Akt, but not that of protein kinase C. These results suggest that pKAL may serve as a therapeutic agent against cancer metastasis at least in part by inhibiting the cancer cell adhesion to ECs through suppression of vascular cell adhesion molecule-1 and invasion through suppression of EMT. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27151203

  7. Decreased soluble cell adhesion molecules after tirofiban infusion in patients with unstable angina pectoris

    Directory of Open Access Journals (Sweden)

    Aliyev Emil

    2004-04-01

    Full Text Available Abstract Aim The inflammatory response, initiated by neutrophil and monocyte adhesion to endothelial cells, is important in the pathogenesis of acute coronary syndromes. Platelets play an important role in inflammatory process by interacting with monocytes and neutrophils. In this study, we investigated the effect of tirofiban on the levels of cell adhesion molecules (soluble intercellular adhesion molecule-1, sICAM-1, and vascular cell adhesion molecule-1, sVCAM-1 in patients with unstable angina pectoris (AP. Methods Thirty-five patients with unstable AP (Group I, ten patients with stable AP (Group II and ten subjects who had angiographycally normal coronary arteries (Group III were included the study. Group I was divided into two subgroups for the specific treatment regimens: Group IA (n = 15 received tirofiban and Group IB (n = 20 did not. Blood samples for investigating the cell adhesion molecules were drawn at zero time (baseline; 0 h in all patients and at 72 h in Group I. Results The baseline levels of sICAM-1 and sVCAM-1 were higher in Group I than in Groups II and III. They were higher in Group IA than in Group IB. However, the sICAM-1 and sVCAM-1 levels decreased significantly in Group IA after tirofiban infusion. In contrast, these levels remained unchanged or were increased above the baseline value in Group IB at 72 h. Conclusion The levels of cell adhesion molecules in patients with unstable AP decreased significantly after tirofiban infusion. Inhibition of platelet function by specific glycoprotein IIb/IIIa antagonists may decrease platelet-mediated inflammation and the ischemic end-point.

  8. Decreased soluble cell adhesion molecules after tirofiban infusion in patients with unstable angina pectoris

    Science.gov (United States)

    Ercan, Ertugrul; Bozdemir, Huseyin; Tengiz, Istemihan; Sekuri, Cevad; Aliyev, Emil; Akilli, Azem; Akin, Mustafa

    2004-01-01

    Aim The inflammatory response, initiated by neutrophil and monocyte adhesion to endothelial cells, is important in the pathogenesis of acute coronary syndromes. Platelets play an important role in inflammatory process by interacting with monocytes and neutrophils. In this study, we investigated the effect of tirofiban on the levels of cell adhesion molecules (soluble intercellular adhesion molecule-1, sICAM-1, and vascular cell adhesion molecule-1, sVCAM-1) in patients with unstable angina pectoris (AP). Methods Thirty-five patients with unstable AP (Group I), ten patients with stable AP (Group II) and ten subjects who had angiographycally normal coronary arteries (Group III) were included the study. Group I was divided into two subgroups for the specific treatment regimens: Group IA (n = 15) received tirofiban and Group IB (n = 20) did not. Blood samples for investigating the cell adhesion molecules were drawn at zero time (baseline; 0 h) in all patients and at 72 h in Group I. Results The baseline levels of sICAM-1 and sVCAM-1 were higher in Group I than in Groups II and III. They were higher in Group IA than in Group IB. However, the sICAM-1 and sVCAM-1 levels decreased significantly in Group IA after tirofiban infusion. In contrast, these levels remained unchanged or were increased above the baseline value in Group IB at 72 h. Conclusion The levels of cell adhesion molecules in patients with unstable AP decreased significantly after tirofiban infusion. Inhibition of platelet function by specific glycoprotein IIb/IIIa antagonists may decrease platelet-mediated inflammation and the ischemic end-point. PMID:15059285

  9. Optical biosensors for cell adhesion.

    Science.gov (United States)

    Ramsden, Jeremy J; Horvath, Robert

    2009-01-01

    Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes. PMID:19635032

  10. Cell adhesion in regulation of asymmetric stem cell division

    OpenAIRE

    Yamashita, Yukiko M

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the...

  11. Adhesion of cells to polystyrene surfaces

    OpenAIRE

    1983-01-01

    The surface treatment of polystyrene, which is required to make polystyrene suitable for cell adhesion and spreading, was investigated. Examination of surfaces treated with sulfuric acid or various oxidizing agents using (a) x-ray photoelectron and attenuated total reflection spectroscopy and (b) measurement of surface carboxyl-, hydroxyl-, and sulfur-containing groups by various radiochemical methods showed that sulfuric acid produces an insignificant number of sulfonic acid groups on polyst...

  12. Caspr2 : possible synaptogenic cell adhesion molecule

    OpenAIRE

    Do, Trinh Thuy

    2011-01-01

    Synapses are crucial for communication among neurons in the central nervous system. Contactin-associated protein- like 2 (Caspr2) is a neuronal protein that is a member of the neurexin superfamily and is found in the juxtaparanodal regions of myelinated axons. Caspr2 has also been found in synapses and therefore is also thought to function as a cell adhesion molecule. As such, it should also induce synaptogenesis in vitro similar to the interaction between neurexins (located presynaptically) ...

  13. Cell adhesion and proliferation on modified polyethylene

    Czech Academy of Sciences Publication Activity Database

    Kasálková, N.; Kolářová, K.; Bačáková, Lucie; Pařízek, Martin; Macková, Anna; Švorčík, V.

    ZURICH: TRANS TECH PUBLICATIONS LTD, 2008 - (Sandera, P.), s. 269-272. (MATERIALS SCIENCE FORUM. 567-568). ISSN 0255-5476. [5th International Conference on Materials Structure & Micromechanics of Fracture. Brno (CZ), 27.06.2007-29.06.2007] Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z50110509 Keywords : polyethylene * plasma modification * cell adhesion and proliferation Subject RIV: BO - Biophysics

  14. Characterization of adhesive interactions between human endothelial cells and megakaryocytes.

    OpenAIRE

    Avraham, H; Cowley, S; Chi, S. Y.; Jiang, S.; Groopman, J E

    1993-01-01

    Cell-cell adhesion is essential for many immunological functions and is believed to be important in the regulation of hematopoiesis. Adhesive interactions between human endothelial cells and megakaryocytes were characterized in vitro using the CMK megakaryocytic cell line as well as marrow megakaryocytes. Although there was no adhesion between unactivated human umbilical vein endothelial cells (HUVEC) and megakaryocytes, treatment of HUVEC with inflammatory cytokines such as IL-1 beta, tumor ...

  15. Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Zhu Minmin

    2013-01-01

    Full Text Available Abstract Background Hyperglycemia could induce oxidative stress, activate transcription factor nuclear factor kappa B (NF-κB, up-regulate expression of endothelial adhesion molecules, and lead to endothelial injury. Studies have indicated that propofol could attenuate oxidative stress and suppress NF-κB activation in some situations. In the present study, we examined whether and how propofol improved high glucose-induced up-regulation of endothelial adhesion molecules in human umbilical vein endothelial cells (HUVECs. Methods Protein expression of endothelial adhesion molecules, NF-κB, inhibitory subunit of NF-κBα (IκBα, protein kinase Cβ2 (PKCβ2, and phosphorylation of PKCβ2 (Ser660 were measured by Western blot. NF-κB activity was measured by electrophoretic mobility shift assay. PKC activity was measured with SignaTECT PKC assay system. Superoxide anion (O2.- accumulation was measured with the reduction of ferricytochrome c assay. Human peripheral mononuclear cells were prepared with Histopaque-1077 solution. Results High glucose induced the expression of endothelial selectin (E-selectin, intercellular adhesion molecule 1 (ICAM-1, vascular cell adhesion molecule 1 (VCAM-1, and increased mononuclear-endothelial adhesion. High glucose induced O2.- accumulation, PKCβ2 phosphorylation and PKC activation. Further, high glucose decreased IκBα expression in cytoplasm, increased the translocation of NF-κB from cytoplasm to nuclear, and induced NF-κB activation. Importantly, we found these high glucose-mediated effects were attenuated by propofol pretreatment. Moreover, CGP53353, a selective PKCβ2 inhibitor, decreased high glucose-induced NF-κB activation, adhesion molecules expression, and mononuclear-endothelial adhesion. Conclusion Propofol, via decreasing O2.- accumulation, down-regulating PKCβ2 Ser660 phosphorylation and PKC as well as NF-κB activity, attenuated high glucose-induced endothelial adhesion molecules expression

  16. Cell Adhesion on Surface-Functionalized Magnesium.

    Science.gov (United States)

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  17. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    Institute of Scientific and Technical Information of China (English)

    Nan-Hong Tang; Yan-Ling Chen; Xiao-Qian Wang; Xiu-Jin Li; Feng-Zhi Yin; Xiao-Zhong Wang

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells.METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR,respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment.RESULTS: In comparison with TNF-α inducing group, lipoASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37±1.56% to 14.23±1.07%, P<0.001). Meanwhile,cimetidine alone could inhibit the expression of E-selectin (36.37±1.56% vs 27.2±1.31%, P<0.001), but not ICAM-1 (69.34±2.50% vs68.07±2.10%,P>O.05)and the two kinds of mRNA, either. Compared with TNF-αα inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P<0.05),and Jipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group(P<0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P >0.05).CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion.

  18. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    International Nuclear Information System (INIS)

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  19. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    Energy Technology Data Exchange (ETDEWEB)

    Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tan, Bo, E-mail: tanbo@ryerson.ca [Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Venkatakrishnan, Krishnan, E-mail: venkat@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada)

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  20. Adhesion of Aeromonas sp. to cell lines used as models for intestinal adhesion.

    OpenAIRE

    Kirov, S M; Hayward, L. J.; Nerrie, M. A.

    1995-01-01

    Adhesion to HEp-2 cells has been shown to correlate with enteropathogenicity for Aeromonas species. Such adhesion is thought to reflect the ability of strains to adhere to human intestinal enterocytes, although HEp-2 cells are not of intestinal origin. In this study strains of Aeromonas veronii biotype sobria isolated from various sources were investigated in parallel assays for their ability to adhere to HEp-2 cells and to an intestinal cell line (Caco-2). Quantitative assays showed identica...

  1. Genistein inhibits human TNF-α-induced porcine endothelial cell adhesiveness for human monocytes and natural killer cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cellular immune response is a major barrier to xenotransplantation. Human tumor necrosis factor-α (hTNF-α) possesses cross-species activity and directly amplifies the immune rejection via the upregulation of adhesion molecules on porcine endothelium. We investigated the role of protein tyrosine phosphorylation in the induction of expression of E-sclectin and vascular cell adhesion molecule-1 (VCAM-1), and the augmentation of adhesion of human peripheral blood monocytes (PBMo) and natural killer cells (PBNK), after rhTNF-α-stimulation of porcine aortic endothelial cells (PAEC) in vitro, rhTNF-α-increased adhesiveness of PAEC for both PBMo and PBNK was dose-dependently reduced by pretreatment of PAEC with the selective protein tyrosine kinase (PTK) inhibitor genistein. The inhibitory effect occurred at the early time of PAEC activation triggered by rhTNF-α, and was completely reversible. PTK activity assay indicated that genistein also suppressed rhTNF-α stimulated activation of protein tyrosine kinases (PTKs) in PAEC in a dose-dependent manner. Flow cytometric analysis showed that genistein inhibited the upregulation of E-selectin and VCAM-1 by rhTNF-α. These results suggest that PTKs may regulate the expression of E-selectin and VCAM-1 on PAEC and the adherence of PBMo and PBNK induced by rhTNF-α. Moreover, dietary genistein, used as an adhesion antagonist, may contribute to managing the cell-mediated rejection in the clinical application.

  2. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  3. Dynamic force spectroscopy to probe adhesion strength of living cells

    OpenAIRE

    Prechtel, K.; Bausch, A. R.; Marchi-Artzner, V.; Kantlehner, M.; Kessler, H; Merkel, R

    2002-01-01

    We studied the mechanical strength of the adhesion of living cells to model membranes. The latter contained a RGD lipopeptide which is a high affinity binding site for a cell adhesion molecule (integrin alpha(V)beta(3)). Cells adhered specifically to the vesicles. We used micropipette aspiration for breaking this adhesion with well defined forces. Systematic variation of the rate of force application revealed pronounced kinetic effects. The dependence of the detachment forces on the loading r...

  4. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca

    Directory of Open Access Journals (Sweden)

    Stella R. Zamuner

    2002-01-01

    Full Text Available It has been shown that Bothrops jararaca venom (BjV induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1, LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1 and platelet endothelial cell adhesion molecule-1 (PECAM-1 on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-α, interleukin (IL-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 μg/kg, intraperitoneal injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB4, TXA2, IL-6 and TNF-α were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study.

  5. Value of knee skin temperature measured by infrared thermography and soluble intercellular adhesion molecule-1 in the diagnosis of peri-prosthetic knee infection in Chinese individuals following total knee arthroplasty

    Institute of Scientific and Technical Information of China (English)

    Mumingjiang Yishake; Zhou Xindie; He Rongxin

    2014-01-01

    Background Total knee arthroplasty (TKA) is a successful and frequently performed procedure in orthopedic surgery.The diagnosis of peri-prosthetic joint infection following TKA remains challenging.The present study estimated the usefulness of knee skin temperature (measured by infrared thermography) and serum soluble intercellular adhesion molecule-1 (slCAM-1) in the diagnosis of post-operative knee peri-prosthetic infection.Methods Patients were divided into three groups:21 patients undergoing uncomplicated TKAs,seven with prosthesis infection,and three undergoing TKA revisions.The serum levels of interleukin-6 (IL-6),C-reactive protein (CRP),erythrocyte sedimentation rate (ESR),and slCAM-1 as well as the local knee skin temperature were measured preoperatively and on Days 1 and 7 and at 1,3,and 6 months post-operatively in Groups 1 and 3.The same parameters were measured in Group 2 at the time of prosthesis infection diagnosis.Results In Group 1,the levels of IL-6,CRP,ESR,and knee skin temperature were significantly elevated post-operatively,but returned to baseline levels within 6 months.The slCAM-1 levels were not significantly different.The mean differential temperature (MDT) and levels of siCAM-1,IL-6,CRP,and ESR differed significantly between Groups 1 and 2.The MDT had returned to normal in Group 3 by 6 months post-operatively.Conclusions Elevations in IL-6,CRP,ESR,and MDT in patients undergoing TKA could be a normal response to surgical trauma,but sustained elevations may be indicative of complications.The knee skin temperature and slCAM-1 may be used as indicators in the diagnosis of knee prosthesis infection following TKA.

  6. Dynamic Regulation of Activated Leukocyte Cell Adhesion Molecule–mediated Homotypic Cell Adhesion through the Actin CytoskeletonV⃞

    OpenAIRE

    Nelissen, Judith M. D. T.; Peters, Inge M.; de Grooth, Bart G.; Van Kooyk, Yvette; Figdor, Carl G.

    2000-01-01

    Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM–ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM–ALCAM interactions....

  7. Dynamic monitoring of changes in endothelial cell-substrate adhesiveness during leukocyte adhesion by microelectrical impedance assay

    Institute of Scientific and Technical Information of China (English)

    Yakun Ge; Tongle Deng; Xiaoxiang Zheng

    2009-01-01

    Adhesion of leukocytes to endothelial cells in inflammation processes leads to changes of endothelial cell-substrate adhesiveness, and understanding of such changes will provide us with important information of inflammation processes. In this study, we used a non-invasive biosensor system referred to as real-time cell electronic sensor (RT-CES) system to monitor the changes in endothelial cell-substrate adhesiveness induced by human monoblastic cell line U937 cell adhesion in a dynamic and quantitative manner. This assay, which is based on cell-substrate impedance readout, is able to monitor transient changes in cell-substrate adhesiveness as a result of U937 cell adhesion. The U937 cell adhesion to endothelial cells was induced by lipopolysaccharide (LPS) in a dose-dependent manner. Although the number of adherent U937 cells to the endothelial cells was verified by a standard assay, the adhesiveness of endothelial cells after addition of U937 cells was monitored by the RT-CES system. Furthermore, focal adhesion kinase protein decrease and F-actin rearrangement in endothelial cells were observed after addition of U937 cells. Our results indicated that the adhesion of U937 cells to LPS-treated endothelial cells reduced the cell adhesiveness to the substrate, and such reduction might facilitate infiltration of leukocytes.

  8. IL-1β enhances cell adhesion to degraded fibronectin

    OpenAIRE

    Rajshankar, Dhaarmini; Downey, Gregory P.; McCulloch, Christopher A.

    2012-01-01

    IL-1β is a prominent proinflammatory cytokine that mediates degradation of extracellular matrix proteins through increased expression of matrix metalloproteinases, which involves a signaling pathway in adherent cells that is restricted by focal adhesions. Currently, the mechanism by which IL-1β affects cell adhesion to matrix proteins is not defined, and it is not known whether degraded matrix proteins affect IL-1β signaling. We examined adhesion-related IL-1β signaling in fibroblasts attachi...

  9. Adenovirus viral interleukin-10 inhibits adhesion molecule expressions induced by hypoxia/reoxygenation in cerebrovascular endothelial cells1

    Institute of Scientific and Technical Information of China (English)

    Hui KANG; Peng-yuan YANG; Yao-cheng RUI

    2008-01-01

    Aim: To investigate the effects of recombinant adenovirus encoding viral interleukin-10 (vIL-10), a potent anti-inflammatory cytokine, on adhesion mol-ecule expressions and the adhesion rates of leukocytes to endothelial cells in cerebrovascular endothelial cells injured by hypoxia/reoxygenation (H/R). Methods: A recombinant adenovirus expressing vIL-10 (Ad/vIL-10 (or the green fluorescent protein (Ad/GFP) gene was constructed. A cerebrovascular endothe-lial cell line bend.3 was pretreated with a different multiplicity of infection (MOI) of Ad/vIL-10 or Ad/GFP and then exposed to hypoxia for 9 h followed by reoxygenation for 12 h. The culture supernatants were tested for the expression of vIL-10 and endogenous murine IL-10 (mIL-10) by ELISA. The effects of Ad/vIL-10 on monocyte-endothelial cell adhesion were represented as the adhesion rate. Subsequently, the expressions of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1(VCAM-1) in the endothelial cells after treat-ment with Ad/vIL-10 and H/R were analyzed by Western blotting and real-time PCR. Results: vIL-10 was expressed in cultured bEnd.3 after Ad/vIL-10 transfec-tion and was significantly increased by H/R. Ad/vIL-10 or Ad/GFP did not affect the mlL-10 level. H/R increased the mIL-10 expression, but insignificantly. Mono-cyte-endothelial cell adhesion induced by H/R was significantly inhibited by pretreatment with Ad/vIL-10 (MOI: 80). ICAM-I, and VCAM-1 in bEnd.3 and were significantly increased after H/R, while pretreatment with Ad/vIL-10 (MOI: 80) significantly inhibited their expressions. Ad/GFP did not markedly affect mono-cyte-endothelial adhesion and the expressions of ICAM-1 and VCAM-1 induced by H/R. Conclusion: Ad/vIL-10 significantly inhibits the upregulation of endot-helial adhesion molecule expressions and the increase of adhesion of monocytes-endothelial cells induced by H/R, indicating that vIL-10 gene transfer is of far-reaching significance in the therapy of

  10. 严重烧伤后早期大鼠肾脏细胞粘附分子1和白介素6的表达与肾功能损害的相关性研究%Expression of intercellular adhesion molecule 1 and interleukin 6 in the rat's kidney after severe burn and its relation with renal injury

    Institute of Scientific and Technical Information of China (English)

    刘开军; 魏敏; 刘杰; 鲁华玉; 王德文; 张燕

    2002-01-01

    Objective To clarify the mechanism and provide the basis for prevention and treatment of the early injuries of kidney after severe burn in rats.We observed the expression of intercellular adhesion molecule 1 and interleukin 6 and the early pathological changes in different time.Method Early pathological changes in the kidney were observed by LM and EM.The expression of ICAM 1 were observed by immunohistochemistry,in situ hybridization.The expression of IL 6 was also observed.Result From 5 min to 72 h after burn,the early changes in the kidney included edema,hemorrhage, and congestion,injury of capillary epithelium cells.2ICAM 1 and IL 6 were higher in the kidney 30 min after burn,and from 2 h to 24 h,they were strongest positive,but on 72 h,they were negative.Conclusion ICAM-1 and IL 6 may play important roles in mechanisms of kidney injury,and the major target cells may be the endothelium cells.

  11. Gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells during sepsis

    Institute of Scientific and Technical Information of China (English)

    吴荣谦; 徐迎新; 宋旭华; 孟宪钧

    2002-01-01

    To study the gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells during sepsis in mice. Methods: Male mice were subjected to cecal ligation and puncture (CLP) and microvascular endothelial cells in pulmonary and hepatic tissues were harvested at 3 hours (early sepsis) and 12 hours (late sepsis) after CLP, respectively. Gene expression of the adhesion molecules was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Simultaneously, the alterations of myeloperoxidase (MPO) activity in pulmonary and hepatic tissues were also examined. Results: E-selectin mRNA levels markedly increased at 3 hours after CLP in both pulmonary and hepatic microvascular endothelial cells, then they returned to the normal level at 12 hours after CLP. Increases in intercellular adhesion molecule-1 (ICAM-1) mRNA levels were found at 3 hours after CLP in both pulmonary and hepatic microvascular endothelial cells, and these levels became higher at 12 hours after CLP. Adhesion molecule-1 (VCAM-1) mRNA expression of vascular cells also increased significantly at 3 hours and 12 hours after CLP in both pulmonary and hepatic microvascular endothelial cells. The level of VCAM-1 mRNA in hepatic microvascular endothelial cells was higher at 3 hours than that at 12 hours after CLP, while the level of VCAM-1 mRNA in pulmonary microvascular endothelial cells was higher at 12 hours than that at 3 hours after CLP. The MPO activity in pulmonary and hepatic tissues increased at 3 hours after CLP, compared with that of the sham group. They both declined significantly at 12 hours after CLP, but they were still higher than that of the sham group. Conclusions: The up-regulation of the gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells is an important step for the migration and accumulation of leukocytes at the site of inflammation, which plays a critical role in organ damage during sepsis. And the contribution

  12. Cell adhesion molecules in the central nervous system

    OpenAIRE

    Togashi, Hideru; Sakisaka, Toshiaki; Takai, Yoshimi

    2009-01-01

    Cell-cell adhesion molecules play key roles at the intercellular junctions of a wide variety of cells, including interneuronal synapses and neuron-glia contacts. Functional studies suggest that adhesion molecules are implicated in many aspects of neural network formation, such as axon-guidance, synapse formation, regulation of synaptic structure and astrocyte-synapse contacts. Some basic cell biological aspects of the assembly of junctional complexes of neurons and glial cells resemble those ...

  13. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining and......Bacteria initiate attachment to surfaces with the aid of different extracellular proteins and polymeric adhesins. To quantitatively analyse the cell-cell and cell-surface interactions provided by bacterial adhesins, it is essential to go down to single cell level where cell-to-cell variation can be...... considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...

  14. Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin.

    OpenAIRE

    Hornebeck, W; Tixier, J M; L. Robert

    1986-01-01

    The addition of highly purified elastic fibers to confluent human skin fibroblast or porcine aorta smooth muscle cell cultures resulted in a time-dependent, strong adhesion of the fibrils to the cell surface. The kinetics of adhesion was studied by video/time-lapse cinematography. After a 0.5-1 hr lag period, adhesion progressed to a maximum amount in 3-6 hr in the described conditions. Adhesion is strongly accelerated by the prior addition of soluble elastin peptides (kappa-elastin) to the c...

  15. Cell Adhesion to Plasma-Coated PVC

    Directory of Open Access Journals (Sweden)

    Elidiane C. Rangel

    2014-01-01

    Full Text Available To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  16. Lauric acid abolishes interferon-gamma (IFN-γ-induction of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression in human macrophages

    Directory of Open Access Journals (Sweden)

    Wei-Siong Lim

    2015-09-01

    Conclusions: This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an anti-inflammatory therapeutic and prophylaxis agent for atherosclerosis.

  17. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  18. Cell adhesion strength from cortical tension - an integration of concepts.

    Science.gov (United States)

    Winklbauer, Rudolf

    2015-10-15

    Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood. PMID:26471994

  19. Differential adhesion of tumor cells to capillary endothelial cells in vitro.

    OpenAIRE

    Alby, L; Auerbach, R

    1984-01-01

    Adhesion studies were carried out to determine the relative ability of glioma cells and ovary-derived teratoma cells to adhere to endothelial cells obtained from mouse brain capillaries (designated MBE cell line) or mouse ovaries (designated MOE cell line). The teratoma cells showed preferential adhesion to MOE cells, whereas the glioma cells showed preferential adhesion to the MBE cell line. In contrast, the glioma and teratoma cells adhered equally to L929 and 3T3 fibroblasts. A testicular ...

  20. Crystal violet staining to quantity Candida adhesion to epithelial cells

    OpenAIRE

    Negri, M.; Gonçalves, Vera M.; Silva, Sónia Carina; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2010-01-01

    In vitro studies of adhesion capability are essential to characterise the virulence of Candida species. However, the assessment of adhesion by traditional methods is timeconsuming. The aim of the present study is the development of a simple methodology using crystal violet staining to quantify in vitro adhesion of different Candida species to epithelial cells. The experiments are performed using Candida albicans (ATCC 90028), C. glabrata (ATCC 2001), C. parapsilosis (ATCC 22019) and C. tropic...

  1. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  2. Simulation of Cell Adhesion using a Particle Transport Model

    Science.gov (United States)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  3. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK and total and activated focal adhesion kinase (FAK were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines may depend upon the cancer cell type.

  4. Changes of serum soluble intercellular adhesion molecule-1 in children patients with bronchial asthma by Pediatric Cough and Asthma Relieving Gel%小儿止咳平喘露的平喘作用及其对外周血可溶性细胞黏附分子-1的影响

    Institute of Scientific and Technical Information of China (English)

    宋慧珠

    2013-01-01

    Objective To investigate the antiasthmatic effect of Pediatric Cough and Asthma Relieving Gel and its effect on peripheral blood soluble cell adhesion molecule-1. Methods 236 children with cough and asthma were selected in the hospital from October 2010 to March 2012,who were divided into two groups randomly. 118 children used cough syrup in the treatment as the control group. 118 children used Pediatric Cough and Asthma Relieving Gel in the treatment as the observation group. All children underwent observation of cough induced by histamine,observation of cough induced by citric acid,sputum eosinophil cells count,detection of peripheral blood soluble cell adhesion molecule-1. Clinical indexes were compared between two groups. Results Cough latency induced by histamine in the observation group [(81.4±16.5)s] was significantly longer than that in the control group [(52.7±12.0)s]. Cough latency induced by citric acid in the observation group [(48.3±12.6)s] was significantly longer than that in the control group [(30.1±9.2)s]. Sputum eosinophil cells count in the observation group [(1.3±0.6)x106/mL] was significantly lower than that in the control group [(2.1±1.0)×106/mL]. Peripheral blood soluble cell adhesion molecule-1 in the observation group [(42.7±13.8)μg/L] was significantly lower than that in the control group [(59.2±17.5) μg/L]. The difference was statistically significant (P < 0.05). Conclusion Pediatric Cough and Asthma Relieving Gel can obvious relieve cough and asthma,which not only can reduce the induced sputum in children with eosinophilic,but also can effectively reduce level of peripheral blood soluble cell adhesion molecule-1 of children.%目的 探讨小儿止咳平喘露的平喘作用及其对外周血可溶性细胞黏附分子-1的影响.方法选取本院2010年10月~2012年3月收治的咳喘患儿236例,随机分为两组,采用小儿止咳糖浆治疗患儿118例为对照组,采用小儿止咳平喘露治疗患儿118例为观察

  5. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    Science.gov (United States)

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment. PMID:26603095

  6. Adhesive Micropatterns for Cells: A Microcontact Printing Protocol

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Manuel Théry and Matthieu Piel Corresponding authors ([](); []()) ### INTRODUCTION This protocol describes a simple, fast, and efficient method for making adhesive micropatterns that can be used to control individual cell shape and adhesion patterns. It is based on the use of an elastomeric stamp containing microfeatures to print proteins on the substrate of choice. The process can be subdiv...

  7. Cell adhesion molecules during odontogenesis and tooth-related diseases

    OpenAIRE

    Heymann, Robert

    2002-01-01

    Cell adhesion molecules play essential roles in the development and disease of tooth and oral structures, as well as in the maintenance of adult tissue structure/function. It has been shown that different types of cell adhesion molecules (CAMs) play an important part in craniofacial development when ectomesenchymal cells migrate from the neural list to the primitive oral cavity, giving rise to the palatal processes and tooth germs. The role of CAMs in craniofacial developmen...

  8. Evidence for heterophilic adhesion of embryonic retinal cells and neuroblastoma cells to substratum-adsorbed NCAM

    OpenAIRE

    1992-01-01

    The adhesion of embryonic chicken retinal cells and mouse N2A neuroblastoma cells to purified embryonic chicken retinal NCAM adsorbed on a solid substratum was examined using a quantitative centrifugal adhesion assay. Both cell types adhered to NCAM and the adhesion was specifically inhibited by monovalent anti-NCAM antibody fragments. N2A cell adhesion depended on the amount of NCAM applied to the substratum, was cation independent, and was insensitive to treatment with the cytoskeletal pert...

