WorldWideScience

Sample records for cell adhesion molecule-1

  1. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf;

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects...... and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P treatment, compared with placebo [net difference between groups 151.8 microg/liter (95...

  2. Pathogenic Actions of Cell Adhesion Molecule 1 in Pulmonary Emphysema and Atopic Dermatitis

    OpenAIRE

    Yoneshige, Azusa; Hagiyama, Man; Fujita, Mitsugu; Ito, Akihiko

    2015-01-01

    Cell adhesion mediated by adhesion molecules is of central importance in the maintenance of tissue homeostasis. Therefore, altered expression of adhesion molecules leads to the development of various tissue disorders involving cell activation, degeneration, and apoptosis. Nevertheless, it still remains unclear what initiates the altered expression of adhesion molecules and how the subsequent pathological cascades proceed. In this regard, cell adhesion molecule 1 (CADM1) is one of the candidat...

  3. Correlation of Serum Concentrations of Soluble Thrombomodulin, Soluble Vascular Cell Adhesion Molecule-1,Intracellular Adhesion Molecule -1 And E-Selectin In Patients WithSystemic Lupus Erythematosus

    OpenAIRE

    Malak., A. Mohsen*, Magda.A.Gamil*,Maha. I.Shehata

    2003-01-01

    To date no specific serological parameters are available to assess disease activity in systemic lupus erythematosus (SLE). The objective of this study was to correlate serum levels of thrombomodulin (TM), intracellular adhesion molecule-1 sICAM-1, vascular cell adhesion molecule-1 sVCAM-1, and E-selectin with standard laboratory tests and clinical indices of disease activity in 40 patients with SLE and 20 apparently healthy persons as controls. According to British Isles Lupus Assessment Grou...

  4. Intercellular Cell Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1, and Regulated on Activation Normal T Cell Expressed and Secreted Are Expressed by Human Breast Carcinoma Cells and Support Eosinophil Adhesion and Activation

    OpenAIRE

    Ali, Shahina; Kaur, Jaswinder; Patel, Kamala D.

    2000-01-01

    Eosinophils are usually associated with parasitic and allergic diseases; however, eosinophilia is also observed in several types of human tumors, including breast carcinomas. In this study we examined several human breast carcinoma cell lines for adhesion molecule expression and the ability to bind and activate eosinophils. MDA-MB-435S and MDA-MB-468 cells constitutively expressed both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and this expressio...

  5. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    OpenAIRE

    Lu, T T; Yan, L G; Madri, J. A.

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell sprea...

  6. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets

    OpenAIRE

    Cicmil, Milenko; Stevens, Jo; Leduc, Mireille; Bon, Cassian; Gibbins, Jonathan M.

    2002-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a 130-kd transmembrane glycoprotein and a member of the growing family of receptors with immunoreceptor tyrosine-based inhibitory motifs (ITIMs). PECAM-1 is expressed on platelets, certain T cells, monocytes, neutrophils, and vascular endothelial cells and is involved in a range of cellular processes, though the role of PECAM-1 in platelets is unclear. Cross-linking of PECAM-1 results in phosphorylation of the ITIM allowing the r...

  7. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    Science.gov (United States)

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  8. Inhibitors of 5-lipoxygenase inhibit expression of intercellular adhesion molecule-1 in human melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Yin WANG; Bin ZHOU; Ji LI; Yong-bing CAO; Xin-sheng CHEN; Ming-he CHENG; Ming YIN

    2004-01-01

    AIM: To study the effect of 5-lipoxygenase inhibitors on the expression of intercellular adhesion molecule-1 (ICAM-1) in melanoma cells. METHODS: ICAM-1 protein of human melanoma cell a375 was detected by enzyme-linked immunosorbent, flow cytometry and Western blot analysis. Level of ICAM-1 mRNA in a375 was evaluated by Northern blot analysis. Adhesion of a375 to endothelial cell EC304 was analyzed by isotopic tracing. RESULTS:5-Lipoxygenase inhibitors nordihydroguaiaretic acid, AA861 and MK886, could suppress the expression of ICAM-1 protein as well as of its mRNA in a375 cells and reduce the adhesion of a375 to EC304. CONCLUSION:5-Lipoxygenase inhibitors can inhibit the expression of ICAM-1 in human melanoma cells and may be valuable for treatment of melanoma metastasis.

  9. Intercellular Adhesion Molecule 1 Promotes HIV-1 Attachment but Not Fusion to Target Cells

    OpenAIRE

    Naoyuki Kondo; Melikyan, Gregory B.

    2012-01-01

    Incorporation of intercellular adhesion molecule 1 (ICAM-1) into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1). At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachme...

  10. Serum levels of thrombomodulin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in the acute phase of Plasmodium vivax malaria.

    Science.gov (United States)

    Ohnishi, K

    1999-02-01

    Elevated plasma or serum levels of thrombomodulin (TM), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin have been reported in several diseases. However, plasma or serum levels of TM, ICAM-1, VCAM-1, and E-selectin have not been investigated in the acute phase of Plasmodium vivax malaria. Serum TM, ICAM-1, VCAM-1, E-selectin, and creatinine levels were determined in six Japanese patients in the acute phase of vivax malaria and in seven healthy Japanese controls. Parasitemias of the peripheral blood were Fujirebio units/ml, 709 +/- 397 ng/ml, 2,112 +/- 782 ng/ml, and 99 +/- 28 ng/ml, respectively, and all were significantly greater than those in the controls (TM; P < 0.005, ICAM-1; P < 0.025, VCAM-1; P < 0.005, E-selectin; P < 0.025). However, no significant difference was identified between patients and controls for serum creatinine values. The serum levels of TM and VCAM-1 were not related to parasitemia. The elevation of serum TM levels suggests that endothelial cell damage occurs in the acute phase of vivax malaria.

  11. Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line

    DEFF Research Database (Denmark)

    Holland, J; Owens, T

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1) (CD54) is an adhesion molecule of the immunoglobulin superfamily. The interaction between ICAM-1 on B lymphocytes and leukocyte function-associated antigen 1 on T cells plays a major role in several aspects of the immune response, including T-dependent B...... cell activation. While it was originally believed that ICAM-1 played a purely adhesive role, recent evidence suggests that it can itself transduce biochemical signals. We demonstrate that cross-linking of ICAM-1 results in the up-regulation of class II major histocompatibility complex, and we...... investigate the biochemical mechanism for the signaling role of ICAM-1. We show that cross-linking of ICAM-1 on the B lymphoma line A20 induces an increase in tyrosine phosphorylation of several cellular proteins, including the Src family kinase p53/p56(lyn). In vitro kinase assays showed that Lyn kinase...

  12. Correlation of Serum Concentrations of Soluble Thrombomodulin, Soluble Vascular Cell Adhesion Molecule-1,Intracellular Adhesion Molecule -1 And E-Selectin In Patients WithSystemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Malak., A. Mohsen*, Magda.A.Gamil*,Maha. I.Shehata

    2003-09-01

    Full Text Available To date no specific serological parameters are available to assess disease activity in systemic lupus erythematosus (SLE. The objective of this study was to correlate serum levels of thrombomodulin (TM, intracellular adhesion molecule-1 sICAM-1, vascular cell adhesion molecule-1 sVCAM-1, and E-selectin with standard laboratory tests and clinical indices of disease activity in 40 patients with SLE and 20 apparently healthy persons as controls. According to British Isles Lupus Assessment Group (BILAG disease activity index, the 40 patients were divided into two groups, the first consisted of 22 with active disease, and the second consisted of 18 patients with inactive SLE. Serum sTM, sICAM-1, sVCAM-I, and E-selectin were measured in their sera, using enzyme linked immuonosorbent assay (ELISA technique.C-reactiv protein (CRP, Erythrocyte sedimentation rates (ESR and serum creatinines were measured by standard laboratory tests. Total leukocytic count and hemoglobin concentration were detected by coulter counter. Levels of sTM and sVCAM were highly elevated in the group of patients with active SLE as compared to the inactive one (P0.05. In SLE, the BILAG disease activity index, ESR and serum creatinine correlated best with sTM, sVCAM-1 and E-selectin levels while there was a weak association between CRP levels and the adhesion molecules, and no correlation between CRP level and disease activity. In conclusion, sTM and sVCAM were the most important serological indices of disease activity in SLE and might be valuable serological parameters for monitoring therapy.

  13. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  14. Intercellular adhesion molecule-1 clusters during osteoclastogenesis

    NARCIS (Netherlands)

    V. Bloemen; T.J. de Vries; T. Schoenmaker; V. Everts

    2009-01-01

    Adhesion between osteoblasts and osteoclast precursors is established via an interaction involving intercellular adhesion molecule-1 (ICAM-1) on osteoblasts and leukocyte function-associated antigen-1 (LFA-1) on osteoclast precursors. The latter cells also express ICAM-1, but little is known about t

  15. Intercellular adhesion molecule 1 promotes HIV-1 attachment but not fusion to target cells.

    Directory of Open Access Journals (Sweden)

    Naoyuki Kondo

    Full Text Available Incorporation of intercellular adhesion molecule 1 (ICAM-1 into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1. At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachment to cells in a temperature-dependent manner. It exerted a marginal effect on virus binding in the cold, but enhanced binding up to 4-fold at physiological temperature. ICAM-1-independent attachment in the cold was readily reversible upon subsequent incubation at elevated temperature, whereas ICAM-1-bearing particles were largely retained by cells. The better virus retention resulted in a proportional increase in HIV-1 internalization and fusion, suggesting that ICAM-1 did not specifically accelerate endocytosis or fusion steps. We also measured the rates of CD4 engagement, productive endocytosis and HIV-endosome fusion using specific fusion inhibitors. These rates were virtually independent of the presence of ICAM-1 in viral particles. Importantly, irrespective of the presence of ICAM-1, HIV-1 escaped from the low temperature block, which stopped virus endocytosis and fusion, much later than from a membrane-impermeant fusion inhibitor targeting surface-accessible particles. This result, along with the complete inhibition of HIV-1 fusion by a small molecule dynamin inhibitor, implies this virus enters lymphoid cells used in this study via endocytosis and that this pathway is not altered by the viral ICAM-1. Our data highlight the role of ICAM-1 in stabilizing the HIV-1 attachment to LFA-1 expressing cells, which leads to a proportional enhancement of the receptor-mediated uptake and fusion with endosomes.

  16. Cerebrospinal fluid and plasma concentration of soluble intercellular adhesion molecule1, vascular cell adhesion molecule1 and endothelial leukocyte adhesion molecule in patients with acute ischemic b

    Directory of Open Access Journals (Sweden)

    Selaković Vesna M.

    2003-01-01

    Full Text Available Background. Leukocyte migration into the ischemic area is a complex process controlled by adhesion molecules (AM in leukocytes and endothelium, by migratory capacity of leukocytes and the presence of hemotaxic agents in the tissue. In this research it was supposed that in the blood and cerebrospinal fluid (CSF of patients in the acute phase of ischemic brain disease (IBD there were relevant changes in the concentration of soluble AM (sICAM-1 sVCAM-1 and sE-selectin, that could have been the indicators of the intensity of damaging processes in central nervous system (CNS. Methods. The study included 45 IBD patients, 15 with transient ischemic attack (TIA 15 with reversible ischemic attack (RIA, and 15 with brain infarction (BI of both sexes, mean age 66±7. Control group consisted of 15 patients with radicular lesions of discal origin, subjected to diagnostic radiculography without the signs of interruption in the passage of CSF. Changes of selected biochemical parameters were determined in all patients in frame 72 hours since the occurence of an ischemic episode. Concentrations of soluble AM were determined in plasma and CSF by ELISA. Total number of leukocytes (TNL in peripheral blood was determined by hematological analyzer. Results. The results showed that during the first 72 hrs of IBD significant increases occured in TNL and that the increase was progressive compared to the severeness of the disease. Significant increase of soluble AM concentration was shown in plasma of IBD patients. The increase was highest in BI somewhat lower in RIA and the lowest in TIA patients compared to the control. In CSF concentrations of sICAM-1, sVCAM-1 and sE-selectin demonstrated similar increasing trend as in plasma. Conclusion. TNL, as well as the soluble AM concentrations in plasma and CSF, were increased during the acute IBD phase and progressive in relation to the severeness of the disease, so that they might have been the indicators of CNS inflammatory

  17. Expression of intercellular adhesion molecule-1 in rat heart with ischemia/reperfusion and limitation of infarct size by treatment with antibodies against cell adhesion molecules.

    OpenAIRE

    Yamazaki, T; Seko, Y; Tamatani, T; Miyasaka, M.; Yagita, H; Okumura, K.; R. Nagai; Yazaki, Y

    1993-01-01

    To elucidate the mechanism(s) of myocardial reperfusion injury, we investigated the roles of cell adhesion molecules on both leukocytes and vascular endothelial cells in the reperfused myocardia. We found that within 2 hours after reperfusion leukocytes began to infiltrate into the rat myocardia subjected to 30 minutes of ischemia and clarified, for the first time, that the expression of intercellular adhesion molecule-1 was enhanced on the capillary and venous endothelial cells from 8 to 96 ...

  18. Intercellular adhesion molecule-1 and gelatinase expression in human peritoneal mesothelial cells during propagation in culture.

    NARCIS (Netherlands)

    Sikkink, C.J.J.M.; Reijnen, M.M.P.J.; Duffhues, B.A.; Man, B.M. de; Lomme, R.M.L.M.; Goor, H. van

    2009-01-01

    Mesothelial cells are involved in a variety of biological processes, which include the formation of peritoneal adhesions. The cultures of human peritoneal mesothelial cells comprise an important tool to investigate the behavior and functions of mesothelial cells. Very little is known about the diffe

  19. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    Science.gov (United States)

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation. PMID:24470464

  20. Effects of Estrogen Level on the Function of Vascular Endothelial Cells and Expression of Vascular Cell Adhesion Molecule - 1φ

    Institute of Scientific and Technical Information of China (English)

    WU Saizhu(吴赛珠); LIU Jiangguo(刘建国); TAN Jiayu(谭家余); ZHoU Kexiang(周可祥); Gorge D Webb; WEI Heming(隗和明); GUO Zhiguang(郭志刚)

    2002-01-01

    Objectives To ob- serve the effect of different estrogen levels on the se- cretory function of vascular endothelial cells of female rats, and study the effect of modulation of estrogen level on the expression of vascular cell adhesion molecule - 1 and the concentration of estrogen receptorin vascular endothelial cells. Methods Radioim-munology was used to measure the serum concentrationof endothelin and PGI2, and copper-cadmium re-duction was employed to measure the serum content ofnitrogen monoxide. Radioligand binding and flowcy-tometry were used to measure the expression of estrogenreceptor and vascular cell adhesion molecule (VCAM-1 ) of vascular endothelial cells respectively. Re-sults 1. The serum concentration of nitric oxide andPGI2 decreased when the ovaries of female rats wereremoved. In ovariectomized rats, given estrogen, theconcentration rose ( P < 0.05), but the plasma con-centration of endothelin was adverse to it. 2. Theconcentration of estrogen receptor of vascular endothe-lial cells decreased remarkably when the ovaries of fe-male rats were removed. When given estrogen, it in-creased. 3. The percent of expressed VCAM - 1 in-creased siguificantly after interleukin- lβoperated onthe cells, but 17 - βestradiol at 3 × 10-8 ~ 10-6 mol/lall decreased the percent. Conclusions Estrogenlevel can influence the secretion of nitrogen monoxide,PGI2 and endothlin of vascular endothelial cells, andalso influence the concentration of estrogen receptor ofvascular endothelial cells. 17 -β Estradiol at 3 × 10-8~ 10-6 M can decrease the elevation of VCAM - 1 ofvascular endothelial cells induced by interleukin - 1 β.

  1. Interleukin 3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation of human endothelial cells.

    Science.gov (United States)

    Brizzi, M F; Garbarino, G; Rossi, P R; Pagliardi, G L; Arduino, C; Avanzi, G C; Pegoraro, L

    1993-06-01

    Proliferation and functional activation of endothelial cells within a tissue site of inflammation are regulated by humoral factors released by cells, such as T lymphocytes and monocytes, infiltrating the perivascular space. In the present study we investigated the effects of interleukin 3 (IL-3), an activated T lymphocyte-derived cytokine, on cultured human umbilical vein endothelial cells (HUVEC). Proliferative activity, evaluated both by estimation of the fraction of cells in the S phase and by direct cell count demonstrated that IL-3, at the dose of 25 ng/ml, enhances more than threefold both DNA synthesis and cell proliferation above baseline control conditions. Binding studies with radioiodinated ligand demonstrated that HUVEC constitutively express a smaller number of IL-3 binding sites (approximately 99 binding sites per cell, with an apparent Kd of 149 pM). Accordingly, molecular analysis showed the presence of transcripts for both alpha and beta subunits of the IL-3 receptor. Functional activation of endothelial cells was evaluated by the expression of the endothelial-leukocyte adhesion molecule 1 (ELAM-1) transcript and by leukocyte adhesion. The ELAM-1 gene transcript was clearly detectable 4 h after IL-3 addition and started to decrease after 12 h. Moreover, IL-3-induced ELAM-1 transcription was followed by enhanced adhesion of neutrophils and CD4+ T cells to HUVEC. The findings that IL-3 can stimulate both proliferation and functional activation of endothelial cells suggest that this cytokine can be involved in sustaining the process of chronic inflammation.

  2. The influence of propofol on the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in reoxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Leucocytes are a pivotal component of the inflammatory cascade that results in tissue injury in a large group of disorders. Free radical production and endothelial activation promote leucocyte-endothelium interactions via endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) which augment these processes, particularly in the setting of reperfusion injury. Propofol has antioxidant properties which may attenuate the increased expression of these molecules that is observed. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia, then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg mL(-1) or propofol 5 microg mL(-1), for 4 h after reoxygenation and were examined for ICAM-1 and VCAM-1 expression. RESULTS: Hypoxia did not increase the expression of ICAM-1\\/VCAM-1. ICAM-1 expression peaked 12 h after reoxygenation (21.75(0.6) vs. 9.6(1.3), P = 0.02). Propofol, but not Diprivan, prevented this increase (8.2(2.9) vs. 21.75(0.6), P = 0.009). VCAM-1 expression peaked 24 h after reoxygenation (9.8(0.9) vs. 6.6(0.6), P = 0.03). Propofol and Diprivan prevented this increase, with no difference between the two treatments observed (4.3(0.3) and 6.4(0.5) vs. 9.8(0.9), P = 0.001, 0.02, respectively). CONCLUSION: These effects are likely to be attributable to the antioxidant properties of propofol, and suggest that propofol may have a protective role in disorders where free radical mediated injury promotes leucocyte-endothelium adhesive interactions.

  3. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    OpenAIRE

    Ying-Bin Wang; Yi Hu; Zhen Li; Ping Wang; Yi-Xue Xue; Yi-Long Yao; Bo Yu; Yun-Hui Liu

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma ...

  4. Lauric acid abolishes interferon-gamma (IFN-γ)-induction ofIntercellular AdhesionMolecule-1 (ICAM-1) andVascularCellAdhesionMolecule-1 (VCAM-1) expression in human macrophages

    Institute of Scientific and Technical Information of China (English)

    Wei-Siong Lim; Mary-Shi-Ying Gan; Melissa-Hui-Ling Ong; Choy-Hoong Chew

    2015-01-01

    Objective:To investigate the effect of different concentrations of lauric acid on Intercellular Adhesion Molecule-1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1) expression in IFN-γ stimulated human monocytic THP-1 cell line.Methods:THP-1 cell were cultured using Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum. THP-1 monocytes were firstly differentiated into macrophages by using phorbol-12-myristate-13-acetate. IFN-γ response test was perfomed and total cellular RNA was extracted using TRI Reagent®LS before q-RT-PCR was carried out. Subsequently, IFN-γ treated THP-1 macrophages were stimulated with increasing doses of lauric acid for another 24 hour, before q-RT-PCR. MTT assay was carried out to investigate the effect of lauric acid on undifferentiated and differentiated THP-1 cells.Results:The mRNA expression levels of ICAM-1 and VCAM-1 were normalized toβ-actin and relatived to the untreated cells. The expressions of ICAM-1 and VCAM-1 were significantly induced in cells treated with 10 ng/mL of IFN-γ. This showed that IFN-γ could up-regulate inflammatory process and may cause atheroma formation. Although lauric acid did not have any significant impact on undifferentiated and differentiated THP-1 cell viability, the normalized fold expressions of ICAM-1 and VCAM-1 in IFN-γ-treated THP-1 macrophages were decreased significantly in a dose dependent manner with the presence of increasing doses of lauric acid.Conclusions:This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an anti-inflammatory therapeutic and prophylaxis agent for atherosclerosis.

  5. Pre-diagnostic levels of adiponectin and soluble vascular cell adhesion molecule-1 are associated with colorectal cancer risk

    Institute of Scientific and Technical Information of China (English)

    Mathilde Touvier; Pilar Galan; Sébastien Czernichow; Léopold Fezeu; Namanjeet Ahluwalia; Chantal Julia; Nathalie Charnaux; Angela Sutton; Caroline Méjean; Paule Latino-Martel; Serge Hercberg

    2012-01-01

    AIM:To examine the relationships between pre-diag-nostic biomarkers and colorectal cancer risk and assess their relevance in predictive models.METHODS:A nested case-control study was designed to include all first primary incident colorectal cancer cases diagnosed between inclusion in the SUpplementation en VItamines et Minéraux AntioXydants cohort in 1994 and the end of follow-up in 2007.Cases (n =50) were matched with two randomly selected controis (n =100).Conditional logistic regression models were used to investigate the associations between prediagnostic levels of hs-CRP,adiponectin,leptin,soluble vascular cell adhesion molecule-1 (sVCAM-1),soluble intercellular adhesion molecule-1,E-selectin,monocyte chemoattractant protein-1 and colorectal cancer risk.Area under the receiver operating curves (AUC) and relative integrated discrimination improvement (RIDI) statistics were used to assess the discriminatory poten tial of the models.RESULTS:Plasma adiponectin level was associated with decreased colorectal cancer risk (P for linear trend =0.03).Quartiles of sVCAM-1 were associated with increased colorectal cancer risk (P for linear trend =0.02).No association was observed with any of the other biomarkers.Compared to standard models with known risk factors,those including both adiponectin and sVCAM-1 had substantially improved performance for colorectal cancer risk prediction (P for AUC improvement =0.01,RIDI =26.5%).CONCLUSION:These results suggest that pre-diagnostic plasma adiponectin and sVCAM-1 levels are associated with decreased and increased colorectal cancer risk,respectively.These relationships must be confirmed in large validation studies.

  6. Neutrophils lacking platelet-endothelial cell adhesion molecule-1 exhibit loss of directionality and motility in CXCR2-mediated chemotaxis.

    Science.gov (United States)

    Wu, Yue; Stabach, Paul; Michaud, Michael; Madri, Joseph A

    2005-09-15

    Time-lapsed videomicroscopy was used to study the migration of platelet-endothelial cell adhesion molecule-1-deficient (PECAM-1(-/-)) murine neutrophils undergoing chemotaxis in Zigmond chambers containing IL-8, KC, or fMLP gradients. PECAM-1(-/-) neutrophils failed to translocate up the IL-8, KC, and fMLP gradients. Significant reductions in cell motility and cell spreading were also observed in IL-8 or KC gradients. In wild-type neutrophils, PECAM-1 and F-actin were colocalized at the leading fronts of polarized cells toward the gradient. In contrast, in PECAM-1(-/-) neutrophils, although F-actin also localized to the leading front of migrating cells, F-actin polymerization was unstable, and cycling was remarkably increased compared with that of wild-type neutrophils. This may be due to the decreased cytokine-induced mobilization of the actin-binding protein, moesin, into the cytoskeleton of PECAM-1(-/-) neutrophils. PECAM-1(-/-) neutrophils also exhibited intracellularly dislocalized Src homology 2 domain containing phosphatase 1 (SHP-1) and had less IL-8-induced SHP-1 phosphatase activity. These results suggest that PECAM-1 regulates neutrophil chemotaxis by modulating cell motility and directionality, in part through its effects on SHP-1 localization and activation. PMID:16148090

  7. Expression of vascular cell adhesion molecule-1 facilitates angiogenesis in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yongbin Ding; Tianson Xia; Guoyu Chen; Jianguo Xia

    2006-01-01

    Objective: To investigate the relationship between the expression of VCAM-1 and oncogenesis, tumor angiogenesis and metastasis in gastric carcinoma. Methods: Using RT-PCR and immunohistochemistry technique, the expression of VCAM-1 were detected in specimens from 44 patients with gastric cancer, 8 with ulcer. Microvessel density (MVD) was also counted by endothelial cells immunostained with monoclonal antibodies CD34. In addition, Circulating sVCAM-1 concentrations were measured by an enzyme linked immunosorbent assay. Results:Of 44 gastric cancer tumor tissues, 36were detected the ex pressions of VCAM-1 mRNA. The rates of VCAM-1 mRNA in the primary gastric cancer tissues were significantly higher than those in the para-cancerous tissues and benign ulcer tissues (P < 0.05). The VCAM-1 posithoseive isolates had more lymph node metastases than that of VCAM-l-negative ones (P < 0.05). MVD of positive VCAM-1 expression tissues were higher than those of negative VCAM-1 (P < 0.05). Circulating sVCAM-1 levels decreased significantly after operation (P < 0.05). Furthermore, the levels of sVCAM-1 were positively correlated with the expressions of VCAM-1 in the tumor tissues (r = 0.64, P <0.05). Conclusion: Expressions of VCAM-1 mRNA was closely related to oncogenesis, tumor angiogenesis and metastasis in gastric carcinoma. The concentration of sVCAM-1 may be considered as an effective mark of tumor burden of gastric cancer.

  8. Changes in the vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and c-reactive protein following administration of aqueous extract of piper sarmentosum on experimental rabbits fed with cholesterol diet

    Directory of Open Access Journals (Sweden)

    Al-Mekhlafi Hesham M

    2011-01-01

    Full Text Available Abstract Background Inflammation process plays an important role in the development of atherosclerosis. Hypercholesterolemia is one of the major risk factors for atherosclerosis. The present study aimed to evaluate the effect of aqueous extract of Piper sarmentosum (P.s on inflammatory markers like vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, and C-reactive protein (CRP. Methods Forty two male New Zealand white rabbits were divided equally into seven groups; (i C- control group fed normal rabbit chow (ii CH- cholesterol diet (1%cholesterol (iii X1- 1% cholesterol with water extract of P.s (62.5 mg/kg (iv X2- 1% cholesterol with water extract of P.s (125 mg/kg (v X3- 1% cholesterol with water extract of P.s (250 mg/kg (vi X4- 1% cholesterol with water extract of P.s (500 mg/kg and (vii SMV group fed with 1% cholesterol supplemented with simvistatin drug (1.2 mg/kg. All animals were treated for 10 weeks. Blood serum was taken for observing the inflammatory markers at the beginning and end of the experiment. Results Rabbits fed with 1% cholesterol diet (CH showed significant increase in the level of VCAM-1, ICAM-1 and CRP compared to the C group. The levels of VCAM-1, ICAM-1 and CRP in the 1% cholesterol group and supplemented with P.s (500 mg/kg were significantly reduced compared to the cholesterol group. Similar results were also reported with simvistatin group. Conclusion These results suggest that the supplementation of Piper sarmentosum extract could inhibit inflammatory markers which in turn could prevent atherosclerosis.

  9. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome.

    Science.gov (United States)

    Palomo, Iván G; Jaramillo, Julio C; Alarcón, Marcelo L; Gutiérrez, César L; Moore-Carrasco, Rodrigo; Segovia, Fabián M; Leiva, Elba M; Mujica, Verónica E; Icaza, Gloria; Dí, Nora S

    2009-01-01

    Metabolic syndrome (MS) is associated with a high incidence rate of cardiovascular disease. It is characterized by abdominal obesity, elevated blood pressure, atherogenic dyslipidemia [high LDL-c (low density lipoprotein cholesterol) and low HDL-c (high density lipoprotein cholesterol)] and insulin resistance or glucose intolerance. In the context of MS, alterations in the plasmatic levels of some soluble forms of cell adhesion molecules can appear, e.g., soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin) and soluble CD40L (sCD40L). The objective of this study was to compare the serum levels of sVCAM-1, sE-selectin and sCD40L in MS and non-MS groups and to associate these molecules with the diagnostic criteria of MS. A total of 185 non-smokers between 45 and 64 years of age were included. Of these, 93 corresponded to the MS group and the remaining 92 to a non-MS group (according to modified ATP III criteria). The serum concentration of sVCAM-1, sE-selectin and sCD40L was determined by commercial solid phase ELISA. The results were expressed as a median and interquartile range. The MS group showed high levels of sVCAM-1 (558.9 ng/ml; 481.3-667.6 ng/ml) compared with the non-MS group (405.2 ng/ml; 361.0-470.5 ng/ml) (p<0.0001). As well, the median level of sCD40L (3.0 ng/ml; 2.1l-11.7 ng/ml) was significantly higher in the MS group than that in the non-MS group (2.6 ng/ml; 2.3-3.4 ng/ml) (p=0.0061). sE-selectin levels did not differ significantly between the groups: 73.9 ng/ml (58.3-87.0 ng/ml) and 68.5 ng/ml (51.6-97.5 ng/ml) in the MS and non-MS group, respectively. In conclusion, the serum levels of sVCAM-1 and sCD40L, but not sE-selectin, were significantly higher in patients with MS than in subjects that did not present MS. MS may therefore increase the expression of cell adhesion molecules, probably through endothelial activation. PMID:21475854

  10. Study of serum soluble vascular cell adhesion molecule-1 levels in type 2 diabetic patients with diabetic retinopathy

    International Nuclear Information System (INIS)

    To study the change and the correlation of serum soluble vascular cell adhesion molecule-1 (sV-CAM-1) levels with diabetic retinopathy in type 2 diabetic patients, serum sVCAM-1 levels were measured in duplicate by ELISA in 85 type 2 diabetic patients; fundus examination was performed by an ophthalmologist using ophthalmoscope or fundus fluorescein angiography, and the findings were graded as: no signs of diabetic retinopathy (NDR), background diabetic retinopathy (BDR) and proliferative diabetic retinopathy (PDR). Serum sVCAM-1 levels were significantly higher in the PDR and BDR groups than those in the control and NDR groups respectively (P<0.01). NDR group showed significantly increased serum sVCAM-levels compared with control group (P<0.01). In contrast, serum sVCAM-1 levels were not related to the presence of blood glucose, serum insulin levels or known diabetic duration. Authors' results suggest that serum sVCAM-1 might be implicated in the development of the diabetic retinopathy, and could assess the severity of diabetic retinopathy. The measurement of serum sVCAM-1 levels in 2 type diabetic patients may be clinically useful for early diagnosis or treatment of diabetic retinopathy

  11. Expression of intercellular adhesion molecule-1 in UVA-irradiated human skin cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Treina, G.; Scaletta, C.; Frenk, E.; Applegate, L.A. [University Hospital-CHUV, Lausanne (Switzerland). Laboratory of Photobiology; Fourtanier, A.; Seite, S. [L`Oreal-Centre de Recherche Charles Zviak (France). Recherche Avancee Biologie

    1996-08-01

    Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ. (author).

  12. Soluble Vascular Cell Adhesion Molecule-1 (VCAM-1) as a Biomarker in the Mouse Model of Experimental Autoimmune Myocarditis (EAM)

    Science.gov (United States)

    Grabmaier, U.; Kania, G.; Kreiner, J.; Grabmeier, J.; Uhl, A.; Huber, B. C.; Lackermair, K.; Herbach, N.; Todica, A.; Eriksson, U.; Weckbach, L. T.; Brunner, S.

    2016-01-01

    Vascular cell adhesion molecule-1 (VCAM-1) is strongly upregulated in hearts of mice with coxsackie virus-induced as well as in patients with viral infection-triggered dilated cardiomyopathy. Nevertheless, the role of its soluble form as a biomarker in inflammatory heart diseases remains unclear. Therefore, we investigated whether plasma levels of soluble VCAM-1 (sVCAM-1) directly correlated with disease activity and progression of cardiac dysfunction in the mouse model of experimental autoimmune myocarditis (EAM). EAM was induced by immunization of BALB/c mice with heart-specific myosin-alpha heavy chain peptide together with complete Freund`s adjuvant. ELISA revealed strong expression of cardiac VCAM-1 (cVCAM-1) throughout the course of EAM in immunized mice compared to control animals. Furthermore, sVCAM-1 was elevated in the plasma of immunized compared to control mice at acute and chronic stages of the disease. sVCAM-1 did not correlate with the degree of acute cardiac inflammation analyzed by histology or cardiac cytokine expression investigated by ELISA. Nevertheless, heart to body weight ratio correlated significantly with sVCAM-1 at chronic stages of EAM. Cardiac systolic dysfunction studied with positron emission tomography indicated a weak relationship with sVCAM-1 at the chronic stage of the disease. Our data provide evidence that plasma levels of sVCAM-1 are elevated throughout all stages of the disease but showed no strong correlation with the severity of EAM. PMID:27501319

  13. Breast cancer cells compete with hematopoietic stem and progenitor cells for intercellular adhesion molecule 1-mediated binding to the bone marrow microenvironment.

    Science.gov (United States)

    Dhawan, Abhishek; Friedrichs, Jens; Bonin, Malte von; Bejestani, Elham Peshali; Werner, Carsten; Wobus, Manja; Chavakis, Triantafyllos; Bornhäuser, Martin

    2016-08-01

    Adhesion-based cellular interactions involved in breast cancer metastasis to the bone marrow remain elusive. We identified that breast cancer cells directly compete with hematopoietic stem and progenitor cells (HSPCs) for retention in the bone marrow microenvironment. To this end, we established two models of competitive cell adhesion-simultaneous and sequential-to study a potential competition for homing to the niche and displacement of the endogenous HSPCs upon invasion by tumor cells. In both models, breast cancer cells but not non-tumorigenic cells competitively reduced adhesion of HSPCs to bone marrow-derived mesenchymal stromal cells (MSCs) in a tumor cell number-dependent manner. Higher adhesive force between breast cancer cells and MSCs, as compared with HSPCs, assessed by quantitative atomic force microscopy-based single-cell force spectroscopy could partially account for tumor cell mediated reduction in HSPC adhesion to MSCs. Genetic inactivation and blockade studies revealed that homophilic interactions between intercellular adhesion molecule 1 (ICAM-1) expressed on tumor cells and MSCs, respectively, regulate the competition between tumor cells and HSPCs for binding to MSCs. Moreover, tumor cell-secreted soluble ICAM-1(sICAM-1) also impaired HSPC adhesion via blocking CD18-ICAM-1 binding between HSPCs and MSCs. Xenotransplantation studies in NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice revealed reduction of human HSPCs in the bone marrow via metastatic breast cancer cells. These findings point to a direct competitive interaction between disseminated breast cancer cells and HSPCs within the bone marrow micro environment. This interaction might also have implications on niche-based tumor support. Therefore, targeting this cross talk may represent a novel therapeutic strategy. PMID:27207667

  14. Serum vascular cell adhesion molecule-1 (VCAM1 level is elevated in colorectal cancer regardless of the tumor stage

    Directory of Open Access Journals (Sweden)

    Rumeysa Ciftci

    2016-06-01

    Full Text Available Purpose: Vascular cell adhesion molecule-1 (VCAM1 is a transmembrane glycoprotein, which is expressed on endothelium and plays role in inflammation. It is over-expressed on colorectal cancer (CRC cells and plays role in metastasis development and angiogenesis. We aimed to compare serum VCAM1 levels of CRC patients with heathy controls and evaluate its relationship with clinicopathological parameters, treatment response and overall survival (OS.Methods: The study enrolled 111 patients with histopathologically confirmed CRC followed-up in our clinic and 30 sex- and age-matched healthy controls. Pre-treatment serum VCAM1 levels were determined by the solid-phase sandwich ELISA method.Results: Metastatic disease was present in 57 patients. Forty percent of 40 metastatic patients receiving systemic therapy had partial or complete response. The median serum VCAM1 level was significantly higher in CRC patients than controls (p<0.001. In addition, serum VCAM1 level was significantly higher in diabetic CRC patients than those without diabetes (p = 0.03. There was no significant relationship between VCAM1 and other clinicopathological parameters including stage and response to systemic therapy. The median follow-up period was 12 (±8.2 months. Twenty patients were dead at the time of analysis. The presence of metastasis (p < 0.001 and elevated CEA level (p < 0.001 were factors affecting OS significantly. However, serum VCAM1 did not have a significant impact on OS (p = 0.55.Conclusion: Serum VCAM1 level is significantly elevated in CRC patients regardless of the tumor stage. However, it has no prognostic or predictive role for response to systemic therapy.

  15. Expression of mucosal addressin cell adhesion molecule 1 on vascular endothelium of gastric mucosa in patients with nodular gastritis

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Ohara; Takehiko Koji; Hiroshi Nagura; Shigeru Kohno; Hajime Isomoto; Chun-Yang Wen; Chieko Ejima; Masahiro Murata; Masanobu Miyazaki; Fuminao Takeshima; Yohei Mizuta; Ikuo Murata

    2003-01-01

    AIM: The interaction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) with integrin α4β7 mediates lymphocyte recruitment into mucosa-associated lymphoid tissue (MALT). Nodular gastritis is characterized by a unique military pattern on endoscopy representing increased numbers of lymphoid follicles with germinal center, strongly associated with H pylori infection. The purpose of this study was to address the implication of the MAdCAM-1/integrin β7 pathway in NG.METHODS: We studied 17 patients with NG and H pylori infection and 19 H pylori-positive and 14 H pylori-negative controls. A biopsy sample was taken from the antrum and snap-frozen for immunohistochemical analysis of MAdCAM1 and integrin β7. In simultaneous viewing of serial sections,the percentage of MAdCAM-1-positive to von Willebrand factor-positive vessels was calculated. We also performed immunostaining with anti-CD20, CD4, CD8 and CD68 antibodies to determine the lymphocyte subsets coexpressing integrin β7.RESULTS: Vascular endothelial MAdCAM-1 expression was more enhanced in gastric mucosa with than without H pylori infection. Of note, the percentages of MAdCAM-1-positive vessels were significantly higher in the lamina propria of NG patients than in H pylori-positive controls. Strong expression of MAdCAM-1 was identified adjacent to lymphoid follicles and dense lymphoid aggregates. Integrin β7-expressing mononuclear cells, mainly composed of CD20 and CD4 lymphocytes, were associated with vessels lined with MAdCAM-1-expressing endothelium.CONCLUSION: Our results suggest that the MAdCAM-1/integrin α4β7 homing system may participate in gastric inflammation in response to H pylori-infection and contributes to MALT formation, typically leading to the development of NG.

  16. CXC chemokine ligand 12/Stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1

    OpenAIRE

    Tung Shui-Yi; Chang Shun-Fu; Chou Ming-Hui; Huang Wen-Shih; Hsieh Yung-Yu; Shen Chien-Heng; Kuo Hsing-Chun; Chen Cheng-Nan

    2012-01-01

    Abstract Background The CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) and CXC receptor 4 (CXCR4) axis is involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. Interaction between CRC cells and endothelium is a key event in tumor progression. The aim of this study was to investigate the effect of SDF-1 on the adhesion of CRC cells. Methods Human CRC DLD-1 cells were used to study the effect of SDF-1 on intercellular adhesion m...

  17. Angiogenic Effect of Intercellular Adhesion Molecule-1

    Institute of Scientific and Technical Information of China (English)

    DENG Chenguo; ZHANG Duanlian; SHAN Shengguo; WU Jingwen; YANG Hong; YU Ying

    2007-01-01

    In order to investigate the angiogenic effect of intercellular adhesion molecule-1 (ICAM-1), two parts of experiment were performed. Chick embryo chorioallantoic membrane (CAM) assay was used for in vivo angiogenic research. The chick embryos were divided into 4 groups: ICAM-1 group (divided into 3 subgroups, Ⅰ, Ⅱ and Ⅲ) for screening the angiogenic effect of ICAM-1 by adding different concentrations of ICAM-1 (0.1, 0.2 and 0.3 μg/μL) 5 μL into the chick embryo CAMs on the day 10 after incubation for every subgroup; Anti-ICAM-1 group A (divided into 2 subgroups, Ⅰ and Ⅱ) by adding different concentrations of Anti-ICAM-1 (1:100, 1:50) 5 μL into the chick embryo CAMs on the day 10 after incubation for every subgroup to evaluate the effect of ICAM-1 on the survival of microvessels through observing whether Anti-ICAM-1 could induce involution of the microvessels on CAMs; Anti-ICAM-1 group B (divided into 2 subgroups, Ⅰ and Ⅱ ) by adding different concentrations of Anti-ICAM-1 (1:100, 1:50) 5 μL into the chick embryo CAMs on the day 6 after incubation for every subgroup to evaluate whether ICAM-1 involved in embryonic angiogenesis through observing the growth of microvessels on CAMs; Control group: ICAM-1 or Anti-ICAM-1 was substituted by PBS 5 μL on the day 10 or day 6 after incubation. Three days later, the CAMs were photographed in vivo, excised, sectioned and the number of microvessels was counted. In ICAM-1 group, there was increased number of microvessels arranged radially with "spoked-wheel" pattern around the gelatin sponges. The new microvessels growing perpendicularly to gelatin sponges were observed. The number of the microvessels growing in the CAM mesenchymes around the sponges in 3 subgroups was higher than that in control group (P<0.01), however, there was no significant difference among the 3 subgroups (P>0.05). In anti-ICAM-1 group A, the radially arranged microvessels were very unclear around the sponges contrast to that of ICAM

  18. The neutrophil-specific antigen CD177 is a counter-receptor for platelet endothelial cell adhesion molecule-1 (CD31).

    Science.gov (United States)

    Sachs, Ulrich J H; Andrei-Selmer, Cornelia L; Maniar, Amudhan; Weiss, Timo; Paddock, Cathy; Orlova, Valeria V; Choi, Eun Young; Newman, Peter J; Preissner, Klaus T; Chavakis, Triantafyllos; Santoso, Sentot

    2007-08-10

    Human neutrophil-specific CD177 (NB1 and PRV-1) has been reported to be up-regulated in a number of inflammatory settings, including bacterial infection and granulocyte-colony-stimulating factor application. Little is known about its function. By flow cytometry and immunoprecipitation studies, we identified platelet endothelial cell adhesion molecule-1 (PECAM-1) as a binding partner of CD177. Real-time protein-protein analysis using surface plasmon resonance confirmed a cation-dependent, specific interaction between CD177 and the heterophilic domains of PECAM-1. Monoclonal antibodies against CD177 and against PECAM-1 domain 6 inhibited adhesion of U937 cells stably expressing CD177 to immobilized PECAM-1. Transendothelial migration of human neutrophils was also inhibited by these antibodies. Our findings provide direct evidence that neutrophil-specific CD177 is a heterophilic binding partner of PECAM-1. This interaction may constitute a new pathway that participates in neutrophil transmigration. PMID:17580308

  19. Increased Expression of Intercellular Adhesion Molecule-1, Vascular Cellular Adhesion Molecule-1 and Leukocyte Common Antigen in Diabetic Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Ningyan Bai; Shibo Tang; Jing Ma; Yan Luo; Shaofeng Lin

    2003-01-01

    Purpose: To understand the expression and distribution of intercellular adhesion molecule- 1(ICAM- 1),vascular cellular adhesion molecule- 1 (VCAM- 1)and CD45 (Leukocyte Common Antigen) in the control nondiabetic and various courses of diabetic rats retina. To explore the role of adhesion molecules (Ams) and the adhesion of leukocytes to vascular endothelial cells via Ams in diabetic retinopathy(DR).Methods: Sixty healthy adult male Wistar rats were randomly divided into diabetic groups(induced by Streptozotocin, STZ) and normal control groups. Rats in these two groups were further randomly divided into 3, 7, 14, 30, 90 and 180 days-group,including 5 rats respectively. The immunohistochemical studies of ICAM-1, VCAM-1 and CD45 were carried out in the retinal digest preparations or retinal paraffin sections, and the results were analyzed qualitatively, semi-quantitatively.Results: No positive reaction of VCAM-1 was found, and weak reactions of ICAM-1,CD45 were found in nondiabetic rats retina. The difference of 6 control groups had no statistical significance(P > 0.05). The increased ICAM-1 and CD45 staining pattern were detectable 3 days after diabetes induction, and a few VCAM-1 positive cells were observed in the retinal blood capillaries. The difference of diabetes and control is significant( P < 0.05).Following the course, the expressions of ICAM-1, VCAM-1 and CD45 were increasingly enhanced, reaching a peak at the 14th day.Conclusion: Increased expression of ICAM-1, VCAM-1 and leukocytes adhering and stacking in retinal capillaries are the very early events in DR. Coherence of expression and distribution of the three further accounts for it is the key point for the onset of DR that Ams mediates leukocytes adhesion and endothelial cell injury.

  20. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells.

    Science.gov (United States)

    Osawa, M; Masuda, M; Harada, N; Lopes, R B; Fujiwara, K

    1997-03-01

    Fluid flow triggers signal transducing events, modulates gene expression, and remodels cytoskeletal structures in vascular endothelial cells (ECs). However, the primary steps of mechanoreception are still unknown. We have recently reported that a glycoprotein is rapidly tyrosine-phosphorylated in bovine ECs exposed to fluid flow or osmotic shock. Here were cloned a 3.4 kb cDNA encoding this protein and found that this was bovine PECAM-1. The tyrosine-phosphorylation level of PECAM-1 immunoprecipitated from mechanically stimulated bovine or human ECs increased. The PECAM-1 phosphorylation was not induced by reagents that triggered Ca2+ mobilization in ECs. An autophosphorylatable band comigrating with c-Src was co-immunoprecipitated with anti-PECAM-1, and c-Src phosphorylated and bound to a GST fusion protein containing the PECAM-1 cytoplasmic domain. A spliced mRNA form lacking amino acid residues 703-721 in the cytoplasmic domain was also expressed in bovine ECs, c-Src neither phosphorylated nor bound to the fusion protein containing the spliced PECAM-1 cytoplasmic domain which lacked one (Tyr 713) of the six tyrosine residues in the PECAM-1 cytoplasmic domain. These results suggest that the YSEI motif containing Tyr 713 is the Src phosphorylation/binding site. Our study is the first demonstration of inducible tyrosine phosphorylation of PECAM-1 and suggests involvement of PECAM-1 and Src family kinases in the sensing/signal transduction of mechanical stimuli in ECs. PMID:9084985

  1. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells...

  2. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    Science.gov (United States)

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release. PMID:27454856

  3. Expression of platelet-endothelial cell adhesion molecule-1 in human umbilical vein endothelial cells by exposure to advanced glycosylation end products and inflammatory mediators

    Institute of Scientific and Technical Information of China (English)

    孟丹; 刘乃丰

    2003-01-01

    Objective To determine whether advanced glycosylation end products modified bovine serum albumin (AGEs-BSA) affects endothelial cell lateral junction protein, platelet-endothelial cell adhesion molecule-1 (PECAM-1) in the presence or absence of inflammatory mediators.Methods Cultured human umbilical vein endothelial cells (HUVECs) were exposed to AGEs-BSA for 6, 12, 24, and 36 hours, and exposed to AGEs-BSA glycosylated with different concentrations of glucose, tumor necrosis factord-α (TNF-α), interferon (IFN-γ), TNF-α+IFN-γ and AGEs-BSA+TNF-α for 24 hours, respectively. Expression of PECAM-1 mRNA was measured by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) with β-actin as an internal standard, and sequencing of RT-PCR products was performed to confirm the specificity of amplification for PECAM-1 gene. The endothelial cell surface expression of PECAM-1 was determined by flow cytometry (FCM).Results There were no significant changes in the expression of PECAM-1 mRNA and protein when the cells were exposed to AGEs-BSA with different concentrations or periods (P> 0.05). However, PECAM-1 expression was reduced in the cells treated with TNF-α, IFN-γ, TNF-α+IFN-γ and AGEs-BSA+TNF-α. The level of PECAM-1 treated with AGEs-BSA+TNF-α was lower than that of TNF-α treated alone (P<0.01).Conclusions AGEs-BSA had no effect on the expression of PECAM-1 mRNA and protein in cultured HUVEC. With the presence of inflammatory mediator TNF-α, AGEs-BSA decreased the level of PECAM-1, which might reduce the adhesion interaction between adjacent endothelial cells, enhance the permeability of endothelial cells, and might be implicated in the endothelial dysfunction and pathogenesis of atherosclerosis in patients with diabetes mellitus. The significance of this phenomenon in intracellular signal transduction remains to be determined.

  4. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  5. Modulation of human leukocyte antigen and intracellular adhesion molecule-1 surface expression in malignant and nonmalignant human thyroid cells by cytokines in the context of extracellular matrix.

    Science.gov (United States)

    Miller, A; Kraiem, Z; Sobel, E; Lider, O; Lahat, N

    2000-11-01

    Interactions between malignant cells and their environment are achieved via cell-surface receptors and adhesion molecules. The extracellular matrix (ECM) and ECM-bound cytokines modulate the expression of cell-surface molecules on target malignant cells, which may lead to changes in their susceptibility to cytolysis, in their ability to present antigens, and in the induction of local immune-cell activation and patrol. Eventually, these alterations may culminate in either the destruction, or escape and proliferation, of the tumor. We studied the effects of the ECM and its components in a "naive" form or following binding of the inflammatory cytokines interferon gamma (IFNgamma) and tumor necrosis factor alpha (TNFalpha) on the surface expression of human leukocyte antigen (HLA) class-I, HLA class-II (HLA-DR), and intracellular adhesion molecule-1 (ICAM-1), on nonmalignant and malignant thyroid cells. The basal expression of HLA class-I molecules was not significantly changed either by naive ECM and its components or by ECM-bound cytokines. ECM synergized with IFNgamma and TNFalpha in inducing HLA-DR molecules on nonmalignant and malignant thyrocytes, with higher HLA-DR levels on the malignant cells. The laminin component, in particular, synergized with IFNgamma. Basal ICAM-1 expression on nonneoplastic cells was not significantly affected by the cytokines when grown in the absence of ECM, but was significantly upregulated when cells were cultured on ECM. In contrast, in malignant thyrocyte cultures, ECM significantly attenuated IFNgamma- and TNFalpha-mediated enhancement of ICAM-1 expression. We concluded that signals derived from ECM-embedded cytokines participate in the regulation of key thyroid cell surface molecules and, thus, may affect the final outcome of human thyroid malignancies. PMID:11128721

  6. Cardiotrophin-1 induces intercellular adhesion molecule-1 expression by nuclear factor κB activation in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background In addition to elevated concentrations of cytokines, patients with congestive heart failure (CHF) show endothelial dysfunction and increased plasma concentrations of adhesion molecules like intercellular adhesion molecule-1 (ICAM-1). Furthermore, the concentration of cardiotrophin-1 (CT-1) - a cytokine of the interleukin-6 superfamily - is increased in CHF. We tested the hypothesis whether CT-1 is able to induce ICAM-1 in human umbilical vein endothelial cells (HUVEC). Furthermore we examined the signalling mechanisms of CT-1 mediated ICAM-1 expression. Methods Confluent layers of HUVEC were incubated with increasing concentrations of CT-1 (5 to 100 ng/ml) for different periods. ICAM-1 mRNA was determined by real-time polymerase chain reaction (PCR) and ICAM-1 surface expression by fluorescence-activated cell sorter (FACS) analysis and soluble ICAM-1 (slCAM-1) in the culture supematant by enzyme linked immunosorbent assay (ELISA). To clarify the signalling pathway of CT-1 induced ICAM-1 expression we used various inhibitors of possible signal transducing molecules, electromobility shift assay (EMSA) and Western blot analysis. Results CT-1 induced ICAM-1 mRNA (1.8i-0.8 fold increase compared to unstimulated cells after 6 hours) and protein (1.4~-0.2 fold increase compared to unstimulated cells after 48 hours) in HUVEC in a time- and concentration-dependent manner. EMSA experiments show that CT-1 causes nuclear factor (NF) KB activation. Because parthenolide could inhibit CT-1 induced ICAM-1 expression NFKB activation is required in this pathway. CT-1 did not activate extraceUular signal regulated kinases (ERK), c-Jun N-terminal kinase (JNK) and p38. Conclusion CT-1 is able to induce ICAM-1 in endothelial cells by NFKB activation. These results may explain in part elevated ICAM-1 concentrations in patients with CHF and endothelial dysfunction.

  7. Circulating intercellular adhesion molecule-1 (ICAM-1) as an early and sensitive marker for virus-induced T cell activation

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Johansen, J; Marker, O;

    1995-01-01

    The effect of systemic virus infection on the level of circulating ICAM-1 (cICAM-1) in serum, and the role of virus-activated T cells in this context, were studied using the murine lymphocytic choriomeningitis virus infection as primary model system. A marked virus-induced elevation in cICAM-1...... in serum was revealed, the presence of which coincided with the phase of virus-induced T cell activation. However, high levels of cICAM-1 in serum were observed well before maximal T cell activation could be demonstrated. No increase in cICAM-1 was observed in the serum of infected T cell-deficient nude...... induce shedding of ICAM-1 into the circulation, and this parameter may be used as an early and sensitive marker for immune activation....

  8. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    Science.gov (United States)

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  9. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-ling; WEN Liang; CHEN Yan-jiong; ZHU Yi

    2009-01-01

    Background The vascular endothelial growth factor (VEGF) is involved in the initiation of retinal vascular leakage and nonperfusion in diabetes. The intracellular adhesion molecule-1 (ICAM-1) is the key mediator of the effect of VEGFs on retinal leukostasis. Although the VEGF is expressed in an early-stage diabetic retina, whether it directly up-regulates ICAM-1 in retinal endothelial cells (ECs) is unknown. In this study, we provided a new mechanism to explain that VEGF does up-regulate the expression of ICAM-1 in retinal ECs.Methods Bovine retinal ECs (BRECs) were isolated and cultured. Immunohistochemical staining was performed to identify BRECs. The cultured cells were divided into corresponding groups. Then, VEGF (100 ng/ml) and other inhibitors were used to treat the cells. Cell lysate and the cultured supernatant were collected, and then, the protein level of ICAM-1 and phosphorylation of the endothelial nitric oxide synthase (eNOS) were detected using Western blotting. Griess reaction was used to detect nitric oxide (NO).Results Western blotting showed that the VEGF up-regulated the expression of ICAM-1 protein and increased phosphorylation of the eNOS in retinal ECs. Neither the block of NO nor protein kinase C (PKC) altered the expression of ICAM-1 or the phosphorylation of eNOS. The result of the Western blotting also showed that inhibition of phosphatidylinositol 3-kinase (PI3K) or reactive oxygen species (ROS) significantly reduced the expression of ICAM-1. Inhibition of PI3K also reduced phosphorylation of eNOS. Griess reaction showed that VEGF significantly increased during NO production. When eNOS was blocked by L-NAME or PI3K was blocked by LY294002, the basal level of NO production and the increment of NO caused by VEGF could be significantly decreased.Conclusion ROS-NO coupling in the retinal endothelium may be a new mechanism that could help to explain why VEGF induces ICAM-1 expression and the resulting leukostasis in diabetic retinopathy.

  10. Expression profile of vascular cell adhesion molecule-1 (CD106) in inflammatory foci using rhenium-188 labelled monoclonal antibody in mice.

    Science.gov (United States)

    Kairemo, K J; Strömberg, S; Nikula, T K; Karonen, S L

    1998-06-01

    Rhenium (Re)-188 is a generator (W-188/Re-188) produced high energy beta-emitter suitable for radionuclide therapy (T1/2 is 16.9 hrs and Emax 2.1 MeV (range 11 mm)). We have labelled monoclonal antibody (MAb) raised against vascular cell adhesion molecule-1 (VCAM-1) with Re-188 using glucoheptonate chelation technique and SnCl2 as reducing agent. The labelling efficiency, free perrhenate and reduced Re were controlled with thin layer chromatography and the purification of Re-188-MoAbs was performed using gel filtration. Our results indicate that Re-188-labelled antibodies remain in vitro stable and the labelling purity is > 90%. We also have applied these Re-188-MoAbs for detection of inflammatory disease in a mouse. The effective half-lives of organs of interest after an injection of Re-188-anti-VCAM1 were as follows: blood 5.2 hr, kidney 4.7 hr, and liver 9.6 hr. Re-188-anti-VCAM-1 was found to accumulate mainly in kidney and liver. One hour after the injection, the kidney contained in average as high as 12.5% and the liver 2.8 ID/g tissue. After 6 hr, the kidney contained 5.5% ID/g and the liver 2.6% ID/g. At 24 hr, the kidney uptake was 0.5% ID/g and the liver uptake 0.8% ID/g, respectively. The inflamed foci, subcutaneous lesions in the footpad skin, were visualized using gamma camera. From the distribution data the uptakes in the inflamed foci as follows: at 1 hr 2.18 (inflammation) and 1.72% ID/g (control), at 6 hr 1.42 (inflammation) and 0.85% ID/g (control), and at 24 hr 0.17 (inflammation) and 0.084% ID/g (control), respectively. Anti-VCAM-1 MAb showed better targeting as compared to control MoAbs in inflammation (caused by E.coli lipoplysaccaride). In conclusion, Re-188 is suitable for MAb labelling, and MAb against VCAM-1 may be used for detection of local inflammatory disease. PMID:9762472

  11. Association of Intercellular Adhesion Molecule 1 (ICAM1) with Diabetes and Diabetic Nephropathy

    OpenAIRE

    Gu, Harvest F; Jun eMa; Gu, Karolin T.; Kerstin eBrismar

    2013-01-01

    Diabetes and diabetic nephropathy are complex diseases affected by genetic and environmental factors. Identification of the susceptibility genes and investigation of their roles may provide useful information for better understanding of the pathogenesis and for developing novel therapeutic approaches. Intercellular adhesion molecule 1 (ICAM1) is a cell surface glycoprotein expressed on endothelial cells and leukocytes in the immune system. The ICAM1 gene is located on chromosome 19p13 within ...

  12. Intercellular adhesion molecule-1 in patients with idiopathic interstitial pneumonia.

    Directory of Open Access Journals (Sweden)

    Takehara H

    2001-08-01

    Full Text Available This study focuses on a possible role of intercellular adhesion molecule-1 (ICAM-1 in interstitial pulmonary diseases. We determined a soluble form of ICAM-1 in serum and bronchoalveolar lavage fluid (BALF using ELISA in patients with usual interstitial pneumonia (UIP, bronchiolitis obliterance organizing pneumonia (BOOP, or nonspecific interstitial pneumonia (NSIP. In addition, we investigated the expression of ICAM-1 in the lung tissues of these patients by means of immunohistochemical staining. Serum levels of soluble ICAM-1 were significantly higher in patients with UIP or NSIP than in healthy subjects, and were also high in patients with BOOP. The soluble ICAM-1 in BALF tended to be higher in patients with UIP, BOOP, or NSIP than in normal subjects. A significant correlation was seen between soluble levels of ICAM-1 in serum and BALF. In the immunostaining of ICAM-1 of the lung tissues, ICAM-1 expression was more pronounced in patients with UIP than in those with BOOP or NSIP. The increased expression of ICAM-1 was seen in type II alveolar epithelium and vascular endothelium in patients with interstitial pneumonia. A positive correlation was observed between the degree of ICAM-1 expression in the lung tissues and the BALF levels of soluble ICAM-1. The expression of ICAM-1 in type II alveolar epithelium suggests that ICAM-1 plays a specific role in the fibrotic process of the lung, and that the measurement of soluble ICAM-1 in sera and BALF could be a useful marker for evaluating the progression of fibrosis.

  13. Neutrophil Transmigration Mediated by the Neutrophil-Specific Antigen CD177 Is Influenced by the Endothelial S536N Dimorphism of Platelet Endothelial Cell Adhesion Molecule-1

    OpenAIRE

    Bayat, Behnaz; Werth, Silke; Sachs, Ulrich J. H.; Newman, Debra K.; Newman, Peter J.; Santoso, Sentot

    2010-01-01

    The human neutrophil-specific adhesion molecule CD177 (also known as the NB1 alloantigen) becomes upregulated on the cell surface in a number of inflammatory settings. We recently showed that CD177 functions as a novel heterophilic counterreceptor for the endothelial junctional protein PECAM-1 (CD31), an interaction that is mediated by membrane-proximal PECAM-1 IgD 6, which is known to harbor an S536N single nucleotide polymorphism of two major isoforms V98N536G643 and L98S536R643 and a yet-t...

  14. Neutrophil transmigration mediated by the neutrophil-specific antigen CD177 is influenced by the endothelial S536N dimorphism of platelet endothelial cell adhesion molecule-1.

    Science.gov (United States)

    Bayat, Behnaz; Werth, Silke; Sachs, Ulrich J H; Newman, Debra K; Newman, Peter J; Santoso, Sentot

    2010-04-01

    The human neutrophil-specific adhesion molecule CD177 (also known as the NB1 alloantigen) becomes upregulated on the cell surface in a number of inflammatory settings. We recently showed that CD177 functions as a novel heterophilic counterreceptor for the endothelial junctional protein PECAM-1 (CD31), an interaction that is mediated by membrane-proximal PECAM-1 IgD 6, which is known to harbor an S(536)N single nucleotide polymorphism of two major isoforms V(98)N(536)G(643) and L(98)S(536)R(643) and a yet-to-be-determined region on CD177. In vitro transendothelial migration experiments revealed that CD177(+) neutrophils migrated significantly faster through HUVECs expressing the LSR, compared with the VNG, allelic variant of PECAM-1 and that this correlated with the decreased ability of anti-PECAM-1 Ab of ITIM tyrosine phosphorylation in HUVECs expressing the LSR allelic variant relative to the VNG allelic variant. Moreover, engagement of PECAM-1 with rCD177-Fc (to mimic heterophilic CD177 binding) suppressed Ab-induced tyrosine phosphorylation to a greater extent in cells expressing the LSR isoform compared with the VNG isoform, with a corresponding increased higher level of beta-catenin phosphorylation. These data suggest that heterophilic PECAM-1/CD177 interactions affect the phosphorylation state of PECAM-1 and endothelial cell junctional integrity in such a way as to facilitate neutrophil transmigration in a previously unrecognized allele-specific manner. PMID:20194726

  15. Pentosan polysulfate treatment ameliorates motor function with increased serum soluble vascular cell adhesion molecule-1 in HTLV-1-associated neurologic disease.

    Science.gov (United States)

    Nakamura, Tatsufumi; Satoh, Katsuya; Fukuda, Taku; Kinoshita, Ikuo; Nishiura, Yoshihiro; Nagasato, Kunihiko; Yamauchi, Atsushi; Kataoka, Yasufumi; Nakamura, Tadahiro; Sasaki, Hitoshi; Kumagai, Kenji; Niwa, Masami; Noguchi, Mitsuru; Nakamura, Hideki; Nishida, Noriyuki; Kawakami, Atsushi

    2014-06-01

    The main therapeutic strategy against human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) characterized by lower extremity motor dysfunction is immunomodulatory treatment, with drugs such as corticosteroid hormone and interferon-α, at present. However, there are many issues in long-term treatment with these drugs, such as insufficient effects and various side effects. We now urgently need to develop other therapeutic strategies. The heparinoid, pentosan polysulfate sodium (PPS), has been safely used in Europe for the past 50 years as a thrombosis prophylaxis and for the treatment of phlebitis. We conducted a clinical trial to test the effect of subcutaneous administration of PPS in 12 patients with HAM/TSP in an open-labeled design. There was a marked improvement in lower extremity motor function, based on reduced spasticity, such as a reduced time required for walking 10 m and descending a flight of stairs. There were no significant changes in HTLV-I proviral copy numbers in peripheral blood contrary to the inhibitory effect of PPS in vitro for intercellular spread of HTLV-I. However, serum soluble vascular cell adhesion molecule (sVCAM)-1 was significantly increased without significant changes of serum level of chemokines (CXCL10 and CCL2). There was a positive correlation between increased sVCAM-1and reduced time required for walking 10 m. PPS might induce neurological improvement by inhibition of chronic inflammation in the spinal cord, through blocking the adhesion cascade by increasing serum sVCAM-1, in addition to rheological improvement of the microcirculation. PPS has the potential to be a new therapeutic tool for HAM/TSP.

  16. Potential of mZD7349-conjugated PLGA nanoparticles for selective targeting of vascular cell-adhesion molecule-1 in inflamed endothelium.

    Science.gov (United States)

    Imanparast, Fatemeh; Paknejad, Maliheh; Faramarzi, Mohammad Ali; Kobarfard, Farzad; Amani, Amir; Doosti, Mahmood

    2016-07-01

    Early diagnosis and restoring normal function of dysfunctional endothelium is an attractive strategy for prevention of inflammatory diseases such as atherosclerosis. Inhibition of cell adhesion in the process of atherosclerosis plaque formation, mediated by peptide antagonists of very late antigen-4 (VLA-4) has already been developed and evaluated both in vitro and in vivo. In this study, for the first time, modified ZD7349 (mZD7349) peptide, as an antagonist for VLA-4, was used for targeting fluorescein isothiocyanate-loaded poly (DL-lactic-co-glycolic acid) nanoparticles (FITC-PLGA NPs). Rate of binding and internalization of mZD7349-NPs to activated human umbilical vein endothelial cells (HUVECs) were compared with that of untargeted. Effects of temperature reduction and clathrin-mediated endocytosis inhibitor (0.45M sucrose) were also studied on the binding and internalization of mZD7349-NPs and NPs. Results showed that binding of the conjugated NPs could be significantly blocked by pre-incubating cells with the free peptide, suggesting that the binding of NPs is mediated by attaching the surface peptide to VCAM-1 on HUVECs. Also, conjugated FITC-loaded NPs were shown to be rapidly endocytosized to a greater extent than the unconjugated ones. The binding and internalization of mZD7349-NPs and NPs were slowed down at low temperature and in the presence of sucrose with greater reductions for mZD7349-NPs. To conclude, the peptide-NPs targeting the VCAM-1 is suggested as a theranostic carrier for lesions upregulating VCAM-1. PMID:27105996

  17. CKIP-1 ameliorates high glucose-induced expression of fibronectin and intercellular cell adhesion molecule-1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.

    Science.gov (United States)

    Gong, Wenyan; Chen, Cheng; Xiong, Fengxiao; Yang, Zhiying; Wang, Yu; Huang, Junying; Liu, Peiqing; Huang, Heqing

    2016-09-15

    Glucose and lipid metabolism disorders as well as oxidative stress (OSS) play important roles in diabetic nephropathy (DN). Glucose and lipid metabolic dysfunctions are the basic pathological changes of chronic microvascular complications of diabetes mellitus, such as DN. OSS can lead to the accumulation of extracellular matrix and inflammatory factors which will accelerate the progress of DN. Casein kinase 2 interacting protein-1 (CKIP-1) mediates adipogenesis, cell proliferation and inflammation under many circumstances. However, whether CKIP-1 is involved in the development of DN remains unknown. Here, we show that CKIP-1 is a novel regulator of resisting the development of DN and the underlying molecular mechanism is related to activating the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) antioxidative stress pathway. The following findings were obtained: (1) The treatment of glomerular mesangial cells (GMCs) with high glucose (HG) decreased CKIP-1 levels in a time-dependent manner; (2) CKIP-1 overexpression dramatically reduced fibronectin (FN) and intercellular adhesionmolecule-1 (ICAM-1) expression. Depletion of CKIP-1 further induced the production of FN and ICAM-1; (3) CKIP-1 promoted the nuclear accumulation, DNA binding, and transcriptional activity of Nrf2. Moreover, CKIP-1 upregulated the expression of Nrf2 downstream genes, heme oxygenase (HO-1) and superoxide dismutase 1 (SOD1); and ultimately decreased the levels of reactive oxygen species (ROS). The molecular mechanisms clarify that the advantageous effect of CKIP-1 on DN are well connected with the activation of the Nrf2/ARE antioxidative stress pathway. PMID:27481061

  18. The carbon monoxide releasing molecule (CORM-3) inhibits expression of vascular cell adhesion molecule-1 and E-selectin independently of haem oxygenase-1 expression

    NARCIS (Netherlands)

    Song, H.; Bergstrasser, C.; Rafat, N.; Hoeger, S.; Schmidt, M.; Endres, N.; Goebeler, M.; Hillebrands, J. L.; Brigelius-Flohe, R.; Banning, A.; Beck, G.; Loesel, R.; Yard, B. A.

    2009-01-01

    Background and purpose: Although carbon monoxide (CO) can modulate inflammatory processes, the influence of CO on adhesion molecules is less clear. This might be due to the limited amount of CO generated by haem degradation. We therefore tested the ability of a CO releasing molecule (CORM-3), used i

  19. Functional Implication of the Hydrolysis of Platelet Endothelial Cell Adhesion Molecule 1 (CD31) by Gingipains of Porphyromonas gingivalis for the Pathology of Periodontal Disease

    OpenAIRE

    Yun, Peter L. W.; DeCarlo, Arthur A.; Chapple, Cheryl C.; Hunter, Neil

    2005-01-01

    Periodontitis is a response of highly vascularized tissues to the adjacent microflora of dental plaque. Progressive disease has been related to consortia of anaerobic bacteria, with the gram-negative organism Porphyromonas gingivalis particularly implicated. The gingipains, comprising a group of cysteine proteinases and associated hemagglutinin domains, are major virulence determinants of this organism. As vascular expression of leukocyte adhesion molecules is a critical determinant of tissue...

  20. Soluble intercellular adhesion molecule-1 as an early detection marker for radiation pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Y.; Kitamura, S. [Jichi Medical School, Dept. of Pulmonary Medicine, Tochigi (Japan)

    1999-04-01

    To investigate the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of radiation pneumonitis and to determine whether the measurement of soluble ICAM-1 (sICAM-1) levels is useful for predicting the onset of pneumonitis, the levels of sICAM-1 were measured in serum and broncholveolar lavage (BAL) fluids from patients with lung malignancy who received radiotherapy. A total of 30 patients were irradiated with a total dose of {approx}60 Gy. Blood samples were taken before, midway and after radiotherapy. BAL was also performed before and after radiotherapy in seven cases. The sICAM-1 concentration was measured using an enzyme-linked immunosorbent assay kit with two different monoclonal antibodies. Twelve out of 30 cases developed radiation pneumonitis (pneumonitis group), and the other cases did not (non-pneumonitis group). Serum levels of sICAM-1 after radiotherapy were significantly elevated in the pneumonitis group, but not in the non-pneumonitis group. In some of the cases in the pneumonitis group, sICAM-1 levels began to increase at an early phase of irradiation. In one case of pneumonitis in which BAL was performed, the total cell count and the number of lymphocytes increased markedly, as did the level of sICAM-1 in BAL fluid. These findings suggest that intercellular adhesion molecule-1 may play an important role in the development of radiation pneumonitis and that soluble intercellular adhesion molecule-1 may be a useful marker for the early detection of radiation pneumonitis. (au) 29 refs.

  1. 平阳霉素作用静脉畸形内皮细胞后VCAM-1、ICAM-1、ICAM-3表达%Pingyangmycin- Regulated Expression of Vascular Cell Adhesion Molecule - 1 ( VCAM - 1 ), Intercellular Adhesion Molecule-1 (ICAM - 1 ) and Intercellular Adhesion Molecule-3 (ICAM-3) in Human Venous Malformation Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    贾玉林; 张文峰; 贾俊; 赵怡芳

    2012-01-01

    Objective: To investigate PYM-regulated expressions of VCAM-1, ICAM-1 and ICAM -3 in primary cultured HVMECs. Methods: Expressions of the adhesion molecules VCAM-1, ICAM-1 and ICAM-3 were studied in PYM -regulated HVMECs in vitro by means of ELISA and RT - PCR. Results: Expressions of VCAM-1 and ICAM -3 were induced, and expression of ICAM-1 was up-regulated, both in a time and concentration-dependent fashion after stimulation with PYM. The expression of VCAM - 1 was observed at 2h and ICAM-1 at 6h and ICAM-3 at 12h. The highest expression of VCAM-1, ICAM-1 and ICAM-3 was observed at 8h, 18h and 24h, After exposed for the same time interval, expression of adhesion molecules on HVMECs exposed to lmg/L of PYM was higher than that exposed to other concentration of PYM. mRNA expressions of VCAM-1, ICAM-1 and ICAM -3 started at 2h, 6h and 12h respectively. Maximal synthetic activity was observed at 6 - 8h for VCAM-1, at 12-18h for ICAM-1 and at 18 -24h for ICAM -3. Synthesis activity was greatly suppressed at l0mg/L or higher concentration. Conclusion: Expression of Ig-like adhesion molecules in HVMECs can be induced or up-regulated by lower concentration of PYM in a time and concentration -dependent fashion.%目的:研究平阳霉素(PYM)作用于人静脉畸形内皮细胞(HVMECs)后Ig粘附分子(VCAM-1、ICAM-1、ICAM-3)表达.方法:体外培养HVMECs,采用细胞ELISA和RT- PCR技术检测不同浓度PYM作用人HVMECs后Ig粘附分子表达.结果:PYM作用人HVMECs后粘附分子表达具有时间浓度效应.PYM能诱导VCAM-1在人HVMECs表达,2h后明显增高,8h后达到峰值,12h后下降,48 h后呈阴性表达.PYM能促进ICAM-1在人HVMECs表达,12h后显著增高,18 h最高,24 h逐渐下降.PYM能促进ICAM-3表达,12 h后逐渐增高,24 h达到峰值,72 h后1CAM-3仍高表达.0.01~1 mg/L PYM能诱导或促进粘附分子表达,表达水平与药物浓度成正相关,1 mg/L PYM作用人HVMECs后粘附分子表达较高,10 mg/L PYM

  2. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R;

    2013-01-01

    as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein...... purity, yield, fold, ability to bind DBLβ, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM‑1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields....

  3. Influence of glycated low density lipoprotein on the proliferation,expression of intercellular adhesion molecule-1,von Willebrand factor of human umbilical endothelial cells

    Institute of Scientific and Technical Information of China (English)

    LU Jun; LIU Hui-ying; ZHANG Xiu-zhen; LEI Tao

    2009-01-01

    @@ Diabetes mellitus known as its macro-and microangiopathy has caused thousands of mortality per year.Recent researches showed that hyperglycemia,advanced glycation end products(AGEs)and some other factors acted on the process of atherogenesis.AGEs can combine with receptors of AGEs(RAGEs),which exist on the vascular endothelium,smooth muscle cells,macrophage,lymphocyte and so on.

  4. Retinal Vascular Endothelial Growth Factor Induces Intercellular Adhesion Molecule-1 and Endothelial Nitric Oxide Synthase Expression and Initiates Early Diabetic Retinal Leukocyte Adhesion in Vivo

    OpenAIRE

    Joussen, Antonia M; Poulaki, Vassiliki; Qin, Wenying; Kirchhof, Bernd; Mitsiades, Nicholas; Wiegand, Stanley J.; Rudge, John; Yancopoulos, George D.; Adamis, Anthony P.

    2002-01-01

    Leukocyte adhesion to the diabetic retinal vasculature results in early blood-retinal barrier breakdown, capillary nonperfusion, and endothelial cell injury and death. Previous work has shown that intercellular adhesion molecule-1 (ICAM-1) and CD18 are required for these processes. However the relevant in vivo stimuli for ICAM-1 and CD18 expression in diabetes remain unknown. The current study investigated the causal role of endogenous vascular endothelial growth factor (VEGF) and nitric oxid...

  5. A human/mouse chimeric monoclonal antibody against intercellular adhesion molecule-1 for tumor radioimmunoimaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Miyuki; Hinoda, Yuji; Sasaki, Shigeru; Tsujisaki, Masayuki; Imai, Kohzoh [Sapporo Medical Univ. (Japan); Oriuchi, Noboru; Endo, Keigo

    1996-04-01

    A mouse-human chimeric antibody for intercellular adhesion molecule-1 (ICAM-1) was established by using heavy chain loss mouse mutant hybridoma and human immunoglobulin expression vector. The HA58 hybridoma secreted anti-ICAM-1 monoclonal antibody (MoAb) (IgG1,{kappa}). The gene of the mouse variable region of heavy chain was amplified and cloned by the polymerase chain reaction technique directly from the HA58 hybridoma RNA. The variable region of heavy chain was joined with an expression vector which contains human {gamma}1 constant gene. The expression vector was transfected into heavy chain loss mutant cells HA58-7, which produced only murine immunoglobulin light chains. The resultant chimeric MoAb HA58, chHA58, retained full-binding reactivity to ICAM-1 compared with murine HA58 parental antibody. The chimeric MoAb chHA58 showed little antibody dependent cell-mediated cytotoxic activity against cultured tumor cells. Biodistribution studies with {sup 99m}Tc-labeled chHA58 in nude mice bearing human gastric carcinoma JRST cells, demonstrated that the tumor-blood ratio was 1.55 at 18 h after injection, when the tumors were clearly visible in gamma scintigraphy. These data suggest that chHA58 may be of practical use for radioimmunoimaging of a wide variety of tumors. (author).

  6. Serum Soluble Intercellular Adhesion Molecule-1 Level in Acute Lymphoblastic Leukemia in Children

    International Nuclear Information System (INIS)

    Impaired migration of leucocytes is a characteristic feature of leukemia. Knowledge of the mechanisms of leukemic cells migration has expanded greatly in recent years. Leukocyte infiltrates are formed in surrounding tissues due to changes in chemokines and adhesion molecules concentrations. The present study included 45 patients with acute lymphoblastic leukemia (ALL). The mean of their ages was 6.10±4.39 years. They were 29 males and 16 females. They were chosen from those attending the Oncology Clinic and inpatient wards of the National Cancer Institute, Cairo University. They were classified into 3 groups according to the disease activity: Group I: Comprised 15 newly diagnosed cases of ALL. Group II: Consisted of 15 cases of ALL during relapse period. Group III included 15 cases of ALL during complete remission. Also, 15 apparently healthy children with matched age and sex as a control group (group IV). All the studied cases were subjected to thorough clinical examination as well as the following investigations: complete blood picture, bone marrow biopsy and estimation of serum intercellular adhesion molecule-1 (sICAM-1) by ELISA.The results of this study revealed that serum ICAM-l showed no significant changes in its value on comparing group I (newly diagnosed cases) and group II (cases during relapse). On the other hand, a significant higher level of sICAM-1 was observed on comparing groups I and II with group III (cases during remission) separately (P0.05).From this it was concluded that the levels of serum soluble intercellular circulating adhesion molecule ICAM-1 can be utilized for monitoring disease activity of ALL and its response to treatment, as well as for early detection of relapse.

  7. Influence of rapid atrial pacing on the expression of vascular cell adhesion molecule-1 in canines%心房快速起搏对犬血管细胞黏附分子-1表达的影响

    Institute of Scientific and Technical Information of China (English)

    李佳; 葛海龙; 陈光远; 高倩萍; 孙俊峰; 李元十; 朱立群; 曹君娴; 富路

    2011-01-01

    目的 研究心房快速起搏犬模型血管细胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)的表达.方法 选用成年健康杂种犬13条,随机分为两组:快速起搏组7条,假手术组6条.两组均开胸于右心耳缝植AOO型起搏器,快速起搏组以400 bpm起搏6周,假手术组不起搏.应用酶联免疫法测定血清VCAM-1水平,采用逆转录-多聚酶链反应(RT-PCR)测定左房组织的VCAM-1 mRNA表达水平,同时进行左房的病理分析.结果 快速起搏组犬起搏6周后的血清VCAM-1水平明显高于假手术组(t=11.63,P<0.01),左房的VCAM-1 mRNA表达水平明显高于假手术组,增高32.1%(t=2.49,P=0.03);病理结果示快速起搏组犬左房心肌细胞变性.结论 心房快速起搏可引起犬血清VCAM-1及左房VCAM-1 mRNA表达水平增高.VCAM-1可能参与心房损伤时的心肌重构过程.%Objective To invesligale the expression of vascular cell adhesion molecule - 1 (VCAM - 1) in canines who received lasling rapid alrial pacing. Methods 13 canines were randomly divided inlo Lwo groups; sham - operaled group ( n = 6 ) and alrial pacing group ( n = 7) . A pacemaker ( A00) was implanled Lo the right alrial appendage in each of the dogs. The dogs in alrial pacing group were paced at 400 bpm for 6 weeks while those in the sham - operaled group were not paced. Serum VCAM - 1 level was lesled by ELISA kit. VCAM - 1 gene expression in myocardium of left alrium were analyzed al the mRNA by reverse Iranscriplion polymerase chain reaction. The lefl alrium were also analyzed by palhology. Results Compared with the sham - operaled group, lasling alrial pacing rapidly increased the level of serum VCAM - 1 and the expression of VCAM - 1 al mRNA level in lefl alrium significanlly(P < 0. 05 ). Palhology showed that cell degeneralion existed in the lefl alrium in dogs of alrial pacing group. Conclusion Lasling alrial pacing rapidly can significantly increase the expression of serum VCAM - 1 and VCAM - 1 al m

  8. Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum- and glucocorticoid-inducible protein kinase-1.

    Science.gov (United States)

    Terada, Yoshio; Ueda, Satoko; Hamada, Kazu; Shimamura, Yoshiko; Ogata, Koji; Inoue, Kosuke; Taniguchi, Yoshinori; Kagawa, Toru; Horino, Taro; Takao, Toshihiro

    2012-02-01

    Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. To determine the signaling pathway of aldosterone in relation to fibrosis and inflammation in mesangial cells, we investigated the effects of aldosterone on expression and activation of serum- and glucocorticoid-inducible protein kinase-1 (SGK1), the activation of nuclear factor-kappa B (NF-κB activation, and the expressions of intercellular adhesion molecule-1 (ICAM-1) and connective tissue growth factor (CTGF). Aldosterone stimulated SGK1 expression, phosphorylation (Ser-256), and kinase activity. The increments of phosphorylation and expression of SGK1 induced by aldosterone were inhibited by mineralocorticoid receptor (MR) inhibitor (eplerenone). Aldosterone stimulated NF-κB activity measured by NF-κB responsive elements, luciferase assay, and the levels of inhibitor of kappa B (IκB) phosphorylation. This aldosterone-induced activation of NF-κB was inhibited by the transfection of dominant-negative SGK1. Furthermore, aldosterone augmented the promoter activities and protein expressions of ICAM-1 and CTGF. The effects of aldosterone on ICAM-1 and CTGF promoter activities and protein expressions were inhibited by the transfection of dominant-negative SGK1 and dominant-negative IκBα. We also found that the MR antagonist significantly ameliorated the glomerular injury and enhancements in SGK1, ICAM-1, and CTGF expressions induced by 1% sodium chloride and aldosterone in vivo. In conclusion, our findings suggest that aldosterone stimulates ICAM-1 and CTGF transcription via activation of SGK1 and NF-κB, which may be involved in the progression of aldosterone-induced mesangial fibrosis and inflammation. MR antagonists may serve as useful therapeutic targets for the treatment of glomerular inflammatory disease.

  9. Association of Intercellular Adhesion Molecule 1 (ICAM1 with Diabetes and Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Harvest F Gu

    2013-01-01

    Full Text Available Diabetes and diabetic nephropathy are complex diseases affected by genetic and environmental factors. Identification of the susceptibility genes and investigation of their roles may provide useful information for better understanding of the pathogenesis and for developing novel therapeutic approaches. Intercellular adhesion molecule 1 (ICAM1 is a cell surface glycoprotein expressed on endothelial cells and leukocytes in the immune system. The ICAM1 gene is located on chromosome 19p13 within the linkage region of diabetes. In the recent years, accumulating reports have implicated that genetic polymorphisms in the ICAM1 gene are associated with diabetes and diabetic nephropathy. Serum ICAM1 levels in diabetes patients and the icam1 gene expression in kidney tissues of diabetic animals are increased compared to the controls. Therefore, ICAM1 may play a role in the development of diabetes and diabetic nephropathy. In this review, we present genomic structure, variation and regulation of the ICAM1 gene, summarized genetic and biological studies of this gene in diabetes and diabetic nephropathy and discussed about the potential application using ICAM1 as a biomarker and target for prediction and treatment of diabetes and diabetic nephropathy.

  10. Expression of intercellular adhesion molecule-1and HLA-DR antigens in uveitis

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    目的:研究细胞间粘附分子-1(intellular adhesion molecule-1,ICAM-1)和人体组织相关抗原(human leudocyte antigen,HLA-DR)在萄萄膜炎免疫反应中的作用.方法:应用免疫组织化学染色检查20只正常眼和54例葡萄糖膜炎眼球摘除眼(其中外源性33例和内源性21例)的脉络膜和视网膜组织中ICAM-1和HLA-DR的表达.结果:正常眼的脉络膜和视网膜组织没有ICAM-1的阳性染色,没有或较少有HLA-DR的表达,葡萄膜炎眼中二者有增高表达(P<0.01),而外源性和内源性葡萄膜炎眼组间表达统计学上无显著差异(P>0.05).结论:ICAM-1、HLA-DR分子能够介导白细胞和炎症部位组织细胞的识别和粘附,二者的共同表达说明它们在葡萄糖膜炎脉络膜视网膜组织的免疫性损伤中具有重要意义.%Objective :To study the effects of intercellular adhesion molecule-1 (ICAM-1) and human leukocyte antigen (HAL-DR) on the immunopathologic process of uveitis. Methods:Imn- munohistochemical techniques were applied to detect their expression in eyes of both the health (20 cases from eye bank) and patients with uveitis (54 cases with 54 eyes which included 33 ex- ogenous uveitis and 21 endogenous one). Results:Both the two ant igens were detectable in the choroidal and retinal tissues in eyes of uveitis while all the normal eyes showed negative expres- sion of ICAM-1 and negative or little expression of HLA-DR (P<0. 01). However,there was no statistically significant difference between exogenous and endogenous types (P>0. 05). Conclu- sion: Both ICAM-1 and HLA-DR may be responsible for cell recognition and binding in the in- flarnmatory tissues. The co-expression of ICAM-1 and HAL-DR showed that these two factors might play an important role in the immunologic damage of the choroid and retina in uveitis.

  11. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    DEFF Research Database (Denmark)

    Brown, Alan; Turner, Louise; Christoffersen, Stig;

    2013-01-01

    , intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1...... ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion....

  12. Soluble intercellular adhesion molecule-1 for stable and acute phases of idiopathic pulmonary fibrosis

    OpenAIRE

    Okuda, Ryo; Matsushima, Hidekazu; Aoshiba, Kazutetsu; Oba, Tomohiro; Kawabe, Rie; Honda, Koujiro; Amano, Masako

    2015-01-01

    The levels of soluble intercellular adhesion molecule-1 (sICAM-1) have been reported to increase in patients with idiopathic pulmonary fibrosis. However, the utility of sICAM-1 has not been reported in detail. The aim of this study was to investigate whether sICAM-1 was a useful biomarker for stable idiopathic pulmonary fibrosis (IPF) and early phase of acute exacerbation of IPF. The patients who were diagnosed with IPF between 2013 and 2015 were enrolled. The levels of sICAM-1 and other inte...

  13. Association of serum soluble intercellular cell adhesion molecule-1, soluble vascular cell adhesion molecule-1 and hypersensitivity-CRP levels with peripheral vascular disease of lower limbs in patients with type 2 diabetes mellitus%2型糖尿病患者血清可溶性细胞间和血管细胞黏附分子1及CRP与下肢血管病变的关系

    Institute of Scientific and Technical Information of China (English)

    谭擎缨; 王静; 阮芸; 阮勇; 王秀景; 姚佳琦; 姚乐燕

    2013-01-01

    Objective To investigate the association of serum levels of soluble intercellular cell adhesion molecule-1 (sICAM-1),soluble vascular cell adhesion molecule-1 (sVCAM-1) and high sensitivity C-reactive protein (hs-CRP) with peripheral vascular disease of lower limbs in patients with type 2 diabetes mellitus (T2DM).Methods One hundred and thirty T2DM patients admitted from October 2011 to October 2012,and 30 age/sex-matched healthy subjects were enrolled in the study.The serum levels of sICAM-1,sVCAM-1,hs-CRP and other clinical parameters were measured; the peripheral blood vessels of lower limbs were examined with color Doppler ultrasonography.Based on the extent of angiopathy of lower limbs T2DM patients were classified as normal vascular group (n =26),mild angiopathy group (n =45),moderate/severe angiopathy group (n =59).Results The serum levels of sICAM-1 and sVCAM-1 in moderate/ severe angiopathy group of T2DM patients were higher than those in mild angiopathy group,normal vascular group and healthy controls (t:4.15-8.93,all P <0.05) ; the serum levels of hs-CRP in moderate/severe angiopathy group were higher than those in mild angiopathy group,normal vascular group and healthy controls (t:2.18-4.27,all P < 0.05).The serum sICAM-1 level was positively correlated with total cholesterol (TC),low density lipoprotein cholesterol (LDL-C) and sVCAM-1.The serum sVCAM-1 level was positively correlated with course of disease,systolic blood pressure and CRP.Conclusions Serum levels of sICAM-1,sVCAM-1 and hs-CRP are correlated with the extent of angiopathy of lower limbs in T2DM patients,and the elevated sICAM-1 ; sVCAM-1 and hs-CRP levels are also associated with hyper blood pressure,dislipidemia and chronic inflammation.%目的 探讨2型糖尿病患者血清可溶性细胞间黏附分子1(sICAM-1)、血管细胞黏附分子1(sVCAM-1)及高敏CRP(hsCRP)水平与下肢大血管病变程度的关系.方法 对130例2型糖尿病患者(糖尿病组)与30例年龄匹配

  14. Intercellular adhesion molecule 1 serves as a primary cognate receptor for the Type IV pilus of nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Novotny, Laura A; Bakaletz, Lauren O

    2016-08-01

    Nontypeable Haemophilus influenzae (NTHI) utilizes the Type IV pilus (Tfp) to adhere to respiratory tract epithelial cells thus colonizing its human host; however, the host cell receptor to which this adhesive protein binds is unknown. From a panel of receptors engaged by Tfp expressed by other bacterial species, we showed that the majority subunit of NTHI Tfp, PilA, bound to intercellular adhesion molecule 1 (ICAM1) and that this interaction was both specific and of high affinity. Further, Tfp-expressing NTHI inoculated on to polarized respiratory tract epithelial cells that expressed ICAM1 were significantly more adherent compared to Tfp-deficient NTHI or NTHI inoculated on to epithelial cells to which ICAM1 gene expression was silenced. Moreover, pre-incubation of epithelial cells with recombinant soluble PilA (rsPilA) blocked adherence of NTHI, an outcome that was abrogated by admixing rsPilA with ICAM1 prior to application on to the target cells. Epithelial cells infected with adenovirus or respiratory syncytial virus showed increased expression of ICAM1; this outcome supported augmented adherence of Tfp-expressing NTHI. Collectively, these data revealed the cognate receptor for NTHI Tfp as ICAM1 and promote continued development of a Tfp-targeted vaccine for NTHI-induced diseases of the airway wherein upper respiratory tract viruses play a key predisposing role.

  15. Influence of tongxinluo on microvascular intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression in rat brain ischemia-reperfusion model%通心络对大鼠脑缺血再灌注模型微血管细胞间黏附分子1和血管细胞黏附分子1表达的影响

    Institute of Scientific and Technical Information of China (English)

    赵忠新; 夏斌; 王春燕; 田国红

    2006-01-01

    property and suppressing platelet congregation capability, tongxinluo preparation has been proved by traditional Chinese medicine to possess certain function for protecting endothelial cells.OBJECTIVE: To observe the influence of Chinese medicinal herb "tongxinluo" compound on adhesion molecule expression in brain ischemia-reperfusion (IR) animal model.DESIGN: Randomized and controlled experiment.SETTING: Department of Neurology, Changzheng Hospital Affiliated to the Second Military Medical University of Chinese PLA.MATERIALS: This experiment was conducted at the laboratory of the Department of Neurology, Shanghai Changzheng Hospital, between October 2002 and January 2003. Totally 25 male SD rats were randomized into sham-operation group of 5 rats, model group of 10 rats and tongxinluo group of 10 rats.METHODS: Middle cerebral artery was occluded using thread-bolt method to induce focal brain IR model in rats. In sham-operation group,nylon thread was placed around the external carotid artery approximating to the branch of internal carotid artery, and the other procedure was the same as that in model group. Rats in tongxinluo group were given tongxininfusion before IR for 1 consecutive week, which was replaced by physiological saline of the same dosage in model group and sham-operation group. Brain tissues were obtained under anesthesia condition and cut into slices; conventional HE staining, immunohistochemical and in situ hybridization staining were conducted.MAIN OUTCOME MEASURES:① The number of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1)positive microvessels following IR injury.② The number of ICAM-1 and VCAM-1 mRNA positive microvessels following IR injury.RESULTS:① In sham-operation group,ICAM-1,VCAM-1 protein andICAM-1 mRNA positive microvessels could not be observed in hemispheric cortex and basal ganglion at the operative side.② In model group,the positive expression of ICAM-1, VCAM-1 protein and ICAM-1 m

  16. Clinical evaluation of serum concentrations of intercellular adhesion molecule-1 in patients with colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Kang; Fang Wang; Jin-Dong Xie; Jun Cao; Pei-Zhong Xian

    2005-01-01

    AIM: To investigate the correlation between the serum soluble intercellular adhesion molecule-1 (sICAM-1) and the clinicopathologic features and to evaluate the possible prognostic significance of sICAM-1 concentration in colorectal cancer.METHODS: A total of 56 patients (mean age 57.3 years)having transitional cell carcinoma of the colorectal and 25 control patients (mean age 42.6 years) were enrolled in the study. The serum samples of the patients were obtained on the day before surgery. Sera were obtained by centrifugation, and stored at -80 ℃ until assay. Serumconcentrations of ICAM-1 were measured with enzymelinked immunoassay. Differences between the two groups were analyzed by Student's t-test.RESULTS: No significant increase of serum sICAM-1 could be demonstrated in the Dukes A1 patients (352.63±61.82μg/L) compared to the control group (345.72±49.81 μg/L,P>0.05), Dukes A1 patients (352.63±61.82 μg/L)compared to Dukes A2,3 patients (491.17±86.36 μg/L,P<0.05). Furthermore, the patients with Dukes B had significantly higher serum concentrations of sICAM-1than those of the control group (496.82±93.04 μg/L vs 345.72±49.81 μg/L, P<0.01). Compared with Dukes A2,3,B colorectal cancer patients, patients with more advanced clinical stage (Dukes C and D) had higher levels of sICAM-1 (743.68±113.74 μg/L vs491.17±86.36 μg/L and 496.82±93.04 μg/L, P<0.001). The difference was statistically significant in sICAM-1 levels between patients with positive lymph node status and those without lymph node involvement (756.25±125.57 μg/L vs445.62±69.18 μg/L, P<0.001).Patients with poorly differentiated colorectal cancer had a higher level of sICAM-1 than those with differentiated and highly differentiated cancer (736.49±121.97 μg/Lvs 410.23±67.47 μg/L, P<0.001).CONCLUSION: In this study, serum ICAM-1 levels were found to be related to tumor presence, clinical stages,and grade. Increased ICAM-1 in patients with colorectal cancer which should

  17. Effect of rosuvastatin on serum high-sensitive C-reactive protein and cell adhesion molecules-1 in elderly patients with primary hypertension%瑞舒伐他汀对老年原发性高血压患者超敏C反应蛋白和细胞间黏附分子-1的影响

    Institute of Scientific and Technical Information of China (English)

    谢文超; 李平; 陈坚; 林智海

    2013-01-01

    目的 探讨瑞舒伐他汀对老年原发性高血压患者超敏C反应蛋白(hs-CRP)和细胞间黏附分子-1(ICAM-1)的影响.方法 将44例患者随机分为常规治疗组和瑞舒伐他汀组.常规组采用氨氯地平治疗,如血压未达标则加用缬沙坦和比索洛尔至血压达标.治疗组在常规组治疗基础上加用瑞舒伐他汀片10 mg/d,连用4周.治疗前、后采用双抗体夹心ABC-ELISA法检测血清hs-CRP和ICAM-1浓度并进行统计学比较.结果 与治疗前相比,两组治疗后4周血清hs-CRP和ICAM-1水平显著下降,差异有统计学意义(P<0.01).治疗后4周,瑞舒伐他汀组的血清hs-CRP和ICAM-1水平比常规治疗组下降更多,差异有统计学意义(分别为t=2.1267,P=-0.0333; t=5.7905,P=-0.0000).结论 瑞舒伐他汀等他汀类药物可降低老年原发性高血压患者血清hs-CRP和ICAM-1等促炎性细胞因子的水平,减轻高血压患者的血管内炎症.%Objective To discussion the effect of rosuvastatin on serum high-sensitive C-reactive protein and cell adhesion molecules-1 in elderly patients with primary hypertension. Methods 44 elderly patients with primary hypertension were randomly divided into rosuvastatin group (n=22) and control group (n=22). Patients in control group were treated with amlodipine only or combine with valsartan bisoprolol together in order to control the blood pressure. Patients in rosuvastatin group were treated with rosuvastatin 10 mg/d base on the control group. Before and after rosuvastatin treatment, the serum high-sensitive C-reactive protein and cell adhesion molecules-1 level were measured, which were treated with group comparisons. Results The serum high-sensitive C-reactive protein and cell adhesion molecules-1 level both in control group and rosuvastatin group were decreased statistically after drug treatment. Compared with the control group, the serum high-sensitive C-reactive protein and cell adhesion molecules-1 level in rosuvastatin group were

  18. Soluble intercellular adhesion molecule-1 for stable and acute phases of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Okuda, Ryo; Matsushima, Hidekazu; Aoshiba, Kazutetsu; Oba, Tomohiro; Kawabe, Rie; Honda, Koujiro; Amano, Masako

    2015-01-01

    The levels of soluble intercellular adhesion molecule-1 (sICAM-1) have been reported to increase in patients with idiopathic pulmonary fibrosis. However, the utility of sICAM-1 has not been reported in detail. The aim of this study was to investigate whether sICAM-1 was a useful biomarker for stable idiopathic pulmonary fibrosis (IPF) and early phase of acute exacerbation of IPF. The patients who were diagnosed with IPF between 2013 and 2015 were enrolled. The levels of sICAM-1 and other interstitial pneumonia markers were measured. In this study, 30 patients with stable IPF and 11 patients with acute exacerbation of IPF were collected. Mean sICAM-1 levels were 434 ± 139 ng/mL for the stable phase of IPF, 645 ± 247 ng/mL for early phase of acute exacerbation of IPF, 534 ± 223 ng/mL for connective tissue disease-associated interstitial pneumonia, 221 ± 42 for chronic obstructive pulmonary disease, and 150 ± 32 ng/mL in healthy volunteers. For the stable phase of IPF, sICAM-1 levels correlated with Krebs von den Lungen-6 (KL-6) (r value: 0.41; p value: 0.036). Mean sICAM-1 levels were significantly higher in patients with early phase of acute exacerbation of IPF than with stable phase of IPF (p = 0.0199). Multiple logistic analyses indicated that the predictors for early phase of acute exacerbation of IPF were only sICAM-1 and C-reactive protein (odds ratio: 1.0093; 1.6069). In patients with stable IPF, sICAM-1 levels correlated with KL-6; sICAM-1 might be a predictive indicator for prognosis. In the early phase of acute exacerbation of IPF, sICAM-1 might be more useful for diagnosis than other interstitial pneumonia markers. PMID:26543791

  19. Decreased pulmonary inflammation after ethanol exposure and burn injury in intercellular adhesion molecule-1 knockout mice.

    Science.gov (United States)

    Bird, Melanie D; Morgan, Michelle O; Ramirez, Luis; Yong, Sherri; Kovacs, Elizabeth J

    2010-01-01

    Clinical and laboratory evidence suggests that alcohol consumption dysregulates immune function. Burn patients who consume alcohol before their injuries demonstrate higher rates of morbidity and mortality, including acute respiratory distress syndrome, than patients without alcohol at the time of injury. Our laboratory observed higher levels of proinflammatory cytokines and leukocyte infiltration in the lungs of mice after ethanol exposure and burn injury than with either insult alone. To understand the mechanism of the increased pulmonary inflammatory response in mice treated with ethanol and burn injury, we investigated the role of intercellular adhesion molecule (ICAM)-1. Wild-type and ICAM-1 knockout (KO) mice were treated with vehicle or ethanol and subsequently given a sham or burn injury. Twenty-four hours postinjury, lungs were harvested and analyzed for indices of inflammation. Higher numbers of neutrophils were observed in the lungs of wild-type mice after burn and burn with ethanol treatment. This increase in pulmonary inflammatory cell accumulation was significantly lower in the KO mice. In addition, levels of KC, interleukin-1beta, and interleukin-6 in the lung were decreased in the ICAM-1 KO mice after ethanol exposure and burn injury. Interestingly, no differences were observed in serum or lung tissue content of soluble ICAM-1 24 hours postinjury. These data suggest that upregulation of adhesion molecules such as ICAM-1 on the vascular endothelium may play a critical role in the excessive inflammation seen after ethanol exposure and burn injury.

  20. Intercellular adhesion molecule-1 expression in the hippocampal CA1 region of hyperlipidemic rats with chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yingying Cheng; Ying Zhang; Hongmei Song; Jiachun Feng

    2012-01-01

    Chronic cerebral ischemia is a pathological process in many cerebrovascular diseases and it is induced by long-term hyperlipidemia, hypertension and diabetes mellitus. After being fed a high-fat diet for 4 weeks, rats were subjected to permanent occlusion of bilateral common carotid arteries to establish rat models of chronic cerebral ischemia with hyperlipidemia. Intercellular adhesion molecule-1 expression in rat hippocampal CA1 region was determined to better understand the mechanism underlying the effects of hyperlipidemia on chronic cerebral ischemia. Water maze test results showed that the cognitive function of rats with hyperlipidemia or chronic cerebral ischemia, particularly in rats with hyperlipidemia combined with chronic cerebral ischemia, gradually decreased between 1 and 4 months after occlusion of the bilateral common carotid arteries. This correlated with pathological changes in the hippocampal CA1 region as detected by hematoxylin-eosin staining. Immunohistochemical staining showed that intercellular adhesion molecule-1 expression in the hippocampal CA1 region was noticeably increased in rats with hyperlipidemia or chronic cerebral ischemia, in particular in rats with hyperlipidemia combined with chronic cerebral ischemia. These findings suggest that hyperlipidemia aggravates chronic cerebral ischemia-induced neurological damage and cognitive impairment in the rat hippocampal CA1 region, which may be mediated, at least in part, by up-regulated expression of intercellular adhesion molecule-1.