  9. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    Science.gov (United States)

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  10. The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Nakamae Toshio

    2010-02-01

    Full Text Available Abstract Background As the strategy for tissue regeneration using mesenchymal stem cells (MSCs for transplantation, it is necessary that MSCs be accumulated and kept in the target area. To accumulate MSCs effectively, we developed a novel technique for a magnetic targeting system with magnetically labeled MSCs and an external magnetic force. In this study, we examined the effect of an external magnetic force on magnetically labeled MSCs in terms of cell adhesion and proliferation. Methods Magnetically labeled MSCs were plated at the bottom of an insert under the influence of an external magnetic force for 1 hour. Then the inserts were turned upside down for between 1 and 24 hours, and the number of MSCs which had fallen from the membrane was counted. The gene expression of MSCs affected magnetic force was analyzed with microarray. In the control group, the same procedure was done without the external magnetic force. Results At 1 hour after the inserts were turned upside down, the average number of fallen MSCs in the magnetic group was significantly smaller than that in the control group, indicating enhanced cell adhesion. At 24 hours, the average number of fallen MSCs in the magnetic group was also significantly smaller than that in control group. In the magnetic group, integrin alpha2, alpha6, beta3 BP, intercellular adhesion molecule-2 (ICAM-2, platelet/endothelial cell adhesion molecule-1 (PECAM-1 were upregulated. At 1, 2 and 3 weeks after incubation, there was no statistical significant difference in the numbers of MSCs in the magnetic group and control group. Conclusions The results indicate that an external magnetic force for 1 hour enhances cell adhesion of MSCs. Moreover, there is no difference in cell proliferation after using an external magnetic force on magnetically labeled MSCs.

  11. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Huiwen [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Mollica, Molly Y.; Lee, Shin Hee [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Wang, Lei [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Velázquez-Martínez, Carlos A., E-mail: velazque@ualberta.ca [Chemistry Section, Laboratory of Comparative Carcinogenesis and Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2N8 (Canada); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States)

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  12. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    International Nuclear Information System (INIS)

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  13. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  14. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    Science.gov (United States)

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  15. Microtubule Disruption in Keratinocytes Induces Cell-Cell Adhesion through Activation of Endogenous E-Cadherin

    OpenAIRE

    Kee, Sun-Ho; Steinert, Peter M.

    2001-01-01

    The association of the cytoskeleton with the cadherin–catenin complex is essential for strong cell-cell adhesion in epithelial cells. In this study, we have investigated the effect of microtubule organization on cell-cell adhesion in differentiating keratinocytes. When microtubules of normal human epidermal keratinocytes (NHEKs) grown in low calcium media (0.05 mM) were disrupted with nocodazole or colcemid, cell-cell adhesion was induced through relocalization of the ...

  16. The interplay of cell–cell and cell–substrate adhesion in collective cell migration

    OpenAIRE

    Wang, Chenlu; Chowdhury, Sagar; Driscoll, Meghan; Parent, Carole A.; Gupta, S.K.; Losert, Wolfgang

    2014-01-01

    Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells (Dictyostelium discoideum), but significantly changes their ability to adhere to other cells. Analysis of the dynamics ...

  17. Higher-Order Architecture of Cell Adhesion Mediated by Polymorphic Synaptic Adhesion Molecules Neurexin and Neuroligin

    Directory of Open Access Journals (Sweden)

    Hiroki Tanaka

    2012-07-01

    Full Text Available Polymorphic adhesion molecules neurexin and neuroligin (NL mediate asymmetric trans-synaptic adhesion, which is crucial for synapse development and function. It is not known whether or how individual synapse function is controlled by the interactions between variants and isoforms of these molecules with differing ectodomain regions. At a physiological concentration of Ca2+, the ectodomain complex of neurexin-1 β isoform (Nrx1β and NL1 spontaneously assembled into crystals of a lateral sheet-like superstructure topologically compatible with transcellular adhesion. Correlative light-electron microscopy confirmed extracellular sheet formation at the junctions between Nrx1β- and NL1-expressing non-neuronal cells, mimicking the close, parallel synaptic membrane apposition. The same NL1-expressing cells, however, did not form this higher-order architecture with cells expressing the much longer neurexin-1 α isoform, suggesting a functional discrimination mechanism between synaptic contacts made by different isoforms of neurexin variants.

  18. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na+, N2+, O2+, Ar+ and Kr+ were implanted to the polymer surface with ion fluences between 1 x 1015 and 3 x 1017 ions/cm2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  19. Dynamic cell adhesion and migration on nanoscale grooved substrates

    Directory of Open Access Journals (Sweden)

    E Lamers

    2012-03-01

    Full Text Available Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to initiate and increase cell locomotion and coverage with cells, and thus achieve an enhanced wound healing response around an implantable material. Therefore, the aim of this study was to evaluate how MC3T3-E1 osteoblast initial adhesion and directional migration are influenced by nanogrooves with pitches ranging from 150 nm up to 1000 nm. In this study, we used a multi-patterned substrate with five different groove patterns and a smooth area with either a concentric or radial orientation. Initial cell adhesion measurements after 10 s were performed using atomic force spectroscopy-assisted single-cell force spectroscopy, and demonstrated that nascent cell adhesion was highly induced by a 600 nm pitch and reduced by a 150 nm pitch. Addition of RGD peptide significantly reduced adhesion, indicating that integrins and cell adhesive proteins (e.g. fibronectin or vitronectin are key factors in specific cell adhesion on nanogrooved substrates. Also, cell migration was highly dependent on the groove pitch; the highest directional migration parallel to the grooves was observed on a 600 nm pitch, whereas a 150 nm pitch restrained directional cell migration. From this study, we conclude that grooves with a pitch of 600 nm may be favourable to enhance fast wound closure, thereby promoting tissue regeneration.

  20. Cell Adhesion on Polycaprolactone Modified by Plasma Treatment

    OpenAIRE

    Nina Recek; Matic Resnik; Helena Motaln; Tamara Lah-Turnšek; Robin Augustine; Nandakumar Kalarikkal; Sabu Thomas; Miran Mozetič

    2016-01-01

    We have investigated the influence of various plasma treatments of electrospun polycaprolactone (PCL) scaffolds on the adhesion and proliferation of human umbilical endothelial cells (HUVEC). The PCL scaffolds were treated in plasmas created in O2, NH3 or SO2 gas at identical conditions. Surface functionalization of plasma-treated samples was determined using X-ray photoelectron spectroscopy. Cell adhesion and morphology were investigated by scanning electron microscopy and the influence of p...

  1. Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line.

    OpenAIRE

    Mintz, K. P.; Fives-Taylor, P M

    1994-01-01

    Two quantitative, rapid assays were developed to study the adhesion of Actinobacillus actinomycetemcomitans, an oral bacterium associated with periodontal disease, to human epithelial cells. The human oral carcinoma cell line KB was grown in microtiter plates, and adherent bacteria were detected by an enzyme-linked immunosorbent assay with purified anti-A. actinomycetemcomitans serum and horseradish peroxidase-conjugated secondary antibody or [3H]thymidine-labeled bacteria. Adhesion was found...

  2. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway

    International Nuclear Information System (INIS)

    Highlights: ► Omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. ► Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-α in HUVECs. ► Omentin inhibits TNF-α-induced ERK and NF-κB activation in HUVECs. ► Omentin supreeses TNF-α-induced expression of ICAM-1 and VCAM-1 via ERK/NF-κB pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.

  3. Adhesion frequency assay for in situ kinetics analysis of cross-junctional molecular interactions at the cell-cell interface.

    Science.gov (United States)

    Zarnitsyna, Veronika I; Zhu, Cheng

    2011-01-01

    receptors. It also allows study of the receptor-ligand interactions in a sub-second timescale with temporal resolution well beyond the typical biochemical methods. To illustrate the micropipette adhesion frequency method, we show kinetics measurement of intercellular adhesion molecule 1 (ICAM-1) functionalized on RBCs binding to integrin α(L)β(2) on neutrophils with dimeric E-selectin in the solution to activate α(L)β(2). PMID:22083316

  4. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  5. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  6. Identification of Peptides Inhibiting Adhesion of Monocytes to the Injured Vascular Endothelial Cells through Phage-displaying Screening

    Institute of Scientific and Technical Information of China (English)

    Yu GUO; Jia ZHANG; Ji-Cheng WANG; Feng-Xiang YAN; Bing-Yang ZHU; Hong-Lin HUANG; Duan-Fang LIAO

    2005-01-01

    Using oxidized low-density lipoprotein (LDL)-injured vascular endothelial cells (ECs) as target cells, peptides specifically binding to the injured ECs were screened from a phage-displaying peptide library by using the whole-cell screening technique after three cycles of the "adsorption-elution-amplification"procedure. Positive phage clones were identified by ELISA, and the inserted amino acid sequences in the displaying peptides were deduced from confirmation with DNA sequencing. The adhesion rate of ECs to monocytes was evaluated by cell counting. The activity of endothelial nitric oxide synthase (eNOS), and the expression levels of caveolin- 1 and intercellular adhesion molecule- 1 (ICAM- 1) were determined by Western blotting. Six positive clones specifically binding to injured ECV304 endothelial cells were selected from fourteen clones. Interestingly, four phages had peptides with tandem leucine, and two of these even shared an identical sequence. Functional analysis demonstrated that the YCPRYVRRKLENELLVL peptide shared by two clones inhibited the expression of ICAM-1, increased nitric oxide concentration in the culture media, and upregulated the expression of caveolin-1 and eNOS. As a result, the adhesion rate of monocytes to ECV304 cells was significantly reduced by 12.1%. These data suggest that the anti-adhesion effect of these novel peptides is related to the regulation of the caveolin-1/nitric oxide signal transduction pathway, and could be of use in potential therapeutic agents against certain cardiovascular diseases initiated by vascular endothelial cell damage.

  7. Kidney injury molecule-1 is up-regulated in renal epithelial cells in response to oxalate in vitro and in renal tissues in response to hyperoxaluria in vivo.

    Directory of Open Access Journals (Sweden)

    Lakshmipathi Khandrika

    Full Text Available Oxalate is a metabolic end product excreted by the kidney. Mild increases in urinary oxalate are most commonly associated with Nephrolithiasis. Chronically high levels of urinary oxalate, as seen in patients with primary hyperoxaluria, are driving factor for recurrent renal stones, and ultimately lead to renal failure, calcification of soft tissue and premature death. In previous studies others and we have demonstrated that high levels of oxalate promote injury of renal epithelial cells. However, methods to monitor oxalate induced renal injury are limited. In the present study we evaluated changes in expression of Kidney Injury Molecule-1 (KIM-1 in response to oxalate in human renal cells (HK2 cells in culture and in renal tissue and urine samples in hyperoxaluric animals which mimic in vitro and in vivo models of hyper-oxaluria. Results presented, herein demonstrate that oxalate exposure resulted in increased expression of KIM-1 m RNA as well as protein in HK2 cells. These effects were rapid and concentration dependent. Using in vivo models of hyperoxaluria we observed elevated expression of KIM-1 in renal tissues of hyperoxaluric rats as compared to normal controls. The increase in KIM-1 was both at protein and mRNA level, suggesting transcriptional activation of KIM-1 in response to oxalate exposure. Interestingly, in addition to increased KIM-1 expression, we observed increased levels of the ectodomain of KIM-1 in urine collected from hyperoxaluric rats. To the best of our knowledge our studies are the first direct demonstration of regulation of KIM-1 in response to oxalate exposure in renal epithelial cells in vitro and in vivo. Our results suggest that detection of KIM-1 over-expression and measurement of the ectodomain of KIM-1 in urine may hold promise as a marker to monitor oxalate nephrotoxicity in hyperoxaluria.

  8. Dynamic Cell Adhesion and Migration on Nanoscale Grooved Substrates

    NARCIS (Netherlands)

    Lamers, E.; Riet, te J.; Domanski, M.; Luttge, R.; Figdor, C.G.; Gardeniers, J.G.E.; Walboomers, X.F.; Jansen, J.A.

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to init

  9. Dynamic cell adhesion and migration on nanoscale grooved substrates.

    NARCIS (Netherlands)

    Lamers, E.; Riet, J. te; Domanski, M.; Luttge, R.; Figdor, C.G.; Gardeniers, J.G.E.; Walboomers, X.F.; Jansen, J.B.M.J.

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to init

  10. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    Science.gov (United States)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  11. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  12. Osteoblast Adhesion of Breast Cancer Cells with Scanning Acoustic Microscopy

    Science.gov (United States)

    Miyasaka, C.; Mercer, R. R.; Mastro, A. M.

    Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adhere in a different way to the substrate and to each other. To characterize cellular adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days. With mechanical scanning acoustic reflection microscopy, we were able to detect a change in the adhesive condition of the interface between the cell and the substrate, but not with optical microscopy

  13. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K;

    2013-01-01

    were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1......Abstract Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells...... conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis....

  14. 超声造影联合血清单核细胞趋化蛋白1和细胞黏附分子1检测确定胃癌术前分期%Contrast enhanced ultrasonography with monocyte chemoattractant protein-1 and cellular adhesion molecule-1 detection in preoperative staging of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    张超贤; 秦咏梅; 李光艳

    2016-01-01

    Objective To explore the clinical value of oral ultrasonic contrast agent ultrasonography (OUCAUS) combined with serum monocyte chemoattractant protein-1 (MCP-1) and cell adhesion molecule-1 (CAM-1) measurement in preoperative staging of stomach carcinoma.Methods 800 gastric cancer patients were diagnosed by electric gastroscopy and OUCAUS.The preoperative staging was measured by OUCAUS and compared with pathologic staging,and serum levels of MCP-1 and CAM-1 were measured with ELISA.Results The total accuracy rate of OUCAUS was 79.9% in estimating invasive depth of stomach neoplasm,82.9% in estimating lymphatic metastasis and 88.6% in estimating distant metastasis respectively.The expression levels of MCP-1 and CAM-1 in serum were closely correlated with invasive degree,lymphatic metastasis,distant metastasis and pathologic staging (all P < 0.05).The total accuracy rate of combining OUCAUS and MCP-1,CAM-1 was 93.0 % in estimating invasive depth,93.9% in estimating lymphatic metastasis and 98.6% in estimating distant metastasis respectively.The total accuracy rate of combining OUCAUS and MCP-1,CAM-1 in estimating invasive depth,lymphatic metastasis and distant metastasis was significantly higher than that of by OUCAUS alone.Conclusions MCP-1 and CAM-1 serum levels are closely correlated to pathologic staging of gastric cancer.Combining OUCAUS and MCP-1,CAM-1 can increase the accuracy rate determining invasion and metastasis in gastric cancer.%目的 探讨口服超声助显剂超声检查(oral ultrasonic contrast agent ultrasonography,OUCAUS)联合血清单核细胞趋化蛋白1(monocyte chemoattractant protein-1,MCP-1)和细胞黏附分子1(cell adhesion molecule-1,CAM-1)检测对胃癌术前分期的临床价值.方法 对新乡医学院第一附属医院800例胃癌患者术前行胃镜和OUCAUS检查并进行术前分期,同时用ELISA法检测其术前血清MCP-1和CAM-1水平,并与术后病理分期比较.结果 OUCAUS对胃癌侵犯深度、

  15. Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell-cell interactions

    OpenAIRE

    Zhao, Weian; Loh, Weili; Droujinine, Ilia A.; Teo, Weisuong; Kumar, Namit; Schafer, Sebastian; Cui, Cheryl H.; Zhang, Liang; Sarkar, Debanjan; Karnik, Rohit; Karp, Jeffrey M.

    2011-01-01

    Nature has evolved effective cell adhesion mechanisms to deliver inflammatory cells to inflamed tissue; however, many culture-expanded therapeutic cells are incapable of targeting diseased tissues following systemic infusion, which represents a great challenge in cell therapy. Our aim was to develop simple approaches to program cell-cell interactions that would otherwise not exist toward cell targeting and understanding the complex biology of cell-cell interactions. We employed a chemistry ap...

  16. Adhesion in the stem cell niche: biological roles and regulation

    OpenAIRE

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhe...

  17. How to let go: pectin and plant cell adhesion

    OpenAIRE

    Daher, Firas Bou; Braybrook, Siobhan A.

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell’s life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such...

  18. Adhesion between peptides/antibodies and breast cancer cells

    Science.gov (United States)

    Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.

    2010-06-01

    Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.

  19. Cell Adhesion on Polycaprolactone Modified by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2016-01-01

    Full Text Available We have investigated the influence of various plasma treatments of electrospun polycaprolactone (PCL scaffolds on the adhesion and proliferation of human umbilical endothelial cells (HUVEC. The PCL scaffolds were treated in plasmas created in O2, NH3 or SO2 gas at identical conditions. Surface functionalization of plasma-treated samples was determined using X-ray photoelectron spectroscopy. Cell adhesion and morphology were investigated by scanning electron microscopy and the influence of plasma treatment on cell adhesion and viability was evaluated with cell viability assay (MTT assay. The results showed the highest metabolic activity of HUVEC on PCL samples treated with O2 and NH3 plasma. Accordingly, the cells reflected the best adhesion and morphology on O2 and NH3 plasma-treated PCL samples already at 3 h. Moreover, treatment with O2 and NH3 plasma even stimulated endothelial cell proliferation on PCL surfaces by 60% as measured at 24 h, showing significant improvement in endothelialization of this material. Contrarily, SO2 plasma appeared to be less promising in comparison with O2 and NH3 plasma; however, it was still better than without any plasma treatment. Thus, our results importantly contribute to the biocompatibility improvement of the PCL polymer, commonly used for scaffolds in tissue engineering.

  20. Tumour-stromal interactions: Integrins and cell adhesions as modulators of mammary cell survival and transformation

    International Nuclear Information System (INIS)

    Stromal–epithelial interactions modulate mammary epithelial cell (MEC) growth and apoptosis by influencing cell adhesion and tissue organization. Perturbations in the mammary stroma and cell adhesion characterize breast tumors and underlie the altered tissue organization, disrupted tissue homeostasis and enhanced survival phenotype of the disease. Apoptosis resistance likely arises during malignant transformation via genetic and epigenetic modification of cell adhesion pathways induced by a changing tissue microenvironment. Acquisition of adhesion-linked survival networks that enhance MEC viability in the absence of basement membrane interactions probably promote malignant transformation, and may render breast tumors sufficiently resistant to exogenous apoptotic stimuli to generate multidrug resistance

  1. How to let go: pectin and plant cell adhesion.

    Science.gov (United States)

    Daher, Firas Bou; Braybrook, Siobhan A

    2015-01-01

    Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go. PMID:26236321

  2. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Blaheta, Roman A.

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as...

  3. Quantification of depletion-induced adhesion of Red Blood Cells

    OpenAIRE

    Steffen, Patrick; Verdier, Claude; Wagner, Christian

    2013-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the d...

  4. Biomimetic emulsions reveal the effect of homeostatic pressure on cell-cell adhesion

    CERN Document Server

    Pontani, Lea-Laetitia; Viasnoff, Virgile; Brujic, Jasna

    2012-01-01

    Cell-cell contacts in tissues are continuously subject to mechanical forces due to homeostatic pressure and active cytoskeleton dynamics. While much is known about the molecular pathways of adhesion, the role of mechanics is less well understood. To isolate the role of pressure we present a dense packing of functionalized emulsion droplets in which surface interactions are tuned to mimic those of real cells. By visualizing the microstructure in 3D we find that a threshold compression force is necessary to overcome electrostatic repulsion and surface elasticity and establish protein-mediated adhesion. Varying the droplet interaction potential maps out a phase diagram for adhesion as a function of force and salt concentration. Remarkably, fitting the data with our theoretical model predicts binder concentrations in the adhesion areas that are similar to those found in real cells. Moreover, we quantify the adhesion size dependence on the applied force and thus reveal adhesion strengthening with increasing homeos...

  5. Mutant p53 in cell adhesion and motility.

    Science.gov (United States)

    Yeudall, W Andrew; Wrighton, Katharine H; Deb, Sumitra

    2013-01-01

    Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar. PMID:23150443

  6. Physics of cell adhesion: some lessons from cell-mimetic systems

    OpenAIRE

    Sackmann, Erich; Smith, Ana-Sunčana

    2014-01-01

    Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of thes...

  7. Regulation of cell–cell adhesion by the cadherin–catenin complex

    OpenAIRE

    Nelson, W. James

    2008-01-01

    Ca2+-dependent cell–cell adhesion is regulated by the cadherin family of cell adhesion proteins. Cadherins form trans-interactions on opposing cell surfaces which result in weak cell–cell adhesion. Stronger cell–cell adhesion occurs by clustering of cadherins and through changes in the organization of the actin cytoskeleton. Although cadherins were thought to bind directly to the actin cytoskeleton through cytoplasmic proteins, termed α- and β-catenin, recent studies with purified proteins in...

  8. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    OpenAIRE

    Bingmei M Fu; Jinlin Yang; Bin Cai; Jie Fan; Lin Zhang; Min Zeng

    2015-01-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary v...

  9. Biodegradable copolymers carrying cell-adhesion peptide sequences

    Czech Academy of Sciences Publication Activity Database

    Proks, Vladimír; Machová, Luďka; Popelka, Štěpán; Rypáček, František

    Antalya : Ankara University, Tissue Engineering and Biomaterials Laboratory, 2002. s. P-35. [International Symposium on Biomedical Science and Technology BIOMED /9./. 19.09.2002-22.09.2002, Antalya ] R&D Projects: GA AV ČR IAA4050202; GA MŠk LN00A065 Keywords : amphiphilic block copolymers * cell adhesion * biodegradable Subject RIV: CD - Macromolecular Chemistry

  10. 3D porous biomimetically modified hydrogels supporting stem cells adhesion

    Czech Academy of Sciences Publication Activity Database

    Studenovská, Hana; Vodička, Petr; Proks, Vladimír; Juhásová, Jana; Motlík, Jan; Rypáček, František

    Dublin : National University of Ireland , 2011. s. 119, psiii-630. [Annual Conference of the European Society for Biomaterials /24./. 04.09.2011-08.09.2011, Dublin] R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50450515 Keywords : porous hydrogel * cell adhesion * polypeptide Subject RIV: FH - Neurology

  11. Pharmacology of cell adhesion molecules of the nervous system

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug...

  12. Opiates Upregulate Adhesion Molecule Expression in Brain MicroVascular Endothelial Cells (BMVEC: Implications for Altered Blood Brain Barrier (BBB Permeability

    Directory of Open Access Journals (Sweden)

    Madhavan P.N. Nair

    2006-01-01

    Full Text Available The blood-brain barrier (BBB is an intricate cellular system composed of vascular endothelial cells and perivascular astrocytes that restrict the passage of immunocompetent cells into the central nervous system (CNS. Expression of the adhesion molecules, intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 on brain microvascular endothelial cells (BMVEC and their interaction with human immunodeficiency virus (HIV-1 viral proteins may help enhance viral adhesion and virus-cell fusion resulting in increased infectivity. Additionally, transmigration through the BBB is facilitated by both endothelial and monocyte/macrophage-derived nitric oxide (NO. Dysregulated production of NO by BMVEC due to opiates and HIV-1 viral protein interactions play a pivotal role in brain endothelial injury, resulting in the irreversible loss of BBB integrity, which may lead to enhanced infiltration of virus-carrying cells across the BBB. Opioids act as co-factors in the neuropathogenesis of HIV-1 by facilitating BBB dysfunction however, no studies have been done to investigate the role of opiates alone or in combination with HIV-1 viral proteins on adhesion molecule expression in BMVEC. We hypothesize that opiates such as heroin and morphine in conjunction with the HIV-1 viral protein gp120 increase the expression of adhesion molecules ICAM-1 and VCAM-1 and these effects are mediated via the modulation of NO. Results show that opiates alone and in synergy with gp120 increase both the genotypic and phenotypic expression of ICAM-1 and VCAM-1 by BMVEC, additionally, these opiate induced effects may be the result of increased NO production. These studies will provide a better understanding of how opiate abuse in conjunction with HIV-1 infection facilitates the breakdown of the BBB and exacerbates the neuropathogenesis of HIV-1. Elucidation of the mechanisms of BBB modulation will provide new therapeutic approaches to maintain BBB integrity

  13. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars; Borup, Rehannah; Wewer, Ulla M; Christiansen, Jan; Nielsen, Finn C

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and...... invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....

  14. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham;

    2009-01-01

    of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...... therapeutic option if a suitable HLA-matched stem-cell donation is available. Reduced-intensity conditioning was particularly safe, and mixed-donor chimerism seems sufficient to prevent significant symptoms, although careful long-term monitoring will be required for these patients....

  15. Alcohol inhibits cell-cell adhesion mediated by human L1.

    Science.gov (United States)

    Ramanathan, R; Wilkemeyer, M F; Mittal, B; Perides, G; Charness, M E

    1996-04-01

    Mental retardation, hydrocephalus, and agenesis of the corpus callosum are observed both in fetal alcohol syndrome (FAS) and in children with mutations in the gene for the cell adhesion molecule L1. We studied the effects of ethanol on cell-cell adhesion in mouse fibroblasts transfected with human L1. L1-transfected fibroblasts exhibited increased cell-cell adhesion compared with wild-type or vector-transfected controls. Ethanol potently and completely inhibited L1-mediated adhesion both in transfected L cells and NIH/3T3 cells. Half-maximal inhibition was observed at 7 mM ethanol, a concentration achieved in blood and brain after ingesting one alcoholic beverage. In contrast, ethanol did not inhibit the adhesion of fibroblasts transfected with vector alone or with N-CAM-140. L1-mediated cell-cell adhesion was inhibited with increasing potency by n-propanol and n-butanol, but was not inhibited at all by n-alcohols of 5 to 8 carbons, acetaldehyde, or acetate, suggesting that ethanol interacts directly with a small hydrophobic pocket within L1. Phenylalanine, teratogenic anticonvulsants, and high concentrations of glucose did not inhibit L1-mediated cell-cell adhesion. Ethanol also inhibited potently the heterotypic adhesion of rat cerebellar granule cells to a monolayer of L1-transfected NIH/3T3 cells, but had no effect on their adhesion to N-CAM-140 or vector-transfected NIH/3T3 cells. Because L1 plays a role in both neural development and learning, ethanol inhibition of L1-mediated cell-cell interactions could contribute to FAS and ethanol-associated memory disorders. PMID:8609170

  16. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation

    OpenAIRE

    Cuff, Carolyn A.; Kothapalli, Devashish; Azonobi, Ijeoma; Chun, Sam; Zhang, Yuanming; Belkin, Richard; Yeh, Christine; Secreto, Anthony; Richard K Assoian; Rader, Daniel J; Puré, Ellen

    2001-01-01

    Atherosclerosis causes most acute coronary syndromes and strokes. The pathogenesis of atherosclerosis includes recruitment of inflammatory cells to the vessel wall and activation of vascular cells. CD44 is an adhesion protein expressed on inflammatory and vascular cells. CD44 supports the adhesion of activated lymphocytes to endothelium and smooth muscle cells. Furthermore, ligation of CD44 induces activation of both inflammatory and vascular cells. To assess the potential contribution of CD4...

  17. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  18. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye

    OpenAIRE

    Fetting, Jennifer L.; Spencer, Susan A; Wolff, Tanya

    2009-01-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90° rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echi...

  19. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  20. Polyphosphoinositides suppress the adhesion of Haemophilus influenzae to pharyngeal cells

    Directory of Open Access Journals (Sweden)

    Hwang Shie-Ming

    2004-09-01

    Full Text Available Abstract Background One of the primary causes of otitis media (OM, an inflammation of the middle ear, is the bacterium Haemophilus influenzae (HI. OM often occurs to young children, and is mostly treated with antibiotics. Due to concerns over bacterial resistance toward antibiotics, reliable prophylactic treatments such as administrating anti-adhesion agents are now viewed as viable alternatives. Results The present study tested the feasibilty of using phosphoinositides as anti-adhesion agents against HI cells. Cells of non-typeable HI were radiolabeled with 111- indium-oxine, pre-incubated with various individual phosphoinositides for 15 minutes at 37°C, and incubated with a monolayer of human pharynx carcinoma (DT 562 cells for 20 minutes at 37°C. The result showed that at 0.1 mg/mL dipalmitoylphosphatidylinositol-3,4-diphosphate (PI-3,4-PP had the highest anti-adhesion activity, followed by phosphatidylinositol-3-phosphate (PI-3-P and phosphatidylinositol-4-phosphate (PI-4-P. The anti-adhesion activity of PI-3,4-PP was dose-dependent ranging from 0.006 to 0.1 mg/mL. In addition, results from an in vivo study demonstrated that pre-incubation of HI cells with PI-3,4-PP at 1 mg/mL suppressed the growth of HI in nasopharynx of neonatal rats. Conclusions These findings suggest that PI-3-P and PI-4-P and more so PI-3,4-PP may serve as prophylactic agents against HI adhesion and colonization.

  1. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  2. Physics of cell adhesion: some lessons from cell-mimetic systems

    Science.gov (United States)

    Sackmann, Erich; Smith, Ana-Sunčana

    2014-01-01

    Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of these rules in the context of cellular systems. We review how adhesion induced micro-domains couple to the intracellular actin and microtubule networks allowing cells to generate strong forces with a minimum of attractive cell adhesion molecules (CAMs) and to manipulate other cells through filopodia over micrometer distances. The adhesion strength can be adapted to external force fluctuations within seconds by varying the density of attractive and repellant CAMs through exocytosis and endocytosis or protease-mediated dismantling of the CAM–cytoskeleton link. Adhesion domains form local end global biochemical reaction centres enabling the control of enzymes. Actin–microtubule crosstalk at adhesion foci facilitates the mechanical stabilization of polarized cell shapes. Axon growth in tissue is guided by attractive and repulsive clues controlled by antagonistic signalling pathways. PMID:24651316

  3. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  4. The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation......Cell adhesion molecules (CAMs) constitute a large class of plasma membrane-anchored proteins that mediate attachment between neighboring cells and between cells and the surrounding extracellular matrix (ECM). However, CAMs are more than simple mediators of cell adhesion. The neural cell adhesion...... and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology...

  5. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  6. Adhesion receptors as therapeutic targets for circulating tumor cells

    Directory of Open Access Journals (Sweden)

    MichaelR.King

    2012-07-01

    Full Text Available Metastasis contributes to >90% of cancer-associated mortality. Though primary tumors can be removed by surgical resection or chemo/radiotherapy, metastatic disease is a great challenge to treatment due to its systemic nature. As metastatic “seeds”, circulating tumor cells (CTCs are believed to be responsible for dissemination from a primary tumor to anatomically distant organs. Despite the possibility of physical trapping of CTCs in microvessels, recent advances have provided insights into the involvement of a variety of adhesion molecules on CTCs. Such adhesion molecules facilitate direct interaction with the endothelium in specific tissues or indirectly through leukocytes. Importantly, significant progress has been made in understanding how these receptors confer enhanced invasion and survival advantage during hematogenous circulation of CTCs through recruitment of macrophages, neutrophils, platelets, and other cells. This review highlights the identification of novel adhesion molecules and how blocking their function can compromise successful seeding and colonization of CTCs in new microenvironment. Encouraged by existing diagnostic tools to identify and isolate CTCs, strategic targeting of these adhesion molecules to deliver conventional chemotherapeutics or novel apoptotic signals is discussed for the neutralization of CTCs in the circulation.

  7. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito;

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved in...

  8. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease.

    Science.gov (United States)

    Alapan, Yunus; Kim, Ceonne; Adhikari, Anima; Gray, Kayla E; Gurkan-Cavusoglu, Evren; Little, Jane A; Gurkan, Umut A

    2016-07-01

    Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions. PMID:27063958

  9. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  10. Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer Property to Enhance Cell-Selective Adhesion

    Directory of Open Access Journals (Sweden)

    Rio Kurimoto

    2016-01-01

    Full Text Available Although surface immobilization of medical devices with bioactive molecules is one of the most widely used strategies to improve biocompatibility, the physicochemical properties of the biomaterials significantly impact the activity of the immobilized molecules. Herein we investigate the combinational effects of cell-selective biomolecules and the hydrophobicity/hydrophilicity of the polymeric substrate on selective adhesion of endothelial cells (ECs, fibroblasts (FBs, and smooth muscle cells (SMCs. To control the polymeric substrate, biomolecules are immobilized on thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (poly(NIPAAm-co-CIPAAm-grafted glass surfaces. By switching the molecular conformation of the biomolecule-immobilized polymers, the cell-selective adhesion performances are evaluated. In case of RGDS (Arg-Gly-Asp-Ser peptide-immobilized surfaces, all cell types adhere well regardless of the surface hydrophobicity. On the other hand, a tri-Arg-immobilized surface exhibits FB-selectivity when the surface is hydrophilic. Additionally, a tri-Ile-immobilized surface exhibits EC-selective cell adhesion when the surface is hydrophobic. We believe that the proposed concept, which is used to investigate the biomolecule-immobilized surface combination, is important to produce new biomaterials, which are highly demanded for medical implants and tissue engineering.

  11. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    Science.gov (United States)

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-01-01

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis. PMID:26393541

  12. ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration.

    Science.gov (United States)

    Liu, Guoquan; Place, Aaron T; Chen, Zhenlong; Brovkovych, Viktor M; Vogel, Stephen M; Muller, William A; Skidgel, Randal A; Malik, Asrar B; Minshall, Richard D

    2012-08-30

    Polymorphonuclear neutrophil (PMN) extravasation requires selectin-mediated tethering, intercellular adhesion molecule-1 (ICAM-1)-dependent firm adhesion, and platelet/endothelial cell adhesion molecule 1 (PECAM-1)-mediated transendothelial migration. An important unanswered question is whether ICAM-1-activated signaling contributes to PMN transmigration mediated by PECAM-1. We tested this concept and the roles of endothelial nitric oxide synthase (eNOS) and Src activated by PMN ligation of ICAM-1 in mediating PECAM-1-dependent PMN transmigration. We observed that lung PMN infiltration in vivo induced in carrageenan-injected WT mice was significantly reduced in ICAM-1(-/-) and eNOS(-/-) mice. Crosslinking WT mouse ICAM-1 expressed in human endothelial cells (ECs), but not the phospho-defective Tyr(518)Phe ICAM-1 mutant, induced SHP-2-dependent Src Tyr530 dephosphorylation that resulted in Src activation. ICAM-1 activation also stimulated phosphorylation of Akt (p-Ser473) and eNOS (p-Ser1177), thereby increasing NO production. PMN migration across EC monolayers was abolished in cells expressing the Tyr(518)Phe ICAM-1 mutant or by pretreatment with either the Src inhibitor PP2 or eNOS inhibitor L-NAME. Importantly, phospho-ICAM-1 induction of Src signaling induced PECAM-1 Tyr686 phosphorylation and increased EC surface anti-PECAM-1 mAb-binding activity. These results collectively show that ICAM-1-activated Src and eNOS signaling sequentially induce PECAM-1-mediated PMN transendothelial migration. Both Src and eNOS inhibition may be important therapeutic targets to prevent or limit vascular inflammation. PMID:22806890

  13. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells.

    Science.gov (United States)

    Chen, Cai-Xia; Yang, Li-Chao; Xu, Xu-Dong; Wei, Xiao; Gai, Ya-Ting; Peng, Lu; Guo, Han; Hao-Zhou; Wang, Yi-Qing; Jin, Xin

    2015-06-01

    Oleoylethanolamide (OEA), an endogenous agonist of PPARα, has been reported to have anti-atherosclerotic properties. However, OEA can be enzymatically hydrolyzed to oleic acid and ethanolamine and, thus, is not expected to be orally active. In the present study, we designed and synthesized an OEA analog, propane-2-sulfonic acid octadec-9-enyl-amide (N15), which is resistant to enzymatic hydrolysis. The purpose of this study was to investigate the effects of N15 on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results showed that N15 inhibited TNFα-induced production of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and the adhesion of monocytes to TNFα-induced HUVECs. Furthermore, the protective effect of N15 on inflammation is dependent upon a PPAR-α/γ-mediated mechanism. In conclusion, N15 protects against TNFα-induced vascular endothelial inflammation. This anti-inflammatory effect of N15 is dependent on PPAR-α/γ dual targets. PMID:25797284

  14. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  15. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  16. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion

    Science.gov (United States)

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-01-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of β1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisenseDp71 clones to analyze in detail the potential involvement of Dp71f isoform with the β1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell β1-integrin adhesion complex is composed of β1-integrin, talin, paxillin, α-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the β1-integrin complex components (β1-integrin, FAK, α-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the β1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and β1-integrin. Our data indicate that Dp71f is a structural component of the β1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance. PMID:16935300

  17. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.

    Science.gov (United States)

    Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

    2010-05-25

    The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

  18. Adhesion and invasion of bovine endothelial cells by Neospora caninum.

    Science.gov (United States)

    Hemphill, A; Gottstein, B; Kaufmann, H

    1996-02-01

    Neospora caninum is a recently identified coccidian parasite which was, until 1988, misdiagnosed as Toxoplasma gondii. It causes paralysis and death in dogs and neonatal mortality and abortion in cattle, sheep, goats and horses. The life-cycle of Neospora has not yet been elucidated. The only two stages identified so far are tissue cysts and intracellularly dividing tachyzoites. Very little is known about the biology of this species. We have set up a fluorescence-based adhesion/invasion assay in order to investigate the interaction of N. caninum tachyzoites with bovine aorta endothelial (BAE) cells in vitro. Treatment of both host cells and parasites with metabolic inhibitors determined the metabolic requirements for adhesion and invasion. Chemical and enzymatic modifications of parasite and endothelial cell surfaces were used in order to obtain information on the nature of cell surface components responsible for the interaction between parasite and host. Electron microscopical investigations defined the ultrastructural characteristics of the adhesion and invasion process, and provided information on the intracellular development of the parasites. PMID:8851858

  19. Anandamide inhibits adhesion and migration of breast cancer cells

    International Nuclear Information System (INIS)

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  20. Cell Adhesion and Proliferation on Modified Polyethylene

    Czech Academy of Sciences Publication Activity Database

    Kasálková, N.; Kolářová, K.; Bačáková, Lucie; Pařízek, Martin; Macková, Anna; Švorčík, V.

    567-568, - (2007), s. 269-272. ISSN 0255-5476 R&D Projects: GA ČR GA204/06/0225; GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) IAA5011301; GA MŠk(CZ) LC06041 Grant ostatní: ICT(CZ) 126080017 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10480505 Keywords : plasma discharge * aminoacid grafting * vascular smooth muscle cells Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.399, year: 2005

  1. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells

    International Nuclear Information System (INIS)

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/β-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3β or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/β-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/β-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules

  2. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    Science.gov (United States)

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  3. How cells tiptoe on adhesive surfaces before sticking

    CERN Document Server

    Pierres, Anne; Touchard, Dominique; Bongrand, Pierre

    2008-01-01

    Cell membranes are studded with protrusions that were thoroughly analyzed with electron microscopy. However, the nanometer-scale three-dimensional motions generated by cell membranes to fit the topography of foreign surfaces and initiate adhesion remain poorly understood. Here, we describe the dynamics of surface deformations displayed by monocytic cells bumping against fibronectin-coated surfaces. We observed membrane undulations with typically 5 nm amplitude and 5-10 second lifetime. Cell membranes behaved as independent units of micrometer size. Cells detected the presence of foreign surfaces at 50 nm separation, resulting in time-dependent amplification of membrane undulations. Molecular contact then ensued with apparent cell-membrane separation of 30-40 nm, and this distance steadily decreased during the following tens of seconds. Contact maturation was associated with in-plane egress of bulky molecules and robust membrane fluctuations. Thus, membrane undulations may be the major determinant of cell sens...

  4. Reversing adhesion with light: a general method for functionalized bead release from cells.

    Science.gov (United States)

    Goulet-Hanssens, Alexis; Magdesian, Margaret H; Lopez-Ayon, G Monserratt; Grutter, Peter; Barrett, Christopher J

    2016-07-19

    Coated beads retain great importance in the study of cell adhesion and intracellular communication; we present a generally applicable method permitting spatiotemporal control of bead adhesion from cells. Herein we demonstrate in vitro release of a poly-d-lysine (PDL) layer from anionic polystyrene beads, allowing complete bead release from rat cortical neurons post-adhesion. PMID:27165466

  5. Cadherin-Based Intercellular Adhesions Organize Epithelial Cell-Matrix Traction Forces

    CERN Document Server

    Mertz, Aaron F; Banerjee, Shiladitya; Goldstein, Jill; Rosowski, Kathryn R; Niessen, Carien M; Marchetti, M Cristina; Dufresne, Eric R; Horsley, Valerie

    2012-01-01

    Cell--cell and cell-matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of crosstalk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular-matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell--cell adhesions modulate the physical cohesion between contractile cells is ...

  6. Pattern formation of scale cells in Lepidoptera by differential origin-dependent cell adhesion

    OpenAIRE

    Sekimura, T.; Zhu, M.; Cook, J.; Maini, P. K.

    1999-01-01

    We present a model for the formation of parallel rows of scale cells in the developing adult wing of moths and butterflies. Precursors of scale cells differentiate throughout each epithelial monolayer and migrate into rows that are roughly parallel to the body axis. Grafting experiments have revealed what appears to be a gradient of adhesivity along the wing. What is more, cell adhesivity character is maintained after grafting. Thus we suggest that it is a cell’s location prior to migration t...

  7. Polyelectrolytes Multilayers to Modulate Cell Adhesion: A Study of the Influence of Film Composition and Polyelectrolyte Interdigitation on the Adhesion of the A549 Cell Line.

    Science.gov (United States)

    Muzzio, Nicolás E; Pasquale, Miguel A; Gregurec, Danijela; Diamanti, Eleftheria; Kosutic, Marija; Azzaroni, Omar; Moya, Sergio E

    2016-04-01

    Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer-by-layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4-styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs. PMID:26663657

  8. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  9. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Science.gov (United States)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; de Maeztu, Miguel Ángel

    2014-08-01

    Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40-80 keV), fluence (1-2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted surfaces, without surface chemistry modification, are in the same range and that such modifications, in certain conditions, do have a statistically significant effect on bone tissue forming cell adhesion.

  10. Syndecan-1 controls cell migration by activating Rap1 to regulate focal adhesion disassembly

    OpenAIRE

    Altemeier, William A.; Schlesinger, Saundra Y.; Buell, Catherine A.; Parks, William C.; Chen, Peter

    2012-01-01

    After injury, residual epithelial cells coordinate contextual clues from cell–cell and cell–matrix interactions to polarize and migrate over the wound bed. Protrusion formation, cell body translocation and rear retraction is a repetitive process that allows the cell to move across the substratum. Fundamental to this process is the assembly and disassembly of focal adhesions that facilitate cell adhesion and protrusion formation. Here, we identified syndecan-1 as a regulator of focal adhesion ...

  11. Multiple effects of electroporation on the adhesive behaviour of breast cancer cells and fibroblasts

    OpenAIRE

    Pehlivanova Viktoria N; Tsoneva Iana H; Tzoneva Rumiana D

    2012-01-01

    Abstract Background Recently electroporation using biphasic pulses was successfully applied in clinical developments for treating tumours in humans and animals. We evaluated the effects of electrical treatment on cell adhesion behaviour of breast cancer cells and fibroblasts. By applying bipolar electrical pulses we studied short- and long-lived effects on cell adhesion and survival, actin cytoskeleton and cell adhesion contacts in adherent cancer cells and fibroblasts. Methods Two cancer cel...

  12. Irradiation induces increase of adhesion molecules and accumulation of β2-integrin-expressing cells in humans

    International Nuclear Information System (INIS)

    Purpose: The purpose of our investigation was to describe the dose- and time-dependent histomorphologic alterations of the irradiated tissue, the composition of the infiltrate, and the expression patterns of various adhesion molecules. Methods and Materials: We analyzed immunohistochemically alterations in oral mucosa in 13 head and neck cancer patients before radiotherapy and with 30 Gy and 60 Gy. All had oral mucosa irradiation, with a final dose of 60 Gy using conventional fractionation. Snap-frozen specimens were stained using the indirect immunoperoxidase technique. Histomorphology was studied in paraffin-embedded sections. In addition, we determined the clinical degree of oral mucositis. Results: Histomorphologic evaluation showed no vascular damage. Irradiation caused a steep increase of β2-integrin-bearing cells (p 1-integrin-positive cells remained at low levels. Additionally we found an increase in the expression of endothelial intercellular adhesion molecule-1 (ICAM-1) (p 2 is more involved than β1. Pharmaceuticals that block leukocyte adhesion to E-selectin or ICAM-1 may prevent radiation-mediated inflammation in oral mucosa

  13. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating.

    Science.gov (United States)

    Kornu, R; Maloney, W J; Kelly, M A; Smith, R L

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. PMID:8982128

  14. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    International Nuclear Information System (INIS)

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  15. Role of cell adhesion signal molecules in hepatocellular carcinoma cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Su; Li-Ying Wang; Yu-Long Liang; Xi-Liang Zha

    2005-01-01

    AIM: Cell adhesion molecules and their signal molecules play a very important role in carcinogenesis. The aim of this study is to elucidate the role of these molecules and the signal molecules of integrins and E-cadherins, such as (focal adhesion kinase) FAK, (integrin linked kinase)ILK, and β-catenin in hepatocellular carcinoma cell apoptosis.METHODS: We first synthesized the small molecular compound, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and identified it, by element analysis and 1H NMR. To establish the apoptosis model of the SMMC-7721 hepatocellular carcinoma cell, we treated cells with DCVC in EBSS for different concentrations or for various length times in the presence of 20 μmol/L N,N-diphenyl-p-phenylenediamine,which blocks necrotic cell death and identified this model by flow cytometry and DNA ladder. Then we studied the changes of FAK, ILK, β-catenin, and PKB in this apoptotic model by Western blot.RESULTS: We found that the loss or decrease of cell adhesion signal molecules is an important reason in apoptosis of SMMC-7721 hepatocellular carcinoma cell and the apoptosis of SMMC-7721 cell was preceded by the loss or decrease of FAK, ILK, PKB, and β-catenin or the damage of cell-matrix and cell-cell adhesion.CONCLUSION: Our results suggested that the decrease of adhesion signal molecules, FAK, ILK, PKB, and β-catenin,could induce hepatocellular carcinoma cell apoptosis.

  16. Quantification of depletion-induced adhesion of Red Blood Cells

    CERN Document Server

    Steffen, Patrick; Wagner, Christian

    2012-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the dextran induced aggregation of red blood cells by use of atomic force microscopy based single cell force spectroscopy (SCFS). The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs was determined. The results are in good agreement with a model based on the depletion effect and former experimental studies.

  17. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  18. Upregulation of Intercellular Adhesion Molecule 1 and Proinflammatory Cytokines by the Major Surface Proteins of Treponema maltophilum and Treponema lecithinolyticum, the Phylogenetic Group IV Oral Spirochetes Associated with Periodontitis and Endodontic Infections

    OpenAIRE

    Lee, Sung-Hoon; Kim, Kack-Kyun; Choi, Bong-Kyu

    2005-01-01

    Treponema maltophilum and Treponema lecithinolyticum belong to the group IV oral spirochetes and are associated with endodontic infections, as well as periodontitis. Recently, the genes encoding the major surface proteins (Msps) of these bacteria (MspA and MspTL, respectively) were cloned and sequenced. The amino acid sequences of these proteins showed significant similarity. In this study we analyzed the functional role of these homologous proteins in human monocytic THP-1 cells and primary ...

  19. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A; Hughes, R C

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from the...

  20. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    OpenAIRE

    Wagner Shin Nishitani; Adriano Mesquita Alencar; Yingxiao Wang

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium i...

  1. Epithelial to mesenchymal transition-the roles of cell morphology, labile adhesion and junctional coupling.

    Science.gov (United States)

    Abdulla, Tariq; Luna-Zurita, Luis; de la Pompa, José Luis; Schleich, Jean-Marc; Summers, Ron

    2013-08-01

    Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the interplay between cell shape changes, adhesion and migration. The simulation model is fitted to an in vitro model of endocardial EMT, and agrees with the finding that Notch signalling increases cell-matrix adhesion in addition to modulating cell-cell adhesion. PMID:23787029

  2. Cell adhesion and guidance by micropost-array chemical sensors

    Science.gov (United States)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  3. Cell adhesion molecule control of planar spindle orientation.

    Science.gov (United States)

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  4. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    DEFF Research Database (Denmark)

    Halberg, Kenneth A; Rainey, Stephanie M; Veland, Iben R; Neuert, Helen; Dornan, Anthony J; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A T

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  5. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    OpenAIRE

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine; Grant, Christina L.; Vogel, Lotte K.; Rodriguez-Pinto, Daniel; Holmes, Kathryn V.; Ortega, Enrique; Shapiro, Linda H.

    2008-01-01

    During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myelo...

  6. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas

    DEFF Research Database (Denmark)

    Møller, C J; Christgau, S; Williamson, M R; Madsen, O D; Niu, Z P; Bock, E; Baekkeskov, S

    1992-01-01

    a process where cell adhesion molecules are involved. In this study we have analyzed the expression of neural cell adhesion molecule (NCAM) and cadherin molecules in neonatal, young, and adult rat islet cells as well as in glucagonomas and insulinomas derived from a pluripotent rat islet cell tumor...

  7. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heli; Focia, Pamela J.; He, Xiaolin (NWU, MED)

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  8. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules

    Directory of Open Access Journals (Sweden)

    Wolfram Tobias

    2008-12-01

    Full Text Available Abstract Background Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-dependent threshold for this form of cell adhesion. Results Here we show a similar dependence of cell adhesion on the spacing of agrin, a protein that exists as both a secreted, matrix-bound form and a type-2 transmembrane form in vivo. Agrin was presented as a substrate for cell adhesion assays by anchoring recombinant protein to gold nanoparticles that were arrayed at tunable distances onto glass coverslips. Cells adhered well to nanopatterned agrin, and when presented as uniformly coated substrates, adhesion to agrin was comparable to other well-studied adhesion molecules, including N-Cadherin. Adhesion of both mouse primary cortical neurons and rat B35 neuroblastoma cells showed a spacing-dependent threshold, with a sharp drop in adhesion when the space between agrin-coated nanoparticles increased from 60 to 90 nm. In contrast, adhesion to N-Cadherin decreased gradually over the entire range of distances tested (uniform, 30, 60, 90, and 160 nm. The spacing of the agrin nanopattern also influenced cell motility, and peptide competition suggested adhesion was partially integrin dependent. Finally, differences in cell adhesion to C-terminal agrin fragments of different lengths were detected using nanopatterned substrates, and these differences were not evident using uniformly coated substrates. Conclusion These results suggest nanopatterned substrates may provide a physiological presentation of adhesive substrates, and are consistent with cells adhering to agrin

  9. Involvement of cell surface phosphatidylinositol-anchored glycoproteins in cell-cell adhesion of chick embryo myoblasts

    OpenAIRE

    1989-01-01

    During myogenesis myoblasts fuse to form multinucleate cells that express muscle-specific proteins. A specific cell-cell adhesion process precedes lipid bilayer union during myoblast fusion (Knudsen, K. A., and A. F. Horwitz. 1977. Dev. Biol. 58:328-338) and is mediated by cell surface glycoproteins (Knudsen, K. A., 1985. J. Cell Biol. 101:891- 897). In this paper we show that myoblast adhesion and myotube formation are inhibited by treating fusion-competent myoblasts with phosphatidylinosito...

  10. A new technical approach to quantify cell-cell adhesion forces by AFM

    International Nuclear Information System (INIS)

    Cell-cell adhesion is a complex process that is involved in the tethering of cells, cell-cell communication, tissue formation, cell migration and the development and metastasis of tumors. Given the heterogeneous and complex nature of cell surfaces it has previously proved difficult to characterize individual cell-cell adhesion events. Force spectroscopy, using an atomic force microscope, is capable of resolving such individual cell-cell binding events, but has previously been limited in its application due to insufficient effective pulling distances. Extended pulling range is critical in studying cell-cell interactions due to the potential for large cell deformations. Here we describe an approach to such experiments, where the sample stage can be moved 100 μm in the z-direction, by closed loop, linearized piezo elements. Such an approach enables an increase in pulling distance sufficient for the observation of long-distance cell-unbinding events without reducing the imaging capabilities of the atomic force microscope. The atomic force microscope head and the piezo-driven sample stage are installed on an inverted optical microscope fitted with a piezo-driven objective, to allow the monitoring of cell morphology by conventional light microscopy, concomitant with force spectroscopy measurements. We have used the example of the WM115 melanoma cell line binding to human umbilical vein endothelial cells to demonstrate the capabilities of this system and the necessity for such an extended pulling range when quantifying cell-cell adhesion events

  11. Hepatocyte adhesion to carbohydrate-derivatized surfaces. II. Regulation of cytoskeletal organization and cell morphology

    OpenAIRE

    1991-01-01

    Rat hepatic lectins mediate adhesion of isolated rat hepatocytes to synthetic surfaces derivatized with galactosides. Initial weak adhesion is followed by rapid adhesion strengthening. After hepatocytes contact galactose-derivatized gels, the hepatic lectins move rapidly into an inaccessible patch at the adhesive surface (Weisz, O. A., and R. L. Schnaar. 1991. J. Cell Biol. 115:485-493). Hepatic lectin patching, which occurs both at 37 degrees C and 4 degrees C, is not responsible for adhesio...

  12. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma

    Institute of Scientific and Technical Information of China (English)

    Jose J. Ordaz-Ortiz; Susan E. Marcus; J. Paul Knox

    2009-01-01

    Methods developed to isolate intact cells from both unripe and ripe tomato fruit pericarp parenchyma have allowed the cell biological analysis of polysaccharide epitopes at the surface of separated cells. The LM7 pectic homoga-lacturonan epitope is a marker of the junctions of adhesion planes and intercellular spaces in parenchyma systems. The LM7 epitope persistently marked the former edge of adhesion planes at the surface of cells separated from unripe and ripened tomato fruit and also from fruits with the Cnr mutation. The LM 11 xylan epitope was associated, in sections, with cell walls lining intercellular space but the epitope was not detected at the surface of isolated cells, being lost during cell isolation. The LM15 xyloglucan epitope was present at the surface of cells isolated from unripe fruit in a pattern reflecting the former edge of cell adhesion planes/intercellular space but with gaps and apparent breaks, An equivalent pattern ofLM15 epitope occurrence was revealed at the surface of cells isolated by pectate lyase action but was not present in cells isolated from ripe fruit or from Cnr fruit. In contrast to wild-type cells, the LM5 galactan and LM21 mannan epitopes oc-curred predominantly in positions reflecting intercellular space in Cnr, suggesting a concerted alteration in cell wall mi-crostructure in response to this mutation. Galactanase and mannanase, along with pectic homogalacturonan-degrading enzymes, were capable of releasing cells from unripe fruit parenchyma. These observations indicate that hemicellulose polymers are present in architectural contexts reflecting cell adhesion and that several cell wall polysaccharide classes are likely to contribute to cell adhesion/cell separation in tomato fruit pericarp parenchyma.

  13. Functional nanoparticles translocation into cell and adhesion force curve analysis.

    Science.gov (United States)

    Lee, Haisung; Veerapandian, Murugan; Kim, Byung Tae; Yun, Kyusik; Seo, Soo-Won

    2012-10-01

    The aim of this research is to investigate the cell translocation of two functional nanoparticles (barium sulfate (BaSO4NPs), europium (III) doped gadolinium oxide nanoparticles (Gd2O3@EuNPs)) into A549 cells by Bio-Atomic Force Microscopy (Bio-AFM). Successful cell translocation of these two nanoparticles are ensured from the measurement of changes in the cell surface roughness and interaction (extension), retraction forces from the vertical deflection of tip towards substrate surfaces through force-distance curve slope analysis. Measurement of typical adhesion forces (i.e., extension and retraction) between the tip-substrate (0.0963 and 1.155 nN), tip-A549 cell substrate (0.1177 and 2.468 nN), tip-Gd2O3@EuNPs/A549 substrate (0.0785 and 0.4276 nN) and tip-BaSO4NPs/A549 substrate (0.518 and 6.838 nN) confirms the successful cell translocation of functional nanoparticles into A549 cells. Further the nanoscale resolution of topographical height and 3D images evinces the surface characteristics of normal A549 cells and nanoparticles translocated A549 cells. PMID:23421137

  14. Perfil sérico da molécula de adesão intercelular-1 no pós-operatório cardíaco de lactentes submetidos à circulação extracorpórea Intercellular adhesion molecule-1 serum profile in cardiac postoperative period of infants undergoing cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Angela Hunsche

    2002-01-01

    Full Text Available Objetivos: mensurar os níveis séricos da molécula de adesão intercelular-1, solúvel em condições basais e após exposição ao circuito de circulação extracorpórea, em lactentes submetidos à cirurgia cardíaca para correção de defeitos cardíacos congênitos. Métodos: estudo de coorte contemporâneo envolvendo 21 lactentes submetidos à cirurgia cardíaca com uso de circulação extracorpórea. Foram medidos os níveis séricos da molécula de adesão intercelular-1, solúvel na indução anestésica, ao término e 8 e 26 horas após o término da circulação extracorpórea. As amostras foram dosadas através do método de ELISA. Resultados: as patologias cardíacas congênitas mais comuns foram defeito do septo atrioventricular e Tetralogia de Fallot. As médias de idade e de peso foram 6,6 meses e 5,8 quilos. As medianas dos tempos de circulação extracorpórea e de clampeamento da aorta foram, respectivamente, 87 e 53 minutos. Todos os lactentes utilizaram inotrópicos. As medianas dos tempos de intubação e de internação foram 72 horas e 21 dias. A taxa de mortalidade dos pacientes foi de 9,5%. Os níveis basais da molécula avaliada foram mais elevados do que aqueles considerados normais (pObjective: to measure the intercellular adhesion molecule-1 serum levels at baseline and after cardiopulmonary bypass exposure in infants undergoing surgery of congenital heart disease. Methods: contemporary cohort study, which consisted of 21 infants undergoing cardiac surgery with cardiopulmonary bypass. The intercellular adhesion molecule-1 serum levels were measured at induction of anesthesia, at the end of cardiopulmonary bypass, and 8 hours and 26 hours after cardiopulmonary bypass. The samples were measured using ELISA. Results: atrioventricular septal defects and tetralogy of Fallot were the most common congenital cardiac pathologies. The age and weight mean values were 6.6 months and 5.8 Kg. The median values of cardiopulmonary

  15. Cell adhesion on Ti surface with controlled roughness

    Energy Technology Data Exchange (ETDEWEB)

    Burgos-Asperilla, L.; Garcia-Alonso, M. C.; Escudero, M. L.; Alonso, C.