  1. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules

    OpenAIRE

    1991-01-01

    Cytokines such as interleukin 1 (IL-1) promote adhesiveness in human umbilical vein endothelial cells for leukocytes including basophils, eosinophils, and neutrophils, and induce expression of adherence molecules including ICAM-1 (intercellular adhesion molecule-1), ELAM-1 (endothelial-leukocyte adhesion molecule-1), and VCAM-1 (vascular cell adhesion molecule-1). In the present study, blocking monoclonal antibodies (mAb) recognizing ICAM-1, ELAM-1, and VCAM-1 have been used to compare their ...

  2. A study of soluble intercellular adhesion molecule-1 in sera of patients with thyroid diseases

    International Nuclear Information System (INIS)

    Objective: Markedly elevated serum soluble intercellular adhesion molecule 1 (sICAM-1) level has recently been reported in patients with autoimmune thyroid disease (AITD). The aim of this study was to investigate the clinical significance of sICAM-1 serum level in patients with different thyroid diseases. Methods: A total of 616 patients were recruited, consisting of 557 Graves' disease (CD), 33 untreated Hashimoto's thyroiditis (HT), 17 untreated simple goiter (SG) and 9 nontoxic nodular goiter (NTNG). Control was a group of 273 healthy individuals with no prior history of thyroid disease. Their serum sICAM-1 levels were measured by 125I-sICAM-1 radioimmunoassay. If sICAM-1 levels of every group fit normal distribution, statistical difference was calculated by ANOVA or t-test; if not, then rank sum test (Kruskal-Wallis or Mann-Whitney) was used. Results: There was no statistically significant difference among the SG [(173.82 ± 59.50) μg/L], NTNG [(159.31 ± 28.73) μg/L] and control [(149.89 ± 39.45) μg/L] groups; whereas the levels in both untreated GD [(255.04 ± 82.40) μg/L] and HT[(227.22 ± 77.08) μg/L] groups were elevated and statistically significant by comparison with the control group (Z=-9.401, -5.902, respectively; both with P 2=88.257, P<0.01). In stable euthyroid patients receiving ATD, a steady trend of gradual decline in sICAM-1 levels was found. When ATD treatment lasted ≥19 months, the sICAM-1 levels in GD patients with and without ophthalmopathy [(211.58 ± 53.58) μg/L and (189.50 ± 39.99) μg/L, respectively] were significantly decreased when compared with the corresponding pair of new-onset groups [(287.36 ± 79.20) μg/L and (244.75 ± 81.58) μg/L, F=9.986, 3.398, respectively; all P<0.05] but remained persistently elevated over the control group even after stopping ATD treatment (Z=-3.813, P<0.05). Conclusions: The sICAM-1 assay is of great importance in the diagnosis of AITD and detection of the associated abnormal immune status

  3. Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine.

    LENUS (Irish Health Repository)

    Lan, Wei

    2012-02-03

    Endothelial cells play a key role in ischemia reperfusion injury. We investigated the effects of lidocaine on activated human umbilical vein endothelial cell (HUVEC) interleukin (IL)-1beta, IL-6, and IL-8 concentrations and intercellular adhesion molecule-1 (ICAM-1) expression. HUVECs were pretreated with different concentrations of lidocaine (0 to 0.5 mg\\/mL) for 60 min, thereafter tumor necrosis factor-alpha was added at a concentration of 2.5 ng\\/mL and the cells incubated for 4 h. Supernatants were harvested, and cytokine concentrations were analyzed by enzyme-linked immunosorbent assay. Endothelial ICAM-1 expression was analyzed by using flow cytometry. Differences were assessed using analysis of variance and post hoc unpaired Student\\'s t-test where appropriate. Lidocaine (0.5 mg\\/mL) decreased IL-1beta (1.89 +\\/- 0.11 versus 4.16 +\\/- 1.27 pg\\/mL; P = 0.009), IL-6 (65.5 +\\/- 5.14 versus 162 +\\/- 11.5 pg\\/mL; P < 0.001), and IL-8 (3869 +\\/- 785 versus 14,961 +\\/- 406 pg\\/mL; P < 0.001) concentrations compared with the control. IL-1beta, IL-6, and IL-8 concentrations in HUVECs treated with clinically relevant plasma concentrations of lidocaine (0.005 mg\\/mL) were similar to control. ICAM-1 expression on lidocaine-treated (0.05 mg\\/mL) HUVECs was less than on controls (198 +\\/- 52.7 versus 298 +\\/- 50.3; Mean Channel Fluorescence; P < 0.001). Activated endothelial IL-1beta, IL-6, and IL-8 concentrations and ICAM-1 expression are attenuated only by lidocaine at concentrations larger than clinically relevant concentrations.

  4. Effects of anisodamine on the expressions of vascular endothelial growth factor and intercellular adhesion molecule 1 in experimental infusion phlebitis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-xiang; WANG Peng; ZHANG Qiu-shi; PAN Xue; ZHAO Qing-xia; WANG Xiao-kai

    2012-01-01

    Background Infusion phlebitis is the most common side effect of clinical intravenous drug therapy and several clinical studies have demonstrated that anisodamine can effectively prevent the occurrence of infusion phlebitis.This study was designed to investigate effects of anisodamine on the expressions of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in a rabbit model of infusion phlebitis and to analyze the mechanisms of anisodamine effect on the prevention and treatment of experimental infusion phlebitis.Methods Twenty-four specific pathogen-free male Japanese white rabbits were randomly assigned to the control group,the model group,the magnesium sulfate group and the anisodamine group.The rabbit model of infusion phlebitis,induced by intravenous administration,was established and expressions of VEGF and ICAM-1 were determined and contrasted with the control group treated with normal saline.We evaluated expression by histopathology,immunohistochemistry,reverse transcription-polymerase chain reaction,and Western blotting assay.Results Pathohistological changes of the model group were observed,such as loss of venous endothelial cells,inflammatory cell infiltration,edema and thrombus.The magnesium sulfate group and the anisodamine group showed significant protective effects on vascular congestion,inflammatory cell infiltration,proliferation,swelling of endothelium and perivascular hemorrhage.The model group showed the highest expressions of VEGF and ICAM-1 of the four groups (P<0.01).On the contrary,anisodamine alleviated the inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1 compared with the model group (P <0.01).There was no significant difference in the expressions of VEGF and ICAM-1 between the magnesium sulfate group and the anisodamine group (P >0.05).Conclusion Anisodamine alleviates inflammatory damage by significantly reducing the expressions of VEGF and ICAM-1,and shows

  5. Soluble Inter-Cellular Adhesion Molecule-1 in Urban Asian North Indians: Relationships with Anthropometric and Metabolic Covariates

    Directory of Open Access Journals (Sweden)

    Astha Sethi

    2002-01-01

    Full Text Available Background: High prevalence of diabetes, obesity, and dyslipidemias in people belonging to poor socio-economic strata in urban slums of northern India has been recorded recently. To assess whether this population has high levels of soluble intercellular adhesion molecule-1 (sICAM-1, a cytokine involved in the pathogenesis of atherosclerosis, we investigated subjects belonging to poor socio-economic strata in urban slums and compared them to healthy control subjects from non-slum urban areas of New Delhi.

  6. Nitric oxide pretreatment enhances atheroma component highlighting in vivo with intercellular adhesion molecule-1-targeted echogenic liposomes.

    Science.gov (United States)

    Kee, Patrick H; Kim, Hyunggun; Huang, Shaoling; Laing, Susan T; Moody, Melanie R; Vela, Deborah; Klegerman, Melvin E; McPherson, David D

    2014-06-01

    We present an ultrasound technique for the detection of inflammatory changes in developing atheromas. We used contrast-enhanced ultrasound imaging with (i) microbubbles targeted to intercellular adhesion molecule-1 (ICAM-1), a molecule of adhesion involved in inflammatory processes in lesions of atheromas in New Zealand White rabbits, and (ii) pretreatment with nitric oxide-loaded microbubbles and ultrasound activation at the site of the endothelium to enhance the permeability of the arterial wall and the penetration of ICAM-1-targeted microbubbles. This procedure increases acoustic enhancement 1.2-fold. Pretreatment with nitric oxide-loaded echogenic liposomes and ultrasound activation can potentially facilitate the subsequent penetration of targeted echogenic liposomes into the arterial wall, thus allowing improved detection of inflammatory changes in developing atheromas.

  7. The Expression of Human Intercellular Adhesion Molecule-1 in Eukaryotic Cell and the Identification of their Products%人细胞间黏附分子-1的真核细胞表达与鉴定

    Institute of Scientific and Technical Information of China (English)

    陈志鸿; 静雅杰; 宋宝辉; 梁军

    2008-01-01

    Objective To construct ICAM-1 eukaryotie expression vectors and to express them in COS7 cells.Methods ICAM-1 cDNA was amplified by PCR and then inserted into the pcDNA 3.1(-)vector to construct recombinant vectors,and were transfected into COS-7 cells under the mediation of liposome.The expressed ICAM-1 fusion protein was detected by Western blot.The expression of ICAM-1 fusion protein Was observed under fluorescence microscope.Results 1800 bp ICAM-1 cDNA Was obtained by PCR.The PCR product was successfully ligated with pcDNA 3.1(-)vector.Restriction endonuclease digestion analysis and DNA sequencing showed that recombinant pcDNA 3.1(-)-ICAM-1 was successfully constructed.Conclusion Eukaryotie expression recombinant vector pcDNA 3.1(-)-ICAM-1 is constructed and expressed successfully,which lays the foundation for the functional research of ICAM-1 and for the preparation of mAb to ICAM-1.%目的 构建人细胞间黏附分子-1(ICAM-1)真核表达载体PcDNA3.1(-)-ICAM-1,并在真核细胞COS-7中表达.方法 设计特异性引物,用PCR方法扩增ICAM-1全编码区基因片段,将其连接人真核表达载体pcDNA3.1(-),并通过酶切进行鉴定.用脂质体转染法将真核表达载体pcDNA3.1(-)-ICAM-1转染COS-7细胞,通过免疫荧光和Western印迹分析人ICAM-1蛋白在COS-7细胞中的表达情况.结果 PCR扩增得到人ICAM-1的cDNA片段大小为1800 bp,重组质粒经酶切鉴定和DNA序列分析确定得到真核表达载体peDNA3.1(-)-ICAM-1.荧光显微镜下可见转染重组质粒的COS-7细胞膜上存在荧光分布,而转染空质粒的细胞未见荧光分布.Western印迹检测发现转染重组质粒的细胞存在外源性的人ICAM-1表达,而转染空质粒的则未见ICAM-1表达.结论 成功构建了人ICAM-1真核表达载体,ICAM-1高效表达在转染的真核细胞COS-7表面,为进一步建立稳定表达ICAM-1的COS-7细胞株以及研究ICAM-1及其受体的生物学功能提供了条件.

  8. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  9. Soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) in scleroderma skin

    DEFF Research Database (Denmark)

    Søndergaard, Klaus; Deleuran, Mette; Heickendorff, Lene;

    1998-01-01

    In order to investigate whether soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) were present in scleroderma skin, and to compare their levels to concentrations measured in plasma and clinical parameters, we examined suction blister fluid and plasma...... from 13 patients with systemic sclerosis and 11 healthy volunteers. Suction blisters and biopsies were from the transition zone between normal skin and scleroderma, and uninvolved abdominal skin. The levels of sICAM-1 and sIL-2R were significantly increased in both plasma and suction blister fluid from...... systemic sclerosis patients compared with healthy volunteers. ICAM-1 was localized to vessels and perivascular mononuclear infiltrates by immunohistochemical methods. IL-2R was expressed by CD3-positive cells. The elevated levels of sICAM-1 and sIL-2R in suction blister fluid point towards activation...

  10. Milk IgA responses are augmented by antigen delivery to the mucosal addressin cellular adhesion molecule 1.

    Science.gov (United States)

    Johnson, Susan; Bourges, Dorothee; Wijburg, Odilia; Strugnell, Richard A; Lew, Andrew M

    2006-07-01

    The mucosal addressin cellular adhesion molecule 1 (MAdCAM) is expressed on the venules of the gut associated lymphoid tissue (GALT); it is also expressed on the venules of the lobules of the mammary gland. We have previously found that MAdCAM-targeting using a rat anti-MAdCAM monoclonal Ab as both antigen and targeting moiety resulted in an enhanced local IgA gut response. We therefore surmised that such targeting may also enhance IgA responses in the mammary gland. We show that our model antigen localizes to the lobules of the mammary glands as well as the GALT, but not to the draining lymph nodes and that targeting MAdCAM results in secretory IgA responses in the milk. We provide evidence that this milk IgA Ab is of a secretory nature and is consistent with derivation from gut plasmablasts that have migrated to the mammary gland. Targeting MAdCAM may be a way for a novel vaccine strategy that affords protection to the mammary gland and the suckling neonate. PMID:16723174

  11. Early Detection of Junctional Adhesion Molecule-1 (JAM-1 in the Circulation after Experimental and Clinical Polytrauma

    Directory of Open Access Journals (Sweden)

    Stephanie Denk

    2015-01-01

    Full Text Available Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1 was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18 during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score. The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.

  12. Polymorphism K469E of intercellular adhesion molecule-1 gene and restenosis after coronary stenting in Chinese patients

    Institute of Scientific and Technical Information of China (English)

    刘兆平; 霍勇; 李建平; 张岩; 薛琳; 赵春玉; 洪秀梅; 黄爱群; 高炜

    2004-01-01

    Background Inflammation is a major cause of restenosis after coronary stenting. Intercellular adhesion molecule-1 ( ICAM-1 ) is an important adhesion molecule that plays a key role in the tight adhesion between leukocytes and vascular endothelium. The object of this study was to investigate the association between the K469E polymorphism of the ICAM-1 gene and restenosis after coronary stenting in North Chinese population.Methods The ICAM-1 K469E polymorphism was genotyped using polymerase chain reaction- restriction fragment length polymorphism method in 124 patients who had undergone coronary stenting and coronary angiography at least 3 months earlier. Information on clinical risk factors and procedure- related data were also collected. Results Of 124 enrolled patients in total, there were 72 cases of in-stent restenosis. The restenosis rate in this population was 58. 1%. The frequencies of the three possible genotypes of the ICAM-1 K469E polymorphism were: KK genotype 50.8%, EE genotype 41.9%, and EK genotype 41.9%.Among restenosis patients, the frequency of the KK genotype was 58. 3% and the frequency of E allele carriers was 41.7%. Among non-restenosis patients, the frequency of the KK genotype was 40.4%, and the frequency of E allele carriers was 59. 6%. The distribution of these two genotype groups between restenosis and non-restenosis patients was significantly different (P=0.049). Using multivariate logistic regression, the difference between the two groups was more apparent. The odds ratio of KK homozygotes vs E allele carriers was 2.6, with 95% confidence interval 1.2 -5.8 (P =0. 018). After grading of risk factors, we found that the KK genotype was a stronger predictor of in- stent restenosis in obesity or hyperlipemia patients, with an odds ratio of 9.3 and 3.7, respectively (P<0.05).Conclusion In our study population, KK homozygotes of the ICAM-1 codon 469 mutation had a higher risk of restenosis after coronary stenting, especially in the case of obese

  13. Effects of alpha-tocopherol on superoxide production and plasma intercellular adhesion molecule-1 and antibodies to oxidized LDL in chronic smokers

    NARCIS (Netherlands)

    Tits, van L.J.; Waart, de F.; Hak-Lemmers, H.L.M.; Heijst, P.; Graaf, de J.; Demacker, P.N.; Stalenhoef, A.F.

    2001-01-01

    Antioxidants have been postulated to exert beneficial effects in atherosclerosis. Atherosclerosis is associated with raised plasma levels of soluble intercellular adhesion molecule-1 (sICAM-1) and autoantibodies against oxidized low-density lipoprotein (oxLDL). It is not known whether antioxidants a

  14. 不同吸烟量对大鼠气道上皮细胞中细胞问黏附分子1表达的影响%Effects of different smoking quantity on expressions of intercellular adhesion molecule-1 in rat airway endothelial cells

    Institute of Scientific and Technical Information of China (English)

    索耀君; 许建英

    2009-01-01

    Objective To study the relationship between smoking as well as smoke abatement and airway inflammation of chronic obstructive pulmonary disease (COPD) through researching effects of different smoking quantity and different smoking time,smoking and smoke abatement on expression of intercellular adhesion molecule-1 (ICAM-1) in airway endothelial cells in rat model of smoking.Methods Forty Wistar rats were randomly divided into control group,long-term multiplicity smoking group,long-term manipulus smoking group,short-term multiplicity smoking group and smoke abatement group,eight rats in a group.The expressions of ICAM-1 in airway endothelial cells of rats were detected by immunohistochemistry and hybridization in situ.Results The expression of ICAM-1 mRNA and protein level in bronchial endothelial cells of long-term multiplicity smoking group were (6.93±1.44,19.22±0.22),short-term multiplicity smoking group (2.92±0.67,12.91±1.31 ),long-term manipulus smoking group (4.76±0.68, 14.03±2.39) and smoke abatement group (4.84±0.94,14.95±1.82),which were significantly increased compared with those of control group (1.45±0.98,8.83±0.77 ),peaking in the long-term multiplicity smoking group( P<0.05).The expression of ICAM-1 in bronchial endothelial cells of long-term manipulus smoking group,short-term multiplicity smoking group,smoke abatement group and the control group were lower than that of long-term multiplicity smoking group( P<0.05).Conclusions Smoking can result in the high expression of ICAM-1 mRNA and protein level in airway endothelial cells of rat model.The expression of ICAM-1 mRNA and protein level increase with the augmentation of smoking time and quantity and decrease after smoke abatement.It means smoke abatement can relieve airway inflammation but can not eliminate the change.Smoking abatement is an effective measure of preventing COPD.%目的 通过研究不同吸烟量、不同吸烟持续时间吸烟及戒烟对大鼠气道上皮

  15. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  16. Serum inter-cellular adhesion molecule 1 is an early marker of diagnosis and prediction of severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Hai-Hang Zhu; Lin-Lin Jiang

    2012-01-01

    AIM:To determine if serum inter-cellular adhesion molecule 1 (ICAM-1) is an early marker of the diagnosis and prediction of severe acute pancreatitis (SAP)within 24 h of onset of pain,and to compare the sensitivity,specificity and prognostic value of this test with those of acute physiology and chronic health evaluation (APACHE) Ⅱ score and interleukin-6 (IL-6).METHODS:Patients with acute pancreatitis (AP) were divided into two groups according to the Ranson's criteria:mild acute pancreatitis (MAP) group and SAP group.Serum ICAM-1,APACHE Ⅱ and IL-6 levels were detected in all the patients.The sensitivity,specificity and prognostic value of the ICAM-1,APACHE Ⅱ score and IL-6 were evaluated.RESULTS:The ICAM-1 level in 36 patients with SAP within 24 h of onset of pain was increased and was significantly higher than that in the 50 patients with MAP and the 15 healthy volunteers (P < 0.01).The ICAM-1 level (25 ng/mL) was chosen as the optimum cutoff to distinguish SAP from MAP,and the sensitivity,specificity,positive predictive value,negative predictive value (NPV),positive likelihood ratio and negative likelihood ratio were 61.11%,71.42%,0.6111,0.7142,2.1382 and 0.5445,respectively.The area under the curve demonstrated that the prognostic accuracy of ICAM-1 (0.712) was similar to the APACHE-Ⅱ scoring system (0.770) and superior to IL-6 (0.508) in distinguishing SAP from MAP.CONCLUSION:ICAM-1 test is a simple,rapid and reliable method in clinical practice.It is an early marker of diagnosis and prediction of SAP within the first 24 h after onset of pain or on admission.As it has a relatively low NPV and does not allow it to be a stand-alone test for the diagnosis of AP,other conventional diagnostic tests are required.

  17. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M. [Clinical and Experimental Photodermatology, Duesseldorf (Germany)] [and others

    1996-12-10

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs.

  18. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca

    OpenAIRE

    Catarina F. P. Teixeira; Stella R. Zamuner

    2002-01-01

    It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (I...

  19. Mild hypothermia effects on intercellular adhesion molecule-1 and serum interleukin-6 expression in brain tissues of a rat focal ischemia model

    Institute of Scientific and Technical Information of China (English)

    Shengqi Fu; Lei Yang; Shuling Zhang; Shilong Sun; Xingai Mao

    2008-01-01

    BACKGROUND: Previous studies have confirmed the neuroprotective effect of mild hypothermia on ischemic brain injury.OBJECTIVE: To investigate the effects of mild hypothermia on intercellular adhesion molecule-1 expression and serum interleukin-6 levels in ischemic brain tissues of focal brain ischemia rats, and to explore the neuroprotective effects of mild hypothermia on ischemic brain injury.DESIGN, TIME AND SETTING: A randomized, controlled, neurobiological experiment was performed at the Central Laboratory, First Affiliated Hospital, Xinxiang Medical College, China from February to July 2006.MATERIALS: Thirty healthy, adult, Sprague Dawley rats were used to establish middle cerebral artery occlusion models using the suture method. The immunohistochemistry (streptavidin-biotin-peroxidase complex method) kit was purchased from Boster, China. Interleukin-6 radioimmunoassay was supplied by Institute of Radioimmunity, Technology Development Center, General Hospital of Chinese PLA. METHODS: The rats were equally and randomly assigned into mild hypothermia and control groups, and middle cerebral artery occlusion models were established. The rectal temperature was maintained at (37 ± 0.5)℃ in the control group. In the mild hypothermia group, the rectal temperature was maintained at (33±1)℃.MAIN OUTCOME MEASURES: At 12 hours after model establishment, the ischemic brain hemispheres were coronally sliced at the level of the optic chiasm. The number of intercellular adhesion molecule- 1 -positive vessels per high-power field was observed with an optical microscope. Serum interleukin-6 levels were measured by radioimmunoassay.RESULTS: Compared with the control group, intercellular adhesion molecule-I and serum interleukin-6 expressions were significantly decreased in ischemic brain tissues of the mild hypothermia group (P < 0.01).CONCLUSION: Mild hypothermia exhibits a neuroprotective effect by reducing serum interleukin-6 and intercellular adhesion molecule- 1

  20. Serum prepared with detoxication-promoting blood flow recipe on vascular endothelium cell and intercellular adhesion molecule-1 injured by oxidized low density lipoprotein%解毒活血方含药血清对氧化低密度脂蛋白损伤血管内皮细胞及细胞间黏附分子1的影响

    Institute of Scientific and Technical Information of China (English)

    贾琳; 耿立梅; 王亚利

    2013-01-01

    目的 通过观察解毒活血方含药血清(SPR)对氧化低密度脂蛋白(ox-LDL)损伤内皮细胞及细胞间黏附因子1(ICAM-1)的影响,探讨该方防治冠心病的作用机制.方法 用10只Wistar大鼠,分成两组,每组5只,分别制备空白血清和解毒活血方含药血清,然后依据细胞培养条件对提取的血清进行分组.①空白对照组:20%空白血清+5%新生牛血清(FCS)培养液;②病理模型组:20%空白血清+100 mg/L ox-LDL+5% FCS培养液;③SPR低剂量组:10% SPR+10%空白血清+100 mg/L ox-LDL+5%FCS培养液;④SPR高剂量组:20% SPR+100 mg/L ox-LDL+5%FCS培养液,每组各6个标本,共获得24个标本,分别检测各组超氧化物歧化酶(SOD)、丙二醛(MDA)、ICAM-1等指标的变化.结果 病理模型组SOD比空白对照组明显降低,加入SPR后有明显提高,SPR高剂量组比SPR低剂量组提高更多(P <0.05或<0.01),分别为(58.26±1.34) kU/L vs(65.10±1.35)kU/L,(63.57±1.63) kU/L,(67.63±2.95) kU/L.病理模型组MDA水平和ICAM-1表达与空白对照组比较明显增加,加入SPR后有明显降低,SPR高剂量组比SPR低剂量组降低更多,分别为MDA(10.02±1.66)μmol/L vs (6.68±0.82) μmol/L,(6.87±1.26) mg/L,(6.83±0.46) mg/L;ICAM-1(0.51±0.06) mg/L vs (0.37±0.05) mg/L,(0.45±0.02) mg/L,(0.40±0.04) mg/L.结论 SPR防治冠心病的机制与抗脂质过氧化、抑制或减少炎症因子ICAM-1的释放有关.%Objective The aim was to explore the mechanism of the serum prepared with detoxication-promoting blood flow recipe(SPR) in prevention of coronary heart disease, we observed the effects of this recipe on the vascular endothelium cell and intercellular adhesion molecule-1(ICAM-1) both injured by oxidized low density lipoprotein(ox-LDL).Methods Ten Wistar rats were divided into two groups,each group five rats, then the control serum and the recipe serum were prepared.According different conditions for cell culture from the serum, four groups were

  1. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  2. Cell adhesion molecules and hyaluronic acid as markers of inflammation, fibrosis and response to antiviral therapy in chronic hepatitis C patients

    Directory of Open Access Journals (Sweden)

    Esther Granot

    2001-01-01

    Full Text Available Objective: Cell adhesion molecules (intracellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1 and hyaluronic acid, markers of inflammation and fibrosis were monitored in hepatitis C patients to determine whether changes in plasma levels, during antiviral treatment, can predict long-term response to therapy.

  3. 瑞舒伐他汀对早期糖尿病肾病患者肾组织血管细胞黏附分子表达的影响%Effect of rosuvastatin on the expression of vascular cell adhesion molecule-1 of renal tissue in patients with the early-stage diabetic nephropathy

    Institute of Scientific and Technical Information of China (English)

    宋艳; 顾海东

    2011-01-01

    目的 观察瑞舒伐他汀对早期糖尿病肾病患者肾组织血管细胞黏附分子-1(VCAM-1)表达的影响.方法 将60例早期糖尿病肾病患者按随机数字表法分为他汀组和常规组,每组30例,并以30例健康者作为对照组,他汀组在常规治疗基础上加用瑞舒伐他汀10 mg/d,疗程12周.观察三组血糖、血脂、肾功能、高敏C反应蛋白(hs-CRP)、尿微量白蛋白排泄率(UAER)及VCAM-1表达.结果 与治疗前比较,常规组治疗后总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、三酰甘油(TG)[分别为(5.83±1.02)、(3.48±0.60)、(7.12±0.99) mmol/L]无显著下降(P>0.05),而他汀组治疗后TC、LDL-C、TG[分别为(4.51±0.95)、(3.18±0.47)、(7.02±0.87) mmol/L]显著降低(P<0.01);治疗后常规组和他汀组UAER[分别为(78.3±31.7)、(53.8±24.9)μ g/min]和hs-CRP[ (2.15±0.48)、( 1.59±0.55) mg/L]均明显下降(P<0.01),且他汀组下降更明显(P<0.05).他汀组患者肾小球细胞质中斑点状分布的VCAM-1阳性信号较常规组明显减少.结论 瑞舒伐他汀可下调肾组织VCAM-1的表达,抑制炎性反应,减少尿蛋白.%Objective To observe the effect of rosuvastatin on the expression of vascular cell adhesion molecule-1 (VCAM-1) of renal tissue in patients with the early-stage diabetic nephropathy.Methods Sixty patients with early-stage diabetic nephropathy were divided into two groups by random digits table:rosuvastatin group and regular group.The patients were given 10 mg/d rosuvastatin besides the conventional treatment in rosuvastatin group.The levels of blood glucose,blood fat,renal function,high sensitivity C-reactive protein(hs-CRP),urine albumin excretion rate(UAER) and the expression of VCAM-1 were observed.Results Compared with those before treatment,the levels of total cholesterol (TC),low density lipoprotein cholesterol (LDL-C),trtglyeride (TG) showed no decrease after treatment [(5.83 ± 1.02),(3.48 ±0.60),(7.12 ±0.99) mmol/L] in

  4. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  5. Characterization of the oligodeoxynucleotide-mediated inhibition of interferon-gamma-induced major histocompatibility complex class I and intercellular adhesion molecule-1.

    Science.gov (United States)

    Ramanathan, M; Lantz, M; MacGregor, R D; Garovoy, M R; Hunt, C A

    1994-10-01

    The major histocompatibility complex (MHC) Class I and II genes and intercellular adhesion molecule-1 (ICAM-1) are regulated by interferon-gamma in a variety of cell types. We have previously shown that the oligodeoxynucleotide 5'-GGG GTT GGT TGT GTT GGG TGT TGT GT-RNH2 (oligo I) inhibits the interferon-gamma-mediated enhancement of MHC Class I and ICAM-1 proteins in the K562 cell line. We have now investigated the mechanism of action of oligo I and report that it acts by inhibiting the binding of interferon-gamma to cells. We also show that the dose-response curves, the selectivity profile, and the kinetics of oligo I are consistent with this novel mechanism of action. The dose-response curves for oligo I, obtained using antibodies against the MHC Class I heavy chain, beta 2-microglobulin, or ICAM-1, are almost superimposable at each observation time. MHC Class I induction by 6400 units/ml interferon-alpha or interferon-beta or ICAM-1 enhancement by 800 units/ml tumor necrosis factor-alpha is not inhibited by oligo I. However, the synergistic induction of MHC Class I by mixtures of tumor necrosis factor-alpha and interferon-gamma is inhibited. Oligo I belongs to a class of active oligodeoxynucleotides that inhibits interferon-gamma-induced MHC Class I and ICAM-1 in K562 cells. The activity and potency is sequence-dependent, but remarkably different sequences can have comparable effects. The activity of oligo I in the HeLa S3 cell line inhibits the interferon-gamma-mediated enhancement of both ICAM-1 and MHC Class II DR and the interferon-gamma-mediated reduction in transferrin receptor expression. Thus, oligo I appears to specifically inhibit interferon-gamma-induced changes in protein expression, which is consistent with oligo I acting at an early step(s) in the induction process. Taken together, our results show that oligo I exerts its effects by inhibiting the association of interferon-gamma with the cell surface, which is a novel mechanism of action for

  6. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    OpenAIRE

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to hu...

  7. White blood cell deformation and firm adhesion

    Science.gov (United States)

    Szatmary, Alex; Eggleton, Charles

    2011-11-01

    For a white blood cell (WBC) to arrive at infection sites, it forms chemical attachments with activated endothelial cells. First, it bonds with P-selectin, which holds it to the wall, but weakly; this allows the WBC to roll under the shear flow of the blood around it. Later, the WBCs bond with the stronger intracellular adhesion molecule-1 (ICAM-1); it is these ICAM bonds that allow the WBCs to fully resist the flow and stop rolling, allowing them to crawl through the endothelial wall. We model this numerically. Our model uses the immersed boundary method to represent the interaction of the shear flow with the deformable cell membrane. Receptors are on the tips of microvilli-little fingers sticking off of the cell membrane. The microvilli also deform. The receptors stochastically form and break bonds with molecules on the wall. Using this method, the history of each microvillus and its bonds can be found, as well as the distribution of the adhesion traction forces and how all of these vary with the deformability of the white blood cell. At higher shear rates, the white blood cell membrane deforms more, increasing its contact area with the surface; this effect is larger for softer membranes. We investigate how the deformability of the WBC affects the ease with which it forms firm adhesion.

  8. 细胞间粘附因子-1在非小细胞肺癌表达的临床意义%The clinical significance of intercellular adhesion molecule-1(ICAM-1) expression in human non small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    于晓锋; 王红卫; 李文军; 张宏伟

    2005-01-01

    目的探讨细胞间粘附因子-1(Intercellular adhesion molecule-1,ICAM-1)在肺癌组织中的表达及其与肺癌侵袭转移和预后的关系.方法回顾性分析86例非小细胞肺癌患者的手术切除标本,采用免疫组化SP法检测肺癌组织中的ICAM-1的表达,用χ2检验分析其表达与肺癌生物学行为的关系;生存分析用Kaplan-Meier生存曲线和Log-Rank检验.结果肺癌组织ICAM-1表达率为37.21%,鳞癌表达略高于腺癌;淋巴转移的肺癌组织ICAM-1表达率高于无淋巴结转移者;Ⅰ期肺癌中ICAM-1阳性率高于Ⅱ期,Ⅱ期高于Ⅲ期;术后转移组ICAM-1的阳性表达率低于无转移组;ICAM-1阳性表达患者术后转移率低于阴性患者;ICAM-1阳性表达的患者5年生存率高于ICAM-1阴性表达患者.结论非小细胞肺癌组织中ICAM-1的表达与病理类型无关;与病理分期、淋巴转移呈负相关;与术后患者血行转移和生存时间呈负相关.ICAM-1是判断非小细胞肺癌患者转移和预后的重要因素.

  9. Antidiabetic Rosiglitazone Reduces Soluble Intercellular Adhesion Molecule-1 Level in Type 2 Diabetic Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Guang Wang

    2008-01-01

    Full Text Available Background. We investigated the level of soluble adhesion molecules in diabetic patients and the effect of the peroxisome proliferator-activated receptor-γ (PPAR-γ agonist rosiglitazone on plasma levels of adhesion molecules and an inflammation marker in type 2 diabetic patients with coronary artery disease (CAD after percutaneous coronary intervention (PCI. Methods. A total of 116 diabetic patients with CAD who had undergone PCI were randomized to receive rosiglitazone (4 mg/d or not for 6 months. Plasma levels of soluble intercellular adhesion molecules (sICAM-1 and P-selectin (sP-selectin were measured on ELISA. Results. After 6-month rosiglitazone treatment, plasma levels of sICAM-1 were lower than baseline and control group levels (370.4 (332.4–421.9 pg/mL versus 423.5 (327.4–500.3 pg/mL and 404.6 (345.2–483.4 pg/mL, P<.001. In addition, plasma levels of C-reactive protein were significantly reduced from baseline levels. However, plasma level of sP-selectin was not significantly lowered with rosiglitazone treatment than with control treatment after 6-month follow-up. Conclusions. Rosiglitazone reduces chronic inflammatory responses and improves levels of markers of endothelial dysfunction in patients with diabetes and CAD. PPAR-γ agonist may have a beneficial effect on the vascular endothelium through its anti-inflammatory mechanism and may be useful as therapy in patients undergoing PCI.

  10. U937泡沫细胞中细胞间粘附分子-1的表达及欧芹素乙的抑制作用%Expression of intercellular adhesion molecule-1 in U937 foam cells and inhibitory effect of imperatorin

    Institute of Scientific and Technical Information of China (English)

    杨鹏远; 芮耀诚; 李凯; 黄兴华; 蒋建明; 余龙

    2002-01-01

    目的:研究在人类单核细胞系U937泡沫细胞中,细胞间粘附分子-1(ICAM-1)的表达水平,观测欧芹素乙(欧前胡内酯,imperatorin,IMP)对ICAM-1表达的抑制作用.方法:将U937细胞与80mg/L氧化低密度脂蛋白孵育48h,建立U937泡沫细胞模型.在培养基中预加入不同浓度的IMP(0,25,50,100μmol/L).采用Western blotting检测ICAM-1的蛋白表达;采用Northern blotting检测ICAM-1的mRNA水平.结果:泡沫细胞中ICAM-1的表达显著高于正常U937细胞.ICAM-1的蛋白和mRNA水平分别是正常U937的15和10倍.经IMP50和100μmol/L预处理后,泡沫细胞中ICAM-1的高表达被显著抑制.当IMP浓度达到100 μmol/L时,ICAM-1的蛋白水平降低了79%,mRNA水平降低了74%.结论:经氧化低密度脂蛋白孵育后,U937泡沫细胞中ICAM-1呈现高表达,IMP能显著抑制这种表达.%AIM: To investigate the expression level of intercellularadhesion molecule-1 (ICAM-1) in a macrophage-derivedfoam cell model from human U937 cell line and theinhibitory effect of imperatorin (IMP) on the ICAM-1.METHODS: U937 cells were incubated with oxidizedlow density lipoprotein (ox-LDL) 80 mg/L for 48 h anda macrophage-derived foam cell model was established.The medium was pretreated with different concentrationsof IMP (0, 25, 50, 100 μmol/L). ICAM-1 proteinexpression in cells was measured with Western blotting;ICAM-1 mRNA level in cells was measured by Northernblotting. RESULTS: After incubated with ox-LDL,ICAM-1 expression level increased greatly. The increasein ICAM-1 protein level and mRNA level was estimatedto be about 15-fold and 10-fold. When the cells werepretreated with imperatorin (50, 100 μmol/L ), theincrease of ICAM-1 in foam cells were remarkablyinhibited. Especially when pretreated with IMP 100μmoL/L, the ICAM-1 protein level decreased by 79 %and the mRNA level decreased by 74 % each comparedto the level of foam cells. CONCLUSION: Afterincubated with ox-LDL in vitro, the U937 foam cellsshowed an

  11. Notch-Mediated Cell Adhesion

    OpenAIRE

    Akihiko Murata; Shin-Ichi Hayashi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of...

  12. Psychological stress increases expression of aortic plaque intercellular adhesion molecule-1 and serum inflammatory cytokines in atherosclerotic rabbit model

    Institute of Scientific and Technical Information of China (English)

    Muwei Li; Xianpei Wang; Lei Yang; Chuanyu Gao; Yexin Ma

    2008-01-01

    Plaque rupture,platelet aggregation,and thrombogenesis are the main mechanisms of acute coronary syndrome (ACS),and inflammation factors play key roles in plaque unstability.Psychological stress promotes acute inflammatory response,leading to increased circulating levels of C-reactive protein (CRP),IL-6,and serum intercellular adhesion molecule (sICAM)-1.But it is not clear that whether psychological stress has a direct effect on atherosclerotic plaque stability.The purpose of this study was to investigate effects of chronic psychological stress on inflammatory marker (ICAM-1 ) in atherosclerotic plaque,and inflammatory markers in peripheral blood.Materials and methods Sixty male rabbits were randomized into 2 groups:the control group (n =10) and the atherosclerotic group (n =50).The latter were fed on high fatty diet and were given a large dose of vitamin D3 (3 600 000IU/kg) via intraperitoneal injection.After 8 weeks,the atherosclerotic model was estaslished.Then the 50 atherosclerotic model rabbits were divided into 3 subgroups:no-stress subgroup (n = 16),physiological stress subgroup (n = 16) and psychological stress subgroup (n =18).In physiological stress subgroup and psychological stress subgroup,drinking was cut from twice a day to once a day.At the same time,psychological stress subgroup was given empty bottle stress,and this process lasted for 2 weeks.One hour after the last stress,the blood samples were collected and the serum levels of CRP,IL-6 amd ICAM-1 were tested by radioimmunoassay or enzyme linked immunosorbent assay.The aorta and heart were extracted for pathology examination,and the express of ICAM-1 was tested by immunohistochemical examination.Results (1) After effective atherosclerotic animal model construction,the expression of ICAM-1 in aorta was higher in atherosclerotic group than that in control group (P<0.01),and was notably higher in psychological stress subgroup than that in no-stress subgroup or in physiological stress subgroup (2

  13. FRET based quantification and screening technology platform for the interactions of leukocyte function-associated antigen-1 (LFA-1 with intercellular adhesion molecule-1 (ICAM-1.

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    Full Text Available The interaction between leukocyte function-associated antigen-1(LFA-1 and intercellular adhesion molecule-1 (ICAM-1 plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple 'in solution' steady state fluorescence resonance energy transfer (FRET technique to obtain the dissociation constant (Kd of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction.

  14. Effect of various metals on intercellular adhesion molecule-1 expression and tumour necrosis factor alpha production by normal human keratinocytes.

    Science.gov (United States)

    Guéniche, A; Viac, J; Lizard, G; Charveron, M; Schmitt, D

    1994-01-01

    Nickel, cobalt and chromium are metals very often implicated in allergic contact dermatitis. In vivo, keratinocytes, which are the first target cells, can be directly activated to participate in the local reaction, especially through the expression of the membrane antigen ICAM-1, a ligand of the leucocyte antigen LFA-1, and the production of cytokines. Our aim was to assess the effects of sensitizing metal haptens (nickel, cobalt and chromium) compared with the toxic metal cadmium on the induction of ICAM-1 and the production of TNF alpha by epidermal cells. For this purpose, normal human keratinocytes obtained during plastic skin surgery were cultured in low-calcium defined medium (MCDB153) and the metals were used in non-toxic concentrations. Using FACS analysis, ICAM-1 expression was found to be induced only by nickel. This stimulation appeared as early as 24 h after stimulation. All the metals induced a low expression of TNF alpha detectable by immunocytochemistry correlating with the induction of the nuclear stress protein Hsp72 which is closely linked genetically with the TNF alpha locus. However, only Ni2+, Co2+ and Cr2+ induced a significant release of TNF alpha detectable by ELISA after 48 h stimulation. This secretion was lower than that observed with known stimulants such as lipopolysaccharide. These results indicate that the metals studied are able to induce an aggressive cellular effect, and that nickel, by its ICAM-1 induction, may play a major role in the keratinocyte activation state during allergic contact dermatitis. PMID:7864660

  15. 糖基化终产物刺激大鼠骨髓内皮细胞表达细胞间粘附分子-1的机制探讨%The mechanism of intercellular adhesion molecule-1 expression in endothelial cells stimulated by advanced glycosylation end products

    Institute of Scientific and Technical Information of China (English)

    余路; 邱鸿鑫; 王亚平; 司良毅; 吴珊; 祝继华

    2001-01-01

    AIM: To explore the relationship between intercellular adhesionmolecule-1(ICAM-1)expression in endothelial cells(EC) and advanced glycosylation end products(AGEs) stimulation. METHODS: Murine bone marrow derived ECs was stimulated by AGEs after pretreated with anti-AGEs, anti-IL-1β and N-acetylcysteine(NAC),then SOD activity and ICAM-1 concentration and adhesion rate(AR) were evaluated. RESULTS: ECs which expressed ICAM-1[(0.65±0.14) vs (0.11±0.02)] induced by AGEs showed lower SOD activity [(0.69±0.19)×103 U/L vs (1.71±0.42)×103 U/L]. The ICAM-1 expression as well as the increase of AR caused by AGEs stimulation could be suppressed by anti-AGEs(0.12±0.01) and NAC(0.11±0.05). Anti-IL-1β had no influence on these changes. CONCLUSION: AGEs could induce endothelial cells to express ICAM-1 in vitro, most probably due to the formation of free radicals. Besides, AGEs may stimulate other cells to secrete cytokines resulting in ICAM-1 expression in endothelial cells.%目的:探讨糖基化终产物(AGEs)致内皮细胞表达细胞间粘附分子-1(ICAM-1)与自由基产生之间的关系。方法:内皮细胞(EC)用抗AGEs抗体、抗IL-1β多抗、N-乙酰半胱氨酸(NAC)预处理1h后AGEs作用6h,测定IL-1β、超氧化物歧化酶(SOD)、ICAM-1、内皮细胞-中性粒细胞粘附率。结果:AGEs刺激后ICAM-1表达增加[吸光度(A)为0.65±0.14vs0.11±0.02]的内皮细胞SOD活性降低[(0.69±0.19)×103U/Lvs(1.71±0.42)×103U/L]。ICAM-1的增加可被抗AGEs抗体[吸光度(A)为(0.12±0.01)]、NAC[吸光度(A)为(0.11±0.05)]和抗ICAM-1抗体[吸光度(A)为(0.10±0.04)]抑制。外源性IL-1β也可刺激内皮细胞表达ICAM-1[吸光度(A)为(0.72±0.23)]。结论:AGEs刺激内皮细胞表达ICAM-1可能与其导致细胞自由基的产生有关;AGEs还可通过刺激其他细胞产生细胞因子间接作用于EC,参与促进ICAM-1表达。

  16. Effect of Linomide on adhesion molecules, TNF-alpha, nitrogen oxide, and cell adhesion.

    Science.gov (United States)

    Abdul-Hai, A; Hershkoviz, R; Weiss, L; Lider, O; Slavin, S

    2005-02-01

    Linomide (quinoline-3-carboxamide) is an immunomodulator with anti-inflammatory effects in rodents with autoimmune diseases. Its mode of action still remains to be elucidated. We hypothesized that an investigation of T cell interactions with the extracellular matrix (ECM), composed of glycoproteins such as fibronectin (FN) and laminin (LN), might provide better understanding of their in vivo mode of action in extravascular inflammatory sites. We examined the effect of Linomide on T cell adhesion to intact ECM, and separately to LN, and FN, and on the release and production of tumor necrosis factor (TNFalpha) and nitrogen oxide (NO) in relation to adhesive molecules in non-obese diabetic (NOD) female spleen cells, focusing on intracellular adhesion molecule-1 (ICAM-1) and CD44. NOD female mice that developed spontaneous autoimmune insulitis, which destroys pancreatic islets and subsequently leads to insulin-deficient diabetes mellitus, were studied. Linomide, given in the drinking water or added to tissue cultures in vitro, inhibited the beta1 integrin-mediated adhesion of T cells to ECM, FN and LN, as well as the production and release of TNFalpha and NO, which play a major role in the induction and propagation of T cell-mediated insulitis. In addition, exposure of T cells to Linomide resulted in increased expression of CD44 and ICAM-1 molecules on spleen cells of Linomide-treated mice; such an increase in adhesion molecule expression may lead to more effective arrest of T cell migration in vivo. The regulation of T-cell adhesion, adhesion receptor expression, and inhibition of TNFalpha and NO secretion by Linomide may explain its beneficial role and provide a new tool for suppressing self-reactive T cell-dependent autoimmune diseases. PMID:15652754

  17. Lipopolysaccharide Binding Protein, Soluble-Intercellular Adhesion Molecule-1, Procalcitonin, and Protein C Activity and Clinical Outcome in Systemic Inflammatory Response Syndrome (SIRS or Sepsis Patients

    Directory of Open Access Journals (Sweden)

    Dewi Muliaty

    2009-04-01

    Full Text Available BACKGROUND: Biochemical markers may be used in diagnosis, prognostic and monitoring treatment and therapy for sepsis patients. In this study we used Lipopolysacharide Binding Protein (LBP, serum-Intercellular Adhesion Molecule-1 (ICAM-1, Procalcitonin (PCT and protein C activity. LBP is related to lipopolysachharide or gram-negative bacterial endotoxin which bound to LBP and induced inflammatory response. ICAM-1 is associated with endothelial dysfunction in response to systemic inflammatory and septic condition. PCT increased in bacterial infection and in severe systemic inflammatory. Role of Protein C is protecting the intravascular system to systemic inflammation, sepsis and the concomitant intravascular coagulopathy. The aim of this study was to examine the associations between levels of serum LBP, sICAM-1, PCT, and protein C activity with the clinical outcome of SIRS or sepsis patients. METHODS: We included 19 post surgery patients with SIRS criteria from intensive care unit (ICU and evaluated the level of LBP serum with Chemiliuminescent Enzyme Immunoassay (Diagnostic Product Co., ICAM-1 with ELISA (R&D System, PCT with immunochromatography (BRAHMS, protein C activity with chromogenic method (Dade Behring. We performed the samples serially at the first admission of patients and after 72 hours. Data were analysed by non-parametric with Wilcoxon test and Mann-Whitney test. Correlation study between biomarkers calculated by Kendall’s tau and Spearman’s rho. RESULTS: Of 19 patients, 9 (47,4% died and 10 (52,6% surviving. The level of LBP serum decreased after 72 hours in surviving-sepsis patients, and increased in nonsurviving sepsis patients with significant different levels at 72 hours examination (p0.05. In all patients were found high level of PCT serum since the first admission examination, decreasing levels were occurred significantly in surviving patients after 72 hours (p0.05 both in surviving and non-surviving patients. CONCLUSIONS

  18. 血清E选择素、sVCM-1在糖调节受损患者中的水平分析%Analysis Serum Levels of E-selection and Soluble Vascular Cell Adhesion Molecule-1 in Patients with Impaired Glucose Regulation

    Institute of Scientific and Technical Information of China (English)

    王绪山; 徐桂玲; 王敏; 宋凤英

    2014-01-01

    目的:探讨 E 选择素(E‐selectin)、可溶性血管细胞黏附分子‐1(sVCM‐1)在糖调节受损(IGR)患者血清中的水平。方法:根据空腹血糖(FPG)及2h 血糖(2hPG )水平,分为正常糖耐量组(NGT 组,35例),空腹血糖受损组(IFG组,25例)、糖耐量减低组(IGT 组,23例)、空腹血糖受损合并糖耐量减低组(IFG + IGT 组,26例)和2型糖尿病组(DM 组,18例)。均为体检中新发现者。结果:血清中 E‐selectin 水平在各组中比较显示,除 IFG 组与 IGT 组两组水平无明显差异外(P >0.05),其他各组血清中 E‐selectin 水平比较差异均具有统计学意义(P <0.01);而血清中sVCM‐1水平在各组中比较差异均具有统计学意义(P<0.01)。结论:动态观察血清中 E‐selectin 、sVCM‐1的水平,可以早期采取相应的干预措施,防止和延缓血管内皮的损伤和 DM 的发生发展,预防心血管事件的发生。%Objective :To investigate the serum levels of E‐selection and soluble vascular cell adhesion molecule‐1 in pa‐tients with impaired glucose regulation .Methods :According to the Fasting serum glucose(FPG) and 2‐hour serum glu‐cose(2hPG ) levels ,divided into the normal glucose tolerance group (NGT group ,35 cases) ,impaired fasting glucose group(IFG group ,25 cases) ,impaired glucose tolerance group(IGT group ,23 cases) ,impaired fasting glucose with im‐paired glucose tolerance group(IFG + IGT group ,26 cases)and Diabetes mellitus Type‐2 group(DM group ,18 cases) , were found in physical examination above all .Results :The level of E‐selectin in serum compared in each group ,but no significant difference in IFG group and IGT group two group level (P > 0 .05) ,the level of E‐selectin in serum com‐pared with other group differences were statistically significant (P < 0 .01) ;while the sVCM‐1 level in serum in each group compared the

  19. Cocaine-associated retiform purpura: a C5b-9-mediated microangiopathy syndrome associated with enhanced apoptosis and high levels of intercellular adhesion molecule-1 expression.

    Science.gov (United States)

    Magro, Cynthia M; Wang, Xuan

    2013-10-01

    Cocaine-associated retiform purpura is a recently described entity characterized by striking hemorrhagic necrosis involving areas of skin associated with administration of cocaine. Levamisole, an adulterant in cocaine, has been suggested as the main culprit pathogenetically. Four cases of cocaine-associated retiform purpura were encountered in the dermatopathology practice of C. M. Magro. The light microscopic findings were correlated with immunohistochemical and immunofluorescence studies. All 4 cases showed a very striking thrombotic diathesis associated with intravascular macrophage accumulation. Necrotizing vasculitis was noted in 1 case. Striking intercellular adhesion molecule-1 (ICAM-1)/CD54 expression in vessel wall along with endothelial expression of caspase 3 and extensive vascular C5b-9 deposition was observed in all biopsies examined. Cocaine-induced retiform purpura is a C5b-9-mediated microvascular injury associated with enhanced apoptosis and prominent vascular expression of ICAM-1, all of which have been shown in prior in vitro and in vivo murine models to be a direct effect of cocaine metabolic products. Antineutrophilic cytoplasmic antibody and antiphospholipid antibodies are likely the direct sequelae of the proapoptotic microenvironment. The inflammatory vasculitic lesion could reflect the downstream end point reflective of enhanced ICAM-1 expression and the development of antineutrophilic cytoplasmic antibody. Levamisole likely works synergistically with cocaine in the propagation of this syndromic complex. PMID:23392134

  20. Study of Serum Soluble Vascular Cell Adhesion Molecule-1 Level in Type 2 Diabetic Patients with Diabetic Retinopathy%可溶性血管细胞黏附分子-1与2型糖尿病视网膜病变的相关性研究

    Institute of Scientific and Technical Information of China (English)

    张秀坤; 石雪松; 杨宝林; 徐明艳; 侯英; 张羽

    2011-01-01

    Objective To study the change and the correlation of serum soluble vascular cell adhesion molecuh-1(sVCAM-1)level with diabetic retinopathy in type 2 diabetic patients.Methods 60 type 2 diabetic patients were selected for the study through the examination of ophthalmoscope and/or fundus fluorescence angiography by ophthalmologist.Diabetic patients were divided into three main groups:No signs of diabetic retinopathy(NDR)(n=20);Background DR(BDR)(n=20)Proliferative DR(PDR)(n=20).Healthy individuals matching sex and age of the patients were used as controls(n=20);Serum sVCAM-1 level was measured by ELISA,compared in diabetes without DR,with BDR,with PDR.These levels were compared with those of 20 controls.Results The serum level of sVCAM-1 in the DM patients with PDR or BDR and those without DR were significantly higher than those in healthy controls(all P<0.001);Serum level of sVCAM-1 in PDR groups were higherthan those in DM patients with BDR or patients without DR(all P<0.001);There was no difference between the patients with BDR and those without DR (P>0.05).(4)In the DM patients,there was a positive correlation between serum sVCAM-1 and the course of diseases(r=0.338,P<0.05),but no relationship with HbA1C,FBG,CHO,TG,LDL and INS.Conclusion Increased serum level of sVCAM-1 in different stage of DR patients suggested that they hagbe play an important role in the development of DR,and may assess the severity of diabetic retinopathy.The measuremem of serum sVCAM-1 levels in type 2 diabetic patients could be clinically useful for early diagnosis or treatment of diabetic retinopathy.%目的 研究2型糖尿病视网膜病变患者血清可溶性血管细胞黏附分子-1(sVCAM-1)水平的变化与糖尿病病程、视网膜病变程度、糖化血红蛋白、胰岛素、血糖及血脂之间的相关性.方法 选取2型糖尿病不伴视网膜病变患者[无视网膜病变组(NDR)]20例、2型糖尿病伴背景型视网膜病变患者[

  1. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  2. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    Syndecans are transmembrane proteoglycans which can participate in diverse cell surface interactions, involving extracellular matrix macromolecules, growth factors, protease inhibitors, and even viral entry. Currently, all extracellular interactions are believed to be mediated by distinct...... structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...

  3. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  4. Maternal serum uric acid concentration is associated with the expression of tumour necrosis factor-α and intercellular adhesion molecule-1 in patients with preeclampsia.

    Science.gov (United States)

    Zhao, J; Zheng, D-Y; Yang, J-M; Wang, M; Zhang, X-T; Sun, L; Yun, X-G

    2016-07-01

    We aimed to investigate whether there is a correlation between elevated serum uric acid (SUA) concentration and endothelial inflammatory response in women with preeclampsia (PE). On the basis of clinical and laboratory findings, patients were assigned to three groups: normal blood pressure (Control (Con)), gestational hypertension (GH) and PE (n=50 in each group). SUA concentration was measured by spectrophotometry, and serum tumour necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) levels were measured by enzyme-linked immunosorbent assay. Western blotting and immunohistochemical staining were also used to detect the changes in TNF-α and ICAM-1 expression in subcutaneous fat tissue. PE patients showed significantly higher systolic and diastolic blood pressures compared with Con and GH pregnant women (P=0.02 and P=0.02, respectively). The changes of body mass index (ΔBMI) before and after pregnancy and 24-h urine protein were significantly different among the three groups (P<0.001). Maternal SUA, TNF-α and soluble ICAM-1 (sICAM-1) levels were significantly increased in the patients with PE (P<0.05) compared with the other two groups. Scatterplot analysis revealed that elevated SUA concentration positively correlated with TNF-α and sICAM-1 in pregnant women. Moreover, vessels in subcutaneous fat tissues of preeclamptic patients showed intense TNF-α and ICAM-1 staining compared with Con and GH patients. The results support that, to a certain extent, elevated SUA concentration is significantly associated with inflammation of maternal systemic vasculature as indicated by increased TNF-α and ICAM-1 expression in women with PE. PMID:26511169

  5. The Serum Changes of Neuron-Specific Enolase and Intercellular Adhesion Molecule-1 in Patients With Diffuse Axonal Injury Following Progesterone Administration: A Randomized Clinical Trial

    Science.gov (United States)

    Shahrokhi, Nader; Soltani, Zahra; Khaksari, Mohammad; Karamouzian, Saeid; Mofid, Behshad; Asadikaram, Gholamreza

    2016-01-01

    Background Improvement of neurologic outcome in progesterone-administered patients with diffuse axonal injury (DAI) has been found in a recent study. Also, there has been interest in the importance of serum parameters as predictors of outcome in traumatic brain injury. Objectives The aim of this study was to examine the effect of progesterone administration on serum levels of neuron-specific enolase (NSE), and intercellular adhesion molecule-1 (ICAM-1) in clinical DAI. Patients and Methods In this study, the serum levels of ICAM-1 and NSE of 32 male DAI patients (18 - 60 years of age, a Glasgow coma scale of 12 or less, and admitted within 4 hours after injury) who were randomized for a controlled phase II trial of progesterone were analyzed. The analysis was performed between the control and progesterone groups at admission time, and 24 hours and six days after DAI, respectively. Results A reduction in the serum level of ICAM-1 was noticed in the progesterone group 24 hours after the injury (P < 0.05). There was no significant difference in the serum level of NSE between the study groups during evaluation. At 24 hours after the injury, the level of ICAM-1 in the control group was higher than that at admission time (P < 0.05). The lowest level of NSE in the two groups was seen six days after DAI (P < 0.01). Conclusions In summary, progesterone administration reduced serum ICAM-1, and whereby may attenuate blood brain barrier disruption, the latter needs further investigation for confirmation.

  6. The Value of the Soluable Intercellular Adhesion Molecule-1 Levelsin Matermal Serum for Determination of Occult Chorioamnionitis in Premature Rupture of Membranes

    Institute of Scientific and Technical Information of China (English)

    邹丽; 张会军; 祝建芳; 朱剑文

    2004-01-01

    To compare the diagnostic value of soluble intercellular adhesion molecule 1 (sICAM-1)with that of c-reactive protein (CRP) for detecting chorioamnionitis (CAM) in serum of women with premature rupture of membranes (PROM), 55 pregnant women with PROM, including 18pregnant women with preterm premature rupture of membranes (PPROM) and 20 normal pregnant women at term (TPROM) were studied. Maternal serum were measured by Sandwish enzymelinked immunoabsorbent assay (ELISA) for sICAM. CAM was histologically confirmed after delivery. The results revealed that (1) maternal serum levels of sICAM-1 and CRP were significantly higher in women with PROM than those without it; (2) maternal serum levels of sICAM-1 and CRP were significantly higher in women with CAM than those without it; (3) serum levels of sICAM-1 in PPROM women were similar to those in TPROM women, whereas serum levels of CRP in PPROM women were significantly higher than those in TPROM women; (4) the sensitivity,specificity, positive predictive value, negative predictive value, Kappa index and area under receiver operating characteristic (ROC) curve of maternal serum sICAM-1 (cutoff 104.7 ng/ml) and CRP (cutoff 1.03 mg/dl) for diagnosing CAM were 100 %, 91.2 %, 87.5 %, 100 %, 0.20, 0.995and 81.0 %, 73.5 %, 65.4 %, 86.2 %, 0.13, 0. 811, respectively; (5) among the mild histological CAM group, severe histological CAM group and clinical CAM group, the difference in maternal serum levels of sICAM-1 were significantly (P<0. 001), with the order of concentration from high level to low level corresponding to the severity of CAM. It is concluded that maternal serum level of ICAM-1 is superior to that of CRP as biomarker for diagnosing intraamniotic infection in pregnant women with PROM.

  7. Study on the serum levels of soluble intercellular adhesion molecule-1 (sICAM-1) in patients with Helicobacter pylori Infection

    Institute of Scientific and Technical Information of China (English)

    吴勤动; 朱永良; 石益海

    2002-01-01

    Objective: To evaluate the interaction between serum levels of soluble intercellular adhesion molecule-1 (sICAM-1) and Helicobacter pylori (H. pylori) infection in patients with chronic gastritis and peptic ulcer. Methods: The serum levels of sICAM-1 in 205 patients with chronic gastric diseases were detected by ELISA method and the status of H. pylori was determined by histologic examination, RUT, 14C - UBT, and serology. The sera obtained from 18 healthy volunteers served as controls. Results: The serum levels of sICAM-1 were significantly higher in patients with H. pylori positive than those of H. pylori negative (889.43±32.52 ng/ml vs. 747.07±30.45 ng/ml, P<0.05). The serum levels of sICAM-1 in patients with mild, moderate and severe infection of H. pylori were 841.68±72.36 ng/ml, 905.43±37.59 ng/ml and 1012.54±49.34 ng/ml,respectively (P<0.05). The serum levels of sICAM-1 proved to be significantly correlated with the density of H. pylori colonization in gastric mucosa (rs =0.316, P<0.001). The serum levels of sICAM-1 in patients with chronic gastritis and peptic ulcer were significantly higher than those in healthy controls (P<0.05). Conclusions: These results indicated that H. pylori infection up-regulates the expression of sICAM-1.

  8. Troglitazone, a PPAR-γ activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-α

    OpenAIRE

    Itoh Makoto; Joh Takashi; Minagar Alireza; Welbourne Tomas; Jordan Paul; Sasaki Makoto; Elrod John W; Alexander J Steven

    2005-01-01

    Abstract Background Cytokine mediated induction of the mucosal addressin cell adhesion molecule-1(MAdCAM-1) expression is associated with the onset and progression of inflammatory bowel disease (IBD). Results Using western blotting and cell-based ELISA, we show in this study that troglitazone, an activator of the peroxisome proliferator-activated receptor-γ (PPAR-γ), widely used in the treatment of diabetes, has as well recently been highlighted as protective in models of inflammation and can...

  9. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  10. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  11. A role for cell adhesion in beryllium-mediated lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  12. Upregulation of Intercellular Adhesion Molecule 1 and Proinflammatory Cytokines by the Major Surface Proteins of Treponema maltophilum and Treponema lecithinolyticum, the Phylogenetic Group IV Oral Spirochetes Associated with Periodontitis and Endodontic Infections

    Science.gov (United States)

    Lee, Sung-Hoon; Kim, Kack-Kyun; Choi, Bong-Kyu

    2005-01-01

    Treponema maltophilum and Treponema lecithinolyticum belong to the group IV oral spirochetes and are associated with endodontic infections, as well as periodontitis. Recently, the genes encoding the major surface proteins (Msps) of these bacteria (MspA and MspTL, respectively) were cloned and sequenced. The amino acid sequences of these proteins showed significant similarity. In this study we analyzed the functional role of these homologous proteins in human monocytic THP-1 cells and primary cultured periodontal ligament (PDL) cells using recombinant proteins. The complete genes encoding MspA and MspTL without the signal sequence were cloned into Escherichia coli by using the expression vector pQE-30. Fusion proteins tagged with N-terminal hexahistidine (recombinant MspA [rMspA] and rMspTL) were obtained, and any possible contamination of the recombinant proteins with E. coli endotoxin was removed by using polymyxin B-agarose. Flow cytometry showed that rMspA and rMspTL upregulated the expression of intercellular adhesion molecule 1 (ICAM-1) in both THP-1 and PDL cells. Expression of proinflammatory cytokines, such as interleukin-6 (IL-6) and IL-8, was also induced significantly in both cell types by the Msps, as determined by reverse transcription-PCR and an enzyme-linked immunosorbent assay, whereas IL-1β synthesis could be detected only in the THP-1 cells. The upregulation of ICAM-1, IL-6, and IL-8 was completely inhibited by pretreating the cells with an NF-κB activation inhibitor, l-1-tosylamido-2-phenylethyl chloromethyl ketone. This suggests involvement of NF-κB activation. The increased ICAM-1 and IL-8 expression in the THP-1 cells obtained with rMsps was not inhibited in the presence of the IL-1 receptor antagonist (IL-1ra), a natural inhibitor of IL-1. Our results show that the Msps of the group IV oral spirochetes may play an important role in amplifying the local immune response by continuous inflammatory cell recruitment and retention at an

  13. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  14. Dose-effect relationship between the expression of aortic vascular cell adhesion molecule-1 mRNA and qi-benefiting and blood-activating intervention on atherosclerosis%动脉粥样硬化模型主动脉血管细胞黏附分子1 mRNA表达量与益气活血法干预的量效关系

    Institute of Scientific and Technical Information of China (English)

    张红珍; 李丽

    2007-01-01

    BACKGROUND: In traditional Chinese medicine, both deficiency as primary and excess as secondary and deficiency of qi and blood stasis are common symptoms in dialectical logy of atherosclerosis (AS). Therefore, qi-benefiting drugs are the main component of qi-benefiting and blood-activating intervention. However, the best dose relationship between qi-benefiting and blood-activating drugs needs to be further studied.OBJECTIVE: To observe the effect of qi-benefiting and blood-activating intervention on the expression of aortic vascular cell adhesion molecule-1mRNA (VCAM-1mRNA) in AS models and analyze dose-effect relationship between astragalus and sanchi.DESIGN: Randomized control animal study.SETTING: Shanxi Medical University.MATERIALS: The experiment was carried out in the Shanxi Medical University in April 2005. A total of 60 healthy male Wistar rats were selected in this study. The main reagents were quercetin (Shaanxi Huike Plant Co., Ltd., batch number:20041112), saponins of panax notoginseng (PNS, Kunming Yagechen Pharmaceutical Co., Ltd., batch number:20050118) and ligustrazine (Yuxin Guoji Longyuan Pharmaceutical Co., Ltd., batch number: 20041204).METHODS: Model establishment: Wistar rats were administrated AS feeds (including 10% yolk powder, 5% lard, 0.5% bile salt and 85% basic feed) for 3 months. Grouping and administration: At threedays after suitability feeding, 8 rats were randomly selected, regarded as the normal control group and given general feeds, and other 52 rats were fed with AS feeds. Three months later, 4 rats were randomly selected for the measurements of lipid and aortic tissue. And then, the models were established successfully. In addition, 48 rats were randomly divided into 6 groups. ① Astragalus treatment group: Rats were perfused with 0.1 g/(kg·d) quercetin. ② Sanchi treatment group: Rats were perfused with 0.1 g/(kg·d)PNS. ③ 2∶1 of astragalus/sanchi treatment group: Rats were perfused with 0.1 g/(kg·d) quercetin and 0

  15. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin.

    Science.gov (United States)

    Oh, Jaeho; Edwards, Erin E; McClatchey, P Mason; Thomas, Susan N

    2015-10-15

    Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell-cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner.

  16. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Research highlights: → STIM1 and TRPC1 are expressed in EPCs. → Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. → TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  17. Hierarchical Nanopatterns for Cell Adhesion Studies

    OpenAIRE

    Schwieder, Marco

    2008-01-01

    Hierarchical nanopatterned interfaces are an intriguing tool to study clustering processes of proteins like for example integrins that mediate cell adhesion. The aim of this work is the development of innovative methods for the fabrication of hierarchical micro-nanopatterned surfaces and the use of such systems as platforms to study cell adhesion. In the first part of this work different approaches are presented which are suitable for preparing micro-nanopatterned interfaces at a large scale ...

  18. Micropatterning cell adhesion on polyacrylamide hydrogels.

    Science.gov (United States)

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  19. Cell adhesion molecules: detection with univalent second antibody

    OpenAIRE

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against c...

  20. Comparative effect of genistein and daidzein on the expression of MCP-1, eNOS, and cell adhesion molecules in TNF-α-stimulated HUVECs

    OpenAIRE

    Cho, Hye Yeon; Park, Chung Mu; Kim, Mi Jeong; Chinzorig, Radnaabazar; Cho, Chung Won; Song, Young Sun

    2011-01-01

    We compared the effects of genistein and daidzein on the expression of chemokines, cell adhesion molecules (CAMs), and endothelial nitric oxide synthase (eNOS) in tumor necrosis factor (TNF)-α-stimulated human umbilical vascular endothelial cells (HUVECs). TNF-α exposure significantly increased expression of monocyte chemoattractant protein (MCP)-1, vascular adhesion molecule (VCAM)-1, and intercellular adhesion molecule-1. Genistein significantly decreased MCP-1 and VCAM-1 production in a do...

  1. Yielding elastic tethers stabilize robust cell adhesion.

    Directory of Open Access Journals (Sweden)

    Matt J Whitfield

    2014-12-01

    Full Text Available Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.

  2. Physics of cell elasticity, shape and adhesion

    Science.gov (United States)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  3. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis.

  4. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    OpenAIRE

    Rita Salánki; Csaba Hős; Norbert Orgovan; Beatrix Péter; Noémi Sándor; Zsuzsa Bajtay; Anna Erdei; Robert Horvath; Bálint Szabó

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduc...

  5. Polyphenols from Artemisia annua L Inhibit Adhesion and EMT of Highly Metastatic Breast Cancer Cells MDA-MB-231.

    Science.gov (United States)

    Ko, Young Shin; Lee, Won Sup; Panchanathan, Radha; Joo, Young Nak; Choi, Yung Hyun; Kim, Gon Sup; Jung, Jin-Myung; Ryu, Chung Ho; Shin, Sung Chul; Kim, Hye Jung

    2016-07-01

    Recent evidence suggests that polyphenolic compounds from plants have anti-invasion and anti-metastasis capabilities. The Korean annual weed, Artemisia annua L., has been used as a folk medicine for treatment of various diseases. Here, we isolated and characterized polyphenols from Korean A. annua L (pKAL). We investigated anti-metastatic effects of pKAL on the highly metastatic MDA-MB-231 breast cancer cells especially focusing on cancer cell adhesion to the endothelial cell and epithelial-mesenchymal transition (EMT). Firstly, pKAL inhibited cell viability of MDA-MB-231 cells in a dose-dependent manner, but not that of human umbilical vein endothelial cells (ECs). Polyphenols from Korean A. annua L inhibited the adhesion of MDA-MB-231 cells to ECs through reducing vascular cell adhesion molecule-1 expression of MDA-MB-231 and ECs, but not intracellular adhesion molecule-1 at the concentrations where pKAL did not influence the cell viability of either MDA-MB-231 cells nor EC. Further, pKAL inhibited tumor necrosis factor-activated MDA-MB-231 breast cancer cell invasion through inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9 and EMT. Moreover, pKAL inhibited phosphorylation of Akt, but not that of protein kinase C. These results suggest that pKAL may serve as a therapeutic agent against cancer metastasis at least in part by inhibiting the cancer cell adhesion to ECs through suppression of vascular cell adhesion molecule-1 and invasion through suppression of EMT. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27151203

  6. Optical biosensors for cell adhesion.

    Science.gov (United States)

    Ramsden, Jeremy J; Horvath, Robert

    2009-01-01

    Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes. PMID:19635032

  7. Prevention of reovirus type 2-induced diabetes-like syndrome in DBA/1 suckling mice by treatment with antibodies against intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1.

    OpenAIRE

    Hayashi, T.; Yamamoto, S.; Onodera, T.

    1995-01-01

    Reovirus type 2-induced diabetes-like syndrome in suckling mice is considered to be an animal model for human insulin-dependent diabetes mellitus. We have previously demonstrated that immunopathologic pancreatic islet cell damage might be relevant to reovirus type 2 infection. In this study the involvement of adhesion molecules in the development of reovirus type 2-induced diabetes-like syndrome was examined. In infected mice infiltration of mononuclear cells mixed with polymorphonuclear leuc...

  8. Cell adhesion in regulation of asymmetric stem cell division

    OpenAIRE

    Yamashita, Yukiko M

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the...

  9. Adhesion of cells to polystyrene surfaces

    OpenAIRE

    1983-01-01

    The surface treatment of polystyrene, which is required to make polystyrene suitable for cell adhesion and spreading, was investigated. Examination of surfaces treated with sulfuric acid or various oxidizing agents using (a) x-ray photoelectron and attenuated total reflection spectroscopy and (b) measurement of surface carboxyl-, hydroxyl-, and sulfur-containing groups by various radiochemical methods showed that sulfuric acid produces an insignificant number of sulfonic acid groups on polyst...

  10. Induction of T cell adhesion to extracellular matrix or endothelial cell ligands by soluble or matrix-bound interleukin-7.

    Science.gov (United States)

    Ariel, A; Hershkoviz, R; Cahalon, L; Williams, D E; Akiyama, S K; Yamada, K M; Chen, C; Alon, R; Lapidot, T; Lider, O

    1997-10-01

    The putative effects of interleukin (IL)-7, operating in the context of extracellular matrix (ECM), on the adhesion of human T cells were examined. Recombinant human, IL-7 was found to bind ECM or fibronectin (FN) with IC50 values of 10-100 nM. Nanogram amounts of both soluble and, especially, FN- or ECM-bound IL-7, which differentially affected the morphologies of FN-adherent T cells, induced the adhesion of resting CD4+ and CD8+ T cells in dose-dependent and beta 1 integrin-dependent manners. Under static and flow conditions, soluble IL-7 also induced the binding of unstimulated T cells to vascular cell adhesion molecule-1, suggesting that this cytokine can also modulate integrin binding to endothelial cell ligands. The effects of affinity modulation by IL-7 of FN-specific beta 1 integrins depend on the presence of soluble FN, which inhibited T cell adhesion to FN induced by FN-bound IL-7 or by an integrin-specific affinity-modulating monoclonal antibody, but not by soluble IL-7 or phorbol 12-myristate 13-acetate. These findings provide an example of a major ECM integrin ligand, FN, which is capable of modulating its adhesive interactions with specific immune cells by associating with and presenting a cytokine in a bio-active state. PMID:9368611

  11. Characterization of adhesive interactions between human endothelial cells and megakaryocytes.

    OpenAIRE

    Avraham, H; Cowley, S; Chi, S. Y.; Jiang, S.; Groopman, J E

    1993-01-01

    Cell-cell adhesion is essential for many immunological functions and is believed to be important in the regulation of hematopoiesis. Adhesive interactions between human endothelial cells and megakaryocytes were characterized in vitro using the CMK megakaryocytic cell line as well as marrow megakaryocytes. Although there was no adhesion between unactivated human umbilical vein endothelial cells (HUVEC) and megakaryocytes, treatment of HUVEC with inflammatory cytokines such as IL-1 beta, tumor ...

  12. Cell Adhesion on Surface-Functionalized Magnesium.

    Science.gov (United States)

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  13. Effects of irradiation on the expression of the adhesion molecules (NCAM, ICAM-1) by glioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Ryuya; Tanaka, Ryuichi; Yoshida, Seiichi (Niigata Univ. (Japan). Brain Research Inst.)

    1993-11-01

    The expression of the intercellular adhesion molecule-1 (ICAM-1) and neural cell adhesion molecule (NCAM) by glioma cell lines was investigated. The effects of interferon (IFN)-[gamma] or irradiation on the expression was also assessed. Two glioma cell lines showed more than 75% NCAM-positive cells. After treatment with IFN-[gamma] or irradiation, another three cell lines were induced to show more than 50% positive cells. Three glioma cell lines showed more than 50% ICAM-1-positive cells. After treatment with IFN-[gamma], another two cell lines were induced to show more than 50% positive cells. After treatment with irradiation, one more cell line was induced to show more than 50% positive cells. ICAM-1 and NCAM expression by glioma cell lines is susceptible to modulation by IFN-[gamma] or irradiation. (author).

  14. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    Institute of Scientific and Technical Information of China (English)

    Nan-Hong Tang; Yan-Ling Chen; Xiao-Qian Wang; Xiu-Jin Li; Feng-Zhi Yin; Xiao-Zhong Wang

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells.METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR,respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment.RESULTS: In comparison with TNF-α inducing group, lipoASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37±1.56% to 14.23±1.07%, P<0.001). Meanwhile,cimetidine alone could inhibit the expression of E-selectin (36.37±1.56% vs 27.2±1.31%, P<0.001), but not ICAM-1 (69.34±2.50% vs68.07±2.10%,P>O.05)and the two kinds of mRNA, either. Compared with TNF-αα inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P<0.05),and Jipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group(P<0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P >0.05).CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion.

  15. Expression of intercellular adhesion molecule-1 and clinical significance in gastric carcinoma%胃癌中细胞间黏附分子1的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    牟时斌; 高峰

    2015-01-01

    Objective To observe the expression of intercellular adhesion molecule-1 (ICAM-1 )in gastric carcinoma and its adjacent tissues and two cultured gastric carcinoma cell lines,so as to explore its value in the clinical practice.Methods The expression of ICAM-1 in 90 cases of gastric carcinoma tissues,40 cases of adjacent tissues and two cultured gastric carcinoma cell lines (MKN45 and SGC-7901 ) was determined by Western blot and immunohistochemistry(IHC).The gastric carcinoma tissues were then divided into ICAM-1-positive group (n =68) and ICAM-1-negative group (n =22).Results The expression of ICAM-1 in gastric carcinoma tissues (4.5±0.3)and gastric carcinoma cell lines (5.6 ± 0.2 )were significantly higher than that in the adjacent tissues (1.0 ± 0.1,P <0.01).The positive rate of ICAM-1 in gastric carcinoma tissues was 75.6%(68/90),remarkably higher than that in the adjacent tissues 32.5%(13/40)(P <0.01).Compared with those in the ICAM-1-negative group,ICAM-1-positive group had larger tumor size,more serious infiltration and more common nerve invasion (P <0.01).Furthermore,the recurrence rate in the ICAM-1-positive group was markedly higher than that in the ICAM-1-negative group (67.6% vs 22.7%,P <0.05)and the five year survival rate in the ICAM-1-positive group was prominently lower than that in the ICAM-1-negative group (61.1% vs 80.0%,P <0.05).Conclusion The overexpression of ICAM-1 in gastric cancer tissues predicted more intensive invasion and poorer prognosis.%目的:研究细胞间黏附分子1(ICAM-1)在胃癌组织、癌旁胃组织及胃癌细胞系中的表达及对临床实践的价值。方法从90例胃癌组织、40例癌旁胃组织及2种胃癌细胞系(MKN45、SGC-7901)中提取蛋白质,以蛋白质印迹法检测 ICAM-1的表达水平;对90例胃癌组织以 ICAM-1为一抗进行免疫组织化学(IHC)检测,并根据 IHC 结果把患者分为 ICAM-1阳性组(68例)和 ICAM-1阴性组(22例)。结果胃癌组织及胃癌细胞系中 ICAM

  16. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    Energy Technology Data Exchange (ETDEWEB)

    Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tan, Bo, E-mail: tanbo@ryerson.ca [Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Venkatakrishnan, Krishnan, E-mail: venkat@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada)

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  17. Troglitazone, a PPAR-γ activator prevents endothelial cell adhesion molecule expression and lymphocyte adhesion mediated by TNF-α

    Directory of Open Access Journals (Sweden)

    Itoh Makoto

    2005-02-01

    Full Text Available Abstract Background Cytokine mediated induction of the mucosal addressin cell adhesion molecule-1(MAdCAM-1 expression is associated with the onset and progression of inflammatory bowel disease (IBD. Results Using western blotting and cell-based ELISA, we show in this study that troglitazone, an activator of the peroxisome proliferator-activated receptor-γ (PPAR-γ, widely used in the treatment of diabetes, has as well recently been highlighted as protective in models of inflammation and cancer. We found that troglitazone (10–40 μM, significantly reduced the TNF-α (1 ng/ml mediated induction of endothelial MAdCAM-1 in a dose-dependent manner, achieving a 34.7% to 98.4% reduction in induced MAdCAM-1. Trogliazone (20μM reduced TNF-α induced VCAM-1, ICAM-1 and E-selectin expression. Moreover, troglitazone significantly reduced α4β7-integrin dependent lymphocyte adhesion to TNF-α cultured endothelial cells. Conclusions These results suggest that PPAR-γ agonists like troglitazone may be useful in the clinical treatment of IBD.

  18. Adhesion of Aeromonas sp. to cell lines used as models for intestinal adhesion.

    OpenAIRE

    Kirov, S M; Hayward, L. J.; Nerrie, M. A.

    1995-01-01

    Adhesion to HEp-2 cells has been shown to correlate with enteropathogenicity for Aeromonas species. Such adhesion is thought to reflect the ability of strains to adhere to human intestinal enterocytes, although HEp-2 cells are not of intestinal origin. In this study strains of Aeromonas veronii biotype sobria isolated from various sources were investigated in parallel assays for their ability to adhere to HEp-2 cells and to an intestinal cell line (Caco-2). Quantitative assays showed identica...

  19. Value of knee skin temperature measured by infrared thermography and soluble intercellular adhesion molecule-1 in the diagnosis of peri-prosthetic knee infection in Chinese individuals following total knee arthroplasty

    Institute of Scientific and Technical Information of China (English)

    Mumingjiang Yishake; Zhou Xindie; He Rongxin

    2014-01-01

    Background Total knee arthroplasty (TKA) is a successful and frequently performed procedure in orthopedic surgery.The diagnosis of peri-prosthetic joint infection following TKA remains challenging.The present study estimated the usefulness of knee skin temperature (measured by infrared thermography) and serum soluble intercellular adhesion molecule-1 (slCAM-1) in the diagnosis of post-operative knee peri-prosthetic infection.Methods Patients were divided into three groups:21 patients undergoing uncomplicated TKAs,seven with prosthesis infection,and three undergoing TKA revisions.The serum levels of interleukin-6 (IL-6),C-reactive protein (CRP),erythrocyte sedimentation rate (ESR),and slCAM-1 as well as the local knee skin temperature were measured preoperatively and on Days 1 and 7 and at 1,3,and 6 months post-operatively in Groups 1 and 3.The same parameters were measured in Group 2 at the time of prosthesis infection diagnosis.Results In Group 1,the levels of IL-6,CRP,ESR,and knee skin temperature were significantly elevated post-operatively,but returned to baseline levels within 6 months.The slCAM-1 levels were not significantly different.The mean differential temperature (MDT) and levels of siCAM-1,IL-6,CRP,and ESR differed significantly between Groups 1 and 2.The MDT had returned to normal in Group 3 by 6 months post-operatively.Conclusions Elevations in IL-6,CRP,ESR,and MDT in patients undergoing TKA could be a normal response to surgical trauma,but sustained elevations may be indicative of complications.The knee skin temperature and slCAM-1 may be used as indicators in the diagnosis of knee prosthesis infection following TKA.

  20. Genistein inhibits human TNF-α-induced porcine endothelial cell adhesiveness for human monocytes and natural killer cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cellular immune response is a major barrier to xenotransplantation. Human tumor necrosis factor-α (hTNF-α) possesses cross-species activity and directly amplifies the immune rejection via the upregulation of adhesion molecules on porcine endothelium. We investigated the role of protein tyrosine phosphorylation in the induction of expression of E-sclectin and vascular cell adhesion molecule-1 (VCAM-1), and the augmentation of adhesion of human peripheral blood monocytes (PBMo) and natural killer cells (PBNK), after rhTNF-α-stimulation of porcine aortic endothelial cells (PAEC) in vitro, rhTNF-α-increased adhesiveness of PAEC for both PBMo and PBNK was dose-dependently reduced by pretreatment of PAEC with the selective protein tyrosine kinase (PTK) inhibitor genistein. The inhibitory effect occurred at the early time of PAEC activation triggered by rhTNF-α, and was completely reversible. PTK activity assay indicated that genistein also suppressed rhTNF-α stimulated activation of protein tyrosine kinases (PTKs) in PAEC in a dose-dependent manner. Flow cytometric analysis showed that genistein inhibited the upregulation of E-selectin and VCAM-1 by rhTNF-α. These results suggest that PTKs may regulate the expression of E-selectin and VCAM-1 on PAEC and the adherence of PBMo and PBNK induced by rhTNF-α. Moreover, dietary genistein, used as an adhesion antagonist, may contribute to managing the cell-mediated rejection in the clinical application.

  1. Dynamic force spectroscopy to probe adhesion strength of living cells

    OpenAIRE

    Prechtel, K.; Bausch, A. R.; Marchi-Artzner, V.; Kantlehner, M.; Kessler, H; Merkel, R

    2002-01-01

    We studied the mechanical strength of the adhesion of living cells to model membranes. The latter contained a RGD lipopeptide which is a high affinity binding site for a cell adhesion molecule (integrin alpha(V)beta(3)). Cells adhered specifically to the vesicles. We used micropipette aspiration for breaking this adhesion with well defined forces. Systematic variation of the rate of force application revealed pronounced kinetic effects. The dependence of the detachment forces on the loading r...

  2. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  3. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca

    Directory of Open Access Journals (Sweden)

    Stella R. Zamuner

    2002-01-01

    Full Text Available It has been shown that Bothrops jararaca venom (BjV induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1, LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1 and platelet endothelial cell adhesion molecule-1 (PECAM-1 on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-α, interleukin (IL-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 μg/kg, intraperitoneal injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB4, TXA2, IL-6 and TNF-α were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study.

  4. Dynamic Regulation of Activated Leukocyte Cell Adhesion Molecule–mediated Homotypic Cell Adhesion through the Actin CytoskeletonV⃞

    OpenAIRE

    Nelissen, Judith M. D. T.; Peters, Inge M.; de Grooth, Bart G.; Van Kooyk, Yvette; Figdor, Carl G.

    2000-01-01

    Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM–ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM–ALCAM interactions....

  5. The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a CD200-dependent manner

    DEFF Research Database (Denmark)

    Cox, F F; Berezin, V; Bock, E;

    2013-01-01

    200-deficient mice and preincubated with FGL prior to stimulation with lipopolysaccharide (LPS). Cells were assessed for mRNA expression of markers of microglial activation, CD11b, CD40 and intercellular adhesion molecule 1 (ICAM-1) and also the inflammatory cytokines, interleukin (IL)-1β, IL-6...

  6. 严重烧伤后早期大鼠肾脏细胞粘附分子1和白介素6的表达与肾功能损害的相关性研究%Expression of intercellular adhesion molecule 1 and interleukin 6 in the rat's kidney after severe burn and its relation with renal injury

    Institute of Scientific and Technical Information of China (English)

    刘开军; 魏敏; 刘杰; 鲁华玉; 王德文; 张燕

    2002-01-01

    Objective To clarify the mechanism and provide the basis for prevention and treatment of the early injuries of kidney after severe burn in rats.We observed the expression of intercellular adhesion molecule 1 and interleukin 6 and the early pathological changes in different time.Method Early pathological changes in the kidney were observed by LM and EM.The expression of ICAM 1 were observed by immunohistochemistry,in situ hybridization.The expression of IL 6 was also observed.Result From 5 min to 72 h after burn,the early changes in the kidney included edema,hemorrhage, and congestion,injury of capillary epithelium cells.2ICAM 1 and IL 6 were higher in the kidney 30 min after burn,and from 2 h to 24 h,they were strongest positive,but on 72 h,they were negative.Conclusion ICAM-1 and IL 6 may play important roles in mechanisms of kidney injury,and the major target cells may be the endothelium cells.

  7. Dynamic monitoring of changes in endothelial cell-substrate adhesiveness during leukocyte adhesion by microelectrical impedance assay

    Institute of Scientific and Technical Information of China (English)

    Yakun Ge; Tongle Deng; Xiaoxiang Zheng

    2009-01-01

    Adhesion of leukocytes to endothelial cells in inflammation processes leads to changes of endothelial cell-substrate adhesiveness, and understanding of such changes will provide us with important information of inflammation processes. In this study, we used a non-invasive biosensor system referred to as real-time cell electronic sensor (RT-CES) system to monitor the changes in endothelial cell-substrate adhesiveness induced by human monoblastic cell line U937 cell adhesion in a dynamic and quantitative manner. This assay, which is based on cell-substrate impedance readout, is able to monitor transient changes in cell-substrate adhesiveness as a result of U937 cell adhesion. The U937 cell adhesion to endothelial cells was induced by lipopolysaccharide (LPS) in a dose-dependent manner. Although the number of adherent U937 cells to the endothelial cells was verified by a standard assay, the adhesiveness of endothelial cells after addition of U937 cells was monitored by the RT-CES system. Furthermore, focal adhesion kinase protein decrease and F-actin rearrangement in endothelial cells were observed after addition of U937 cells. Our results indicated that the adhesion of U937 cells to LPS-treated endothelial cells reduced the cell adhesiveness to the substrate, and such reduction might facilitate infiltration of leukocytes.

  8. IL-1β enhances cell adhesion to degraded fibronectin

    OpenAIRE

    Rajshankar, Dhaarmini; Downey, Gregory P.; McCulloch, Christopher A.

    2012-01-01

    IL-1β is a prominent proinflammatory cytokine that mediates degradation of extracellular matrix proteins through increased expression of matrix metalloproteinases, which involves a signaling pathway in adherent cells that is restricted by focal adhesions. Currently, the mechanism by which IL-1β affects cell adhesion to matrix proteins is not defined, and it is not known whether degraded matrix proteins affect IL-1β signaling. We examined adhesion-related IL-1β signaling in fibroblasts attachi...

  9. Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia.

    Science.gov (United States)

    Segal, Dagan; Dhanyasi, Nagaraju; Schejter, Eyal D; Shilo, Ben-Zion

    2016-08-01

    Indirect flight muscles (IFMs) in Drosophila are generated during pupariation by fusion of hundreds of myoblasts with larval muscle templates (myotubes). Live observation of these muscles during the fusion process revealed multiple long actin-based protrusions that emanate from the myotube surface and require Enabled and IRSp53 for their generation and maintenance. Fusion is blocked when formation of these filopodia is compromised. While filopodia are not required for the signaling process underlying critical myoblast cell-fate changes prior to fusion, myotube-myoblast adhesion appears to be filopodia dependent. Without filopodia, close apposition between the cell membranes is not achieved, the cell-adhesion molecule Duf is not recruited to the myotube surface, and adhesion-dependent actin foci do not form. We therefore propose that the filopodia are necessary to prime the heterotypic adhesion process between the two cell types, possibly by recruiting the cell-adhesion molecule Sns to discrete patches on the myoblast cell surface.

  10. Lauric acid abolishes interferon-gamma (IFN-γ-induction of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression in human macrophages

    Directory of Open Access Journals (Sweden)

    Wei-Siong Lim

    2015-09-01

    Conclusions: This study successfully proved that lauric acid was able to antagonize the up-regulatory effect of IFN-γ on ICAM-1 and VCAM-1 expressions in THP-1 macrophages. This indicates that lauric acid may be an anti-inflammatory therapeutic and prophylaxis agent for atherosclerosis.

  11. Adenovirus viral interleukin-10 inhibits adhesion molecule expressions induced by hypoxia/reoxygenation in cerebrovascular endothelial cells1

    Institute of Scientific and Technical Information of China (English)

    Hui KANG; Peng-yuan YANG; Yao-cheng RUI

    2008-01-01

    Aim: To investigate the effects of recombinant adenovirus encoding viral interleukin-10 (vIL-10), a potent anti-inflammatory cytokine, on adhesion mol-ecule expressions and the adhesion rates of leukocytes to endothelial cells in cerebrovascular endothelial cells injured by hypoxia/reoxygenation (H/R). Methods: A recombinant adenovirus expressing vIL-10 (Ad/vIL-10 (or the green fluorescent protein (Ad/GFP) gene was constructed. A cerebrovascular endothe-lial cell line bend.3 was pretreated with a different multiplicity of infection (MOI) of Ad/vIL-10 or Ad/GFP and then exposed to hypoxia for 9 h followed by reoxygenation for 12 h. The culture supernatants were tested for the expression of vIL-10 and endogenous murine IL-10 (mIL-10) by ELISA. The effects of Ad/vIL-10 on monocyte-endothelial cell adhesion were represented as the adhesion rate. Subsequently, the expressions of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1(VCAM-1) in the endothelial cells after treat-ment with Ad/vIL-10 and H/R were analyzed by Western blotting and real-time PCR. Results: vIL-10 was expressed in cultured bEnd.3 after Ad/vIL-10 transfec-tion and was significantly increased by H/R. Ad/vIL-10 or Ad/GFP did not affect the mlL-10 level. H/R increased the mIL-10 expression, but insignificantly. Mono-cyte-endothelial cell adhesion induced by H/R was significantly inhibited by pretreatment with Ad/vIL-10 (MOI: 80). ICAM-I, and VCAM-1 in bEnd.3 and were significantly increased after H/R, while pretreatment with Ad/vIL-10 (MOI: 80) significantly inhibited their expressions. Ad/GFP did not markedly affect mono-cyte-endothelial adhesion and the expressions of ICAM-1 and VCAM-1 induced by H/R. Conclusion: Ad/vIL-10 significantly inhibits the upregulation of endot-helial adhesion molecule expressions and the increase of adhesion of monocytes-endothelial cells induced by H/R, indicating that vIL-10 gene transfer is of far-reaching significance in the therapy of

  12. Dynamic cell adhesion and migration on nanoscale grooved substrates.

    Science.gov (United States)

    Lamers, E; te Riet, J; Domanski, M; Luttge, R; Figdor, C G; Gardeniers, J G E; Walboomers, X F; Jansen, J A

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to initiate and increase cell locomotion and coverage with cells, and thus achieve an enhanced wound healing response around an implantable material. Therefore, the aim of this study was to evaluate how MC3T3-E1 osteoblast initial adhesion and directional migration are influenced by nanogrooves with pitches ranging from 150 nm up to 1000 nm. In this study, we used a multi-patterned substrate with five different groove patterns and a smooth area with either a concentric or radial orientation. Initial cell adhesion measurements after 10 s were performed using atomic force spectroscopy-assisted single-cell force spectroscopy, and demonstrated that nascent cell adhesion was highly induced by a 600 nm pitch and reduced by a 150 nm pitch. Addition of RGD peptide significantly reduced adhesion, indicating that integrins and cell adhesive proteins (e.g. fibronectin or vitronectin) are key factors in specific cell adhesion on nanogrooved substrates. Also, cell migration was highly dependent on the groove pitch; the highest directional migration parallel to the grooves was observed on a 600 nm pitch, whereas a 150 nm pitch restrained directional cell migration. From this study, we conclude that grooves with a pitch of 600 nm may be favourable to enhance fast wound closure, thereby promoting tissue regeneration.

  13. Gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells during sepsis

    Institute of Scientific and Technical Information of China (English)

    吴荣谦; 徐迎新; 宋旭华; 孟宪钧

    2002-01-01

    To study the gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells during sepsis in mice. Methods: Male mice were subjected to cecal ligation and puncture (CLP) and microvascular endothelial cells in pulmonary and hepatic tissues were harvested at 3 hours (early sepsis) and 12 hours (late sepsis) after CLP, respectively. Gene expression of the adhesion molecules was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Simultaneously, the alterations of myeloperoxidase (MPO) activity in pulmonary and hepatic tissues were also examined. Results: E-selectin mRNA levels markedly increased at 3 hours after CLP in both pulmonary and hepatic microvascular endothelial cells, then they returned to the normal level at 12 hours after CLP. Increases in intercellular adhesion molecule-1 (ICAM-1) mRNA levels were found at 3 hours after CLP in both pulmonary and hepatic microvascular endothelial cells, and these levels became higher at 12 hours after CLP. Adhesion molecule-1 (VCAM-1) mRNA expression of vascular cells also increased significantly at 3 hours and 12 hours after CLP in both pulmonary and hepatic microvascular endothelial cells. The level of VCAM-1 mRNA in hepatic microvascular endothelial cells was higher at 3 hours than that at 12 hours after CLP, while the level of VCAM-1 mRNA in pulmonary microvascular endothelial cells was higher at 12 hours than that at 3 hours after CLP. The MPO activity in pulmonary and hepatic tissues increased at 3 hours after CLP, compared with that of the sham group. They both declined significantly at 12 hours after CLP, but they were still higher than that of the sham group. Conclusions: The up-regulation of the gene expression of adhesion molecules in pulmonary and hepatic microvascular endothelial cells is an important step for the migration and accumulation of leukocytes at the site of inflammation, which plays a critical role in organ damage during sepsis. And the contribution

  14. Cell adhesion molecules in the central nervous system

    OpenAIRE

    Togashi, Hideru; Sakisaka, Toshiaki; Takai, Yoshimi

    2009-01-01

    Cell-cell adhesion molecules play key roles at the intercellular junctions of a wide variety of cells, including interneuronal synapses and neuron-glia contacts. Functional studies suggest that adhesion molecules are implicated in many aspects of neural network formation, such as axon-guidance, synapse formation, regulation of synaptic structure and astrocyte-synapse contacts. Some basic cell biological aspects of the assembly of junctional complexes of neurons and glial cells resemble those ...

  15. Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin.

    OpenAIRE

    Hornebeck, W; Tixier, J M; L. Robert

    1986-01-01

    The addition of highly purified elastic fibers to confluent human skin fibroblast or porcine aorta smooth muscle cell cultures resulted in a time-dependent, strong adhesion of the fibrils to the cell surface. The kinetics of adhesion was studied by video/time-lapse cinematography. After a 0.5-1 hr lag period, adhesion progressed to a maximum amount in 3-6 hr in the described conditions. Adhesion is strongly accelerated by the prior addition of soluble elastin peptides (kappa-elastin) to the c...

  16. Cell Adhesion to Plasma-Coated PVC

    Directory of Open Access Journals (Sweden)

    Elidiane C. Rangel

    2014-01-01

    Full Text Available To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  17. Inhibition of tumor necrosis factor-α-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    International Nuclear Information System (INIS)

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNFα-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited the TNFα-induced production of intracellular reactive oxygen species (ROS) and activation of NF-κB by preventing IκB degradation and inhibiting IκB kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-κB activation, and cell adhesion molecule expression in endothelial cells

  18. Changes of serum soluble intercellular adhesion molecule-1 in children patients with bronchial asthma by Pediatric Cough and Asthma Relieving Gel%小儿止咳平喘露的平喘作用及其对外周血可溶性细胞黏附分子-1的影响

    Institute of Scientific and Technical Information of China (English)

    宋慧珠

    2013-01-01

    Objective To investigate the antiasthmatic effect of Pediatric Cough and Asthma Relieving Gel and its effect on peripheral blood soluble cell adhesion molecule-1. Methods 236 children with cough and asthma were selected in the hospital from October 2010 to March 2012,who were divided into two groups randomly. 118 children used cough syrup in the treatment as the control group. 118 children used Pediatric Cough and Asthma Relieving Gel in the treatment as the observation group. All children underwent observation of cough induced by histamine,observation of cough induced by citric acid,sputum eosinophil cells count,detection of peripheral blood soluble cell adhesion molecule-1. Clinical indexes were compared between two groups. Results Cough latency induced by histamine in the observation group [(81.4±16.5)s] was significantly longer than that in the control group [(52.7±12.0)s]. Cough latency induced by citric acid in the observation group [(48.3±12.6)s] was significantly longer than that in the control group [(30.1±9.2)s]. Sputum eosinophil cells count in the observation group [(1.3±0.6)x106/mL] was significantly lower than that in the control group [(2.1±1.0)×106/mL]. Peripheral blood soluble cell adhesion molecule-1 in the observation group [(42.7±13.8)μg/L] was significantly lower than that in the control group [(59.2±17.5) μg/L]. The difference was statistically significant (P < 0.05). Conclusion Pediatric Cough and Asthma Relieving Gel can obvious relieve cough and asthma,which not only can reduce the induced sputum in children with eosinophilic,but also can effectively reduce level of peripheral blood soluble cell adhesion molecule-1 of children.%目的 探讨小儿止咳平喘露的平喘作用及其对外周血可溶性细胞黏附分子-1的影响.方法选取本院2010年10月~2012年3月收治的咳喘患儿236例,随机分为两组,采用小儿止咳糖浆治疗患儿118例为对照组,采用小儿止咳平喘露治疗患儿118例为观察

  19. Differential adhesion of tumor cells to capillary endothelial cells in vitro.

    OpenAIRE

    Alby, L; Auerbach, R

    1984-01-01

    Adhesion studies were carried out to determine the relative ability of glioma cells and ovary-derived teratoma cells to adhere to endothelial cells obtained from mouse brain capillaries (designated MBE cell line) or mouse ovaries (designated MOE cell line). The teratoma cells showed preferential adhesion to MOE cells, whereas the glioma cells showed preferential adhesion to the MBE cell line. In contrast, the glioma and teratoma cells adhered equally to L929 and 3T3 fibroblasts. A testicular ...

  20. Laminin and Fibronectin in Cell Adhesion: Enhanced Adhesion of Cells from Regenerating Liver to Laminin

    Science.gov (United States)

    Carlsson, Roland; Engvall, Eva; Freeman, Aaron; Ruoslahti, Erkki

    1981-04-01

    Laminin, a basement membrane glycoprotein isolated from cultures of mouse endodermal cells and rat yolk sac carcinoma cells, promoted the attachment of liver cells obtained from regenerating mouse liver. Cells from normal mouse liver attached readily to dishes coated with fibronectin but attached poorly to surfaces coated with laminin. Both proteins efficiently promoted the attachment of cells from livers undergoing regeneration. After regeneration, the attachment to laminin returned to the low levels found in animals not subjected to partial hepatectomy but attachment to fibronectin remained high. Immunofluorescent staining of sections of normal liver with antilaminin revealed the presence of laminin in or adjacent to the walls of the bile ducts and blood vessels. After induction of regeneration by partial hepatectomy, increased amounts of laminin appeared in the sinusoidal areas. After carbon tetrachloride poisoning, staining for laminin was especially pronounced in the necrotic and postnecrotic areas around the central veins. This additional expression of laminin was transient. It reached a maximum around 5-6 days after the injury and then gradually disappeared. These findings show that laminin is an adhesive protein. The increase of laminin in regenerating liver and the adhesiveness of cells from such livers to laminin suggest a role for laminin in the maintenance of a proper tissue organization during liver regeneration.

  1. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  2. Simulation of Cell Adhesion using a Particle Transport Model

    Science.gov (United States)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  3. Regulation of embryonic cell adhesion by the prion protein.

    Directory of Open Access Journals (Sweden)

    Edward Málaga-Trillo

    2009-03-01

    Full Text Available Prion proteins (PrPs are key players in fatal neurodegenerative disorders, yet their physiological functions remain unclear, as PrP knockout mice develop rather normally. We report a strong PrP loss-of-function phenotype in zebrafish embryos, characterized by the loss of embryonic cell adhesion and arrested gastrulation. Zebrafish and mouse PrP mRNAs can partially rescue this knockdown phenotype, indicating conserved PrP functions. Using zebrafish, mouse, and Drosophila cells, we show that PrP: (1 mediates Ca(+2-independent homophilic cell adhesion and signaling; and (2 modulates Ca(+2-dependent cell adhesion by regulating the delivery of E-cadherin to the plasma membrane. In vivo time-lapse analyses reveal that the arrested gastrulation in PrP knockdown embryos is due to deficient morphogenetic cell movements, which rely on E-cadherin-based adhesion. Cell-transplantation experiments indicate that the regulation of embryonic cell adhesion by PrP is cell-autonomous. Moreover, we find that the local accumulation of PrP at cell contact sites is concomitant with the activation of Src-related kinases, the recruitment of reggie/flotillin microdomains, and the reorganization of the actin cytoskeleton, consistent with a role of PrP in the modulation of cell adhesion via signaling. Altogether, our data uncover evolutionarily conserved roles of PrP in cell communication, which ultimately impinge on the stability of adherens cell junctions during embryonic development.

  4. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK and total and activated focal adhesion kinase (FAK were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines may depend upon the cancer cell type.