    2015-07-01

    In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10{sup -}3 min{sup -}1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days), due to the presence of amino acids and proteins from the culture medium that have been adsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti. (Author)

  16. Surface deformation and shear flow in ligand mediated cell adhesion

    Science.gov (United States)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  17. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine;

    2008-01-01

    rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept is......During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown to...... mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal...

  18. A Discrete-Element Approach for Blood Cell Adhesion

    Science.gov (United States)

    Chesnutt, Jennifer; Marshall, Jeffrey

    2006-11-01

    An efficient computational model for simulation of the individual dynamics of adhering blood cells is discussed. Each cell is represented as a discrete particle so that the model can extend existing discrete-element approaches for dense particulate fluid flows to account for receptor-ligand binding of particles, elliptical particle shape, and deformation of the particles due to shear forces. Capabilities of the method in simulating large numbers of particles are illustrated through simulations of the formation of red blood cell rouleaux in shear flow. The effects of several factors, such as aspect ratio of the elliptical particle, shear rate, strength of the cell adhesion force, and hematocrit are investigated. Comparison of the discrete-element results with results of a level-set approach which computes the entire flow field about a small number of cells is used to develop an improved model of the effect of nearby red blood cells on the cell drag force expression. The method is also being applied to examine the influence of red blood cells on other components of the blood, such as platelet dispersion and activation in high shear regions.

  19. Effect of Zinc and Nitric Oxide on Monocyte Adhesion to Endothelial Cells under Shear Stress

    OpenAIRE

    Lee, Sungmun; Eskin, Suzanne G.; Shah, Ankit K.; Schildmeyer, Lisa A.; McIntire, Larry V.

    2011-01-01

    This study describes the effect of zinc on monocyte adhesion to endothelial cells under different shear stress regimens, which may trigger atherogenesis. Human umbilical vein endothelial cells were exposed to steady shear stress (15 dynes/cm2 or 1 dyne/cm2) or reversing shear stress (time average 1 dyne/cm2) for 24 hours. In all shear stress regimes, zinc deficiency enhanced THP-1 cell adhesion, while heparinase III reduced monocyte adhesion following reversing shear stress exposure. Unlike o...

  20. Proteomic and phosphoproteomic analysis of signalling by adhesion and growth factor receptors in mammary epithelial cells

    OpenAIRE

    Paul, Nikki

    2014-01-01

    Cell adhesion and communication are essential for tissue morphogenesis and repair in healthy multicellular organisms. However, dysregulation of these processes can drive disease progression in conditions such as cancer. Selective cell adhesion to the extracellular matrix is mediated by integrins, a family of transmembrane receptors that compartmentalise signalling and organise the cytoskeleton. Adhesion receptors provide spatial cues to cells to allow them to respond to growth factor and cyto...

  1. Cell adhesion behavior on the silicone rubber surface modified by using ion beam irradiation

    International Nuclear Information System (INIS)

    In this study we studied cell adhesion and proliferation on the surface of a silicone rubber modified by ion beam irradiation. The surface property of the irradiated silicone rubber was characterized by water contact angle and FT-IR analyses. It was observed that human (HEK293) fibroblast cells exhibit strong adhesion to the irradiated silicone surface. This enhanced adhesion of mammalian cells can be attributed to the increase in the hydrophilicity of the silicone surface by ion beam irradiation

  2. Multiple effects of electroporation on the adhesive behaviour of breast cancer cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    Pehlivanova Viktoria N

    2012-03-01

    Full Text Available Abstract Background Recently electroporation using biphasic pulses was successfully applied in clinical developments for treating tumours in humans and animals. We evaluated the effects of electrical treatment on cell adhesion behaviour of breast cancer cells and fibroblasts. By applying bipolar electrical pulses we studied short- and long-lived effects on cell adhesion and survival, actin cytoskeleton and cell adhesion contacts in adherent cancer cells and fibroblasts. Methods Two cancer cell lines (MDA-MB-231 and MCF-7 and one fibroblast cell line 3T3 were used. Cells were exposed to high field intensity (200 - 1000 V/cm. Cell adhesion and survival after electrical exposure were studied by crystal violet assay and MTS assay. Cytoskeleton rearrangement and cell adhesion contacts were visualized by actin staining and fluorescent microscope. Results The degree of electropermeabilization of the adherent cells elevated steadily with the increasing of the field intensity. Adhesion behaviour of fibroblasts and MCF-7 was not significantly affected by electrotreatment. Interestingly, treating the loosely adhesive cancer cell line MDA-MB-231 with 200 V/cm and 500 V/cm resulted in increased cell adhesion. Cell replication of both studied cancer cell lines was disturbed after electropermeabilization. Electroporation influenced the actin cytoskeleton in cancer cells and fibroblasts in different ways. Since it disturbed temporarily the actin cytoskeleton in 3T3 cells, in cancer cells treated with lower and middle field intensity actin cytoskeleton was well presented in stress fibers, filopodia and lamellipodia. The electrotreatment for cancer cells provoked preferentially cell-cell adhesion contacts for MCF-7 and cell-ECM contacts for MDA-MB- 231. Conclusions Cell adhesion and survival as well as the type of cell adhesion (cell-ECM or cell-cell adhesion induced by the electroporation process is cell specific. The application of suitable electric pulses can

  3. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Science.gov (United States)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  4. Intercellular cell adhesion molecule-1 and selectin ligands in acute cardiac allograft rejection: a study on gene-deficient mouse models

    Czech Academy of Sciences Publication Activity Database

    Lácha, J.; Bushell, A.; Smetana, K.; Rossmann, P.; Přibylová, Petra; Wood, K.; Malý, Petr

    2002-01-01

    Roč. 2002, č. 71 (2002), s. 311-318. ISSN 0741-5400 R&D Projects: GA ČR GA301/97/0234 Institutional research plan: CEZ:AV0Z5052915 Keywords : selectin ligand * fucosyltransferase * LFA-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.132, year: 2002

  5. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    OpenAIRE

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  6. An adhesion-dependent switch between mechanisms that determine motile cell shape.

    Directory of Open Access Journals (Sweden)

    Erin L Barnhart

    2011-05-01

    Full Text Available Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes.

  7. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...... the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR....

  8. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells.

    Directory of Open Access Journals (Sweden)

    Indrayani Waghmare

    Full Text Available Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib- surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells.

  9. Cells adhesion and growth on gold nanoparticle grafted glass

    International Nuclear Information System (INIS)

    The surface of glass substrate was plasma treated, coated by gold nano-structures and subsequently grafted with nanoparticles. The samples were plasma treated, sputtered with Au nanostructures which was followed by grafting with biphenyl-4,4′-dithiol (BPD) and then gold nanoparticles. The wettability, optical and chemical properties and surface morphology were studied. The adhesion and proliferation of vascular smooth muscle cells (VSMCs) on the samples were investigated in-vitro as well. Grafting of gold nanoparticles with the dithiol increases the UV–vis absorbance, the surface becomes more hydrophobic, rougher and more rugged compared to pristine, sputtered and only dithiol treated surface. Gold nano-particles bound over dithiol and Au nanostructures cause better cell proliferation than purely BPD treated or pristine glass.

  10. Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner

    International Nuclear Information System (INIS)

    Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.

  11. Alcohol inhibits cell-cell adhesion mediated by human L1 [published erratum appears in J Cell Biol 1996 Jun;133(5):1139-40

    OpenAIRE

    1996-01-01

    Mental retardation, hydrocephalus, and agenesis of the corpus callosum are observed both in fetal alcohol syndrome (FAS) and in children with mutations in the gene for the cell adhesion molecule L1. We studied the effects of ethanol on cell-cell adhesion in mouse fibroblasts transfected with human L1. L1-transfected fibroblasts exhibited increased cell-cell adhesion compared with wild-type or vector- transfected controls. Ethanol potently and completely inhibited L1- mediated adhesion both in...

  12. Direct observation of catch bonds involving cell-adhesion molecules

    Science.gov (United States)

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  13. Modulation of lens cell adhesion molecules by particle beams

    Science.gov (United States)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  14. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    OpenAIRE

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present ...

  15. Activated leukocyte cell adhesion molecule expression predicts lymph node metastasis in oral squamous cell carcinoma.

    NARCIS (Netherlands)

    Brand, M. van den; Takes, R.P.; Blokpoel-deRuyter, M.; Slootweg, P.J.; Kempen, L.C.L.T. van

    2010-01-01

    Lymphatic metastasis of oral squamous cell carcinoma (SCC) is important for prognosis and clinical decision making concerning the treatment of the neck but may be difficult to detect. Activated leukocyte cell adhesion molecule (ALCAM), has been shown to correlate with prognosis or tumor grade in dif

  16. Rupture force of cell adhesion ligand tethers modulates biological activities of a cell-laden hydrogel.

    Science.gov (United States)

    Lee, Min Kyung; Park, Jooyeon; Wang, Xuefeng; Roein-Peikar, Mehdi; Ko, Eunkyung; Qin, Ellen; Lee, Jonghwi; Ha, Taekjip; Kong, Hyunjoon

    2016-04-01

    Recent efforts to design a synthetic extracellular matrix for cell culture, engineering, and therapies greatly contributed to addressing biological roles of types and spatial organization of cell adhesion ligands. It is often suggested that ligand-matrix bond strength is another path to regulate cell adhesion and activities; however tools are lacking. To this end, this study demonstrates that a hydrogel coupled with integrin-binding deoxyribonucleic acid (DNA) tethers with pre-defined rupture forces can modulate cell adhesion, differentiation, and secretion activities due to the changes in the number and, likely, force of cells adhered to a gel. The rupture force of DNA tethers was tuned by altering the spatial arrangement of matrix-binding biotin groups. The DNA tethers were immobilized on a hydrogel of alginate grafted with biotin using avidin. Mesenchymal stem cells showed enhanced adhesion, neural differentiation, and paracrine secretion when cultured on the gel coupled with DNA tethers with higher rupture forces. Such innovative cell-matrix interface engineering would be broadly useful for a series of materials used for fundamental and applied studies on biological cells. PMID:26912186

  17. Adhesion of different cell cycle human hepatoma cells to endothelial cells and roles of integrin β1

    Institute of Scientific and Technical Information of China (English)

    Guan-Bin Song; Jian Qin; Qing Luo; Xiao-Dong Shen; Run-Bin Yan; Shao-Xi Cai

    2005-01-01

    AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721)to human umbilical vein endothelial cells (ECV-304),expression of adhesive molecule integrinβ1 in SMMC-7721cells and its contribution to this adhesive course.METHODS: Adhesive force of SMMC-7721 cells to endothelialcells was measured using micropipette aspiration technique.Synchronous G1 and S phase SMMC-7721 cells wereachieved by thymine-2-deoxyriboside and colchicinessequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronousrates of SMMC-7721 cells and expression of integrinβ1 inSMMC-7721 cells were detected by flow cytometer.RESULTS: The percentage of cell cycle phases of generalSMMC-7721 cells was 11.01% in G2/M phases, 53.51% inG0/G1 phase, and 35.48% in S phase. The synchronous ratesof G1 and S phase SMMC-7721 cells amounted to 74.09%and 98.29%, respectively. The adhesive force of SMMC-7721cells to endothelial cells changed with the variations ofadhesive time and presented behavior characteristics ofadhesion and de-adhesion. S phase SMMC-7721 cells had higheradhesive forces than G1 phase cells [(307.65±92.10)× 10-10Nvs (195.42±60.72)×10-10N, P<0.01]. The expressivefluorescent intensity of integrinβ1 in G1 phase SMMC-7721cells was depressed more significantly than the values ofS phase and general SMMC-7721cells. The contribution ofadhesive integrinβ1 was about 53% in this adhesive course.CONCLUSION: SMMC-7721 cells can be synchronizedpreferably in G1 and S phases with thymine-2-deoxyribosideand colchicines. The adhesive molecule integrinβ1 expressesa high level in SMMC-7721 cells and shows differences invarious cell cycles, suggesting integrin β1 plays an importantrole in adhesion to endothelial cells. The change of adhesiveforces in different cell cycle SMMC-7721 cells indicatesthat S phase cells play predominant roles possibly whilethey interact with endothelial cells.

  18. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  19. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization

    Science.gov (United States)

    Datla, Srinivasa Raju; McGrail, Daniel J.; Vukelic, Sasa; Huff, Lauren P.; Lyle, Alicia N.; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K.; Hilenski, Lula L.; Terada, Lance S.; Dawson, Michelle R.; Lassègue, Bernard

    2014-01-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  20. Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach.

    Science.gov (United States)

    Choi, Chang Kyoung; Sukhthankar, Mugdha; Kim, Chul-Ho; Lee, Seong-Ho; English, Anthony; Kihm, Kenneth D; Baek, Seung Joon

    2010-01-15

    Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed-time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties. In the presented study, we used stable human colorectal cancer cell lines ectopically expressing COX-1, COX-2, and 15LOX-1, to investigate whether expression of COX-1, COX-2, or 15LOX-1 would affect cell adhesion using our opto-electric methodology. In a fixed-time point experiment, only COX-1- and COX-2-expressing cells enhanced phosphorylation of focal adhesion kinase, but all the transfected cells showed invasion activity. However, in a real-time experiment using opto-electric approaches, transmitted cellular morphology was much different with tight adhesion being shown in COX-2 expressing cells, as imaged by differential interference contrast microscopy (DICM) and interference reflection contrast microscopy (IRCM). Furthermore, micro-impedance measurements showed a continued increase in both resistance and reactance of COX- and LOX-transfected cells, consistent with the imaging data. Our data indicate that both COX- and LOX-expressing cells have strong cell-to-cell and cell-to-substrate adhesions, and that cell imaging analysis with cell impedance data generates fully reliable results on cell adhesion measurement. PMID:20026301

  1. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    Science.gov (United States)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  2. Laminin-dependent and laminin-independent adhesion of human melanoma cells to sulfatides

    DEFF Research Database (Denmark)

    Roberts, D D; Wewer, U M; Liotta, L A; Ginsburg, V

    1988-01-01

    Sulfatides (galactosylceramide-I3-sulfate) but not neutral glycolipids or gangliosides adsorbed on plastic promote adhesion of the human melanoma cell line G361. Direct adhesion of G361 cells requires densities of sulfatide greater than 1 pmol/mm2. In the presence of laminin, however, specific...

  3. Simple and Biocompatible Ion Beam Micropatterning of a Cell-Repellent Polymer on Cell-Adhesive Surfaces to Manipulate Cell Adhesion.

    Science.gov (United States)

    Hwang, In-Tae; Jung, Chan-Hee; Jung, Chang-Hee; Choi, Jae-Hak; Shin, Kwanwoo; Yoo, Young-Do

    2016-02-01

    In this paper, the simple and biocompatible micropatterning of cell-repellent poly(N-isopropylacrylamide) (PNIPAAm) on a cell-adhesive substrate by ion beam micropatterning to control cell adhesion is described. Cell-repellent PNIPAAm films spin-coated on cell-adhesive tissue culture polystyrene (TCPS) substrates were selectively irradiated by energetic proton ions at various fluences through a pattern mask, and subsequently developed to create the micropatterns of PNIPAAm. Well-defined negative-type PNIPAAm micropatterns were successfully created on the TCPS substrates at fluences higher than 5 x 10¹⁴ ions/cm², and their chemical properties were dependent on the fluence. Moreover, based on the results of the protein adsorption and in-vitro cell culture tests, 200 µm well-defined micropatterns of mammalian cells were clearly formed on the PNIPAAm-micropatterned TCPS substrates though the preferential adsorption and growth of cells on the TCPS regions due to the strong cell-repellency of PNIPAAm. PMID:27305772

  4. The Cell Adhesion-associated Protein Git2 Regulates Morphogenetic Movements during Zebrafish Embryonic Development

    OpenAIRE

    Yu, Jianxin A.; Foley, Fiona C.; Amack, Jeffrey D.; Christopher E Turner

    2010-01-01

    Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new ...

  5. Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping

    International Nuclear Information System (INIS)

    The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ∼ 20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites.

  6. Dennexin peptides modeled after the homophilic binding sites of the neural cell adhesion molecule (NCAM) promote neuronal survival, modify cell adhesion and impair spatial learning

    DEFF Research Database (Denmark)

    Køhler, Lene B; Christensen, Claus; Rossetti, Clara; Fantin, Martina; Sandi, Carmen; Bock, Elisabeth; Berezin, Vladimir

    2010-01-01

    Neural cell adhesion molecule (NCAM)-mediated cell adhesion results in activation of intracellular signaling cascades that lead to cellular responses such as neurite outgrowth, neuronal survival, and modulation of synaptic activity associated with cognitive processes. The crystal structure of the...... between Ig1 and Ig3 and between Ig2 and Ig2, respectively, observed in the crystal structure. Although the two dennexin peptides differed in amino acid sequence, they both modulated cell adhesion, reflected by inhibition of NCAM-mediated neurite outgrowth. Both dennexins also promoted neuronal survival...... immunoglobulin (Ig) 1-2-3 fragment of the NCAM ectodomain has revealed novel mechanisms for NCAM homophilic adhesion. The present study addressed the biological significance of the so called dense zipper formation of NCAM. Two peptides, termed dennexinA and dennexinB, were modeled after the contact interfaces...

  7. A conserved NXIP motif is required for cell adhesion properties of the syndecan-4 ectodomain

    DEFF Research Database (Denmark)

    Whiteford, James R; Couchman, John R

    2006-01-01

    Syndecans are cell surface proteoglycans involved in cell adhesion and motility. Syndecan-4 is an important component of focal adhesions and is involved in cytoskeletal reorganization. Previous work has shown that the syndecan-4 ectodomain can support cell attachment. Here, three vertebrate...... syndecan-4 ectodomains were compared, including that of the zebrafish, and we have demonstrated that the cell binding activity of the syndecan-4 ectodomain is conserved. Cell adhesion to the syndecan-4 ectodomain appears to be a characteristic of mesenchymal cells. Comparison of syndecan-4 ectodomain...... sequences led to the identification of three conserved regions of sequence, of which the NXIP motif is important for cell binding activity. We have shown that cell adhesion to the syndecan-4 ectodomain involves beta1 integrins in several cell types....

  8. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R; Hermann, G G; Zeuthen, J; Laerum, O D; Walsh, F S; Bock, E

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... line (BT4Cn). Upon intracerebral implantation with BT4Cn cells and different clones of NCAM-transfected cells, all animals developed neurological symptoms within 13-16 days. However, the tumors showed different growth characteristics. The NCAM-transfected BT4Cn cells were localized in the region of the...

  9. Nitric Oxide Inhibits Hetero-adhesion of Cancer Cells to Endothelial Cells: Restraining Circulating Tumor Cells from Initiating Metastatic Cascade

    Science.gov (United States)

    Lu, Yusheng; Yu, Ting; Liang, Haiyan; Wang, Jichuang; Xie, Jingjing; Shao, Jingwei; Gao, Yu; Yu, Suhong; Chen, Shuming; Wang, Lie; Jia, Lee

    2014-03-01

    Adhesion of circulating tumor cells (CTCs) to vascular endothelial bed becomes a crucial starting point in metastatic cascade. We hypothesized that nitric oxide (NO) may prevent cancer metastasis from happening by its direct vasodilation and inhibition of cell adhesion molecules (CAMs). Here we show that S-nitrosocaptopril (CAP-NO, a typical NO donor) produced direct vasorelaxation that can be antagonized by typical NO scavenger hemoglobin and guanylate cyclase inhibitor. Cytokines significantly stimulated production of typical CAMs by the highly-purified human umbilical vein endothelial cells (HUVECs). CAP-NO inhibited expression of the stimulated CAMs (particularly VCAM-1) and the resultant hetero-adhesion of human colorectal cancer cells HT-29 to the HUVECs in a concentration-dependent manner. The same concentration of CAP-NO, however, did not significantly affect cell viability, cell cycle and mitochondrial membrane potential of HT-29, thus excluding the possibility that inhibition of the hetero-adhesion was caused by cytotoxicity by CAP-NO on HT-29. Hemoglobin reversed the inhibition of CAP-NO on both the hetero-adhesion between HT-29 and HUVECs and VCAM-1 expression. These data demonstrate that CAP-NO, by directly releasing NO, produces vasorelaxation and interferes with hetero-adhesion of cancer cells to vascular endothelium via down-regulating expression of CAMs. The study highlights the importance of NO in cancer metastatic prevention.

  10. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules

    OpenAIRE

    Wolfram Tobias; Spatz Joachim P; Burgess Robert W

    2008-01-01

    Abstract Background Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-depende...

  11. Tyrosine Phosphorylation of CD13 Regulates Inflammatory Cell-Cell Adhesion and Monocyte Trafficking

    OpenAIRE

    Subramani, Jaganathan; Ghosh, Mallika; Rahman, M. Mamunur; Caromile, Leslie A.; Gerber, Claire; Rezaul, Karim; David K. Han; Shapiro, Linda H.

    2013-01-01

    CD13 is a large cell surface peptidase expressed on the monocytes and activated endothelial cells important for homing to and resolving the damaged tissue at sites of injury. We have previously shown that crosslinking of human monocytic CD13 with activating antibodies induces strong adhesion to endothelial cells in a tyrosine kinase- and microtubule-dependent manner. In the current study we examined the molecular mechanisms underlying these observations in vitro and in vivo. We found that cro...

  12. Red cell adhesion molecules, foetal haemoglobin and endothelial factors in sickle cell disorders

    OpenAIRE

    Mundee, Y.

    2001-01-01

    Sickle cell anaemia (SS) is a haemoglobinopathy involving production of sickle haemoglobin (HbS, β⁶Glu-->Val), which is able to polymerise leading to vaso-occlusion. Hydroxyurea (HU) treatment increases foetal haemoglobin (HbF) levels but decreases vaso-occlusion and red cell adhesion molecule (AM) expression, and therefore improves clinical symptoms. In this thesis, the contribution of AMs, HbF and endothelial factors to the severity of sickle cell disease has been studied....

  13. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion

    DEFF Research Database (Denmark)

    Iba, K; Albrechtsen, R; Gilpin, B J;

    1999-01-01

    tumor cell adhesion. We found that the disintegrin-like domain of human ADAM 15 supported adhesion of alphavbeta3-expressing A375 melanoma cells. In the case of human ADAM 12, however, recombinant polypeptides of the cysteine-rich domain but not the disintegrin-like domain supported cell adhesion of a...... panel of carcinoma cell lines. On attachment to recombinant polypeptides from the cysteine-rich domain of human ADAM 12, most tumor cell lines, such as MDA-MB-231 breast carcinoma cells, were rounded and associated with numerous actin-containing filopodia and used a cell surface heparan sulfate...... proteoglycan to attach. Finally, we demonstrated that authentic full-length human ADAM 12 could bind to heparin Sepharose. Together these results suggest a novel role of the cysteine-rich domain of ADAM 12 -- that of supporting tumor cell adhesion....

  14. Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Makoto, E-mail: matsuoka@den.hokudai.ac.jp [Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Akasaka, Tsukasa [Department of Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Totsuka, Yasunori [Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan); Watari, Fumio [Department of Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586 (Japan)

    2010-10-15

    In recent years, carbon nanotubes (CNTs) have been considered potential biomedical materials because of their unique character. The aim of this study was to investigate the response of a human osteoblast-like cell line - Saos-2 - on single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). The surface of a culture dish was coated with CNTs, and Saos-2 cells were cultured for three days. Cell morphology, viability, alkaline phosphatase (ALP) activity, adhesion, and vinculin expression were evaluated. The result showed high cell viability and strong adhesion to MWCNTs. Saos-2 cultured on MWCNTs exhibited vinculin expression throughout the cell body, while the cells attached to SWCNTs and glass were mostly limited to their periphery. Our results suggest that CNT coatings promote cell activity and adhesiveness. These findings indicate that MWCNTs could be used as surface coating materials to promote cell adhesion.

  15. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells.

    Science.gov (United States)

    Nassif, X; Lowy, J; Stenberg, P; O'Gaora, P; Ganji, A; So, M

    1993-05-01

    Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low- and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence. PMID:8332064

  16. Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth muscle cells through MAPK and PADI4-dependent NF-kB and AP-1 pathways.

    Science.gov (United States)

    Park, Bongkyun; Yim, Joung-Han; Lee, Hong-Kum; Kim, Byung-Oh; Pyo, Suhkneung

    2015-01-01

    Cell adhesion molecules play a critical role in inflammatory processes and atherosclerosis. In this study, we investigated the effect of ramalin, a chemical compound from the Antarctic lichen Ramalina terebrata, on vascular cell adhesion molecule-1 (VCAM-1) expression induced by TNF-α in vascular smooth muscular cells (VSMCs). Pretreatment of VSMCs with ramalin (0.1-10 μg/mL) concentration-dependently inhibited TNF-α-induced VCAM-1 expression. Additionally, ramalin inhibited THP-1 (human acute monocytic leukemia cell line) cell adhesion to TNF-α-stimulated VSMCs. Ramalin suppressed TNF-α-induced production of reactive oxygen species (ROS), PADI4 expression, and phosphorylation of p38, ERK, and JNK. Moreover, ramalin inhibited TNF-α-induced translocation of NF-κB and AP-1. Inhibition of PADI4 expression by small interfering RNA or the PADI4-specific inhibitor markedly attenuated TNF-α-induced activation of NF-κB and AP-1 and VCAM-1 expression in VSMCs. Our study provides insight into the mechanisms underlying ramalin activity and suggests that ramalin may be a potential therapeutic agent to modulate inflammation within atherosclerosis. PMID:25494680

  17. Evaluation of the Correlation between Focal Adhesion Kinase Phosphorylation and Cell Adhesion Force Using “DEP” Technology

    Directory of Open Access Journals (Sweden)

    Huaang-Youh Hurng

    2012-05-01

    Full Text Available Dielectrophoresis (DEP is the phenomenon in which a particle, such as a living cell, is polarized and moved by electrical gravity in a non-uniform electric field. In the present study, the DEP force is utilized to act on the cells to induce spatial movement for investigating the correlation between the cell adhesion force and activation level of focal adhesion kinase (FAK. The DEP force produced by the non-uniform electric field was used to measure the cell adhesion force of ECV304 cells, on type 1 collagen (COL1- and fibronectin (FN-coated polydimethylsiloxane (PDMS membranes. For COL1-coating, ECV304 cells revealed weak and variable adhesion force (0.343–0.760 nN in the first eight hours of incubation. Interestingly, the cell adhesion force of ECV304 at two and five hours of cultivation was significantly high and matched their FAK activation level. In comparison, ECV304 on FN-coated membrane had higher and more stable cell adhesion force (0.577–2.053 nN. FN coating intensified the cell adhesion force of ECV304 with culture time and similar outcome was present on the activation level of FAK. Therefore, this study demonstrated a relationship between cell adhesion force and FAK activation level that was dependant on the choice of the extracellular matrix (ECM component. Subsequently, two tyrosine kinase inhibitors (AG18 and genistein and one PI3K inhibitor (LY294002 were applied to study the influence of protein phosphorylation on the cell adhesion force. FAK plays an important role on cell attachment and DEP force measurement is a useful technique for studying cell adhesion.

  18. Maspin Regulates Endothelial Cell Adhesion and Migration through an Integrin Signaling Pathway*

    OpenAIRE

    Qin, Li; Zhang, Ming

    2010-01-01

    Maspin has been identified as a potent angiogenesis inhibitor. However, the molecular mechanism responsible for its anti-angiogenic property is unclear. In this study, we examined the effect of maspin on endothelial cell (EC) adhesion and migration in a cell culture system. We found that maspin was expressed in blood vessels ECs and human umbilical vein endothelial cells (HUVECs). Maspin significantly enhanced HUVEC cell adhesion to various matrix proteins. This effect was dependent on the ac...

  19. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Multhaupt, Hinke A. B.; Couchman, John R.

    2015-01-01

    breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods: The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry......, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two......-tailed paired t-test and one-way ANOVA with Tukey¿s post-hoc test were used in the analysis of data. Results: MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced...