  5. Adhesive Micropatterns for Cells: A Microcontact Printing Protocol

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Manuel Théry and Matthieu Piel Corresponding authors ([](); []()) ### INTRODUCTION This protocol describes a simple, fast, and efficient method for making adhesive micropatterns that can be used to control individual cell shape and adhesion patterns. It is based on the use of an elastomeric stamp containing microfeatures to print proteins on the substrate of choice. The process can be subdiv...

  6. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    of contact. Staphylococcus xylosus DSM 20266 and Staphylococcus epidermidis DSM 20044 showed much higher adhesion forces than Pseudomonas fluorescens AH1, but bond strengthening by P. aeruginosa (2 s) was faster than for the staphylococci (10 s) . Escherichia coli DSM 429, which was the only strain unable...... to form biofilm, showed almost no adhesion to any surface. The differences between staphylococci and P. fluorescens in adhesion pattern reflects their differences in the composition of extracellular adhesins. Both adhesion force and rupture length were significantly smaller on mica compared to glass....... Staphylococci adhere stronger on fresh glass than on hydrophilic glass, while the weaker adhesion by P. fluorescens was similar on both types of glass. These results confirmed the importance of surface hydrophobicity in bacterial adhesion. This study has demonstrated that single-cell force spectroscopy allows...

  7. Cell Adhesion and Its Endocytic Regulation in Cell Migration during Neural Development and Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Takeshi Kawauchi

    2012-04-01

    Full Text Available Cell migration is a crucial event for tissue organization during development, and its dysregulation leads to several diseases, including cancer. Cells exhibit various types of migration, such as single mesenchymal or amoeboid migration, collective migration and scaffold cell-dependent migration. The migration properties are partly dictated by cell adhesion and its endocytic regulation. While an epithelial-mesenchymal transition (EMT-mediated mesenchymal cell migration requires the endocytic recycling of integrin-mediated adhesions after the disruption of cell-cell adhesions, an amoeboid migration is not dependent on any adhesions to extracellular matrix (ECM or neighboring cells. In contrast, a collective migration is mediated by both cell-cell and cell-ECM adhesions, and a scaffold cell-dependent migration is regulated by the endocytosis and recycling of cell-cell adhesion molecules. Although some invasive carcinoma cells exhibit an EMT-mediated mesenchymal or amoeboid migration, other cancer cells are known to maintain cadherin-based cell-cell adhesions and epithelial morphology during metastasis. On the other hand, a scaffold cell-dependent migration is mainly utilized by migrating neurons in normal developing brains. This review will summarize the structures of cell adhesions, including adherens junctions and focal adhesions, and discuss the regulatory mechanisms for the dynamic behavior of cell adhesions by endocytic pathways in cell migration in physiological and pathological conditions, focusing particularly on neural development and cancer metastasis.

  8. Cell adhesion molecules during odontogenesis and tooth-related diseases

    OpenAIRE

    Heymann, Robert

    2002-01-01

    Cell adhesion molecules play essential roles in the development and disease of tooth and oral structures, as well as in the maintenance of adult tissue structure/function. It has been shown that different types of cell adhesion molecules (CAMs) play an important part in craniofacial development when ectomesenchymal cells migrate from the neural list to the primitive oral cavity, giving rise to the palatal processes and tooth germs. The role of CAMs in craniofacial developmen...

  9. Evidence for heterophilic adhesion of embryonic retinal cells and neuroblastoma cells to substratum-adsorbed NCAM

    OpenAIRE

    1992-01-01

    The adhesion of embryonic chicken retinal cells and mouse N2A neuroblastoma cells to purified embryonic chicken retinal NCAM adsorbed on a solid substratum was examined using a quantitative centrifugal adhesion assay. Both cell types adhered to NCAM and the adhesion was specifically inhibited by monovalent anti-NCAM antibody fragments. N2A cell adhesion depended on the amount of NCAM applied to the substratum, was cation independent, and was insensitive to treatment with the cytoskeletal pert...

  10. Physics of adhesion and elasticity of biological cells

    Science.gov (United States)

    Safran, S. A.

    2006-03-01

    Forces exerted by adherent cells are important for many physiological processes such as wound healing and tissue formation. By pulling on their environment, cells sense rigidity gradients, boundaries and strains induced by the presence of other cells. Many cell types respond to these signals by actively adjusting the magnitude and direction of the adhesions that connect cells to surfaces or to each other. These adhesions are formed from membrane-bound integrin proteins and other cytoplasmic proteins that form condensed domains that grow in the direction of externally applied or internal, cytoskeletal forces. We present a model for the adsorption of adhesion proteins from the cell interior to the adhesion site and the resulting, force-sensitive anisotropic growth. The theory couples the mechanical forces to the non- linear adsorption dynamics and predicts the growth velocities of the back and front of the adhesion in qualitative agreement with experiment. The adhesion forces generated by a collection of cells in a tissue significantly alter the overall elastic response of the system. We model an ensemble of cells by an extension of the treatment of dielectric response of polar molecules to elastic interactions. By introducing the elastic analogy of the dielectric constant of the medium, we are able to predict the average cell polarization, their orientational order, and the effective material constants.

  11. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    Science.gov (United States)

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  12. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Huiwen [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Mollica, Molly Y.; Lee, Shin Hee [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Wang, Lei [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Velázquez-Martínez, Carlos A., E-mail: velazque@ualberta.ca [Chemistry Section, Laboratory of Comparative Carcinogenesis and Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2N8 (Canada); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States)

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  13. The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Nakamae Toshio

    2010-02-01

    Full Text Available Abstract Background As the strategy for tissue regeneration using mesenchymal stem cells (MSCs for transplantation, it is necessary that MSCs be accumulated and kept in the target area. To accumulate MSCs effectively, we developed a novel technique for a magnetic targeting system with magnetically labeled MSCs and an external magnetic force. In this study, we examined the effect of an external magnetic force on magnetically labeled MSCs in terms of cell adhesion and proliferation. Methods Magnetically labeled MSCs were plated at the bottom of an insert under the influence of an external magnetic force for 1 hour. Then the inserts were turned upside down for between 1 and 24 hours, and the number of MSCs which had fallen from the membrane was counted. The gene expression of MSCs affected magnetic force was analyzed with microarray. In the control group, the same procedure was done without the external magnetic force. Results At 1 hour after the inserts were turned upside down, the average number of fallen MSCs in the magnetic group was significantly smaller than that in the control group, indicating enhanced cell adhesion. At 24 hours, the average number of fallen MSCs in the magnetic group was also significantly smaller than that in control group. In the magnetic group, integrin alpha2, alpha6, beta3 BP, intercellular adhesion molecule-2 (ICAM-2, platelet/endothelial cell adhesion molecule-1 (PECAM-1 were upregulated. At 1, 2 and 3 weeks after incubation, there was no statistical significant difference in the numbers of MSCs in the magnetic group and control group. Conclusions The results indicate that an external magnetic force for 1 hour enhances cell adhesion of MSCs. Moreover, there is no difference in cell proliferation after using an external magnetic force on magnetically labeled MSCs.

  14. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  15. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    Science.gov (United States)

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  16. Adhesion

    Science.gov (United States)

    As the body moves, tissues or organs inside are normally able to shift around each other. This is because these tissues have ... occur if the adhesions cause an organ or body part to: Twist Pull ... unable to move normally The risk of forming adhesions is high ...

  17. The interplay of cell–cell and cell–substrate adhesion in collective cell migration

    OpenAIRE

    Wang, Chenlu; Chowdhury, Sagar; Driscoll, Meghan; Parent, Carole A.; Gupta, S.K.; Losert, Wolfgang

    2014-01-01

    Collective cell migration often involves notable cell–cell and cell–substrate adhesions and highly coordinated motion of touching cells. We focus on the interplay between cell–substrate adhesion and cell–cell adhesion. We show that the loss of cell-surface contact does not significantly alter the dynamic pattern of protrusions and retractions of fast migrating amoeboid cells (Dictyostelium discoideum), but significantly changes their ability to adhere to other cells. Analysis of the dynamics ...

  18. Microtubule Disruption in Keratinocytes Induces Cell-Cell Adhesion through Activation of Endogenous E-Cadherin

    OpenAIRE

    Kee, Sun-Ho; Steinert, Peter M.

    2001-01-01

    The association of the cytoskeleton with the cadherin–catenin complex is essential for strong cell-cell adhesion in epithelial cells. In this study, we have investigated the effect of microtubule organization on cell-cell adhesion in differentiating keratinocytes. When microtubules of normal human epidermal keratinocytes (NHEKs) grown in low calcium media (0.05 mM) were disrupted with nocodazole or colcemid, cell-cell adhesion was induced through relocalization of the ...

  19. Extracellular Protein Interactions Mediated by the Neural Cell Adhesion Molecule, NCAM: Heterophilic Interactions Between NCAM and Cell Adhesion Molecules, Extracellular Matrix Proteins, and Viruses

    DEFF Research Database (Denmark)

    Nielsen, Janne; Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    Cell adhesion molecules (CAMs) mediate cell-to-cell interactions and interactions between cells and the extracellular matrix (ECM). The neural cell adhesion molecule (NCAM), a prototypic member of the immunoglobulin (Ig) superfamily of CAMs, mediates adhesion through homophilic and heterophilic i...

  20. Kidney injury molecule-1 is up-regulated in renal epithelial cells in response to oxalate in vitro and in renal tissues in response to hyperoxaluria in vivo.

    Directory of Open Access Journals (Sweden)

    Lakshmipathi Khandrika

    Full Text Available Oxalate is a metabolic end product excreted by the kidney. Mild increases in urinary oxalate are most commonly associated with Nephrolithiasis. Chronically high levels of urinary oxalate, as seen in patients with primary hyperoxaluria, are driving factor for recurrent renal stones, and ultimately lead to renal failure, calcification of soft tissue and premature death. In previous studies others and we have demonstrated that high levels of oxalate promote injury of renal epithelial cells. However, methods to monitor oxalate induced renal injury are limited. In the present study we evaluated changes in expression of Kidney Injury Molecule-1 (KIM-1 in response to oxalate in human renal cells (HK2 cells in culture and in renal tissue and urine samples in hyperoxaluric animals which mimic in vitro and in vivo models of hyper-oxaluria. Results presented, herein demonstrate that oxalate exposure resulted in increased expression of KIM-1 m RNA as well as protein in HK2 cells. These effects were rapid and concentration dependent. Using in vivo models of hyperoxaluria we observed elevated expression of KIM-1 in renal tissues of hyperoxaluric rats as compared to normal controls. The increase in KIM-1 was both at protein and mRNA level, suggesting transcriptional activation of KIM-1 in response to oxalate exposure. Interestingly, in addition to increased KIM-1 expression, we observed increased levels of the ectodomain of KIM-1 in urine collected from hyperoxaluric rats. To the best of our knowledge our studies are the first direct demonstration of regulation of KIM-1 in response to oxalate exposure in renal epithelial cells in vitro and in vivo. Our results suggest that detection of KIM-1 over-expression and measurement of the ectodomain of KIM-1 in urine may hold promise as a marker to monitor oxalate nephrotoxicity in hyperoxaluria.

  1. Dynamic cell adhesion and migration on nanoscale grooved substrates

    Directory of Open Access Journals (Sweden)

    E Lamers

    2012-03-01

    Full Text Available Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to initiate and increase cell locomotion and coverage with cells, and thus achieve an enhanced wound healing response around an implantable material. Therefore, the aim of this study was to evaluate how MC3T3-E1 osteoblast initial adhesion and directional migration are influenced by nanogrooves with pitches ranging from 150 nm up to 1000 nm. In this study, we used a multi-patterned substrate with five different groove patterns and a smooth area with either a concentric or radial orientation. Initial cell adhesion measurements after 10 s were performed using atomic force spectroscopy-assisted single-cell force spectroscopy, and demonstrated that nascent cell adhesion was highly induced by a 600 nm pitch and reduced by a 150 nm pitch. Addition of RGD peptide significantly reduced adhesion, indicating that integrins and cell adhesive proteins (e.g. fibronectin or vitronectin are key factors in specific cell adhesion on nanogrooved substrates. Also, cell migration was highly dependent on the groove pitch; the highest directional migration parallel to the grooves was observed on a 600 nm pitch, whereas a 150 nm pitch restrained directional cell migration. From this study, we conclude that grooves with a pitch of 600 nm may be favourable to enhance fast wound closure, thereby promoting tissue regeneration.

  2. Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line.

    OpenAIRE

    Mintz, K. P.; Fives-Taylor, P M

    1994-01-01

    Two quantitative, rapid assays were developed to study the adhesion of Actinobacillus actinomycetemcomitans, an oral bacterium associated with periodontal disease, to human epithelial cells. The human oral carcinoma cell line KB was grown in microtiter plates, and adherent bacteria were detected by an enzyme-linked immunosorbent assay with purified anti-A. actinomycetemcomitans serum and horseradish peroxidase-conjugated secondary antibody or [3H]thymidine-labeled bacteria. Adhesion was found...

  3. Cell Adhesion on Polycaprolactone Modified by Plasma Treatment

    OpenAIRE

    Nina Recek; Matic Resnik; Helena Motaln; Tamara Lah-Turnšek; Robin Augustine; Nandakumar Kalarikkal; Sabu Thomas; Miran Mozetič

    2016-01-01

    We have investigated the influence of various plasma treatments of electrospun polycaprolactone (PCL) scaffolds on the adhesion and proliferation of human umbilical endothelial cells (HUVEC). The PCL scaffolds were treated in plasmas created in O2, NH3 or SO2 gas at identical conditions. Surface functionalization of plasma-treated samples was determined using X-ray photoelectron spectroscopy. Cell adhesion and morphology were investigated by scanning electron microscopy and the influence of p...

  4. Why do receptor-ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    Science.gov (United States)

    Gao, Zhiwen; Gao, Yanfei

    2016-10-01

    Cell adhesion often exhibits the clustering of the receptor-ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation for the clustering/assembling of the receptor-ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor-ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.

  5. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xia, E-mail: zhongxia1977@126.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Li, Xiaonan; Liu, Fuli; Tan, Hui [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Shang, Deya, E-mail: wenhuashenghuo1@163.com [Department of Emergency, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  6. Sargaquinoic Acid Inhibits TNF-α-Induced NF-κB Signaling, Thereby Contributing to Decreased Monocyte Adhesion to Human Umbilical Vein Endothelial Cells (HUVECs).

    Science.gov (United States)

    Gwon, Wi-Gyeong; Lee, Bonggi; Joung, Eun-Ji; Choi, Min-Woo; Yoon, Nayoung; Shin, Taisun; Oh, Chul-Woong; Kim, Hyeung-Rak

    2015-10-21

    Sargaquinoic acid (SQA) has been known for its antioxidant and anti-inflammatory properties. This study investigated the effects of SQA isolated from Sargassum serratifolium on the inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). SQA decreased the expression of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as chemotactic cytokines such as interleukin-8 and monocyte chemoattractant protein-1 in TNF-α-treated HUVECs. As a result, SQA prevented monocyte adhesion to TNF-α-induced adhesion. SQA also inhibited TNF-α-induced nuclear factor kappa B (NF-κB) translocation into the nucleus by preventing proteolytic degradation of inhibitor κB-α. Overall, SQA protects against TNF-α-induced vascular inflammation through inhibition of the NF-κB pathway in HUVECs. These data suggest that SQA may be used as a therapeutic agent for vascular inflammatory diseases such as atherosclerosis. PMID:26437568

  7. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  8. Identification of Peptides Inhibiting Adhesion of Monocytes to the Injured Vascular Endothelial Cells through Phage-displaying Screening

    Institute of Scientific and Technical Information of China (English)

    Yu GUO; Jia ZHANG; Ji-Cheng WANG; Feng-Xiang YAN; Bing-Yang ZHU; Hong-Lin HUANG; Duan-Fang LIAO

    2005-01-01

    Using oxidized low-density lipoprotein (LDL)-injured vascular endothelial cells (ECs) as target cells, peptides specifically binding to the injured ECs were screened from a phage-displaying peptide library by using the whole-cell screening technique after three cycles of the "adsorption-elution-amplification"procedure. Positive phage clones were identified by ELISA, and the inserted amino acid sequences in the displaying peptides were deduced from confirmation with DNA sequencing. The adhesion rate of ECs to monocytes was evaluated by cell counting. The activity of endothelial nitric oxide synthase (eNOS), and the expression levels of caveolin- 1 and intercellular adhesion molecule- 1 (ICAM- 1) were determined by Western blotting. Six positive clones specifically binding to injured ECV304 endothelial cells were selected from fourteen clones. Interestingly, four phages had peptides with tandem leucine, and two of these even shared an identical sequence. Functional analysis demonstrated that the YCPRYVRRKLENELLVL peptide shared by two clones inhibited the expression of ICAM-1, increased nitric oxide concentration in the culture media, and upregulated the expression of caveolin-1 and eNOS. As a result, the adhesion rate of monocytes to ECV304 cells was significantly reduced by 12.1%. These data suggest that the anti-adhesion effect of these novel peptides is related to the regulation of the caveolin-1/nitric oxide signal transduction pathway, and could be of use in potential therapeutic agents against certain cardiovascular diseases initiated by vascular endothelial cell damage.

  9. Loss of cell-cell and cell-matrix adhesion molecules in colorectal cancer.

    OpenAIRE

    Nigam, A. K.; Savage, F. J.; Boulos, P. B.; Stamp, G W; D. Liu; Pignatelli, M.

    1993-01-01

    Adhesion molecules are thought to play a vital role in the induction and maintenance of tissue differentiation and their loss or down-regulation has been implicated in the neoplastic process. Recent studies have shown that the morphoregulatory activities are a consequence of interactive processes between several cell adhesion molecules rather than the function of a single molecule. Therefore, we have investigated a panel of adhesion molecules including members of the integrin, cadherin and im...

  10. Quantifying Cell Adhesion through Impingement of a Controlled Microjet

    NARCIS (Netherlands)

    Visser, Claas Willem; Gielen, Marise V.; Hao, Zhenxia; Gac, Le Severine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and r

  11. Dynamic Cell Adhesion and Migration on Nanoscale Grooved Substrates

    NARCIS (Netherlands)

    Lamers, E.; Riet, te J.; Domanski, M.; Luttge, R.; Figdor, C.G.; Gardeniers, J.G.E.; Walboomers, X.F.; Jansen, J.A.

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to init

  12. Dynamic cell adhesion and migration on nanoscale grooved substrates.

    NARCIS (Netherlands)

    Lamers, E.; Riet, J. te; Domanski, M.; Luttge, R.; Figdor, C.G.; Gardeniers, J.G.E.; Walboomers, X.F.; Jansen, J.B.M.J.

    2012-01-01

    Organised nanotopography mimicking the natural extracellular matrix can be used to control morphology, cell motility, and differentiation. However, it is still unknown how specific cell types react with specific patterns. Both initial adhesion and preferential cell migration may be important to init

  13. 超声造影联合血清单核细胞趋化蛋白1和细胞黏附分子1检测确定胃癌术前分期%Contrast enhanced ultrasonography with monocyte chemoattractant protein-1 and cellular adhesion molecule-1 detection in preoperative staging of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    张超贤; 秦咏梅; 李光艳

    2016-01-01

    Objective To explore the clinical value of oral ultrasonic contrast agent ultrasonography (OUCAUS) combined with serum monocyte chemoattractant protein-1 (MCP-1) and cell adhesion molecule-1 (CAM-1) measurement in preoperative staging of stomach carcinoma.Methods 800 gastric cancer patients were diagnosed by electric gastroscopy and OUCAUS.The preoperative staging was measured by OUCAUS and compared with pathologic staging,and serum levels of MCP-1 and CAM-1 were measured with ELISA.Results The total accuracy rate of OUCAUS was 79.9% in estimating invasive depth of stomach neoplasm,82.9% in estimating lymphatic metastasis and 88.6% in estimating distant metastasis respectively.The expression levels of MCP-1 and CAM-1 in serum were closely correlated with invasive degree,lymphatic metastasis,distant metastasis and pathologic staging (all P < 0.05).The total accuracy rate of combining OUCAUS and MCP-1,CAM-1 was 93.0 % in estimating invasive depth,93.9% in estimating lymphatic metastasis and 98.6% in estimating distant metastasis respectively.The total accuracy rate of combining OUCAUS and MCP-1,CAM-1 in estimating invasive depth,lymphatic metastasis and distant metastasis was significantly higher than that of by OUCAUS alone.Conclusions MCP-1 and CAM-1 serum levels are closely correlated to pathologic staging of gastric cancer.Combining OUCAUS and MCP-1,CAM-1 can increase the accuracy rate determining invasion and metastasis in gastric cancer.%目的 探讨口服超声助显剂超声检查(oral ultrasonic contrast agent ultrasonography,OUCAUS)联合血清单核细胞趋化蛋白1(monocyte chemoattractant protein-1,MCP-1)和细胞黏附分子1(cell adhesion molecule-1,CAM-1)检测对胃癌术前分期的临床价值.方法 对新乡医学院第一附属医院800例胃癌患者术前行胃镜和OUCAUS检查并进行术前分期,同时用ELISA法检测其术前血清MCP-1和CAM-1水平,并与术后病理分期比较.结果 OUCAUS对胃癌侵犯深度、

  14. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  15. Cell adhesion on ligand gradient substrates: a thermodynamic study.

    Science.gov (United States)

    Sarvestani, Alireza S

    2010-01-01

    Gradient distribution of bio-adhesive proteins can regulate multiple cellular processes, including adhesion, growth, and migration. The ability to control the cell function by changing the surface density of immobilized ligands has become increasingly important in design of implantable medical devices and tissue regenerating scaffolds. Recent techniques in fabrication of substrates with controlled surface properties allow the examination of cell sensitivity to a wide range of adhesion gradients. Understanding the mechanisms by which cells sense and respond to these directional cues warrants a quantitative assessment of macroscopic cellular response to the surface gradients, supported by predictive theoretical models. This article presents a theoretical basis to examine the effect of ligand gradients on cellular adhesion, using an equilibrium thermodynamic model. The model facilitates a systematic investigation of the complex interplay of cell-substrate specific adhesions, non-specific repulsions, and membrane elasticity. This purely mechanistic model predicts a biphasic dependence between the extent of cell spreading and its position across the gradient substrate. PMID:19701944

  16. Osteoblast Adhesion of Breast Cancer Cells with Scanning Acoustic Microscopy

    Science.gov (United States)

    Miyasaka, C.; Mercer, R. R.; Mastro, A. M.

    Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adhere in a different way to the substrate and to each other. To characterize cellular adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days. With mechanical scanning acoustic reflection microscopy, we were able to detect a change in the adhesive condition of the interface between the cell and the substrate, but not with optical microscopy

  17. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    Science.gov (United States)

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry.

  18. Adhesion in the stem cell niche: biological roles and regulation

    OpenAIRE

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhe...

  19. Drug exposure in a metastatic human lung adenocarcinoma cell line gives rise to cells with differing adhesion, proliferation, and gene expression: Implications for cancer chemotherapy.

    Science.gov (United States)

    Li, Huiling; He, Jianxing; Zhong, Nanshan; Hoffman, Robert M

    2015-09-01

    The Am1010 cell line was previously established from a metastatic deposit in an arm muscle from a patient with lung adenocarcinoma who had undergone four cycles of chemotherapy with cisplatin and taxol. Am1010 cells were labeled with red fluorescent protein or green fluorescent protein. A total of eight sublines were isolated following in vitro exposure to cisplatin or taxol. The sublines differed with regard to their adhesion and proliferation properties, with certain sublines exhibiting an increased proliferation rate and/or decreased surface adhesion. Gene expression assays demonstrated that tenascin C; cyclin D1; collagen, type 1, α2; integrin α1; related RAS viral (r‑ras) oncogene homolog 2; platelet‑derived growth factor C; and Src homolog 2 domain containing in the focal adhesion pathway, and intercellular adhesion molecule 1, F11 receptor, claudin 7 and cadherin 1 in the cell adhesion pathway, varied in expression among the sublines. The results of the present study suggested that drug exposure may alter the aggressiveness and metastatic potential of cancer cells, which has important implications for cancer chemotherapy.

  20. Adhesion between peptides/antibodies and breast cancer cells

    Science.gov (United States)

    Meng, J.; Paetzell, E.; Bogorad, A.; Soboyejo, W. O.

    2010-06-01

    Atomic force microscopy (AFM) techniques were used to measure the adhesion forces between the receptors on breast cancer cells specific to human luteinizing hormone-releasing hormone (LHRH) peptides and antibodies specific to the EphA2 receptor. The adhesion forces between LHRH-coated AFM tips and human MDA-MB-231 cells (breast cancer cells) were shown to be about five times greater than those between LHRH-coated AFM tips and normal Hs578Bst breast cells. Similarly, those between EphA2 antibody-coated AFM tips and breast cancer cells were over five times greater than those between EphA2 antibody-coated AFM tips and normal breast cells. The results suggest that AFM can be used for the detection of breast cancer cells in biopsies. The implications of the results are also discussed for the early detection and localized treatment of cancer.

  1. Raman microspectroscopic study of biomolecular structure inside living adhesive cells

    Institute of Scientific and Technical Information of China (English)

    LI; Guang; (李光); YANG; Hongying(杨红英); XU; Yiming; (许以明); ZHANG; Zhiyi(张志义)

    2002-01-01

    Cells adhesion is very important for many physiological processes. Using advanced Raman microspectroscopic technique, we selected T Leukemia cells (Jurkat) as the materials and obtained simultaneously conformation information of various biomolecules inside the whole living cells. By comparing the Raman microspectroscopic spectra of single and adhesive cancer cells, we found for the first time that when cells adhered, the conformation of the biomolecules (DNA, protein, carbohydrates and lipids) inside the cells had different changes: (i) the backbone of double-stranded DNA maintained orderly B-form or modified B-form conformation, whereas the groups of its deoxyribose and bases were modified; (ii) the conformational changes of the main chain and the side chain in the protein were obviously variant. The lines intensity belonging to α-helix andβ-sheet decreased, while that ofβ-turn increased. Tyrosine and tryptophane residues of the protein changed from "buried state" to "exposed state"; the lines intensity of its sulfhydryl group also increased; the conformation of its disulfide bond changed from two kinds to three kinds. These facts suggest that the cells adhesion causes changes in H-bonds organization of the main chain and environment of the side chain in the protein; (iii) the groups of the carbohydrates were also modified simultaneously; (iv) the conformation of the lipids bilayers of the membranes changed obviously; the order parameter for lateral interaction between chains decreased gradually with the increase of number of the adhesive cells. So cells adhesion resulted in an increase in fluidity of the membrane and ion permeability on the membrane.

  2. Cell Adhesion on Polycaprolactone Modified by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2016-01-01

    Full Text Available We have investigated the influence of various plasma treatments of electrospun polycaprolactone (PCL scaffolds on the adhesion and proliferation of human umbilical endothelial cells (HUVEC. The PCL scaffolds were treated in plasmas created in O2, NH3 or SO2 gas at identical conditions. Surface functionalization of plasma-treated samples was determined using X-ray photoelectron spectroscopy. Cell adhesion and morphology were investigated by scanning electron microscopy and the influence of plasma treatment on cell adhesion and viability was evaluated with cell viability assay (MTT assay. The results showed the highest metabolic activity of HUVEC on PCL samples treated with O2 and NH3 plasma. Accordingly, the cells reflected the best adhesion and morphology on O2 and NH3 plasma-treated PCL samples already at 3 h. Moreover, treatment with O2 and NH3 plasma even stimulated endothelial cell proliferation on PCL surfaces by 60% as measured at 24 h, showing significant improvement in endothelialization of this material. Contrarily, SO2 plasma appeared to be less promising in comparison with O2 and NH3 plasma; however, it was still better than without any plasma treatment. Thus, our results importantly contribute to the biocompatibility improvement of the PCL polymer, commonly used for scaffolds in tissue engineering.

  3. Nanoparticle adhesion in proton exchange membrane fuel cell electrodes

    Science.gov (United States)

    He, Qianping; Joy, David C.; Keffer, David J.

    2013-11-01

    Carbon supported platinum (Pt/C) catalyst remains among the most preferable catalyst materials for Proton Exchange Membrane (PEM) fuel cells. However, platinum (Pt) particles suffer from poor durability and encounter electrochemical surface area (ESA) loss under operation with the accompany of Pt nanoparticle coarsening. Several proposed mechanisms have involved the Pt detachment from its carbonate support as an initial step for the deactivation of Pt nanoparticles. In this study, we investigated the detachment mechanism from the nano-adhesion point of view. Classic molecular dynamics simulations are performed on systems contain Pt nanoparticles of different sizes and shapes. A thin Nafion film (1 nm) at different hydration levels is also included in the system to study the environmental effect on nanoparticle adhesion. We found that the adhesion force strengthens as the Pt size goes up. Pt nanoparticles of tetrahedral shape exhibit relatively stronger connection with the carbon substrate due to its unique ‘anchor-like’ structure. Adhesion is enhanced with the introduction of a Nafion. The humidity level in the Nafion film has a rather complicated effect on the strength of nanoparticle adhesion. The binding energies and maximum adhesive forces are reported for all systems studied.

  4. Differential effects of fenofibrate versus atorvastatin on the concentrations of E-selectin and vascular cellular adhesion molecule-1 in patients with type 2 diabetes mellitus and mixed hyperlipoproteinemia: a randomized cross-over trial

    Directory of Open Access Journals (Sweden)

    Otto Carsten

    2003-12-01

    Full Text Available Abstract Background Diabetic dyslipoproteinemia is characterized by hypertriglyceridemia, low HDL-cholesterol and often elevated LDL-cholesterol and is a strong risk factor for atherosclerosis. Adhesion molecule levels are elevated both in hyperlipoproteinemia and diabetes mellitus. It is unclear whether fibrate or statin therapy has more beneficial effects on adhesion molecule concentrations. Methods Atorvastatin (10 mg/d was compared to fenofibrate (200 mg/d each for 6 weeks separated by a 6 week washout period in 11 patients (6 male, 5 female; 61.8 ± 8.2 years; body mass index 29.8 ± 3.1 kg/m2 with type 2 diabetes mellitus (HbA1c 7.3 ± 1.1 % and mixed hyperlipoproteinemia using a randomized, cross-over design. Fasting blood glucose, HbA1c, lipid parameters, E-selectin, ICAM-1, VCAM-1, and fibrinogen concentrations were determined before and after each drug. Results Glucose and HbA1c concentrations remained unchanged during the whole study period. LDL cholesterol was reduced during atorvastatin therapy, triglycerides were lowered more effectively with fenofibrate. Comparison of pre- and postreatment concentrations of E-selectin showed a reduction during atorvastatin (-7 %, p = 0.11 and fenofibrate (-10 %, p Conclusions In addition to the different beneficial effects on lipid metabolism, both drugs appear to lower adhesion molecule plasma concentrations in a different manner in patients with type 2 diabetes and mixed hyperlipoproteinemia. Our observations should be confirmed in a larger cohort of such patients.

  5. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Igor Tsaur; Karen Nelson; Jesco Pfitzenmaier; Axel Haferkamp; Blaheta, Roman A.

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as...

  6. Biomimetic emulsions reveal the effect of homeostatic pressure on cell-cell adhesion

    CERN Document Server

    Pontani, Lea-Laetitia; Viasnoff, Virgile; Brujic, Jasna

    2012-01-01

    Cell-cell contacts in tissues are continuously subject to mechanical forces due to homeostatic pressure and active cytoskeleton dynamics. While much is known about the molecular pathways of adhesion, the role of mechanics is less well understood. To isolate the role of pressure we present a dense packing of functionalized emulsion droplets in which surface interactions are tuned to mimic those of real cells. By visualizing the microstructure in 3D we find that a threshold compression force is necessary to overcome electrostatic repulsion and surface elasticity and establish protein-mediated adhesion. Varying the droplet interaction potential maps out a phase diagram for adhesion as a function of force and salt concentration. Remarkably, fitting the data with our theoretical model predicts binder concentrations in the adhesion areas that are similar to those found in real cells. Moreover, we quantify the adhesion size dependence on the applied force and thus reveal adhesion strengthening with increasing homeos...

  7. Mutant p53 in cell adhesion and motility.

    Science.gov (United States)

    Yeudall, W Andrew; Wrighton, Katharine H; Deb, Sumitra

    2013-01-01

    Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar. PMID:23150443

  8. Physics of cell adhesion: some lessons from cell-mimetic systems

    OpenAIRE

    Sackmann, Erich; Smith, Ana-Sunčana

    2014-01-01

    Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of thes...

  9. Regulation of cell–cell adhesion by the cadherin–catenin complex

    OpenAIRE

    Nelson, W. James

    2008-01-01

    Ca2+-dependent cell–cell adhesion is regulated by the cadherin family of cell adhesion proteins. Cadherins form trans-interactions on opposing cell surfaces which result in weak cell–cell adhesion. Stronger cell–cell adhesion occurs by clustering of cadherins and through changes in the organization of the actin cytoskeleton. Although cadherins were thought to bind directly to the actin cytoskeleton through cytoplasmic proteins, termed α- and β-catenin, recent studies with purified proteins in...

  10. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    OpenAIRE

    Bingmei M Fu; Jinlin Yang; Bin Cai; Jie Fan; Lin Zhang; Min Zeng

    2015-01-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary v...

  11. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion

    Directory of Open Access Journals (Sweden)

    Li Hailing

    2012-06-01

    Full Text Available Abstract Background Previous studies suggested that the RhoA/ROCK pathway may contribute to vascular complications in diabetes. The present study was designed to investigate whether ROCK inhibitor fasudil could prevent high glucose-induced monocyte-endothelial cells adhesion, and whether this was related to fasudil effects on vascular endothelial cell expression of chemotactic factors, vascular cell adhesion molecule-1 (VCAM-1 and monocyte chemoattractant protein-1 (MCP-1. Methods HUVECs were stimulated with high glucose (HG or HG + fasudil in different concentration or different time. Monocyte-endothelial cell adhesion was determined using fluorescence-labeled monocytes. The mRNA and protein expression of VCAM-1 and MCP-1 were measured using real-time PCR and western blot. The protein levels of RhoA, ROCKI and p-MYPT were determined using western blot analysis. ELISA was employed to measure the expression of soluble VCAM-1 and MCP-1 in cell supernatants and human serum samples. Results Fasudil significantly suppressed HG-induced adhesion of THP-1 to HUVECs. Fasudil reduced Rho/ROCK activity (as indicated by lower p-MYPT/MYPT ratio, and prevented HG induced increases in VCAM-1 and MCP-1 mRNA and protein levels. Fasudil also decreased MCP-1 concentration in HUVEC supernatants, but increased sVCAM-1 shedding into the media. In human diabetic subjects, 2 weeks of fasudil treatment significantly decreased serum MCP-1 level from 27.9 ± 10.6 pg/ml to 13.8 ± 7.0 pg/ml (P P  Conclusions Treatment with the Rho/ROCK pathway inhibitor fasudil attenuated HG-induced monocyte-endothelial cell adhesion, possibly by reducing endothelial expression of VCAM-1 and MCP-1. These results suggest inhibition of Rho/ROCK signaling may have therapeutic potential in preventing diabetes associated vascular inflammation and atherogenesis.

  12. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.

    Science.gov (United States)

    Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O

    1998-01-15

    The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation. PMID:9551939

  13. Endoglin regulates mural cell adhesion in the circulatory system.

    Science.gov (United States)

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.

  14. Family with sequence similarity 5, member C (FAM5C increases leukocyte adhesion molecules in vascular endothelial cells: implication in vascular inflammation.

    Directory of Open Access Journals (Sweden)

    Junya Sato

    Full Text Available Identification of the regulators of vascular inflammation is important if we are to understand the molecular mechanisms leading to atherosclerosis and consequent ischemic heart disease, including acute myocardial infarction. Gene polymorphisms in family with sequence similarity 5, member C (FAM5C are associated with an increased risk of acute myocardial infarction, but little is known about the function of this gene product in blood vessels. Here, we report that the regulation of the expression and function of FAM5C in endothelial cells. We show here that FAM5C is expressed in endothelial cells in vitro and in vivo. Immunofluorescence microscopy showed localization of FAM5C in the Golgi in cultured human endothelial cells. Immunohistochemistry on serial sections of human coronary artery showed that FAM5C-positive endothelium expressed intercellular adhesion molecule-1 (ICAM-1 or vascular cell adhesion molecule-1 (VCAM-1. In cultured human endothelial cells, the overexpression of FAM5C increased the reactive oxygen species (ROS production, nuclear factor-κB (NF-κB activity and the expression of ICAM-1, VCAM-1 and E-selectin mRNAs, resulting in enhanced monocyte adhesion. FAM5C was upregulated in response to inflammatory stimuli, such as TNF-α, in an NF-κB- and JNK-dependent manner. Knockdown of FAM5C by small interfering RNA inhibited the increase in the TNF-α-induced production of ROS, NF-κB activity and expression of these leukocyte adhesion molecule mRNAs, resulting in reduced monocyte adhesion. These results suggest that in endothelial cells, when FAM5C is upregulated in response to inflammatory stimuli, it increases the expression of leukocyte adhesion molecules by increasing ROS production and NF-κB activity.

  15. Opiates Upregulate Adhesion Molecule Expression in Brain MicroVascular Endothelial Cells (BMVEC: Implications for Altered Blood Brain Barrier (BBB Permeability

    Directory of Open Access Journals (Sweden)

    Madhavan P.N. Nair

    2006-01-01

    Full Text Available The blood-brain barrier (BBB is an intricate cellular system composed of vascular endothelial cells and perivascular astrocytes that restrict the passage of immunocompetent cells into the central nervous system (CNS. Expression of the adhesion molecules, intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 on brain microvascular endothelial cells (BMVEC and their interaction with human immunodeficiency virus (HIV-1 viral proteins may help enhance viral adhesion and virus-cell fusion resulting in increased infectivity. Additionally, transmigration through the BBB is facilitated by both endothelial and monocyte/macrophage-derived nitric oxide (NO. Dysregulated production of NO by BMVEC due to opiates and HIV-1 viral protein interactions play a pivotal role in brain endothelial injury, resulting in the irreversible loss of BBB integrity, which may lead to enhanced infiltration of virus-carrying cells across the BBB. Opioids act as co-factors in the neuropathogenesis of HIV-1 by facilitating BBB dysfunction however, no studies have been done to investigate the role of opiates alone or in combination with HIV-1 viral proteins on adhesion molecule expression in BMVEC. We hypothesize that opiates such as heroin and morphine in conjunction with the HIV-1 viral protein gp120 increase the expression of adhesion molecules ICAM-1 and VCAM-1 and these effects are mediated via the modulation of NO. Results show that opiates alone and in synergy with gp120 increase both the genotypic and phenotypic expression of ICAM-1 and VCAM-1 by BMVEC, additionally, these opiate induced effects may be the result of increased NO production. These studies will provide a better understanding of how opiate abuse in conjunction with HIV-1 infection facilitates the breakdown of the BBB and exacerbates the neuropathogenesis of HIV-1. Elucidation of the mechanisms of BBB modulation will provide new therapeutic approaches to maintain BBB integrity

  16. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham;

    2009-01-01

    of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...... therapeutic option if a suitable HLA-matched stem-cell donation is available. Reduced-intensity conditioning was particularly safe, and mixed-donor chimerism seems sufficient to prevent significant symptoms, although careful long-term monitoring will be required for these patients....

  17. Cell adhesion defines the topology of endocytosis and signaling.

    Science.gov (United States)

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an "outside-in" mechanism. PMID:24366944

  18. [Adhesive cell interactions in the biology of cancer].

    Science.gov (United States)

    Bocharova, O A

    2002-01-01

    The present review describes a hypothesis for a critical role of cell adhesive interactions in tumorigenesis. Dysregulation of tissue cell-cell interactions initiates first of all local (in the tissue) and then general (in whole body) conditions for tumor growth. Otherwise imbalance of tissue-specific adhesion factor at the very beginning of carcinogenesis is considered to trigger a cascade of pathological reactions responsible for more severe adhesive disorders that are in turn critical for the "totalitarian" behavior of a tumor and its "colonization" of other tissues and organs. Impaired disturbance is likely to be the key mechanism of carcinogenesis since it is significantly associated with the main features of a tumor: tissue proliferation control loss, anaplasia, invasion, metastasis, and immune surveillance deficit. The hypothesis is supported by evolutionary, biological, histological, immunological, and clinical arguments whose combination does not characterize any other known mechanisms of oncogenesis. The concept of adhesiveness opens new possibilities for the diagnosis, prevention, and treatment of tumors and also improves a strategy for designing new drugs.

  19. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation

    OpenAIRE

    Cuff, Carolyn A.; Kothapalli, Devashish; Azonobi, Ijeoma; Chun, Sam; Zhang, Yuanming; Belkin, Richard; Yeh, Christine; Secreto, Anthony; Richard K Assoian; Rader, Daniel J; Puré, Ellen

    2001-01-01

    Atherosclerosis causes most acute coronary syndromes and strokes. The pathogenesis of atherosclerosis includes recruitment of inflammatory cells to the vessel wall and activation of vascular cells. CD44 is an adhesion protein expressed on inflammatory and vascular cells. CD44 supports the adhesion of activated lymphocytes to endothelium and smooth muscle cells. Furthermore, ligation of CD44 induces activation of both inflammatory and vascular cells. To assess the potential contribution of CD4...

  20. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye

    OpenAIRE

    Fetting, Jennifer L.; Spencer, Susan A; Wolff, Tanya

    2009-01-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90° rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echi...

  1. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  2. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  3. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions

    Science.gov (United States)

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.

    2016-01-01

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  4. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Science.gov (United States)

    Nishitani, Wagner Shin; Alencar, Adriano Mesquita; Wang, Yingxiao

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  5. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  6. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  7. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  8. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito;

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that comp......It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  9. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  10. Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer Property to Enhance Cell-Selective Adhesion

    Directory of Open Access Journals (Sweden)

    Rio Kurimoto

    2016-01-01

    Full Text Available Although surface immobilization of medical devices with bioactive molecules is one of the most widely used strategies to improve biocompatibility, the physicochemical properties of the biomaterials significantly impact the activity of the immobilized molecules. Herein we investigate the combinational effects of cell-selective biomolecules and the hydrophobicity/hydrophilicity of the polymeric substrate on selective adhesion of endothelial cells (ECs, fibroblasts (FBs, and smooth muscle cells (SMCs. To control the polymeric substrate, biomolecules are immobilized on thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (poly(NIPAAm-co-CIPAAm-grafted glass surfaces. By switching the molecular conformation of the biomolecule-immobilized polymers, the cell-selective adhesion performances are evaluated. In case of RGDS (Arg-Gly-Asp-Ser peptide-immobilized surfaces, all cell types adhere well regardless of the surface hydrophobicity. On the other hand, a tri-Arg-immobilized surface exhibits FB-selectivity when the surface is hydrophilic. Additionally, a tri-Ile-immobilized surface exhibits EC-selective cell adhesion when the surface is hydrophobic. We believe that the proposed concept, which is used to investigate the biomolecule-immobilized surface combination, is important to produce new biomaterials, which are highly demanded for medical implants and tissue engineering.

  11. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    Science.gov (United States)

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-01-01

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis. PMID:26393541

  12. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chin-Feng Hsuan

    2015-09-01

    Full Text Available Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut, luteolin-7-glucoside (lut-7-g, and oleanolic acid (OA on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs. The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB, an indicator of the activation of nuclear factor-kB (NF-kB. In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis.

  13. ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration.

    Science.gov (United States)

    Liu, Guoquan; Place, Aaron T; Chen, Zhenlong; Brovkovych, Viktor M; Vogel, Stephen M; Muller, William A; Skidgel, Randal A; Malik, Asrar B; Minshall, Richard D

    2012-08-30

    Polymorphonuclear neutrophil (PMN) extravasation requires selectin-mediated tethering, intercellular adhesion molecule-1 (ICAM-1)-dependent firm adhesion, and platelet/endothelial cell adhesion molecule 1 (PECAM-1)-mediated transendothelial migration. An important unanswered question is whether ICAM-1-activated signaling contributes to PMN transmigration mediated by PECAM-1. We tested this concept and the roles of endothelial nitric oxide synthase (eNOS) and Src activated by PMN ligation of ICAM-1 in mediating PECAM-1-dependent PMN transmigration. We observed that lung PMN infiltration in vivo induced in carrageenan-injected WT mice was significantly reduced in ICAM-1(-/-) and eNOS(-/-) mice. Crosslinking WT mouse ICAM-1 expressed in human endothelial cells (ECs), but not the phospho-defective Tyr(518)Phe ICAM-1 mutant, induced SHP-2-dependent Src Tyr530 dephosphorylation that resulted in Src activation. ICAM-1 activation also stimulated phosphorylation of Akt (p-Ser473) and eNOS (p-Ser1177), thereby increasing NO production. PMN migration across EC monolayers was abolished in cells expressing the Tyr(518)Phe ICAM-1 mutant or by pretreatment with either the Src inhibitor PP2 or eNOS inhibitor L-NAME. Importantly, phospho-ICAM-1 induction of Src signaling induced PECAM-1 Tyr686 phosphorylation and increased EC surface anti-PECAM-1 mAb-binding activity. These results collectively show that ICAM-1-activated Src and eNOS signaling sequentially induce PECAM-1-mediated PMN transendothelial migration. Both Src and eNOS inhibition may be important therapeutic targets to prevent or limit vascular inflammation. PMID:22806890

  14. The adhesion molecule PECAM-1 enhances the TGFβ-mediated inhibition of T cell function

    Science.gov (United States)

    Newman, Debra K.; Fu, Guoping; Adams, Tamara; Cui, Weiguo; Arumugam, Vidhyalakshmi; Bluemn, Theresa; Riese, Matthew J.

    2016-01-01

    Transforming growth factor-β (TGF-β) is an immunosuppressive cytokine that inhibits the pro-inflammatory functions of T cells, and it is a major factor in abrogating T cell activity against tumors. Canonical signaling results in the activation of Smad proteins, transcription factors that regulate target gene expression. Here, we found that the cell surface molecule platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitates non-canonical (Smad-independent) TGF-β signaling in T cells. Subcutaneously injected tumor cells dependent on TGF-β-mediated suppression of immunity grew more slowly in PECAM-1−/− mice than in their wild type counterparts. T cells isolated from PECAM-1−/− mice demonstrated relative insensitivity to the TGF-β-dependent inhibition of interferon- γ (IFN-γ) production, granzyme B synthesis and cellular proliferation. Similarly, human T cells lacking PECAM-1 demonstrated decreased sensitivity to TGF-β in a manner that was partially restored by re-expression of PECAM-1. Co-incubation of T cells with TGF-β and a T cell-activating antibody resulted in PECAM-1 phosphorylation on an immunoreceptor tyrosine-based inhibitory motif (ITIM) and the recruitment of the inhibitory Src homology 2 domain-containing tyrosine phosphatase-2 (SHP-2). Such stimulatory conditions also induced the co-localization of PECAM-1 with the TGF-β receptor complex as identified by co-immunoprecipitation, confocal microscopy, and proximity ligation assays. These studies indicate a role for PECAM-1 in enhancing the inhibitory functions of TGF-β in T cells and suggest that therapeutic targeting of the PECAM-1-TGF-β inhibitory axis represents a means to overcome TGF-β-dependent immunosuppression within the tumor microenvironment. PMID:26956486

  15. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  16. Dystrophin Dp71f associates with the beta1-integrin adhesion complex to modulate PC12 cell adhesion.

    Science.gov (United States)

    Cerna, Joel; Cerecedo, Doris; Ortega, Arturo; García-Sierra, Francisco; Centeno, Federico; Garrido, Efrain; Mornet, Dominique; Cisneros, Bulmaro

    2006-10-01

    Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.

  17. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.

    Science.gov (United States)

    Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

    2010-05-25

    The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

  18. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling

    Directory of Open Access Journals (Sweden)

    Hakomori Senitiroh

    2004-01-01

    Full Text Available The concept of microdomains in plasma membranes was developed over two decades, following observation of polarity of membrane based on clustering of specific membrane components. Microdomains involved in carbohydrate-dependent cell adhesion with concurrent signal transduction that affect cellular phenotype are termed "glycosynapse". Three types of glycosynapse have been distinguished: "type 1" having glycosphingolipid associated with signal transducers (small G-proteins, cSrc, Src family kinases and proteolipids; "type 2" having O-linked mucin-type glycoprotein associated with Src family kinases; and "type 3" having N-linked integrin receptor complexed with tetraspanin and ganglioside. Different cell types are characterized by presence of specific types of glycosynapse or their combinations, whose adhesion induces signal transduction to either facilitate or inhibit signaling. E.g., signaling through type 3 glycosynapse inhibits cell motility and differentiation. Glycosynapses are distinct from classically-known microdomains termed "caveolae", "caveolar membrane", or more recently "lipid raft", which are not involved in carbohydrate-dependent cell adhesion. Type 1 and type 3 glycosynapses are resistant to cholesterol-binding reagents, whereas structure and function of "caveolar membrane" or "lipid raft" are disrupted by these reagents. Various data indicate a functional role of glycosynapses during differentiation, development, and oncogenic transformation.

  19. Cell surface localization and tissue distribution of a hepatocyte cell-cell adhesion glycoprotein (cell-CAM 105)

    OpenAIRE

    Ocklind, C; Forsum, U; Obrink, B

    1983-01-01

    We recently identified a 105,000-dalton plasma membrane glycoprotein, denoted cell-CAM 105 (CAM, cell adhesion molecule), that is involved in intercellular adhesion of reaggregating rat hepatocytes (Ocklind, C., and B. Obrink, 1982, J. Biol. Chem., 257:6788-6795). In this communication we used a monospecific rabbit antiserum against cell-CAM 105 to localize the antigen by indirect immunofluorescence on isolated rat cells and on frozen rat tissue sections. This antiserum stained the surface of...

  20. How cells tiptoe on adhesive surfaces before sticking

    CERN Document Server

    Pierres, Anne; Touchard, Dominique; Bongrand, Pierre

    2008-01-01

    Cell membranes are studded with protrusions that were thoroughly analyzed with electron microscopy. However, the nanometer-scale three-dimensional motions generated by cell membranes to fit the topography of foreign surfaces and initiate adhesion remain poorly understood. Here, we describe the dynamics of surface deformations displayed by monocytic cells bumping against fibronectin-coated surfaces. We observed membrane undulations with typically 5 nm amplitude and 5-10 second lifetime. Cell membranes behaved as independent units of micrometer size. Cells detected the presence of foreign surfaces at 50 nm separation, resulting in time-dependent amplification of membrane undulations. Molecular contact then ensued with apparent cell-membrane separation of 30-40 nm, and this distance steadily decreased during the following tens of seconds. Contact maturation was associated with in-plane egress of bulky molecules and robust membrane fluctuations. Thus, membrane undulations may be the major determinant of cell sens...