  20. The Relativity Study between Soluble E-selectin and Soluble Intercellular Adhesion Molecule-1 and Diabetic Retinopathy%sE-选择素和sICAM-1与糖尿病性视网膜病变的相关性研究

    Institute of Scientific and Technical Information of China (English)

    张炜; 蔡雷鸣; 张燕; 杜培宜; 谭龙益; 王梅芳; 张蓉; 孙国庆

    2015-01-01

    目的:检测糖尿病性视网膜病变患者血清中sE-选择素和sICAM-1的水平,研究sE-选择素和sICAM-1在糖尿病性视网膜病变发生、发展中的作用及其二者之间的关系。方法选择糖尿病性视网膜病变患者50例;无糖尿病性视网膜病变的2型糖尿病患者100例;年龄、性别相当的正常对照组50例。空腹抽静脉血,采用酶联免疫吸附法(ELISA法)对sE-选择素和sICAM-1进行检测,比较各组之间统计学差异以及sE-选择素和sICAM-1之间的相关性。结果糖尿病性视网膜病变组(A组)和无糖尿病性视网膜病变组(B组)sE-选择素和sICAM-1与对照组(C组)比较均有显著性差异(P<0.01);糖尿病性视网膜病变组(A组)与无糖尿病性视网膜病变组(B组)比较,差异有显著性意义(P<0.01)。糖尿病性视网膜病变组中sE-选择素和sICAM-1呈正相关(r=0.836,P<0.001)。结论 sE-选择素和sICAM-1的测定或许有助于糖尿病性视网膜病变的早期诊断,可能对糖尿病视网膜病变发生和发展有提示意义。%ObjectiveTo observe the level of serum soluble E-selectin (sE-selectin) and soluble intercellular adhesion molecule-1(sICAM-1) in diabetic retinopathy patients, and to detect the relationship between the sE-selectin and sICAM-1 and the diabetic retinopathy.MethodsThe serum levels of E-selectin (sE-selectin) and intercellular adhesion molecule-1(sICAM-1) were measured respectively in diabetic retinopathy patients and diabetic patients without diabetic retinopathy as well as normal people. The data were analyzed between the three groups.ResultsThe level of sE-selectin and sICAM-1 in normal group were signiifcantly lower than the diabetic retinopathy patients and diabetic patients without diabetic retinopathy (P<0.01). The level of sE-selectin and sICAM-1 in diabetic retinopathy patients were signiifcantly higher than the diabetic patients without diabetic

  1. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Matthias; Dahm, Manfred; Vahl, Christian-F, E-mail: mgabriel@uni-mainz.de [Department of Cardiothoracic and Vascular Surgery, Johannes Gutenberg-University School of Medicine, Mainz (Germany)

    2011-06-15

    Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the modified surfaces.

  2. SU-8 hollow cantilevers for AFM cell adhesion studies

    International Nuclear Information System (INIS)

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m−1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification. (paper)

  3. Naxos disease: Cardiocutaneous syndrome due to cell adhesion defect

    Directory of Open Access Journals (Sweden)

    Protonotarios Nikos

    2006-03-01

    Full Text Available Abstract Naxos disease is a recessively inherited condition with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C and a cutaneous phenotype, characterised by peculiar woolly hair and palmoplantar keratoderma. The disease was first described in families originating from the Greek island of Naxos. Moreover, affected families have been identified in other Aegean islands, Turkey, Israel and Saudi Arabia. A syndrome with the same cutaneous phenotype and predominantly left ventricular involvement has been described in families from India and Ecuador (Carvajal syndrome. Woolly hair appears from birth, palmoplantar keratoderma develop during the first year of life and cardiomyopathy is clinically manifested by adolescence with 100% penetrance. Patients present with syncope, sustained ventricular tachycardia or sudden death. Symptoms of right heart failure appear during the end stages of the disease. In the Carvajal variant the cardiomyopathy is clinically manifested during childhood leading more frequently to heart failure. Mutations in the genes encoding the desmosomal proteins plakoglobin and desmoplakin have been identified as the cause of Naxos disease. Defects in the linking sites of these proteins can interrupt the contiguous chain of cell adhesion, particularly under conditions of increased mechanical stress or stretch, leading to cell death, progressive loss of myocardium and fibro-fatty replacement. Implantation of an automatic cardioverter defibrillator is indicated for prevention of sudden cardiac death. Antiarrhythmic drugs are used for preventing recurrences of episodes of sustained ventricular tachycardia and classical pharmacological treatment for congestive heart failure, while heart transplantation is considered at the end stages.

  4. SU-8 hollow cantilevers for AFM cell adhesion studies

    Science.gov (United States)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m‑1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  5. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    Science.gov (United States)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  6. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  7. Evaluation of C-Reactive Protein, Endothelin-1, Adhesion Molecule(s), and Lipids as Inflammatory Markers in Type 2 Diabetes Mellitus Patients

    OpenAIRE

    2007-01-01

    This study compared lipids, the product of lipid peroxidation malondialdehyde (MDA), the acute phase reactant high-sensitive C-reactive protein (hsCRP), endothelin-1 (ET-1), P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) between healthy controls, subjects with ischemic heart disease (IHD) and type 2 diabetes mellitus (DM) subjects who did not perform coronary artery bypass graft (CABG) surgery as well as type 2 DM subjects who performed ...

  8. Syndecan-4 and integrins: combinatorial signaling in cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    site for protein kinase C(&agr;) and phosphatidylinositol 4, 5-bisphosphate acts as a dominant negative inhibitor of focal adhesion formation. Focal adhesion induction does not require interaction between heparan sulfate glycosaminoglycan and ligand but can occur when non-glycanated core protein is...

  9. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: Regulatory roles of cell surface glycans

    OpenAIRE

    Suzuki, Osamu; Abe, Masafumi

    2014-01-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic ac...

  10. Honokiol suppresses TNF-α-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IκBα

    Science.gov (United States)

    Chen, Po-Jen; Wang, Yu-Ling; Kuo, Liang-Mou; Lin, Chwan-Fwu; Chen, Chun-Yu; Tsai, Yung-Fong; Shen, Jiann-Jong; Hwang, Tsong-Long

    2016-01-01

    Adhesion molecules expressed on cerebral endothelial cells (ECs) mediate leukocyte recruitment and play a significant role in cerebral inflammation. Increased levels of adhesion molecules on the EC surface induce leukocyte infiltration into inflammatory areas and are thus hallmarkers of inflammation. Honokiol, isolated from the Chinese medicinal herb Magnolia officinalis, has various pharmacological activities, including anti-inflammatory effects, yet the nature of honokiol targeting molecules remains to be revealed. Here, we investigated the inhibitory effect of honokiol on neutrophil adhesion and vascular cell adhesion molecule-1 (VCAM-1) expression, which underlie its molecular target, and mechanisms for inactivating nuclear factor κ enhancer binding protein (NF-κB) in mouse cerebral ECs. Honokiol inhibited tumour necrosis factor-α (TNF-α)-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs. The inflammatory transcription factor NF-κB was downregulated by honokiol. Honokiol significantly blocked TNF-α–induced NF-κB p65 nuclear translocation and degradation of the proteasome-dependent inhibitor of NF-κB α (IκBα). From docking model prediction, honokiol directly targeted the ubiquitin–ubiquitin interface of Lys48-linked polychains. Moreover, honokiol prevented the TNF-α-induced Lys48-linked polyubiquitination, including IκBα-polyubiquitin interaction. Honokiol has protective anti-inflammatory effects on TNF-α-induced neutrophil adhesion and VCAM-1 gene expression in cerebral ECs, at least in part by directly inhibiting ubiquitination-mediated IκBα degradation and then preventing NF-κB nuclear translocation. PMID:27212040

  11. Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons

    Directory of Open Access Journals (Sweden)

    Vladimir eSytnyk

    2016-02-01

    Full Text Available Cell adhesion molecules of the immunoglobulin superfamily (IgSF including the neural cell adhesion molecule (NCAM and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  12. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    Science.gov (United States)

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  13. Complementarity of PALM and SOFI for super-resolution live cell imaging of focal adhesions

    CERN Document Server

    Deschout, Hendrik; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-01-01

    Live cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenging task for super-resolution microscopy. We have addressed this important issue by combining photo-activated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed cell focal adhesion images, we investigated the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework was used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualized the dynamics of focal adhesions, and revealed local mean velocities around 190 nm per minute. The complementarity of PALM and SOFI was assessed in detail with a methodology that integrates a quantitative resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of m...

  14. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    International Nuclear Information System (INIS)

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of β1 integrin at the cell surface but had no effect on total cellular β1 integrin, indicating that VAMP3 is required for trafficking of β1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  15. Cellular Adhesion Tripeptide RGD Inhibits Growth of Human Ileocecal Adenocarcinoma Cells HCT-8 and Induces Apoptosis

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; ZENG Hong-bin; YANG Shao-juan; GAO Shen; HUANG Yi-bing; HOU Rui-zhen; ZHAO Mi-feng; XU Li; ZHANG Xue-zhong

    2007-01-01

    The tripeptide, Arg-Gly-Asp(RGD) motif is an integrin-recognition site found in adhesive proteins present in extracellular matrices(ECM) and in the blood. HCT-8 cells were treated with cellular adhesion tripeptide RGD at various concentrations. MTT assay was performed to examine the growth and proliferation of HCT-8 cells after treatment with RGD for 48 h. Haematoxylin and Eosin(HE) staining and electromicroscope were used to observe the morphology of apoptotic cells. Survivin and flow cytometry were also used to analyze the HCT-8 apoptosis. Cellular adhesion tripeptide RGD significantly inhibits the growth and proliferation of HCT-8 cells in a dose-dependent manner and induces apoptosis of HCT-8. These results indicate that cellular adhesion tripeptide RGD inhibits the growth and proliferation of tumor HCT-8 cell, probably by the aid of inducing apoptosis of HCT-8 cell.

  16. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    Science.gov (United States)

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. PMID:26952425

  17. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    Science.gov (United States)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  18. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  19. The evaluation of p,p′-DDT exposure on cell adhesion of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Low doses p,p′-DDT exposure disrupts cell–cell adhesion and cell–matrix adhesion in HepG2 cells. • Both oxidative stress and JAK/STAT3 pathway are activated in p,p′-DDT-treated HepG2 cells. • The stimulation of JAK/STAT3 pathway is mediated by oxidative stress. • p,p′-DDT regulates adhesion molecules via the JAK/STAT3 pathway. • p,p′-DDT stimulates JAK/STAT3 signal pathway and disrupts the expressions of cell adhesion molecules in nude mice models. - Abstract: Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p′-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p′-DDT, exposing HepG2 cells for 6 days, decreased cell–cell adhesion and elevated cell–matrix adhesion. Strikingly, p,p′-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p′-DDT-induced effects. p,p′-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p′-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p′-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p′-DDT profoundly promotes the adhesion process by decreasing cell–cell adhesion and inducing cell

  20. Expression and function of neural cell adhesion molecule during limb regeneration.

    OpenAIRE

    Maier, C E; Watanabe, M.(Niigata University, 950-2181, Niigata, Japan); Singer, M.; McQuarrie, I G; Sunshine, J.; Rutishauser, U.

    1986-01-01

    The neural cell adhesion molecule (NCAM) has been detected in regenerating limb bud of adult newts in addition to brain and peripheral nerves. In the regenerating tissue, NCAM was found primarily on mesenchymal cells and also in wound epidermis. Infusion of Fab fragments of antibodies to NCAM into limb buds at the early blastema stage delayed the regenerative process. Previous studies have indicated that NCAM serves as a homophilic ligand for adhesion among cells that express this molecule an...

  1. Homophilic interaction of the L1 family of cell adhesion molecules

    OpenAIRE

    Wei, Chun Hua; Ryu, Seong Eon

    2012-01-01

    Homophilic interaction of the L1 family of cell adhesion molecules plays a pivotal role in regulating neurite outgrowth and neural cell networking in vivo. Functional defects in L1 family members are associated with neurological disorders such as X-linked mental retardation, multiple sclerosis, low-IQ syndrome, developmental delay, and schizophrenia. Various human tumors with poor prognosis also implicate the role of L1, a representative member of the L1 family of cell adhesion molecules, and...

  2. Mass spectrometry assisted lithography for the patterning of cell adhesion ligands on self-assembled monolayers.

    Science.gov (United States)

    Kim, Young-Kwan; Ryoo, Soo-Ryoon; Kwack, Sul-Jin; Min, Dal-Hee

    2009-01-01

    Pattern of events: A simple and flexible method has been developed for patterning cell adhesion ligands. Locally erasing self-assembled monolayers with tri(ethyleneglycol) groups on a gold substrate by using a MALDI-TOF MS nitrogen laser and filling the exposed gold surface with an alkanethiol presenting carboxylic acid groups enables subsequent immobilization of maleimide and a cell adhesion peptide, which can then recognize cells (see scheme). PMID:19347909

  3. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    OpenAIRE

    Ivana Márcia Alves Diniz; Adriana Bona Matos; Márcia Martins Marques

    2015-01-01

    Background. We investigated the influence of laser phototherapy (LPT) on the survival of human mesenchymal stem cells (MSCs) submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs...

  4. Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase–null embryonic cells

    OpenAIRE

    Li, Xiao-Yan; Zhou, Xiaoming; Rowe, R. Grant; Hu, Yuexian; Schlaepfer, David D.; Ilić, Dusko; Dressler, Gregory; Park, Ann; Guan, Jun-Lin; Weiss, Stephen J.

    2011-01-01

    Mouse embryonic cells isolated from focal adhesion kinase (FAK)–null animals at embryonic day 7.5 display multiple defects in focal adhesion remodeling, microtubule dynamics, mechanotransduction, proliferation, directional motility, and invasion. To date, the ability of FAK to modulate cell function has been ascribed largely to its control of posttranscriptional signaling cascades in this embryonic cell population. In this paper, we demonstrate that FAK unexpectedly exerts control over an epi...

  5. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Flonia Levy-Adam

    Full Text Available Heparanase is a heparan sulfate (HS degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158-Asp(171, termed KKDC was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.

  6. Ochratoxim A alters cell adhesion and gap junction intercellular communication in MDCK cells

    International Nuclear Information System (INIS)

    Ochratoxin A (OTA) is one of the most potent renal carcinogens studied to date, but the mechanism of tumor formation by ochratoxin A remains largely unknown. Cell adhesion and cell-cell communication participate in the regulation of signaling pathways involved in cell proliferation and growth control and it is therefore not surprising that modulation of cell-cell signaling has been implicated in cancer development. Several nephrotoxicants and renal carcinogens have been shown to alter cell-cell signaling by interference with gap junction intercell communication (GJIC) and/or cell adhesion, and the aim of this study was to determine if disruption of cell-cell interactions occurs in kidney epithelial cells in response to OTA treatment. MDCK cells were treated with OTA (0-50 μM) for up to 24 h and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, expression and intracellular localization of Cx43, E-cadherin and β-catenin were determined by immunoblot and immunofluorescence analysis. A clear decrease in the distance of dye transfer was evident following treatment with OTA at concentrations/incubation times which did not affect cell viability. Consistent with the functional inhibition of GJIC, treatment with OTA resulted in a dose-dependent decrease in Cx43 expression. In contrast to Cx43, OTA did not alter total amount of the adherens junction proteins E-cadherin and β-catenin. Moreover, Western blot analysis of Triton X-100 soluble and insoluble protein fractions did not indicate translocation of cell adhesion molecules from the membrane to the cytoplasm. However, a ∼78 kDa fragment of β-catenin was detected in the detergent soluble fraction, indicating proteolytic cleavage of β-catenin. Immunofluorescence analysis also revealed changes in the pattern of both β-catenin and E-cadherin labeling, suggesting that OTA may alter cell-adhesion. Taken together, these data support the hypothesis that disruption of cell-cell

  7. Label-free continuous cell sorter with specifically adhesive oblique micro-grooves

    International Nuclear Information System (INIS)

    We report the development of a label-free continuous cell sorting method based on specific adhesivity between cells and surface-immobilized adhesion molecules. The separation of cells is induced by cross-flow adhesive force on micron-sized stripes with adhesion molecules immobilized on the surface. In order to accurately form the adhesive stripes on a microchannel wall, 1 µm wide micro-grooves are fabricated at a certain angle with respect to the flow direction using direct electron-beam lithography. Amino-functionalized parylene is used as the groove surface material, and streptavidin is immobilized on the entire surface, resulting in a surface with periodic adhesive patterns. The effectiveness of the proposed cell sorting principle is verified by flow-through experiments using functionalized particles as model cells. Measurements of the motion of biotin-coated microparticles show that the particles decelerated by specific adhesivity are displaced in the cross-flow direction. The observed cross-flow displacement is around 0.8% of the streamwise travelling distance. It is also shown that the rate of cross-flow displacement is independent of the flow rate or the stripe angle. Finally, it is demonstrated that a mixture of streptavidin- and biotin-coated microparticles can be completely separated after flowing over a 20 mm long patterned surface. The proposed label-free continuous lateral separation scheme has a wide range of potential applications for separation of cells which could not be distinguished by size or separated using dielectric forces

  8. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C

    DEFF Research Database (Denmark)

    Nybroe, O; Albrechtsen, M; Dahlin, J; Linnemann, D; Lyles, J M; Møller, C J; Bock, E

    1985-01-01

    The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B...

  9. Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells.

    Science.gov (United States)

    Gu, Yu-Chen; Kortesmaa, Jarkko; Tryggvason, Karl; Persson, Jenny; Ekblom, Peter; Jacobsen, Sten-Eirik; Ekblom, Marja

    2003-02-01

    Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis. PMID:12393739

  10. The Role of Lipid Rafts in Cancer Cell Adhesion and Migration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Murai

    2012-01-01

    Full Text Available Lipid rafts are cholesterol-enriched microdomains of the cell membrane and possess a highly dynamic nature. They have been involved in various cellular functions including the regulation of cell adhesion and membrane signaling through proteins within lipid rafts. The dynamic features of the cancer cell surface may modulate the malignant phenotype of cancer, including adhesion disorders and aggressive phenotypes of migration and invasion. Recently, it was demonstrated that lipid rafts play critical roles in cancer cell adhesion and migration. This article summarizes the important roles of lipid rafts in cancer cell adhesion and migration, with a focus on the current state of knowledge. This article will improve the understanding of cancer progression and lead to the development of novel targets for cancer therapy.

  11. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    International Nuclear Information System (INIS)

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases

  12. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong; Li, Xueqi, E-mail: xueqili075@yeah.net

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.

  13. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    Science.gov (United States)

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus. PMID:12903721

  14. In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell - endothelial cell interaction

    Directory of Open Access Journals (Sweden)

    Mees Soeren T

    2010-04-01

    Full Text Available Abstract Background Metastasis formation is the leading cause of death among colon cancer patients. We established a new in-situ model of in vivo microscopy of the lung to analyse initiating events of metastatic tumor cell adhesion within this typical metastatic target of colon cancer. Methods Anaesthetized CD rats were mechanically ventilated and 106 human HT-29LMM and T84 colon cancer cells were injected intracardially as single cell suspensions. Quantitative in vivo microscopy of the lung was performed in 10 minute intervals for a total of 40 minutes beginning with the time of injection. Results After vehicle treatment of HT-29LMM controls 15.2 ± 5.3; 14.2 ± 7.5; 11.4 ± 5.5; and 15.4 ± 6.5 cells/20 microscopic fields were found adherent within the pulmonary microvasculature in each 10 minute interval. Similar numbers were found after injection of the lung metastasis derived T84 cell line and after treatment of HT-29LMM with unspecific mouse control-IgG. Subsequently, HT-29LMM cells were treated with function blocking antibodies against β1-, β4-, and αv-integrins wich also did not impair tumor cell adhesion in the lung. In contrast, after hydrolization of sialylated glycoproteins on the cells' surface by neuraminidase, we observed impairment of tumor cell adhesion by more than 50% (p Conclusions These results demonstrate that the initial colon cancer cell adhesion in the capillaries of the lung is predominantly mediated by tumor cell - endothelial cell interactions, possibly supported by platelets. In contrast to reports of earlier studies that metastatic tumor cell adhesion occurs through integrin mediated binding of extracellular matrix proteins in liver, in the lung, the continuously lined endothelium appears to be specifically targeted by circulating tumor cells.

  15. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-02-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

  16. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity.

    Science.gov (United States)

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. PMID:27040256

  17. Characterization of bifidobacterial adhesion to intestinal epithelial cells

    OpenAIRE

    Gleinser, Marita

    2012-01-01

    Adhesion of probiotics is discussed as a prerequisite for the persistence and the colonization of the gut. Based on previous studies of our group, the strain B. bifidum S17 could be identified as promising candidate to investigate adhesion properties (Riedel et al., 2006a; Preising et al., 2010). Several E. coli-Bifidobacterium shuttle vectors with different antibiotic resistances were generated. Using a gusA reporter assay the promoter Pgap was shown to have detectable transcriptional activi...

  18. Integrin Activation by Regulated Dimerization and Oligomerization of Platelet Endothelial Cell Adhesion Molecule (Pecam)-1 from within the Cell

    OpenAIRE

    Zhao, Tieming; Newman, Peter J.

    2001-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 is a 130-kD transmembrane glycoprotein having six Ig homology domains within its extracellular domain and an immunoreceptor tyrosine–based inhibitory motif within its cytoplasmic domain. Previous studies have shown that addition of bivalent anti–PECAM-1 mAbs to the surface of T cells, natural killer cells, neutrophils, or platelets result in increased cell adhesion to immobilized integrin ligands. However, the mechanism by which this occur...

  19. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and...

  20. Activated leukocyte cell adhesion molecule and prognosis in acute ischemic stroke

    DEFF Research Database (Denmark)

    Smedbakken, Linda; Jensen, Jesper K; Hallén, Jonas;

    2011-01-01

    Biomarkers predicting mortality and functional outcome in stroke may be clinically helpful in identification of patients likely to benefit from intervention. Activated leukocyte cell adhesion molecule (ALCAM) is upregulated during neuroinflammation; we investigated whether ALCAM concentrations ar...

  1. Inflammatory mediators and cell adhesion molecules as indicators of severity of atherosclerosis: the Rotterdam Study

    NARCIS (Netherlands)

    M.P.M. de Maat (Moniek); M.L. Bots (Michiel); M.M.B. Breteler (Monique); J. Meijer (John); A.J. Kiliaan (Amanda); J.C.M. Witteman (Jacqueline); A. Hofman (Albert)

    2002-01-01

    textabstractInflammatory mediators and soluble cell adhesion molecules predict cardiovascular events. It is not clear whether they reflect the severity of underlying atherosclerotic disease. Within the Rotterdam Study, we investigated the associations of C-reactive protein (CRP), i

  2. PI3Kγ activation by CXCL12 regulates tumor cell adhesion and invasion

    International Nuclear Information System (INIS)

    Tumor dissemination is a complex process, in which certain steps resemble those in leukocyte homing. Specific chemokine/chemokine receptor pairs have important roles in both processes. CXCL12/CXCR4 is the most commonly expressed chemokine/chemokine receptor pair in human cancers, in which it regulates cell adhesion, extravasation, metastatic colonization, angiogenesis, and proliferation. All of these processes require activation of signaling pathways that include G proteins, phosphatidylinositol-3 kinase (PI3K), JAK kinases, Rho GTPases, and focal adhesion-associated proteins. We analyzed these pathways in a human melanoma cell line in response to CXCL12 stimulation, and found that PI3Kγ regulates tumor cell adhesion through mechanisms different from those involved in cell invasion. Our data indicate that, following CXCR4 activation after CXCL12 binding, the invasion and adhesion processes are regulated differently by distinct downstream events in these signaling cascades.

  3. Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow

    Directory of Open Access Journals (Sweden)

    Yu Du

    2015-11-01

    Full Text Available Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor–ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor–ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.

  4. Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration.

    Science.gov (United States)

    Machiyama, Hiroaki; Hirata, Hiroaki; Loh, Xia Kun; Kanchi, Madhu Mathi; Fujita, Hideaki; Tan, Song Hui; Kawauchi, Keiko; Sawada, Yasuhiro

    2014-08-15

    Cell adhesion complexes provide platforms where cell-generated forces are transmitted to the extracellular matrix (ECM). Tyrosine phosphorylation of focal adhesion proteins is crucial for cells to communicate with the extracellular environment. However, the mechanisms that transmit actin cytoskeletal motion to the extracellular environment to drive cell migration are poorly understood. We find that the movement of p130Cas (Cas, also known as BCAR1), a mechanosensor at focal adhesions, correlates with actin retrograde flow and depends upon actomyosin contraction and phosphorylation of the Cas substrate domain (CasSD). This indicates that CasSD phosphorylation underpins the physical link between Cas and the actin cytoskeleton. Fluorescence recovery after photobleaching (FRAP) experiments reveal that CasSD phosphorylation, as opposed to the association of Cas with Src, facilitates Cas displacement from adhesion complexes in migrating cells. Furthermore, the stabilization of Src-Cas binding and inhibition of myosin II, both of which sustain CasSD phosphorylation but mitigate Cas displacement from adhesion sites, retard cell migration. These results indicate that Cas promotes cell migration by linking actomyosin contractions to the adhesion complexes through a dynamic interaction with Src as well as through the phosphorylation-dependent association with the actin cytoskeleton. PMID:24928898

  5. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells.

    Science.gov (United States)

    Altamimi, M; Abdelhay, O; Rastall, R A

    2016-06-01

    The influence of five oligosaccharides (cellobiose, stachyose, raffinose, lactulose and chito-oligosaccharides) on the adhesion of eight gut bacteria (Bifidobacterium bifidum ATCC 29521, Bacteroides thetaiotaomicron ATCC 29148D-5, Clostridium leptum ATCC 29065, Blautia coccoides ATCC 29236, Faecalibacterium prausnitzii ATCC 27766, Bacteroides fragilis ATCC 23745, Clostridium difficile ATCC 43255 and Lactobacillus casei ATCC 393) to mucous secreting and non-mucous secreting HT-29 human epithelial cells, was investigated. In pure culture, the bacteria showed variations in their ability to adhere to epithelial cells. The effect of oligosaccharides diminished adhesion and the presence of mucus played a major factor in adhesion, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface. However, clostridia displayed almost the same level of adhesion either with or without mucus being present. Bl. coccoides adhesion was decreased by stachyose and cellobiose in non-mucus-secreting cells in pure culture, while in mixed faecal culture cellobiose displayed the highest antiadhesive activity with an overall average of 65% inhibition amongst tested oligomers and lactulose displayed the lowest with an average of 47.4%. Bifidobacteria, Bacteroides, lactobacilli and clostridia were inhibited within the following ranges 47-78%, 32-65%, 11.7-58% and 64-85% respectively. This means that clostridia were the most strongly influenced members of the microflora amongst the bacterial groups tested in mixed culture. In conclusion, introducing oligosaccharides which are candidate prebiotics into pure or mixed cultures has affected bacterial adhesion. PMID:27018325

  6. Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton.

    Science.gov (United States)

    Chen, Bin; Gao, Huajian

    2010-05-19

    Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tension is to shift the interfacial failure mode from cracklike propagation toward uniform bond failure within the contact region, thereby greatly increasing the adhesion lifetime. Since stress fibers are the primary load-bearing components of cells, as well as the basic functional units of cytoskeleton that facilitate cell adhesion, this study suggests a feasible mechanism by which cell adhesion could be actively controlled via cytoskeletal contractility and proposes that pre-tension may be a general principle in biological adhesion. PMID:20483323

  7. Nanofibers and nanoparticles from the insect-capturing adhesive of the Sundew (Drosera for cell attachment

    Directory of Open Access Journals (Sweden)

    Zhang Mingjun

    2010-08-01

    Full Text Available Abstract Background The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation. Results Atomic force microscopy (AFM conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded to Alcian Blue staining for polysaccharide. Transmission electron microscopy identified a low abundance of nanoparticles in different pattern form AFM observations. In addition, energy-dispersive X-ray spectroscopy revealed the presence of Ca, Mg, and Cl, common components of biological salts. Study of the material properties of the adhesive yielded high viscoelasticity from the liquid adhesive, with reduced elasticity observed in the dried adhesive. The ability of PC12 neuron-like cells to attach and grow on the network of nanofibers created from the dried adhesive demonstrated the potential of this network to be used in tissue engineering, and other biomedical applications. Conclusions This discovery demonstrates how a naturally occurring nanofiber and nanoparticle based nanocomposite from the adhesive of Sundew can be used for tissue engineering, and opens the possibility for further examination of natural plant adhesives for biomedical applications.

  8. Quantitative multicolor compositional imaging resolves molecular domains in cell-matrix adhesions.

    Directory of Open Access Journals (Sweden)

    Eli Zamir

    Full Text Available BACKGROUND: Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: We present here a compositional imaging approach for the analysis and display of multi-component compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focal-adhesion-associated complexes to Rho-kinase inhibition. CONCLUSIONS/SIGNIFICANCE: Multicolor compositional imaging resolves "molecular signatures" characteristic to focal-adhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional "contents-resolved" dimensions. We propose that compositional imaging can serve as a powerful tool for studying complex multi-molecular assemblies in cells and for mapping their distribution at sub-micron resolution.

  9. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    Science.gov (United States)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  10. Covalent and stable CuAAC modification of silicon surfaces for control of cell adhesion

    DEFF Research Database (Denmark)

    Vutti, Surendra; Buch-Månson, Nina; Schoffelen, Sanne; Bovet, Nicolas Emile; Martinez, Karen Laurence; Meldal, Morten Peter

    2015-01-01

    the vapor or liquid phase. In this work, we compared these two methods for oxidized silicon surfaces and thoroughly characterized the functionalization steps by tagging and fluorescence imaging. We demonstrate that the vapor-phase functionalization only provided transient surface modification that was......-transfer reaction. Subsequently, D-amino acid adhesion peptides could be immobilized on the surface by use of Cu(I)-catalyzed click chemistry. This enabled the study of cell adhesion to the metal surface. In contrast to unmodified surfaces, the peptide-modified surfaces were able to maintain cell adhesion during...

  11. Cell adhesion on Ti surface with controlled roughness

    Directory of Open Access Journals (Sweden)

    Burgos-Asperilla, Laura

    2015-06-01

    Full Text Available In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM and electrochemical impedance spectroscopy (EIS. The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10−3 min−1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days, due to the presence of amino acids and proteins from the culture medium that have been a dsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti.En este trabajo, se ha estudiado la interacción in situ entre células osteoblásticas Saos-2 y una superficie de Ti de rugosidad controlada a lo largo del tiempo. El estudio de la cinética y los mecanismos de proliferación celular de adhesión se ha realizado a través de la microbalanza de cristal de cuarzo (QCM y espectroscopía de impedancia electroquímica (EIS. La velocidad de adhesión de los osteoblastos sobre la superficie de Ti obtenida a través de medidas con la QCM, sigue una reacción de primer orden, con k=2×10−3 min−1. Los ensayos de impedancia indican que, en ausencia de las células, la resistencia del Ti disminuye con el tiempo (7 días, debido a la presencia de aminoácidos y proteínas del medio de cultivo que se han adsorbido, mientras que en presencia de células, esta disminución es mucho mayor debido a los productos metabólicos generados por las células que aceleran la disolución del Ti.

  12. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    Science.gov (United States)

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants. PMID:27137802

  13. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow

    OpenAIRE

    Evani, Shankar J.; Prabhu, Rajesh G.; Gnanaruban, V.; Finol, Ender A.; Anand K. Ramasubramanian

    2013-01-01

    Endothelial adhesion is necessary for the hematogenous dissemination of tumor cells. However, the metastatic breast tumor cell MDA-MB-231 does not bind to the endothelium under physiological flow conditions, suggesting alternate mechanisms of adhesion. Since monocytes are highly represented in the tumor microenvironment, and also bind to endothelium during inflammation, we hypothesized that the monocytes assist in the arrest of MDA-MB-231 on the endothelium. Using in vitro models of the dynam...

  14. Characterization of antibody-mediated inhibition of Pseudomonas aeruginosa adhesion to epithelial cells.

    OpenAIRE

    Sexton, M; Reen, D J

    1992-01-01

    An enzyme-linked immunosorbent assay system was developed and used to study adhesion of Pseudomonas aeruginosa to human epithelial cells and the abilities of specific antibodies to inhibit this process. Human buccal epithelial cells coated onto microtiter plates were incubated with P. aeruginosa suspensions, and adherent bacteria were detected by using anti-P. aeruginosa serum and a horseradish peroxidase-conjugated secondary antiserum. Adhesion, quantitated as an increase in A405, varied lin...

  15. 脑梗死伴牙周炎患者CRP、 IL-6和sICAM-1水平检测的研究%Clinical significance of C-reactive protein, interleukin-6 and soluble intercellular adhesion molecule 1 in patients with cerebral infarction and periodontal disease

    Institute of Scientific and Technical Information of China (English)

    裴路; 曹潇方; 张瑞敏; 付锦

    2011-01-01

    Objective: To explore the possible relationship of serum levels of C-reactive protein ( CRP), interleukin-6 (IL-6) and soluble intercellular adhesion molecule 1 ( sICAM- 1 ) of patients with chronic periodontitis (CP) and cerebral infarction (CI).Methods: 133 subjects were included in this study.Among them, 33 were patients with CI and CP (group CI + CP), 30 with CP (group CP), 32 with CI (group CI) and 38 were healthy volunteers (group H).The periodontal indexes and the serum levels of CRP, IL-6 and sICAM-1 were measured.Results: The periodontal indexes including calculus index, bleeding on probing, probing depth and attachment loss were significantly different among the four groups.In groups of CI + CP, CP and Cl the CRP, IL-6 and sICAM-1 levels were significantly higher than those in the group H(P <0.01 ).Conclusion: CRP, IL-6 and sICAM-1 might be closely related with the pathogenesis of CI and CP.A certain correlation might exist between CI and CP.%目的:探讨慢性牙周炎与脑梗死患者血清中C- 反应蛋白(CRP)、白细胞介素6(IL- 6)和可溶性细胞间黏附分子1(sICAM- 1)水平变化及相关关系.方法:纳入经头颅CT或MRI证实确诊脑梗死并伴牙周炎的患者[(CI+CP)组]33例,单纯慢性牙周炎患者(CP组)30例,脑梗死患者(CI组)32例和健康志愿者(H组)38例.记录简化牙石指数、探诊岀血阳性率、探诊深度和附着水平丧失,检测血清中CRP、IL- 6和sICAM- 1的含量.结果:各组间牙周病指数差异有显著性(P<0.05),与CP组、CI组、H组相比,(CI+CP)组的CRP、IL- 6和sICAM- 1水平明显升高(P<0.01).结论:CRP、IL- 6和sICAM- 1可能与脑梗死和牙周炎病理机制相关,牙周炎和脑梗死之间存在一定的关联.

  16. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ivana Márcia Alves Diniz

    2015-01-01

    Full Text Available Background. We investigated the influence of laser phototherapy (LPT on the survival of human mesenchymal stem cells (MSCs submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2. After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey’s test (P<0.05. Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.

  17. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eva Potthoff

    Full Text Available Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM. In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.

  18. Isolation and characterization of Chinese hamster ovary cell variants defective in adhesion to fibronectin-coated collagen

    OpenAIRE

    1980-01-01

    Variant clones of Chinese hamster ovary (CHO) cells were selected for reduced adhesion to serum-coated tissue culture plates. These clones also displayed reduced adhesion to substrata composed of collagen layers coated with bovine serum or with fibronectin (cold-insoluble globulin). Wild-type (WT) and adhesion variant (ADv) cells grew at comparable rates in suspension culture, but the adhesion variants could not be grown in monolayer culture because of their inability to attach to the substra...

  19. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    OpenAIRE

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated ...

  20. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation

    Science.gov (United States)

    Cuff, Carolyn A.; Kothapalli, Devashish; Azonobi, Ijeoma; Chun, Sam; Zhang, Yuanming; Belkin, Richard; Yeh, Christine; Secreto, Anthony; Assoian, Richard K.; Rader, Daniel J.; Puré, Ellen

    2001-01-01

    Atherosclerosis causes most acute coronary syndromes and strokes. The pathogenesis of atherosclerosis includes recruitment of inflammatory cells to the vessel wall and activation of vascular cells. CD44 is an adhesion protein expressed on inflammatory and vascular cells. CD44 supports the adhesion of activated lymphocytes to endothelium and smooth muscle cells. Furthermore, ligation of CD44 induces activation of both inflammatory and vascular cells. To assess the potential contribution of CD44 to atherosclerosis, we bred CD44-null mice to atherosclerosis-prone apoE-deficient mice. We found a 50–70% reduction in aortic lesions in CD44-null mice compared with CD44 heterozygote and wild-type littermates. We demonstrate that CD44 promotes the recruitment of macrophages to atherosclerotic lesions. Furthermore, we show that CD44 is required for phenotypic dedifferentiation of medial smooth muscle cells to the “synthetic” state as measured by expression of VCAM-1. Finally, we demonstrate that hyaluronan, the principal ligand for CD44, is upregulated in atherosclerotic lesions of apoE-deficient mice and that the low-molecular-weight proinflammatory forms of hyaluronan stimulate VCAM-1 expression and proliferation of cultured primary aortic smooth muscle cells, whereas high-molecular-weight forms of hyaluronan inhibit smooth muscle cell proliferation. We conclude that CD44 plays a critical role in the progression of atherosclerosis through multiple mechanisms. PMID:11581304

  1. RNA and DNA aptamers as potential tools to prevent cell adhesion in disease

    Directory of Open Access Journals (Sweden)

    Ulrich H.

    2001-01-01

    Full Text Available Recent research has shown that receptor-ligand interactions between surfaces of communicating cells are necessary prerequisites for cell proliferation, cell differentiation and immune defense. Cell-adhesion events have also been proposed for pathological conditions such as cancer growth, metastasis, and host-cell invasion by parasites such as Trypanosoma cruzi. RNA and DNA aptamers (aptus = Latin, fit that have been selected from combinatorial nucleic acid libraries are capable of binding to cell-adhesion receptors leading to a halt in cellular processes induced by outside signals as a consequence of blockage of receptor-ligand interactions. We outline here a novel approach using RNA aptamers that bind to T. cruzi receptors and interrupt host-cell invasion in analogy to existing procedures of blocking selectin adhesion and function in vitro and in vivo.

  2. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: regulatory roles of cell surface glycans.

    Science.gov (United States)

    Suzuki, Osamu; Abe, Masafumi

    2014-05-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic acid enhanced Arachis hypogaea (PNA), Helix pomatia (HPA) and Phaseolus vulgaris-L (L-PHA) lectin binding reactivity to cell surface of lymphoma cells suggesting that neuraminidase removes cell surface sialic acid. In cell adhesion and invasion assays treatment with neuraminidase markedly enhanced cell adhesion to galectin-1 and decreased cell invasive capacity through galectin-1. α2,6-linked sialic acid may be involved in masking the effect of the interaction between galectin-1 and cell surface glycans. H-ALCL cells expressed the β-galactoside-α2,6-sialyltransferase ST6Gal1. On resialylation assay by recombinant ST6Gal1 with CMP-Neu5Ac, α2,6-resialylation of L-PHA reactive oligosaccharide by ST6Gal1 resulted in inhibition of H-ALCL cell adhesion to galectin-1 compared to the desialylated H-ALCL cells. On knockdown experiments, knockdown of ST6Gal1 dramatically enhanced cell adhesion to galectin-1. N-glycosylation inhibitor swainsonine treatment resulted in enhancement of cell adhesion to galectin-1. In glycomic analysis using the lectin blocking assay treatment with PNA, Artocarpus integrifolia (Jacalin), Glycine max (SBA), Helix pomatia (HPA), Vicia villosa (VVA), Ulex europaeus (UEA-1), Triticum vulgaris (WGA), Canavalia ensiformis (ConA), Phaseolus vulgaris-L (L-PHA), Phaseolus vulgaris-E4 (E-PHA), Datura stramonium (DSA) lectins resulted in modulation of lymphoma cell to galectin-1 suggesting that several types of glycans may regulate cell adhesion to galectin-1 by

  3. Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator

    International Nuclear Information System (INIS)

    Activated leukocyte cell adhesion molecule (ALCAM) (CD166) is an immunoglobulin molecule that has been implicated in cell migration. The present study examined the expression of ALCAM in human breast cancer and assessed its prognostic value. The immunohistochemical distribution and location of ALCAM was assessed in normal breast tissue and carcinoma. The levels of ALCAM transcripts in frozen tissue (normal breast, n = 32; breast cancer, n = 120) were determined using real-time quantitative PCR. The results were then analyzed in relation to clinical data including the tumor type, the grade, the nodal involvement, distant metastases, the tumor, node, metastasis (TNM) stage, the Nottingham Prognostic Index (NPI), and survival over a 6-year follow-up period. Immunohistochemical staining on tissue sections in ducts/acini in normal breast and in breast carcinoma was ALCAM-positive. Differences in the number of ALCAM transcripts were found in different types of breast cancer. The level of ALCAM transcripts was lower (P = 0.05) in tumors from patients who had metastases to regional lymph nodes compared with those patients without, in higher grade tumors compared with Grade 1 tumors (P < 0.01), and in TNM Stage 3 tumors compared with TNM Stage 1 tumors (P < 0.01). Tumors from patients with poor prognosis (with NPI > 5.4) had significantly lower levels (P = 0.014) of ALCAM transcripts compared with patients with good prognosis (with NPI < 3.4), and tumors from patients with local recurrence had significantly lower levels than those patients without local recurrence or metastases (P = 0.04). Notably, tumors from patients who died of breast cancer had significantly lower levels of ALCAM transcripts (P = 0.0041) than those with primary tumors but no metastatic disease or local recurrence. Patients with low levels of ALCAM transcripts had significantly (P = 0.009) more incidents (metastasis, recurrence, death) compared with patients with primary breast tumors with high levels of

  4. ADHESION INDUCES MATRIX METALLOPROTEINASE-9 GENE EXPRESSION IN OVARIAN CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    田方; 颜春洪; 薛红; 肖凤君

    2002-01-01

    Objective: To investigate the expression of matrix metalloproteinase-9 (MMP-9) gene in cancer cells induced by adhesion with fibronectin and the underlying mechanism of cell invasion. Methods: Following adhesion of ovarian cancer cells A2780 to fibronectin, MMP mRNA expression was assayed by using reverse transcription-polymerase chain reaction (RT-PCR). MMP-9 promoter was cloned from genomic DNA of HT1080 cells with PCR. The MMP-9-pGL2 reporter gene vector was constructed and then transiently transfected into A2780 cells. Results: Adhesion could induce the expression of MMP-9 gene in A2780 cells, but did not affect longer theexpression of MMP-2 or TIMP-1 gene. The induction was enhanced with longer adhesion time. When the transfected cells were allowed to adhere and spread on FN-coated surface, the promoter activity of MMP-9 gene was also enhanced dramatically. Conclusion: adhesion of cells with ECM may stimulate the expression of MMP-9 gene through stimulating the promoter activity, thereby enhancing cancer cell invasion and metastasis.

  5. Adhesion of Human B Cells to Germinal Centers in Vitro Involves VLA-4 and INCAM-110

    Science.gov (United States)

    Freedman, Arnold S.; Munro, J. Michael; Rice, G. Edgar; Bevilacqua, Michael P.; Morimoto, Chikao; McIntyre, Bradley W.; Rhynhart, Kurt; Pober, Jordan S.; Nadler, Lee M.

    1990-08-01

    Human B lymphocytes localize and differentiate within the microenvironment of lymphoid germinal centers. A frozen section binding assay was developed for the identification of those molecules involved in the adhesive interactions between B cells and lymphoid follicles. Activated human B cells and B cell lines were found to selectively adhere to germinal centers. The VLA-4 molecule on the lymphocyte and the adhesion molecule INCAM-110, expressed on follicular dendritic cells, supported this interaction. This cellular interaction model can be used for the study of how B cells differentiate.

  6. The role of adhesion strength in human mesenchymal stem cell osteoblastic differentiation on biodegradable polymers

    Science.gov (United States)

    Krizan, Sylva Jana

    Human mesenchymal stem cells (hMSC) are promising candidates for promoting bone growth on biodegradable polymer scaffolds however little is known about early hMSC-polymer interactions. Adhesion is highly dynamic and during adhesive reinforcement, numerous proteins form adhesion plaques linking the cell's cytoskeleton with the extracellular environment. These proteins are known to affect cellular function but their role in hMSC differentiation is less clear. Adhesion plaques are associated with adhesive force, still a detachment force of hMSC on polycaprolactone (PCL), poly-lactide-co-glycolide (PLGA) or alginate has never been described or shown to affect downstream function. We demonstrate that hMSC attached to PCL, PLGA and alginate exhibit different adhesion strengths (tau50) as determined by both fluid shear and spinning disk systems, with PLGA demonstrating the greatest tau 50. Elastic modulus and hydrophobicity were characterized for these surfaces and correlated positively with tau50 to an optimum. Attachment studies of hMSC showed that adhesion plateau timespans were independent of cell line and surface but both morphology and focal adhesion expression varied by polymer type. Differentiation studies of hMSC on PLGA and PCL showed a strong association between markers of differentiation (alkaline phosphatase activity and mineral content) and tau50 within polymer groups, but a poor relationship was found between tau50 and differentiation across polymer groups, suggesting that other polymer properties may be important for differentiation. Subsequently, we examined the role of focal adhesion kinase (FAK) and Rho-GTPase (RhoA) on hMSC adhesion and differentiation when plated onto PLGA. hMSC were retrovirally transduced with mutant constructs of FAK and RhoA cDNA. Alternatively, hMSC were treated with Rho-kinase inhibitor, Y27632. Both cells transduced with mutant RhoA or FAK constructs, or those treated with Y27632 displayed aberrant cell morphology and changes

  7. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    Science.gov (United States)

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation. PMID:19736327

  8. The pro-adhesive and pro-survival effects of glucocorticoid in human ovarian cancer cells.

    Science.gov (United States)

    Yin, Lijuan; Fang, Fang; Song, Xinglei; Wang, Yan; Huang, Gaoxiang; Su, Jie; Hui, Ning; Lu, Jian

    2016-07-01

    Cell adhesion to extracellular matrix (ECM) is controlled by multiple signaling molecules and intracellular pathways, and is pivotal for survival and growth of cells from most solid tumors. Our previous works demonstrated that dexamethasone (DEX) significantly enhances cell adhesion and cell resistance to chemotherapeutics by increasing the levels of integrin β1, α4, and α5 in human ovarian cancer cells. However, it is unclear whether the components of ECM or other membrane molecules are also involved in the pro-adhesive effect of DEX in ovarian cancer cells. In this study, we demonstrated that the treatment of cells with DEX did not change the expression of collagens (I, III, and IV), laminin, CD44, and its principal ligand hyaluronan (HA), but significantly increased the levels of intracellular and secreted fibronectin (FN). Inhibiting the expression of FN with FN1 siRNA or blocking CD44, another FN receptor, with CD44 blocking antibody significantly attenuated the pro-adhesion of DEX, indicating that upregulation of FN mediates the pro-adhesive effect of DEX by its interaction with CD44 besides integrin β1. Moreover, DEX significantly enhanced cell resistance to the chemotherapeutic agent paclitaxel (PTX) by activating PI-3K-Akt pathway. Finally, we found that DEX also significantly upregulated the expression of MUC1, a transmembrane glycoprotein. Inhibiting the expression of MUC1 with MUC1 siRNA significantly attenuated the DEX-induced effects of pro-adhesion, Akt-activation, and pro-survival. In conclusion, these results provide new data that upregulation of FN and MUC1 by DEX contributes to DEX-induced pro-adhesion and protects ovarian cancer cells from chemotherapy. PMID:27151574

  9. AFM method to detect differences in adhesion of silica bids to cancer and normal epithelial cells

    Science.gov (United States)

    Sokolov, Igor; Iyer, Swaminathan; Gaikwad, Ravi; Woodworth, Craig

    2009-03-01

    To date, the methods of detection of cancer cells have been mostly based on traditional techniques used in biology, such as visual identification of malignant changes, cell growth analysis, specific ligand-receptor labeling, or genetic tests. Despite being well developed, these methods are either insufficiently accurate or require a lengthy complicated analysis. A search for alternative methods for the detection of cancer cells may be a fruitful approach. Here we describe an AFM study that may result in a new method for detection of cancer cells in vitro. Here we use atomic force microscopy (AFM) to study adhesion of single silica beads to malignant and normal cells cultured from human cervix. We found that adhesion depends on the time of contact, and can be statistically different for malignant and normal cells. Using these data, one could develop an optical method of cancer detection based on adhesion of various silica beads.

  10. RP1 is a phosphorylation target of CK2 and is involved in cell adhesion.

    Directory of Open Access Journals (Sweden)

    Frank Stenner

    Full Text Available RP1 (synonym: MAPRE2, EB2 is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

  11. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    International Nuclear Information System (INIS)

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  12. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Science.gov (United States)

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  13. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  14. Upregulation of cell adhesion through delta Np63 silencing in human 5637 bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yun-Feng He; Dai-Yin Tian; Zheng-Jin Yi; Zhi-Kang Yin; Chun-Li Luo; Wei Tang; Xiao-Hou Wu

    2012-01-01

    Some researchs have demonstrated that the loss of delta Np63 is associated with aggressive phenotypes and poor prognosis.However,other research indicates that delta Np63 is considered to have oncogenic properties,Delta Np63 overexpression is often observed in association with the oncogenic growth of squamous cell carcinomas and bladder cancer.In this study,we investigated the oocogenic role of delta Np63 in regulating cell adhesion in transitional cell carcinoma of the bladder (TCCB).The Cells were stably transfected with the delta Np63 short hairpin RNA (shRNA) plasmid.Immunocytochemistry was performed to determine the knockdown efficiency.Tumour cells were studied for their ability to adhere to vascular endothelial cells.Confocal microscopy was used to analyse the changes in cytoskeletal F-actin.F-actin expression was measured by flow cytometry.Cell invasion ability was assessed using transwell chambers.fhe delta Np63-silenced tumour cells were shown to adhere more tightly than controls to vascular endothelial cells (P<0.05).The content of F-actin in the delta Np63-silenced cells was enhanced (P<0.05),The Matrigel invasion assays showed that human 5637 bladder cancer cells had a lower degree of motility when transfected with pdetta Np63-shRNA ( P< 0.05).In conclusion,silencing of the delta Np63 expression can enhance the adhesiveness of 5637 cells by inducing F-actin cytoskeleton production,and it will possibly inhibit the TCCB invasion and metastasis.

  15. Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion.

    Science.gov (United States)

    Yang, Xiaochen; Steinberg, Florian; Zhuang, Lei; Bessey, Ralph; Trueb, Beat

    2016-07-01

    Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as a decoy receptor and exert a negative effect on cell proliferation. In this study, we performed overexpression experiments with TetOn‑inducible cell clones and downregulation experiments with siRNA oligonucleotides, and found that FGFRL1 had absolutely no effect on cell growth and proliferation. Likewise, we did not observe any influence of FGFRL1 on ERK1/2 activation and on the phosphorylation of 250 other signaling proteins analyzed by the Kinexus antibody microarray. On the other hand, with bacterial petri dishes, we observed a clear effect of FGFRL1 on cell adhesion during the initial hours after cell seeding. Our results suggest that FGFRL1 is a cell adhesion protein similar to the nectins rather than a signaling receptor similar to FGFR1-FGFR4. PMID:27220341

  16. How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells.

    Science.gov (United States)

    Sackmann, Erich

    2015-11-01

    Cell-tissue-tissue interaction is determined by specific short range forces between cell adhesion molecules (CAMs) and ligands of the tissue, long range repulsion forces mediated by cell surface grafted macromolecules and adhesion-induced elastic stresses in the cell envelope. This interplay of forces triggers the rapid random clustering of tightly coupled linkers. By coupling of actin gel patches to the intracellular domains of the CAMs, these clusters can grow in a secondary process resulting in the formation of functional adhesion microdomains (ADs). The ADs can act as biochemical steering centers by recruiting and activating functional proteins, such as GTPases and associated regulating proteins, through electrostatic-hydrophobic forces with cationic lipid domains that act as attractive centers. First, I summarize physical concepts of cell adhesion revealed by studies of biomimetic systems. Then I describe the role of the adhesion domains as biochemical signaling platforms and force transmission centers promoting cellular protrusions, in terms of a shell string model of cells. Protrusion forces are generated by actin gelation triggered by molecular machines (focal adhesion kinase (FAK), Src-kinases and associated adaptors) which assemble around newly formed integrin clusters. They recruit and activate the GTPases Rac-1 and actin gelation promoters to charged membrane domains via electrostatic-hydrophobic forces. The cell front is pushed forward in a cyclic and stepwise manner and the step-width is determined by the dynamics antagonistic interplay between Rac-1 and RhoA. The global cell polarization in the direction of motion is mediated by the actin-microtubule (MT) crosstalk at adhesion domains. Supramolecular actin-MT assemblies at the front help to promote actin polymerization. At the rear they regulate the dismantling of the ADs through the Ca(++)-mediated activation of the protease calpain and trigger their disruption by RhoA mediated contraction via

  17. Persistent downregulation of the pancarcinoma-associated epithelial cell adhesion molecule via active intranuclear methylation

    NARCIS (Netherlands)

    van der Gun, Bernardina T. F.; Wasserkort, Reinhold; Monami, Amelie; Jeltsch, Albert; Rasko, Tamits; Slaska-Kiss, Krystyna; Cortese, Rene; Rots, Marianne G.; de Leij, Lou F. M. H.; Ruiters, Marcel H. J.; Kiss, Antal; Weinhold, Elmar; McLaughlin, Pamela M. J.

    2008-01-01

    The epithelial cell adhesion molecule (EpCAM) is expressed at high levels on the surface of most carcinoma cells. SiRNA silencing of EpCAM expression leads to reduced metastatic potential of tumor cells demonstrating its importance in oncogenesis and tumor progression. However, siRNA therapy require

  18. Cell Adhesion and Proliferation on the "Living" Surface of a Polyelectrolyte Multilayer.

    Science.gov (United States)

    Arias, Carlos J; Surmaitis, Richard L; Schlenoff, Joseph B

    2016-05-31

    The adhesion of living eukaryotic cells to a substrate, one of the most complex problems in surface science, requires adsorption of extracellular proteins such as fibronectin. Thin films of polyelectrolyte complex made layer-by-layer (polyelectrolyte multilayers or PEMUs) offer a high degree of control of surface charge and composition-interconnected and essential variables for protein adhesion. Fibroblasts grown on multilayers of poly(styrenesulfonate), PSS, and poly(diallyldimethylammonium), PDADMA, with increasing thickness exhibit good adhesion until the 12th layer of polyelectrolyte has been added, whereupon there is a sudden transition to nonadhesive behavior. This sharp change is due to the migration of excess positive charge to the surface-a previously unrecognized property of PEMUs. Precise radiotracer assays of adsorbed (125)I-albumin show how protein adsorption is related to multilayer surface charge. With more negative surface charge density from the sulfonates of PSS, more albumin adsorbs to the surface. However, a loosely held or "soft corona" exchanges with serum protein under the Vroman effect, which is correlated with poor cell adhesion. A comprehensive view of cell adhesion highlights the central role of robust protein adhesion, which is required before any secondary effects of matrix stiffness on cell fate can come into play. PMID:27191244

  19. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1.

    Directory of Open Access Journals (Sweden)

    Tingshuang Xu

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD, we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk, a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.

  20. Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma

    OpenAIRE

    Suzuki, Osamu; Abe, Masafumi; HASHIMOTO, YUKO

    2015-01-01

    The interaction between cell surface glycans and extracellular matrix (ECM) including galectins is known to be closely associated with tumor cell adhesion, invasion and metastasis. We analyzed the roles of cell surface sialylation or glycosylation in galectin or ECM-mediated cell adhesion and invasion of human malignant lymphoma cells. Neuraminidase from Arthrobacter ureafaciens (AU) treatment resulted in reduction of cell adhesion to galectin-8 in human anaplastic large cell lymphoma (H-ALCL...

  1. Motion of an Adhesive Gel in a Swelling Gradient a Mechanism for Cell Locomotion

    CERN Document Server

    Joanny, J F; Prost, J; Joanny, Jean-Francois; Julicher, Frank; Prost, Jacques

    2003-01-01

    Motivated by the motion of nematode sperm cells, we present a model for the motion of an adhesive gel on a solid substrate. The gel polymerizes at the leading edge and depolymerizes at the rear. The motion results from a competition between a self-generated swelling gradient and the adhesion on the substrate. The resulting stress provokes the rupture of the adhesion points and allows for the motion. The model predicts an unusual force-velocity relation which depends in significant ways on the point of application of the force.

  2. Mechanical Principle of Enhancing Cell-Substrate Adhesion via Pre-Tension in the Cytoskeleton

    OpenAIRE

    Chen, Bin; Gao, Huajian

    2010-01-01

    Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tensi...

  3. The Role of Immunoglobulin Superfamily Cell Adhesion Molecules in Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Chee Wai Wong

    2012-01-01

    Full Text Available Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM, L1CAM, neural CAM (NCAM, leukocyte CAM (ALCAM, intercellular CAM-1 (ICAM-1 and platelet endothelial CAM-1 (PECAM-1 could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

  4. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    International Nuclear Information System (INIS)

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He+ ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He+ ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft

  5. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Junkyu [Bio alpha., Co. Ltd., Gimhae (Korea, Republic of)

    2014-05-15

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He{sup +} ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He{sup +} ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft.

  6. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    Full Text Available BACKGROUND: Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. PRINCIPAL FINDINGS: We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain. CONCLUSIONS/SIGNIFICANCE: PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  7. Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Lord, Megan Susan; Modin, Charlotte; Foss, Morten; Duch, Mogens; Simmons, Anne; Pedersen, Finn S; Milthorpe, Bruce K; Besenbacher, Flemming

    2006-09-01

    The quartz crystal microbalance with dissipation (QCM-D) (Q-Sense AB, Sweden) has been established as a useful tool for evaluating interactions between various biological and non-biological systems, and there has been increasing interest in using the QCM-D technique for cell monitoring applications. This study investigated the potential of the QCM-D to characterise the initial adhesion and spreading of cells in contact with protein precoated biocompatible surfaces. The QCM-D technique is attractive for monitoring cell adhesion and spreading as it allows in situ real-time measurements. The adhesion of NIH3T3 (EGFP) fibroblasts to tantalum (Ta) and oxidised polystyrene (PS(ox)) surfaces precoated with serum proteins was examined using the QCM-D for a period of either 2 or 4 h. Time-lapse photography was performed at 30 min intervals to visually examine cell adhesion and spreading in order to relate cell morphology to the QCM-D response. Following adsorption of albumin, fibronectin or newborn calf serum onto the surfaces, QCM-D measurements showed that cells adhered and spread on the fibronectin and serum coated surfaces, while few cells adhered to the albumin coated surfaces. Cells adhered to albumin coated surfaces had a rounded morphology. The responses to fibronectin and serum precoated surfaces were quite different for each of the underlying substrates indicating that the process of cell adhesion and spreading elicits different responses depending on both the protein coating composition and the influence of the underlying substrate. The different response may be due to extracellular matrix remodelling as well as cytoskeletal changes. Frequency (f) and dissipation (D) changes associated with cell adhesion were less than would be expected from the Sauerbrey relation due to the viscoelastic properties of the cells. PMID:16716396

  8. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1...