  1. 小儿体外循环手术围术期细胞间粘附分子-1的测定%Detection of Intercellular Adhesion Molecule-1 during Pediatric Cardiopulmonary Bypass

    Institute of Scientific and Technical Information of China (English)

    李建华; 张泽伟; 陈黎勤

    2000-01-01

    To evaluate the role of serum intercellular adhesion molecule (ICAM-1)changes during pediatric cardiopulmonary bypass (CPB) surgery for congenital heart diseases (CHD)and the clinic significance of monitoring the serum ICAM-1 level. Methods: ICAM-1 levels were measured by double antibodies sandwich ELISA in arterial specimen from 33 CPB cases at various time points,the results were compared with those of 10 non-CPB patients and 30 normal children. Results:Patients with CHD had normal levels of serum ICAM-1 before surgery. The serum ICAM-1 levels in CPB group were significantly higher than those of controls (P〈0. 005). ICAM-1 levels started increasing as early as 30 minutes of CPB began and peaked 24 hours after surgery and stayed up 48 hours after surgery . The serum ICAM-1 levels in patients whose CPB lasted longer than 90 minuets were significantly higher (P<0.05). Conclusion:ICAM-1 showed higher and lasted longer after pediatric CPB surgery. The length of CPB is associated with elevation of ICAM-1. Monitoring of serumICAM-1 ,in certain degree,may help in predicting prognosis and complication after CPB surgery.%目的:探讨小儿体外循环(CPB)围术期血清细胞间粘附分子-1(ICAM-1)水平变化规律和升高原因及测定的临床意义。方法:采用双抗夹心法酶联吸附试验(ELISA)法分别于手术前、转流后30 min、手术毕、术后2 h、12 h、24 h、48 h共7个时点测定33例先天性心脏病(CHD)患儿;分别于术前,术中及术后2 h测定10例非体外循环普胸手术患儿及30例健康体检患儿ICAM-1水平。结果:CHD术前ICAM-1无变化;CPB术后ICAM-1水平较非CPB明显升高,P<0.005;血清ICAM-1值于CPB 30 min后开始上升,至24 h达到高峰后开始下降,48 h尚未降至术前水平;CPB时间≥90 min组ICAM-1显著升高,P<0.05。结论:小儿CPB心脏直视手术后血清ICAM-1升高明显,CPB时间是ICAM-1升高的主要原因,ICAM-1测定对预防及早期发现并

  2. Reversing adhesion with light: a general method for functionalized bead release from cells.

    Science.gov (United States)

    Goulet-Hanssens, Alexis; Magdesian, Margaret H; Lopez-Ayon, G Monserratt; Grutter, Peter; Barrett, Christopher J

    2016-07-19

    Coated beads retain great importance in the study of cell adhesion and intracellular communication; we present a generally applicable method permitting spatiotemporal control of bead adhesion from cells. Herein we demonstrate in vitro release of a poly-d-lysine (PDL) layer from anionic polystyrene beads, allowing complete bead release from rat cortical neurons post-adhesion. PMID:27165466

  3. Cadherin-Based Intercellular Adhesions Organize Epithelial Cell-Matrix Traction Forces

    CERN Document Server

    Mertz, Aaron F; Banerjee, Shiladitya; Goldstein, Jill; Rosowski, Kathryn R; Niessen, Carien M; Marchetti, M Cristina; Dufresne, Eric R; Horsley, Valerie

    2012-01-01

    Cell--cell and cell-matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of crosstalk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular-matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell--cell adhesions modulate the physical cohesion between contractile cells is ...

  4. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  5. Polyelectrolytes Multilayers to Modulate Cell Adhesion: A Study of the Influence of Film Composition and Polyelectrolyte Interdigitation on the Adhesion of the A549 Cell Line.

    Science.gov (United States)

    Muzzio, Nicolás E; Pasquale, Miguel A; Gregurec, Danijela; Diamanti, Eleftheria; Kosutic, Marija; Azzaroni, Omar; Moya, Sergio E

    2016-04-01

    Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer-by-layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4-styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs. PMID:26663657

  6. Upregulation of Intercellular Adhesion Molecule 1 and Proinflammatory Cytokines by the Major Surface Proteins of Treponema maltophilum and Treponema lecithinolyticum, the Phylogenetic Group IV Oral Spirochetes Associated with Periodontitis and Endodontic Infections

    OpenAIRE

    Lee, Sung-Hoon; Kim, Kack-Kyun; Choi, Bong-Kyu

    2005-01-01

    Treponema maltophilum and Treponema lecithinolyticum belong to the group IV oral spirochetes and are associated with endodontic infections, as well as periodontitis. Recently, the genes encoding the major surface proteins (Msps) of these bacteria (MspA and MspTL, respectively) were cloned and sequenced. The amino acid sequences of these proteins showed significant similarity. In this study we analyzed the functional role of these homologous proteins in human monocytic THP-1 cells and primary ...

  7. Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells.

    Science.gov (United States)

    Hoffman, Michelle D; Zucker, Lauren I; Brown, Pamela J B; Kysela, David T; Brun, Yves V; Jacobson, Stephen C

    2015-12-15

    In the environment, most bacteria form surface-attached cell communities called biofilms. The attachment of single cells to surfaces involves an initial reversible stage typically mediated by surface structures such as flagella and pili, followed by a permanent adhesion stage usually mediated by polysaccharide adhesives. Here, we determine the absolute and relative timescales and frequencies of reversible and irreversible adhesion of single cells of the bacterium Caulobacter crescentus to a glass surface in a microfluidic device. We used fluorescence microscopy of C. crescentus expressing green fluorescent protein to track the swimming behavior of individual cells prior to adhesion, monitor the cell at the surface, and determine whether the cell reversibly or irreversibly adhered to the surface. A fluorescently labeled lectin that binds specifically to polar polysaccharides, termed holdfast, discriminated irreversible adhesion events from reversible adhesion events where no holdfast formed. In wild-type cells, the holdfast production time for irreversible adhesion events initiated by surface contact (23 s) was 30-times faster than the holdfast production time that occurs through developmental regulation (13 min). Irreversible adhesion events in wild-type cells (3.3 events/min) are 15-times more frequent than in pilus-minus mutant cells (0.2 events/min), indicating the pili are critical structures in the transition from reversible to irreversible surface-stimulated adhesion. In reversible adhesion events, the dwell time of cells at the surface before departing was the same for wild-type cells (12 s) and pilus-minus mutant cells (13 s), suggesting the pili do not play a significant role in reversible adhesion. Moreover, reversible adhesion events in wild-type cells (6.8 events/min) occur twice as frequently as irreversible adhesion events (3.3 events/min), demonstrating that most cells contact the surface multiple times before transitioning from reversible to

  8. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars;

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading...... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......, we show that a 5.0 kb CD44 mRNA contained multiple IMP-binding sites in its 3'UTR, and following IMP depletion this species became unstable. Direct knockdown of the CD44 transcript mimicked the effect of IMPs on invadopodia, and we infer that CD44 mRNA stabilization may be involved in IMP...

  9. Multiple effects of electroporation on the adhesive behaviour of breast cancer cells and fibroblasts

    OpenAIRE

    Pehlivanova Viktoria N; Tsoneva Iana H; Tzoneva Rumiana D

    2012-01-01

    Abstract Background Recently electroporation using biphasic pulses was successfully applied in clinical developments for treating tumours in humans and animals. We evaluated the effects of electrical treatment on cell adhesion behaviour of breast cancer cells and fibroblasts. By applying bipolar electrical pulses we studied short- and long-lived effects on cell adhesion and survival, actin cytoskeleton and cell adhesion contacts in adherent cancer cells and fibroblasts. Methods Two cancer cel...

  10. Role of cell adhesion signal molecules in hepatocellular carcinoma cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Su; Li-Ying Wang; Yu-Long Liang; Xi-Liang Zha

    2005-01-01

    AIM: Cell adhesion molecules and their signal molecules play a very important role in carcinogenesis. The aim of this study is to elucidate the role of these molecules and the signal molecules of integrins and E-cadherins, such as (focal adhesion kinase) FAK, (integrin linked kinase)ILK, and β-catenin in hepatocellular carcinoma cell apoptosis.METHODS: We first synthesized the small molecular compound, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and identified it, by element analysis and 1H NMR. To establish the apoptosis model of the SMMC-7721 hepatocellular carcinoma cell, we treated cells with DCVC in EBSS for different concentrations or for various length times in the presence of 20 μmol/L N,N-diphenyl-p-phenylenediamine,which blocks necrotic cell death and identified this model by flow cytometry and DNA ladder. Then we studied the changes of FAK, ILK, β-catenin, and PKB in this apoptotic model by Western blot.RESULTS: We found that the loss or decrease of cell adhesion signal molecules is an important reason in apoptosis of SMMC-7721 hepatocellular carcinoma cell and the apoptosis of SMMC-7721 cell was preceded by the loss or decrease of FAK, ILK, PKB, and β-catenin or the damage of cell-matrix and cell-cell adhesion.CONCLUSION: Our results suggested that the decrease of adhesion signal molecules, FAK, ILK, PKB, and β-catenin,could induce hepatocellular carcinoma cell apoptosis.

  11. Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy.

    Science.gov (United States)

    Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László

    2016-03-01

    This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.

  12. Quantification of depletion-induced adhesion of Red Blood Cells

    CERN Document Server

    Steffen, Patrick; Wagner, Christian

    2012-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the dextran induced aggregation of red blood cells by use of atomic force microscopy based single cell force spectroscopy (SCFS). The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs was determined. The results are in good agreement with a model based on the depletion effect and former experimental studies.

  13. 3D surface topology guides stem cell adhesion and differentiation.

    Science.gov (United States)

    Viswanathan, Priyalakshmi; Ondeck, Matthew G; Chirasatitsin, Somyot; Ngamkham, Kamolchanok; Reilly, Gwendolen C; Engler, Adam J; Battaglia, Giuseppe

    2015-06-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilizers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors.

  14. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  15. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A;

    1988-01-01

    sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from......In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...

  16. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    OpenAIRE

    Wagner Shin Nishitani; Adriano Mesquita Alencar; Yingxiao Wang

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium i...

  17. Epithelial to mesenchymal transition-the roles of cell morphology, labile adhesion and junctional coupling.

    Science.gov (United States)

    Abdulla, Tariq; Luna-Zurita, Luis; de la Pompa, José Luis; Schleich, Jean-Marc; Summers, Ron

    2013-08-01

    Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the interplay between cell shape changes, adhesion and migration. The simulation model is fitted to an in vitro model of endocardial EMT, and agrees with the finding that Notch signalling increases cell-matrix adhesion in addition to modulating cell-cell adhesion. PMID:23787029

  18. Cell adhesion molecule control of planar spindle orientation.

    Science.gov (United States)

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  19. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells.

    Science.gov (United States)

    Karuri, Nancy W; Liliensiek, Sara; Teixeira, Ana I; Abrams, George; Campbell, Sean; Nealey, Paul F; Murphy, Christopher J

    2004-07-01

    The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design.

  20. Adhesion of subsets of human blood mononuclear cells to porcine endothelial cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular immune response is a major barrier to xenotransplantation, and cell adhesion is the first step in intercellular recognition. Flow-cytometric adhesion assay has been used to investigate the differential adhesions of monocyte (Mo), natural killer cell (NK) and T lymphocyte (T) present within human peripheral blood mononuclear cells (PBMC) to porcine aortic endothelial cells (PAEC), and to demonstrate the effect of human interferon-γ(hIFN-γ) or/and tumor necrosis factor-α (hTNF-α) pretreatment of PAEC on their adhesiveness for different PBMC subsets. The preferential sequence for PBMC subset binding to resting PAEC is Mo, NK and T cells, among which T cells show the slightest adherence; hTNF-α can act across the species, and augment Mo, NK and T cell adhesion ratios by 40%, 110% and 3 times, respectively. These results confirm at the cell level that host Mo and NK cells are major participants in the cellular xenograft rejection, thereby, providing a prerequisite for further studying the human Mo/NK-PAEC interactive mechanisms.

  1. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heli; Focia, Pamela J.; He, Xiaolin (NWU, MED)

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  2. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules

    Directory of Open Access Journals (Sweden)

    Wolfram Tobias

    2008-12-01

    Full Text Available Abstract Background Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-dependent threshold for this form of cell adhesion. Results Here we show a similar dependence of cell adhesion on the spacing of agrin, a protein that exists as both a secreted, matrix-bound form and a type-2 transmembrane form in vivo. Agrin was presented as a substrate for cell adhesion assays by anchoring recombinant protein to gold nanoparticles that were arrayed at tunable distances onto glass coverslips. Cells adhered well to nanopatterned agrin, and when presented as uniformly coated substrates, adhesion to agrin was comparable to other well-studied adhesion molecules, including N-Cadherin. Adhesion of both mouse primary cortical neurons and rat B35 neuroblastoma cells showed a spacing-dependent threshold, with a sharp drop in adhesion when the space between agrin-coated nanoparticles increased from 60 to 90 nm. In contrast, adhesion to N-Cadherin decreased gradually over the entire range of distances tested (uniform, 30, 60, 90, and 160 nm. The spacing of the agrin nanopattern also influenced cell motility, and peptide competition suggested adhesion was partially integrin dependent. Finally, differences in cell adhesion to C-terminal agrin fragments of different lengths were detected using nanopatterned substrates, and these differences were not evident using uniformly coated substrates. Conclusion These results suggest nanopatterned substrates may provide a physiological presentation of adhesive substrates, and are consistent with cells adhering to agrin

  3. Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Mikkelsen, Lone; Folkmann, Janne K;

    2012-01-01

    surface expression of intercellular cell adhesion molecule 1 (ICAM-1) and vascular adhesion molecule 1 (VCAM-1) in HUVECs at 100µg/ml. CB exposure was also associated with increased reactive oxygen species production and damage to the cell membranes in the form of increased lactate dehydrogenase leakage...

  4. Involvement of cell surface phosphatidylinositol-anchored glycoproteins in cell-cell adhesion of chick embryo myoblasts

    OpenAIRE

    1989-01-01

    During myogenesis myoblasts fuse to form multinucleate cells that express muscle-specific proteins. A specific cell-cell adhesion process precedes lipid bilayer union during myoblast fusion (Knudsen, K. A., and A. F. Horwitz. 1977. Dev. Biol. 58:328-338) and is mediated by cell surface glycoproteins (Knudsen, K. A., 1985. J. Cell Biol. 101:891- 897). In this paper we show that myoblast adhesion and myotube formation are inhibited by treating fusion-competent myoblasts with phosphatidylinosito...

  5. Effect of hydroxyapatite surface morphology on cell adhesion.

    Science.gov (United States)

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties. PMID:27612825

  6. The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation...... and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology between the two...

  7. Hepatocyte adhesion to carbohydrate-derivatized surfaces. II. Regulation of cytoskeletal organization and cell morphology

    OpenAIRE

    1991-01-01

    Rat hepatic lectins mediate adhesion of isolated rat hepatocytes to synthetic surfaces derivatized with galactosides. Initial weak adhesion is followed by rapid adhesion strengthening. After hepatocytes contact galactose-derivatized gels, the hepatic lectins move rapidly into an inaccessible patch at the adhesive surface (Weisz, O. A., and R. L. Schnaar. 1991. J. Cell Biol. 115:485-493). Hepatic lectin patching, which occurs both at 37 degrees C and 4 degrees C, is not responsible for adhesio...

  8. Functional nanoparticles translocation into cell and adhesion force curve analysis.

    Science.gov (United States)

    Lee, Haisung; Veerapandian, Murugan; Kim, Byung Tae; Yun, Kyusik; Seo, Soo-Won

    2012-10-01

    The aim of this research is to investigate the cell translocation of two functional nanoparticles (barium sulfate (BaSO4NPs), europium (III) doped gadolinium oxide nanoparticles (Gd2O3@EuNPs)) into A549 cells by Bio-Atomic Force Microscopy (Bio-AFM). Successful cell translocation of these two nanoparticles are ensured from the measurement of changes in the cell surface roughness and interaction (extension), retraction forces from the vertical deflection of tip towards substrate surfaces through force-distance curve slope analysis. Measurement of typical adhesion forces (i.e., extension and retraction) between the tip-substrate (0.0963 and 1.155 nN), tip-A549 cell substrate (0.1177 and 2.468 nN), tip-Gd2O3@EuNPs/A549 substrate (0.0785 and 0.4276 nN) and tip-BaSO4NPs/A549 substrate (0.518 and 6.838 nN) confirms the successful cell translocation of functional nanoparticles into A549 cells. Further the nanoscale resolution of topographical height and 3D images evinces the surface characteristics of normal A549 cells and nanoparticles translocated A549 cells. PMID:23421137

  9. Cell Wall Microstructure Analysis Implicates Hemicellulose Polysaccharides in Cell Adhesion in Tomato Fruit Pericarp Parenchyma

    Institute of Scientific and Technical Information of China (English)

    Jose J. Ordaz-Ortiz; Susan E. Marcus; J. Paul Knox

    2009-01-01

    Methods developed to isolate intact cells from both unripe and ripe tomato fruit pericarp parenchyma have allowed the cell biological analysis of polysaccharide epitopes at the surface of separated cells. The LM7 pectic homoga-lacturonan epitope is a marker of the junctions of adhesion planes and intercellular spaces in parenchyma systems. The LM7 epitope persistently marked the former edge of adhesion planes at the surface of cells separated from unripe and ripened tomato fruit and also from fruits with the Cnr mutation. The LM 11 xylan epitope was associated, in sections, with cell walls lining intercellular space but the epitope was not detected at the surface of isolated cells, being lost during cell isolation. The LM15 xyloglucan epitope was present at the surface of cells isolated from unripe fruit in a pattern reflecting the former edge of cell adhesion planes/intercellular space but with gaps and apparent breaks, An equivalent pattern ofLM15 epitope occurrence was revealed at the surface of cells isolated by pectate lyase action but was not present in cells isolated from ripe fruit or from Cnr fruit. In contrast to wild-type cells, the LM5 galactan and LM21 mannan epitopes oc-curred predominantly in positions reflecting intercellular space in Cnr, suggesting a concerted alteration in cell wall mi-crostructure in response to this mutation. Galactanase and mannanase, along with pectic homogalacturonan-degrading enzymes, were capable of releasing cells from unripe fruit parenchyma. These observations indicate that hemicellulose polymers are present in architectural contexts reflecting cell adhesion and that several cell wall polysaccharide classes are likely to contribute to cell adhesion/cell separation in tomato fruit pericarp parenchyma.

  10. Surface deformation and shear flow in ligand mediated cell adhesion

    Science.gov (United States)

    Sircar, Sarthok; Roberts, Anthony; Sarthok Sircar / Anthony Roberts Collaboration

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous fluid medium. The binding ligands on the surface of the cells experience attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a select range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g*) between the adhesion phase (when g*>0.5) and the fragmentation phase (when g*University startup funds and AR is supported by the Australian Research Council Discovery Grant DP150102385.

  11. Cell adhesion on Ti surface with controlled roughness

    Energy Technology Data Exchange (ETDEWEB)

    Burgos-Asperilla, L.; Garcia-Alonso, M. C.; Escudero, M. L.; Alonso, C.

    2015-07-01

    In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10{sup -}3 min{sup -}1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days), due to the presence of amino acids and proteins from the culture medium that have been adsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti. (Author)

  12. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine;

    2008-01-01

    rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept......During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown...... to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal...

  13. Proteomic and phosphoproteomic analysis of signalling by adhesion and growth factor receptors in mammary epithelial cells

    OpenAIRE

    Paul, Nikki

    2014-01-01

    Cell adhesion and communication are essential for tissue morphogenesis and repair in healthy multicellular organisms. However, dysregulation of these processes can drive disease progression in conditions such as cancer. Selective cell adhesion to the extracellular matrix is mediated by integrins, a family of transmembrane receptors that compartmentalise signalling and organise the cytoskeleton. Adhesion receptors provide spatial cues to cells to allow them to respond to growth factor and cyto...

  14. Effect of Zinc and Nitric Oxide on Monocyte Adhesion to Endothelial Cells under Shear Stress

    OpenAIRE

    Lee, Sungmun; Eskin, Suzanne G.; Shah, Ankit K.; Schildmeyer, Lisa A.; McIntire, Larry V.

    2011-01-01

    This study describes the effect of zinc on monocyte adhesion to endothelial cells under different shear stress regimens, which may trigger atherogenesis. Human umbilical vein endothelial cells were exposed to steady shear stress (15 dynes/cm2 or 1 dyne/cm2) or reversing shear stress (time average 1 dyne/cm2) for 24 hours. In all shear stress regimes, zinc deficiency enhanced THP-1 cell adhesion, while heparinase III reduced monocyte adhesion following reversing shear stress exposure. Unlike o...

  15. Cell adhesion behavior on the silicone rubber surface modified by using ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Tae; Jung, Chan Hee; Nh, Young Chang; Choi, Jae Hak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kuk, In Seol [Hanyang University, Seoul (Korea, Republic of); An, Mi Young [Chungnam National University, Daejeon (Korea, Republic of)

    2009-12-15

    In this study we studied cell adhesion and proliferation on the surface of a silicone rubber modified by ion beam irradiation. The surface property of the irradiated silicone rubber was characterized by water contact angle and FT-IR analyses. It was observed that human (HEK293) fibroblast cells exhibit strong adhesion to the irradiated silicone surface. This enhanced adhesion of mammalian cells can be attributed to the increase in the hydrophilicity of the silicone surface by ion beam irradiation.

  16. Multiple effects of electroporation on the adhesive behaviour of breast cancer cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    Pehlivanova Viktoria N

    2012-03-01

    Full Text Available Abstract Background Recently electroporation using biphasic pulses was successfully applied in clinical developments for treating tumours in humans and animals. We evaluated the effects of electrical treatment on cell adhesion behaviour of breast cancer cells and fibroblasts. By applying bipolar electrical pulses we studied short- and long-lived effects on cell adhesion and survival, actin cytoskeleton and cell adhesion contacts in adherent cancer cells and fibroblasts. Methods Two cancer cell lines (MDA-MB-231 and MCF-7 and one fibroblast cell line 3T3 were used. Cells were exposed to high field intensity (200 - 1000 V/cm. Cell adhesion and survival after electrical exposure were studied by crystal violet assay and MTS assay. Cytoskeleton rearrangement and cell adhesion contacts were visualized by actin staining and fluorescent microscope. Results The degree of electropermeabilization of the adherent cells elevated steadily with the increasing of the field intensity. Adhesion behaviour of fibroblasts and MCF-7 was not significantly affected by electrotreatment. Interestingly, treating the loosely adhesive cancer cell line MDA-MB-231 with 200 V/cm and 500 V/cm resulted in increased cell adhesion. Cell replication of both studied cancer cell lines was disturbed after electropermeabilization. Electroporation influenced the actin cytoskeleton in cancer cells and fibroblasts in different ways. Since it disturbed temporarily the actin cytoskeleton in 3T3 cells, in cancer cells treated with lower and middle field intensity actin cytoskeleton was well presented in stress fibers, filopodia and lamellipodia. The electrotreatment for cancer cells provoked preferentially cell-cell adhesion contacts for MCF-7 and cell-ECM contacts for MDA-MB- 231. Conclusions Cell adhesion and survival as well as the type of cell adhesion (cell-ECM or cell-cell adhesion induced by the electroporation process is cell specific. The application of suitable electric pulses can

  17. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kasalkova, N. Slepickova [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepicka, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Kolska, Z. [Department of Chemistry, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Prague (Czech Republic); Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ({zeta}-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  18. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Science.gov (United States)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  19. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    OpenAIRE

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  20. Labeling intercellular adhesion molecule 1 with 125I and the identification of its purity and immune activity%细胞间粘附分子-1125I标记及其纯度、免疫活性的鉴定

    Institute of Scientific and Technical Information of China (English)

    张志友; 方佩华; 侯秉璋; 高硕; 吕枚

    2001-01-01

    目的:建立细胞间粘附分子-1(intracellular adhesion molecule-1 ICAM-1)125I标记方法及鉴定其纯度和免疫活性.方法:用氯胺-T法标记ICAM-1,用Sephadex G-50柱层析分离,用纸层析法鉴定125I-ICAM-1的纯度,放免法检测其免疫活性.结果:125I-ICAM-1比活度为77 84μCi/μg蛋白,标记率为65.54%,125I-Na的放化纯度为97.27%,125I-ICAM-1能够与ICAM-1-Ab的最大结合为88.64%,并且随ICAM-1-Ab滴度的降低而增高.结论:成功建立125I标记ICAM-1的方法,并且125I-ICAM-1具有一定的免疫活性.

  1. The immunohistochemical study of interleukin-1 to Regulate Intercellular adhesion molecule-1 expression on cultured human gingival fibroblasts and periodontal ligament fibroblasts%IL-1β对牙龈成纤维细胞和牙周膜细胞上ICAM-1表达调节的免疫组化研究

    Institute of Scientific and Technical Information of China (English)

    罗志晓; 李成章; 曹正国

    2002-01-01

    目的: 了解牙龈成纤维细胞(human gingival fibroblast,HGF)、牙周膜细胞(periodontal ligament fibroblast,PDLF)上细胞间粘附分子1(intercellular adhesion molecule-1,ICAM-1)的表达以及白细胞介素-1β(interleukin-1β,IL-1β)作用后ICAM-1的表达.方法: 取正畸拔牙,体外培养牙龈成纤维细胞和牙周膜细胞,检测其未受和受IL-1β作用后ICAM-1的表达情况,图像分析结果.结果: 正常牙龈成纤维细胞、牙周膜细胞上ICAM-1表达阴性或弱阳性,IL-1β作用后,ICAM-1表达强阳性,和对照组相比,有显著性差异(P<0.01).结论: 牙龈成纤维细胞、牙周膜细胞受IL-1β作用后ICAM-1的表达增强,提示ICAM-1参与牙周炎的病理过程.

  2. An adhesion-dependent switch between mechanisms that determine motile cell shape.

    Directory of Open Access Journals (Sweden)

    Erin L Barnhart

    2011-05-01

    Full Text Available Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes.

  3. Rapid Reversible Photoswitching of Integrin-Mediated Adhesion at the Single-Cell Level.

    Science.gov (United States)

    Kadem, Laith F; Holz, Michelle; Suana, Kristine Grace; Li, Qian; Lamprecht, Constanze; Herges, Rainer; Selhuber-Unkel, Christine

    2016-03-01

    Rapid and reversible photoswitching of cell adhesion is achieved by c(RGDfK)-azobenzenes embedded in a poly(ethylene glycol) background on surfaces. The light-induced cis-trans-isomerization of the azobenzene enables switching of cell adhesion on the surface. Reversibility of switching over several consecutive switching cycles is demonstrated by single-cell force spectroscopy. PMID:26685922

  4. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice.

    Science.gov (United States)

    Gumuslu, Esen; Cine, Naci; Ertan Gökbayrak, Merve; Mutlu, Oguz; Komsuoglu Celikyurt, Ipek; Ulak, Guner

    2016-01-01

    BACKGROUND Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. MATERIAL AND METHODS The present study demonstrated the effects of exenatide treatment (0.1 µg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. RESULTS The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. CONCLUSIONS Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  5. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells.

    Directory of Open Access Journals (Sweden)

    Indrayani Waghmare

    Full Text Available Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib- surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells.

  6. Cells adhesion and growth on gold nanoparticle grafted glass

    Energy Technology Data Exchange (ETDEWEB)

    Novotna, Zdenka, E-mail: zdenka1.novotna@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague (Czech Republic); Reznickova, Alena; Kvitek, Ondrej; Kasalkova, Nikola Slepickova [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague (Czech Republic); Kolska, Zdenka [Faculty of Science, J. E. Purkyně University, Ústí nad Labem (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague (Czech Republic)

    2014-07-01

    The surface of glass substrate was plasma treated, coated by gold nano-structures and subsequently grafted with nanoparticles. The samples were plasma treated, sputtered with Au nanostructures which was followed by grafting with biphenyl-4,4'-dithiol (BPD) and then gold nanoparticles. The wettability, optical and chemical properties and surface morphology were studied. The adhesion and proliferation of vascular smooth muscle cells (VSMCs) on the samples were investigated in-vitro as well. Grafting of gold nanoparticles with the dithiol increases the UV–vis absorbance, the surface becomes more hydrophobic, rougher and more rugged compared to pristine, sputtered and only dithiol treated surface. Gold nano-particles bound over dithiol and Au nanostructures cause better cell proliferation than purely BPD treated or pristine glass.

  7. Podoplanin-mediated cell adhesion through extracellular matrix in oral squamous cell carcinoma.

    Science.gov (United States)

    Tsuneki, Masayuki; Yamazaki, Manabu; Maruyama, Satoshi; Cheng, Jun; Saku, Takashi

    2013-08-01

    Podoplanin (PDPN), one of the representative mucin-like type-I transmembrane glycoproteins specific to lymphatic endothelial cells, is expressed in various cancers including squamous cell carcinoma (SCC). On the basis of our previous studies, we have developed the hypothesis that PDPN functions in association with the extracellular matrix (ECM) from the cell surface side. The aim of this study was to elucidate the molecular role of PDPN in terms of cell adhesion, proliferation, and migration in oral SCC cells. Forty-four surgical specimens of oral SCC were used for immunohistochemistry for PDPN, and the expression profiles were correlated with their clinicopathological properties. Using ZK-1, a human oral SCC cell system, and five other cell systems, we examined PDPN expression levels by immunofluorescence, western blotting, and real-time PCR. The effects of transient PDPN knockdown by siRNA in ZK-1 were determined for cellular functions in terms of cell proliferation, adhesion, migration, and invasion in association with CD44 and hyaluronan. Cases without PDPN-positive cells were histopathologically classified as less-differentiated SCC, and SCC cells without PDPN more frequently invaded lymphatics. Adhesive properties of ZK-1 were significantly inhibited by siRNA, and PDPN was shown to collaborate with CD44 in cell adhesion to tether SCC cells with hyaluronan-rich ECM of the narrow intercellular space as well as with the stromal ECM. There was no siRNA effect in migration. We have demonstrated the primary function of PDPN in cell adhesion to ECM, which is to secondarily promote oral SCC cell proliferation.

  8. Cell surface adhesion molecules and cytokine profiles in primary progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Ukkonen, Maritta; Wu, Xingchen; Reipert, Birgit;

    2007-01-01

    OBJECTIVE: We evaluated the utility of adhesion molecule (AM) and cytokine/chemokine expressions in blood and cerebrospinal fluid (CSF) as markers of disease activity in primary progressive multiple sclerosis (PPMS). METHODS: The expressions of AMs and the levels of 17 cytokines in patients......) and intercellular adhesion molecule 1 (ICAM-1) in blood and CSF were higher in PPMS than in controls. Comparison between PPMS and SPMS showed higher levels of ICAM-1 in blood and CSF in PPMS, while the level of the vascular adhesion molecule (VCAM-1) was higher only in blood. There was no difference in the levels...... of cytokines in serum or CSF between PPMS and SPMS or controls, but evidence suggesting intrathecal synthesis of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) was found in PPMS. The expressions of CSF VLA-4 in PPMS correlated with the total volume of cerebral lesions and the number...

  9. Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules

    Science.gov (United States)

    Mulvihill, N; Foley, J; Murphy, R; Curtin, R; Crean, P; Walsh, M

    2001-01-01

    OBJECTIVE—To assess prospectively the prognostic value of soluble cellular adhesion molecules (CAMs) in patients with unstable angina and non-Q wave myocardial infarction and to compare their prognostic accuracy with that of C reactive protein (CRP).
DESIGN AND SETTING—Prospective observational study of patients presenting acutely with unstable angina and non-Q wave myocardial infarction to a single south Dublin hospital.
METHODS—Patients with Braunwald IIIA unstable angina and non-Q wave myocardial infarction had serum samples taken at presentation before initiation of antithrombotic treatment and were followed for six months. The primary end point was the occurrence of major adverse cardiovascular events (recurrent unstable angina, non-fatal myocardial infarction, and cardiovascular death) at six months. Concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble endothelial selectin, and soluble platelet selectin were measured using an enzyme linked immunosorbent assay technique. CRP was measured with an immunophelometric assay.
RESULTS—91 patients (73 men and 18 women, mean (SD) age 61 (11) years) were studied; 27 patients (30%) had major adverse cardiac events during the six months of follow up. Concentration of CRP were significantly raised in patients who had an ischaemic event (mean (SEM) 11.5 (6.4) mg/l v 5.4 (2.5) mg/l, p  3 mg/l and sVCAM-1 > 780 ng/ml for predicting future events was > 90%. There was no difference in concentrations of sICAM-1, soluble endothelin selectin, or soluble platelet selectin between event and non-event groups.
CONCLUSION—Raised concentrations of sVCAM-1 and CRP are predictive of an increased risk of major adverse cardiovascular events six months after presentation with unstable angina and non-Q wave myocardial infarction. These findings suggest that the intensity of the vascular inflammatory process at the time of

  10. Glycosylation inhibitors efficiently inhibit P-selectin-mediated cell adhesion to endothelial cells.

    Science.gov (United States)

    Ghoshal, Pushpankur; Rajendran, Mythilypriya; Odo, Nadine; Ikuta, Tohru

    2014-01-01

    Adhesion molecules play a critical role in the adhesive interactions of multiple cell types in sickle cell disease (SCD). We previously showed that anti-P-selectin aptamer efficiently inhibits cell adhesion to endothelial cells (ECs) and permits SCD mice to survive hypoxic stress. In an effort to discover new mechanisms with which to inhibit P-selectin, we examined the role of glycosylation. P-selectin is a 90 kDa protein but was found to migrate as 90 and 140 kDa bands on gel electrophoresis. When P-selectin isolated from ECs was digested with peptide N-glycosidase F, but not O-glycosidase, the 140 kDa band was lost and the 90 kDa band was enhanced. Treatment of ECs with tunicamycin, an N-glycosylation inhibitor, suppressed CD62P (P-selectin) expression on the cell surface as well as the 140 kDa form in the cytoplasm. These results indicate that the 140 kDa band is N-glycosylated and glycosylation is critical for cell surface expression of P-selectin in ECs. Thrombin, which stimulates P-selectin expression on ECs, induced AKT phosphorylation, whereas tunicamycin inhibited AKT phosphorylation, suggesting that AKT signaling is involved in the tunicamycin-mediated inhibition of P-selectin expression. Importantly, the adhesion of sickle red blood cells (sRBCs) and leukocytes to ECs induced by thrombin or hypoxia was markedly inhibited by two structurally distinct glycosylation inhibitors; the levels of which were comparable to that of a P-selectin monoclonal antibody which most strongly inhibited cell adhesion in vivo. Knockdown studies of P-selectin using short-hairpin RNAs in ECs suppressed sRBC adhesion, indicating a legitimate role for P-selectin in sRBC adhesion. Together, these results demonstrate that P-selectin expression on ECs is regulated in part by glycosylation mechanisms and that glycosylation inhibitors efficiently reduce the adhesion of sRBCs and leukocytes to ECs. Glycosylation inhibitors may lead to a novel therapy which inhibits cell adhesion in SCD.

  11. A simplified model for dynamics of cell rolling and cell-surface adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Cimrák, Ivan, E-mail: ivan.cimrak@fri.uniza.sk [Cell-in-fluid Research Group, http://cell-in-fluid.fri.uniza.sk Faculty of Management Science and Informatics, University of Žilina Univerzitná 8215/1, 010 26 Žilina (Slovakia)

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.

  12. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Paola Luciani

    Full Text Available Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R, thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i the evaluation of neurite-like protrusions in 3D cell cultures, ii the analysis of the expression of neuronal markers and iii electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.

  13. The effects of caveolin - 1/eNOS pathway in monocyte adhesion to endothelial cells induced by oxidative stress

    Institute of Scientific and Technical Information of China (English)

    LiaoDuan-fang

    2005-01-01

    Leukocyte adhesion to endothelial cells is the initiate event of atherosclerosis, which includes injury of endothelial cells, leukocyte rolling, adhesion and extravasation. Many adhesion molecules such as E-selectin, P-selectin,the adhesion process.ICAM-1, VCAM, L-selectin, CD18, PECAM, VLA and ECM participate in Many factors such as infection of pathogenic organism,

  14. Direct observation of catch bonds involving cell-adhesion molecules

    Science.gov (United States)

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  15. Modulation of lens cell adhesion molecules by particle beams

    Science.gov (United States)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  16. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    OpenAIRE

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present ...

  17. Activated leukocyte cell adhesion molecule expression predicts lymph node metastasis in oral squamous cell carcinoma.

    NARCIS (Netherlands)

    Brand, M. van den; Takes, R.P.; Blokpoel-deRuyter, M.; Slootweg, P.J.; Kempen, L.C.L.T. van

    2010-01-01

    Lymphatic metastasis of oral squamous cell carcinoma (SCC) is important for prognosis and clinical decision making concerning the treatment of the neck but may be difficult to detect. Activated leukocyte cell adhesion molecule (ALCAM), has been shown to correlate with prognosis or tumor grade in dif

  18. Adhesion of different cell cycle human hepatoma cells to endothelial cells and roles of integrin β1

    Institute of Scientific and Technical Information of China (English)

    Guan-Bin Song; Jian Qin; Qing Luo; Xiao-Dong Shen; Run-Bin Yan; Shao-Xi Cai

    2005-01-01

    AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721)to human umbilical vein endothelial cells (ECV-304),expression of adhesive molecule integrinβ1 in SMMC-7721cells and its contribution to this adhesive course.METHODS: Adhesive force of SMMC-7721 cells to endothelialcells was measured using micropipette aspiration technique.Synchronous G1 and S phase SMMC-7721 cells wereachieved by thymine-2-deoxyriboside and colchicinessequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronousrates of SMMC-7721 cells and expression of integrinβ1 inSMMC-7721 cells were detected by flow cytometer.RESULTS: The percentage of cell cycle phases of generalSMMC-7721 cells was 11.01% in G2/M phases, 53.51% inG0/G1 phase, and 35.48% in S phase. The synchronous ratesof G1 and S phase SMMC-7721 cells amounted to 74.09%and 98.29%, respectively. The adhesive force of SMMC-7721cells to endothelial cells changed with the variations ofadhesive time and presented behavior characteristics ofadhesion and de-adhesion. S phase SMMC-7721 cells had higheradhesive forces than G1 phase cells [(307.65±92.10)× 10-10Nvs (195.42±60.72)×10-10N, P<0.01]. The expressivefluorescent intensity of integrinβ1 in G1 phase SMMC-7721cells was depressed more significantly than the values ofS phase and general SMMC-7721cells. The contribution ofadhesive integrinβ1 was about 53% in this adhesive course.CONCLUSION: SMMC-7721 cells can be synchronizedpreferably in G1 and S phases with thymine-2-deoxyribosideand colchicines. The adhesive molecule integrinβ1 expressesa high level in SMMC-7721 cells and shows differences invarious cell cycles, suggesting integrin β1 plays an importantrole in adhesion to endothelial cells. The change of adhesiveforces in different cell cycle SMMC-7721 cells indicatesthat S phase cells play predominant roles possibly whilethey interact with endothelial cells.

  19. PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer

    Science.gov (United States)

    Lian, Shenyi; Meng, Lin; Xing, Xiaofang; Yang, Yongyong; Qu, Like; Shou, Chengchao

    2016-01-01

    Phosphatase of regenerating liver-3 (PRL-3), also termed PTP4A3, is a metastasis-related protein tyrosine phosphatase. Its expression levels are significantly correlated with the progression and survival of a wide range of malignant tumors. However, the mechanism by which PRL-3 promotes tumor invasion and metastasis is not clear. In the present study, the functions of PRL-3 were systemically analyzed in the key events of metastasis including, motility and adhesion. A cell wounding assay, cell spread assay and cell-matrix adhesion assay were carried out to analyze the cell movement and cell adhesion ability of colon cancer, immunoprecipitation and immunofluorescence assay was confirmed the interaction of PRL-3 and JAM2. It was demonstrated that PRL-3 promoted the motility of Flp-In-293 and LoVo colon cancer cells and increased the distribution of cell skeleton proteins on the cell protrusions. In addition, stably expressing PRL-3 reduced the spreading speed of colon cancer cells and cell adhesion on uncoated, fibronectin-coated and collagen I-coated plates. Mechanistically, junction adhesion molecular 2 (JAM2) was identified as a novel interacting protein of PRL-3. The findings of the present study revealed the roles of PRL-3 in cancer cell motility and adhesion process, and provided information on the possibility of PRL-3 increase cell-cell adhesion by associating with JAM2. PMID:27588115

  20. Heterogeneity of cell adhesion molecules in the developing nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.K.

    1985-01-01

    Cell-surface molecules, especially glycoproteins, are believed to mediate interactions between developing neurons and their environment. These interactions include pathfinding by growing processes, recognition of appropriate targets, and formation of synaptic structures. In order to identify neuronal cell-surface molecules, monoclonal antibodies (Mab's) were prepared against synaptic fractions from adult rat brain. From this group three monoclonal antibodies, designated 3C5.59, 3G5.34, and 3G6.41, that react with cell-surface antigens of embryonic neurons were selected for further study. In immunofluoresence experiments each of these antibodies strongly reacted with the processes of cultured granule cell neurons, the major class of small cerebellar neurons, cultured from developing rat cerebellum. Mab's 3C5.59 and 3G5.34 reacted only with neurons in the cerebellar cultures. Mab 3G6.41, however, also reacted with cultured brain astrocytes. On frozen sections Mab's 3G5.34 and 3G6.41 also strongly stained the molecular layer, the site of active granule cell axon growth, in the developing cerebellum. Monoclonal and polyclonal antibodies specific for the neural cell adhesion molecule (N-CAM) were used to compare the two glycoproteins recognized by Mab 3G6.41 with N-CAM. Band 1, another large neuronal cell-surface glycoprotein was originally identified in mouse N18 neuroblastoma cells. In this study /sup 125/I-labeled N18-derived band 1 was tested for binding to 9 plant lectins and Limulus polyphemus agglutinin coupled to agarose beads. Band 1 solubilized from brain also specifically bound to LCA-agarose, indicating that mannose containing sugar moieties are present on band 1 from brain.

  1. Pharmacology of cell adhesion molecules of the nervous system

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology...... focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies......, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders....

  2. Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach.

    Science.gov (United States)

    Choi, Chang Kyoung; Sukhthankar, Mugdha; Kim, Chul-Ho; Lee, Seong-Ho; English, Anthony; Kihm, Kenneth D; Baek, Seung Joon

    2010-01-15

    Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed-time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties. In the presented study, we used stable human colorectal cancer cell lines ectopically expressing COX-1, COX-2, and 15LOX-1, to investigate whether expression of COX-1, COX-2, or 15LOX-1 would affect cell adhesion using our opto-electric methodology. In a fixed-time point experiment, only COX-1- and COX-2-expressing cells enhanced phosphorylation of focal adhesion kinase, but all the transfected cells showed invasion activity. However, in a real-time experiment using opto-electric approaches, transmitted cellular morphology was much different with tight adhesion being shown in COX-2 expressing cells, as imaged by differential interference contrast microscopy (DICM) and interference reflection contrast microscopy (IRCM). Furthermore, micro-impedance measurements showed a continued increase in both resistance and reactance of COX- and LOX-transfected cells, consistent with the imaging data. Our data indicate that both COX- and LOX-expressing cells have strong cell-to-cell and cell-to-substrate adhesions, and that cell imaging analysis with cell impedance data generates fully reliable results on cell adhesion measurement. PMID:20026301

  3. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    Science.gov (United States)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  4. Simple and Biocompatible Ion Beam Micropatterning of a Cell-Repellent Polymer on Cell-Adhesive Surfaces to Manipulate Cell Adhesion.

    Science.gov (United States)

    Hwang, In-Tae; Jung, Chan-Hee; Jung, Chang-Hee; Choi, Jae-Hak; Shin, Kwanwoo; Yoo, Young-Do

    2016-02-01

    In this paper, the simple and biocompatible micropatterning of cell-repellent poly(N-isopropylacrylamide) (PNIPAAm) on a cell-adhesive substrate by ion beam micropatterning to control cell adhesion is described. Cell-repellent PNIPAAm films spin-coated on cell-adhesive tissue culture polystyrene (TCPS) substrates were selectively irradiated by energetic proton ions at various fluences through a pattern mask, and subsequently developed to create the micropatterns of PNIPAAm. Well-defined negative-type PNIPAAm micropatterns were successfully created on the TCPS substrates at fluences higher than 5 x 10¹⁴ ions/cm², and their chemical properties were dependent on the fluence. Moreover, based on the results of the protein adsorption and in-vitro cell culture tests, 200 µm well-defined micropatterns of mammalian cells were clearly formed on the PNIPAAm-micropatterned TCPS substrates though the preferential adsorption and growth of cells on the TCPS regions due to the strong cell-repellency of PNIPAAm. PMID:27305772

  5. The Cell Adhesion-associated Protein Git2 Regulates Morphogenetic Movements during Zebrafish Embryonic Development

    OpenAIRE

    Yu, Jianxin A.; Foley, Fiona C.; Amack, Jeffrey D.; Christopher E Turner

    2010-01-01

    Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new ...

  6. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1.

    Science.gov (United States)

    Peled, Amnon; Hardan, Izhar; Trakhtenbrot, Luba; Gur, Eyal; Magid, Michal; Darash-Yahana, Merav; Cohen, Ninette; Grabovsky, Valentin; Franitza, Suzana; Kollet, Orit; Lider, Ofer; Alon, Ronen; Rechavi, Gideon; Lapidot, Tsvee

    2002-01-01

    Chronic myelogenous leukemia (CML), a malignant myeloproliferative disorder originating from a pluripotent stem cell expressing the bcr-abl oncogene, is characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow (BM) into the circulation. Moreover, immature CD34+ CML cells have lower adhesion to stromal cells and fibronectin as well as lower engraftment potential in severe combined immunedeficient (SCID) and nonobese diabetic (NOD)/SCID mice than normal CD34+ cells. We report in this study that leukemic Philadelphia chromosome-positive (Ph+)CD34+ cells from newly diagnosed CML patients that express the chemokine receptor CXCR4 migrate in response to stromal-derived factor-1 (SDF-1). However, normal Ph-CD34+CXCR4+ cells derived from the same patient have significantly higher migration levels toward SDF-1. In contrast to their transwell migration potential, the SDF-1-mediated integrin-dependent polarization and migration of the Ph+CD34+CXCR4+ cells through extracellular matrix-like gels were significantly lower than for normal cells. Concomitantly, binding of these cells to vascular cell adhesion molecule-1 or fibronectin, in the presence of SDF-1, was also substantially lower. These findings suggest a major role for SDF-1-mediated, integrin-dependent BM retention of Ph+CD34+ cells. PMID:12004084

  7. The Relativity Study between Soluble E-selectin and Soluble Intercellular Adhesion Molecule-1 and Diabetic Retinopathy%sE-选择素和sICAM-1与糖尿病性视网膜病变的相关性研究

    Institute of Scientific and Technical Information of China (English)

    张炜; 蔡雷鸣; 张燕; 杜培宜; 谭龙益; 王梅芳; 张蓉; 孙国庆

    2015-01-01

    目的:检测糖尿病性视网膜病变患者血清中sE-选择素和sICAM-1的水平,研究sE-选择素和sICAM-1在糖尿病性视网膜病变发生、发展中的作用及其二者之间的关系。方法选择糖尿病性视网膜病变患者50例;无糖尿病性视网膜病变的2型糖尿病患者100例;年龄、性别相当的正常对照组50例。空腹抽静脉血,采用酶联免疫吸附法(ELISA法)对sE-选择素和sICAM-1进行检测,比较各组之间统计学差异以及sE-选择素和sICAM-1之间的相关性。结果糖尿病性视网膜病变组(A组)和无糖尿病性视网膜病变组(B组)sE-选择素和sICAM-1与对照组(C组)比较均有显著性差异(P<0.01);糖尿病性视网膜病变组(A组)与无糖尿病性视网膜病变组(B组)比较,差异有显著性意义(P<0.01)。糖尿病性视网膜病变组中sE-选择素和sICAM-1呈正相关(r=0.836,P<0.001)。结论 sE-选择素和sICAM-1的测定或许有助于糖尿病性视网膜病变的早期诊断,可能对糖尿病视网膜病变发生和发展有提示意义。%ObjectiveTo observe the level of serum soluble E-selectin (sE-selectin) and soluble intercellular adhesion molecule-1(sICAM-1) in diabetic retinopathy patients, and to detect the relationship between the sE-selectin and sICAM-1 and the diabetic retinopathy.MethodsThe serum levels of E-selectin (sE-selectin) and intercellular adhesion molecule-1(sICAM-1) were measured respectively in diabetic retinopathy patients and diabetic patients without diabetic retinopathy as well as normal people. The data were analyzed between the three groups.ResultsThe level of sE-selectin and sICAM-1 in normal group were signiifcantly lower than the diabetic retinopathy patients and diabetic patients without diabetic retinopathy (P<0.01). The level of sE-selectin and sICAM-1 in diabetic retinopathy patients were signiifcantly higher than the diabetic patients without diabetic

  8. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules

    OpenAIRE

    Wolfram Tobias; Spatz Joachim P; Burgess Robert W

    2008-01-01

    Abstract Background Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-depende...

  9. Cathepsin G, a Neutrophil Protease, Induces Compact Cell-Cell Adhesion in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Kudo

    2009-01-01

    Full Text Available Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and Rap1 activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-cadherin/protein kinase D1 (PKD1 complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

  10. Red cell adhesion molecules, foetal haemoglobin and endothelial factors in sickle cell disorders

    OpenAIRE

    Mundee, Y.

    2001-01-01

    Sickle cell anaemia (SS) is a haemoglobinopathy involving production of sickle haemoglobin (HbS, β⁶Glu-->Val), which is able to polymerise leading to vaso-occlusion. Hydroxyurea (HU) treatment increases foetal haemoglobin (HbF) levels but decreases vaso-occlusion and red cell adhesion molecule (AM) expression, and therefore improves clinical symptoms. In this thesis, the contribution of AMs, HbF and endothelial factors to the severity of sickle cell disease has been studied....

  11. Maspin Regulates Endothelial Cell Adhesion and Migration through an Integrin Signaling Pathway*

    OpenAIRE

    Qin, Li; Zhang, Ming

    2010-01-01

    Maspin has been identified as a potent angiogenesis inhibitor. However, the molecular mechanism responsible for its anti-angiogenic property is unclear. In this study, we examined the effect of maspin on endothelial cell (EC) adhesion and migration in a cell culture system. We found that maspin was expressed in blood vessels ECs and human umbilical vein endothelial cells (HUVECs). Maspin significantly enhanced HUVEC cell adhesion to various matrix proteins. This effect was dependent on the ac...

  12. Naxos disease: Cardiocutaneous syndrome due to cell adhesion defect

    Directory of Open Access Journals (Sweden)

    Protonotarios Nikos

    2006-03-01

    Full Text Available Abstract Naxos disease is a recessively inherited condition with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C and a cutaneous phenotype, characterised by peculiar woolly hair and palmoplantar keratoderma. The disease was first described in families originating from the Greek island of Naxos. Moreover, affected families have been identified in other Aegean islands, Turkey, Israel and Saudi Arabia. A syndrome with the same cutaneous phenotype and predominantly left ventricular involvement has been described in families from India and Ecuador (Carvajal syndrome. Woolly hair appears from birth, palmoplantar keratoderma develop during the first year of life and cardiomyopathy is clinically manifested by adolescence with 100% penetrance. Patients present with syncope, sustained ventricular tachycardia or sudden death. Symptoms of right heart failure appear during the end stages of the disease. In the Carvajal variant the cardiomyopathy is clinically manifested during childhood leading more frequently to heart failure. Mutations in the genes encoding the desmosomal proteins plakoglobin and desmoplakin have been identified as the cause of Naxos disease. Defects in the linking sites of these proteins can interrupt the contiguous chain of cell adhesion, particularly under conditions of increased mechanical stress or stretch, leading to cell death, progressive loss of myocardium and fibro-fatty replacement. Implantation of an automatic cardioverter defibrillator is indicated for prevention of sudden cardiac death. Antiarrhythmic drugs are used for preventing recurrences of episodes of sustained ventricular tachycardia and classical pharmacological treatment for congestive heart failure, while heart transplantation is considered at the end stages.