  9. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Testrich, H., E-mail: holger.testrich@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Finke, B.; Hempel, F. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff Str. 2, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Meichsner, J. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)

    2013-10-15

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion.

  10. The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins

    OpenAIRE

    1985-01-01

    Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation-- trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The ...

  11. A computational study of stress fiber-focal adhesion dynamics governing cell contractility

    OpenAIRE

    Maraldi, Mirko; Valero, Clara; Garikipati, Krishna

    2014-01-01

    We apply a recently developed model of cytoskeletal force generation to study a cell intrinsic contractility, as well as its response to external loading. The model is based on a non-equilibrium thermodynamic treatment of the mechano-chemistry governing force in the stress fiber-focal adhesion system. Our computational study suggests that the mechanical coupling between the stress fibers and focal adhesions leads to a complex, dynamic, mechano-chemical response. We collect the results in resp...

  12. A Protocadherin-Cadherin-FLRT3 Complex Controls Cell Adhesion and Morphogenesis

    OpenAIRE

    Chen, Xuejun; Koh, Eunjin; Yoder, Michael; Gumbiner, Barry M.

    2009-01-01

    Background Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFβ signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. Principal Findings We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, ...

  13. Effect of sterilization and water rinsing on cell adhesion to titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Mitsuhiro; Kozuka, Taro; Asano, Yuta; Kakuchi, Yuko [Instrument Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Arai, Hirofumi [Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Ohtsu, Naofumi, E-mail: nohtsu@mail.kitami-it.ac.jp [Instrument Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan)

    2014-08-30

    Highlights: • Sterilization and water rinsing affected the cell adhesion performance on Ti substrates. • The chemical state of the Ti surfaces was altered by sterilization and water rinsing. • There is a clear correlation between cell adhesiveness and the surface OH{sup −} concentration. - Abstract: In this study, the effects of sterilization and water rinsing on cell adhesion to titanium (Ti) surfaces were investigated. Ti substrates were treated using autoclave, dry-heating, and 70% ethanol. Thereafter, some of the substrates were rinsed with sterilized ultrapure water. Osteoblast-like MC3T3-E1 cells were seeded on the Ti surfaces and the numbers of adhered cells were counted after cultivation for 24 h. The number of cells adhered to ethanol-treated plates was lower than that on autoclave- and dry-heat-sterilized Ti substrates. However, interestingly, the cell adhesion performance on the ethanol-treated substrates was superior compared to that of the other substrates, after rinsing with ultrapure water. To investigate the origin of these differences, the chemical state of the treated surfaces was analyzed by X-ray photoelectron spectroscopy. We found a clear correlation between the number of adhered cells and the concentration of hydroxide groups (OH{sup −}) on the surface, thus indicating that a change in OH{sup −} concentration affects the cell adhesion performance on Ti substrates. Since the sterilization and subsequent water rinsing affect the cell adhesion on Ti substrates, we suggest that the sterilization methods should be unified to correctly evaluate the cytocompatibility of metallic materials.

  14. Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Patrick J Hensley

    Full Text Available Cancer cell resistance to anoikis driven by aberrant signaling sustained by the tumor microenvironment confers high invasive potential and therapeutic resistance. We recently generated a novel lead quinazoline-based Doxazosin® derivative, DZ-50, which impairs tumor growth and metastasis via anoikis. Genome-wide analysis in the human prostate cancer cell line DU-145 identified primary downregulated targets of DZ-50, including genes involved in focal adhesion integrity (fibronectin, integrin-α6 and talin, tight junction formation (claudin-11 as well as insulin growth factor binding protein 3 (IGFBP-3 and the angiogenesis modulator thrombospondin 1 (TSP-1. Confocal microscopy demonstrated structural disruption of both focal adhesions and tight junctions by the downregulation of these gene targets, resulting in decreased cell survival, migration and adhesion to extracellular matrix (ECM components in two androgen-independent human prostate cancer cell lines, PC-3 and DU-145. Stabilization of cell-ECM interactions by overexpression of talin-1 and/or exposing cells to a fibronectin-rich environment mitigated the effect of DZ-50. Loss of expression of the intracellular focal adhesion signaling effectors talin-1 and integrin linked kinase (ILK sensitized human prostate cancer to anoikis. Our findings suggest that DZ-50 exerts its antitumor effect by targeting the key functional intercellular interactions, focal adhesions and tight junctions, supporting the therapeutic significance of this agent for the treatment of advanced prostate cancer.

  15. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  16. Degranulation of human mast cells induces an endothelial antigen central to leukocyte adhesion.

    OpenAIRE

    Klein, L M; Lavker, R M; Matis, W L; Murphy, G F

    1989-01-01

    To understand better the role of mast cell secretory products in the genesis of inflammation, a system was developed for in vitro degranulation of human mast cells in skin organ cultures. Within 2 hr after morphine sulfate-induced degranulation, endothelial cells lining microvessels adjacent to affected mast cells expressed an activation antigen important for endothelial-leukocyte adhesion. Identical results were obtained when other mast cell secretagogues (anti-IgE, compound 48/80, and calci...

  17. Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach

    OpenAIRE

    Choi, Chang Kyoung; Sukhthankar, Mugdha; Kim, Chul-Ho; Lee, Seong-Ho; English, Anthony; Kenneth D. Kihm; Baek, Seung Joon

    2009-01-01

    Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties. In the presented study, we used stable human colorectal cancer cell lines ectopical...

  18. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate)

    OpenAIRE

    Erika Kitakami; Makiko Aoki; Chikako Sato; Hiroshi Ishihata; Masaru Tanaka

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except fo...

  19. Robust Adhesive Precision Bonding in Automated Assembly Cells

    OpenAIRE

    Müller, Tobias; Haag, Sebastian; Bastuck, Thomas; Gisler, Thomas; Moser, Hansruedi; Uusimaa, Petteri; Axt, Christoph; Brecher, Christian

    2014-01-01

    The assembly of optical components goes along with highest requirements regarding assembly precision. Laser products have become an integral part of many industrial, medical, and consumer applications and their relevance will increase significantly in the years to come. Still economic challenges remain. Assembly costs are driven by the demanding requirements regarding alignment and adhesive bonding. Especially challenging in precision bonding are the interdependencies between alignment and bo...

  20. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    Science.gov (United States)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  1. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    Energy Technology Data Exchange (ETDEWEB)

    Sackmann, Erich, E-mail: sackmann@ph.tum.de [Physics Department E22, Technical University Munich, D-85748 Garching (Germany)

    2011-06-15

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  2. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    Science.gov (United States)

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  3. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    International Nuclear Information System (INIS)

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  4. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gaharwar, Akhilesh K., E-mail: agaharwa@purdue.edu; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-04-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  5. Cell adhesion, inflammation and therapy: Old ideas and a significant step forward

    Institute of Scientific and Technical Information of China (English)

    Roberto GONZ(A)LEZ-AMARO

    2011-01-01

    Cell-to-cell adhesion as well as the interaction of cells with the extracellular matrix are key phenomena in different physiological and pathological conditions,including embryogenesis,blood coagulation,lymphocyte homing,immune response,angiogenesis,metastasis,thrombosis and inflammation[1,2].Thus,it has been widely proposed that cell adhesion molecules are an important therapeutic target in a wide array of diseases with high impact on public health,including atherosclerosis,thromboembolic disorders,cancer,graft rejection and autoimmune inflammatory conditions[1,2].However,anti-adhesion therapy with either biological agents (mainly blocking monoclonal antibodies,mAb's) or chemical inhibitors (mainly synthetic peptides) has not yet fulfilled these expectations and has not been devoid of undesirable effects[3,4

  6. Coupling of cytoplasm and adhesion dynamics determines cell polarization and locomotion

    CERN Document Server

    Bock, Martin; Möhl, Christoph

    2009-01-01

    Observations of single epidermal cells on flat adhesive substrates have revealed two distinct morphological and functional states, namely a non-migrating symmetric unpolarized state and a migrating asymmetric polarized state. These states are characterized by different spatial distributions and dynamics of important biochemical cell components: F-actin and myosin-II form the contractile part of the cytoskeleton, and integrin receptors in the plasma membrane connect F-actin filaments to the substratum. In this way, focal adhesion complexes are assembled, which determine cytoskeletal force transduction and subsequent cell locomotion. So far, physical models have reduced this phenomenon either to gradients in regulatory control molecules or to different mechanics of the actin filament system in different regions of the cell. Here we offer an alternative and self-organizational model incorporating polymerization, pushing and sliding of filaments, as well as formation of adhesion sites and their force dependent ki...

  7. Cell adhesion of Shewanella oneidensis to iron oxide minerals: Effect of different single crystal faces

    Directory of Open Access Journals (Sweden)

    Hochella Michael F

    2005-12-01

    Full Text Available The results of experiments designed to test the hypothesis that near-surface molecular structure of iron oxide minerals influences adhesion of dissimilatory iron reducing bacteria are presented. These experiments involved the measurement, using atomic force microscopy, of interaction forces generated between Shewanella oneidensis MR-1 cells and single crystal growth faces of iron oxide minerals. Significantly different adhesive force was measured between cells and the (001 face of hematite, and the (100 and (111 faces of magnetite. A role for electrostatic interactions is apparent. The trend in relative forces of adhesion generated at the mineral surfaces is in agreement with predicted ferric site densities published previously. These results suggest that near-surface structure does indeed influence initial cell attachment to iron oxide surfaces; whether this is mediated via specific cell surface-mineral surface interactions or by more general interfacial phenomena remains untested.

  8. 细胞间黏附分子-1靶向微泡超声造影成像评价肾移植后急性排异反应%Ultrasound imaging of acute renal allograft rejection with microbubbles targeted to intercellular adhesion molecule-1

    Institute of Scientific and Technical Information of China (English)

    纪丽景; 王宝平; 罗利红; 吴凤林

    2011-01-01

    目的 探讨靶向超声分子成像评价肾移植后急性排异反应的可行性.方法 采用“亲和素-生物素”桥接法构建携抗细胞间黏附分子-1(ICAM-1)靶向微泡(MBI)和携同型抗体对照微泡(MB).10只SD大鼠行左侧肾异种移植术,术后72 h移植肾随机先后注入MBI和MB(间隔30 min),分别于注入3 min后行移植肾超声造影检查,并测量移植肾声强度(VI),最后进行肾组织病理及免疫组化检测.结果 移植肾在注入靶向超声微泡后可见肾区域明显灌注显影,延迟3 min显像MBI组在移植肾可见显著的超声显影增强.而MB组移植肾仅见轻度的超声显影增强,其显影强度较前者明显减弱.MBI组和MB组移植肾VI值分别为(27.0±7.4)U、(10.2±2.4)U,两者之间差异有统计学意义(F=64.744,P<0.05).结论应用靶向ICAM-1超声微泡和超声造影结合能有效评价大鼠肾移植急性排异.%Objective To assess the feasibility of evaluation of renal allograft acute rejection in rat with contrast-enhanced ultrasound ( CEUS ) and targeted microbubbles.Methods Phospholipid microbubbles targeted to intercellular adhesion molecule -1 (ICAM-1)(MBI) and control microbubbles (MB) were created by conjugating monoclonal antibody against ICAM-1 or isotype control antibody to the lipid capsule via “avidin-biotin” bridging.Ten SD rats with acute renal allograft rejection were injected intravenous of MBI and MB in random order with a 30-min interval.After 3 min of intravenous injection of microbubbles,targeted CEUS imaging was performed in all rats.And then the video intensity (VI) was determined.Results In MBI group,a significant ultrasonic enhancement was observed,but it was not very obvious in MB group.Increment in VI value of transplant kidney in MBI group was great and it amounted to (27.0 ± 7.4)U,however,increment in VI value of in MB group was minor and it was merely (10.2 ± 2.4) U,Difference was evident in transplant kidney between of the two

  9. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro

    International Nuclear Information System (INIS)

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. (author)

  10. Cytotoxic effects of one-step self-etching adhesives on an odontoblast cell line.

    Science.gov (United States)

    Lee, Yoon; An, So-Youn; Park, Yoon-Jung; Yu, Frank H; Park, Joo-Cheol; Seo, Deog-Gyu

    2016-01-01

    The aim of this study was to evaluate the cytotoxic effects of one-step self-etching adhesives. Cells from an immortalized mouse odontoblast cell line (MDPC-23) were cultured with six different dental adhesive systems (diluted to concentrations of 0.5% for 4 h): Adper Easy Bond (EB), Xeno V (XV), iBond (IB), AdheSE One (AO), Clearfil SE primer (CS), and Adper Single Bond 2 (SB). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and flow cytometric apoptosis assays were used to evaluate cell viability and the rate of apoptosis. The odontoblasts were also examined under a scanning electron microscope. While all of the cultures with adhesives showed reduced viability, the viabilities in the IB and SB groups were not significantly different from the control group. Although increased apoptosis rates were observed in all of the cultures with adhesives, the rate in the SB group was not significantly different from the rate in the control. The control group showed the lowest apoptosis rate followed by the SB, AO, IB, EB, XV, and CS groups. When examined under a scanning electron microscope, control odontoblasts and the SB group exhibited relatively large cytoplasmic extensions. In contrast, in the EB and CS groups, fewer fibroblasts remained adhered to the plate surface. Cytoplasmic membrane shrinkage and cell-free areas with residual membrane fragments from dead cells were observed. In conclusion, all cultures with one-step self-etching adhesives showed increased apoptotic activity. SB, an etch-and-rinse adhesive, was comparable to the control group, and CS and EB showed the lowest odontoblast viabilities according to the MTT assay. SCANNING 38:36-42, 2016. © 2015 Wiley Periodicals, Inc. PMID:26186405

  11. The first EGF domain of coagulation factor IX attenuates cell adhesion and induces apoptosis.

    Science.gov (United States)

    Ishikawa, Tomomi; Kitano, Hisataka; Mamiya, Atsushi; Kokubun, Shinichiro; Hidai, Chiaki

    2016-07-01

    Coagulation factor IX (FIX) is an essential plasma protein for blood coagulation. The first epidermal growth factor (EGF) motif of FIX (EGF-F9) has been reported to attenuate cell adhesion to the extracellular matrix (ECM). The purpose of the present study was to determine the effects of this motif on cell adhesion and apoptosis. Treatment with a recombinant EGF-F9 attenuated cell adhesion to the ECM within 10 min. De-adhesion assays with native FIX recombinant FIX deletion mutant proteins suggested that the de-adhesion activity of EGF-F9 requires the same process of FIX activation as that which occurs for coagulation activity. The recombinant EGF-F9 increased lactate dehydrogenase (LDH) activity release into the medium and increased the number of cells stained with annexin V and activated caspase-3, by 8.8- and 2.7-fold respectively, indicating that EGF-F9 induced apoptosis. Activated caspase-3 increased very rapidly after only 5 min of administration of recombinant EGF-F9. Treatment with EGF-F9 increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), but not that of phosphorylated MAPK 44/42 or c-Jun N-terminal kinase (JNK). Inhibitors of caspase-3 suppressed the release of LDH. Caspase-3 inhibitors also suppressed the attenuation of cell adhesion and phosphorylation of p38 MAPK by EGF-F9. Our data indicated that EGF-F9 activated signals for apoptosis and induced de-adhesion in a caspase-3 dependent manner. PMID:27129300

  12. Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion

    OpenAIRE

    1992-01-01

    Regulated adhesion enables T cells to migrate through tissue and transiently interact with an endless succession of cells. Monoclonal antibody (mAb) engagement of the CD3/T cell receptor (TCR) complex results in a rapid and transient augmentation of the adhesion function of LFA-1 and VLA integrin molecules on human T cells. We show in this study that mAb crosslinking of the T cell-specific accessory molecules CD7 and CD28, or treatment with the Ca2+ ionophore A23187, results in the rapid indu...

  13. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  14. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  15. An open source based high content screening method for cell biology laboratories investigating cell spreading and adhesion.

    Directory of Open Access Journals (Sweden)

    Andre Schmandke

    Full Text Available BACKGROUND: Adhesion dependent mechanisms are increasingly recognized to be important for a wide range of biological processes, diseases and therapeutics. This has led to a rising demand of pharmaceutical modulators. However, most currently available adhesion assays are time consuming and/or lack sensitivity and reproducibility or depend on specialized and expensive equipment often only available at screening facilities. Thus, rapid and economical high-content screening approaches are urgently needed. RESULTS: We established a fully open source high-content screening method for identifying modulators of adhesion. We successfully used this method to detect small molecules that are able to influence cell adhesion and cell spreading of Swiss-3T3 fibroblasts in general and/or specifically counteract Nogo-A-Δ20-induced inhibition of adhesion and cell spreading. The tricyclic anti-depressant clomipramine hydrochloride was shown to not only inhibit Nogo-A-Δ20-induced cell spreading inhibition in 3T3 fibroblasts but also to promote growth and counteract neurite outgrowth inhibition in highly purified primary neurons isolated from rat cerebellum. CONCLUSIONS: We have developed and validated a high content screening approach that can be used in any ordinarily equipped cell biology laboratory employing exclusively freely available open-source software in order to find novel modulators of adhesion and cell spreading. The versatility and adjustability of the whole screening method will enable not only centers specialized in high-throughput screens but most importantly also labs not routinely employing screens in their daily work routine to investigate the effects of a wide range of different compounds or siRNAs on adhesion and adhesion-modulating molecules.

  16. Regulatory peptides modulate adhesion of polymorphonuclear leukocytes to bronchial epithelial cells through regulation of interleukins, ICAM-1 and NF-kappaB/IkappaB.

    Science.gov (United States)

    Zhang, Jian-Song; Tan, Yu-Rong; Xiang, Yang; Luo, Zi-Qiang; Qin, Xiao-Qun

    2006-02-01

    A complex network of regulatory neuropeptides controls airway inflammation reaction, in which airway epithelial cells adhering to and activating leukocytes is a critical step. To study the effect of intrapulmonary regulatory peptides on adhesion of polymorphonuclear leukocytes (PMNs) to bronchial epithelial cells (BECs) and its mechanism, several regulatory peptides including vasoactive intestinal peptide (VIP), epidermal growth factor (EGF), endothelin-1 (ET-1) and calcitonin gene-related peptide (CGRP), were investigated. The results demonstrated that VIP and EGF showed inhibitory effects both on the secretion of IL-1, IL-8 and the adhesion of PMNs to BECs, whereas ET-1 and CGRP had the opposite effect. Anti-intercellular adhesion molecule-1 (ICAM-1) antibody could block the adhesion of PMNs to ozone-stressed BECs. Using immunocytochemistry and reverse transcription-polymerase chain reaction (RT-PCR), it was shown that VIP and EGF down-regulated the expression of ICAM-1 in BECs, while ET-1 and CGRP up-regulated ICAM-1 expression. NF-kappaB inhibitor MG132 blocked ICAM-1 expression induced by ET-1 and CGRP. Furthermore, in electric mobility shift assay (EMSA), VIP and EGF restrained the binding activity of NF-kappaB to the NF-kappaB binding site within the ICAM-1 promoter in ozone-stressed BECs, while CGRP and ET-1 promoted this binding activity. IkappaB degradation was consistent with NF-kappaB activation. These observations indicate that VIP and EGF inhibit inflammation, while ET-1 and CGRP enhance the inflammation reaction. PMID:16474903

  17. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  18. Cancer Cell Adhesion and Metastasis: Selectins, Integrins, and the Inhibitory Potential of Heparins

    Directory of Open Access Journals (Sweden)

    Gerd Bendas

    2012-01-01

    Full Text Available Cell adhesion molecules play a significant role in cancer progression and metastasis. Cell-cell interactions of cancer cells with endothelium determine the metastatic spread. In addition, direct tumor cell interactions with platelets, leukocytes, and soluble components significantly contribute to cancer cell adhesion, extravasation, and the establishment of metastatic lesions. Clinical evidence indicates that heparin, commonly used for treatment of thromboembolic events in cancer patients, is beneficial for their survival. Preclinical studies confirm that heparin possesses antimetastatic activities that lead to attenuation of metastasis in various animal models. Heparin contains several biological activities that may affect several steps in metastatic cascade. Here we focus on the role of cellular adhesion receptors in the metastatic cascade and discuss evidence for heparin as an inhibitor of cell adhesion. While P- and L-selectin facilitation of cellular contacts during hematogenous metastasis is being accepted as a potential target of heparin, here we propose that heparin may also interfere with integrin activity and thereby affect cancer progression. This review summarizes recent findings about potential mechanisms of tumor cell interactions in the vasculature and antimetastatic activities of heparin.

  19. BigA is a novel adhesin of Brucella that mediates adhesion to epithelial cells.

    Science.gov (United States)

    Czibener, Cecilia; Merwaiss, Fernando; Guaimas, Francisco; Del Giudice, Mariela Giselda; Serantes, Diego Armando Rey; Spera, Juan Manuel; Ugalde, Juan Esteban

    2016-04-01

    Adhesion to cells is the initial step in the infectious cycle of basically all pathogenic bacteria, and to do so, microorganisms have evolved surface molecules that target different cellular receptors. Brucella is an intracellular pathogen that infects a wide range of mammals whose virulence is completely dependent on the capacity to replicate in phagocytes. Although much has been done to elucidate how Brucella multiplies in macrophages, we still do not understand how bacteria invade epithelial cells to perform a replicative cycle or what adhesion molecules are involved in the process. We report the identification in Brucella abortus of a novel adhesin that harbours a bacterial immunoglobulin-like domain and demonstrate that this protein is involved in the adhesion to polarized epithelial cells such as the Caco-2 and Madin-Darby canine kidney models targeting the bacteria to the cell-cell interaction membrane. While deletion of the gene significantly reduced adhesion, over-expression dramatically increased it. Addition of the recombinant protein to cells induced cytoskeleton rearrangements and showed that this adhesin targets proteins of the cell-cell interaction membrane in confluent cultures. PMID:26400021

  20. Epithelial to mesenchymal transition-The roles of cell morphology, labile adhesion and junctional coupling.

    OpenAIRE

    Abdulla, Tariq; Schleich, Jean-Marc; Summers, Ron

    2013-01-01

    International audience Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the inte...

  1. Extracellular matrix heparin induces alteration of the cell adhesion during brain development

    NARCIS (Netherlands)

    Ushakova, GA; Nikonenko, IR; Nikonenko, AG; Skibo, GG

    2002-01-01

    The studies of neuronal cell-glycosaminoglycan interactions indicate an increasing interest in the question of how heparin can mediate adhesion properties of the cell. We have found that high levels of both N-CAM concentration and heparin-binding activity were noticed in the early stages of brain fo

  2. Impact of electrospun nanofibres orientation on mesenchymal stem cell adhesion and morphology

    International Nuclear Information System (INIS)

    Electrospun nanofibrous materials mimicking the architecture of native extracellular matrix (ECM) hold great promise as scaffolds in tissue engineering. In order to optimize the properties of nanofibrous scaffolds it is important to understand the impact of fibres’ organization on cell behaviour. Herein, we investigated the effect of nanofibres (NFs) alignment on human adipose-derived mesenchymal stem cells (hAD-MSCs) adhesion and morphology. Electrospun composite fibrinogen/poly-lactic acid (FNG/PLA) NF scaffolds with same composition and comparable fibre size were fabricated into randomly oriented and aligned configuration and stem cells adhesion was characterized by the meaning of overall cell morphology, actin cytoskeleton organization and expression of molecules, involved in the development of focal adhesion complexes. We found that hAD-MSCs altered their morphology, actin cytoskeleton and cell attachment in accordance with nanofibre orientation while cell spreading, focal adhesions and expression of β1 and αN integrin receptors were not influenced significantly by fibre orientation. These results confirmed that fibre alignment of scaffold guide cellular arrangement and could be beneficial for stem differentiation and therefore for the successful scaffolds development if its contact guidance coincided with the cell shape and cytoskeletal tension. Key words: electrospinning, human adipose-derived stem cells, fibrinogen/polylactic acid hybrid nanofibres

  3. Spatiotemporal distribution and function of N-cadherin in postnatal Schwann cells: A matter of adhesion?

    DEFF Research Database (Denmark)

    Corell, Mikael; Wicher, Grzegorz; Limbach, Christoph;

    2010-01-01

    During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this ...

  4. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  5. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate

    Directory of Open Access Journals (Sweden)

    Erika Kitakami

    2014-01-01

    Full Text Available Human periodontal ligament (PDL cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate (PMEA is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate and poly[(2-methacryloyloxyethyl phosphorylcholine-co-(n-butyl methacrylate]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET. In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment.

  6. Adhesion and proliferation of human periodontal ligament cells on poly(2-methoxyethyl acrylate).

    Science.gov (United States)

    Kitakami, Erika; Aoki, Makiko; Sato, Chikako; Ishihata, Hiroshi; Tanaka, Masaru

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate) and poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(n-butyl methacrylate)]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET). In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment. PMID:25165689

  7. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform.

    Science.gov (United States)

    Hu, Ke; Zhou, Naizhen; Li, Yang; Ma, Siyu; Guo, Zhaobin; Cao, Meng; Zhang, Qiying; Sun, Jianfei; Zhang, Tianzhu; Gu, Ning

    2016-06-22

    Cell-adhesive properties are of great significance to materials serving as extracellular matrix mimics. Appropriate cell-adhesive property of material interface can balance the cell-matrix interaction and cell-cell interaction and can promote cells to form 3D structures. Herein, a novel magnetic polyacrylamide (PAM) hydrogel fabricated via combining magnetostatic field induced magnetic nanoparticles assembly and hydrogel gelation was applied as a multicellular spheroids culturing platform. When cultured on the cell-adhesive microarray interface of sliced magnetic hydrogel, normal and tumor cells from different cell lines could rapidly form multicellular spheroids spontaneously. Furthermore, cells which could only form loose cell aggregates in a classic 3D cell culture model (such as hanging drop system) were able to be promoted to form multicellular spheroids on this platform. In the light of its simplicity in fabricating as well as its effectiveness in promoting formation of multicellular spheroids which was considered as a prevailing tool in the study of the microenvironmental regulation of tumor cell physiology and therapeutic problems, this composite material holds promise in anticancer drugs or hyperthermia therapy evaluation in vitro in the future. PMID:27258682

  8. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet

    OpenAIRE

    Rogers, Gareth J.; Hodgkin, Matthew N.; Squires, Paul E.

    2007-01-01

    Background/Aims: The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. Methods: The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and...

  9. Chemically modified heparins inhibit fibrinogen-bridged indirect adhesion between tumor cells and platelets

    OpenAIRE

    Zheng, Sheng; Liu, Yan; Jiao, Yang; Min WEI; ZENG, XIANLU

    2011-01-01

    The interaction between platelets and tumor cells is critical for the hematogenous metastasis of tumor cells. We recently reported that fibrinogen was capable of bridging and enhancing the interaction of platelets and tumor cells under conditions of physical shear force. In the present study, we aimed to detect the effects of 8 chemically modified heparins on the binding of fibrinogen to platelets or tumor cells using flow cytometry assays, as well as the fibrinogen-bridged adhesion of platel...

  10. Phorbol ester modulation of integrin-mediated cell adhesion: a postreceptor event

    OpenAIRE

    1989-01-01

    Chinese hamster ovary (CHO) suspension culture cells adhere readily to substrata coated with extracellular matrix proteins such as fibronectin, vitronectin, or laminin. In the case of fibronectin, it is known that adhesion is mediated by an integrin-type, cell surface fibronectin receptor (FnR). We demonstrate here that treatment of CHO cells with submicromolar concentrations of phorbol ester produces a remarkable increase in the ability of these cells to adhere to fibronectin. Both the rate ...

  11. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase

    OpenAIRE

    WANG, CHUNHUAI; Xiang, Ru; ZHANG, XIANGZHONG; CHEN, YUNXIAN

    2015-01-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were...

  12. A role for collagen XXIII in cancer cell adhesion, anchorage-independence, and metastasis

    OpenAIRE

    Spivey, Kristin A.; Chung, Ivy; Banyard, Jacqueline; Adini, Irit; Feldman, Henry A.; Bruce R Zetter

    2011-01-01

    Collagen XXIII is a transmembrane collagen previously shown to be upregulated in metastatic prostate cancer that has been used as a tissue and fluid biomarker for non-small cell lung cancer and prostate cancer. To determine whether collagen XXIII facilitates cancer cell metastasis in vivo and to establish a function for collagen XXIII in cancer progression, collagen XXIII knockdown cells were examined for alterations in in vivo metastasis as well as in vitro cell adhesion. In experimental and...

  13. Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells

    KAUST Repository

    Dupont, Stephanie R.

    2014-07-10

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. NEXAFS spectroscopy is used to precisely quantify the interfacial composition and P3HT chain orientation at the weak P3HT:PCBM/PEDOT:PSS interface. An increase of P3HT:PCBM and PEDOT:PSS interdiffusion with post electrode deposition annealing time and temperature is found to be the underlying mechanism for effectively improving the interlayer adhesion, which is essential for the commercial realization of organic photovoltaic devices.

  14. p38 signaling and receptor recycling events in a microfluidic endothelial cell adhesion assay.

    Directory of Open Access Journals (Sweden)

    Dwayne A L Vickers

    Full Text Available Adhesion-based microfluidic cell separation has proven to be very useful in applications ranging from cancer diagnostics to tissue engineering. This process involves functionalizing microchannel surfaces with a capture molecule. High specificity and purity capture can be achieved using this method. Despite these advances, little is known about the mechanisms that govern cell capture within these devices and their relationships to basic process parameters such as fluid shear stress and the presence of soluble factors. This work examines how the adhesion of human endothelial cells (ECs is influenced by a soluble tetrapeptide, Arg-Glu-Asp-Val (REDV and fluidic shear stress. The ability of these ECs to bind within microchannels coated with REDV is shown to be governed by shear- and soluble-factor mediated changes in p38 mitogen-activated protein kinase expression together with recycling of adhesion receptors from the endosome.

  15. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    International Nuclear Information System (INIS)

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO2) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices

  16. Syndecans promote integrin-mediated adhesion of mesenchymal cells in two distinct pathways

    DEFF Research Database (Denmark)

    Whiteford, James; Behrends, Volker; Kirby, Hishani; Kusche-Gullberg, Marion; Muramatsu, Takashi; Couchman, John R

    2007-01-01

    Syndecans are transmembrane proteoglycans that support integrin-mediated adhesion. Well documented is the contribution of syndecan-4 that interacts through its heparan sulphate chains to promote focal adhesion formation in response to fibronectin domains. This process has requirements for integrin...... and signaling through the cytoplasmic domain of syndecan-4. Here an alternate pathway mediated by the extracellular domains of syndecans-2 and -4 is characterized that is independent of both heparan sulphate and syndecan signaling. This pathway is restricted to mesenchymal cells and was not seen in...... any epithelial cell line tested, apart from vascular endothelia. The syndecan ectodomains coated as substrates promoted integrin-dependent attachment, spreading and focal adhesion formation. Syndecan-4 null cells were competent, as were fibroblasts compromised in heparan sulphate synthesis that were...

  17. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.

    Science.gov (United States)

    Gaharwar, Akhilesh K; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K; Schmidt, Gudrun

    2013-04-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. PMID:23827639

  18. In vitro evaluation of osteoblastic cell adhesion on machined osseointegrated implants

    Directory of Open Access Journals (Sweden)

    Sandra Fabiano Alves

    2009-06-01

    Full Text Available At present the major consideration in planning an implant design is to seek biocompatible surfaces that promote a favorable response from both cells and host tissues. Different treatments of implant surfaces may modulate the adhesion, proliferation and phenotypic expression of osteoblastic cells. For this reason, the aim of the present study was to evaluate the biocompatibility of an implant surface, observing adhesion, cell morphology and proliferation of osteoblast-like cells cultivated on a commercially available titanium dental implant (Titamax Liso®, Neodent, Curitiba, PR, Brazil. The implant samples were immersed into an osteoblast-like cell (Osteo-1 suspension for a period of 24, 48 and 72 hours. After seeding the cells, the samples were prepared for analyses through scanning electron microscopy. Based on the surface analysis, the osteoblastic cells adhered to the machined surface after 24 hours in culture. In 48 hours, the cells spread over the implant surface, and after 72 hours a proliferation of cells with large and flat bodies was observed over the machined implant surface. These results demonstrate that the machined titanium surface studied is biocompatible since it allowed adhesion and proliferation of the osteoblast-like cells, in addition to preserving cell integrity and the morphologic characteristics of cells during the studied period.

  19. Conformational Dynamics of the Focal Adhesion Targeting Domain Control Specific Functions of Focal Adhesion Kinase in Cells

    KAUST Repository

    Kadaré, Gress

    2015-01-02

    Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr925 facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr925 phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr861, located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser910 by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.

  20. Intraepithelial p63-dependent expression of distinct components of cell adhesion complexes in normal esophageal mucosa and squamous cell carcinoma.

    Science.gov (United States)

    Thépot, Amélie; Hautefeuille, Agnès; Cros, Marie-Pierre; Abedi-Ardekani, Behnoush; Pétré, Aurélia; Damour, Odile; Krutovskikh, Vladimir; Hainaut, Pierre

    2010-11-01

    TP63 gene is a member of TP53 tumor suppressor gene family that encodes several protein isoforms involved in the process of epithelial stratification and in epithelial-mesenchyme interactions. TP63 is amplified in a significant proportion of squamous cell carcinoma of the esophagus (ESCC), resulting in the hyper-expression of DeltaNp63 as the major p63 isoform. To better understand the contribution of this high expression to tumorigenesis, we have analyzed the impact of intraepithelial p63 expression on the expression of cell adhesion complexes in normal esophagus and in ESCC cell lines. Cells expressing p63 showed an adhesion pattern characterized by lack of tight junctions and presence of adherens junctions. Cell differentiation was accompanied by a decrease in p63 and by a shift to adhesion patterns involving tight junctions. Silencing of p63 mRNA in ESCC cell lines resulted in a similar shift, characterized by increased expression of component of tight junctions, decreased cell-to-cell communication and downregulation of cell proliferation. These results indicate that DeltaNp63 may contribute to esophageal squamous carcinogenesis by maintaining cell adhesion patterns compatible with cell proliferation. PMID:20127860

  1. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.; Shankaran, Harish; Neelamegham, Sriram

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.

  2. P-Selectin-Mediated Platelet Adhesion Promotes the Metastasis of Murine Melanoma Cells

    OpenAIRE

    Cui-Ling Qi; Bo Wei; Jie Ye; Yang Yang; Bin Li; Qian-Qian Zhang; Jiang-Chao Li; Xiao-Dong He; Tian Lan; Li-Jing Wang

    2014-01-01

    Studies have indicated that the aggregation of activated platelets with cancer cells facilitates tumor metastasis; the adhesion molecule P-selectin may be an important mediator of this process, but the detailed mechanism is unclear. In the current study, we established a B16F10 (B16) cell metastatic model in P-selectin knockout (P-sel-/-) mice to determine the effect of P-selectin-mediated platelet adhesion on metastasis. Compared with C57 mice, P-sel-/- mice developed fewer metastatic foci, ...

  3. Relevance of MUC1 mucin variable number of tandem repeats polymorphism in H pylori adhesion to gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Natália R Costa; Nuno Mendes; Nuno T Marcos; Celso A Reis; Thomas Caffrey; Michael A Hollingsworth; Filipe Santos-Silva

    2008-01-01

    AIM:To evaluate the influence of MUC1 mucin variable number of tandem repeats (VNTR) variability on H pylori adhesion to gastric cells.METHODS:Enzyme linked immunosorbent assay (ELISA)-based adhesion assays were performed to measure the adhesion of different H pylori strains (HP26695 and HPTx30a) to gastric carcinoma cell lines (GP202 and MKN45) and GP202 clones expressing recombinant MUC1 with different VNTR lengths.RESULTS:Evaluation of adhesion results shows that H pylori pathogenic strain HP26695 has a significantly higher (P<0.05) adhesion to all the cell lines and clones tested,when compared to the non-pathogenic strain HPTx30a.Bacteria showed a significantly higher (P<0.05)adhesion to the GP202 cell line,when compared to the MKN45 cell line.Furthermore,both strains showed a significantly higher (P<0.05) adhesion to GP202 clones with larger MUC1 VNTR domains.CONCLUSION:This work shows that MUC1 mucin variability conditions H pylori binding to gastric cells.The extent of bacterial adhesion depends on the size of the MUC1 VNTR domain.The adhesion is further dependent on bacterial pathogenicity and the gastric cell line.MUC1 mucin variability may contribute to determine H pylori colonization of the gastric mucosa.

  4. Competition of Lactobacillus paracasei with Salmonella enterica for Adhesion to Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Alicja Jankowska

    2008-01-01

    Full Text Available Competition of commensal and probiotic bacteria with pathogens for adhesion and colonization is one of the important protective mechanisms of gastrointestinal tract. In this study, we examined the ability of Lactobacillus paracasei to inhibit the adhesion of pathogenic Salmonella enterica to human colon adenocarcinoma Caco-2 cells. Caco-2 cells were grown for 6 or 21 days to obtain nondifferentiated or well-differentiated cells, respectively. In adhesion experiments, bacteria were added to the cells for 2 or 4 hours. The number of attached bacteria was expressed as colony-forming units (CFUs, Caco-2 cells were counted in hematocytometer. Both bacterial strains used adhered better to well-differentiated than to nondifferentiated Caco-2 cells, however, the amount of Salmonella adhered to Caco-2 after 2 hours of contact was 12-fold higher in comparison to . paracasei and almost 27-fold higher after 4 hours of contact. Two types of experiments were done: coincubation (both bacteria were added to Caco-2 cells simultaneously, and preincubation (. paracasei was incubated with Caco-2 cells first, and then . enterica was added. In coincubation experiment, the presence of . paracasei decreased . enterica adhesion by 4-fold and in preincubation experiment even 7-fold. Generally, Lactobacillus spent culture supernatants (SCSs acted weaker as inhibitors of Salmonella adhesion in comparison to the whole . paracasei culture in coincubation experiment. In conclusion, the displacement of pathogens by lactic acid bacteria and its secretions showed here depends on the time of bacteria-epithelial cell contact, and also on the stage of Caco-2 differentiation.

  5. Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro

    Directory of Open Access Journals (Sweden)

    Aliaksandr Dzementsei

    2013-11-01

    The directional migration of primordial germ cells (PGCs to the site of gonad formation is an advantageous model system to study cell motility. The embryonic development of PGCs has been investigated in different animal species, including mice, zebrafish, Xenopus and Drosophila. In this study we focus on the physical properties of Xenopus laevis PGCs during their transition from the passive to the active migratory state. Pre-migratory PGCs from Xenopus laevis embryos at developmental stages 17–19 to be compared with migratory PGCs from stages 28–30 were isolated and characterized in respect to motility and adhesive properties. Using single-cell force spectroscopy, we observed a decline in adhesiveness of PGCs upon reaching the migratory state, as defined by decreased attachment to extracellular matrix components like fibronectin, and a reduced adhesion to somatic endodermal cells. Data obtained from qPCR analysis with isolated PGCs reveal that down-regulation of E-cadherin might contribute to this weakening of cell-cell adhesion. Interestingly, however, using an in vitro migration assay, we found that movement of X. laevis PGCs can also occur independently of specific interactions with their neighboring cells. The reduction of cellular adhesion during PGC development is accompanied by enhanced cellular motility, as reflected in increased formation of bleb-like protrusions and inferred from electric cell-substrate impedance sensing (ECIS as well as time-lapse image analysis. Temporal alterations in cell shape, including contraction and expansion of the cellular body, reveal a higher degree of cellular dynamics for the migratory PGCs in vitro.

  6. From flexibility to cooperativity: multiscale modeling of cadherin-mediated cell adhesion

    Science.gov (United States)

    Wu, Yinghao

    2013-03-01

    Cadherins constitute a large family of Ca2 +-dependent adhesion molecules in the Inter-cellular junctions that play a pivotal role in the assembly of cells into specific three-dimensional tissues. Although the molecular mechanisms underlying cadherin-mediated cell adhesion are still not fully understood, it seems likely that both cis dimers that are formed by binding of extracellular domains of two cadherins on the same cell surface, and trans-dimers formed between cadherins on opposing cell surfaces, are critical to trigger the junction formation. Here we present a new multiscale computational strategy to model the process of junction formation based on the knowledge of cadherin molecular structures and its 3D binding affinities. The cell interfacial region is defined by a simplified system where each of two interacting membrane surfaces is represented as a two-dimensional lattice with each cadherin molecule treated as a randomly diffusing unit. The binding energy for a pair of interacting cadherins in this two-dimensional discrete system is obtained from 3D binding affinities through a renormalization process derived from statistical thermodynamics. The properties of individual cadherins used in the lattice model are based on molecular level simulations. Our results show that within the range of experimentally-measured binding affinities, cadherins condense into junctions driven by the coupling of cis and trans interactions. The key factor appears to be a loss of molecular flexibility during trans dimerization that increases the magnitude of lateral cis interactions. We have also developed stochastic dynamics to study the adhesion of multiple cells. Each cell in the system is described as a mechanical entity and adhesive properties between two cells are derived from the lattice model. The cellular simulations are used to study the specific problems of tissue morphogenesis and tumor metastasis. The consequent question and upcoming challenge is to understand the

  7. Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium

    Directory of Open Access Journals (Sweden)

    Theresa Raimondo

    2010-09-01

    Full Text Available Theresa Raimondo, Sabrina Puckett, Thomas J WebsterSchool of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Mostly due to desirable mechanical properties (such as high durability and low wear, certain synthetic polymers (such as polyethylene and metals (such as titanium have found numerous applications in the medical device arena from orthopedics to the vasculature, yet frequently, they do not proactively encourage desirable cell responses. In an effort to improve the efficacy of such traditional materials for various implant applications, this study used electron beam evaporation to create nanostructured surface features that mimic those of natural tissue on polyethylene and titanium. For other materials, it has been shown that the creation of nanorough surfaces increases surface energy leading to greater select protein (such as vitronectin and fibronectin interactions to increase specific cell adhesion. Here, osteoblast (bone forming cells and endothelial cell (cells that line the vasculature adhesion was determined on nanostructured compared to conventional, nano-smooth polyethylene and titanium. Results demonstrated that nanorough surfaces created by electron beam evaporation increased the adhesion of both cells markedly better than conventional smooth surfaces. In summary, this study provided evidence that electron beam evaporation can modify implant surfaces (specifically, polyethylene and titanium to have nanostructured surface features to improve osteoblast and endothelial cell adhesion. Since the adhesion of anchorage dependent cells (such as osteoblasts and endothelial cells is a prerequisite for their long-term functions, this study suggests that electron beam evaporation should be further studied for improving materials for various biomedical applications. Keywords: nanotechnology, polyethylene, osteoblasts, orthopedics, vascular, titanium

  8. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling.

    Science.gov (United States)

    Heuberger, Julian; Birchmeier, Walter

    2010-02-01

    The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling. Numerous experiments have shown that the loss of cadherin-mediated cell adhesion can promote beta-catenin release and signaling; this is accomplished by proteases, protein kinases and other molecules. Cadherin loss can also signal to several other regulatory pathways. Additionally, many target genes of Wnt signaling influence cadherin adhesion. The most conspicuous of these Wnt target genes encode the transcription factors Twist and Slug, which directly inhibit the E-cadherin gene promoter. Other Wnt/beta-catenin target genes encode metalloproteases or the cell adhesion molecule L1, which favor the degradation of E-cadherin. These factors provide a mechanism whereby cadherin loss and increased Wnt signaling induce epithelial-mesenchymal transition in both carcinomas and development. PMID:20182623

  9. E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.

  10. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects

    Directory of Open Access Journals (Sweden)

    Swapnalee Sarmah

    2013-08-01

    Fetal alcohol spectrum disorder (FASD occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell, prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a, which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.

  11. The viability and intestinal epithelial cell adhesion of probiotic strain combination--in vitro study.

    Science.gov (United States)

    Piątek, Jacek; Gibas-Dorna, Magdalena; Olejnik, Anna; Krauss, Hanna; Wierzbicki, Krzysztof; Żukiewicz-Sobczak, Wioletta; Głowacki, Maciej

    2012-01-01

    To be effective, probiotic bacteria must exhibit a number of functional characteristics, including the resistance to gastric acidity and the ability to adhere to the intestinal epithelium. In this study, we examined in vitro the viability of lactic acid bacteria (LAB) combination after exposure to low pH, and the adhesion of LAB to Caco-2 cells during coincubation of 9 bacterial strains. To test bacterial viability, 6 commercially available products were incubated in 0.1 N HCl at pH 1.2 for 60 min. The greatest growth inhibition was noted for the non-capsulated product containing the Lactobacillus rhamnosus strain (log reduction of CFU = 6.4), and the best survival observed for the product containing 9 bacterial strains, equipped with a modern capsule made according to the Multi-Resistant Encapsulation technology (log reduction of CFU = 0.1). In the adhesion experiment, the combination of 9 bacterial strains was added to 17-day-old Caco-2 cell culture for 90 min. The greatest efficiency of adhesion was observed for the inoculum containing 5.5x10(8) CFU/mL/9.6 cm(2) of Caco-2 and the dose of probiotic bacteria of 190 cells per one Caco-2 cell. As a result, approximately 157 bacterial cells adhered to one Caco-2 cell. The results indicate that the combination of 9 bacterial strains in the examined product is characterized as highly adhesive. PMID:22462453

  12. Micrometer scale spacings between fibronectin nanodots regulate cell morphology and focal adhesions

    International Nuclear Information System (INIS)

    Cell adhesion to extracellular matrix is an important process for both health and disease states. Surface protein patterns that are topographically flat, and do not introduce other chemical, topographical or rigidity related functionality and, more importantly, that mimic the organization of the in vivo extracellular matrix are desired. Previous work showed that vinculin and cytoskeletal organization are modulated by size and shape of surface nanopatterns. However, quantitative analysis on cell morphology and focal adhesions as a function of micrometer scale spacings of FN nanopatterns was absent. Here, electron beam lithography was used to pattern fibronectin nanodots with micrometer scale spacings on a K-casein background on indium tin oxide coated glass which, unlike silicon, is transparent and thus suitable for many light microscopy techniques. Exposure times were significantly reduced using the line exposure mode with micrometer scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin nanodots proved to modulate cell adhesion through modification of cell area, focal adhesion number, size and circularity. Overall, cell behavior was shown to shift at the apparent threshold of 4 μm spacing. The findings presented here offer exciting new opportunities for cell biology research. (papers)

  13. Micrometer scale spacings between fibronectin nanodots regulate cell morphology and focal adhesions

    Science.gov (United States)

    Horzum, Utku; Ozdil, Berrin; Pesen-Okvur, Devrim

    2014-04-01

    Cell adhesion to extracellular matrix is an important process for both health and disease states. Surface protein patterns that are topographically flat, and do not introduce other chemical, topographical or rigidity related functionality and, more importantly, that mimic the organization of the in vivo extracellular matrix are desired. Previous work showed that vinculin and cytoskeletal organization are modulated by size and shape of surface nanopatterns. However, quantitative analysis on cell morphology and focal adhesions as a function of micrometer scale spacings of FN nanopatterns was absent. Here, electron beam lithography was used to pattern fibronectin nanodots with micrometer scale spacings on a K-casein background on indium tin oxide coated glass which, unlike silicon, is transparent and thus suitable for many light microscopy techniques. Exposure times were significantly reduced using the line exposure mode with micrometer scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin nanodots proved to modulate cell adhesion through modification of cell area, focal adhesion number, size and circularity. Overall, cell behavior was shown to shift at the apparent threshold of 4 μm spacing. The findings presented here offer exciting new opportunities for cell biology research.

  14. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    LENUS (Irish Health Repository)

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  15. Ultrasensitivity of Cell Adhesion to the Presence of Mechanically Strong Ligands

    Science.gov (United States)

    Roein-Peikar, Mehdi; Xu, Qian; Wang, Xuefeng; Ha, Taekjip

    2016-01-01

    Integrins, a class of membrane proteins involved in cell adhesion, participate in the cell's sensing of the mechanical environments. We previously showed that, for the initial cell adhesion to occur, single integrins need to experience a threshold force of 40 pico-Newton (pN) through their bond with surface-bound ligands. This force requirement was determined using a series of double-stranded DNA tethers called tension gauge tethers (TGTs), each with a different rupture force, linked to the ligand. Here, we performed cell-adhesion experiments using surfaces coated with two different TGTs, one of a strong rupture force (around 54 pN) and the other of a weak rupture force (around 12 pN). When presented with one type of TGT only, cells adhered to the strong TGT-coated surface but not to the weak TGT-coated surface. However, when presented with both, the presence of the strong TGTs transforms the way cells respond to the weak TGTs such that cells treat both TGTs the same, as if the weak TGTs were strong. Furthermore, a subpopulation of cells can adhere to and spread on a surface displaying just a few molecules of the strong TGTs per cell if, and only if, they are presented along with many weak TGTs. This ultrasensitivity to just a few tethers that can withstand strong forces raises a question of how the cells can achieve such remarkable sensitivity to their mechanical environment without amplifying noise.

  16. Tailored Poly(2-oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion

    KAUST Repository

    Zhang, Ning

    2012-05-18

    POx bottle-brush brushes (BBBs) are synthesized by SIPGP of 2-isopropenyl-2-oxazoline and consecutive LCROP of 2-oxazolines on 3-aminopropyltrimethoxysilane-modified silicon substrates. The side chain hydrophilicity and polarity are varied. The impact of the chemical composition and architecture of the BBB upon protein (fibronectin) adsorption and endothelial cell adhesion are investigated and prove extremely low protein adsorption and cell adhesion on BBBs with hydrophilic side chains such as poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline). The influence of the POx side chain terminal function upon adsorption and adhesion is minor but the side chain length has a significant effect on bioadsorption. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells

    OpenAIRE

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R.

    2013-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to susp...

  18. Distribution and surfactant association of carcinoembryonic cell adhesion molecule 6 in human lung

    OpenAIRE

    Chapin, Cheryl; Bailey, Nicole A.; Gonzales, Linda W.; Lee, Jae-Woo; Gonzalez, Robert F.; Ballard, Philip L.

    2011-01-01

    Carcinoembryonic cell adhesion molecule 6 (CEACAM6) is a glycosylated, glycophosphatidylinositol-anchored protein expressed in epithelial cells of various primate tissues. It binds gram-negative bacteria and is overexpressed in human cancers. CEACAM6 is associated with lamellar bodies of cultured type II cells of human fetal lung and protects surfactant function in vitro. In this study, we characterized CEACAM6 expression in vivo in human lung. CEACAM6 was present in lung lavage of premature ...

  19. Stimulation of human red blood cells leads to Ca2+-mediated intercellular adhesion

    CERN Document Server

    Steffen, Patrick; Nguyen, Duc Bach; Müller, Torsten; Bernhardt, Ingolf; Kaestner, Lars; Wagner, Christian

    2011-01-01

    Red blood cells (RBCs) are a major component of blood clots, which form physiologically as a response to injury or pathologically in thrombosis. The active participation of RBCs in thrombus solidification has been previously proposed but not yet experimentally proven. Holographic optical tweezers and single-cell force spectroscopy were used to study potential cell-cell adhesion between RBCs. Irreversible intercellular adhesion of RBCs could be induced by stimulation with lysophosphatidic acid (LPA), a compound known to be released by activated platelets. We identified Ca2+ as an essential player in the signaling cascade by directly inducing Ca2+ influx using A23187. Elevation of the internal Ca2+ concentration leads to an intercellular adhesion of RBCs similar to that induced by LPA stimulation. Using single-cell force spectroscopy, the adhesion of the RBCs was identified to be approximately 100 pN, a value large enough to be of significance inside a blood clot or in pathological situations like the vasco-occ...

  20. Modeling of cell adhesion and deformation mediated by receptor-ligand interactions.

    Science.gov (United States)

    Golestaneh, Amirreza F; Nadler, Ben

    2016-04-01

    The current work is devoted to studying adhesion and deformation of biological cells mediated by receptors and ligands in order to enhance the existing models. Due to the sufficient in-plane continuity and fluidity of the phospholipid molecules, an isotropic continuum fluid membrane is proposed for modeling the cell membrane. The developed constitutive model accounts for the influence of the presence of receptors on the deformation and adhesion of the cell membrane through the introduction of spontaneous area dilation. Motivated by physics, a nonlinear receptor-ligand binding force is introduced based on charge-induced dipole interaction. Diffusion of the receptors on the membrane is governed by the receptor-ligand interaction via Fick's Law and receptor-ligand interaction. The developed model is then applied to study the deformation and adhesion of a biological cell. The proposed model is used to study the role of the material, binding, spontaneous area dilation and environmental properties on the deformation and adhesion of the cell. PMID:26093646

  1. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion

    Science.gov (United States)

    Mondal, Subhanjan; Subramanian, Kulandayan K.; Sakai, Jiro; Bajrami, Besnik; Luo, Hongbo R.

    2012-01-01

    The second messenger phosphatidylinositol(3,4,5)P3 (PtdIns(3,4,5)P3) is formed by stimulation of various receptors, including G protein–coupled receptors and integrins. The lipid phosphatases PTEN and SHIP1 are critical in regulating the level of PtdIns(3,4,5)P3 during chemotaxis. Observations that loss of PTEN had minor and loss of SHIP1 resulted in a severe chemotaxis defect in neutrophils led to the belief that SHIP1 rather than PTEN acts as a predominant phospholipid phosphatase in establishing a PtdIns(3,4,5)P3 compass. In this study, we show that SHIP1 regulates PtdIns(3,4,5)P3 production in response to cell adhesion and plays a limited role when cells are in suspension. SHIP1−/− neutrophils lose their polarity upon cell adhesion and are extremely adherent, which impairs chemotaxis. However, chemo­taxis can be restored by reducing adhesion. Loss of SHIP1 elevates Akt activation following cell adhesion due to increased PtdIns(3,4,5)P3 production. From our observations, we conclude that SHIP1 prevents formation of top-down PtdIns(3,4,5)P3 polarity to facilitate proper cell attachment and detachment during chemotaxis. PMID:22323291

  2. A High-Adhesive Lysine-Cyclic RGD Peptide Designed for Selective Cell Retention Technology.

    Science.gov (United States)

    Luo, Keyu; Mei, Tieniu; Li, Zhiqiang; Deng, Moyuan; Zhang, Zehua; Hou, Tianyong; Dong, Shiwu; Xie, Zhao; Xu, Jianzhong; Luo, Fei

    2016-06-01

    Cell adhesion is an important property of biomaterials used in selective cell retention (SCR) technology, which fabricates bone grafts rapidly in clinical settings. This could be improved by physical and biologic manipulations. To facilitate retention of the cells on the scaffold, especially osteoprogenitors from bone marrow in the convenient SCR procedure, a lysine-cyclic RGD (LcRGD) peptide was here designed to coordinate positively charged amino acids and the RGD sequence to enhance the adhesion performance of the scaffold. Demineralized bone matrix (DBM) is an important therapeutic resource, but its cell adhesion ability and osteoinductive capacity are low because of its processing. These capabilities can be increased to enhance the performance of DBM when used in SCR technology. Here, LcRGD peptide was used to modify DBM and produce a DBM/LcRGD composite. This composite exhibited enhanced adhesion performance on cultured human bone marrow-derived mesenchymal stem cells and retained more osteoprogenitors from bone marrow than other materials did. The DBM/LcRGD composite displayed a preferable osteoinduction in vitro and osteogenic capacity in vivo. Thus, LcRGD peptide as a commendable modifier of DBM applied in SCR technology can improve bone transplantation. PMID:27154386

  3. Mesenchymal stem cell-induced 3D displacement field of cell-adhesion matrices with differing elasticities.

    Science.gov (United States)

    Morita, Yasuyuki; Kawase, Naoki; Ju, Yang; Yamauchi, Takashi

    2016-07-01

    Cells maintain homeostasis and perform various functions by interacting mechanically with a cell-adhesive matrix. Regarding cellular differentiation, it has been found that matrix elasticity can determine the differentiation lineage of mesenchymal stem cells (MSCs). Direct quantitative measurements of the mechanical interaction between MSCs and matrix for differentiation, however, have yet to be reported. Herein, the displacement field of the cell-adhesive matrix was observed quantitatively using a digital volume correlation (DVC) method. Maximum displacement and cellular traction stress were analyzed when the MSC differentiated into a neuron-like cell or an osteoblast-like cell on a soft or hard elastic matrix, respectively. The function of non-muscle myosin II (NMM II), which plays an important role in intracellular cytoskeletal dynamics, was investigated during cellular differentiation. The mechanical interaction (maximum displacement and subjected area of the matrix) between the cell and matrix was dependent on matrix elasticity. It has also been shown that the mechanical interaction between the intracellular cytoskeleton and cell-adhesion matrix is indispensable for cellular differentiation. This work provides the first quantitative visualization of the mechanical interaction between MSCs and the cell-adhesion matrix for differentiation. PMID:26945874

  4. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development.

    Science.gov (United States)

    Kitayama, Midori; Mizutani, Kiyohito; Maruoka, Masahiro; Mandai, Kenji; Sakakibara, Shotaro; Ueda, Yuki; Komori, Takahide; Shimono, Yohei; Takai, Yoshimi

    2016-03-11

    Mammary gland development is induced by the actions of various hormones to form a structure consisting of collecting ducts and milk-secreting alveoli, which comprise two types of epithelial cells known as luminal and basal cells. These cells adhere to each other by cell adhesion apparatuses whose roles in hormone-dependent mammary gland development remain largely unknown. Here we identified a novel cell adhesion apparatus at the boundary between the luminal and basal cells in addition to desmosomes. This apparatus was formed by the trans-interaction between the cell adhesion molecules nectin-4 and nectin-1, which were expressed in the luminal and basal cells, respectively. Nectin-4 of this apparatus further cis-interacted with the prolactin receptor in the luminal cells to enhance the prolactin-induced prolactin receptor signaling for alveolar development with lactogenic differentiation. Thus, a novel nectin-mediated cell adhesion apparatus regulates the prolactin receptor signaling for mammary gland development. PMID:26757815

  5. Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Masato Murakami

    Full Text Available Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A-/- tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target.

  6. Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu, Xiao-Fei Chen, Yan-Hong Ren, Qing-Yuan Zhan, Chen Wang, Chun Yang

    2011-01-01

    Full Text Available Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI treatment. In the present study, primary rat alveolar type II (ATII cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.