  13. SU-8 hollow cantilevers for AFM cell adhesion studies

    International Nuclear Information System (INIS)

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m−1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification. (paper)

  14. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Multhaupt, Hinke A. B.; Couchman, John R.

    2015-01-01

    -tailed paired t-test and one-way ANOVA with Tukey¿s post-hoc test were used in the analysis of data. Results: MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced...

  15. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    Science.gov (United States)

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-01

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics.

  16. Reversed cell imprinting, AFM imaging and adhesion analyses of cells on patterned surfaces.

    Science.gov (United States)

    Zhou, Xiongtu; Shi, Jian; Zhang, Fan; Hu, Jie; Li, Xin; Wang, Li; Ma, Xueming; Chen, Yong

    2010-05-01

    Cell adhesion and motility depend strongly on the interactions between cells and cell culture substratum. To observe the cell morphology at the interface between cells and artificial substratum or patterned surfaces, we have developed a technique named reversed cell imprinting. After culture and chemical fixation of the cells on a patterned hole array, a liquid polymer was poured on and UV cured, allowing taking off the cell-polymer assembly for a direct observation of the underside cell surface using atomic force microscopy. As expected, we observed local deformation of the cell membrane in the hole area with a penetration depth strongly dependent on the size and depth of the hole as well as the culture time. Quantitative analyses of Hela cells on patterned surfaces of polydimethylsiloxane (PDMS) revealed that the penetration was also position dependent over the cell attachment area due to the non-homogeneous distribution of the membrane stress. With the increase of the culture time, the penetration depth was reduced, in a close correlation with the increase of the cell spreading area. Nevertheless, both cell seeding and adhesion efficiency on high density hole arrays could be significantly increased comparing to that on a smooth surface. Patterned substrates are increasingly required to produce and interrogate new biomaterials for therapeutic benefit. Overall, this work suggests a strategy to endow conventional imaging methods with added functionality to enable easy observation of the underside cell morphology on topographic patterns. PMID:20390138

  17. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    Science.gov (United States)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  18. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  19. Galectin-1-mediated cell adhesion, invasion and cell death in human anaplastic large cell lymphoma: Regulatory roles of cell surface glycans

    OpenAIRE

    Suzuki, Osamu; Abe, Masafumi

    2014-01-01

    Galectin-1 is known to be one of the extracellular matrix proteins. To elucidate the biological roles of galectin-1 in cell adhesion and invasion of human anaplastic large cell lymphoma, we performed cell adhesion and invasion assays using the anaplastic large cell lymphoma cell line H-ALCL, which was previously established in our laboratory. From the cell surface lectin array, treatment with neuraminidase from Arthrobacter ureafaciens which cleaves all linkage types of cell surface sialic ac...

  20. Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons

    Directory of Open Access Journals (Sweden)

    Vladimir eSytnyk

    2016-02-01

    Full Text Available Cell adhesion molecules of the immunoglobulin superfamily (IgSF including the neural cell adhesion molecule (NCAM and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  1. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    Science.gov (United States)

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  2. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components......Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration...... in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles...

  3. Complementarity of PALM and SOFI for super-resolution live cell imaging of focal adhesions

    CERN Document Server

    Deschout, Hendrik; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-01-01

    Live cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenging task for super-resolution microscopy. We have addressed this important issue by combining photo-activated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed cell focal adhesion images, we investigated the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework was used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualized the dynamics of focal adhesions, and revealed local mean velocities around 190 nm per minute. The complementarity of PALM and SOFI was assessed in detail with a methodology that integrates a quantitative resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of m...

  4. Measurement of single-cell adhesion strength using a microfluidic assay.

    Science.gov (United States)

    Christ, Kevin V; Williamson, Kyle B; Masters, Kristyn S; Turner, Kevin T

    2010-06-01

    Despite the importance of cell adhesion in numerous physiological, pathological, and biomaterial-related responses, our understanding of adhesion strength at the cell-substrate interface and its relationship to cell function remains incomplete. One reason for this deficit is a lack of accessible experimental approaches that quantify adhesion strength at the single-cell level and facilitate large numbers of tests. The current work describes the design, fabrication, and use of a microfluidic-based method for single-cell adhesion strength measurements. By applying a monotonically increasing flow rate in a microfluidic channel in combination with video microscopy, the adhesion strength of individual NIH3T3 fibroblasts cultured for 24 h on various surfaces was measured. The small height of the channel allows high shear stresses to be generated under laminar conditions, allowing strength measurements on well-spread, strongly adhered cells that cannot be characterized in most conventional assays. This assay was used to quantify the relationship between morphological characteristics and adhesion strength for individual well-spread cells. Cell adhesion strength was found to be positively correlated with both cell area and circularity. Computational fluid dynamics (CFD) analysis was performed to examine the role of cell geometry in determining the actual stress applied to the cell. Use of this method to examine adhesion at the single-cell level allows the detachment of strongly-adhered cells under a highly-controllable, uniform loading to be directly observed and will enable the characterization of biological events and relationships that cannot currently be achieved using existing methods.

  5. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles

    DEFF Research Database (Denmark)

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K;

    2013-01-01

    (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species...

  6. Adhesion and morphology of fibroblastic cells cultured on different polymeric biomaterials.

    Science.gov (United States)

    Lombello, C B; Santos, A R; Malmonge, S M; Barbanti, S H; Wada, M L F; Duek, E A R

    2002-09-01

    Cell adhesion is influenced by the physical and chemical characteristics of the materials used as substrate for cell culturing. In this work, we evaluated the influence of the morphological and chemical characteristics of different polymeric substrates on the adhesion and morphology of fibroblastic cells. Cell growth on poly (L-lactic acid) [PLLA] membranes and poly(2-hydroxy ethyl methacrylate) [polyHEMA], poly(2-hydroxy ethyl methacrylate)-cellulose acetate [polyHEMA-CA] and poly(2-hydroxy ethyl methacrylate)-poly(methyl methacrylate-co-acrylic acid) [polyHEMA-poly(MMA-co-AA)] hydrogels of different densities and pore diameters was examined. Cells adhered preferentially to more negatively charged substrates, with polyHEMA hydrogels being more adhesive than the other substractes. The pores present in PLLA membranes did not interfere with adhesion, but the cells showed a distinctive morphology on each membrane.

  7. Cellular Adhesion Tripeptide RGD Inhibits Growth of Human Ileocecal Adenocarcinoma Cells HCT-8 and Induces Apoptosis

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; ZENG Hong-bin; YANG Shao-juan; GAO Shen; HUANG Yi-bing; HOU Rui-zhen; ZHAO Mi-feng; XU Li; ZHANG Xue-zhong

    2007-01-01

    The tripeptide, Arg-Gly-Asp(RGD) motif is an integrin-recognition site found in adhesive proteins present in extracellular matrices(ECM) and in the blood. HCT-8 cells were treated with cellular adhesion tripeptide RGD at various concentrations. MTT assay was performed to examine the growth and proliferation of HCT-8 cells after treatment with RGD for 48 h. Haematoxylin and Eosin(HE) staining and electromicroscope were used to observe the morphology of apoptotic cells. Survivin and flow cytometry were also used to analyze the HCT-8 apoptosis. Cellular adhesion tripeptide RGD significantly inhibits the growth and proliferation of HCT-8 cells in a dose-dependent manner and induces apoptosis of HCT-8. These results indicate that cellular adhesion tripeptide RGD inhibits the growth and proliferation of tumor HCT-8 cell, probably by the aid of inducing apoptosis of HCT-8 cell.

  8. N-Terminal Truncation of TACO Inhibits PMA-Induced U937 Cell Adhesion

    Institute of Scientific and Technical Information of China (English)

    LIU Changzhen; SUI Senfang

    2005-01-01

    The effect of TACO1-299, the N-terminal truncation of TACO, on phorbol 12-myristate 13-acetate (PMA)-induced U937 cell adhesion was investigated. Full-length TACO and several truncations were overexpressed in U937 cells. The effects of the expressed proteins on U937 cell adhesion mediated by PMA-induced differentiation were observed by fluorescence microscopy. The results show that the overexpression of TACO1-299 inhibits cell adhesion while overexpressions of the other proteins do not have this effect. The actin-binding capability of TACO1-299 was investigated and the results show that TACO1-299 lacks the ability of TACO to bind F-actin. The inhibitive effect of TACO1-299, the functional domain of TACO, suggests that TACO may play a role in cell differentiation mediating adhesion of monoblastic leukemia cells.

  9. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    DEFF Research Database (Denmark)

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C;

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We...

  10. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  11. The evaluation of p,p′-DDT exposure on cell adhesion of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Low doses p,p′-DDT exposure disrupts cell–cell adhesion and cell–matrix adhesion in HepG2 cells. • Both oxidative stress and JAK/STAT3 pathway are activated in p,p′-DDT-treated HepG2 cells. • The stimulation of JAK/STAT3 pathway is mediated by oxidative stress. • p,p′-DDT regulates adhesion molecules via the JAK/STAT3 pathway. • p,p′-DDT stimulates JAK/STAT3 signal pathway and disrupts the expressions of cell adhesion molecules in nude mice models. - Abstract: Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p′-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p′-DDT, exposing HepG2 cells for 6 days, decreased cell–cell adhesion and elevated cell–matrix adhesion. Strikingly, p,p′-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p′-DDT-induced effects. p,p′-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p′-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p′-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p′-DDT profoundly promotes the adhesion process by decreasing cell–cell adhesion and inducing cell

  12. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants.

    Science.gov (United States)

    Bacakova, Lucie; Filova, Elena; Parizek, Martin; Ruml, Tomas; Svorcik, Vaclav

    2011-01-01

    The interaction of cells and tissues with artificial materials designed for applications in biotechnologies and in medicine is governed by the physical and chemical properties of the material surface. There is optimal cell adhesion to moderately hydrophilic and positively charged substrates, due to the adsorption of cell adhesion-mediating molecules (e.g. vitronectin, fibronectin) in an advantageous geometrical conformation, which makes specific sites on these molecules (e.g. specific amino acid sequences) accessible to cell adhesion receptors (e.g. integrins). Highly hydrophilic surfaces prevent the adsorption of proteins, or these molecules are bound very weakly. On highly hydrophobic materials, however, proteins are adsorbed in rigid and denatured forms, hampering cell adhesion. The wettability of the material surface, particularly in synthetic polymers, can be effectively regulated by physical treatments, e.g. by irradiation with ions, plasma or UV light. The irradiation-activated material surface can be functionalized by various biomolecules and nanoparticles, and this further enhances its attractiveness for cells and its effectiveness in regulating cell functions. Another important factor for cell-material interaction is surface roughness and surface topography. Nanostructured substrates (i.e. substrates with irregularities smaller than 100nm), are generally considered to be beneficial for cell adhesion and growth, while microstructured substrates behave more controversially (e.g. they can hamper cell spreading and proliferation but they enhance cell differentiation, particularly in osteogenic cells). A factor which has been relatively less investigated, but which is essential for cell-material interaction, is material deformability. Highly soft and deformable substrates cannot resist the tractional forces generated by cells during cell adhesion, and cells are not able to attach, spread and survive on such materials. Local variation in the physical and

  13. Small-cell lung cancer (SCLC) cell adhesion on E- and P-selectin under physiological flow conditions.

    Science.gov (United States)

    Richter, Ulrich

    2014-01-01

    Hematogenous metastasis is still a poorly understood phenomenon. The rate-limiting step within the metastatic cascade is not yet clear although it may be estimated that the extravasation of circulating tumor cells is a step of crucial importance, as most tumor cells that are shed into circulation undergo apoptosis. The process of extravasation includes a cascade of consecutive steps, starting with adhesion of tumor cells circulating in the bloodstream to endothelial cells, mimicking leukocyte adhesion and transmigration. Endothelial cell selectin-leukocyte glycan interaction occurs when leukocytes adhere to endothelial cells under conditions of shear stress. As there are parallels between cancer cell endothelial interactions with leukocyte endothelial cell systems an experimental setup has been developed in which adhesion of small cell lung carcinoma adhesive properties can be analyzed under physiological shear stress conditions during their attachment to E- and P-selection.

  14. Expression and function of neural cell adhesion molecule during limb regeneration.

    OpenAIRE

    Maier, C E; Watanabe, M.(Niigata University, 950-2181, Niigata, Japan); Singer, M.; McQuarrie, I G; Sunshine, J.; Rutishauser, U.

    1986-01-01

    The neural cell adhesion molecule (NCAM) has been detected in regenerating limb bud of adult newts in addition to brain and peripheral nerves. In the regenerating tissue, NCAM was found primarily on mesenchymal cells and also in wound epidermis. Infusion of Fab fragments of antibodies to NCAM into limb buds at the early blastema stage delayed the regenerative process. Previous studies have indicated that NCAM serves as a homophilic ligand for adhesion among cells that express this molecule an...

  15. Mass spectrometry assisted lithography for the patterning of cell adhesion ligands on self-assembled monolayers.

    Science.gov (United States)

    Kim, Young-Kwan; Ryoo, Soo-Ryoon; Kwack, Sul-Jin; Min, Dal-Hee

    2009-01-01

    Pattern of events: A simple and flexible method has been developed for patterning cell adhesion ligands. Locally erasing self-assembled monolayers with tri(ethyleneglycol) groups on a gold substrate by using a MALDI-TOF MS nitrogen laser and filling the exposed gold surface with an alkanethiol presenting carboxylic acid groups enables subsequent immobilization of maleimide and a cell adhesion peptide, which can then recognize cells (see scheme). PMID:19347909

  16. Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase–null embryonic cells

    OpenAIRE

    Li, Xiao-Yan; Zhou, Xiaoming; Rowe, R. Grant; Hu, Yuexian; Schlaepfer, David D.; Ilić, Dusko; Dressler, Gregory; Park, Ann; Guan, Jun-Lin; Weiss, Stephen J.

    2011-01-01

    Mouse embryonic cells isolated from focal adhesion kinase (FAK)–null animals at embryonic day 7.5 display multiple defects in focal adhesion remodeling, microtubule dynamics, mechanotransduction, proliferation, directional motility, and invasion. To date, the ability of FAK to modulate cell function has been ascribed largely to its control of posttranscriptional signaling cascades in this embryonic cell population. In this paper, we demonstrate that FAK unexpectedly exerts control over an epi...

  17. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    OpenAIRE

    Ivana Márcia Alves Diniz; Adriana Bona Matos; Márcia Martins Marques

    2015-01-01

    Background. We investigated the influence of laser phototherapy (LPT) on the survival of human mesenchymal stem cells (MSCs) submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs...

  18. Label-free continuous cell sorter with specifically adhesive oblique micro-grooves

    International Nuclear Information System (INIS)

    We report the development of a label-free continuous cell sorting method based on specific adhesivity between cells and surface-immobilized adhesion molecules. The separation of cells is induced by cross-flow adhesive force on micron-sized stripes with adhesion molecules immobilized on the surface. In order to accurately form the adhesive stripes on a microchannel wall, 1 µm wide micro-grooves are fabricated at a certain angle with respect to the flow direction using direct electron-beam lithography. Amino-functionalized parylene is used as the groove surface material, and streptavidin is immobilized on the entire surface, resulting in a surface with periodic adhesive patterns. The effectiveness of the proposed cell sorting principle is verified by flow-through experiments using functionalized particles as model cells. Measurements of the motion of biotin-coated microparticles show that the particles decelerated by specific adhesivity are displaced in the cross-flow direction. The observed cross-flow displacement is around 0.8% of the streamwise travelling distance. It is also shown that the rate of cross-flow displacement is independent of the flow rate or the stripe angle. Finally, it is demonstrated that a mixture of streptavidin- and biotin-coated microparticles can be completely separated after flowing over a 20 mm long patterned surface. The proposed label-free continuous lateral separation scheme has a wide range of potential applications for separation of cells which could not be distinguished by size or separated using dielectric forces

  19. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Flonia Levy-Adam

    Full Text Available Heparanase is a heparan sulfate (HS degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158-Asp(171, termed KKDC was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.

  20. Cell Adhesion Molecules of the Immunoglobulin Superfamily in the Nervous System

    DEFF Research Database (Denmark)

    Walmod, Peter Schledermann; Pedersen, Martin Volmer; Berezin, Vladimir;

    2007-01-01

    CAMs belonging to IgSF, that exclusively or in part, are expressed in the nervous system. The chapter includes descriptions of myelin protein zero (P0), integrin-associated protein (CD47), neuroplastin, activated leukocyte-cell adhesion molecule (ALCAM), melanoma cell adhesion molecule (MCAM...... to be more than simple regulators of adhesion. Many CAMs are important mediators of intracellular signal transduction, and CAMs are involved in many biological phenomena including migration, proliferation, and differentiation of cells, as well as axonal guidance, neurite outgrowth,and synaptic plasticity...

  1. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  2. Biosynthesis of the neural cell adhesion molecule: characterization of polypeptide C

    DEFF Research Database (Denmark)

    Nybroe, O; Albrechtsen, M; Dahlin, J;

    1985-01-01

    The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B...

  3. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  4. The Role of Lipid Rafts in Cancer Cell Adhesion and Migration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Murai

    2012-01-01

    Full Text Available Lipid rafts are cholesterol-enriched microdomains of the cell membrane and possess a highly dynamic nature. They have been involved in various cellular functions including the regulation of cell adhesion and membrane signaling through proteins within lipid rafts. The dynamic features of the cancer cell surface may modulate the malignant phenotype of cancer, including adhesion disorders and aggressive phenotypes of migration and invasion. Recently, it was demonstrated that lipid rafts play critical roles in cancer cell adhesion and migration. This article summarizes the important roles of lipid rafts in cancer cell adhesion and migration, with a focus on the current state of knowledge. This article will improve the understanding of cancer progression and lead to the development of novel targets for cancer therapy.

  5. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong; Li, Xueqi, E-mail: xueqili075@yeah.net

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytes with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.

  6. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  7. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-02-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

  8. 脑梗死伴牙周炎患者CRP、 IL-6和sICAM-1水平检测的研究%Clinical significance of C-reactive protein, interleukin-6 and soluble intercellular adhesion molecule 1 in patients with cerebral infarction and periodontal disease

    Institute of Scientific and Technical Information of China (English)

    裴路; 曹潇方; 张瑞敏; 付锦

    2011-01-01

    Objective: To explore the possible relationship of serum levels of C-reactive protein ( CRP), interleukin-6 (IL-6) and soluble intercellular adhesion molecule 1 ( sICAM- 1 ) of patients with chronic periodontitis (CP) and cerebral infarction (CI).Methods: 133 subjects were included in this study.Among them, 33 were patients with CI and CP (group CI + CP), 30 with CP (group CP), 32 with CI (group CI) and 38 were healthy volunteers (group H).The periodontal indexes and the serum levels of CRP, IL-6 and sICAM-1 were measured.Results: The periodontal indexes including calculus index, bleeding on probing, probing depth and attachment loss were significantly different among the four groups.In groups of CI + CP, CP and Cl the CRP, IL-6 and sICAM-1 levels were significantly higher than those in the group H(P <0.01 ).Conclusion: CRP, IL-6 and sICAM-1 might be closely related with the pathogenesis of CI and CP.A certain correlation might exist between CI and CP.%目的:探讨慢性牙周炎与脑梗死患者血清中C- 反应蛋白(CRP)、白细胞介素6(IL- 6)和可溶性细胞间黏附分子1(sICAM- 1)水平变化及相关关系.方法:纳入经头颅CT或MRI证实确诊脑梗死并伴牙周炎的患者[(CI+CP)组]33例,单纯慢性牙周炎患者(CP组)30例,脑梗死患者(CI组)32例和健康志愿者(H组)38例.记录简化牙石指数、探诊岀血阳性率、探诊深度和附着水平丧失,检测血清中CRP、IL- 6和sICAM- 1的含量.结果:各组间牙周病指数差异有显著性(P<0.05),与CP组、CI组、H组相比,(CI+CP)组的CRP、IL- 6和sICAM- 1水平明显升高(P<0.01).结论:CRP、IL- 6和sICAM- 1可能与脑梗死和牙周炎病理机制相关,牙周炎和脑梗死之间存在一定的关联.

  9. 可溶性细胞间粘附分子-1在新生儿缺氧缺血性脑病血清的表达及意义%Expression and significance of soluble intercellular adhesion molecule-1 in newborn’s serum with neonatal hypoxic ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    王彦彦; 张莹; 田淑霞

    2015-01-01

    目的:研究可溶性细胞间粘附分子-1(ICAM-1)在新生儿缺氧缺血性脑病(HIE)患儿血清中的表达及意义,探讨可溶性ICAM-1与新生儿缺氧缺血性脑病病情严重程度的关系。方法采用酶联免疫双抗体夹心法(ELISA)检测HIE新生儿和健康新生儿血清中可溶性ICAM-1的表达,将可溶性ICAM-1的表达量与HIE的严重程度之间进行相关性分析。结果 HIE血清可溶性ICAM-1的水平均高于对照组,在HIE各组血清中可溶性ICAM-1的浓度为重度>中度>轻度,HIE患儿血清可溶性ICAM-1表达与临床分度呈正相关。结论可溶性ICAM-1在HIE血清中呈高表达,可溶性ICAM-1的表达与病情严重程度密切相关,可溶性ICAM-1在HIE中起着重要作用,可能提示HIE早期分子生物学变化。%ABSTRACT:Objective To investigate expression and significance of soluble intercellular adhesion molecule-1 (ICAM-1) in newborn’s serum with neonatal hypoxic ischemic encephalopathy, and investigate relationship between soluble ICAM-1 and severity of neonatal hypoxic ischemic encephalopathy. Method examine expression of soluble ICAM-1 in serum of HIE and healthy newborns by enzyme linked immunosorbent assay (ELISA), and analyze correlation between expression amount of soluble ICAM-1 and severity of HIE. Result soluble ICAM-1 level in HIE serum was higher than that of control group. And concentration of soluble ICAM-1 in each group HIE serum shows Severe>Moderate>Mild. Serum soluble ICAM-1 expression of HIE newborns were positively correlated with clinical grading. Conclusion soluble ICAM-1 in HIE serum shows high expression, soluble ICAM-1 expression is closely related to disease severity, and soluble ICAM-1 plays important role in HIE, which may suggest early molecular changes of HIE.

  10. Characterization of bifidobacterial adhesion to intestinal epithelial cells

    OpenAIRE

    Gleinser, Marita

    2012-01-01

    Adhesion of probiotics is discussed as a prerequisite for the persistence and the colonization of the gut. Based on previous studies of our group, the strain B. bifidum S17 could be identified as promising candidate to investigate adhesion properties (Riedel et al., 2006a; Preising et al., 2010). Several E. coli-Bifidobacterium shuttle vectors with different antibiotic resistances were generated. Using a gusA reporter assay the promoter Pgap was shown to have detectable transcriptional activi...

  11. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R;

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... line (BT4Cn). Upon intracerebral implantation with BT4Cn cells and different clones of NCAM-transfected cells, all animals developed neurological symptoms within 13-16 days. However, the tumors showed different growth characteristics. The NCAM-transfected BT4Cn cells were localized in the region...... showed a lower cytotoxic response than the spleen cells from rats transplanted with the transfected variants of BT4Cn cells, indicating that the transfection procedure in itself mediated an activation of the immune system. The present data suggest that NCAM may influence the malignant behavior of rat...

  12. Cell adhesion molecules regulate contractile ring-independent cytokinesis in Dictyostelium discoideum

    Institute of Scientific and Technical Information of China (English)

    Akira Nagasaki; Masamitsu Kanada; Taro QP Uyeda

    2009-01-01

    To investigate the roles of substrate adhesion in cytokinesis, we established cell lines lacking paxiUin (PAXB) or vinculin (VINA), and those expressing the respective GFP fusion proteins in Dictyostelium discoideum. As in mammalian cells, GFP-PAXB and GFP-VINA formed focal adhesion-like complexes on the cell bottom, paxB cells in suspension grew normally, but on substrates, often failed to divide after regression of the furrow. The efficient cytokinesis of paxB cells in suspension is not because of shear forces to assist abscission, as they divided normally in static suspension culture as well. Double knockout strains lacking mhcA, which codes for myosin I1, and paxB or vinA displayed more severe cytokinetic defects than each single knockout strain. In mitotic wild-type cells, GFP-PAXB was diffusely distributed on the basal membrane, but was strikingly condensed along the polar edges in mitotic mhcA cells. These results are consistent with our idea that Dictyostelium displays two forms of cytokinesis, one that is contractile ringdependent and adhesion-independent, and the other that is contractile ring-independent and adhesion-dependent, and that the latter requires PAXB and VINA. Furthermore, that paxB cells fail to divide normally in the presence of substrate adhesion suggests that this adhesion molecule may play additional signaling roles.

  13. Integrin Activation by Regulated Dimerization and Oligomerization of Platelet Endothelial Cell Adhesion Molecule (Pecam)-1 from within the Cell

    OpenAIRE

    Zhao, Tieming; Newman, Peter J.

    2001-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 is a 130-kD transmembrane glycoprotein having six Ig homology domains within its extracellular domain and an immunoreceptor tyrosine–based inhibitory motif within its cytoplasmic domain. Previous studies have shown that addition of bivalent anti–PECAM-1 mAbs to the surface of T cells, natural killer cells, neutrophils, or platelets result in increased cell adhesion to immobilized integrin ligands. However, the mechanism by which this occur...

  14. Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion.

    Science.gov (United States)

    Moeton, Martina; Kanski, Regina; Stassen, Oscar M J A; Sluijs, Jacqueline A; Geerts, Dirk; van Tijn, Paula; Wiche, Gerhard; van Strien, Miriam E; Hol, Elly M

    2014-07-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in astrocytes and neural stem cells. The GFAP gene is alternatively spliced, and expression of GFAP is highly regulated during development, on brain damage, and in neurodegenerative diseases. GFAPα is the canonical splice variant and is expressed in all GFAP-positive cells. In the human brain, the alternatively spliced transcript GFAPδ marks specialized astrocyte populations, such as subpial astrocytes and the neurogenic astrocytes in the human subventricular zone. We here show that shifting the GFAP isoform ratio in favor of GFAPδ in astrocytoma cells, by selectively silencing the canonical isoform GFAPα with short hairpin RNAs, induced a change in integrins, a decrease in plectin, and an increase in expression of the extracellular matrix component laminin. Together, this did not affect cell proliferation but resulted in a significantly decreased motility of astrocytoma cells. In contrast, a down-regulation of all GFAP isoforms led to less cell spreading, increased integrin expression, and a >100-fold difference in the adhesion of astrocytoma cells to laminin. In summary, isoform-specific silencing of GFAP revealed distinct roles of a specialized GFAP network in regulating the interaction of astrocytoma cells with the extracellular matrix through laminin.-Moeton, M., Kanski, R., Stassen, O. M. J. A., Sluijs, J. A., Geerts, D., van Tijn, P., Wiche, G., van Strien, M. E., Hol, E. M. Silencing GFAP isoforms in astrocytoma cells disturbs laminin dependent motility and cell adhesion.

  15. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion.

    Science.gov (United States)

    Singh, A V; Ferri, M; Tamplenizza, M; Borghi, F; Divitini, G; Ducati, C; Lenardi, C; Piazzoni, C; Merlini, M; Podestà, A; Milani, P

    2012-11-30

    Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in the gas phase. Precise control of film roughness at the nanoscale is obtained by operating in a ballistic deposition regime. This allows one to study the influence of nanoroughness on cell adhesion, while keeping the surface chemistry constant. We evaluated cell adhesion on nanostructured zirconia with an osteoblast-like cell line using confocal laser scanning microscopy for detailed morphological and cytoskeleton studies. We demonstrated that the organization of cytoskeleton and focal adhesion formation can be controlled by varying the evolution of surface nanoroughness.

  16. Inflammatory mediators and cell adhesion molecules as indicators of severity of atherosclerosis: the Rotterdam Study

    NARCIS (Netherlands)

    M.P.M. de Maat (Moniek); M.L. Bots (Michiel); M.M.B. Breteler (Monique); J. Meijer (John); A.J. Kiliaan (Amanda); J.C.M. Witteman (Jacqueline); A. Hofman (Albert)

    2002-01-01

    textabstractInflammatory mediators and soluble cell adhesion molecules predict cardiovascular events. It is not clear whether they reflect the severity of underlying atherosclerotic disease. Within the Rotterdam Study, we investigated the associations of C-reactive protein (CRP), i

  17. Activated leukocyte cell adhesion molecule and prognosis in acute ischemic stroke

    DEFF Research Database (Denmark)

    Smedbakken, Linda; Jensen, Jesper K; Hallén, Jonas;

    2011-01-01

    Biomarkers predicting mortality and functional outcome in stroke may be clinically helpful in identification of patients likely to benefit from intervention. Activated leukocyte cell adhesion molecule (ALCAM) is upregulated during neuroinflammation; we investigated whether ALCAM concentrations ar...

  18. Displacement of p130Cas from focal adhesions links actomyosin contraction to cell migration.

    Science.gov (United States)

    Machiyama, Hiroaki; Hirata, Hiroaki; Loh, Xia Kun; Kanchi, Madhu Mathi; Fujita, Hideaki; Tan, Song Hui; Kawauchi, Keiko; Sawada, Yasuhiro

    2014-08-15

    Cell adhesion complexes provide platforms where cell-generated forces are transmitted to the extracellular matrix (ECM). Tyrosine phosphorylation of focal adhesion proteins is crucial for cells to communicate with the extracellular environment. However, the mechanisms that transmit actin cytoskeletal motion to the extracellular environment to drive cell migration are poorly understood. We find that the movement of p130Cas (Cas, also known as BCAR1), a mechanosensor at focal adhesions, correlates with actin retrograde flow and depends upon actomyosin contraction and phosphorylation of the Cas substrate domain (CasSD). This indicates that CasSD phosphorylation underpins the physical link between Cas and the actin cytoskeleton. Fluorescence recovery after photobleaching (FRAP) experiments reveal that CasSD phosphorylation, as opposed to the association of Cas with Src, facilitates Cas displacement from adhesion complexes in migrating cells. Furthermore, the stabilization of Src-Cas binding and inhibition of myosin II, both of which sustain CasSD phosphorylation but mitigate Cas displacement from adhesion sites, retard cell migration. These results indicate that Cas promotes cell migration by linking actomyosin contractions to the adhesion complexes through a dynamic interaction with Src as well as through the phosphorylation-dependent association with the actin cytoskeleton. PMID:24928898

  19. Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.

    Science.gov (United States)

    Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R

    2005-05-01

    Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse. PMID:15894002

  20. Epigenetic Silencing of CXCR4 Promotes Loss of Cell Adhesion in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Suresh Singh Yadav

    2014-01-01

    Full Text Available In the network of chemokine signaling pathways, recent reports have described the SDF-1α/CXCR4 axis and its role in cancer progression and metastasis. Interestingly, we found downregulation of CXCR4 at both transcript and protein level in cervical cancer cell lines and primary tumors. We also found CXCR4 promoter hypermethylation in cervical cancer cell lines and primary biopsy samples. DNA hypomethylating drug 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor Trichostatin A treatments in cell lines reactivate both CXCR4 transcription and protein expression. Cell adhesion assay demonstrated that autocrine SDF-1α promotes the loss of cell adhesion while paracrine SDF-1α predominantly protects the normal cervical cells from loss of cell adhesion. Cervical cancer cell line C-33A having increased expression of CXCR4 after TSA treatment showed increased cell adhesion by paracrine source of SDF-1α in comparison to untreated C-33A. These findings demonstrate the first evidence that epigenetic silencing of CXCR4 makes the cells inefficient to respond to the paracrine source of SDF-1α leading to loss of cell adhesion, one of the key events in metastases and progression of the disease. Our results provide novel insight of SDF-1α/CXCR4 signaling in tumor microenvironment which may be promising to further delineate molecular mechanism of cervical carcinogenesis.

  1. Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells.

    Directory of Open Access Journals (Sweden)

    Falko Ziebert

    Full Text Available Computational modeling of eukaryotic cells moving on substrates is an extraordinarily complex task: many physical processes, such as actin polymerization, action of motors, formation of adhesive contacts concomitant with both substrate deformation and recruitment of actin etc., as well as regulatory pathways are intertwined. Moreover, highly nontrivial cell responses emerge when the substrate becomes deformable and/or heterogeneous. Here we extended a computational model for motile cell fragments, based on an earlier developed phase field approach, to account for explicit dynamics of adhesion site formation, as well as for substrate compliance via an effective elastic spring. Our model displays steady motion vs. stick-slip transitions with concomitant shape oscillations as a function of the actin protrusion rate, the substrate stiffness, and the rates of adhesion. Implementing a step in the substrate's elastic modulus, as well as periodic patterned surfaces exemplified by alternating stripes of high and low adhesiveness, we were able to reproduce the correct motility modes and shape phenomenology found experimentally. We also predict the following nontrivial behavior: the direction of motion of cells can switch from parallel to perpendicular to the stripes as a function of both the adhesion strength and the width ratio of adhesive to non-adhesive stripes.

  2. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells.

    Science.gov (United States)

    Altamimi, M; Abdelhay, O; Rastall, R A

    2016-06-01

    The influence of five oligosaccharides (cellobiose, stachyose, raffinose, lactulose and chito-oligosaccharides) on the adhesion of eight gut bacteria (Bifidobacterium bifidum ATCC 29521, Bacteroides thetaiotaomicron ATCC 29148D-5, Clostridium leptum ATCC 29065, Blautia coccoides ATCC 29236, Faecalibacterium prausnitzii ATCC 27766, Bacteroides fragilis ATCC 23745, Clostridium difficile ATCC 43255 and Lactobacillus casei ATCC 393) to mucous secreting and non-mucous secreting HT-29 human epithelial cells, was investigated. In pure culture, the bacteria showed variations in their ability to adhere to epithelial cells. The effect of oligosaccharides diminished adhesion and the presence of mucus played a major factor in adhesion, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface. However, clostridia displayed almost the same level of adhesion either with or without mucus being present. Bl. coccoides adhesion was decreased by stachyose and cellobiose in non-mucus-secreting cells in pure culture, while in mixed faecal culture cellobiose displayed the highest antiadhesive activity with an overall average of 65% inhibition amongst tested oligomers and lactulose displayed the lowest with an average of 47.4%. Bifidobacteria, Bacteroides, lactobacilli and clostridia were inhibited within the following ranges 47-78%, 32-65%, 11.7-58% and 64-85% respectively. This means that clostridia were the most strongly influenced members of the microflora amongst the bacterial groups tested in mixed culture. In conclusion, introducing oligosaccharides which are candidate prebiotics into pure or mixed cultures has affected bacterial adhesion. PMID:27018325

  3. Quantitative multicolor compositional imaging resolves molecular domains in cell-matrix adhesions.

    Directory of Open Access Journals (Sweden)

    Eli Zamir

    Full Text Available BACKGROUND: Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: We present here a compositional imaging approach for the analysis and display of multi-component compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focal-adhesion-associated complexes to Rho-kinase inhibition. CONCLUSIONS/SIGNIFICANCE: Multicolor compositional imaging resolves "molecular signatures" characteristic to focal-adhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional "contents-resolved" dimensions. We propose that compositional imaging can serve as a powerful tool for studying complex multi-molecular assemblies in cells and for mapping their distribution at sub-micron resolution.

  4. Nanofibers and nanoparticles from the insect-capturing adhesive of the Sundew (Drosera for cell attachment

    Directory of Open Access Journals (Sweden)

    Zhang Mingjun

    2010-08-01

    Full Text Available Abstract Background The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation. Results Atomic force microscopy (AFM conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded to Alcian Blue staining for polysaccharide. Transmission electron microscopy identified a low abundance of nanoparticles in different pattern form AFM observations. In addition, energy-dispersive X-ray spectroscopy revealed the presence of Ca, Mg, and Cl, common components of biological salts. Study of the material properties of the adhesive yielded high viscoelasticity from the liquid adhesive, with reduced elasticity observed in the dried adhesive. The ability of PC12 neuron-like cells to attach and grow on the network of nanofibers created from the dried adhesive demonstrated the potential of this network to be used in tissue engineering, and other biomedical applications. Conclusions This discovery demonstrates how a naturally occurring nanofiber and nanoparticle based nanocomposite from the adhesive of Sundew can be used for tissue engineering, and opens the possibility for further examination of natural plant adhesives for biomedical applications.

  5. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    Science.gov (United States)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  6. Pervanadate-induced adhesion of CD4+ T cell to fibronectin is associated with tyrosine phosphorylation of paxillin.

    Science.gov (United States)

    Miron, S; Kachalsky, S G; Hershkoviz, R; Lider, O

    1997-09-01

    The initial stages of T cell activation involve tyrosine protein kinase-mediated intracellular signaling events. Integrin-mediated adhesion of CD4+ T lymphocytes to extracellular matrix glycoproteins, such as fibronectin, is an activation-dependent process. The involvement of tyrosine protein kinases in the adhesion of CD4+ T cells to fibronectin was examined using pervanadate, a protein-tyrosine phosphatase inhibitor. Pervanadate induced the adhesion of human CD4+ T cells to immobilized fibronectin in a beta1 integrin-mediated fashion, and adhesion was associated with an increase of protein tyrosine phosphorylation. Tyrosine protein kinase inhibitors abrogated both T cell adhesion and intracellular protein tyrosine phosphorylation. Participation of cytoskeletal proteins in the pervanadate-induced T cell adhesion was indicated because cytoskeleton disruption by cytochalasin B inhibited cell adhesion to fibronectin. We demonstrate that the cytoskeletal protein paxillin underwent time-dependent tyrosine phosphorylation simultaneously with pervanadate-induced T cell adhesion to fibronectin. Tyrosine phosphorylation of paxillin was related to cell adhesion, since pretreatment of T cells with cytochalasin B abrogated both adhesion and phosphorylation. This study demonstrates a correlation between activation of protein tyrosine kinases, tyrosine phosphorylation of paxillin, and integrin-mediated T cell adhesion to extracellular matrix glycoproteins. PMID:9307082

  7. Cell adhesion on Ti surface with controlled roughness

    Directory of Open Access Journals (Sweden)

    Burgos-Asperilla, Laura

    2015-06-01

    Full Text Available In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM and electrochemical impedance spectroscopy (EIS. The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10−3 min−1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days, due to the presence of amino acids and proteins from the culture medium that have been a dsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti.En este trabajo, se ha estudiado la interacción in situ entre células osteoblásticas Saos-2 y una superficie de Ti de rugosidad controlada a lo largo del tiempo. El estudio de la cinética y los mecanismos de proliferación celular de adhesión se ha realizado a través de la microbalanza de cristal de cuarzo (QCM y espectroscopía de impedancia electroquímica (EIS. La velocidad de adhesión de los osteoblastos sobre la superficie de Ti obtenida a través de medidas con la QCM, sigue una reacción de primer orden, con k=2×10−3 min−1. Los ensayos de impedancia indican que, en ausencia de las células, la resistencia del Ti disminuye con el tiempo (7 días, debido a la presencia de aminoácidos y proteínas del medio de cultivo que se han adsorbido, mientras que en presencia de células, esta disminución es mucho mayor debido a los productos metabólicos generados por las células que aceleran la disolución del Ti.

  8. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    Science.gov (United States)

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants. PMID:27137802

  9. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow

    OpenAIRE

    Evani, Shankar J.; Prabhu, Rajesh G.; Gnanaruban, V.; Finol, Ender A.; Anand K. Ramasubramanian

    2013-01-01

    Endothelial adhesion is necessary for the hematogenous dissemination of tumor cells. However, the metastatic breast tumor cell MDA-MB-231 does not bind to the endothelium under physiological flow conditions, suggesting alternate mechanisms of adhesion. Since monocytes are highly represented in the tumor microenvironment, and also bind to endothelium during inflammation, we hypothesized that the monocytes assist in the arrest of MDA-MB-231 on the endothelium. Using in vitro models of the dynam...

  10. Isolation and characterization of Chinese hamster ovary cell variants defective in adhesion to fibronectin-coated collagen

    OpenAIRE

    1980-01-01

    Variant clones of Chinese hamster ovary (CHO) cells were selected for reduced adhesion to serum-coated tissue culture plates. These clones also displayed reduced adhesion to substrata composed of collagen layers coated with bovine serum or with fibronectin (cold-insoluble globulin). Wild-type (WT) and adhesion variant (ADv) cells grew at comparable rates in suspension culture, but the adhesion variants could not be grown in monolayer culture because of their inability to attach to the substra...

  11. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ivana Márcia Alves Diniz

    2015-01-01

    Full Text Available Background. We investigated the influence of laser phototherapy (LPT on the survival of human mesenchymal stem cells (MSCs submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2. After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey’s test (P<0.05. Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.

  12. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eva Potthoff

    Full Text Available Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM. In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.

  13. Extracellular matrix-anchored serum amyloid A preferentially induces mast cell adhesion.

    Science.gov (United States)

    Hershkoviz, R; Preciado-Patt, L; Lider, O; Fridkin, M; Dastych, J; Metcalfe, D D; Mekori, Y A

    1997-07-01

    Mast cells are known to accumulate in various inflammatory processes, some of which are known to be associated with increased local and systemic levels of acute-phase reactants such as serum amyloid A (SAA) or with amyloid deposition. The mechanism(s) by which mast cells are recruited to these sites, however, has not been fully elucidated. It has recently been shown that SAA interacts with extracellular matrix (ECM) components and thereby acts as a chemoattractant and regulator of immune cell migration. On the basis of these observations, we examined the effect of SAA on mast cell adhesion to ECM, an essential step in cellular transmigration. We could first demonstrate strong specific binding of recombinant human SAA (rSAA) to murine mast cells using flow cytometry. Moreover, radiolabeled rSAA was found to bind, in a saturable manner, to mast cells, reaching a binding affinity of 10(-8) M. When immobilized by preincubation with ECM, SAA or its proteolytically degraded amyloid A fragment (amino acid residues 2-82), which contains RGD-related adhesion motif but not the COOH-terminal portion of SAA (amino acid residues 77-104), induced the adhesion of resting mast cells to ECM or laminin. SAA and AA, in soluble or immobilized forms, did not activate mast cells to release mediators. Mast cell adhesion to the immobilized ECM-SAA complex appeared to occur through an integrin recognition, inasmuch as adhesion was calcium dependent and could be blocked by an RGD-containing peptide or by anti-CD29 monoclonal antibody. Genistein also inhibited adhesion, indicating that tyrosine kinase activity was involved. These data suggest that SAA bound to ECM may serve as an important inducer of mast cell adhesion, thus regulating mast cell recruitment and accumulation at these sites, which in turn could potentiate further pathology. PMID:9252455

  14. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation

    Science.gov (United States)

    Cuff, Carolyn A.; Kothapalli, Devashish; Azonobi, Ijeoma; Chun, Sam; Zhang, Yuanming; Belkin, Richard; Yeh, Christine; Secreto, Anthony; Assoian, Richard K.; Rader, Daniel J.; Puré, Ellen

    2001-01-01

    Atherosclerosis causes most acute coronary syndromes and strokes. The pathogenesis of atherosclerosis includes recruitment of inflammatory cells to the vessel wall and activation of vascular cells. CD44 is an adhesion protein expressed on inflammatory and vascular cells. CD44 supports the adhesion of activated lymphocytes to endothelium and smooth muscle cells. Furthermore, ligation of CD44 induces activation of both inflammatory and vascular cells. To assess the potential contribution of CD44 to atherosclerosis, we bred CD44-null mice to atherosclerosis-prone apoE-deficient mice. We found a 50–70% reduction in aortic lesions in CD44-null mice compared with CD44 heterozygote and wild-type littermates. We demonstrate that CD44 promotes the recruitment of macrophages to atherosclerotic lesions. Furthermore, we show that CD44 is required for phenotypic dedifferentiation of medial smooth muscle cells to the “synthetic” state as measured by expression of VCAM-1. Finally, we demonstrate that hyaluronan, the principal ligand for CD44, is upregulated in atherosclerotic lesions of apoE-deficient mice and that the low-molecular-weight proinflammatory forms of hyaluronan stimulate VCAM-1 expression and proliferation of cultured primary aortic smooth muscle cells, whereas high-molecular-weight forms of hyaluronan inhibit smooth muscle cell proliferation. We conclude that CD44 plays a critical role in the progression of atherosclerosis through multiple mechanisms. PMID:11581304

  15. 银杏叶提取物对大鼠急性缺血心肌细胞间黏附分子-1和白细胞介素-6表达的影响%Effects of ginkgo biloba extract on intercellular adhesion molecule-1 and interleukin-6 in acute is chemic myocardium of Rats

    Institute of Scientific and Technical Information of China (English)

    黄陆力; 王崇军; 付庆林; 韩培立; 张新中; 刘永强; 王丽娜; 崔勤涛; 周朝元

    2012-01-01

    心肌损伤的程度和冠脉病变范围.(2)大鼠急性心肌梗死中应用银杏叶提取物干预,可下调心肌中ICAM-1和IL-6的表达,减轻大鼠心肌损伤程度,证实银杏叶提取物有较好的心肌保护作用.%Objective To study the expressiou of intercellular adhesion molecule-1 (ICAM-1) and interleukin (IL)-6 in myocardium with acute myocardial infarction in rats and the influence of ginkgo biloba extract on them,and to explore the mechanism of protective effects of ginkgo biloba extract on acute infarcted myocardium.Methods One hundred and nine healthy female SD rats were selected to make acute myocardial infartion model by ligation of the left anterior descending (LAD) coronary artery,and then they were randomly divided into model group ( group A,n =38 ),ginkgo biloba treatment group ( group B,n =39 ),and sham operation group ( group C,n =32).In goup A,the left anterior descending (LAD) coronary artery was ligated solely; in group B,Ginkgo biloba extract (2 mg/kg body weight) was intravenously injected 30 min before ligation of LAD coronary artery; in group C,a loose knol was made around the first descending branch of LAD coronary arterv,witbout ligation.Each group was then randomly divided into 4 subgroups,which were observed 2 h,6 h,48 h,and 7 days after operation,respectively.Blood and heart samples were collected at every time point.Morphological changes were observed by HE staining method under the light microscopy,and ICAM-1 and IL-6 expression was detected by using immunohistochemistry.Results By using HE staining,in group A,the number of myocardial cells was decreased,and myocardial interstitial congestion,edema,myocardial fiber dissolution,flaky necrosis and infiltration of inflammatory cells were observed.Range of myocardial infarction was more than 1/2 of cardiac wall,and large number of viable myocardial cells still could be seen in the other side of cardiac wall; In group B,myocardial injuries were significantly milder than

  16. RNA and DNA aptamers as potential tools to prevent cell adhesion in disease

    Directory of Open Access Journals (Sweden)

    Ulrich H.

    2001-01-01

    Full Text Available Recent research has shown that receptor-ligand interactions between surfaces of communicating cells are necessary prerequisites for cell proliferation, cell differentiation and immune defense. Cell-adhesion events have also been proposed for pathological conditions such as cancer growth, metastasis, and host-cell invasion by parasites such as Trypanosoma cruzi. RNA and DNA aptamers (aptus = Latin, fit that have been selected from combinatorial nucleic acid libraries are capable of binding to cell-adhesion receptors leading to a halt in cellular processes induced by outside signals as a consequence of blockage of receptor-ligand interactions. We outline here a novel approach using RNA aptamers that bind to T. cruzi receptors and interrupt host-cell invasion in analogy to existing procedures of blocking selectin adhesion and function in vitro and in vivo.

  17. Influence of cell surface characteristics on adhesion of Saccharomyces cerevisiae to the biomaterial hydroxylapatite.

    Science.gov (United States)

    White, Jane S; Walker, Graeme M

    2011-02-01

    The influence of the physicochemical properties of biomaterials on microbial cell adhesion is well known, with the extent of adhesion depending on hydrophobicity, surface charge, specific functional groups and acid-base properties. Regarding yeasts, the effect of cell surfaces is often overlooked, despite the fact that generalisations may not be made between closely related strains. The current investigation compared adhesion of three industrially relevant strains of Saccharomyces cerevisiae (M-type, NCYC 1681 and ALY, strains used in production of Scotch whisky, ale and lager, respectively) to the biomaterial hydroxylapatite (HAP). Adhesion of the whisky yeast was greatest, followed by the ale strain, while adhesion of the lager strain was approximately 10-times less. According to microbial adhesion to solvents (MATS) analysis, the ale strain was hydrophobic while the whisky and lager strains were moderately hydrophilic. This contrasted with analyses of water contact angles where all strains were characterised as hydrophilic. All yeast strains were electron donating, with low electron accepting potential, as indicated by both surface energy and MATS analysis. Overall, there was a linear correlation between adhesion to HAP and the overall surface free energy of the yeasts. This is the first time that the relationship between yeast cell surface energy and adherence to a biomaterial has been described.

  18. Bacillus cereus Certhrax ADP-ribosylates vinculin to disrupt focal adhesion complexes and cell adhesion.

    Science.gov (United States)

    Simon, Nathan C; Barbieri, Joseph T

    2014-04-11

    Bacillus cereus is often associated with mild to moderate gastroenteritis; however, some recent isolates cause inhalational anthrax-like diseases and death. These potential emerging human pathogens express multiple virulence factors. B. cereus strain G9241 expresses anthrax toxin, several polysaccharide capsules, and the novel ADP-ribosyltransferase, Certhrax. In this study, we show that Certhrax ADP-ribosylates Arg-433 of vinculin, a protein that coordinates actin cytoskeleton and extracellular matrix interactions. ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to the cytoplasm. Exogenous vinculin rescued these phenotypes. This provides a mechanism for strain G9241 to breach host barrier defenses and promote bacterial growth and spread. Certhrax is the first bacterial toxin to add a post-translational modification to vinculin to disrupt the actin cytoskeleton.

  19. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite.

    Science.gov (United States)

    Zhu, Jianyu; Li, Qian; Jiao, Weifeng; Jiang, Hao; Sand, Wolfgang; Xia, Jinlan; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan

    2012-06-01

    The efficiency of copper leaching is improved by bacteria attached to chalcopyrite. Therefore, the study of the attachment mechanism to control leaching is important. The adhesion of three species of leaching microorganisms including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans to chalcopyrite was investigated by using atomic force microscopy (AFM). The forces were measured with tip-immobilized cells approached to and retracted from the mineral. The results show that both the surface charge and the hydrophobicity of bacteria cells influence the adhesion force. Furthermore, the adhesion force decreased in case the extracellular polymeric substances (EPS) had been removed. In addition, the data indicate that the amount of attached cells increased with increasing adhesion force.

  20. ADHESION INDUCES MATRIX METALLOPROTEINASE-9 GENE EXPRESSION IN OVARIAN CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    田方; 颜春洪; 薛红; 肖凤君

    2002-01-01

    Objective: To investigate the expression of matrix metalloproteinase-9 (MMP-9) gene in cancer cells induced by adhesion with fibronectin and the underlying mechanism of cell invasion. Methods: Following adhesion of ovarian cancer cells A2780 to fibronectin, MMP mRNA expression was assayed by using reverse transcription-polymerase chain reaction (RT-PCR). MMP-9 promoter was cloned from genomic DNA of HT1080 cells with PCR. The MMP-9-pGL2 reporter gene vector was constructed and then transiently transfected into A2780 cells. Results: Adhesion could induce the expression of MMP-9 gene in A2780 cells, but did not affect longer theexpression of MMP-2 or TIMP-1 gene. The induction was enhanced with longer adhesion time. When the transfected cells were allowed to adhere and spread on FN-coated surface, the promoter activity of MMP-9 gene was also enhanced dramatically. Conclusion: adhesion of cells with ECM may stimulate the expression of MMP-9 gene through stimulating the promoter activity, thereby enhancing cancer cell invasion and metastasis.

  1. Molecular basis of sidekick-mediated cell-cell adhesion and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Kerry M.; Yamagata, Masahito; Jin, Xiangshu; Mannepalli, Seetha; Katsamba, Phinikoula S.; Ahlsén, Göran; Sergeeva, Alina P.; Honig, Barry; Sanes, Joshua R.; Shapiro, Lawrence

    2016-09-19

    Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1–4), arranged in a horseshoe conformation. These Ig1–4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (viatransinteractions) and Sdk clustering in isolated cells (viacisinteractions). Sdk1/Sdk2 recognition specificity is encoded across Ig1–4, with Ig1–2 conferring the majority of binding affinity and differential specificity. We suggest that competition betweencisandtransinteractions provides a novel mechanism to sharpen the specificity of cell-cell interactions.

  2. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    Science.gov (United States)

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion.

  3. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    Science.gov (United States)

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation. PMID:19736327

  4. The pro-adhesive and pro-survival effects of glucocorticoid in human ovarian cancer cells.

    Science.gov (United States)

    Yin, Lijuan; Fang, Fang; Song, Xinglei; Wang, Yan; Huang, Gaoxiang; Su, Jie; Hui, Ning; Lu, Jian

    2016-07-01

    Cell adhesion to extracellular matrix (ECM) is controlled by multiple signaling molecules and intracellular pathways, and is pivotal for survival and growth of cells from most solid tumors. Our previous works demonstrated that dexamethasone (DEX) significantly enhances cell adhesion and cell resistance to chemotherapeutics by increasing the levels of integrin β1, α4, and α5 in human ovarian cancer cells. However, it is unclear whether the components of ECM or other membrane molecules are also involved in the pro-adhesive effect of DEX in ovarian cancer cells. In this study, we demonstrated that the treatment of cells with DEX did not change the expression of collagens (I, III, and IV), laminin, CD44, and its principal ligand hyaluronan (HA), but significantly increased the levels of intracellular and secreted fibronectin (FN). Inhibiting the expression of FN with FN1 siRNA or blocking CD44, another FN receptor, with CD44 blocking antibody significantly attenuated the pro-adhesion of DEX, indicating that upregulation of FN mediates the pro-adhesive effect of DEX by its interaction with CD44 besides integrin β1. Moreover, DEX significantly enhanced cell resistance to the chemotherapeutic agent paclitaxel (PTX) by activating PI-3K-Akt pathway. Finally, we found that DEX also significantly upregulated the expression of MUC1, a transmembrane glycoprotein. Inhibiting the expression of MUC1 with MUC1 siRNA significantly attenuated the DEX-induced effects of pro-adhesion, Akt-activation, and pro-survival. In conclusion, these results provide new data that upregulation of FN and MUC1 by DEX contributes to DEX-induced pro-adhesion and protects ovarian cancer cells from chemotherapy. PMID:27151574

  5. Hyaluronan-based pericellular matrix: substrate electrostatic charges and early cell adhesion events

    Directory of Open Access Journals (Sweden)

    C Fotia

    2013-01-01

    Full Text Available Cells are surrounded by a hyaluronan-rich coat called ‘pericellular matrix’ (PCM, mainly constituted by hyaluronan, a long-chain linear polysaccharide which is secreted and resorbed by the cell, depending on its activity. Cell attachment to a surface is mediated by PCM before integrins and focal adhesions are involved. As hyaluronan is known to bear a negative charge at physiological pH, the relevance of its electrical properties in driving the early cell adhesion steps has been studied, exploring how PCM mediates cell adhesion to charged surfaces, such as polyelectrolyte multilayer (PEM films. Poly(ethylene imine (PEI and poly(sodium 4-styrene sulphonate (PSS, assembled as PEI/PSS and PEI/PSS/PEI layers, were used. The nanoscale morphology of such layers was analysed by atomic force microscopy, and the detailed surface structure was analysed by X-ray photoemission spectroscopy. PCM-coated and PCM-depleted MG63 osteoblast-like cells were used, and cell density, morphology and adhesive structures were analysed during early steps of cell attachment to the PEM surfaces (1-6 h. The present study demonstrates that the pericellular matrix is involved in cell adhesion to material surfaces, and its arrangement depends on the cell interaction with the surface. Moreover, the PCM/surface interaction is not simply driven by electrostatic effects, as the cell response may be affected by specific chemical groups at the material surface. In the development of biomimetic surfaces promoting cell adhesion and function, the role of this unrecognised outer cell structure has to be taken into account

  6. RP1 is a phosphorylation target of CK2 and is involved in cell adhesion.

    Directory of Open Access Journals (Sweden)

    Frank Stenner

    Full Text Available RP1 (synonym: MAPRE2, EB2 is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

  7. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    International Nuclear Information System (INIS)

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  8. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Science.gov (United States)

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  9. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  10. Upregulation of cell adhesion through delta Np63 silencing in human 5637 bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yun-Feng He; Dai-Yin Tian; Zheng-Jin Yi; Zhi-Kang Yin; Chun-Li Luo; Wei Tang; Xiao-Hou Wu

    2012-01-01

    Some researchs have demonstrated that the loss of delta Np63 is associated with aggressive phenotypes and poor prognosis.However,other research indicates that delta Np63 is considered to have oncogenic properties,Delta Np63 overexpression is often observed in association with the oncogenic growth of squamous cell carcinomas and bladder cancer.In this study,we investigated the oocogenic role of delta Np63 in regulating cell adhesion in transitional cell carcinoma of the bladder (TCCB).The Cells were stably transfected with the delta Np63 short hairpin RNA (shRNA) plasmid.Immunocytochemistry was performed to determine the knockdown efficiency.Tumour cells were studied for their ability to adhere to vascular endothelial cells.Confocal microscopy was used to analyse the changes in cytoskeletal F-actin.F-actin expression was measured by flow cytometry.Cell invasion ability was assessed using transwell chambers.fhe delta Np63-silenced tumour cells were shown to adhere more tightly than controls to vascular endothelial cells (P<0.05).The content of F-actin in the delta Np63-silenced cells was enhanced (P<0.05),The Matrigel invasion assays showed that human 5637 bladder cancer cells had a lower degree of motility when transfected with pdetta Np63-shRNA ( P< 0.05).In conclusion,silencing of the delta Np63 expression can enhance the adhesiveness of 5637 cells by inducing F-actin cytoskeleton production,and it will possibly inhibit the TCCB invasion and metastasis.

  11. Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion.

    Science.gov (United States)

    Yang, Xiaochen; Steinberg, Florian; Zhuang, Lei; Bessey, Ralph; Trueb, Beat

    2016-07-01

    Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as a decoy receptor and exert a negative effect on cell proliferation. In this study, we performed overexpression experiments with TetOn‑inducible cell clones and downregulation experiments with siRNA oligonucleotides, and found that FGFRL1 had absolutely no effect on cell growth and proliferation. Likewise, we did not observe any influence of FGFRL1 on ERK1/2 activation and on the phosphorylation of 250 other signaling proteins analyzed by the Kinexus antibody microarray. On the other hand, with bacterial petri dishes, we observed a clear effect of FGFRL1 on cell adhesion during the initial hours after cell seeding. Our results suggest that FGFRL1 is a cell adhesion protein similar to the nectins rather than a signaling receptor similar to FGFR1-FGFR4. PMID:27220341

  12. Persistent downregulation of the pancarcinoma-associated epithelial cell adhesion molecule via active intranuclear methylation

    NARCIS (Netherlands)

    van der Gun, Bernardina T. F.; Wasserkort, Reinhold; Monami, Amelie; Jeltsch, Albert; Rasko, Tamits; Slaska-Kiss, Krystyna; Cortese, Rene; Rots, Marianne G.; de Leij, Lou F. M. H.; Ruiters, Marcel H. J.; Kiss, Antal; Weinhold, Elmar; McLaughlin, Pamela M. J.

    2008-01-01

    The epithelial cell adhesion molecule (EpCAM) is expressed at high levels on the surface of most carcinoma cells. SiRNA silencing of EpCAM expression leads to reduced metastatic potential of tumor cells demonstrating its importance in oncogenesis and tumor progression. However, siRNA therapy require

  13. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1.

    Directory of Open Access Journals (Sweden)

    Tingshuang Xu

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD, we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk, a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.

  14. Motion of an Adhesive Gel in a Swelling Gradient a Mechanism for Cell Locomotion

    CERN Document Server

    Joanny, J F; Prost, J; Joanny, Jean-Francois; Julicher, Frank; Prost, Jacques

    2003-01-01

    Motivated by the motion of nematode sperm cells, we present a model for the motion of an adhesive gel on a solid substrate. The gel polymerizes at the leading edge and depolymerizes at the rear. The motion results from a competition between a self-generated swelling gradient and the adhesion on the substrate. The resulting stress provokes the rupture of the adhesion points and allows for the motion. The model predicts an unusual force-velocity relation which depends in significant ways on the point of application of the force.

  15. Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma

    OpenAIRE

    Suzuki, Osamu; ABE, MASAFUMI; Hashimoto, Yuko

    2015-01-01

    The interaction between cell surface glycans and extracellular matrix (ECM) including galectins is known to be closely associated with tumor cell adhesion, invasion and metastasis. We analyzed the roles of cell surface sialylation or glycosylation in galectin or ECM-mediated cell adhesion and invasion of human malignant lymphoma cells. Neuraminidase from Arthrobacter ureafaciens (AU) treatment resulted in reduction of cell adhesion to galectin-8 in human anaplastic large cell lymphoma (H-ALCL...

  16. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Junkyu [Bio alpha., Co. Ltd., Gimhae (Korea, Republic of)

    2014-05-15

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He{sup +} ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He{sup +} ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft.

  17. The Role of Immunoglobulin Superfamily Cell Adhesion Molecules in Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Chee Wai Wong

    2012-01-01

    Full Text Available Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM, L1CAM, neural CAM (NCAM, leukocyte CAM (ALCAM, intercellular CAM-1 (ICAM-1 and platelet endothelial CAM-1 (PECAM-1 could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

  18. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    Full Text Available BACKGROUND: Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. PRINCIPAL FINDINGS: We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain. CONCLUSIONS/SIGNIFICANCE: PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  19. Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Lord, Megan Susan; Modin, Charlotte; Foss, Morten; Duch, Mogens; Simmons, Anne; Pedersen, Finn S; Milthorpe, Bruce K; Besenbacher, Flemming

    2006-09-01

    The quartz crystal microbalance with dissipation (QCM-D) (Q-Sense AB, Sweden) has been established as a useful tool for evaluating interactions between various biological and non-biological systems, and there has been increasing interest in using the QCM-D technique for cell monitoring applications. This study investigated the potential of the QCM-D to characterise the initial adhesion and spreading of cells in contact with protein precoated biocompatible surfaces. The QCM-D technique is attractive for monitoring cell adhesion and spreading as it allows in situ real-time measurements. The adhesion of NIH3T3 (EGFP) fibroblasts to tantalum (Ta) and oxidised polystyrene (PS(ox)) surfaces precoated with serum proteins was examined using the QCM-D for a period of either 2 or 4 h. Time-lapse photography was performed at 30 min intervals to visually examine cell adhesion and spreading in order to relate cell morphology to the QCM-D response. Following adsorption of albumin, fibronectin or newborn calf serum onto the surfaces, QCM-D measurements showed that cells adhered and spread on the fibronectin and serum coated surfaces, while few cells adhered to the albumin coated surfaces. Cells adhered to albumin coated surfaces had a rounded morphology. The responses to fibronectin and serum precoated surfaces were quite different for each of the underlying substrates indicating that the process of cell adhesion and spreading elicits different responses depending on both the protein coating composition and the influence of the underlying substrate. The different response may be due to extracellular matrix remodelling as well as cytoskeletal changes. Frequency (f) and dissipation (D) changes associated with cell adhesion were less than would be expected from the Sauerbrey relation due to the viscoelastic properties of the cells. PMID:16716396

  20. Effects of alpha-lipoic acid on serum soluble intercellular adhesion molecule-1 and high sensitive-C reactive protein in patients with early diabetic nephropathy%α-硫辛酸对早期糖尿病肾病患者细胞间黏附分子-1和超敏C反应蛋白的影响

    Institute of Scientific and Technical Information of China (English)

    高云; 许娟

    2012-01-01

    Objective To investigate the effects of alpha-lipoic acid on serum soluble intercellular adhesion molecule-1 (sICAM-1) and high sensitive-C reactive protein (hs-CRP) levels in patients with early diabetic nephropathy (DN).Methods A total of 61 patients with early DN were randomized into treatment group (n =31 ) and control group ( n =30 ).The two groups were both treated with dietary control and oral hypoglycemic drugs or insulin.Meanwhile,the treatment group was additionally given alpha-lipoic acid 300 mg/d by intravenous infusion for 20 days.The levels of sICAM-1 and hs-CRP in each group were detected.Results The levels of sICAM-1 and hs-CRP were decreased significantly in alpha-lipoic acid treatment group after 20 days of therapy ( [ 198.03 ±23.67] μg/L vs [271.17 ±34.66] μg/L,[5.16 ±0.43] mg/Lvs [7.95 ±0.88]mg/L,P <0.01 ).Conclusion alpha-lipoic acid may decrease the expression of slCAM-1 and hs-CRP,and that may be one of the mechanisms to postpone the progress of early DN.%目的 探讨α-硫辛酸对早期糖尿病肾病(DN)患者可溶性细胞间黏附分子-1( sICAM-1)及超敏C反应蛋白(hs-CRP)的影响.方法 将61例早期DN患者分为治疗组31例及对照组30例,对照组常规饮食控制、口服降糖药或胰岛素处理,治疗组在此基础上加用α-硫辛酸300 mg加入到250 ml生理盐水中静脉滴注,1次/d,连续治疗20 d,测定两组患者的sICAM-1和hs-CRP浓度.结果 治疗组治疗后血清sICAM-1和hs-CRP较治疗前显著降低[(198.03±23.67)、(271.17±34.66) μg/L,(5.16±0.43)、(7.95±0.88) mg/L,t值分别为5.75、3.05,P均<0.01],差异均有统计学意义,对照组不显著.结论 早期DN患者接受α-硫辛酸治疗后sICAM-1和hs-CRP表达降低,提示α-硫辛酸抗氧化应激的同时,亦可能通过降低sICAM-1、hs-CRP的表达改善炎症状态而保护肾脏.

  1. 细胞间黏附分子-1靶向微泡超声造影成像评价肾移植后急性排异反应%Ultrasound imaging of acute renal allograft rejection with microbubbles targeted to intercellular adhesion molecule-1

    Institute of Scientific and Technical Information of China (English)

    纪丽景; 王宝平; 罗利红; 吴凤林

    2011-01-01

    目的 探讨靶向超声分子成像评价肾移植后急性排异反应的可行性.方法 采用“亲和素-生物素”桥接法构建携抗细胞间黏附分子-1(ICAM-1)靶向微泡(MBI)和携同型抗体对照微泡(MB).10只SD大鼠行左侧肾异种移植术,术后72 h移植肾随机先后注入MBI和MB(间隔30 min),分别于注入3 min后行移植肾超声造影检查,并测量移植肾声强度(VI),最后进行肾组织病理及免疫组化检测.结果 移植肾在注入靶向超声微泡后可见肾区域明显灌注显影,延迟3 min显像MBI组在移植肾可见显著的超声显影增强.而MB组移植肾仅见轻度的超声显影增强,其显影强度较前者明显减弱.MBI组和MB组移植肾VI值分别为(27.0±7.4)U、(10.2±2.4)U,两者之间差异有统计学意义(F=64.744,P<0.05).结论应用靶向ICAM-1超声微泡和超声造影结合能有效评价大鼠肾移植急性排异.%Objective To assess the feasibility of evaluation of renal allograft acute rejection in rat with contrast-enhanced ultrasound ( CEUS ) and targeted microbubbles.Methods Phospholipid microbubbles targeted to intercellular adhesion molecule -1 (ICAM-1)(MBI) and control microbubbles (MB) were created by conjugating monoclonal antibody against ICAM-1 or isotype control antibody to the lipid capsule via “avidin-biotin” bridging.Ten SD rats with acute renal allograft rejection were injected intravenous of MBI and MB in random order with a 30-min interval.After 3 min of intravenous injection of microbubbles,targeted CEUS imaging was performed in all rats.And then the video intensity (VI) was determined.Results In MBI group,a significant ultrasonic enhancement was observed,but it was not very obvious in MB group.Increment in VI value of transplant kidney in MBI group was great and it amounted to (27.0 ± 7.4)U,however,increment in VI value of in MB group was minor and it was merely (10.2 ± 2.4) U,Difference was evident in transplant kidney between of the two

  2. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Testrich, H., E-mail: holger.testrich@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany); Rebl, H. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Finke, B.; Hempel, F. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff Str. 2, 17489 Greifswald (Germany); Nebe, B. [University of Rostock, Biomedical Research Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock (Germany); Meichsner, J. [University of Greifswald, Institute of Physics, Felix-Hausdorff Str. 6, 17489 Greifswald (Germany)

    2013-10-15

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion.

  3. Three-dimensional matrix stiffness and adhesive ligands affect cancer cell response to toxins.

    Science.gov (United States)

    Zustiak, Silviya Petrova; Dadhwal, Smritee; Medina, Carlos; Steczina, Sonette; Chehreghanianzabi, Yasaman; Ashraf, Anisa; Asuri, Prashanth

    2016-02-01

    There is an immediate need to develop highly predictive in vitro cell-based assays that provide reliable information on cancer drug efficacy and toxicity. Development of biomaterial-based three-dimensional (3D) cell culture models as drug screening platforms has recently gained much scientific interest as 3D cultures of cancer cells have been shown to more adequately mimic the in vivo tumor conditions. Moreover, it has been recognized that the biophysical and biochemical properties of the 3D microenvironment can play key roles in regulating various cancer cell fates, including their response to chemicals. In this study, we employed alginate-based scaffolds of varying mechanical stiffness and adhesive ligand presentation to further explore the role of 3D microenvironmental cues on glioblastoma cell response to cytotoxic compounds. Our experiments suggested the ability of both matrix stiffness and cell-matrix adhesions to strongly influence cell responses to toxins. Cells were found to be more susceptible to the toxins when cultured in softer matrices that emulated the stiffness of brain tissue. Furthermore, the effect of matrix stiffness on differential cell responses to toxins was negated by the presence of the adhesive ligand RGD, but regained when integrin-based cell-matrix interactions were inhibited. This study therefore indicates that both 3D matrix stiffness and cell-matrix adhesions are important parameters in the design of more predictive in vitro platforms for drug development and toxicity screening.

  4. Glycated LDL increase VCAM-1 expression and secretion in endothelial cells and promote monocyte adhesion through mechanisms involving endoplasmic reticulum stress.

    Science.gov (United States)

    Toma, Laura; Sanda, Gabriela M; Deleanu, Mariana; Stancu, Camelia S; Sima, Anca V

    2016-06-01

    Type 2 Diabetes Mellitus is a worldwide epidemic, and its atherosclerotic complications produce morbidity and mortality in affected patients. It is known that the vascular cell adhesion molecule-1 (VCAM-1) levels are increased in the sera of diabetic patients. Our aim was to investigate the impact of the endoplasmic reticulum stress (ERS) in VCAM-1 expression and secretion in human endothelial cells (HEC) exposed to glycated low-density lipoproteins (gLDL). The results showed that 24 h incubation of HEC with gLDL induces (i) stimulation of VCAM-1 expression and secretion, determining increased monocyte adhesion to HEC; (ii) RAGE up-regulation and free cholesterol loading; (iii) ERS activation (increased eIF2α phosphorylation and CHOP mRNA levels, and decreased GRP78 protein expression); and (iv) oxidative stress [increased levels of reactive oxygen species (ROS) and glutamate cysteine ligase catalytic unit gene expression]. Treatment of gLDL-exposed HEC with ERS inhibitors, salubrinal (Sal) and sodium phenylbutyrate (PBA), decreased intracellular ROS. Incubation of gLDL-exposed cells with the anti-oxidant N-acetyl-cysteine (NAC) reduced ERS, revealed by decreased eIF2α phosphorylation and CHOP gene expression and increased GRP78 expression, thus validating the interconnection between ERS and oxidative stress. Sal, PBA, NAC and inhibitors of p38 MAP kinase and NF-kB induced the decrease of VCAM-1 expression and of the ensuing monocyte adhesion induced by gLDL. In conclusion, in HEC, gLDL stimulate the expression of cellular VCAM-1, the secretion of soluble VCAM-1, and the adhesion of monocytes through mechanisms involving p38 MAP kinase and NF-kB signalling pathways activated by RAGE, ERS and oxidative stress, thus contributing to diabetic atherosclerosis. PMID:27206739

  5. The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins

    OpenAIRE

    1985-01-01

    Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation-- trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The ...

  6. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists.

    Directory of Open Access Journals (Sweden)

    Zhongkui Hong

    Full Text Available In vascular smooth muscle cells (VSMCs integrin-mediated adhesion to extracellular matrix (ECM proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction. AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1 mg\\ml. Results showed that the vasoconstrictor angiotensin II (ANG-II; 10-6 significantly increased (p<0.05 VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10-4 significantly decreased (p<0.05 VSMC E-modulus and adhesion probability by approximately -33% and -17%, respectively. Similarly, the NO donor (PANOate, 10-6 M, a potent vasodilator, also significantly decreased (p<0.05 the VSMC E-modulus and COL-I adhesion probability by -38% and -35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.

  7. A Protocadherin-Cadherin-FLRT3 Complex Controls Cell Adhesion and Morphogenesis

    OpenAIRE

    Chen, Xuejun; Koh, Eunjin; Yoder, Michael; Gumbiner, Barry M.

    2009-01-01

    Background Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFβ signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion. Principal Findings We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, ...

  8. Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Patrick J Hensley

    Full Text Available Cancer cell resistance to anoikis driven by aberrant signaling sustained by the tumor microenvironment confers high invasive potential and therapeutic resistance. We recently generated a novel lead quinazoline-based Doxazosin® derivative, DZ-50, which impairs tumor growth and metastasis via anoikis. Genome-wide analysis in the human prostate cancer cell line DU-145 identified primary downregulated targets of DZ-50, including genes involved in focal adhesion integrity (fibronectin, integrin-α6 and talin, tight junction formation (claudin-11 as well as insulin growth factor binding protein 3 (IGFBP-3 and the angiogenesis modulator thrombospondin 1 (TSP-1. Confocal microscopy demonstrated structural disruption of both focal adhesions and tight junctions by the downregulation of these gene targets, resulting in decreased cell survival, migration and adhesion to extracellular matrix (ECM components in two androgen-independent human prostate cancer cell lines, PC-3 and DU-145. Stabilization of cell-ECM interactions by overexpression of talin-1 and/or exposing cells to a fibronectin-rich environment mitigated the effect of DZ-50. Loss of expression of the intracellular focal adhesion signaling effectors talin-1 and integrin linked kinase (ILK sensitized human prostate cancer to anoikis. Our findings suggest that DZ-50 exerts its antitumor effect by targeting the key functional intercellular interactions, focal adhesions and tight junctions, supporting the therapeutic significance of this agent for the treatment of advanced prostate cancer.

  9. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  10. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    Directory of Open Access Journals (Sweden)

    Janice Kal Van Tam, Koichiro Uto, Mitsuhiro Ebara, Stefania Pagliari, Giancarlo Forte and Takao Aoyagi

    2012-01-01

    Full Text Available The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell–matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  11. Degranulation of human mast cells induces an endothelial antigen central to leukocyte adhesion.

    OpenAIRE

    Klein, L M; Lavker, R M; Matis, W L; Murphy, G F

    1989-01-01

    To understand better the role of mast cell secretory products in the genesis of inflammation, a system was developed for in vitro degranulation of human mast cells in skin organ cultures. Within 2 hr after morphine sulfate-induced degranulation, endothelial cells lining microvessels adjacent to affected mast cells expressed an activation antigen important for endothelial-leukocyte adhesion. Identical results were obtained when other mast cell secretagogues (anti-IgE, compound 48/80, and calci...

  12. Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach

    OpenAIRE

    Choi, Chang Kyoung; Sukhthankar, Mugdha; Kim, Chul-Ho; Lee, Seong-Ho; English, Anthony; Kenneth D. Kihm; Baek, Seung Joon

    2009-01-01

    Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties. In the presented study, we used stable human colorectal cancer cell lines ectopical...

  13. Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors

    Science.gov (United States)

    Ramakrishnan, N.; Tourdot, Richard W.; Eckmann, David M.; Ayyaswamy, Portonovo S.; Muzykantov, Vladimir R.; Radhakrishnan, Ravi

    2016-01-01

    In order to achieve selective targeting of affinity–ligand coated nanoparticles to the target tissue, it is essential to understand the key mechanisms that govern their capture by the target cell. Next-generation pharmacokinetic (PK) models that systematically account for proteomic and mechanical factors can accelerate the design, validation and translation of targeted nanocarriers (NCs) in the clinic. Towards this objective, we have developed a computational model to delineate the roles played by target protein expression and mechanical factors of the target cell membrane in determining the avidity of functionalized NCs to live cells. Model results show quantitative agreement with in vivo experiments when specific and non-specific contributions to NC binding are taken into account. The specific contributions are accounted for through extensive simulations of multivalent receptor–ligand interactions, membrane mechanics and entropic factors such as membrane undulations and receptor translation. The computed NC avidity is strongly dependent on ligand density, receptor expression, bending mechanics of the target cell membrane, as well as entropic factors associated with the membrane and the receptor motion. Our computational model can predict the in vivo targeting levels of the intracellular adhesion molecule-1 (ICAM1)-coated NCs targeted to the lung, heart, kidney, liver and spleen of mouse, when the contributions due to endothelial capture are accounted for. The effect of other cells (such as monocytes, etc.) do not improve the model predictions at steady state. We demonstrate the predictive utility of our model by predicting partitioning coefficients of functionalized NCs in mice and human tissues and report the statistical accuracy of our model predictions under different scenarios. PMID:27429783

  14. Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors

    Science.gov (United States)

    Ramakrishnan, N.; Tourdot, Richard W.; Eckmann, David M.; Ayyaswamy, Portonovo S.; Muzykantov, Vladimir R.; Radhakrishnan, Ravi

    2016-06-01

    In order to achieve selective targeting of affinity-ligand coated nanoparticles to the target tissue, it is essential to understand the key mechanisms that govern their capture by the target cell. Next-generation pharmacokinetic (PK) models that systematically account for proteomic and mechanical factors can accelerate the design, validation and translation of targeted nanocarriers (NCs) in the clinic. Towards this objective, we have developed a computational model to delineate the roles played by target protein expression and mechanical factors of the target cell membrane in determining the avidity of functionalized NCs to live cells. Model results show quantitative agreement with in vivo experiments when specific and non-specific contributions to NC binding are taken into account. The specific contributions are accounted for through extensive simulations of multivalent receptor-ligand interactions, membrane mechanics and entropic factors such as membrane undulations and receptor translation. The computed NC avidity is strongly dependent on ligand density, receptor expression, bending mechanics of the target cell membrane, as well as entropic factors associated with the membrane and the receptor motion. Our computational model can predict the in vivo targeting levels of the intracellular adhesion molecule-1 (ICAM1)-coated NCs targeted to the lung, heart, kidney, liver and spleen of mouse, when the contributions due to endothelial capture are accounted for. The effect of other cells (such as monocytes, etc.) do not improve the model predictions at steady state. We demonstrate the predictive utility of our model by predicting partitioning coefficients of functionalized NCs in mice and human tissues and report the statistical accuracy of our model predictions under different scenarios.

  15. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    Science.gov (United States)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  16. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    Science.gov (United States)

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  17. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    Energy Technology Data Exchange (ETDEWEB)

    Sackmann, Erich, E-mail: sackmann@ph.tum.de [Physics Department E22, Technical University Munich, D-85748 Garching (Germany)

    2011-06-15

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  18. Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods.

    Science.gov (United States)

    Le Blay, Gwenaëlle; Fliss, Ismaïl; Lacroix, Christophe

    2004-11-01

    Different methods are used to study bacterial adhesion to intestinal epithelial cells, which is an important step in pathogenic infection as well as in probiotic colonization of the intestinal tract. The aim of this study was to compare the ELISA-based method with more conventional plate count and radiolabeling methods for bacterial adhesion detection. An ELISA-based assay was optimized for the detection of Bifidobacterium longum and Escherichia coli O157:H7, which are low and highly adherent bacteria, respectively. In agreement with previous investigations, a percentage of adhesion below 1% was obtained for B. longum with ELISA. However, high nonspecific background and low positive signals were measured due to the use of polyclonal antibodies and the low adhesion capacity with this strain. In contrast, the ELISA-based method developed for E. coli adhesion detected a high adhesion percentage (15%). For this bacterium the three methods tested gave similar results for the highest bacterial concentrations (6.8 Log CFU added bacteria/well). However, differences among methods increased with the addition of decreased bacterial concentration due to different detection thresholds (5.9, 5.6 and 2.9 Log CFU adherent bacteria/well for radioactivity, ELISA and plate count methods, respectively). The ELISA-based method was shown to be a good predictor for bacterial adhesion compared to the radiolabeling method when good quality specific antibodies were used. This technique is convenient and allows handling of numerous samples.

  19. Cell adhesion of F{sup +} ion implantation of intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.J. E-mail: dejunli@hotmail.com; Cui, F.Z.; Gu, H.Q

    1999-04-01

    The cell adhesion of ion implanted polymethylmethacrylate (PMMA) intraocular lens was studied using cultured cells in vitro. F{sup +} ion implantation was performed at the energies of 40, 60, 80, 100 keV with the fluences ranging from 5x10{sup 13} to 1x10{sup 15} ions/cm{sup 2} at room temperature. The cell adhesion tests gave interesting results that the number of the neutral granulocytes and the macrophages adhering on surface were reduced significantly after ion implantation. The optimal fluence was about 4x10{sup 14} ions/cm{sup 2}. The hydrophobicity imparted to the lens surface was also enhanced. The results of X-ray photoelectron spectroscopy analysis indicated that ion implantation resulted in the cleavage of some pendant groups, the oxidation of the surface, and the formation of some new chemical bonds, which was probably the main reason for the cell adhesion change.

  20. Cell adhesion, inflammation and therapy: Old ideas and a significant step forward

    Institute of Scientific and Technical Information of China (English)

    Roberto GONZ(A)LEZ-AMARO

    2011-01-01

    Cell-to-cell adhesion as well as the interaction of cells with the extracellular matrix are key phenomena in different physiological and pathological conditions,including embryogenesis,blood coagulation,lymphocyte homing,immune response,angiogenesis,metastasis,thrombosis and inflammation[1,2].Thus,it has been widely proposed that cell adhesion molecules are an important therapeutic target in a wide array of diseases with high impact on public health,including atherosclerosis,thromboembolic disorders,cancer,graft rejection and autoimmune inflammatory conditions[1,2].However,anti-adhesion therapy with either biological agents (mainly blocking monoclonal antibodies,mAb's) or chemical inhibitors (mainly synthetic peptides) has not yet fulfilled these expectations and has not been devoid of undesirable effects[3,4

  1. Adhesion molecule expression stimulated by Bacteroides thetaiotaomicron cell-surface antigens.

    Science.gov (United States)

    Rokosz, A; Meisel-Mikołajczyk, F; Malchar, C; Nowaczyk, M; Górski, A

    1999-01-01

    Bacteroides thetaiotaomicron, a Gram-negative anaerobic rod belonging to the Bacteroides fragilis group (BFG), is involved in many systemic and local, most frequently suppurative infections in man. The cell envelope of these rods is composed of two carbohydrate-containing antigens: lipopolysaccharide (LPS) and capsular polysaccharide (CPS). Adhesion molecules ICAM-1, VCAM-1 and E-selectin (ELAM-1) are induced on the endothelial cells by mediators of inflammation. The aim of this study was to assay the ability of B. thetaiotaomicron surface antigens to induce adhesion molecule expression on the endothelial cells. The influence of LPS and CPS on the expression of adhesion molecules on HMEC-1 cell line was examined in an ELISA test. ELISA was performed with monoclonal mouse anti-human: ICAM-1, VCAM-1 and E-selectin antibodies of the IgG class. B. thetaiotaomicron lipopolysaccharides revealed the ability to induce ICAM-1, VCAM-1 and E-selectin expression on the endothelial cells. Their activities were similar, but lower than the activity of Eschericha coli LPS. ICAM-1 was the most stimulated adhesion molecule. The strongest activation by LPS was achieved at the concentrations of 10.0 and 1.0 micrograms/ml. The ability of capsular polysaccharide to induce the expression of adhesion molecules was considerably weaker.

  2. E-cadherin mediates adhesion and endocytosis of Aspergillus fumigatus blastospores in human epithelial cells

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-yong; SHI Yi; ZHANG Peng-peng; ZHANG Feng; SHEN Yu-ying; SU Xin; ZHAO Bei-lei

    2012-01-01

    Background Aspergillus fumigatus (A.fumigatus) is a ubiquitous saprophytic fungus responsible for the majority of invasive mold infections in patients undergoing chemotherapy,organ transplantation or with persistent neutropenia.This study aimed to determine the role of E-cadherin for adhesion and endocytosis of A.fumigatus blastospores in the human epithelial cell line A549.Methods A.fumigatus blastospores were incubated with the total protein of A549 to investigate the binding of E-cadherin and blastospores followed by an affinity purification procedure.After establishing the adhesion model,the adhesion and endocytosis of A.fumigatus blastospores by A549 cells were evaluated by down-regulating E-cadherin of A549 cells using blocking antibody or small interfering RNA (siRNA).Results E-cadherin was adhered to the surface of A.fumigatus blastospore.Adhesion and endocytosis of the blastospores were reduced by blocking or down-regulating E-cadherin in A549 cells.Conclusions E-cadherin is a receptor for adhesion and endocytosis of A.fumigatus blastospores in epithelial cells.This may open a new approach to treat this fungal infection.

  3. The first EGF domain of coagulation factor IX attenuates cell adhesion and induces apoptosis.

    Science.gov (United States)

    Ishikawa, Tomomi; Kitano, Hisataka; Mamiya, Atsushi; Kokubun, Shinichiro; Hidai, Chiaki

    2016-07-01

    Coagulation factor IX (FIX) is an essential plasma protein for blood coagulation. The first epidermal growth factor (EGF) motif of FIX (EGF-F9) has been reported to attenuate cell adhesion to the extracellular matrix (ECM). The purpose of the present study was to determine the effects of this motif on cell adhesion and apoptosis. Treatment with a recombinant EGF-F9 attenuated cell adhesion to the ECM within 10 min. De-adhesion assays with native FIX recombinant FIX deletion mutant proteins suggested that the de-adhesion activity of EGF-F9 requires the same process of FIX activation as that which occurs for coagulation activity. The recombinant EGF-F9 increased lactate dehydrogenase (LDH) activity release into the medium and increased the number of cells stained with annexin V and activated caspase-3, by 8.8- and 2.7-fold respectively, indicating that EGF-F9 induced apoptosis. Activated caspase-3 increased very rapidly after only 5 min of administration of recombinant EGF-F9. Treatment with EGF-F9 increased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK), but not that of phosphorylated MAPK 44/42 or c-Jun N-terminal kinase (JNK). Inhibitors of caspase-3 suppressed the release of LDH. Caspase-3 inhibitors also suppressed the attenuation of cell adhesion and phosphorylation of p38 MAPK by EGF-F9. Our data indicated that EGF-F9 activated signals for apoptosis and induced de-adhesion in a caspase-3 dependent manner. PMID:27129300

  4. Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion

    OpenAIRE

    1992-01-01

    Regulated adhesion enables T cells to migrate through tissue and transiently interact with an endless succession of cells. Monoclonal antibody (mAb) engagement of the CD3/T cell receptor (TCR) complex results in a rapid and transient augmentation of the adhesion function of LFA-1 and VLA integrin molecules on human T cells. We show in this study that mAb crosslinking of the T cell-specific accessory molecules CD7 and CD28, or treatment with the Ca2+ ionophore A23187, results in the rapid indu...

  5. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  6. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  7. An open source based high content screening method for cell biology laboratories investigating cell spreading and adhesion.

    Directory of Open Access Journals (Sweden)

    Andre Schmandke

    Full Text Available BACKGROUND: Adhesion dependent mechanisms are increasingly recognized to be important for a wide range of biological processes, diseases and therapeutics. This has led to a rising demand of pharmaceutical modulators. However, most currently available adhesion assays are time consuming and/or lack sensitivity and reproducibility or depend on specialized and expensive equipment often only available at screening facilities. Thus, rapid and economical high-content screening approaches are urgently needed. RESULTS: We established a fully open source high-content screening method for identifying modulators of adhesion. We successfully used this method to detect small molecules that are able to influence cell adhesion and cell spreading of Swiss-3T3 fibroblasts in general and/or specifically counteract Nogo-A-Δ20-induced inhibition of adhesion and cell spreading. The tricyclic anti-depressant clomipramine hydrochloride was shown to not only inhibit Nogo-A-Δ20-induced cell spreading inhibition in 3T3 fibroblasts but also to promote growth and counteract neurite outgrowth inhibition in highly purified primary neurons isolated from rat cerebellum. CONCLUSIONS: We have developed and validated a high content screening approach that can be used in any ordinarily equipped cell biology laboratory employing exclusively freely available open-source software in order to find novel modulators of adhesion and cell spreading. The versatility and adjustability of the whole screening method will enable not only centers specialized in high-throughput screens but most importantly also labs not routinely employing screens in their daily work routine to investigate the effects of a wide range of different compounds or siRNAs on adhesion and adhesion-modulating molecules.

  8. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614

  9. Vascular Endothelial-Cadherin Regulates Cytoskeletal Tension, Cell Spreading, and Focal Adhesions by Stimulating RhoAD⃞

    Science.gov (United States)

    Nelson, Celeste M.; Pirone, Dana M.; Tan, John L.; Chen, Christopher S.

    2004-01-01

    Changes in vascular endothelial (VE)-cadherin–mediated cell-cell adhesion and integrin-mediated cell-matrix adhesion coordinate to affect the physical and mechanical rearrangements of the endothelium, although the mechanisms for such cross talk remain undefined. Herein, we describe the regulation of focal adhesion formation and cytoskeletal tension by intercellular VE-cadherin engagement, and the molecular mechanism by which this occurs. Increasing the density of endothelial cells to increase cell-cell contact decreased focal adhesions by decreasing cell spreading. This contact inhibition of cell spreading was blocked by disrupting VE-cadherin engagement with an adenovirus encoding dominant negative VE-cadherin. When changes in cell spreading were prevented by culturing cells on a micropatterned substrate, VE-cadherin–mediated cell-cell contact paradoxically increased focal adhesion formation. We show that VE-cadherin engagement mediates each of these effects by inducing both a transient and sustained activation of RhoA. Both the increase and decrease in cell-matrix adhesion were blocked by disrupting intracellular tension and signaling through the Rho-ROCK pathway. In all, these findings demonstrate that VE-cadherin signals through RhoA and the actin cytoskeleton to cross talk with cell-matrix adhesion and thereby define a novel pathway by which cell-cell contact alters the global mechanical and functional state of cells. PMID:15075376

  10. Impact of electrospun nanofibres orientation on mesenchymal stem cell adhesion and morphology

    International Nuclear Information System (INIS)

    Electrospun nanofibrous materials mimicking the architecture of native extracellular matrix (ECM) hold great promise as scaffolds in tissue engineering. In order to optimize the properties of nanofibrous scaffolds it is important to understand the impact of fibres’ organization on cell behaviour. Herein, we investigated the effect of nanofibres (NFs) alignment on human adipose-derived mesenchymal stem cells (hAD-MSCs) adhesion and morphology. Electrospun composite fibrinogen/poly-lactic acid (FNG/PLA) NF scaffolds with same composition and comparable fibre size were fabricated into randomly oriented and aligned configuration and stem cells adhesion was characterized by the meaning of overall cell morphology, actin cytoskeleton organization and expression of molecules, involved in the development of focal adhesion complexes. We found that hAD-MSCs altered their morphology, actin cytoskeleton and cell attachment in accordance with nanofibre orientation while cell spreading, focal adhesions and expression of β1 and αN integrin receptors were not influenced significantly by fibre orientation. These results confirmed that fibre alignment of scaffold guide cellular arrangement and could be beneficial for stem differentiation and therefore for the successful scaffolds development if its contact guidance coincided with the cell shape and cytoskeletal tension. Key words: electrospinning, human adipose-derived stem cells, fibrinogen/polylactic acid hybrid nanofibres

  11. Cancer Cell Adhesion and Metastasis: Selectins, Integrins, and the Inhibitory Potential of Heparins

    Directory of Open Access Journals (Sweden)

    Gerd Bendas

    2012-01-01

    Full Text Available Cell adhesion molecules play a significant role in cancer progression and metastasis. Cell-cell interactions of cancer cells with endothelium determine the metastatic spread. In addition, direct tumor cell interactions with platelets, leukocytes, and soluble components significantly contribute to cancer cell adhesion, extravasation, and the establishment of metastatic lesions. Clinical evidence indicates that heparin, commonly used for treatment of thromboembolic events in cancer patients, is beneficial for their survival. Preclinical studies confirm that heparin possesses antimetastatic activities that lead to attenuation of metastasis in various animal models. Heparin contains several biological activities that may affect several steps in metastatic cascade. Here we focus on the role of cellular adhesion receptors in the metastatic cascade and discuss evidence for heparin as an inhibitor of cell adhesion. While P- and L-selectin facilitation of cellular contacts during hematogenous metastasis is being accepted as a potential target of heparin, here we propose that heparin may also interfere with integrin activity and thereby affect cancer progression. This review summarizes recent findings about potential mechanisms of tumor cell interactions in the vasculature and antimetastatic activities of heparin.

  12. Extracellular matrix heparin induces alteration of the cell adhesion during brain development

    NARCIS (Netherlands)

    Ushakova, GA; Nikonenko, IR; Nikonenko, AG; Skibo, GG

    2002-01-01

    The studies of neuronal cell-glycosaminoglycan interactions indicate an increasing interest in the question of how heparin can mediate adhesion properties of the cell. We have found that high levels of both N-CAM concentration and heparin-binding activity were noticed in the early stages of brain fo

  13. QUANTIFICATION OF GLOMERULAR EPITHELIAL-CELL ADHESION BY USING ANTI-DNA ANTIBODIES IN ELISA

    NARCIS (Netherlands)

    COERS, W; SMEENK, RJT; SALANT, DJ; WEENING, JJ

    1992-01-01

    A sensitive and reproducible microassay is described for quantification of adhesion of cells to matrix-coated 96-wells plates under different experimental conditions. For this purpose glomerular visceral epithelial cells (GVEC) were used. Attached GVEC were fixed with methanol and incubated with a m

  14. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications

    DEFF Research Database (Denmark)

    Bouaidat, Salim; Berendsen, C.; Thomsen, P.;

    2004-01-01

    conventional cleanroom photolithography and lift-off. Single cell arrays showed sharp contrast in cell adhesion between the untreated glass surface and the ppCrown layer. Similarly, proteins adsorbed selectively to untreated glass but not to ppCrown. The simplicity of the liftoff technique and the sturdiness...

  15. Epithelial to mesenchymal transition-The roles of cell morphology, labile adhesion and junctional coupling.

    OpenAIRE

    Abdulla, Tariq; Schleich, Jean-Marc; Summers, Ron

    2013-01-01

    International audience Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the inte...

  16. Spatiotemporal distribution and function of N-cadherin in postnatal Schwann cells: A matter of adhesion?

    DEFF Research Database (Denmark)

    Corell, Mikael; Wicher, Grzegorz; Limbach, Christoph;

    2010-01-01

    During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this ...

  17. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  18. p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer

    Science.gov (United States)

    Li, Yang; Francia, Giulio; Zhang, Jian-Ying

    2015-01-01

    p62/IMP2 is an oncofetal protein that is overexpressed in several types of cancer, and is a member of the family of insulin-like growth factor 2 mRNA binding proteins. We previously reported that high levels of p62/IMP2 autoantibody are present in sera from cancer patients, compared to healthy individuals. Here, we report the overexpression of p62/IMP2 in tumor tissues of 72 out of 104 cases of human breast cancer, and high levels of p62/IMP2 autoantibody in patients’ sera (in 63 out of 216 cases). To explore the role of p62/IMP2 in breast cancer progression, we generated p62/IMP2 transfected variants of two human breast cancer cell lines: MDA-MB-231 and LM2-4. Using in vitro assays we found that overexpression of p62/IMP2 can increase cell migration, and reduce cell adhesion to extracellular matrix (ECM) proteins. A Human Extracellular Matrix and Adhesion Molecules qPCR array was performed with our generated variants, and it identified a group of mRNAs whose expression was altered with p62/IMP2 overexpression, including connective tissue growth factor (CTGF) mRNA – which we show to be a p62/IMP2 binding partner. Overall, our results provide new insights into the molecular mechanism by which p62/IMP2 can contribute to breast cancer progression. PMID:26416451

  19. High expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 and 8 in primary myelofibrosis

    DEFF Research Database (Denmark)

    Hasselbalch, Hans Carl; Skov, Vibe; Larsen, Thomas Stauffer;

    2011-01-01

    for the egress of CD34+ cells from the bone marrow. Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 has been implicated in cell adhesion, cellular invasiveness, angiogenesis, and inflammation, which are all key processes in the pathophysiology of PMF. Accordingly, CEACAMs may play an important...

  20. PDE8 regulates rapid Teff cell adhesion and proliferation independent of ICER.

    Directory of Open Access Journals (Sweden)

    Amanda G Vang

    Full Text Available BACKGROUND: Abolishing the inhibitory signal of intracellular cAMP by phosphodiesterases (PDEs is a prerequisite for effector T (Teff cell function. While PDE4 plays a prominent role, its control of cAMP levels in Teff cells is not exclusive. T cell activation has been shown to induce PDE8, a PDE isoform with 40- to 100-fold greater affinity for cAMP than PDE4. Thus, we postulated that PDE8 is an important regulator of Teff cell functions. METHODOLOGY/PRINCIPAL FINDINGS: We found that Teff cells express PDE8 in vivo. Inhibition of PDE8 by the PDE inhibitor dipyridamole (DP activates cAMP signaling and suppresses two major integrins involved in Teff cell adhesion. Accordingly, DP as well as the novel PDE8-selective inhibitor PF-4957325-00 suppress firm attachment of Teff cells to endothelial cells. Analysis of downstream signaling shows that DP suppresses proliferation and cytokine expression of Teff cells from Crem-/- mice lacking the inducible cAMP early repressor (ICER. Importantly, endothelial cells also express PDE8. DP treatment decreases vascular adhesion molecule and chemokine expression, while upregulating the tight junction molecule claudin-5. In vivo, DP reduces CXCL12 gene expression as determined by in situ probing of the mouse microvasculature by cell-selective laser-capture microdissection. CONCLUSION/SIGNIFICANCE: Collectively, our data identify PDE8 as a novel target for suppression of Teff cell functions, including adhesion to endothelial cells.

  1. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform.

    Science.gov (United States)

    Hu, Ke; Zhou, Naizhen; Li, Yang; Ma, Siyu; Guo, Zhaobin; Cao, Meng; Zhang, Qiying; Sun, Jianfei; Zhang, Tianzhu; Gu, Ning

    2016-06-22

    Cell-adhesive properties are of great significance to materials serving as extracellular matrix mimics. Appropriate cell-adhesive property of material interface can balance the cell-matrix interaction and cell-cell interaction and can promote cells to form 3D structures. Herein, a novel magnetic polyacrylamide (PAM) hydrogel fabricated via combining magnetostatic field induced magnetic nanoparticles assembly and hydrogel gelation was applied as a multicellular spheroids culturing platform. When cultured on the cell-adhesive microarray interface of sliced magnetic hydrogel, normal and tumor cells from different cell lines could rapidly form multicellular spheroids spontaneously. Furthermore, cells which could only form loose cell aggregates in a classic 3D cell culture model (such as hanging drop system) were able to be promoted to form multicellular spheroids on this platform. In the light of its simplicity in fabricating as well as its effectiveness in promoting formation of multicellular spheroids which was considered as a prevailing tool in the study of the microenvironmental regulation of tumor cell physiology and therapeutic problems, this composite material holds promise in anticancer drugs or hyperthermia therapy evaluation in vitro in the future. PMID:27258682

  2. Controlling Interdiffusion, Interfacial Composition, and Adhesion in Polymer Solar Cells

    KAUST Repository

    Dupont, Stephanie R.

    2014-07-10

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. NEXAFS spectroscopy is used to precisely quantify the interfacial composition and P3HT chain orientation at the weak P3HT:PCBM/PEDOT:PSS interface. An increase of P3HT:PCBM and PEDOT:PSS interdiffusion with post electrode deposition annealing time and temperature is found to be the underlying mechanism for effectively improving the interlayer adhesion, which is essential for the commercial realization of organic photovoltaic devices.

  3. Chemically modified heparins inhibit fibrinogen-bridged indirect adhesion between tumor cells and platelets

    OpenAIRE

    Zheng, Sheng; Liu, Yan; Jiao, Yang; Min WEI; ZENG, XIANLU

    2011-01-01

    The interaction between platelets and tumor cells is critical for the hematogenous metastasis of tumor cells. We recently reported that fibrinogen was capable of bridging and enhancing the interaction of platelets and tumor cells under conditions of physical shear force. In the present study, we aimed to detect the effects of 8 chemically modified heparins on the binding of fibrinogen to platelets or tumor cells using flow cytometry assays, as well as the fibrinogen-bridged adhesion of platel...

  4. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase

    OpenAIRE

    WANG, CHUNHUAI; Xiang, Ru; ZHANG, XIANGZHONG; CHEN, YUNXIAN

    2015-01-01

    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were...

  5. Phorbol ester modulation of integrin-mediated cell adhesion: a postreceptor event

    OpenAIRE

    1989-01-01

    Chinese hamster ovary (CHO) suspension culture cells adhere readily to substrata coated with extracellular matrix proteins such as fibronectin, vitronectin, or laminin. In the case of fibronectin, it is known that adhesion is mediated by an integrin-type, cell surface fibronectin receptor (FnR). We demonstrate here that treatment of CHO cells with submicromolar concentrations of phorbol ester produces a remarkable increase in the ability of these cells to adhere to fibronectin. Both the rate ...

  6. A role for collagen XXIII in cancer cell adhesion, anchorage-independence, and metastasis

    OpenAIRE

    Spivey, Kristin A.; Chung, Ivy; Banyard, Jacqueline; Adini, Irit; Feldman, Henry A.; Bruce R Zetter

    2011-01-01

    Collagen XXIII is a transmembrane collagen previously shown to be upregulated in metastatic prostate cancer that has been used as a tissue and fluid biomarker for non-small cell lung cancer and prostate cancer. To determine whether collagen XXIII facilitates cancer cell metastasis in vivo and to establish a function for collagen XXIII in cancer progression, collagen XXIII knockdown cells were examined for alterations in in vivo metastasis as well as in vitro cell adhesion. In experimental and...

  7. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    International Nuclear Information System (INIS)

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar