Methods of celestial mechanics
Brouwer, Dirk
2013-01-01
Methods of Celestial Mechanics provides a comprehensive background of celestial mechanics for practical applications. Celestial mechanics is the branch of astronomy that is devoted to the motions of celestial bodies. This book is composed of 17 chapters, and begins with the concept of elliptic motion and its expansion. The subsequent chapters are devoted to other aspects of celestial mechanics, including gravity, numerical integration of orbit, stellar aberration, lunar theory, and celestial coordinates. Considerable chapters explore the principles and application of various mathematical metho
Adventures in Celestial Mechanics
Szebehely, Victor G
1998-01-01
A fascinating introduction to the basic principles of orbital mechanics. It has been three hundred years since Isaac Newton first formulated laws to explain the orbits of the Moon and the planets of our solar system. In so doing he laid the groundwork for modern science's understanding of the workings of the cosmos and helped pave the way to the age of space exploration. Adventures in Celestial Mechanics offers students an enjoyable way to become acquainted with the basic principles involved in the motions of natural and human-made bodies in space. Packed with examples in which these principle
Frontiers in relativistic celestial mechanics
2014-01-01
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.
The geometry of celestial mechanics
Geiges, Hansjörg
2016-01-01
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
An introduction to celestial mechanics
Moulton, Forest Ray
1984-01-01
An unrivaled text in the field of celestial mechanics, Moulton's theoretical work on the prediction and interpretation of celestial phenomena has not been superseded. By providing a general account of all parts of celestial mechanics without an over-full treatment of any single aspect, by stating all the problems in advance, and, where the transformations are long, giving an outline of the steps which must be made, and by noting all the places where assumptions have been introduced or unjustified methods employed, Moulton has insured that his work will be valuable to all who are interested in
Celestial mechanics with geometric algebra
Hestenes, D.
1983-01-01
Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.
Modern Questions of Celestial Mechanics
Colombo, Giovanni
2011-01-01
C. Agostinelli: Sul problema delle aurore boreali e il moto di un corpuscolo elettrizzato in presenza di un dipolo magnetico.- G. Colombo: Introduction to the theory of earth's motion about its center of mass.- E.M. Gaposchkin: The motion of the pole and the earth's elasticity as studied from the gravity field of the earth by means of artificial earth satellites.- I.I. Shapiro: Radar astronomy, general relativity, and celestial mechanics.- V. Szebehely: Applications of the restricted problem of three bodies in space research.- G.A. Wilkins: The analysis of the observation of the satellites of
Celestial mechanics and astrodynamics theory and practice
Gurfil, Pini
2016-01-01
This volume is designed as an introductory text and reference book for graduate students, researchers and practitioners in the fields of astronomy, astrodynamics, satellite systems, space sciences and astrophysics. The purpose of the book is to emphasize the similarities between celestial mechanics and astrodynamics, and to present recent advances in these two fields so that the reader can understand the inter-relations and mutual influences. The juxtaposition of celestial mechanics and astrodynamics is a unique approach that is expected to be a refreshing attempt to discuss both the mechanics of space flight and the dynamics of celestial objects. “Celestial Mechanics and Astrodynamics: Theory and Practice” also presents the main challenges and future prospects for the two fields in an elaborate, comprehensive and rigorous manner. The book presents homogenous and fluent discussions of the key problems, rendering a portrayal of recent advances in the field together with some basic concepts and essential in...
An elementary survey of celestial mechanics
Ryabov, Y
2006-01-01
An accessible exposition of gravitation theory and celestial mechanics, this classic, oft-cited work was written by a distinguished Soviet astronomer. It explains with exceptional clarity the methods used by physicists in studying celestial phenomena.A historical introduction explains the Ptolemaic view of planetary motion and its displacement by the studies of Copernicus, Kepler, and Newton. Succeeding chapters examine the making of celestial observations and measurements and explain such central concepts as the ecliptic, the orbital plane, the two- and three-body problems, and perturbed moti
Relativistic Celestial Mechanics of the Solar System
Kopeikin, Sergei; Kaplan, George
2011-01-01
This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r
Recent advances in celestial and space mechanics
Chyba, Monique
2016-01-01
This book presents recent advances in space and celestial mechanics, with a focus on the N-body problem and astrodynamics, and explores the development and application of computational techniques in both areas. It highlights the design of space transfers with various modes of propulsion, like solar sailing and low-thrust transfers between libration point orbits, as well as a broad range of targets and applications, like rendezvous with near Earth objects. Additionally, it includes contributions on the non-integrability properties of the collinear three- and four-body problem, and on general conditions for the existence of stable, minimum energy configurations in the full N-body problem. A valuable resource for physicists and mathematicians with research interests in celestial mechanics, astrodynamics and optimal control as applied to space transfers, as well as for professionals and companies in the industry.
New Methods of Celestial Mechanics
Poincare, Henri; Goroff, David
Edited by Daniel Goroff, Harvard University This English-language edition of Poincare's landmark work is of interest not only to historians of science, but also to mathematicians. Beginning from an investigation of the three-body problem of Newtonian mechanics, Poincare lays the foundations of the qualitative solutions of differential equations. To investigate the long-unsolved problem of the stability of the Solar System, Poincare invented a number of new techniques including canonical transformations, asymptotic series expansions, and integral invariants. These "new methods" are even now finding applications in chaos and other contemporary disciplines. Contents: Volume I: Periodic and asymptotic solutions: Introduction by Daniel Goroff. Generalities and the Jacobi method. Series integration. Periodic solutions. Characteristic exponents. Nonexistence of uniform integrals. Approximate development of the perturbative function. Asymptotic solutions. Volume II: Approximations by series: Formal calculus. Methods of Newcomb and Lindstedt. Application to the study of secular variations. Application to the three-body problem. Application to orbits. Divergence of the Lindstedt series. Direct calculation of the series. Other methods of direct calculation. Gylden methods. Case of linear equations. Bohlin methods. Bohlin series. Extension of the Bohlin method. Volume III: Integral invariants and asymptotic properties of certain solutions: Integral invariants. Formation of invariants. Use of integral invariants. Integral invariants and asymptotic solutions. Poisson stability. Theory of consequents. Periodic solutions of the second kind. Different forms of the principle of least action.
Gravitation and celestial mechanics investigations with Galileo
Anderson, J. D.; Armstrong, J. W.; Campbell, J. K.; Estabrook, F. B.; Krisher, T. P.; Lau, E. L.
1992-01-01
The gravitation and celestial mechanics investigations that are to be conducted during the cruise and Orbiter phases of the Galileo Mission cover four investigation categories: (1) the gravity fields of Jupiter and its four major satellites; (2) a search for gravitational radiation; (3) mathematical modeling of general relativistic effects on Doppler ranging data; and (4) improvements of the Jupiter ephemeris via Orbiter ranging. Also noted are two secondary objectives, involving a range fix during Venus flyby and the determination of the earth's mass on the bases of the two earth gravity assists used by the mission.
Research career of an astronomer who has studied celestial mechanics
Kozai, Yoshihide
2016-09-01
Celestial mechanics has been a classical field of astronomy. Only a few astronomers were in this field and not so many papers on this subject had been published during the first half of the 20th century. However, as the beauty of classical dynamics and celestial mechanics attracted me very much, I decided to take celestial mechanics as my research subject and entered university, where a very famous professor of celestial mechanics was a member of the faculty. Then as artificial satellites were launched starting from October 1958, new topics were investigated in the field of celestial mechanics. Moreover, planetary rings, asteroids with moderate values of eccentricity, inclination and so on have become new fields of celestial mechanics. In fact I have tried to solve such problems in an analytical way. Finally, to understand what gravitation is I joined the TAMA300 gravitational wave detector group.
Relativistic Celestial Mechanics of the Solar System
Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George
2011-09-01
The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new
A Snapshot-Based Mechanism for Celestial Orientation.
El Jundi, Basil; Foster, James J; Khaldy, Lana; Byrne, Marcus J; Dacke, Marie; Baird, Emily
2016-06-01
In order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2-8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9, 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a "celestial snapshot," even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the "dance," a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation. PMID:27185557
Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments
Kopeikin, Sergei
2014-08-01
Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review
Frontiers in Relativistic Celestial Mechanics, Vol. 1. Theory
Kopeikin, Sergei
2014-10-01
Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This first volume of a two-volume series is concerned with theoretical foundations such as post-Newtonian solutions to the two-body problem, light propagation through time-dependent gravitational fields, as well as cosmological effects on the movement of bodies in the solar systems. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: M. Soffel: On the DSX-framework T. Damour: The general relativistic two body problem G. Schaefer: Hamiltonian dynamics of spinning compact binaries through high post-Newtonian approximations A. Petrov and S. Kopeikin: Post-Newtonian approximations in cosmology T. Futamase: On the backreaction problem in cosmology Y. Xie and S. Kopeikin: Covariant theory of the post-Newtonian equations of motion of extended bodies S. Kopeikin and P. Korobkov: General relativistic theory of light propagation in multipolar gravitational fields
Division a Commission 7: Celestial Mechanics and Dynamical Astronomy
Morbidelli, Alessandro; Beaugé, Cristian; Knežević, Zoran; Celetti, Alessandra; Haghighipour, Nader; Hut, Piet; Laskar, Jacques; Mikkola, Seppo; Roig, Fernando
2016-04-01
In order to mark a distinction with the traditional triennial reports, for this legacy issue we have asked our present and past OC members, as well as a few other outstanding members of the Celestial Mechanics community, to write a short essay on ``recent highlights and the future of Celestial Mechanics''. Below we collect the contributions of the people who responded to our invitation. As it is natural, each of them interpreted their task differently. Some produced a dissertation on broad and general aspects, others focused on a specific topic of their interest. Some considered that their role was to provide a detailed review, with a list of key references, others preferred to mention the topics for which progress has been significant but without quoting any references, implicitly considering that this progress was possible thanks to the collective efforts of many scientists, and not just a few. This is great, as we appreciate the diversity of attitudes and opinions.
Kepler-16 Circumbinary System Validates Quantum Celestial Mechanics
Directory of Open Access Journals (Sweden)
Potter F.
2012-01-01
Full Text Available We report the application of quantum celestial mechanics (QCM to the Kepler-16 cir- cumbinary system which has a single planet orbiting binary stars with the important system parameters known to within one percent. Other gravitationally bound systems such as the Solar System of planets and the Jovian satellite systems have large uncertain- ties in their total angular momentum. Therefore, Kepler-16 allows us for the first time to determine whether the QCM predicted angular momentum per mass quantization is valid.
GRAIL gravity field determination using the Celestial Mechanics Approach
Arnold, Daniel; Bertone, Stefano; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos
2015-11-01
The NASA mission GRAIL (Gravity Recovery and Interior Laboratory) inherited its concept from the GRACE (Gravity Recovery and Climate Experiment) mission to determine the gravity field of the Moon. We present lunar gravity fields based on the data of GRAIL's primary mission phase. Gravity field recovery is realized in the framework of the Celestial Mechanics Approach, using a development version of the Bernese GNSS Software along with Ka-band range-rate data series as observations and the GNI1B positions provided by NASA JPL as pseudo-observations. By comparing our results with the official level-2 GRAIL gravity field models we show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced pseudo-stochastic pulses (i.e., instantaneous velocity changes). We present and evaluate two lunar gravity field solutions up to degree and order 200 - AIUB-GRL200A and AIUB-GRL200B. While the first solution uses no gravity field information beyond degree 200, the second is obtained by using the official GRAIL field GRGM900C up to degree and order 660 as a priori information. This reduces the omission errors and demonstrates the potential quality of our solution if we resolved the gravity field to higher degree.
Methods of Celestial Mechanics Volume I: Physical, Mathematical, and Numerical Principles
Beutler, Gerhard
2005-01-01
G. Beutler's Methods of Celestial Mechanics is a coherent textbook for students in physics, mathematics and engineering as well as an excellent reference for practitioners. This Volume I gives a thorough treatment of celestial mechanics and presents all the necessary mathematical details that a professional would need. After a brief review of the history of celestial mechanics, the equations of motion (Newtonian and relativistic versions) are developed for planetary systems (N-body-problem), for artificial Earth satellites, and for extended bodies (which includes the problem of Earth and lunar rotation). Perturbation theory is outlined in an elementary way from generally known mathematical principles without making use of the advanced tools of analytical mechanics. The variational equations associated with orbital motion - of fundamental importance for parameter estimation (e.g., orbit determination), numerical error propagation, and stability considerations - are introduced and their properties discussed in ...
Arnold, Vladimir I; Khesin, Boris
2010-01-01
Vladimir Arnold is one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This first volume of his Collected Works focuses on representations of functions, celestial mechanics, and KAM theory.
Celestial Mechanics: from the bases of the past to the challenges of the future
de Melo, C. F.; Prado, A. F. B. A.; Macau, E. E. N.; Winter, O. C.; Gomes, V. M.
2015-10-01
This special issue of Journal of Physics: Conference Series brings a set of 31 papers presented in the Brazilian Colloquium on Orbital Dynamics (CBDO), held on December 1 - 5, 2014, in the city of Águas de Lindoia, Brazil. CBDO is a traditional and important scientific meeting in the areas of Theoretical and Applied Celestial Mechanics. The meeting takes place every two years, when researchers from South America and also guests from other continents present their works and discuss the paths trodden by the space sciences.
GRAIL gravity field determination using the Celestial Mechanics Approach - status report
Bertone, S.; Arnold, D.; Jäggi, A.; Beutler, G.; Mervart, L.
2015-10-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory [1]) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment)mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth [2]. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we dis- cuss our latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software.
Status of GRAIL Gravity Field Determination Using the Celestial Mechanics Approach
Arnold, Daniel; Beutler, Gerhard; Jäggi, Adrian; Bock, Heike; Mervart, Leos; Meyer, Ulrich; Bertone, Stefano
To determine the gravity field of the Moon, the NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the Earth orbiting GRACE (Gravity Recovery and Climate Experiment) mission. The use of ultra-precise inter-satellite Ka-band ranging observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field with unprecedented resolution on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach. Ka-band range-rate (KBRR) observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degrees n≤ 200, also arc- and satellite-specific parameters, like initial state vectors and pseudo-stochastic pulses, are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. In addition, especially for the data of the primary mission phase, it is essential to estimate time bias parameters for the KBRR observations. We compare our results from the nominal mission phase with the official Level 2 gravity field models first released in October 2013. Our results demonstrate that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced and constrained pseudo-stochastic pulses. Yet, the usage of preprocessed position data as pseudo observations is not fully satisfying and is potentially
Preston, Howard G.; Potter, Franklin
2006-03-01
We report a new theory of celestial mechanics for gravitationally bound systems based upon a gravitational wave equation derived from the general relativistic Hamilton-Jacobi equation. The single ad hoc assumption is that the large-scale physical properties depend only on the ratio of the bound system's total angular momentum to its total mass. The theory predicts quantization states for the Solar System and for galaxies. The galactic quantization determines the energy and angular momentum eigenstates without requiring dark matter, and predicts expressions for the galactic disk rotation velocity, the baryonic Tully-Fisher relation, the MOND acceleration parameter, the large-angle gravitational lensing, and the shape, stability and number of arms in spiral galaxies. Applied to the universe, the theory has a repulsive effective gravitational potential that predicts a new Hubble relation and explains the observed apparent acceleration of distant supernovae with the matter/energy density of the universe at the critical density with only about 5% matter content. We suggest a laboratory experiment with a torsion bar near a rotating mass. This theory is not quantum gravity.
Celletti, A
2006-01-01
The book provides the most recent advances of Celestial Mechanics, as provided by high-level scientists working in this field. It covers theoretical investigations as well as applications to concrete problems. Outstanding review papers are included in the book and they introduce the reader to leading subjects, like the variational approaches to find periodic orbits, the stability theory of the N-body problem, the spin-orbit resonances and chaotic dynamics, the space debris polluting the circumterrestrial space.
Cors, Josep; Llibre, Jaume; Korobeinikov, Andrei
2015-01-01
The two parts of the present volume contain extended conference abstracts corresponding to selected talks given by participants at the "Conference on Hamiltonian Systems and Celestial Mechanics 2014" (HAMSYS2014) (15 abstracts) and at the "Workshop on Virus Dynamics and Evolution" (12 abstracts), both held at the Centre de Recerca Matemàtica (CRM) in Barcelona from June 2nd to 6th, 2014, and from June 23th to 27th, 2014, respectively. Most of them are brief articles, containing preliminary presentations of new results not yet published in regular research journals. The articles are the result of a direct collaboration between active researchers in the area after working in a dynamic and productive atmosphere. The first part is about Central Configurations, Periodic Orbits and Hamiltonian Systems with applications to Celestial Mechanics – a very modern and active field of research. The second part is dedicated to mathematical methods applied to viral dynamics and evolution. Mathematical modelling of biologi...
Directory of Open Access Journals (Sweden)
Potter F.
2014-01-01
Full Text Available The Kepler-47 circumbinary system has three known planets orbiting its binary star barycenter and therefore can provide a precision test of the Quantum Celestial Mechan- ics (QCM prediction of the quantization of angular momentum per unit mass in all gravitationally bound systems. Two of the planets are in the Habitable Zone (HZ, so system stability can be a primary concern. QCM may be a major contributor to the stability of this system.
Directory of Open Access Journals (Sweden)
Potter F.
2013-07-01
Full Text Available Quantum celestial mechanics (QCM predicts that all orbiting bodies in gravitationally bound systems exhibit the quantization of orbital angular momentum per unit mass. I show that the 15 known multi-planet systems with four or more planets obey this QCM prediction. This angular momentum constraint could be the explanation for their orbital stability for billions of years, suggesting that viable models of the formation and evolution of gravitational systems must include QCM.
Latest Moon gravity field solutions from GRAIL data using the Celestial Mechanics Approach
Bertone, Stefano; Arnold, Daniel; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos; Meyer, Ulrich
2016-04-01
The NASA mission GRAIL inherits its concept from the GRACE mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is leading to huge improvements in our understanding of its internal structure and thermal evolution. In this presentation we discuss the latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese GNSS Software. We recently presented our solutions up to d/o 200, where KBRR observations and position data (GNI1B products) were used to solve for the lunar gravity field parameters in a generalized orbit determination problem. As a further extension of our processing, the GNI1B positions are now replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field. Based on Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using least-squares adjustment. The pseudo-stochastic parameters are estimated to absorb deficiencies in our dynamical modeling (e.g. due to non-gravitational forces). Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit determination process. We present our latest results in the orbit determination of GRAIL over the primary mission phase (PM, March-May 2012) and our first lunar gravity fields based on Doppler and KBRR observations. We compare all of our results from the PM with the most recent lunar gravity field models released by other groups, as well as their consistency with topography-induced gravity.
Advances in GRAIL Gravity Field Determination Using the Celestial Mechanics Approach
Bertone, S.; Arnold, D.; Jaeggi, A.; Beutler, G.; Mervart, L.
2015-12-01
The NASA mission GRAIL inherits its concept from the GRACE mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is leading to huge improvements in our understanding of its internal structure and thermal evolution. In this presentation we discuss the latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese GNSS Software. We present our recent solutions up to d/o 200, where KBRR observations and position data (GNI1B products) were used to solve for the lunar gravity field parameters in a generalized orbit determination problem. We detail our parametrization in terms of pseudo-stochastic pulses and empirical accelerations, which allows for high quality results even while using a simple model of non-gravitational forces and pre-GRAIL a priori fields. Moreover, we present our latest advances towards the computation of a lunar gravity field with improved spatial resolution.As a further extension of our processing, the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field. Based on Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using least squares-adjustment. The pseudo-stochastic parameters are estimated to absorb deficiencies in our dynamical modeling (e.g. due to non-gravitational forces). DSN Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit determination process. We present our latest results in the orbit determination of GRAIL over the primary mission phase (PM, March-May 2012) and eventually present
Lachièze-Rey, Marc; Luminet, Jean-Pierre
2001-07-01
Throughout history, the mysterious dark skies have inspired our imaginations in countless ways, influencing our endeavors in science and philosophy, religion, literature, and art. Filled with 380 full-color illustrations, Celestial Treasury shows the influence of astronomical theories and the richness of illustrations in Western civilization through the ages. The authors explore the evolution of our understanding of astronomy and weave together ancient and modern theories in a fascinating narrative. They incorporate a wealth of detail from Greek verse, medieval manuscripts and Victorian poetry with contemporary spacecraft photographs and computer-generated star charts. Celestial Treasury is more than a beautiful book: it answers a variety of questions that have intrigued scientists and laymen for centuries. -- How did philosophers and scientists try to explain the order that governs celestial motion? -- How did geometers and artists measure and map the skies? -- How many different answers have been proposed for the most fundamental of all questions: When and how did Earth come about? -- Who inhabits the heavens--gods, angels or extraterrestrials? No other book recounts humankind's fascination with the heavens as compellingly as Celestial Treasury. Marc Lachièze-Rey is a director of research at the Centre National pour la Récherche Scientifique and astrophysicist at the Centre d'Etudes de Saclay. He is the author of The Cosmic Background Radiation (Cambridge, 1999), and and The Quest for Unity, (Oxford, 1999 ), as well as many books in French. Jean-Pierre Luminet is a research director of the Centre National pour la Rechérche Scientifique, based at the Paris-Meudon observatory. He is the author of Black Holes, (Cambridge 1992), as well as science documentaries for television.
Institute of Scientific and Technical Information of China (English)
YUQIAN
2004-01-01
Celestial burial is worshipped in Tibet as the highest pursuit of life. Of three elements indispensable for celestial burial-celestial rock (also known as altar), cinereous vultures, and masters of celestial burial, celestial burial masters are the most mysteriously important.
Vozmishcheva, Tatiana
2016-09-01
The connection between the problems of celestial mechanics: the Kepler problem, the two-center problem and the two body problem in spaces of constant curvature with the generalized Kepler and Hooke potentials is investigated. The limit passage in the two-center and two body problems in the Lobachevsky space and on a sphere is carried out as λto0 (λ is the curvature of the corresponding space) for the two potentials. The potentials and metrics in spaces under study are written in the gnomonic coordinates. It is shown that as the curvature radius tends to infinity, the generalized gravitational and elastic potentials transform to the Kepler and Hooke forms in the Euclidean space.
Potter F.
2016-01-01
In July, 2015, the New Horizons spacecraft passing by Pluto did not discover any more moons. Therefore, we know the Pluto system total angular momentum to within 2.4%, more accurately than any other system with more than two orbiting bodies. We there- fore update our previous analysis to determine whether a definitive test of the quantum celestial mechanics (QCM) angular momentum constraint can now be achieved.
Directory of Open Access Journals (Sweden)
Potter F.
2016-01-01
Full Text Available In July, 2015, the New Horizons spacecraft passing by Pluto did not discover any more moons. Therefore, we know the Pluto system total angular momentum to within 2.4%, more accurately than any other system with more than two orbiting bodies. We there- fore update our previous analysis to determine whether a definitive test of the quantum celestial mechanics (QCM angular momentum constraint can now be achieved.
Libration celestial mechanics experiment
Andreev, O. N.; Antonenko, S. A.; Gotlib, V. M.; Zakharkin, G. V.; Linkin, V. M.; Lipatov, A. N.; Makarov, V. S.; Khairulin, B. K.; Khlyustova, L. I.
2010-10-01
The exploration of planet moons and minor bodies (Avduevskii et al., 1996) is a basic task for comprehending the nature of the processes occurring in our Solar System. Knowing the current state of the moons, we can better describe their past and look into the future. This knowledge is important, first of all, for understanding the origin of the Solar System. Interest in the Martian moon Phobos has been displayed during recent decades. The interest is caused by some questions to which there have been no answers up until now (Sagdeev et al., 1988; 1989). For example, there is a question regarding the origin of the moon: whether it is an asteroid captured by Mars’ gravitational field or it is an accumulated body in the Martian orbit. In connection with this, it is interesting to conduct studies aimed at answering this question. If Phobos appears to be an asteroid, then investigations regarding the chemical and isotopic compositions of the moon as the primary matter of the Solar System as well as its evolution are of great interest. As of today, we know that Phobos orbits 9400 km from the center of Mars, with the speed of its revolution being so great that it makes one revolution every one-third of a Martian day (7 h 39 min), outrunning the daily spin of Mars. The strong tidal friction occurring due to the Phobos’ position close to Mars reduces the energy of its motion. The moon is slowly approaching the planet’s surface and will make impact with it eventually (this should happen over the course of 100 million years) if by that time Mars’ gravitational field does not tear it to pieces (this should happen over the course of 50 million years). Phobos is an elongated body with dimensions of 27 × 22× 18.6 km. The measurements of the spectral characteristics performed during the Phobos-2 mission (Ksanformality, Moroz, 1995) have indicated that the reflection spectra of Phobos and Deimos differ substantially from those obtained in observations of Mars, as well as from the spectra of carbonaceous chondrites and other asteroid analogs. The latest scientific results demonstrate that the Martian moons most likely belong to class-D asteroids, although the analogy is not perfect. The results of measuring the reflection characteristics display no bound water on the surface of the Martian moons. However, there are estimations, according to which the thermodynamic conditions on these moons are such that water may stay at a certain depth. Clarifying the issue regarding the presence of water (or hydrated molecules) on Phobos is very important not only from the scientific standpoint, but also from the practical one. Phobos is subject to a strong tidal effect by Mars; therefore, it always keeps the same side turned towards Mars. In connection with this, one of the most interesting characteristics of Phobos is libration. Phobos is a very amazing object among the known synchronously orbiting moons of the planets of the Solar System because it has a large amplitude of libration. The libration effect is always present in a several-body system.
Burnham, Robert
1978-01-01
Volume II of a comprehensive three-part guide to celestial objects outside our solar system ranges from Chamaeleon to Orion. Features coordinates, classifications, physical descriptions, hundreds of visual aids. 1977 edition.
Mesopotamian Celestial Divination
Verderame, Lorenzo
Celestial divination was an important aspect of scholarly activity in Mesopotamia. Several hundred cuneiform tablets attest to its practice and provide details of the different types of omens that were drawn from observations of the sky. This chapter outlines the sources of celestial divination in Mesopotamia and traces the development of the divinatory tradition from the late third millennium BC down to the end of the first millennium BC.
Jacobs, Christopher S.
2013-03-01
Concepts and Background: This paper gives an overview of modern celestial reference frames as realized at radio frequencies using the Very Long baseline Interferometry (VLBI) technique. We discuss basic celestial reference frame concepts, desired properties, and uses. We review the networks of antennas used for this work. We briefly discuss the history of the science of astrometry touching upon the discovery of precession, proper motion, nutation, and parallax, and the field of radio astronomy. Building Celestial Frames: Next, we discuss the multi-step process of building a celestial frame: First candidate sources are identified based on point-like properties from single dish radio telescopes surveys. Second, positions are refined using connected element interferometers such as the Very Large Array, and the ATCA. Third, positions of approximately milli-arcsecond (mas) accuracy are determined using intercontinental VLBI surveys. Fourth, sub-mas positions are determined by multiyear programs using intercontinental VLBI. These sub-mas sets of positions are then verified by multiple teams in preparation for release to non-specialists in the form of an official IAU International Celestial Reference Frame (ICRF). The process described above has until recently been largely restricted to work at S/X-band (2.3/8.4 GHz). However, in the last decade sub-mas work has expanded to include celestial frames at K-band (24 GHz), Ka-band (32 GHz), and Q-band (43 GHz). While these frames currently have the disadvantage of far smaller data sets, the astrophysical quality of the sources themselves improves at these higher frequencies and thus make these frequencies attractive for realizations of celestial reference frames. Accordingly, we review progress at these higher frequency bands. Path to the Future: We discuss prospects for celestial reference frames over the next decade. We present an example of an error budget for astrometric VLBI and discuss the budget's use as a tool for
Jacobs, Christopher S.
2013-09-01
Concepts and Background: This paper gives an overview of modern celestial reference frames as realized at radio frequencies using the Very Long baseline Interferometry (VLBI) technique. We discuss basic celestial reference frame concepts, desired properties, and uses. We review the networks of antennas used for this work. We briefly discuss the history of the science of astrometry touching upon the discovery of precession, proper motion, nutation, and parallax, and the field of radio astronomy. Building Celestial Frames: Next, we discuss the multi-step process of building a celestial frame: First candidate sources are identified based on point-like properties from single dish radio telescopes surveys. Second, positions are refined using connected element interferometers such as the Very Large Array, and the ATCA. Third, positions of approximately milli-arcsecond (mas) accuracy are determined using intercontinental VLBI surveys. Fourth, sub-mas positions are determined by multiyear programs using intercontinental VLBI. These sub-mas sets of positions are then verified by multiple teams in preparation for release to non-specialists in the form of an official IAU International Celestial Reference Frame (ICRF). The process described above has until recently been largely restricted to work at S/X-band (2.3/8.4 GHz). However, in the last decade sub-mas work has expanded to include celestial frames at K-band (24 GHz), Ka-band (32 GHz), and Q-band (43 GHz). While these frames currently have the disadvantage of far smaller data sets, the astrophysical quality of the sources themselves improves at these higher frequencies and thus make these frequencies attractive for realizations of celestial reference frames. Accordingly, we review progress at these higher frequency bands. Path to the Future: We discuss prospects for celestial reference frames over the next decade. We present an example of an error budget for astrometric VLBI and discuss the budget's use as a tool for
Burnham, Robert
1978-01-01
Volume I of this comprehensive three-part guide to the thousands of celestial objects outside our solar system ranges from Andromeda through Cetus. Objects are grouped according to constellation, and their definitions feature names, coordinates, classifications, and physical descriptions. Additional notes offer fascinating historical information. Hundreds of visual aids. 1977 edition.
Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism
Eugeny F. Orlov
2012-01-01
The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.
Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism
Directory of Open Access Journals (Sweden)
Eugeny F. Orlov
2012-04-01
Full Text Available The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.
KAM Stability and Celestial Mechanics
Celletti, A
2004-01-01
KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems" for ``observable" values of the perturbation parameters. Here, we consider the Restricted, Circular, Planar, Three-Body Problem (RCPTBP),i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small the RCPTBP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is ne...
Celestial navigation in a nutshell
Schlereth, Hewitt
2000-01-01
Celestial Navigation in a Nutshell demonstrates how to take sights by the sun, moon, stars, and planets, discussing the advantages and disadvantages of each method. The reader is taken carefully through several examples and situational illustrations, making this a most effective self-teaching guide. Common errors are reviewed and several tips on how to improve accuracy are given.
Observation of Celestial Phenomena in Ancient China
Sun, Xiaochun
Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.
Celestial Navigation for the Novice
Sadler, Philip M.
2011-01-01
What kinds of astronomical lab activities can introductory astronomy students carry out easily in daytime? The most impressive is the determination of their latitude and longitude from observations of the sun. The "shooting of a noon sight” and its "reduction to a position” is a technique still practiced by navigators in this age of GPS. Indeed, the U.S. Coast Guard exams for ocean-going licenses and include celestial navigation. These techniques continue to be used by the military and by private sailors as a backup to electronic navigation systems. We present a method to establish one's latitude and longitude to better than 30 miles from measurements of the sun's altitude that is easily within the capability non-science majors. This is a practical application of astronomy in use the world over. The streamlined method used is based on an easy-to-build protractor and string quadrant. Participants will leave with all materials to conduct this activity in their own classroom.
Connecting VLBI and Gaia celestial reference frames
Malkin, Zinovy
2016-01-01
The current state of the link problem between radio and optical celestial reference frames is considered. The main objectives of the investigations in this direction during the next few years are the preparation of a comparison and the mutual orientation and rotation between the optical {\\it Gaia} Celestial Reference Frame (GCRF) and the 3rd generation radio International Celestial Reference Frame (ICRF3), obtained from VLBI observations. Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System) at micro-arcsecond level accuracy. Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial task due to relatively large systematic and random errors in source positions at different frequency bands. In this paper, a brief overview of recent work on the GCRF--ICRF link is presented. Additional possibilities to improve the GCRF--ICRF link accuracy are discussed. The suggestion is made to use astrometric radio s...
The stratification of regolith on celestial objects
Schräpler, Rainer; von Borstel, Ingo; Güttler, Carsten
2015-01-01
All atmosphere-less planetary bodies are covered with a dust layer, the so-called regolith, which determines the optical, mechanical and thermal properties of their surface. These properties depend on the regolith material, the size distribution of the particles it consists of, and the porosity to which these particles are packed. We performed experiments in parabolic flights to determine the gravity dependency of the packing density of regolith for solid-particle sizes of 60 $\\mu$m and 1 mm as well as for 100-250 $\\mu$m-sized agglomerates of 1.5 $\\mu$m-sized solid grains. We utilized g-levels between 0.7 m s$^{-2}$ and 18 m s$^{-2}$ and completed our measurements with experiments under normal gravity conditions. Based on previous experimental and theoretical literature and supported by our new experiments, we developed an analytical model to calculate the regolith stratification of celestial rocky and icy bodies and estimated the mechanical yields of the regolith under the weight of an astronaut and a spacec...
Celestial mechanics of elastic bodies II
Beig, Robert; Schmidt, Bernd G
2016-01-01
We construct time independent configurations describing a small elastic body moving in a circular orbit in the Schwarzschild spacetime. These configurations are relativistic versions of Newtonian solutions constructed by two of us (R.B.,B.G.S.). In the process we simplify and sharpen previous results of ours concerning elastic bodies in rigid rotation.
The Celestial Vault: The Magic of Astrology
McGaha, J.
2004-11-01
Astrology is a "Geocentric System" that supports the "Astrological Principle". This principle, that human beings and their actions are influenced by the positions of celestial objects, is not objectively supported. The "planetary gods" found in the heavens provided order to help explain the chaotic events in life on earth. Is this why many people think their horoscopes are correct, with the "stars" taking credit? Do "celestial movements" foretell the future? What is the evidence for Astrology? The historical, psychological and physical foundations of astrology will be discussed.
Celestial Ephemerides in an Expanding Universe
Kopeikin, Sergei
2012-01-01
Post-Newtonian theory was instrumental in conducting the critical experimental tests of general relativity and in building the astronomical ephemerides of celestial bodies in the solar system with an unparalleled precision. The cornerstone of the theory is the postulate that the solar system is gravitationally isolated from the rest of the universe and the background spacetime is asymptotically flat. The present article extends this theoretical concept and formulates the principles of celestial dynamics of particles and light moving in gravitational field of a localized astronomical system embedded to the expanding Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. We formulate the precise mathematical concept of the Newtonian limit of Einstein's field equations in the conformally-flat FLRW spacetime and analyze the geodesic motion of massive particles and light in this limit. We prove that by doing conformal spacetime transformations, one can reduce the equations of motion of particles and light to the cla...
GAOUA realizations of the Celestial Reference Frame
Yatskiv, Ya.; Bolotin, S.; Kur'yanova, A.
2005-09-01
Short overview of the activity of the Main Astronomical observatory of National Academy of Science of Ukraine for maintenance and extension of the International Celestial Reference Frame (ICRF) is presented. Special attention is paid on the time stabilities of positions of radio sources (RS) and on the selection of a subset of RS to be used for maintenance of the ICRF. It is shown that seven RS qualified by the IERS as defining sources are unstable.
Celestial shadows eclipses, transits, and occultations
Westfall, John
2015-01-01
Much of what is known about the universe comes from the study of celestial shadows—eclipses, transits, and occultations. The most dramatic are total eclipses of the Sun, which constitute one of the most dramatic and awe-inspiring events of nature. Though once a source of consternation or dread, solar eclipses now lead thousands of amateur astronomers and eclipse-chasers to travel to remote points on the globe to savor their beauty and the adrenaline-rush of experiencing totality, and were long the only source of information about the hauntingly beautiful chromosphere and corona of the Sun. Long before Columbus, the curved shadow of the Earth on the Moon during a lunar eclipse revealed that we inhabit a round world. The rare and wonderful transits of Venus, which occur as it passes between the Earth and the Sun, inspired eighteenth century expeditions to measure the distance from the Earth to the Sun, while the recent transits of 2004 and 2012 were the most widely observed ever--and still produced re...
Industrial Scale Production of Celestial Body Simulants Project
National Aeronautics and Space Administration — The technical objectives of this program are to develop a cost-effective process to deliver Celestial body simulants for the foreseeable future. Specifically, the...
A Review of Celestial Burying Ground in Tibet
Institute of Scientific and Technical Information of China (English)
YUQIAN
2005-01-01
Celestial burying ground ,also called “Mandala”,is where life leaves and comes.A huge piece of stone hidden in high mountains is surrounded by burning plants that give up smoke going up into the air.
Reconstruction of the celestial globe of the Ming Dynasty.
Xu, Zhengtao; Ling, Rongfu
1997-09-01
Four big bronze instruments were made in the seventh year of the Zhengtong reign of the Ming Dynasty (AD 1442). They are the Armillary Sphere, Abridged Armilla, Gnomon and Celestial Globe. The first three ones are well presented in the Purple Mountain Observatory. But the Celestial Globe was destroyed in the early period of the Qing Dynasty. According to the astronomical treatises of the Yuan and Ming Dynasty and related references the authors reconstructed this instrument in original size.
Dynamical Configurations of Celestial Systems Comprised of Multiple Irregular Bodies
Jiang, Yu; Baoyin, Hexi; Li, Junfeng
2016-01-01
This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of n irregular bodies are reduced to 12n minus 9 equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and...
Dynamical configurations of celestial systems comprised of multiple irregular bodies
Jiang, Yu; Zhang, Yun; Baoyin, Hexi; Li, Junfeng
2016-09-01
This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of n irregular bodies are reduced to 12n - 9 equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple-asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and analyzed.
Institute of Scientific and Technical Information of China (English)
袁立新
2012-01-01
This article has established the mathematical model of the changes of the mechanical energy for the planet system with the gravitational constant reduction. By analysing and demonstrating to the mathematical model, the general formula of Kepler'sthird law with the evolutionary synchronism of celestial body is derived. The current state of planetary motion is the current form with historical evolution. By theoretical modeling to the general formula of Kepler's third law, this article has explained the physical meaning of Kepler's third law, and has achieved traceability for the evolution of planetary orbits in the solar system and forecastability for the future.%通过引力常数减小对于行星运行演化的作用，建立了行星系统能量随引力常数减小而减小的数学模型．通过对此数学模型的分析和运算，推导出天体膨胀、行星运行轨道与天体演化同步的开普勒第三定律一般式．行星运行的目前状态，是其历史演化动态过程的当前形态．通过与天体演化同步的开普勒第三定律一般式的理论建模，解释了开普勒第三定律的物理意义，实现了太阳系行星轨道演化的可追溯性，及其未来的可预测性．
The GAOUA series of compiled celestial reference frames
Molotaj, O.; Tel'Nyuk-Adamchuk, V.; Yatskiv, Ya.
2000-09-01
The GAOUA series of compiled celestial reference frames is obtained by using the original Kyiv arc length approach for combination of initial RSC solutions which are yearly submitted to the IERS CB by various VLBI Analysis Centers. The presentation is concerned with an analysis of accuracies of these individual and combined solutions and that of the ICRF.
AN INTRODUCTION TO ASTROMETRY AND CELESTIAL MECHANICS: A PROPOSED SYLLABUS
Directory of Open Access Journals (Sweden)
William van Altena
2008-01-01
Full Text Available Si hemos de aprovechar la astrometría con precisión de micro segundos de arco que nos ofrecerán las nuevas técnicas de observación, debemos reformular nuestros estudios sobre sistemas de referencia y ecuaciones de movimiento en el contexto de la relatividad especial y general. También debemos desarrollar métodos más avanzados para el análisis estadístico de los datos y para la calibración de los instrumentos. En consecuencia, tenemos que revisar drásticamente los planes de estudio para adecuarlos a las necesidades de los estudiantes del siglo 21. Para ello, hemos desarrollado el programa de estudios para un curso introductorio de un semestre en Astrometría y Mecánica Celeste. El curso proporciona una introducción moderna y amplia a casi todos los temas de nuestro campo, y forma una base de conocimientos a partir de la cual el estudiante podrá elegir áreas para el estudio individual o para seguir cursos avanzados en centros especializados.
Post-Newtonian celestial mechanics in scalar-tensor cosmology
Galiautdinov, Andrei; Kopeikin, Sergei M.
2016-08-01
Applying the recently developed dynamical perturbation formalism on cosmological background to scalar-tensor theory, we provide a solid theoretical basis and a rigorous justification for phenomenological models of orbital dynamics that are currently used to interpret experimental measurements of the time-dependent gravitational constant. We derive the field equations for the scalar-tensor perturbations and study their gauge freedom associated with the cosmological expansion. We find a new gauge eliminating a prohibitive number of gauge modes in the field equations and significantly simplifying post-Newtonian equations of motion for localized astronomical systems in the universe with a time-dependent gravitational constant. We identify several new post-Newtonian terms and calculate their effect on secular cosmological evolution of the osculating orbital elements.
Post-Newtonian celestial mechanics in scalar-tensor cosmology
Galiautdinov, Andrei
2016-01-01
Applying the recently developed dynamical perturbation formalism on cosmological background to scalar-tensor theory, we provide a solid theoretical basis and a rigorous justification for phenomenological models of orbital dynamics that are currently used to interpret experimental measurements of the time-dependent gravitational constant. We derive the field equations for the scalar-tensor perturbations and study their gauge freedom associated with the cosmological expansion. We find a new gauge eliminating a prohibitive number of gauge modes in the field equations and significantly simplifying post-Newtonian equations of motion for localized astronomical systems in the universe with time-dependent gravitational constant. We find several new post-Newtonian terms and calculate their effect on secular cosmological evolution of the osculating orbital elements.
Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng
2016-01-01
High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.
Institute of Scientific and Technical Information of China (English)
Nicole Capitaine
2012-01-01
of astrometry,celestial mechanics,geodynamics,geodesy,etc.Of special interest are the improvements in the model for variations in Earth's rotation,which,in turn,can provide better knowledge of the dynamics of the Earth's interior.These have also contributed to a significant improvement in the accuracy of the ephemerides of the solar system bodies as determined from modern measurements,with a large number of scientific applications.This paper recalls the main aspects of the recent IAU resolutions on reference systems as well as their consequences on the concepts,definitions,nomenclature and models that are suitable for the definition,realization and transformation of reference frames at a microarcsecond level.
International Nuclear Information System (INIS)
improvements in the fields of astrometry, celestial mechanics, geodynamics, geodesy, etc. Of special interest are the improvements in the model for variations in Earth's rotation, which, in turn, can provide better knowledge of the dynamics of the Earth's interior. These have also contributed to a significant improvement in the accuracy of the ephemerides of the solar system bodies as determined from modern measurements, with a large number of scientific applications. This paper recalls the main aspects of the recent IAU resolutions on reference systems as well as their consequences on the concepts, definitions, nomenclature and models that are suitable for the definition, realization and transformation of reference frames at a microarcsecond level.
Stability study of realization of the celestial reference frame
Yatskiv, Ya. S.; Bolotin, S. L.; Kur'yanova, A. N.
2004-09-01
We present a short overview of the activity of the IERS as well as the Main Astronomical Observatory (MAO) of the National Academy of Sciences of Ukraine for maintenance and extention of the International Celestial Reference Frame (ICRF). Special attention is given to the time stabilities of positions of radio sources (RS) and to the selection of a subset of RS to be used for maintenance of the ICRF. It is shown that seven RS qualified by the IERS as defining sources are unstable.
Celestial reference frame RSC (GAOUA) 98 C 01.
Molotaj, O. A.; Tel'Nyuk-Adamchuk, V. V.; Yatskiv, Ya. S.
The celestial reference frame RSC (GAOUA) 98 C 01 was constructed by applying the Kiev arc method to five initial frames submitted to the IERS during 1997. The frame comprises positions of 631 radio sources. The frame axes are aligned to those of the ICRF with an accuracy of 0.02 mas using all 212 defining common radio sources. The internal standard errors of right ascension and declination for the defining sources are equal to 0.11 and 0.13 mas, respectively. Results of intercomparison between the ICRF, five initial frames, and the compiled frame are discussed.
The Power of Stars How Celestial Observations Have Shaped Civilization
Penprase, Bryan E
2011-01-01
What are some of the connections that bind us to the stars? How have these connections been established? And how have people all around the world and throughout time reacted to the night sky, the sun and moon, in their poetry, mythology, rituals, and temples? This book explores the influence of the sky on both ancient and modern civilization, by providing a clear overview of the many ways in which humans have used the stars as an ordering principle in their cultures, and which today still inspire us intellectually, emotionally, and spiritually. The book explores constellation lore from around the world, celestial alignments of monuments and temples, both from ancient and modern civilizations, and the role the sky has played in the cultures of the Greek, Egyptian, Babylonian, Native American, Chinese, Mayan, Aztec, and Inca. Models of the universe from each of these cultures are described clearly, and each culture’s explanation of the stars, planets, and other celestial objects are described. The roots of as...
Celestial Navigation Fix Based on Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Tsou Ming-Cheng
2015-09-01
Full Text Available A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.
Surface Motion Relative to the Irregular Celestial Bodies
Jiang, Yu; Baoyin, Hexi
2016-01-01
We study the motion and equilibria of the grains on the surface of the irregular celestial body (hereafter called irregular bodies). Motions for the grains on the smooth and unsmooth surfaces are discussed, respectively. The linearized equations of motion relative to a surface equilibrium point and its characteristic equations are presented. Considering the stick-slip effect, the damping forces and the spring forces for the grain are calculated, then the linearized equations of motion and the characteristic equations relative to the surface equilibrium points are derived. The number of non-degenerate surface equilibria is an even number. We compute the motion of a grain released above three different regions relative to the irregular asteroid 6489 Golevka, including the flat surface, the concave region, and the convex region. Following the grain release and initial bounce, three kinds of motions exist, the orbital motion, the impact motion and the surface motion. We find that the maximum height of the next ho...
The Pleiades: the celestial herd of ancient timekeepers
Sparavigna, Amelia
2008-01-01
In the ancient Egypt seven goddesses, represented by seven cows, composed the celestial herd that provides the nourishment to her worshippers. This herd is observed in the sky as a group of stars, the Pleiades, close to Aldebaran, the main star in the Taurus constellation. For many ancient populations, Pleiades were relevant stars and their rising was marked as a special time of the year. In this paper, we will discuss the presence of these stars in ancient cultures. Moreover, we will report some results of archeoastronomy on the role for timekeeping of these stars, results which show that for hunter-gatherers at Palaeolithic times, they were linked to the seasonal cycles of aurochs.
Eclipse. The celestial phenomenon that changed the course of history
Steel, Duncan
Whether interpreted as an auspicious omen or a sentinel of doom, eclipses have had a profound effect upon our cultural development. The pattern that eclipses follow - a cycle, called the Saros - was actually calculated thousands of years ago. However, it is only with the help of modern computers that we have been able to analyze and appreciate the data. Eclipses provide unique opportunities for today's scientists to study such contrasting phenomena as the upper layers of the sun, the slowdown of our planet's spin rate, and the effects of celestial events on human psychology. In Eclipse, Duncan Steel expertly captures our continuing fascination with all manner of eclipses - including the familiar solar and lunar varieties and other kinds involving stars, planets, asteroids, and comets as well as distant galaxies and quasars. Steel helps us see that, in astronomical terms, eclipses are really rather straightforward affairs. Moving beyond the mysticism and the magic, the science of eclipses is revealed.
Celestial Navigation in the USA, Fiji, and Tunisia
Holbrook, Jarita C.
2015-05-01
Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.
X/Ka Celestial Frame Improvements: Vision to Reality
Jacobs, C. S.; Bagri, D. S.; Britcliffe, M. J.; Clark, J. E.; Franco, M. M.; Garcia-Miro, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Moll, V. E.; Navarro, R.; Rogstad, S. P.; Proctor, R. C.; Sigman, E. H.; Skjerve, L. J.; Soriano, M. A.; Sovers, O. J.; Tucker, B. C.; Wang, D.; White, L. A.
2010-01-01
In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA s Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame.
Numeric calculation of celestial bodies with spreadsheet analysis
Koch, Alexander
2016-04-01
The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.
Advanced Spacecraft Navigation and Timing Using Celestial Gamma-Ray Sources Project
National Aeronautics and Space Administration — The proposed novel program will use measurements of the high-energy photon output from gamma-ray celestial sources to design a new, unique navigation system. This...
On the nomenclature of celestial objects - not to build the Tower of Babel.
Nishimura, S.
In order to accumulate and retrieve data relating to celestial objects, it is essential to designate names of objects correctly. The recommendation by the IAU Working Group on the Nomenclature is described.
The Inner Meaning of Outer Space: Human Nature and the Celestial Realm
Hubbard, Timothy L.
2008-01-01
Kant argued that humans possess a priori knowledge of space; although his argument focused on a physics of bodies, it also has implications for a psychology of beings. Many human cultures organize stars in the night sky into constellations (i.e., impose structure); attribute properties, behaviors, and abilities to objects in the celestial realm (i.e., impose meaning); and use perceived regularity in the celestial realms in development of calendars, long-range navigation, agriculture, and astr...
The Inner Meaning of Outer Space: Human Nature and the Celestial Realm
Directory of Open Access Journals (Sweden)
Timothy L. Hubbard
2008-06-01
Full Text Available Kant argued that humans possess a priori knowledge of space; although his argument focused on a physics of bodies, it also has implications for a psychology of beings. Many human cultures organize stars in the night sky into constellations (i.e., impose structure; attribute properties, behaviors, and abilities to objects in the celestial realm (i.e., impose meaning; and use perceived regularity in the celestial realms in development of calendars, long-range navigation, agriculture, and astrology (i.e., seek predictability and control. The physical inaccessibility of the celestial realm allows a potent source of metaphor, and also allows projection of myths regarding origin and ascension, places of power, and dwelling places of gods, immortals, and other souls. Developments in astronomy and cosmology infl uenced views of human nature and the place of humanity in the universe, and these changes parallel declines in egocentrism with human development. Views regarding alleged beings (e.g., angels, extraterrestrials from the celestial realm (and to how communicate with such beings are anthropocentric and ignore evolutionary factors in physical and cognitive development. It is suggested that in considering views and uses of the celestial realm, we learn not just about the universe, but also about ourselves. *
Illustrating the phaenomena celestial cartography in antiquity and the Middle Ages
Dekker, Elly
2013-01-01
In this volume all extant celestial maps and globes made before 1500 are described and analysed. It also discusses the astronomical sources involved in making these artefacts in antiquity, the Middle Ages, the Islamic world and the European Renaissance before 1500.
The Gravitational Effects of a Celestial Body with Magnetic Charge and Moment
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM)are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.
[The celestial phenomena in A. Dürer's engraving Melancholia I].
Weitzel, Hans
2009-01-01
The celestial body of Dürer's engraving Melencolia I is connected with his painting of a meteor, the Raveningham-painting; it is shown that the origin of this painting owns to the impact of the meteor of Ensisheim in 1492. Until now the celestial body, the balance, and the magic square are nearly consistently interpreted as the planet Saturn, the zodiac sign Libra, and the planet Jupiter, and the melancholy woman is subject to these heavenly bodies. Consequently, neoplatonic astrology has been the main focus of the engraving; including the rainbow, the engraving has also been interpreted biblically. The present paper, however, places emphasis on problems of the geometry as the reason of melancholy. Any astronomical meaning of the configuration of the numbers of the magic square is discarded. PMID:20336927
Teaching Celestial Motions in Astronomy 101 using the Digital Fulldome Planetarium Environment
Balonek, Thomas J.; Eakin, J.
2012-01-01
We utilize the immersive fulldome digital planetarium capabilities of the Colgate University Ho Tung Visualization Laboratory (VisLab) in introductory astronomy courses to teach students about observable celestial motions. We are developing demonstrations and exercises in which students conduct realistic "observations" in the VisLab that complement observations that they make outside on clear nights. From these observations students determine the characteristics and time scales of motions of the various solar system objects. Using the VisLab it is possible for the students to observe the daily, monthly, annual and peculiar motions of the stars, Sun, Moon and planets that they would otherwise be unable to witness during the semester. Our "observation first" approach is to have students observe the various cycles of the sky early in the semester, and later explain the reasons for these motions when they learn about the historical developments in our understanding of the celestial motions.
IN-FLIGHT ALIGNMENT OF INERTIAL NAVIGATION SYSTEM BY CELESTIAL OBSERVATION TECHNIQUE
Institute of Scientific and Technical Information of China (English)
ALlJamshaid; FANGJian-cheng
2005-01-01
This paper presents an in-flight alignment technique for a strapdown inertial navigation system (SINS) and employs a star pattern recognition procedure for identifying stars sensed by a CCD electrooptical star sensor.Collinearity equations are used to estimate sensor frame star coordinates and the conventional least square differential correction method is used to estimate the unknown orientation angles. A comparison of this attitude with the attitude estimated by the SINS provides axis misalignment angles. Simulations using a Kalman filter are carried out for an SINS and the system employs a local level navigation frame. The space stabilized SINS is discussed in conjunction with the celestial aiding. Based on the observation of the Kalman filter, the estimating and compensating gyro errors, as well as the position and velocity errors caused by the SINS misalignments are calibrated by celestial attitute information.
Jiang, Yu; Baoyin, Hexi
2014-01-01
This paper studies the distribution of characteristic multipliers, the stability of orbits, periodic orbits, the structure of submanifolds, the phase diagram, bifurcations and chaotic motions in the potential field of rotating highly irregular-shaped celestial bodies. The topological structure of submanifolds for the orbits in the potential field of a rotating highly irregular-shaped celestial body(hereafter irregular body for short) is discovered that it can be classified into 34 different cases, including 6 ordinary cases, 3 collisional cases, 3 degenerate real saddle cases, 7 periodic cases, 7 period-doubling cases, 1 periodic and collisional case, 1 periodic and degenerate real saddle case, 1 period-doubling and collisional case, 1 period-doubling and degenerate real saddle case as well as 4 periodic and period-doubling cases. It is found that the different distribution of characteristic multipliers fixes the structure of submanifolds, the types of orbits, the dynamical behavior and the phase diagram of t...
Gessner, Samuel
2015-01-01
The aim of this paper is to examine the iconography on a set of star charts by Albrecht Dürer (1515), and celestial globes by Caspar Vopel (1536) and Christoph Schissler (1575). The iconography on these instruments is conditioned by strong traditions which include not only the imagery on globes and planispheres (star charts), but also ancient literature about the constellations. Where this iconography departs from those traditions, the change had to do with humanism in the sixteenth century. This "humanistic" dimension is interwoven with other concerns that involve both "social" and "technical" motivations. The interplay of these three dimensions illustrates how the iconography on celestial charts and globes expresses some features of the shared knowledge and shared culture between artisans, mathematicians, and nobles in Renaissance Europe.
Bartha, Lajos
Around 1480 the Dominican astronomer and instrument maker Hans Dorn in Castle Buda (Budapest) built a copper celestial globe. This globe is a composite instrument, suited to mark the position of celestial bodies - - i.e. comets, planets, etc. - directly on the star-globe, and to locate the stars represented on the globe in the sky. The globe has a diameter of 39.5 cm and gives the fixed stars according to Ptolemy. The main circles are set in for the celestial equator and ecliptic. On the top of the vertical meridian circle (divided into 4 x 90^o) is a planispheric astrolabe on a strong perpendicular axis. On the reverse side of the astrolabe the altitude arcs can be set by a diopter. Two quadrants with arc-scales protrude downward in horseshoe shape, parallel to the globe, from the bottom of the astrolabe. The divided quadrants parallel to the disk of the astrolabe point to the horizontal 'calendar' disk of the globe and can be turned with the astrolabe to indicate the azimuth. When the globe is adjusted to a given instant of time, the position of a celestial body can be determined by turning the astrolabe and the diopter to the object. The quadrant then shows - with the 'calendar' disk and the quadrant's graduation seen parallel to the mater - the position on the globe either for a planet, a comet, or even a fixed star. Both globe and astrolabe enable one to fix the position of the heavenly bodies directly without the necessity of coordinate transformation. Father Dorn (Saxonia, ca.1425 - Vienna, after 1509) built the combined `analogue computer globe' for the court astrologer of the Hungarian King Matthias Corvinus, magister Martinus Olkusz z Bylica (also called Martinus Ilkusz). Today the globe is in the Museum of Collegium Maius at Cracow.
Energy Technology Data Exchange (ETDEWEB)
Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)
2013-07-01
Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.
From Celestial Empire to Nation State: Sport and the Origins of Chinese Nationalism (1840–1927)
Zhouxiang, Lu
2010-01-01
The history of the late Qing Dynasty and the early Republic clearly showed the close relationship between sport, nationalism and politics, and reflected the changes in Chinese society and Chinese people’s view of their identity as well as their way of thinking. Sport had a great importance, not only for the construction of Chinese nationalism and national consciousness, but also for the eventual transformation of China from a celestial empire into a modern nation state. It play...
The Hands of the Pleiades: The Celestial Clock in the Classical Arabic Poetry of Dhū al-Rumma
Adams, W. B.
2011-06-01
In the desert poetry of Dhū al-Rumma (d. 117 AH/735 CE), astronomical phenomena sometimes function as familiar celestial timepieces that indicate the poetic timeframe literally and accurately. The literary, lexical, floral and astronomical analyses of a selection from this poetry illustrate the role of the Pleiades star cluster as a celestial clock and illuminate the utility of naked-eye astronomy in interpreting Arabic poetry of the early Islamic period.
Rotating space elevators: Physics of celestial scale spinning strings
Knudsen, Steven; Golubović, Leonardo
2014-11-01
We explore classical and statistical mechanics of a novel dynamical system, the Rotating Space Elevator (RSE) (L. Golubović, S. Knudsen, EPL 86, 34001 (2009)). The RSE is a double rotating floppy string reaching extraterrestrial locations. Objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator science, which is how to supply energy to the climbers moving along space elevator strings. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in a double rotating frame associated with the RSE. This dynamical equilibrium is achieved by a special ("magical") form of the RSE mass line density derived in this paper. The RSE exhibits a variety of interesting dynamical phenomena explored here by numerical simulations. Thanks to its special design, the RSE exhibits everlasting double rotating motion. Under some conditions, however, we find that the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed polymers in the realm of the statistical physics of strings and membranes.
Risk of Adverse Health and Performance Effects of Celestial Dust Exposure
Scully, Robert R.; Meyers, Valerie E.
2015-01-01
Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline
Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III
Chelnokov, Yu. N.
2015-09-01
The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.
Equivalence of the generalized Lie-Hori method and the method of averaging. [in celestial mechanics
Ahmed, A. H.; Tapley, B. D.
1984-01-01
In this investigation, a comparison is made of two methods for developing perturbation theories for non-canonical dynamical systems. The methods compared are the generalized Lie-Hori method and the method of averaging. In the comparison presented here, the equivalence of the methods up to the second order in the small parameter is shown. However, the approach used can be extended to demonstrate the equivalence for higher orders. To illustrate the equivalence Duffing's equation, the van der Pol equation and the oscillator with quadratic damping problem are solved using each method.
Ferronsky, V I; Ferronsky, S V
2011-01-01
In their approach to Earth dynamics the authors consider the fundamentals of Jacobi Dynamics (1987, Reidel) for two reasons. First, because satellite observations have proved that the Earth does not stay in hydrostatic equilibrium, which is the physical basis of today’s treatment of geodynamics. And secondly, because satellite data have revealed a relationship between gravitational moments and the potential of the Earth’s outer force field (potential energy), which is the basis of Jacobi Dynamics. This has also enabled the authors to come back to the derivation of the classical virial theorem and, after introducing the volumetric forces and moments, to obtain a generalized virial theorem in the form of Jacobi’s equation. Thus a physical explanation and rigorous solution was found for the famous Jacobi’s equation, where the measure of the matter interaction is the energy. The main dynamical effects which become understandable by that solution can be summarized as follows: • the kinetic energy of osci...
Longaretti, Pierre-Yves
2016-01-01
These 1992 lectures notes present a powerful formalism mostly developed in the 1980s by Borderies, Goldreich and Tremaine to address planetary ring dynamical issues. These notes make a special emphasis on ring microphysics, quantified with the help of the moments of the Boltzmann equation. They also focus on the standard self-gravity model of narrow ring rigid precession, and on the physics of linear and nonlinear density waves. These notes have been corrected but only very marginally extended and not updated. They are provided both as an introduction to the streamline formalism and as a complement on some technical issues for my upcoming review ("Theory of Narrow rings and Sharp Edges") that will cover the physics not addressed here along with more recent developments. This review will appear in the "Planetary Ring System" book (C. Murray and M. Tiscareno, eds.), to be published later on this year at Cambridge University Press.
Using Time Zones and Celestial Navigation to Teach the Phases of the Moon
O'Donoghue, A.
2011-09-01
The phases of the moon are typically presented to introductory astronomy classes in a diagram showing the position of the moon, its appearance and elongation at each phase, and the time of each phase's transit. Though wonderfully compact and efficient at conveying information, I have found it to be overwhelming to non-science major students. Much of their difficulty arises from their vague definition of time, which must be broadened for them to understand the different rising, transit, and setting times for the phases of the moon. Working with time zones helps them recognize that the time on their watch is relative to a particular longitude and the transit of the sun at that longitude. Celestial Navigation extends this to the transit of all celestial objects and helps them re-define "time of day" to a position on Earth relative to the Earth-Sun line in a practical way. Once they understand why a given object transits at the same time for all time zones, extending this to the moon is much simpler. My students are quickly able to identify the transit times of the various phases of the moon, and with some additional instruction, quickly learn how to figure out their rising and setting times as well. On this poster, I will include images from PowerPoint animations and the student exercises I use to help them understand the concepts. Though I have too small a sample for statistical analysis (24 students/semester), I have found that student scores on moon phase questions on exams have improved since I incorporated time zones and celestial navigation into my course.
Celestial harvest 300-plus showpieces of the heavens for telescope viewing and contemplation
Mullaney, James
2012-01-01
This book describes over 300 celestial wonders that can be viewed with common binoculars and low-power ""backyard"" telescopes incorporating refractors and reflectors.In addition to such showpieces as the Andromeda Galaxy, the largest and brightest of all galaxies after the Milky Way, and the Blue Snowball, one of the autumn sky's outstanding planetary nebulas, over 20 other special objects are listed and characterized, many of which are visible to the unaided eye on a dark, clear night.The sun, moon, Venus, Mars, Jupiter, Saturn, and other members of the earth's solar system are also describ
Brightness and color of the integrated starlight at celestial, ecliptic and galactic poles
Nawar, S; Mikhail, J S; Morcos, A B
2010-01-01
From photoelectric observations of night sky brightness carried out at Abu-Simbel, Asaad et al. (1979) have obtained values of integrated starlight brightness at different Galactic latitudes. These data have been used in the present work to obtain the brightness and color of the integrated starlight at North and South Celestial, Ecliptic and Galactic Poles. The present values of the brightness are expressed in S10 units and mag/arcsec2. Our results have been compared with that obtained by other investigators using photometric and star counts techniques. The B-V and B-R have been calculated and the results are compared with that obtained by other investigators.
Spectrum of the Anomalous Microwave Emission in the North Celestial Pole with WMAP 7-Year data
Bonaldi, Anna; 10.1155/2012/853927
2013-01-01
We estimate the frequency spectrum of the diffuse anomalous microwave emission (AME) on the North Celestial Pole (NCP) region of the sky with the Correlated Component Analysis (CCA) component separation method applied to WMAP 7-yr data. The NCP is a suitable region for this analysis because the AME is weakly contaminated by synchrotron and free-free emission. By modeling the AME component as a peaked spectrum we estimate the peak frequency to be $21.7\\pm0.8$\\,GHz, in agreement with previous analyses which favored $\
Malkin, Z; Arias, F; Boboltz, D; Boehm, J; Bolotin, S; Bourda, G; Charlot, P; De Witt, A; Fey, A; Gaume, R; Heinkelmann, R; Lambert, S; Ma, C; Nothnagel, A; Seitz, M; Gordon, D; Skurikhina, E; Souchay, J; Titov, O
2015-01-01
The goal of this presentation is to report the latest progress in creation of the next generation of VLBI-based International Celestial Reference Frame, ICRF3. Two main directions of ICRF3 development are improvement of the S/X-band frame and extension of the ICRF to higher frequencies. Another important task of this work is the preparation for comparison of ICRF3 with the new generation optical frame GCRF expected by the end of the decade as a result of the Gaia mission.
Signature of the celestial spheres discovering order in the solar system
Warm, Harmut
2010-01-01
"A milestone in modern research on the the harmony of the spheres." - Novalis magazine "This book reignites the debate on the harmony of the spheres." - Das Goetheanum Is the solar system ordered, or is it simply the result of random and chaotic accidents? This book takes us on a powerful and compelling journey of discovery, revealing the celestial spheres' astonishingly complex patterns. The movements of the planets are found to correspond accurately with simple geometric figures and musical intervals, pointing to an exciting new perspective on the ancient idea of a "harmony of the spheres". Hartmut Warm's detailed presentation incorporates the distances, velocities and periods of conjunction of the planets, as well as the rotations of the Sun, Moon and Venus. Numerous graphics - including colour plates - illustrate the extraordinary beauty of the geometrical forms that result when the movements of several planets are viewed in relation to one another. In addition, the author describes and analyses the conce...
On the implications of the Galactic aberration in proper motions for celestial reference frame
Malkin, Zinovy
2014-01-01
During the last years, much attention has been paid to the astrometric implications of the galactic aberration in proper motions (GA). This effect causes systematic errors in astrometric measurements at a microarcsecond level. Some authors consider it so serious that it requires redefinition of the celestial reference system (CRF). We argue that such attention to the GA is too much exaggerated. It is just a small astrometric correction that must be taken into account during highly accurate astrometric and geodetic data processing. The accuracy of this correction depends on accuracy of the Galactic rotation parameters and, for most application, on the accuracy of the rotation matrix between Galactic and equatorial systems. Our analysis has shown that our today knowledge of these two factors is sufficient to compute the GA correction with accuracy of better than 10%. The remaining effect at a level of few tenths microarcsecond/yr is negligible nowadays. Another consequence of introducing the GA correction is ne...
The Lens-Thirring effect in the anomalistic period of celestial bodies
Haranas, Ioannis; Gkigkitzis, Ioannis
2013-01-01
In the weak field and slow motion approximation, the general relativistic field equations are linearized, resembling those of the electromagnetic theory. In a way analogous to that of a moving charge generating a magnetic field, a mass energy current can produce a gravitomagnetic field. In this contribution, the motion of a secondary celestial body is studied under the influence of the gravitomagnetic force generated by a spherical primary. More specifically, two equations are derived to approximate the periastron time rate of change and its total variation over one revolution (i.e., the difference between the anomalistic period and the Keplerian period). Kinematically, this influence results to an apsidal motion. The aforementioned quantities are numerically estimated for Mercury, the companion star of the pulsar PSR 1913 plus 16, the companion planet of the star HD 80606 and the artificial Earth satellite GRACE A. The case of the artificial Earth satellite GRACE A is also considered, but the results present...
Sokolova, Yulia
2014-01-01
In this study, we compared results of determination of the orientation angles between celestial reference frames realized by radio source position catalogues using three methods of accounting for correlation information: using the position errors only, using additionally the correlations be-tween the right ascension and declination (RA/DE correlations) reported in radio source position catalogues published in the IERS format, and using the full covariance matrix. The computations were performed with nine catalogues computed at eight analysis centres. Our analysis has shown that using the RA/DE correlations only slightly influences the computed rotational angles, whereas using the full correlation matrices leads to substantial change in the orientation parameters be-tween the compared catalogues.
SAS-2 observations of celestial diffuse gamma radiation above 30 MeV
Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.
1974-01-01
The small astronomy satellite, SAS-2, used a 32-deck magnetic core digitized spark chamber to study gamma rays with energies above 30 MeV. Data for four regions of the sky away from the galactic plane were analyzed. These regions show a finite, diffuse flux of gamma rays with a steep energy spectrum, and the flux is uniform over all the regions. Represented by a power law, the differential energy spectrum shows an index of 2.5 + or - 0.4. The steep SAS-2 spectrum and the lower energy data are reasonably consistent with a neutral pion gamma-ray spectrum which was red-shifted (such as that proposed by some cosmological theories). It is concluded that the diffuse celestial gamma ray spectrum observed presents the possibility of cosmological studies and possible evidence for a residual cosmic ray density, and supports the galactic superclusters of matter and antimatter remaining from baryon-symmetric big bang.
Malkin, Zinovy; Ma, Chopo; Lambert, Sebastien
2014-01-01
In this paper we outline several problems related to the realization of the international celestial and terrestrial reference frames ICRF and ITRF at the millimeter level of accuracy, with emphasis on ICRF issues. The main topics considered are: analysis of the current status of the ICRF, mutual impact of ICRF and ITRF, and some considerations for future ICRF realizations.
International Celestial Reference Frame (ICRF): mantenimiento y extensión
Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.
A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.
Organic mechanism and the soul of science.
Wilson, Catherine
2009-01-01
One of Donald Bates's most striking claims was that the bio-medical sciences were central to the Scientific Revolution of the 17th century and that its innovators drew heavily on the "organic mechanism" of the ancients. The paper elaborates on and defends Bates's proposal against a more conventional reading of the Scientific Revolution as driven by celestial and terrestrial mechanics and physics.
强不规则天体引力场中的动力学研究进展%Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body
Institute of Scientific and Technical Information of China (English)
姜宇; 宝音贺西
2014-01-01
Both asteroid and comet exploration are important areas in the deep space exploration.The mass of an asteroid or a comet is not big enough,so its gravitational force is much smaller than the stress to satisfy the hydrostatic equilibrium, which makes the minor celestial body irregular-shaped. The research of dynamical behaviours and mechanisms in the gravitational field of irregular celestial body is the basis of minor celestial body exploration,including the catching of the explorer and the design of the orbit around the minor celestial body.This paper summarizes the research progress of the dynamics in the gravitational field of irregular celestial body through gravitational models and dynamical mechanisms.The research situation of gravitational models such as the Legendre polynomial model,the simple-shaped model and the polyhedron model are presented.In addition,the research situation of dynamical mechanisms such as the periodic orbits and quasi-periodic orbits, equilibrium points, manifolds,bifurcations and resonances,chaos,are also presented.Besides,we have analyzed key points and difficult points of these researches.Finally,the research trend of the dynamics in the gravitational field of irregular celestial body is discussed.%小行星探测与彗星探测是深空探测的重要方面。一般来说，小行星和彗星因质量都不足以使得万有引力克服应力达到流体静力学平衡，而具有强不规则的外形。研究强不规则天体引力场中的动力学行为及其内在机制，是探测器被不规则天体捕获并对其形成近距离探测轨道的基础。从引力场模型和动力学行为两个方面综述了强不规则天体引力场中动力学的研究进展，在引力场模型的研究方面介绍了强不规则天体引力场建模的球谐函数摄动展开模型、简单特殊体模型及多面体模型的研究现状，在动力学机制的研究方面介绍了强不规则天体引力场中的
Bias Estimations for Ill-posed Problem of Celestial Positioning Using the Sun and Precision Analysis
Directory of Open Access Journals (Sweden)
ZHAN Yinhu
2016-08-01
Full Text Available Lunar/Mars rovers own sun sensors for navigation, however, long-time tracking for the sun impacts on the real-time activity of navigation. Absolute positioning method by observing the sun with a super short tracking period such as 1 or 2 minutes is researched in this paper. Linear least squares model of altitude positioning method is deduced, and the ill-posed problem of celestial positioning using the sun is brought out for the first time. Singular value decomposition method is used to diagnose the ill-posed problem, and different bias estimations are employed and compared by simulative calculations. Results of the calculations indicate the superiority of bias estimations which can effectively improve initial values. However, bias estimations are greatly impacted by initial values, because the initial values converge at a line which passes by the real value and is vertical relative to the orientation of the sun. The research of this paper is of some value to application.
ASTEP South: An Antarctic Search for Transiting Planets around the celestial South pole
Crouzet, Nicolas; Blazit, Alain; Bonhomme, Serge; Fanteï-Caujolle, Yan; Fressin, François; Guillot, Tristan; Schmider, François-Xavier; Valbousquet, Franck; Bondoux, Erick; Challita, Zalpha; Abe, Lyu; Daban, Jean-Baptiste; Gouvret, Carole
2008-01-01
ASTEP South is the first phase of the ASTEP project that aims to determine the quality of Dome C as a site for future photometric searches for transiting exoplanets and discover extrasolar planets from the Concordia base in Antarctica. ASTEP South consists of a front-illuminated 4k x 4k CCD camera, a 10 cm refractor, and a simple mount in a thermalized enclosure. A double-glass window is used to reduce temperature variations and its accompanying turbulence on the optical path. The telescope is fixed and observes a 4 x 4 square degrees field of view centered on the celestial South pole. With this design, A STEP South is very stable and observes with low and constant airmass, both being important issues for photometric precision. We present the project, we show that enough stars are present in our field of view to allow the detection of one to a few transiting giant planets, and that the photometric precision of the instrument should be a few mmag for stars brighter than magnitude 12 and better than 10 mmag for...
Non-parametric PSF estimation from celestial transit solar images using blind deconvolution
Gonzalez, Adriana; Jacques, Laurent
2016-01-01
Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. Optics are never perfect and the non-ideal path through the telescope is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Other sources of noise (read-out, Photon) also contaminate the image acquisition process. The problem of estimating both the PSF filter and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, it does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis image prior model and weak assumptions on the PSF filter's response. We use the observations from a celestial body transit where such object can be assumed to be a black disk. Such constraints limits the interchangeabil...
Edward Burne-Jones’ The Days of Creation: A Celestial Utopia
Directory of Open Access Journals (Sweden)
Liana De Girolami Cheney
2014-09-01
Full Text Available Edward Burne-Jones’ cycle of The Days of Creation of 1870-66(Fogg Art Museum, Harvard University Museums, Cambridge, MA was highly praised and elegantly described by Oscar Wilde: “The picture is divided into six compartments, each representing a day in the Creation of the World, under the symbol of an angel holding a crystal globe, within which is shown the work of a day.” This essay examines how Burne-Jones visualized an unusual celestial creation where angels holding magical spheres unveil the divine manifestation for the creation of a terrestrial realm. His The Days of Creation is an aesthetic culmination of the artistic power of invention, imitation and creation of beauty. Burne-Jones borrows the divine concept of world creation to formulate his own artist creation. Selecting God’s week of creation, he empowers a daily angel to manifest the beauty and power of divine creation. Ultimately, Burne-Jones creates a cosmic utopia, a mythical heavenly and natural realm, where angels design a world of beauty to be emulated not only by the artist, but also by most of all by the viewer.
Dual-EKF-Based Real-Time Celestial Navigation for Lunar Rover
Directory of Open Access Journals (Sweden)
Li Xie
2012-01-01
Full Text Available A key requirement of lunar rover autonomous navigation is to acquire state information accurately in real-time during its motion and set up a gradual parameter-based nonlinear kinematics model for the rover. In this paper, we propose a dual-extended-Kalman-filter- (dual-EKF- based real-time celestial navigation (RCN method. The proposed method considers the rover position and velocity on the lunar surface as the system parameters and establishes a constant velocity (CV model. In addition, the attitude quaternion is considered as the system state, and the quaternion differential equation is established as the state equation, which incorporates the output of angular rate gyroscope. Therefore, the measurement equation can be established with sun direction vector from the sun sensor and speed observation from the speedometer. The gyro continuous output ensures the algorithm real-time operation. Finally, we use the dual-EKF method to solve the system equations. Simulation results show that the proposed method can acquire the rover position and heading information in real time and greatly improve the navigation accuracy. Our method overcomes the disadvantage of the cumulative error in inertial navigation.
Initial deep LOFAR observations of Epoch of Reionization windows: I. The North Celestial Pole
Yatawatta, S; Brentjens, M A; Labropoulos, P; Pandey, V N; Kazemi, S; Zaroubi, S; Koopmans, L V E; Offringa, A R; Jelic, V; Rubi, O Martinez; Veligatla, V; Wijnholds, S J; Brouw, W N; Bernardi, G; Ciardi, B; Daiboo, S; Harker, G; Mellema, G; Schaye, J; Thomas, R; Vedantham, H; Chapman, E; Abdalla, F B; Alexov, A; Anderson, J; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M; Best, P; Bonafede, A; Bregman, J; Breitling, F; van de Brink, R H; Broderick, J W; Bruggen, M; Conway, J; de Gasperin, F; de Geus, E; Duscha, S; Falcke, H; Fallows, R A; Ferrari, C; Frieswijk, W; Garrett, M A; Griessmeier, J M; Gunst, A W; Hassall, T E; Hessels, J W T; Hoeft, M; Iacobelli, M; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Maat, P; Mann, G; McKean, J P; Mevius, M; Mol, J D; Munk, H; Nijboer, R; Noordam, J E; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Rottgering, H J A; Sluman, J; Smirnov, O; Stappers, B; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van Weeren, R J; Wise, M; Wucknitz, O; Zarka, P
2013-01-01
The aim of the LOFAR Epoch of Reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. One of the prospective observing windows for the LOFAR EoR project will be centered at the North Celestial Pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. With about 3 nights, of 6 hours each, effective integration we have achieved a noise level of about 100 microJy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 microJy/PSF, mainly due to additional contamination from unsubtracted nea...
Optical identifications of celestial high energy sources with the Telescopio Nazionale Galileo
International Nuclear Information System (INIS)
To ascertain the nature of celestial high energy sources, it is crucial to identify their optical counterparts. However, the currently available astronomical public optical databases do not provide an adequate support for a systematic high energy sources identification work. In particular, the optical limiting magnitude represents a severe limitation since the deepest flux limits reached by X-ray surveys require of course similarly deeper optical catalogs to homogeneously sample the available parameter space. Nonetheless, dedicated spectroscopic campaigns are being carried out successfully with the Telescopio Nazionale Galileo (TNG), a 4-m class telescope. To set up a winning observational campaign, the first and most important step is to define a strong science case, as it will allow for selections of good targets for observations: the key is to increase the identification efficiency while keeping down the required telescope time. In this context, as the Principal Investigator, I will give an overview of the first spectroscopic campaign carried out at the TNG to identify Swift X-ray serendipitous sources, and I will show the valuable results achieved with only one night of observations. As a second example, I will review the strategy for the northern-sky classification of candidate blazars associated to unidentified Fermi γ-ray sources, and I will show the results coming from the related observational campaign at TNG I have been involved during the last two years.
The effects of frequency-dependent quasar evolution on the celestial reference frame
Shabala, Stanislav; McCallum, Jamie; Titov, Oleg; Blanchard, Jay; Lovell, Jim; Watson, Christopher
2013-01-01
We examine the relationship between source position stability and astrophysical properties of radio-loud quasars making up the International Celestial Reference Frame. We construct light curves for 95 most frequently observed ICRF2 quasars at both the geodetic VLBI observing bands. Because the appearance of new quasar components corresponds to an increase in quasar flux density, these light curves allow us to probe source structure on sub-100 microarcsecond scales, much smaller than conventional VLBI imaging. Flux density monitoring also allows us to trace the evolution of quasar structure. We test how source position stability depends on three astrophysical parameters: (1) Flux density variability at X-band; (2) Time lag between S and X-band light curves; (3) Spectral index rms, defined as the variability in the ratio between S and X-band flux densities. We find that small (<0.15 years) time lags between S and X-band light curves and low (<0.10) spectral index variability are excellent indicators of po...
Weiland, J L; Hill, R S; Wollack, E; Hinshaw, G; Greason, M R; Jarosik, N; Page, L; Bennett, C L; Dunkley, J; Gold, B; Halpern, M; Kogut, A; Komatsu, E; Larson, D; Limon, M; Meyer, S S; Nolta, M R; Smith, K M; Spergel, D N; Tucker, G S; Wright, E L
2010-01-01
We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23 - 94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274 and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1-sigma of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase, and limits (but no detections) on linear polarization. Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 micron, reproduce WMAP seasonally averaged observations of Mars within ~2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatu...
Belda, Santiago; Heinkelmann, Robert; Ferrándiz, José M.; Nilsson, Tobias; Schuh, Harald
2016-08-01
Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year^{-1} , and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 μ as year^{-1 } in y_{pol } when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 μ as in the terrestrial pole coordinates.
Non-parametric PSF estimation from celestial transit solar images using blind deconvolution
González, Adriana; Delouille, Véronique; Jacques, Laurent
2016-01-01
Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated, and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.
Quantum and Post-Newtonian Effects in the Anomalistic Period and the Mean Motion of Celestial Bodies
Haranas, Ioannis; Gkigkitzis, Ioannis; Kotsireas, Ilias
2015-01-01
We study the motion of a secondary celestial body under the influence of the corrected gravitational force of a primary. We study the effect of quantum and relativistic corrections to the gravitational potential of a primary body acting on the orbiting body. More specifically, two equations are derived to approximate the perigee/perihelion/periastron time rate of change and its total variation over one revolution (i.e., the difference between the anomalistic period and the Keplerian period) under the influence of the quantum as well as post- Newtonian accelerations. Numerical results have been obtained for the artificial Earth satellite Molnya, Mercury, and, finally, the for the HW Vir c, planetary companion.
Theodossiou, Efstratios; Manimanis, Vassilios N.; Dimitrijević, Milan S.; Mantarakis, Petros
In this article we consider the role of the three principal celestial bodies, the Earth (Gaia), the Sun (Helios) and the Moon (Selene), as well as the Sky (Ouranos) in the ancient Greek cosmogony. This is done by the analysis of antique Greek texts like Orphic Hymns and the literary remains of the writers and philosophers like Aeschylus, (Pseudo) Apollodorus, Apollonius Rhodius, Aristotle, Euripides, Hesiod, Homer, Hyginus, Nonnus, Pausanias, Pindar and Sophocles, as well as by the analysis of texts of Roman writers like Cicero, Ovid and Pliny.
Directory of Open Access Journals (Sweden)
Ülo Siimets
2006-01-01
Full Text Available This article gives a brief overview of the most common Chukchi myths, notions and beliefs related to celestial bodies at the end of the 19th and during the 20th century. The firmament of Chukchi world view is connected with their main source of subsistence – reindeer herding. Chukchis are one of the very few Siberian indigenous people who have preserved their religion. Similarly to many other nations, the peoples of the Far North as well as Chukchis personify the Sun, the Moon and stars. The article also points out thesimilarities between Chukchi notions and these of other peoples. Till now Chukchi reindeer herders seek the supposed help or influence of a constellation or planet when making important sacrifices (for example, offering sacrifices in a full moon. According to the Chukchi religion the most important celestial character is the Sun. It is spoken of as an individual being (vaśrgśn. In addition to the Sun, the Creator, Dawn, Zenith, Midday and the North Star also belong to the ranks of special (superior beings. The Moon in Chukchi mythology is a man and a being in one person. It is as the ketlja (evil spiritof the Sun. Chukchi myths about several stars (such as the North Star and Betelgeuse resemble to a great extent these of other peoples.
Wang, Xin; Gao, Jun; Fan, Zhiguo; Roberts, Nicholas W.
2016-06-01
We present a computationally inexpensive analytical model for simulating celestial polarization patterns in variable conditions. We combine both the singularity theory of Berry et al (2004 New J. Phys. 6 162) and the intensity model of Perez et al (1993 Sol. Energy 50 235-245) such that our single model describes three key sets of data: (1) the overhead distribution of the degree of polarization as well as the existence of neutral points in the sky; (2) the change in sky polarization as a function of the turbidity of the atmosphere; and (3) sky polarization patterns as a function of wavelength, calculated in this work from the ultra-violet to the near infra-red. To verify the performance of our model we generate accurate reference data using a numerical radiative transfer model and statistical comparisons between these two methods demonstrate no significant difference in almost all situations. The development of our analytical model provides a novel method for efficiently calculating the overhead skylight polarization pattern. This provides a new tool of particular relevance for our understanding of animals that use the celestial polarization pattern as a source of visual information.
Yan, Kun
2007-04-01
In this paper, by discussing the basic hypotheses about the continuous orbit and discrete orbit in two research directions of the background medium theory for celestial body motion, the concrete equation forms and their summary of the theoretic frame of celestial body motion are introduced. Future more, by discussing the general form of Binet's equation of celestial body motion orbit and it's solution of the advance of the perihelion of planets, the relations and differences between the continuous orbit theory and Newton's gravitation theory and Einstein's general relativity are given. And by discussing the fractional-dimension expanded equation for the celestial body motion orbits, the concrete equations and the prophesy data of discrete orbit or stable orbits of celestial bodies which included the planets in the Solar system, satellites in the Uranian system, satellites in the Earth system and satellites obtaining the Moon obtaining from discrete orbit theory are given too. Especially, as the preliminary exploration and inference to the gravitation curve of celestial bodies in broadly range, the concept for the ideal black hole with trend to infinite in mass density difficult to be formed by gravitation only is explored. By discussing the position hypothesis of fractional-dimension derivative about general function and the formula form the hypothesis of fractional-dimension derivative about power function, the concrete equation formulas of fractional-dimension derivative, differential and integral are described distinctly further, and the difference between the fractional-dimension derivative and the fractional-order derivative are given too. Subsequently, the concrete forms of measure calculation equations of self-similar fractal obtaining by based on the definition of form in fractional-dimension calculus about general fractal measure are discussed again, and the differences with Hausdorff measure method or the covering method at present are given. By applying
Hartog, J P Den
1961-01-01
First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e
Lanfranchi, G. B.
2011-06-01
For Ancient Mesopotamians, astronomical phenomena were signs signifying the gods' judgment on human behaviour. Mesopotamian scholars studied celestial phenomena for understanding the gods' will, and strongly developed astrology. From the 8th to the 6th century BC Assyrian and Babylonian astronomers achieved the ability to predict solar and lunar eclipses, and the planets' movements through mathematical calculations. Predictability of astral phenomena solicited the awareness that they are all regular, and that the universe is governed by an eternal, immutable order fixed at its very beginning. This finally favoured the idea that the cosmic order depended on the will of one god only, displacing polytheism in favour of monotheism; and astrology lost its religious importance as a mean to know the divine will.
Institute of Scientific and Technical Information of China (English)
XU PeiLiang
2009-01-01
Satellite orbits have been routinely used to produce models of the Earth's gravity field. In connection with such productions, the partial derivatives of a satellite orbit with respect to the force parameters to be determined, namely, the unknown harmonic coefficients of the gravitational model, have been first computed by setting the initial values of partial derivatives to zero. In this note, we first design some simple mathematical examples to show that setting the initial values of partial derivatives to zero is generally erroneous mathematically. We then prove that it is prohibited physically. In other words, set-ting the initial values of partial derivatives to zero violates the physics of motion of celestial bodies.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Satellite orbits have been routinely used to produce models of the Earth’s gravity field. In connection with such productions, the partial derivatives of a satellite orbit with respect to the force parameters to be determined, namely, the unknown harmonic coefficients of the gravitational model, have been first computed by setting the initial values of partial derivatives to zero. In this note, we first design some simple mathematical examples to show that setting the initial values of partial derivatives to zero is generally erroneous mathematically. We then prove that it is prohibited physically. In other words, set-ting the initial values of partial derivatives to zero violates the physics of motion of celestial bodies.
Si, Jian-min; Luo, A-li; Wu, Fu-zhao; Wu, Yi-hong
2015-03-01
There are many valuable rare and unusual objects in spectra dataset of Sloan Digital Sky Survey (SDSS) Data Release eight (DR8), such as special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on, so it is extremely significant to search for rare and unusual celestial objects from massive spectra dataset. A novel algorithm based on Kernel dense estimation and K-nearest neighborhoods (KNN) has been presented, and applied to search for rare and unusual celestial objects from 546 383 stellar spectra of SDSS DR8. Their densities are estimated using Gaussian kernel density estimation, the top 5 000 spectra in descend order by their densities are selected as rare objects, and the top 300 000 spectra in ascend order by their densities are selected as normal objects. Then, KNN were used to classify the rest objects, and simultaneously K nearest neighbors of the 5 000 rare spectra are also selected as rare objects. As a result, there are totally 21 193 spectra selected as initial rare spectra, which include error spectra caused by deletion, redden, bad calibration, spectra consisting of different physically irrelevant components, planetary nebulas, QSOs, special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on. By cross identification with SIMBAD, NED, ADS and major literature, it is found that three DZ white dwarfs, one WDMS, two CVs with company of G-type star, three CVs candidates, six DC white dwarfs, one DC white dwarf candidate and one BL Lacertae (BL lac) candidate are our new findings. We also have found one special DA white dwarf with emission lines of Ca II triple and Mg I, and one unknown object whose spectrum looks like a late M star with emission lines and its image looks like a galaxy or nebula. PMID:26117907
Intrinsic electromagnetic variability in celestial objects containing rapidly spinning black holes
Zhang, Fan
2016-01-01
Analytical studies have raised the concern that a mysterious expulsion of magnetic field lines by a rapidly-spinning black hole (dubbed the black hole Meissner effect) would shut down the Blandford-Znajek process and quench the jets of active galactic nuclei and microquasars. This effect is however not seen observationally or in numerical simulations. Previous attempts at reconciling the predictions with observations have proposed several mechanisms to evade the Meissner effect. In this paper, we identify a new evasion mechanism and discuss its observational significance. Specifically, we show that the breakdown of stationarity is sufficient to remove the expulsion of the magnetic field at all multipole orders, and that the associated temporal variation is likely turbulent due to the existence of efficient mechanisms for sharing energy across different modes. Such an intrinsic (as opposed to being driven externally by, e.g., changes in the accretion rate) variability of the electromagnetic field can produce t...
Chester, W
1979-01-01
When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How ever, the presentation is more sophisticated than might be considered appropri ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...
Jacobs, Christopher
2015-08-01
ICRF-3 seeks to improve upon the highly successful ICRF-2. Our goals are to improve the precision, spatial and frequency coverage relative to the ICRF-2 by 2018. This date is driven by the desire to create radio frames that are ready for comparison with the Gaia optical frame.Several specific actions are underway. A collaboration to improve at S/X-band precision of the Very Long Baseline Array (VLBA) Calibrator Survey's ~2200 sources, which are typically 5 times less precise than the rest of the ICRF-2, is bearing fruit and is projected to yield a factor of 3 improvement in precision. S/X-band southern hemisphere precision improvements are underway with observations using southern antennas such as the AuScope, Warkworth, and HartRAO, South Africa.We also seek to improve radio frequency coverage with X/Ka-band and K-band work. An X/Ka frame of 660 sources now has full sky coverage from the addition of a 2nd southern station in Argentina which is strengthening the southern hemisphere in general. The X/Ka-band frame's precision is now comparable to the ICRF-2 for the 530 sources in common. A K-band collaboration has formed with similar coverage and southern precision goals. By the time of this meeting, we expect K-band to complete full sky coverage with south polar cap observations and to improve spatial density north of -30 deg declination with VLBA observations.On the analysis front, special attention is being given to combination techniques both of Very Long Baseline Interferometry (VLBI) frames and of multiple data types. Consistency of the Celestial Reference Frame (CRF) with the Terrestrial Reference Frame (TRF) and Earth Oreintation Parameters (EOP) is another area of concern. Comparison of celestial frame solutions from various groups is underway in order to identify and correct systematic errors. We will discuss evidence emerging for 100 µas zonal errors in the ICRF2 in the declination range from 0 to -30 deg.Finally, work is underway to identify and
Intrinsic Electromagnetic Variability in Celestial Objects Containing Rapidly Spinning Black Holes
Zhang, Fan
2016-02-01
Analytical studies have raised the concern that a mysterious expulsion of magnetic field lines by a rapidly spinning black hole (dubbed the black hole Meissner effect) would shut down the Blandford-Znajek process and quench the jets of active galactic nuclei and microquasars. This effect is, however, not seen observationally or in numerical simulations. Previous attempts at reconciling the predictions with observations have proposed several mechanisms to evade the Meissner effect. In this paper, we identify a new evasion mechanism and discuss its observational significance. Specifically, we show that the breakdown of stationarity is sufficient to remove the expulsion of the magnetic field at all multipole orders, and that the associated temporal variation is likely turbulent because of the existence of efficient mechanisms for sharing energy across different modes. Such an intrinsic (as opposed to being driven externally by, e.g., changes in the accretion rate) variability of the electromagnetic field can produce the recorded linear correlation between microvariability amplitudes and mean fluxes, help create magnetic randomness and seed sheared magnetic loops in jets, and lead to a better theoretical fit to the X-ray microvariability power spectral density.
Menanteau, Felipe; Barrientos, L Felipe; Battaglia, Nicholas; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J; Dünner, Rolando; Gralla, Megan; Hajian, Amir; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D; Hughes, John P; Infante, Leopoldo; Kosowsky, Arthur; Marriage, Tobias A; Marsden, Danica; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Schmitt, Benjamin L; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Switzer, Eric; Wollack, Edward J
2012-01-01
We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich Effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 square degrees centered on the celestial equator, is divided into two regions. The main region uses 270 square degrees of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5-meter telescope. We confirm a total of 49 clusters to z~1.3, of which 22 (all at z>0.55) are new discoveries. For the second region the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z~0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richne...
Stewart, A. J.; Fender, R. P.; Broderick, J. W.; Hassall, T. E.; Muñoz-Darias, T.; Rowlinson, A.; Swinbank, J. D.; Staley, T. D.; Molenaar, G. J.; Scheers, B.; Grobler, T. L.; Pietka, M.; Heald, G.; McKean, J. P.; Bell, M. E.; Bonafede, A.; Breton, R. P.; Carbone, D.; Cendes, Y.; Clarke, A. O.; Corbel, S.; de Gasperin, F.; Eislöffel, J.; Falcke, H.; Ferrari, C.; Grießmeier, J.-M.; Hardcastle, M. J.; Heesen, V.; Hessels, J. W. T.; Horneffer, A.; Iacobelli, M.; Jonker, P.; Karastergiou, A.; Kokotanekov, G.; Kondratiev, V. I.; Kuniyoshi, M.; Law, C. J.; van Leeuwen, J.; Markoff, S.; Miller-Jones, J. C. A.; Mulcahy, D.; Orru, E.; Pandey-Pommier, M.; Pratley, L.; Rol, E.; Röttgering, H. J. A.; Scaife, A. M. M.; Shulevski, A.; Sobey, C. A.; Stappers, B. W.; Tasse, C.; van der Horst, A. J.; van Velzen, S.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnands, R.; Wise, M.; Zarka, P.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bentum, M. J.; Bernardi, G.; Best, P.; Breitling, F.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Geus, E.; Deller, A.; Duscha, S.; Frieswijk, W.; Garrett, M. A.; Gunst, A. W.; van Haarlem, M. P.; Hoeft, M.; Hörandel, J.; Juette, E.; Kuper, G.; Loose, M.; Maat, P.; McFadden, R.; McKay-Bukowski, D.; Moldon, J.; Munk, H.; Norden, M. J.; Paas, H.; Polatidis, A. G.; Schwarz, D.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; Wijnholds, S. J.; Wucknitz, O.; Yatawatta, S.
2016-03-01
We present the results of a four-month campaign searching for low-frequency radio transients near the North Celestial Pole with the Low-Frequency Array (LOFAR), as part of the Multifrequency Snapshot Sky Survey (MSSS). The data were recorded between 2011 December and 2012 April and comprised 2149 11-min snapshots, each covering 175 deg2. We have found one convincing candidate astrophysical transient, with a duration of a few minutes and a flux density at 60 MHz of 15-25 Jy. The transient does not repeat and has no obvious optical or high-energy counterpart, as a result of which its nature is unclear. The detection of this event implies a transient rate at 60 MHz of 3.9^{+14.7}_{-3.7}× 10^{-4} d-1 deg-2, and a transient surface density of 1.5 × 10-5 deg-2, at a 7.9-Jy limiting flux density and ˜10-min time-scale. The campaign data were also searched for transients at a range of other time-scales, from 0.5 to 297 min, which allowed us to place a range of limits on transient rates at 60 MHz as a function of observation duration.
Stewart, A J; Broderick, J W; Hassall, T E; Muñoz-Darias, T; Rowlinson, A; Swinbank, J D; Staley, T D; Molenaar, G J; Scheers, B; Grobler, T L; Pietka, M; Heald, G; McKean, J P; Bell, M E; Bonafede, A; Breton, R P; Carbone, D; Cendes, Y; Clarke, A O; Corbel, S; de Gasperin, F; Eislöffel, J; Falcke, H; Ferrari, C; Grießmeier, J -M; Hardcastle, M J; Heesen, V; Hessels, J W T; Horneffer, A; Iacobelli, M; Jonker, P; Karastergiou, A; Kokotanekov, G; Kondratiev, V I; Kuniyoshi, M; Law, C J; van Leeuwen, J; Markoff, S; Miller-Jones, J C A; Mulcahy, D; Orru, E; Pandey-Pommier, M; Pratley, L; Rol, E; Röttgering, H J A; Scaife, A M M; Shulevski, A; Sobey, C A; Stappers, B W; Tasse, C; van der Horst, A J; van Velzen, S; van Weeren, R J; Wijers, R A M J; Wijnands, R; Wise, M; Zarka, P; Alexov, A; Anderson, J; Asgekar, A; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Breitling, F; Brüggen, M; Butcher, H R; Ciardi, B; Conway, J E; Corstanje, A; de Geus, E; Deller, A; Duscha, S; Frieswijk, W; Garrett, M A; Gunst, A W; van Haarlem, M P; Hoeft, M; Hörandel, J; Juette, E; Kuper, G; Loose, M; Maat, P; McFadden, R; McKay-Bukowski, D; Moldon, J; Munk, H; Norden, M J; Paas, H; Polatidis, A G; Schwarz, D; Sluman, J; Smirnov, O; Steinmetz, M; Thoudam, S; Toribio, M C; Vermeulen, R; Vocks, C; Wijnholds, S J; Wucknitz, O; Yatawatta, S
2015-01-01
We present the results of a four-month campaign searching for low-frequency radio transients near the North Celestial Pole with the Low-Frequency Array (LOFAR), as part of the Multifrequency Snapshot Sky Survey (MSSS). The data were recorded between 2011 December and 2012 April and comprised 2149 11-minute snapshots, each covering 175 deg^2. We have found one convincing candidate astrophysical transient, with a duration of a few minutes and a flux density at 60 MHz of 15-25 Jy. The transient does not repeat and has no obvious optical or high-energy counterpart, as a result of which its nature is unclear. The detection of this event implies a transient rate at 60 MHz of 3.9 (+14.7, -3.7) x 10^-4 day^-1 deg^-2, and a transient surface density of 1.5 x 10^-5 deg^-2, at a 7.9-Jy limiting flux density and ~10-minute time-scale. The campaign data were also searched for transients at a range of other time-scales, from 0.5 to 297 min, which allowed us to place a range of limits on transient rates at 60 MHz as a funct...
García-de-la-Borbolla, Á. (Ángeles)
2005-01-01
El recurso a la intercesión celestial en la hora de la muerte fue una constante en la actitud del hombre medieval con respecto a la muerte. Las donaciones de la alta Edad Media y los testamentos de la baja Edad Media muestran el activo papel de los santos, mártires y confesores, la Virgen María, madre de Dios, y Cristo, para la salvación eterna de los fieles.
Institute of Scientific and Technical Information of China (English)
李海林; 吴德伟
2012-01-01
针对航天器自主导航方法不适合高超声速临近空间飞行器的问题，研究了基于非开普勒轨道的高超声速临近空间飞行器自主天文导航方案．论述了基于非开普勒轨道的自主天文导航机理，通过对高超声速临近空间飞行器受力分析，建立了动力学方程；利用矢量倒数法则推导出空间运动方程；设计了基于非开普勒轨道的状态模型和基于星光折射间接敏感地平的观测模型，采用卡尔曼滤波进行了仿真验证．仿真结果表明，基于非开普勒轨道的高超声速临近空间飞行器自主天文导航可达到较高的位置和速度精度．%In allusion to the problem that the aircraft autonomous celestial navigation is not suitable for the near space vehicles with hypersonic speed, an approach of the autonomous celestial navigation of near space vehicles with hypersonic speed based on non-Keplerian orbits is studied. Mechanism of the autonomous celestial navigation based on non-Keplerian is analyzed, and the dynamic equations are developed by analyzing the strength of near space vehicles with hypersonic speed. The space motion equation is educed using the vector derivatives rules. States model based on non-Keplerian orbits and measurement model using the concept of stellar horizon atmospheric refraction are de- signed, and the Kalman filter simulation is adopted. Results show that the autonomous celestial navigation of near space vehicles with hypersonic speed based on non-Keplerian orbits can meet the requirement of high precision for position and velocity, which is important for further research on the near space vehicles with hypersonic speed.
Institute of Scientific and Technical Information of China (English)
王鹏; 张迎春
2015-01-01
为了实现大椭圆轨道(HEO)卫星高精度自主导航，提出一种将直接敏感地平天文导航与全球定位系统(GPS)相结合的组合导航方法.首先，分析卫星轨道��2运动模型及其所受空间摄动，建立卫星轨道动力学模型；然后，分析单一使用天文导航和GPS的优缺点，根据HEO卫星对GPS的可见性，提出在远地点只采用天文导航，而在近地点采用以天文导航为主、适时引入GPS信号进行位速测量辅助修正的方法.通过计算机仿真和结果分析表明了所提出的设计方法导航精度比单一天文导航提高72.4%∼85.6%.%In order to realize autonomous and continuous navigation information outputs for high elliptical orbit(HEO) satellite, new integrated navigation system is proposed based on celestial navigation of directly sensing stellar and global positioning system(GPS) navigation. Firstly, satellite orbit motion model is established on the satellite orbit dynamics��2 model and suffered space perturbation. Moreover, performances of single-use celestial navigation or GPS are analyzed. When the satellite is near the apogee, observation system is established by using only celestial navigation. When the satellite is near the perigee, the estimate covariance is revised through incoming GPS signal to improve the celestial navigation estimate. The autonomous navigation system is designed and simulating. The results of computer simulation show that the navigation accuracy is improved by 72.4%∼85.6%compared with the celestial navigation method.
Energy Technology Data Exchange (ETDEWEB)
Menanteau, Felipe; Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Sifon, Cristobal; Barrientos, L. Felipe; Duenner, Rolando; Infante, Leopoldo [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Battaglia, Nicholas [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Bond, J. Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Crichton, Devin; Gralla, Megan; Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Dicker, Simon [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban (South Africa); Kosowsky, Arthur [Physics and Astronomy Department, University of Pittsburgh, 100 Allen Hall, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marsden, Danica [Department of Physics, University of California Santa Barbara, CA 93106 (United States); and others
2013-03-01
We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 deg{sup 2} centered on the celestial equator, is divided into two regions. The main region uses 270 deg{sup 2} of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5 m telescope. We confirm a total of 49 clusters to z Almost-Equal-To 1.3, of which 22 (all at z > 0.55) are new discoveries. For the second region, the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z Almost-Equal-To 0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richness and SZ-derived mass. We also present X-ray fluxes and luminosities from the ROSAT All Sky Survey which confirm that this is a massive sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z = 1.1 (photometric), has an integrated XMM-Newton X-ray temperature of kT{sub X} = 7.9 {+-} 1.0 keV and combined mass of M {sub 200a} = 8.2{sup +3.3} {sub -2.5} Multiplication-Sign 10{sup 14} h {sup -1} {sub 70} M {sub Sun }, placing it among the most massive and X-ray-hot clusters known at redshifts beyond z = 1. We also highlight the optically rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z = 0.705 (spectroscopic) as the most significant detection of the whole equatorial sample with a Chandra-derived mass of M {sub 200a} = 1.9{sup +0.6} {sub -0.4} Multiplication-Sign 10{sup 15} h {sup -1} {sub 70} M {sub Sun }, placing it in the ranks of the most massive known clusters like El Gordo and the Bullet Cluster.
火星探测器自主天文导航方法研究%Research on autonomous celestials navigation method of Mars probe
Institute of Scientific and Technical Information of China (English)
金鸿
2015-01-01
This thesis suggests an autonomous celestial navigation method which is based on celestial observation,which uses the angle informa-tion of Mars and its satellites( starlight angular distance),combined with the movement model of Mars probe. Then we can figure out the precise position( real time)of Mars probe with Unscented Kalman filter. The result from computer simulation proved to be effective.%提出了一种基于天文观测的火星探测器自主天文导航方法，该方法利用由星敏感器视场内测量得到的火星及其卫星和某一恒星之间的星光角距，结合火星探测器的运动模型，通过Unscented卡尔曼滤波方法，即可获得高精度的火星探测器实时位置信息，计算机仿真结果证明了该方法的有效性。
Discretization on the cosmic scale inspired from the Old Quantum Mechanics
Agnese, A. G.; Festa, R
1998-01-01
The Old Quantum Mechanics actions discretization rules for periodic motions on the atomic scale (Bohr-Sommerfeld) have been suitably modified in order to account the gravitational field instead of the electrostatic one. The new rules are used to calculate a few mechanical quantities pertinent to the periodic motions of celestial bodies. Several values have been obtained which result in reasonable agreement with the corresponding experimental data. A gravitational dimensionless structure const...
Mueller, T G; Nielbock, M; Lim, T; Teyssier, D; Olberg, M; Klaas, U; Linz, H; Altieri, B; Pearson, C; Bendo, G; Vilenius, E
2013-01-01
Celestial standards play a major role in observational astrophysics. They are needed to characterise the performance of instruments and are paramount for photometric calibration. During the Herschel Calibration Asteroid Preparatory Programme approximately 50 asteroids have been established as far-IR/sub-mm/mm calibrators for Herschel. The selected asteroids fill the flux gap between the sub-mm/mm calibrators Mars, Uranus and Neptune, and the mid-IR bright calibration stars. All three Herschel instruments observed asteroids for various calibration purposes, including pointing tests, absolute flux calibration, relative spectral response function, observing mode validation, and cross-calibration aspects. Here we present newly established models for the four large and well characterized main-belt asteroids (1) Ceres, (2) Pallas, (4) Vesta, and (21) Lutetia which can be considered as new prime flux calibrators. The relevant object-specific properties (size, shape, spin-properties, albedo, thermal properties) are w...
基于信息融合的自主天文导航方法%Method of autonomous celestial navigation based on information fusion
Institute of Scientific and Technical Information of China (English)
王鹏; 张迎春
2012-01-01
Direct sensing horizon and indirect sensing horizon are two typical kinds of autonomous celestial navigation method. Direct sensing horizon is simply and reliable, but the navigation precision that depends mainly on earth sensor is lower. Indirect sensing horizon gets horizon information by observing atmosphere refraction stellar using the star sensor. Because the numbers of refraction stellar and observing time are limited, the observed information is discontinuous. A new method of autonomous celestial navigation using both of the two methods based on information fusion is presented. The new information is imported when refraction stars cannot be observed. Simulation results show that the proposed method can improve the precision and reliability of the navigation system.%直接敏感地平和间接敏感地平是典型的两种自主天文导航方法,直接敏感地平简单可靠,但是由于地球敏感器精度较低,因此导航精度不高;利用星光折射的间接敏感地平精度较高,但是折射星数量有限并且观测时段较短.针对上述两种方法的缺点,提出一种基于信息融合的自主天文导航方法.当观测不到折射星时引入新信息,弥补间接敏感地平自主导航的不足.通过对多种导航模式进行数值仿真与分析,验证所设计方法提高了系统的导航精度和可靠性.
Discretization on the cosmic scale inspired from the Old Quantum Mechanics
Agnese, A G
1998-01-01
The Old Quantum Mechanics actions discretization rules for periodic motions on the atomic scale (Bohr-Sommerfeld) have been suitably modified in order to account the gravitational field instead of the electrostatic one. The new rules are used to calculate a few mechanical quantities pertinent to the periodic motions of celestial bodies. Several values have been obtained which result in reasonable agreement with the corresponding experimental data. A gravitational dimensionless structure constant has been determined, using the data relative to the solar sistem, which allows to quantitatively account for phenomena on a much wider scale. In particular, some information is acquired about the recently discovered extrasolar planetary systems and about the general empirical law which connects the spin of a celestial body with the square of its mass.
Levy, David H
2011-01-01
When a dissertation gets completed, the normal rule is that it is never read. By anyone. David H. Levy’s dissertation - The Sky in Early Modern English Literature: A Study of Allusions to Celestial Events in Elizabethan and Jacobean Writing, 1572-1620 - is different. It opens a whole new interdisciplinary field, which involves the beautiful relationship between the night sky and the works of the early modern period of English Literature. Although the sky enters into much of literature through the ages, the period involving William Shakespeare and his colleagues is particularly rich. When Shakespeare was about 8 years old, his father probably took him outside his Stratford home into their northward-facing back yard. There, father and son gazed upon the first great new star visible in the past 500 years, shining forth as brightly as Venus, and even visible in daylight. This new star, which we now know as a supernova, completely unhinged old ideas about the cosmos. Com...
Bernardi, G; Brentjens, M A; Ciardi, B; Jelić, V; Koopmans, L V E; Labropoulos, P; Offringa, A; Pandey, V N; Schaye, J; Thomas, R M; Yatawatta, S; Zaroubi, S
2010-01-01
In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotatio...
Taris, F.; Andrei, A.; Roland, J.; Klotz, A.; Vachier, F.; Souchay, J.
2016-03-01
Context. The Gaia astrometric mission of the European Space Agency was launched on December 2013. It will provide a catalog of 500 000 quasars. Some of these targets will be chosen to build an optical reference system that will be linked to the International Celestial Reference Frame (ICRF). The astrometric coordinates of these sources will have roughly the same uncertainty at both optical and radio wavelengths, and it is then mandatory to observe a common set of targets to build the link. In the ICRF, some targets have been chosen because of their pointlikeness. They are quoted as defining sources, and they ensure very good uncertainty about their astrometric coordinates. At optical wavelengths, a comparable uncertainty could be achieved for targets that do not exhibit strong astrophysical phenomena, which is a potential source of photocenter flickering. A signature of these phenomena is a magnitude variation at optical wavelengths. Aims: The goal of this work is to present the time series of 14 targets suitable for the link between the ICRF and the future Gaia Celestial Reference Frame. The observations have been done systematically by robotic telescopes in France and Chile once every two nights since 2011 and in two filters. These time series are analyzed to search for periodic or quasi-periodic phenomena that must be taken into account when computing the uncertainty about the astrometric coordinates. Methods: Two independent methods were used in this work to analyze the time series. We used the CLEAN algorithm to compare the frequency obtained to those given by the Lomb-Scargle method. It avoids misinterpreting the frequency peaks given in the periodograms. Results: For the 14 targets we determine some periods with a confidence level above 90% in each case. Some of the periods found in this work were not previously known. For the others, we did a comparative study of the periods previously studied by others and always confirm their values. All the periods given
Celestial dynamics chaoticity and dynamics of celestial systems
Dvorak, Rudolf
2013-01-01
Written by an internationally renowned expert author and researcher, this monograph fills the need for a book conveying the sophisticated tools needed to calculate exo-planet motion and interplanetary space flight. It is unique in considering the critical problems of dynamics and stability, making use of the software Mathematica, including supplements for practical use of the formulae.A must-have for astronomers and applied mathematicians alike.
Celestial Fireworks from Dying Stars
2011-04-01
This image of the nebula NGC 3582, which was captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, shows giant loops of gas bearing a striking resemblance to solar prominences. These loops are thought to have been ejected by dying stars, but new stars are also being born within this stellar nursery. These energetic youngsters emit intense ultraviolet radiation that makes the gas in the nebula glow, producing the fiery display shown here. NGC 3582 is part of a large star-forming region in the Milky Way, called RCW 57. It lies close to the central plane of the Milky Way in the southern constellation of Carina (The Keel of Jason's ship, the Argo). John Herschel first saw this complex region of glowing gas and dark dust clouds in 1834, during his stay in South Africa. Some of the stars forming in regions like NGC 3582 are much heavier than the Sun. These monster stars emit energy at prodigious rates and have very short lives that end in explosions as supernovae. The material ejected from these dramatic events creates bubbles in the surrounding gas and dust. This is the probable cause of the loops visible in this picture. This image was taken through multiple filters. From the Wide Field Imager, data taken through a red filter are shown in green and red, and data taken through a filter that isolates the red glow characteristic of hydrogen are also shown in red. Additional infrared data from the Digitized Sky Survey are shown in blue. The image was processed by ESO using the observational data identified by Joe DePasquale, from the United States [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2]. The competition was organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using astronomical data obtained using professional telescopes. Notes [1] Joe searched through ESO's archive and identified datasets that he used to compose his image of NGC 3582, which was the tenth highest ranked entry in the competition, out of almost 100 entries. His original work can be seen here. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. To find out more about Hidden Treasures, visit http://www.eso.org/public/outreach/hiddentreasures/. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
COCO: Conversion of Celestial Coordinates
Wallace, Patrick
2014-06-01
The COCO program converts star coordinates from one system to another. Both the improved IAU system, post-1976, and the old pre-1976 system are supported. COCO can perform accurate transformations between multiple coordinate systems. COCO's user-interface is spartan but efficient and the program offers control over report resolution. All input is free-format, and defaults are provided where this is meaningful. COCO uses SLALIB (ascl:1403.025) and is distributed as part of the Starlink software collection (ascl:1110.012).
Directory of Open Access Journals (Sweden)
Paulo Sergio Bretones
2011-01-01
Full Text Available Este é um estudo sobre a elaboração do conceito de movimento diário da esfera celeste por um grupo de professores de Ciências e Geografia de 5ª a 8ª séries, participantes de um curso de Astronomia. Os resultados baseiam-se, sobretudo, na análise de suas respostas às perguntas das avaliações e em registros de aulas do curso. Discutem-se: a relação entre as respostas dos participantes, seus relatos sobre suas observações, e o desenvolvimento de conteúdos referentes ao movimento de constelações. Apresentam-se as elaborações de sequências da evolução conceitual do grupo e sua relação com a prática e a teoria trabalhadas no curso. Tais elaborações revelam os princípios relacionados à observação do céu: relação da altura do polo celeste com a latitude geográfica, obliquidade, continuidade do movimento, circularidade, tridimensionalidade e ciclicidade. O estudo sugere que esses princípios, usados como guias heurísticos, seriam úteis para o ensino da observação do céu.This work presents a study about the concept formation of the daily motion of the celestial sphere by a group of middle school teachers participants of an Astronomy course. The results are based on the analyses of the answers of these teachers for the questions made in the check tests and the records from the classes of the course. It is studied the relation between the answers, the accounts of the sky observations by the participants and the development of the contents about the daily motion of the celestial sphere. The elaborations of sequences of the verified conceptual evolution by the group and its relation with the theory develop in the course are presented. After a closer look at the elaborations of the participants, some principles were revealed: the elevation of the celestial pole to geographic latitude, obliquity, continuity of motion, circularity, tri-dimensionality and cyclicity. The study suggests that these principles shoud be used
Institute of Scientific and Technical Information of China (English)
董强; 马彩文; 李艳; 杨晓许; 袁辉
2015-01-01
针对平台式机载天文自主导航系统载体振动对导航系统定位精度的影响问题，理论分析了载体对导航平台影响的振动形式，给出振动角位移是主要影响量的结论。研究了天文导航系统的单星定位导航建模思路，根据振动角位移的特点给出了角位移补偿中近似坐标转换矩阵。设计了振动实验，建立了定位模型，给出了载体振动主要以角位移的形式将误差传递给导航系统平台。试验结果表明：振动角位移带来的误差为天文导航定位的主要影响因素，X、Y轴200″的轴向振动角位移带给天文导航系统的定位误差近似为600 m。%For the issue of the influence of aircraft vibration on the navigation system positioning accuracy based on airborne autonomous celestial navigation system, an analysis of navigation platform vibration influenced from aircraft was preceded.Furthermore, a conclusion was given that the main factor is vibration angular displacement.Next, a single stellar positioning model in the celestial navigation system was established.According to the characteristics of vibration angular displacement, the similar coordinate transformation matrix in the angular displacement compensa-tion was given.The results of vibration experiment and positioning model simulation validated that the angular vibra-tion is the main error propagation to navigation system platform.The positioning error of celestial navigation system is 600 m when vibration angular displacement is 200 s along the x and y axis.
Institute of Scientific and Technical Information of China (English)
阿里·捷木思; 房建成
2005-01-01
This paper presents an in-flight alignment technique for a strapdown inertial navigation system (SINS) and employs a star pattern recognition procedure for identifying stars sensed by a CCD electrooptical star sensor. Collinearity equations are used to estimate sensor frame star coordinates and the conventional least square differ-ential correction method is used to estimate the unknown orientation angles. A comparison of this attitude with the attitude estimated by the SINS provides axis misalignment angles. Simulations using a Kalman filter are carried out for an SINS and the system employs a local level navigation frame. The space stabilized SINS is discussed in conjunction with the celestial aiding. Based on the observation of the Kalman filter, the estimating and compensating gyro errors, as well as the position and velocity errors caused by the SINS misalignments are calibrated by celestial attitute information.%提出了一种基于CCD星敏感器的捷联惯性导航系统的空中对准方法.应用双线性方程求解被观测星在星敏感器坐标系中的坐标值及传统最小二乘微分校正法求解捷联惯性导航的姿态,该姿态值与捷联惯性导航解算姿态的差值就是惯性导航系统的失准角.作为Kalman滤波器的观测量,计算机仿真结果表明,天文姿态信息有效地校正了陀螺漂移和初始失准角引起的位置和速度误差.
大行星、月球和小天体环绕型探测器的轨道问题%Orbits of Orbiting Probes Around Planets, Moon and Small Celestial Bodies
Institute of Scientific and Technical Information of China (English)
刘林; 汤靖师
2012-01-01
The features of orbiting probes around celestial major bodies are discussed. The major bodies are selected with different physical characteristics, depending on their masses which determine the influence sphere and their density distributions and shapes which determine the gravity field. The possible motions and different characteristics of the orbiting probes around respective celestial bodies are discussed in detail, together with the discussion on two forms of formation flying. Lunar probes, whose energy dissipation is not a concern as for planetary probes, still have a problem on orbit life. Since the lunar mass distribution is not uniform, the orbit life is closely related to the orbit inclination. For Mars probes, although similar phenomenon exists, the rela- tion with orbit inclination is different. These major features of orbit variation can be used to serve the orbit design and selection in deep space exploration.%针对环绕型探测器的轨道,以具有不同物理特征的大天体（金星、火星和月球等）为例,根据它们的质量大小（决定其引力作用范围的大小）、密度分布和形状特征（决定其非球形引力场的特征）,具体阐述了它们各自环绕型探测器轨道的可能形式和不同的变化特征,另外介绍了小天体探测时的两种伴飞形式。关于环绕型探测器的轨道特征,如月球无大气,对其低轨探测器而言没有能量耗散影响,却同样有轨道寿命问题,而且由于其质量分布不均匀,这种现象还与轨道倾角有密切关系;而对火星的环绕型探测器而言,尽管有类似现象,但与轨道倾角的关系却大不相同。这些重要的轨道变化特征,可为深空探测中目标轨道的选择和设计提供依据。
Institute of Scientific and Technical Information of China (English)
王融; 熊智; 刘建业; 钟丽娜
2013-01-01
The traditional inertial/celestial integrated navigation system (INS/CNS) is inapplicable for hypersonic vehicle, because it can’t work under the body coordinate accordance and single-star visible condition. In this paper, a tightly-coupled INS/GPS/CNS integrated navigation scheme for hypersonic vehicle is investigated. The new INS/CNS integrated model is built based on transformational relation between starlight elevation/azimuth and INS errors. The new model can stabilize the measurement noise characteristic and work under single-star visible condition, thus can improve the continuity and accuracy of INS/CNS integration. The simulation of hypersonic vehicle navigation indicates that, the system assisted by celestial angle observation shows 60%-70% improvement in attitude accuracy than the unassisted system.%常规惯性/天文组合导航方法难以直接应用于高超声速飞行器机载环境下以载体系为基准进行星光测量的情况，且在可见星只有一颗时无法连续组合。为此，构建了高超声速飞行器惯性/卫星/天文紧组合导航系统方案，通过分析载体系下星光仰角、方位角与惯导误差之间的转换关系，建立了载体系下惯性/天文角度组合模型。理论分析表明，该系统在只有一颗导航星时仍能辅助惯导工作，且可使观测噪声特性保持稳定，从而提高了天文对惯导辅助的连续性和组合滤波估计精度。仿真结果表明，在高超声速飞行器导航系统采用天文角度辅助后，姿态误差较无天文辅助情况的降低60%~70%。
Gravitational mechanism of active life of the Earth, planets and satellites
Barkin, Yury
2010-05-01
From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial
Directory of Open Access Journals (Sweden)
Sami Chalhoub
2009-12-01
Full Text Available Various astronomy subjects arose from scientific, social, and religious circumstances which were ruling in Islamic Arabic Civilized Age. These circumstances played basic role in directing this science and branching it into suitable branches. One of the plenty subjects which this science discuss it in Islamic, Arabic civilization is planet figure science which describe celestial figure and pinpoint the location of stars in length and width. The importance of this research comes out that it will study the relation between this branch of astrology's branches and astronomy through studying celestial figures in sign of the zodiac in the Comprehensive Reference to Rules in Ibn Hibinta's Manuscript of Astrology (Al-Mughni Fi Ahkam Al- Nujum to support studied Arabic astrological texts which is till nowadays still very few.
Jacobs, Christopher S.; de Vicente, J.; Dugast, M.; García-Miró, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Maddè, R.; Mercolino, M.; Naudet, C. J.; Snedeker, L. G.; Sotuela, I.; White, L. A.
2013-03-01
In order to extend the X/Ka-band (8.4/32 GHz) Celestial Reference Frame coverage over the south polar cap region of declinations -45 to -90 deg, we developed a collaboration between the NASA and ESA Deep Space Networks. In particular ESA's new 35-meter X/Ka-band antenna in Malargüe, Argentina which became operational in January 2013 is now available for X/Ka VLBI baselines to NASA's antennas in Tidbinbilla, Australia; Goldstone, California; and Robledo, Spain. We report first fringes on baselines from Malargüe to Tidbinbilla, Goldstone, and Robledo using a semi-portable digital backend recording at 256 Mbps. To the best of our knowledge the Giga-lambda Malargüe-Tidbinbilla baseline is producing the highest resolution interferometry ever achieved over the south polar cap. We will present the distribution of Ka-band sources detected on this all-southern baseline. Lastly, we will discuss the prospects for using these new baselines to improve the astrometric accuracy of the X/Ka frame in the southern hemisphere.
Sami Chalhoub; Rula Ali
2009-01-01
Various astronomy subjects arose from scientific, social, and religious circumstances which were ruling in Islamic Arabic Civilized Age. These circumstances played basic role in directing this science and branching it into suitable branches. One of the plenty subjects which this science discuss it in Islamic, Arabic civilization is planet figure science which describe celestial figure and pinpoint the location of stars in length and width. The importance of this research comes out that it wil...
Warming: mechanism and latitude dependence
Barkin, Yury
2010-05-01
Introduction. In the work it is shown, that in present warming of climate of the Earth and in style of its display a fundamental role the mechanism of the forced swing and relative oscillations of eccentric core of the Earth and its mantle plays. Relative displacements of the centers of mass of the core and the mantle are dictated by the features of orbital motions of bodies of solar system and nonineriality of the Earth reference frame (or ot the mantle) at the motion of the Earth with respect to a baricenter of solar system and at rotation of the planet. As a result in relative translational displacements of the core and the mantle the frequencies characteristic for orbital motion of all bodies of solar system, and also their combination are shown. Methods of a space geodesy, gravimetry, geophysics, etc. unequivocally and clearly confirm phenomenon of drift of the center of mass of the Earth in define northern direction. This drift is characterized by the significant velocity in about 5 mm/yr. The unique opportunity of its explanation consists in the natural assumption of existence of the unidirectional relative displacement (drift) the center of mass of the core and the center of mass of the mantle of the Earth. And this displacement (at superfluous mass of the core in 16.7 % from the mass of full the Earth) is characterized still more significant velocity in 2.6 cm/yr and occurs on our geodynamic studies in a direction to Taimyr peninsula. The dynamic explanation to century drift for today does not exist. It is possible to note, however, that data of observations of last years, indirectly testifying that similar drifts of the centers of mass in present epoch occur on other bodies of Solar system have been obtain: the Sun, Mars, the Titan, Enceladus, the Neptune, etc. We connect with mentioned phenomena the observed secular variations of natural processes on this celestial bodies. I.e. it is possible to assume, that observable eccentric positions of the centers
van Deventer, M. Oskar
2009-01-01
The basis of a good mechanical puzzle is often a puzzling mechanism. This article will introduce some new puzzling mechanisms, like two knots that engage like gears, a chain whose links can be interchanged, and flat gears that do not come apart. It illustrates how puzzling mechanisms can be transformed into real mechanical puzzles, e.g., by…
Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino
2009-01-01
Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
The Antikythera Mechanism: The oldest mechanical universe in its scientific milieu
Moussas, Xenophon
2011-06-01
In this review the oldest known advanced astronomical instrument and dedicated analogue computer is presented, in context. The Antikythera Mechanism a mysterious device, assumed to be ahead of its time, probably made around 150 to 100 BCE, has been found in a 1st century BCE shipwreck near the island of Antikythera in a huge ship full of Greek treasures that were on their way to Rome. The Antikythera Mechanism is a clock-like device made of bronze gears, which looks much more advanced than its contemporary technological achievements. It is based on mathematics attributed to the Hipparchus and possibly carries knowledge and tradition that goes back to Archimedes, who according to ancient texts constructed several automata, including astronomical devices, a mechanical planetarium and a celestial sphere. The Antikythera Mechanism probably had a beautiful and expensive box; looking possibly like a very elaborate miniature Greek Temple, perhaps decorated with golden ornaments, of an elegant Hellenistic style, even perhaps with automatic statuettes, `daemons', functioning as pointers that performed some of its operations. Made out of appropriately tailored trains of gears that enable to perform specialised calculations, the mechanism carries concentric scales and pointers, in one side showing the position of the Sun in the ecliptic and the sky, possibly giving the time, hour of the day or night, like a clock. The position of the Moon and its phase is also shown during the month. On the other side of the Mechanism, having probably the size of a box (main part 32×20×6 cm), are two large spiral scales with two pointers showing the time in two different very long calendars, the first one concerning the eclipses, and lasting 18 years 11 days and 8 hours, the Saros period, repeating the solar and lunar eclipses, and enabling their prediction, and the 19 year cycle of Meton, that is the period the Moon reappears in the same place of the sky, with the same phase. An additional
Celestial Navigation, with a Moral Compass.
Donovan, Aine
1999-01-01
Kantian reasoning fails to address the needs of a mixed-gender peace-keeping force. A philosophy professor at the U.S. Naval Academy proposes a normative-ethics instructional model based on acceptance of duty and obedience (justice) and cultivation of reflective concern for individual choice and responsibility (caring). (24 references) (MLH)
Stellar alchemy. The celestial origin of atoms
Cassé, Michel
Why do the stars shine? What messages can we read in the light they send to us from the depths of the night? Nuclear astrophysics is a fascinating discipline, and enables connections to be made between atoms, stars, and human beings. Through modern astronomy, scientists have managed to unravel the full history of the chemical elements, and to understand how they originated and evolved into all the elements that compose our surroundings today. The transformation of metals into gold, something once dreamed of by alchemists, is a process commonly occurring in the cores of massive stars. But the most exciting revelation is the intimate connection that humanity itself has with the debris of exploded stars. This engaging account of nucleosynthesis in stars, and the associated chemical evolution of the Universe, is suitable for the general reader.
Celestial Beauty Leads The Hainan Airlines
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
@@ Based on the corporate culture of"intemally cultivating the spirit with the essence of the traditional Chinese culture,and externally combining the advanced western management and technology",Hainan Airlines Company Limited (hereinafter called HNA) has turned from a new soaring airlines to the fourth biggest airlines in China.
Celestial Beauty Leads The Hainan Airlines
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Based on the corporate culture of"intemally cultivating the spirit with the essence of the traditional Chinese culture,and externally combining the advanced western management and technology",Hainan Airlines Company Limited (hereinafter called HNA) has turned from a new soaring airlines to the fourth biggest airlines in China.……
Theories of figures of celestial bodies
Jardetzky, Wenceslas S
2005-01-01
Everything in the universe rotates: the meteors, the asteroids, the planets and their satellites, the sun, the stars, the clusters and nebulae, even the galaxies themselves. The problem of the shape of a rotating body is therefore universal in astronomy. Its treatment in this book, which deals with the figures of equilibrium and distortions of rotating bodies, is full and rigorous.Suitable for upper-level undergraduates and graduate students, this text was written by a renowned researcher and educator who taught at Columbia University and served for many years as a research associate at the La
Asteroids - the modern challenge of celestial dynamics
Dikova, Smiliana
2002-11-01
Among the most powerful statements in Science are those that mark absolute limits to knowledge. For example, Relativity and Quantum Theory touched the limits of speed and accuracy. Deterministic Chaos - the new scientific paradigma of our days, also falls in this class theories. Chaos means complexity in space and unpredictability in time. It shows the limit of our basic counting system and leads to a limited predictability of the long time dynamical evolution. Perhaps for that reason, in 1986 Sir James Lighthill remarked for all physicists: "We collectively wish to apologize for having misled the general educated public by spreading ideas about the determinism of systems satisfying Newton's laws of motion that, after 1960, were proved incorrect." Our main thesis is that Asteroid Dynamics is the arena where the drama Chaos versus predictability is initiated and developed. The aim of the present research is to show the way in which Deterministic Chaos restricts the long term dynamical predictability of asteroid motions.
Energy Gain Process of a Celestial Body
Dr. Shobha Lal; Rajesh Saxena
2014-01-01
The article considered in this paper attempts to explain the astrophysical phenomena of „dark energy‟ and „dark matter‟ as curvature effects in a modified theory of gravity. The deviations of this theory from Einstein‟s general relativity are not expected to be observed on Solar System scales, but are relevant on galactic or higher scales. These properties allow the theory to survive Solar System tests of general relativity that currently constrain such models (for instance, [...
Energy Gain Process of a Celestial Body
Directory of Open Access Journals (Sweden)
Dr. Shobha Lal
2014-03-01
Full Text Available The article considered in this paper attempts to explain the astrophysical phenomena of „dark energy‟ and „dark matter‟ as curvature effects in a modified theory of gravity. The deviations of this theory from Einstein‟s general relativity are not expected to be observed on Solar System scales, but are relevant on galactic or higher scales. These properties allow the theory to survive Solar System tests of general relativity that currently constrain such models (for instance, [1] finds that GR holds in the Solar System to within 0.5%, but still permit it to provide an alternative explanation of dark matter and dark energy. In order to understand the proposed explanation however, one must first review what cosmologists mean by dark matter and dark energy, why they are largely required in the standard cosmological model, and what kind of observational evidence would an alternative model have to match.
SI-Traceable Calibrations of Celestial Objects
Cramer, C. E.; Lykke, K. R.; Woodward, J. T.
2016-05-01
Photometric calibration is currently the leading source of systematic uncertainty in supernova surveys that aim to determine the nature of dark energy. The bulk of this uncertainty is due to imperfect knowledge of the spectral energy distribution of stars used as primary standards. We review the challenges associated with establishing an absolute calibration of stellar spectra and describe how it is possible to do better by using recent advances in optical metrology, paying particular attention to the measurement chain establishing SI-traceability and reporting of measurement uncertainties.
Spencer, A J M
2004-01-01
The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten
Institute of Scientific and Technical Information of China (English)
司建敏; 罗阿理; 吴福朝; 吴毅红
2015-01-01
There are many valuable rare and unusual objects in spectra dataset of Sloan Digital Sky Survey (SDSS)Data Release eight (DR8),such as special white dwarfs (DZ,DQ,DC),carbon stars,white dwarf main-sequence binaries (WDMS),cata-clysmic variable (CV)stars and so on,so it is extremely significant to search for rare and unusual celestial objects from massive spectra dataset.A novel algorithm based on Kernel dense estimation and K-nearest neighborhoods (KNN)has been presented, and applied to search for rare and unusual celestial objects from 546 383 stellar spectra of SDSS DR8.Their densities are esti-mated using Gaussian kernel density estimation,the top 5 000 spectra in descend order by their densities are selected as rare ob-jects,and the top 300 000 spectra in ascend order by their densities are selected as normal objects.Then,KNN were used to classify the rest objects,and simultaneously K nearest neighbors of the 5 000 rare spectra are also selected as rare objects.As a result,there are totally 21 193 spectra selected as initial rare spectra,which include error spectra caused by deletion,redden, bad calibration,spectra consisting of different physically irrelevant components,planetary nebulas,QSOs,special white dwarfs (DZ,DQ,DC),carbon stars,white dwarf main-sequence binaries (WDMS),cataclysmic variable (CV)stars and so on.By cross identification with SIMBAD,NED,ADS and major literature,it is found that three DZ white dwarfs,one WDMS,two CVs with company of G-type star,three CVs candidates,six DC white dwarfs,one DC white dwarf candidate and one BL Lacer-tae (BL lac)candidate are our new findings.We also have found one special DA white dwarf with emission lines of CaⅡ triple and MgⅠ,and one unknown object whose spectrum looks like a late M star with emission lines and its image looks like a galaxy or nebula.%SDSS DR8海量光谱中包含许多有研究价值的稀有天体，如特殊白矮星（DZ，DQ，DC）、碳星、白矮主序双星、激变变星等
Risitano, Antonino
2011-01-01
METHODOLOGICAL STATEMENT OF ENGINEERING DESIGNApproaches to product design and developmentMechanical design and environmental requirementsPROPERTIES OF ENGINEERING MATERIALSMaterials for mechanical designCharacterization of metalsStress conditionsFatigue of materialsOptimum material selection in mechanical designDESIGN OF MECHANICAL COMPONENTS AND SYSTEMSFailure theoriesHertz theoryLubrificationShafts and bearingsSplines and keysSpringsFlexible machine elementsSpur gearsPress and shrink fitsPressure tubesCouplingsClutchesBrakes
Caltagirone, Jean-Paul
2014-01-01
This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H
DEFF Research Database (Denmark)
Restrepo-Giraldo, John Dairo
2006-01-01
Most products and machines involve some kind of controlled movement. From window casements to DVD players, from harbor cranes to the shears to prune your garden, all these machines require mechanisms to move. This course intends to provide the analytical and conceptual tools to design such mechan...
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Şengül, Caner
2016-01-01
College Mechanics QueBank has been designed to be different, enthusiastic, interesting and helpful to you. Therefore, it is not just a test bank about mechanics but also it is like a compass in order to find your way in mechanics Each chapter in this book is put in an order to follow a hierarchy of the mechanics topics; from vectors to simple harmonic motion. Throughout the book there are many multiple choice and long answer questions for you to solve. They have been created for YGS, LYS, SAT, IB or other standardized exams in the world because mechanics has no boundaries and so Physics has no country. Learn the main principle of each chapter and explore the daily life applications. Then you can start to solve the questions by planning a problem solving method carefully. Finally, enjoy solving the questions and discover the meachanics of the universe once more.
Mofrad, Mohammad R. K.; Kamm, Roger D.
2011-08-01
1. Introduction and the biological basis for cell mechanics Mohammad R. K. Mofrad and Roger Kamm; 2. Experimental measurements of intracellular mechanics Paul Janmey and Christoph Schmidt; 3. The cytoskeleton as a soft glassy material Jeffrey Fredberg and Ben Fabry; 4. Continuum elastic or viscoelastic models for the cell Mohammad R. K. Mofrad, Helene Karcher and Roger Kamm; 5. Multiphasic models of cell mechanics Farshid Guuilak, Mansoor A. Haider, Lori A. Setton, Tod A. Laursen and Frank P. T. Baaijens; 6. Models of cytoskeletal mechanics based on tensegrity Dimitrije Stamenovic; 7. Cells, gels and mechanics Gerald H. Pollack; 8. Polymer-based models of cytoskeletal networks F. C. MacKintosh; 9. Cell dynamics and the actin cytoskeleton James L. McGrath and C. Forbes Dewey, Jr; 10. Active cellular motion: continuum theories and models Marc Herant and Micah Dembo; 11. Summary Mohammad R. K. Mofrad and Roger Kamm.
Zehnder, Alan T
2012-01-01
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering. He teaches applied mechanics and his research t...
Wilson, Theodore A
2016-01-01
This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...
Kundu, Pijush K; Dowling, David R
2011-01-01
Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Lenarcic, Jadran; Stanišić, Michael M
2013-01-01
This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.
Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.
2006-08-15
A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.
International Nuclear Information System (INIS)
This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)
Gross, Dietmar; Schröder, Jörg; Wall, Wolfgang A; Rajapakse, Nimal
Statics is the first volume of a three-volume textbook on Engineering Mechanics. The authors, using a time-honoured straightforward and flexible approach, present the basic concepts and principles of mechanics in the clearest and simplest form possible to advanced undergraduate engineering students of various disciplines and different educational backgrounds. An important objective of this book is to develop problem solving skills in a systematic manner. Another aim of this volume is to provide engineering students as well as practising engineers with a solid foundation to help them bridge the gap between undergraduate studies on the one hand and advanced courses on mechanics and/or practical engineering problems on the other. The book contains numerous examples, along with their complete solutions. Emphasis is placed upon student participation in problem solving. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Now in i...
Kittell, David
1989-01-01
David Kittell, the father of the discipline, Precision Mechanics, shares the foundation of this science with you in his highly practical and fun to read book, Precision Mechanics. Based on his highly acclaimed course by the same name, first taught at the Perkin-Elmer Technical institute in Norwalk, Connecticut, and later as a short course offered in such places as Bell Labs, SPIE, IEEE, NASA, and several national labs, you will find this book relevant and immediately useful.
Energy Technology Data Exchange (ETDEWEB)
Goudreau, G.L.
1993-03-01
The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.
Wave Mechanics or Wave Statistical Mechanics
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.
Pnueli, David; Gutfinger, Chaim
1997-01-01
This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.
Energy Technology Data Exchange (ETDEWEB)
Raboin, P J
1998-01-01
The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D. Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
Mayer, E
1977-01-01
Mechanical Seals, Third Edition is a source of practical information on the design and use of mechanical seals. Topics range from design fundamentals and test rigs to leakage, wear, friction and power, reliability, and special designs. This text is comprised of nine chapters; the first of which gives a general overview of seals, including various types of seals and their applications. Attention then turns to the fundamentals of seal design, with emphasis on six requirements that must be considered: sealing effectiveness, length of life, reliability, power consumption, space requirements, and c
Mitchell, J. K.; Carrier, W. D., III; Houston, W. N.; Scott, R. F.; Bromwell, L. G.; Durgunoglu, H. T.; Hovland, H. J.; Treadwell, D. D.; Costes, N. C.
1972-01-01
Preliminary results are presented of an investigation of the physical and mechanical properties of lunar soil on the Descartes slopes, and the Cayley Plains in the vicinity of the LM for Apollo 16. The soil mechanics data were derived form (1) crew commentary and debriefings, (2) television, (3) lunar surface photography, (4) performance data and observations of interactions between soil and lunar roving vehicle, (5) drive-tube and deep drill samples, (6) sample characteristics, and (7) measurements using the SRP. The general characteristics, stratigraphy and variability are described along with the core samples, penetrometer test results, density, porosity and strength.
Prabhakaran, Shivam
2009-01-01
Mechanics is the branch of Physics dealing with the effects of Forces on the motions of bodies. The world is composed of distinct elements, each possessing a definite position and velocity. These elements or particles interact with one another via forces which, in principle at least, can be completely known and whose effects can be allowed for exactly in predicating the motions of the various interacting bodies. To meet the challenge of these classically inexplicable observations, a completely new system of dynamics, quantum mechanics, was developed.The text includes advanced concepts in quant
DEFF Research Database (Denmark)
Gottlieb, Sara Wisbech Jacobsen; Hededal, Ole; Foged, Niels Nielsen;
It is widely accepted that there is a connection between the undrained shear strength and the strain rate. Thixotropy and creep behaviour are connected to the mechanical properties of clay. Thixotropy is the ability of clay to recover its shear strength over time when the shear stress is released...
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
Jana, Madhusudan
2015-01-01
Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...
Schwabl, Franz
2006-01-01
The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...
Vanommeslaeghe, Kenno; Guvench, Olgun; Alexander D MacKerell
2014-01-01
Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and wea...
Peters, Michael
2014-01-01
The recent literature on competing mechanisms has devoted a lot of effort at understanding a very complex and abstract issue. In particular, an agent's type in a competitive environment is hard to conceptualize because it depends on information the agent has about what is going on in the rest of the market. This paper explains why this is such an important practical problem and illustrates how the literature has solved it.
Darbyshire, Alan
2010-01-01
Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Zagoskin, Alexandre
2015-01-01
Written by Dr Alexandre Zagoskin, who is a Reader at Loughborough University, Quantum Mechanics: A Complete Introduction is designed to give you everything you need to succeed, all in one place. It covers the key areas that students are expected to be confident in, outlining the basics in clear jargon-free English, and then providing added-value features like summaries of key ideas, and even lists of questions you might be asked in your exam. The book uses a structure that is designed to make quantum physics as accessible as possible - by starting with its similarities to Newtonian physics, ra
Gunasekaran, Sharmila; Kunduri, Hari K
2016-01-01
The domain of outer communication of five-dimensional asymptotically flat stationary spacetimes may possess non-trivial 2-cycles (bubbles). Spacetimes containing such 2-cycles can have non-zero energy, angular momenta, and charge even in the absence of horizons. A mass variation formula has been established for spacetimes containing bubbles and possibly a black hole horizon. This `first law of black hole and soliton mechanics' contains new intensive and extensive quantities associated to each 2-cycle. We consider examples of such spacetimes for which we explicitly calculate these quantities and show how regularity is essential for the formulae relating them to hold. We also derive new explicit expressions for the angular momenta and charge for spacetimes containing solitons purely in terms of fluxes supporting the bubbles.
Ribosome Mechanics Informs about Mechanism.
Zimmermann, Michael T; Jia, Kejue; Jernigan, Robert L
2016-02-27
The essential aspects of the ribosome's mechanism can be extracted from coarse-grained simulations, including the ratchet motion, the movement together of critical bases at the decoding center, and movements of the peptide tunnel lining that assist in the expulsion of the synthesized peptide. Because of its large size, coarse graining helps to simplify and to aid in the understanding of its mechanism. Results presented here utilize coarse-grained elastic network modeling to extract the dynamics, and both RNAs and proteins are coarse grained. We review our previous results, showing the well-known ratchet motions and the motions in the peptide tunnel and in the mRNA tunnel. The motions of the lining of the peptide tunnel appear to assist in the expulsion of the growing peptide chain, and clamps at the ends of the mRNA tunnel with three proteins ensure that the mRNA is held tightly during decoding and essential for the helicase activity at the entrance. The entry clamp may also assist in base recognition to ensure proper selection of the incoming tRNA. The overall precision of the ribosome machine-like motions is remarkable. PMID:26687034
Institute of Scientific and Technical Information of China (English)
李晓宇
2011-01-01
Taoism is a national religion who took root in China only and originated in the ancient civilization of China. Becoming an immortal is the final goal of Taoism. The three celestial mountains is a channel to the paradise, a way to be an immortal as an carrier of fairyland. Taoism atmosphere is thick in the mid and end of Ming dynasty. It's inseparable with the king and people's esthetic appeal in this time that the three celestial mountains manifest massively on the ceramics as typical dements of Taoism.%道教是唯一植根于中国,发源于中国古代文化的民族宗教,成仙是道教最终的目标,三仙山作为"仙境"的载体,是通往仙界的渠道,是成仙的途径,明中晚期道教氛围浓厚,三仙山作为道教的典型元素之一大量体现在瓷器上,这与明中期的帝王喜好和人们的审美情趣是密不可分的.
Barron, Daniel R. (Inventor); Jasulaitis, Vytas (Inventor); Morrill, Brion F. (Inventor)
1995-01-01
Apparatus is described for automatically mating a pair of connectors and protecting them prior to mating, which minimizes weight and uses relatively simple and reliable mechanisms. Lower and upper connectors (24, 26) are held in lower and upper parts (14, 16) of a housing, with the upper connector mounted on a carrier (32) that is motor driven to move down and mate the connectors. A pair of movable members (36, 38) serve as shields, as coarse alignment aids, and as force transmitters. The movable members are pivotally mounted at the bottom of the upper housing, and as the carrier moves down it pivots the members out of the way. The movable members have socket elements (116) that closely receive pin elements (120) on the lower housing part, to coarsely align the connectors and to react mating and unmating forces between the housings. The carrier has a pair of plate portions (60, 62) with slots (64), and the movable members have cam followers engaged with the slot walls, to move the members with precision. The carrier plate-like portions engage follower members (82) that pivot open lower shield parts (44, 46) covering the lower connector, which is mounted on four stacks of Belleville washers (142).
Energy Technology Data Exchange (ETDEWEB)
Shook, Richard; /Marquette U. /SLAC
2010-08-25
The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.
Mechanism of mechanical activation for sulfide ores
Institute of Scientific and Technical Information of China (English)
HU Hui-ping; CHEN Qi-yuan; YIN Zhou-lan; HE Yue-hui; HUANG Bai-yun
2007-01-01
Structural changes for mechanically activated pyrite, sphalerite, galena and molybdenite with or without the exposure to ambient air, were systematically investigated using X-ray diffraction analysis(XRD), particle size analysis, gravimetrical method, X-ray photo-electron spectroscopy(XPS) and scanning electron microscopy(SEM), respectively. Based on the above structural changes for mechanically activated sulfide ores and related reports by other researchers, several qualitative rules of the mechanisms and the effects of mechanical activation for sulfide ores are obtained. For brittle sulfide ores with thermal instability, and incomplete cleavage plane or extremely incomplete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with thermal instability, and complete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed, and lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with excellent thermal stability, and complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For sulfide ores with high toughness, good thermal stability and very excellent complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation, but the lattice deformation ratio is very small. The effects of mechanical activation are worst.
Institute of Scientific and Technical Information of China (English)
李子丰
2013-01-01
在旋转问题中，坐标系的选取至关重要，否则会因角速度测量不准而出现错误。旋转问题一级近似惯性坐标系，应该选取比被绕行物体高一级的天体引力场：（1）一般的旋转问题--固定在地球上的直角坐标系；（2）卫星绕地球旋转问题--日心-地心直角坐标系；（3）地球绕太阳旋转问题--银河系心-日心直角坐标系。在天体物理学中，质量计算不准和旋转角速度测量不准导致黑洞猜想。%Selection of the coordinate system is essential for rotate problem.Otherwise,mistakes may occur due to inaccurate measurement of angular speed. Approximate inertial coordinate system selections for rotate problems should be the gravitational field of a celestial body higher than the object being rotated:(1) the earth fixed Cartesian coordinate system for normal rotation problem;(2) heliocentric-geocentric Cartesian coordinate system for satellites orbiting the earth;(3) the Galaxy Heart-heliocentric Cartesian coordinates for Earth's rotation around the sun.In astrophysics,mass calculation error and angular velocity measurement error lead to a black hole conjecture.
The Mechanics of Mechanical Watches and Clocks
Du, Ruxu
2013-01-01
"The Mechanics of Mechanical Watches and Clocks" presents historical views and mathematical models of mechanical watches and clocks. Although now over six hundred years old, mechanical watches and clocks are still popular luxury items that fascinate many people around the world. However few have examined the theory of how they work as presented in this book. The illustrations and computer animations are unique and have never been published before. It will be of significant interest to researchers in mechanical engineering, watchmakers and clockmakers, as well as people who have an engineering background and are interested in mechanical watches and clocks. It will also inspire people in other fields of science and technology, such as mechanical engineering and electronics engineering, to advance their designs. Professor Ruxu Du works at the Chinese University of Hong Kong, China. Assistant Professor Longhan Xie works at the South China University of Technology, China.
Mechanical engineering education
Davim, J Paulo
2012-01-01
Mechanical Engineering is defined nowadays as a discipline "which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems". Recently, mechanical engineering has also focused on some cutting-edge subjects such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, as well as aspects related to sustainable mechanical engineering.This book covers mechanical engineering higher education with a particular emphasis on quality assurance and the improvement of academic
2014-01-01
Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, en...
Mechanical engineer's handbook
Marghitu, Dan B
2001-01-01
The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students throughout the world. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is very comprehensive, yet affordable, compact, and durable. The Handbook covers all major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanic
Song, Yuntao; Du, Shijun
2013-01-01
Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study
Mostafa, Mahmoud A
2012-01-01
MechanismsDefinitions Degrees of Freedom of Planar Mechanisms Four-Revolute-Pairs Chains Single-Slider Chain Double-Slider Mechanisms Mechanisms with Higher Pairs Compound Mechanisms Special Mechanisms Analytical Position Analysis of Mechanisms Velocities and AccelerationsAbsolute Plane Motion of a Particle Relative Motion Applications to Common Links Analysis of Mechanisms: Graphical Method Method of Instantaneous Centers for Determining the VelocitiesAnalytical Analysis CamsIntroduction Types of Cams Modes of Input/Output Motion Follower Configurations Classes of Cams Spur GearsIntroduction
Analytical mechanics for relativity and quantum mechanics
Johns, Oliver Davis
2011-01-01
Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...
Physics and astronomy of celestial x-ray sources
International Nuclear Information System (INIS)
An introduction is given to those aspects of classical and atomic physics which are pertinent to x-ray astronomy, observations in the spectral band 1017 to 1021 Hz. The following discrete and extended x-ray sources are discussed: Scorpius X-1, Crab Nebula, Hercules X-1, Cygnus X-1, binary x-ray sources, other galactic sources and gamma-ray sources, extragalactic sources, the diffuse background, and soft x-ray background. 11 figures, 92 references
k-Nearest Neighbors for automated classification of celestial objects
Institute of Scientific and Technical Information of China (English)
2008-01-01
The nearest neighbors (NNs) classifiers, especially the k-Nearest Neighbors (kNNs) algorithm, are among the simplest and yet most efficient classification rules and widely used in practice. It is a nonparametric method of pattern recognition. In this paper, k-Nearest Neighbors, one of the most commonly used machine learning methods, work in automatic classification of multi-wavelength astronomical objects. Through the experiment, we conclude that the running speed of the kNN classier is rather fast and the classification accuracy is up to 97.73%. As a result, it is efficient and applicable to discriminate active objects from stars and normal galaxies with this method. The classifiers trained by the kNN method can be used to solve the automated classification problem faced by astronomy and the virtual observatory (VO).
A focal plane camera for celestial XUV sources
International Nuclear Information System (INIS)
This thesis describes the development and performance of a new type of X-ray camera for the 2-2500A wavelength range (XUV). The camera features high position resolution (FWHM approximately 0.2 mm at 2 A, -13 erg/cm2s in a one year mission. (Auth.)
Kinematics and Physics of Celestial Bodies: Scientific and Theoretical Journal
1996-07-01
The articles in this issue address the following topics: dynamics and physics of bodies of the solar system, solar physics, physics of stars and instellar media, positional and theoretical astronomy, and mathematical processing of astronomical data. Some of the specific articles discuss a mass scale problem in fireball physics; UBVRI polarimetry and photometry of asteroid 1620 Geographos; iron abundance derived from two-dimensional inhomogeneous solar model atmospheres -- Fe I and Fe II lines (center of the disk); numerical simulation of the interaction between solar granules and small-scale magnetic fields; and comparison of the periods of changes in the granulation field with the periods of line displacements in the solar spectrum. Additional papers address the gas stream properties in the vicinity of the inner Lagrangian point in R CMa-type systems; the gas stream formation in the vicinity of the inner Lagrangian point of contact close to binaries of W UMa type; and a photometric survey near the main galactic meridian photoelectric observations and creation of the catalog of stellar magnitudes and color indexes in the UBVR system. Other reports are on a spectrophotometric study of the eclipsing binary AR Lac; a comparative analysis of selected minor planets' positions reduced to the systems of different catalogs; and in the field of mathematical processing of astronomical data, smoothing by Whittaker's method.
Hubble Captures Celestial Fireworks Within the Large Magellanic Cloud
2000-01-01
This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.
Hydrodynamics, Vortices and Angular Momenta of Celestial Objects
Sivaram, C
2012-01-01
The current observational evidences suggest there are about hundred billion galaxies in the observable universe and within each, on an average, about hundred billion stars. But no cosmological model indicates as to why there are these many galaxies and stars. In this paper we invoke the property of non-irrotational hydrodynamic flow in order to explain how a primordial rotation (as considered in a recent paper) of the universe broken up into vortex line structures, can indeed lead to formation of a large number of galactic structures and these in turn can lead to equally large number of stars within each galaxy.
The Amateur Astronomer's Introduction to the Celestial Sphere
Millar, William
2005-12-01
This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.
Analog solar system model relates celestial bodies spatially
Baerg, H. R.
1966-01-01
Portable analog planetarium indicates the relative time and space angular locations of the sun and planets. Distance measuring scales, angular direction indicators, and typical probe trajectories are included.
Celestial revolutionary Copernicus, the man and his universe
Freely, John
2014-01-01
In the spring of 1500, at the apex of the Renaissance, a papal secretary to the Borgia Pope, Alexander VI, wrote that ""All the world is in Rome."" Though no one knew it at the time, this included a young scholar by the name of Nicolaus Copernicus who would one day change the world.One of the greatest polymaths of his or any age - linguist, lawyer, doctor, diplomat, politician, mathematician, scientist, astronomer, artist, cleric - Copernicus gave the world arguably the most important scientific discovery of the modern era: that earth and the planets revolve around the sun and that the earth r
The astronomer Jules Janssen a globetrotter of celestial physics
Launay, Françoise
2012-01-01
Every aspect of the personality of Janssen (1824—1907) – that D’Artagnan of science, this bard of the Sun, and this audacious master builder – is covered here by Françoise Launay, his attentive and equally erudite biographer. A physicist, inventor and builder, Janssen was guided by his energy and curiosity. His research followed two directions: on the one hand the atmospheres of the Earth and the Sun, and on the other, two techniques: spectroscopy and photography. Among his numerous voyages across the globe, he went to Japan in 1874 to follow the transit of Venus in front of the Sun, the same year in which he invented his famous photographic revolver, which was, in truth, a great technical success. To observe the Sun during total eclipses he traveled to the Indies in 1868, to Oran in 1870 (escaping from besieged Paris by balloon!), returned to India in 1871, left for Siam in 1875 and, in 1883, for an island in the Pacific. One can thus understand why Henriette often complained of the solitude in whic...
The Gravitomagnetic measurement of the angular momentum of celestial bodies
Tartaglia, Angelo; Ruggiero, Matteo Luca
2004-01-01
The asymmetry in the time delay for light rays propagating on opposite sides of a spinning body is analyzed. A frequency shift in the perceived signals is found. A practical procedure is proposed for evidencing the asymmetry, allowing for a measurement of the specific angular momentum of the rotating mass. Orders of magnitude are discussed.
Celestial symbolism in the Vučedol culture
Directory of Open Access Journals (Sweden)
Aleksandar Durman
2001-12-01
Full Text Available The article presents the Vučedol Culture conception of the world, as shown on their vessels, particularly the terrines and the vessels developed from them – referred to as censers. They had more of a ritual than a practical role. Particular attention is drawn to the pot with the calendar image.
Celestial Messengers Cosmic Rays The Story of a Scientific Adventure
Bertolotti, Mario
2013-01-01
The book describes from a historical point of view how cosmic rays were discovered. The book describes the research in cosmic rays. The main focus is on how the knowledge was gained, describing the main experiments and the conclusions drawn. Biographical sketches of main researchers are provided. Cosmic rays have an official date of discovery which is linked to the famous balloon flights of the Austrian physicist Hess in 1912. The year 2012 can therefore be considered the centenary of the discovery.
Ocelli: A Celestial Compass in the Desert Ant Cataglyphis
Fent, Karl; Wehner, Rudiger
1985-04-01
In addition to multifaceted lateral compound eyes, most insects possess three frontal eyes called ocelli. Each ocellus has a single lens, as does the vertebrate eye. The ocelli of some flying insects, locusts and dragonflies, have been shown to function as horizon detectors involved in the visual stabilization of course. In a walking insect, the desert ant Cataglyphis, it is now shown that the ocelli can read compass information from the blue sky. When the ant's compound eyes are occluded and both sun and landmarks are obscured, the ocelli, using the pattern of polarized light in the sky as a compass cue, help in guiding the ant back home.
Recent results on celestial gamma radiation from SMM
Share, Gerald H.
1991-01-01
Observations made by the Gamma Ray Spectrometer on board the SMM are described. Recent results reported include observations and analyses of gamma-ray lines from Co-56 produced in supernovae, observations of the temporal variation of the 511 keV line observed during Galactic center transits, and measurements of the diffuse Galactic spectrum from 0.3 to 8.5 MeV. The work in progress includes measurements of the distribution of Galactic Al-26, observations to place limits on Galactic Ti-44 and Fe-60 and on Be-7 produced in novae, and searches for a characteristic gamma-ray emission from pair plasmas, a 2.223 MeV line emission, limits on deexcitation lines from interstellar C and O, and gamma-ray bursts.
Is the Moon Illusion a Celestial Ames Demonstration?
Brecher, Kenneth
2010-01-01
To most naked eye observers, the Moon appears larger when seen near the horizon than it does when seen near the zenith. This "Moon Illusion” has been reported from as early as the fourth century BC and has been the subject of hundreds of papers and two books. Its explanation does not lie in the realm of physics (atmospheric refraction) or astronomy (eccentric lunar orbit) but, rather, in the realm of visual perception. Theories for the cause of the effect abound but, at present, there is no universally accepted explanation. Because the effect can be easily observed in many locations and during the course of an academic year, the moon illusion can provide a nice astronomical example that involves both direct observations and theoretical analysis. As part of the NSF funded "Project LITE: Light Inquiry Through Experiments", we have been developing inexpensive experiments and demonstrations that can be done at home. One of these is a miniature version of the classic "Ames Room". The life size version was originally developed by Adelbert Ames, Jr. and can be seen in many science museums. Our "digital” Ames Room has been designed to be printed on heavy paper using an inexpensive inkjet printer from a PDF file that is posted on the Project LITE web site http://lite.bu.edu and then cut and folded to make the room. When viewed through one wall using a commonly available door viewer, it dramatically demonstrates how the eye and brain system assesses the relative size of objects by making comparisons with the surrounding environment in which the objects are placed. In this presentation we will discuss some insights that the Ames Room provides that may offer clues to the correct explanation for the Moon Illusion. Project LITE is supported by the NSF through DUE Grant # 0715975.
Robust Design of Sounds in Mechanical Mechanisms
DEFF Research Database (Denmark)
Boegedal Jensen, Annemette; Munch, Natasja; Howard, Thomas J.;
2015-01-01
Current practices for creating a desired sound by a mechanical mechanism are irrelative design-build-test processes. It seems that very little guidance is available relating design to the sound output. The focus of this study was to identify, which parameters that affect the sound output of a click...... mechanism consisting of a toothed rack and a click arm. First several geometries of the teeth and the click arm’s head were investigated to identify the most robust and repeatable design. It was found that a flat surface in the valleys between the teeth is very beneficial in relation to repeatability...... mechanisms....
Defense Mechanisms: A Bibliography.
Pedrini, D. T.; Pedrini, Bonnie C.
This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…
About quantum mechanics interpretation
Kyriakos, Alexander G.
2002-01-01
There is a certainty that the modern (Copenhagen's) interpretation of quantum mechanics is correct. However, the some physicist had the opinion that the modern quantum mechanics is a phenomenological theory. The suggested theory is the new quantum mechanics interpretation that is entirely according to the modern interpretation and gives a number of results, which naturally explain the postulates of the modern quantum mechanics.
Allori, Valia; Zanghì, Nino
2001-01-01
Bohmian mechanics is a quantum theory with a clear ontology. To make clear what we mean by this, we shall proceed by recalling first what are the problems of quantum mechanics. We shall then briefly sketch the basics of Bohmian mechanics and indicate how Bohmian mechanics solves these problems and clarifies the status and the role of of the quantum formalism.
Handbook of compliant mechanisms
Howell, Larry L; Olsen, Brian M
2013-01-01
A fully illustrated reference book giving an easy-to-understand introduction to compliant mechanisms A broad compilation of compliant mechanisms to give inspiration and guidance to those interested in using compliant mechanisms in their designs, the Handbook of Compliant Mechanisms includes graphics and descriptions of many compliant mechanisms. It comprises an extensive categorization of devices that can be used to help readers identify compliant mechanisms related to their application. It also provides chapters on the basic background in compliant mechanisms, the categories o
Mechanical engineers' handbook, materials and engineering mechanics
Kutz, Myer
2015-01-01
Full coverage of materials and mechanical design inengineering Mechanical Engineers' Handbook, Fourth Edition provides aquick guide to specialized areas you may encounter in your work,giving you access to the basics of each and pointing you towardtrusted resources for further reading, if needed. The accessibleinformation inside offers discussions, examples, and analyses ofthe topics covered. This first volume covers materials and mechanical design, givingyou accessible and in-depth access to the most common topics you'llencounter in the discipline: carbon and alloy steels, stainlesssteels, a
507 mechanical movements mechanisms and devices
Brown, Henry T
2005-01-01
Epicyclic trains, oblique rollers, trip hammers, and lazy-tongs are among the ingenious mechanisms defined and illustrated in this intriguing collection. Spanning the first century of the Industrial Revolution, this 1868 compilation features simplified, concise illustrations of the mechanisms used in hydraulics, steam engines, pneumatics, presses, horologes, and scores of other machines.The movements of each of the 507 mechanisms are depicted in drawings on the left-hand page, and the facing page presents a brief description of the item's use and operation. Ranging from simple to intricately c
Directory of Open Access Journals (Sweden)
Wang James HC
2010-07-01
Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.
Verifiably Truthful Mechanisms
DEFF Research Database (Denmark)
Branzei, Simina; Procaccia, Ariel D.
2015-01-01
It is typically expected that if a mechanism is truthful, then the agents would, indeed, truthfully report their private information. But why would an agent believe that the mechanism is truthful? We wish to design truthful mechanisms, whose truthfulness can be verified efficiently (in the...... computational sense). Our approach involves three steps: (i) specifying the structure of mechanisms, (ii) constructing a verification algorithm, and (iii) measuring the quality of verifiably truthful mechanisms. We demonstrate this approach using a case study: approximate mechanism design without money for...
Mechanics of Failure Mechanisms in Structures
Carlson, R L; Craig, J I
2012-01-01
This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material. Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials. The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthe...
Directory of Open Access Journals (Sweden)
Fu Yuhua
2014-06-01
gravitation can be derived, which can be used to solve the problem of advance of planetary perihelion and the problem of deflection of photon around the Sun. Again, according to accurate experimental result, the synthesized gravitational formula (including the effects of other celestial bodies and sunlight pressure for the problem of deflection of photon around the Sun is presented. Unlike the original Newton Mechanics, in New Newton Mechanics, for different problems, may have different laws of motion, different formulas of gravity, as well as different expressions of energy. For example, for the problem of a small ball rolls along the inclined plane, and the problem of advance of planetary perihelion, the two formulas of gravity are completely different.
Vibrating Wingstroke Mechanism Project
National Aeronautics and Space Administration — This proposed work will develop a new method and mechanism for generating wing stroke motion of any shape and orientation. The mechanism will provide power, lift...
Mechanical restraint in psychiatry
DEFF Research Database (Denmark)
Bak, Jesper; Zoffmann, Vibeke; Sestoft, Dorte Maria;
2014-01-01
PURPOSE: To examine how potential mechanical restraint preventive factors in hospitals are associated with the frequency of mechanical restraint episodes. DESIGN AND METHODS: This study employed a retrospective association design, and linear regression was used to assess the associations. FINDING...
Welfare Undominated Groves Mechanisms
Apt, Krzysztof R; Guo, Mingyu; Markakis, Evangelos
2008-01-01
A common objective in mechanism design is to choose the outcome (for example, allocation of resources) that maximizes the sum of the agents' valuations, without introducing incentives for agents to misreport their preferences. The class of Groves mechanisms achieves this; however, these mechanisms require the agents to make payments, thereby reducing the agents' total welfare. In this paper we introduce a measure for comparing two mechanisms with respect to the final welfare they generate. This measure induces a partial order on mechanisms and we study the question of finding minimal elements with respect to this partial order. In particular, we say a non-deficit Groves mechanism is welfare undominated if there exists no other non-deficit Groves mechanism that always has a smaller or equal sum of payments. We focus on two domains: (i) auctions with multiple identical units and unit-demand bidders, and (ii) mechanisms for public project problems. In the first domain we analytically characterize all welfare und...
International Nuclear Information System (INIS)
The project mechanism complete the quotas systems concerning the carbon dioxide emissions market. The author explains and discusses these mechanisms and provides a panorama of the existing and developing projects. More specially she brings information on the mechanism of clean developments and renewable energies, the coordinated mechanisms, the agricultural projects, the financing of the projects and the exchange systeme of the New south Wales. (A.L.B.)
Regional social protection mechanisms
Elena Alekseevna Morozova; Arina Yur'evna Dobrynina
2012-01-01
This paper focuses on the importance and essence of social protection mechanisms, describes their legal, economical and organizational components. Social protection mechanisms are important elements of the social protection system. Social protection mechanisms are understood as a complex of economical, organizational and legal measures aiming at smoothing social inequality of population.The legal foundations of the social protection mechanism consist in the fact that the protective a...
Programmable mechanical metamaterials.
Florijn, Bastiaan; Coulais, Corentin; van Hecke, Martin
2014-10-24
We create mechanical metamaterials whose response to uniaxial compression can be programmed by lateral confinement, allowing monotonic, nonmonotonic, and hysteretic behavior. These functionalities arise from a broken rotational symmetry which causes highly nonlinear coupling of deformations along the two primary axes of these metamaterials. We introduce a soft mechanism model which captures the programmable mechanics, and outline a general design strategy for confined mechanical metamaterials. Finally, we show how inhomogeneous confinement can be explored to create multistability and giant hysteresis.
Recurrence in Quantum Mechanics
Duvenhage, Rocco
2002-01-01
We first compare the mathematical structure of quantum and classical mechanics when both are formulated in a C*-algebraic framework. By using finite von Neumann algebras, a quantum mechanical analogue of Liouville's theorem is then proposed. We proceed to study Poincare recurrence in C*-algebras by mimicking the measure theoretic setting. The results are interpreted as recurrence in quantum mechanics, similar to Poincare recurrence in classical mechanics.
DEFF Research Database (Denmark)
Sicart (Vila), Miguel Angel
2008-01-01
This article defins game mechanics in relation to rules and challenges. Game mechanics are methods invoked by agents for interacting with the game world. I apply this definition to a comparative analysis of the games Rez, Every Extend Extra and Shadow of the Colossus that will show the relevance...... of a formal definition of game mechanics. Udgivelsesdato: Dec 2008...
Solar array deployment mechanism
Calassa, Mark C.; Kackley, Russell
1995-05-01
This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.
Miller, Glen; And Others, Eds.
1991-01-01
Six theme articles discuss agricultural mechanics and its image problem, its importance, and its relevance to urban mechanization. They stress the need for agricultural mechanics and science in the urban environment for preparation for a variety of careers including landscape technology, environmental technology, energy systems management, and…
Introduction to quantum mechanics
Villaseñor, Eduardo J. S.
2008-01-01
The purpose of this contribution is to give a very brief introduction to Quantum Mechanics for an audience of mathematicians. I will follow Segal's approach to Quantum Mechanics paying special attention to algebraic issues. The usual representation of Quantum Mechanics on Hilbert spaces is also discussed.
Quantum Mechanics in Pseudotime
Kapoor, A. K
2016-01-01
Based on some results on reparmetrisation of time in Hamiltonian path integral formalism, a pseudo time formulation of operator formalism of quantum mechanics is presented. Relation of reparametrisation of time in quantum with super symmetric quantum mechanics is established. We show how some important concepts such as shape invariance and tools like isospectral deformation appear in pseudo time quantum mechanics.
Energy Technology Data Exchange (ETDEWEB)
NONE
2009-07-01
This paper first reviews proposals for the design of sectoral and related market mechanisms currently debated, both in the UNFCCC negotiations, and in different domestic legislative contexts. Secondly, it addresses the possible principles and technical requirements that Parties may wish to consider as the foundations for further elaboration of the mechanisms. The third issue explored herein is domestic implementation of sectoral market mechanisms by host countries, incentives to move to new market mechanisms, as well as how the transition between current and future mechanisms could be managed.
HYDRAULIC SERVO CONTROL MECHANISM
Hussey, R.B.; Gottsche, M.J. Jr.
1963-09-17
A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)
Mechanical Systems, Classical Models
Teodorescu, Petre P
2007-01-01
All phenomena in nature are characterized by motion; this is an essential property of matter, having infinitely many aspects. Motion can be mechanical, physical, chemical or biological, leading to various sciences of nature, mechanics being one of them. Mechanics deals with the objective laws of mechanical motion of bodies, the simplest form of motion. In the study of a science of nature mathematics plays an important role. Mechanics is the first science of nature which was expressed in terms of mathematics by considering various mathematical models, associated to phenomena of the surrounding nature. Thus, its development was influenced by the use of a strong mathematical tool; on the other hand, we must observe that mechanics also influenced the introduction and the development of many mathematical notions. In this respect, the guideline of the present book is precisely the mathematical model of mechanics. A special accent is put on the solving methodology as well as on the mathematical tools used; vectors, ...
Mechanical Systems, Classical Models
Teodorescu, Petre P
2009-01-01
This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...
Mechanisms, Transmissions and Applications
Corves, Burkhard
2012-01-01
The first Workshop on Mechanisms, Transmissions and Applications -- MeTrApp-2011 was organized by the Mechatronics Department at the Mechanical Engineering Faculty, “Politehnica” University of Timisoara, Romania, under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines. The workshop brought together researchers and students who work in disciplines associated with mechanisms science and offered a great opportunity for scientists from all over the world to present their achievements, exchange innovative ideas and create solid international links, setting the trend for future developments in this important and creative field. The topics treated in this volume are mechanisms and machine design, mechanical transmissions, mechatronic and biomechanic applications, computational and experimental methods, history of mechanism and machine science and teaching methods.
Complications of mechanical ventilation
Directory of Open Access Journals (Sweden)
Drašković Biljana
2011-01-01
Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.
Robust Design of Sounds in Mechanical Mechanisms
DEFF Research Database (Denmark)
Boegedal Jensen, Annemette; Munch, Natasja; Howard, Thomas J.;
2015-01-01
mechanism consisting of a toothed rack and a click arm. First several geometries of the teeth and the click arm’s head were investigated to identify the most robust and repeatable design. It was found that a flat surface in the valleys between the teeth is very beneficial in relation to repeatability...
Nonholonomic mechanics and control
Murray, RM
2015-01-01
This book explores some of the connections between control theory and geometric mechanics; that is, control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems subject to motion constraints. The synthesis of the topic is appropriate as there is a particularly rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems and illustrates the elegant mathematics behind many simple, interesting, and useful mechanical examples. It is intended for graduate students who wish to learn this subject and researchers in the area who want to enhance their techniques. The book contains sections focusing on physical examples and elementary terms, as well as theoretical sections that use sophisticated analysis and geometry. The first four chapters offer preliminaries and background information, while the...
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
On Noncommutative Classical Mechanics
Djemai, A E F
2003-01-01
In this work, I investigate the noncommutative Poisson algebra of classical observables corresponding to a proposed general Noncommutative Quantum Mechanics, \\cite{1}. I treat some classical systems with various potentials and some Physical interpretations are given concerning the presence of noncommutativity at large scales (Celeste Mechanics) directly tied to the one present at small scales (Quantum Mechanics) and its possible relation with UV/IR mixing.
Lectures on statistical mechanics
Bowler, M G
1982-01-01
Anyone dissatisfied with the almost ritual dullness of many 'standard' texts in statistical mechanics will be grateful for the lucid explanation and generally reassuring tone. Aimed at securing firm foundations for equilibrium statistical mechanics, topics of great subtlety are presented transparently and enthusiastically. Very little mathematical preparation is required beyond elementary calculus and prerequisites in physics are limited to some elementary classical thermodynamics. Suitable as a basis for a first course in statistical mechanics, the book is an ideal supplement to more convent
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
Taratuta, Rostislav
2015-01-01
The main purpose of this paper is to introduce the new bosonic mechanism and newtreatment of dark energy. The bosonic mechanism focuses on obtaining masses by gauge bosonswithout assuming the existence of Higgs boson. The hypothesis on dark energy as the energy ofa postulated dark field was made and a combined gravitational-dark field was introduced. This fieldis the key to a specified approach and allows addressing the fundamental starting points of the mechanism.i. Complex scalar field is i...
Quantum mechanics in chemistry
Schatz, George C
2002-01-01
Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt
Fuzzy clustering of mechanisms
Indian Academy of Sciences (India)
Amitabha Ghosh; Dilip Kumar Pratihar; M V V Amarnath; Guenter Dittrich; Jorg Mueller
2012-10-01
During the course of development of Mechanical Engineering, a large number of mechanisms (that is, linkages to perform various types of tasks) have been conceived and developed. Quite a few atlases and catalogues were prepared by the designers of machines and mechanical systems. However, often it is felt that a clustering technique for handling the list of large number of mechanisms can be very useful,if it is developed based on a scientiﬁc principle. In this paper, it has been shown that the concept of fuzzy sets can be conveniently used for this purpose, if an adequate number of properly chosen attributes (also called characteristics) are identiﬁed. Using two clustering techniques, the mechanisms have been classiﬁed in the present work and in future, it may be extended to develop an expert system, which can automate type synthesis phase of mechanical design. To the best of the authors’ knowledge, this type of clustering of mechanisms has not been attempted before. Thus, this is the ﬁrst attempt to cluster the mechanisms based on some quantitative measures. It may help the engineers to carry out type synthesis of the mechanisms.
Mechanisms for space applications
Meftah, M.; Irbah, A.; Le Letty, R.; Barré, M.; Pasquarella, S.; Bokaie, M.; Bataille, A.; Poiet, G.
2012-06-01
All space instruments contain mechanisms or moving mechanical assemblies that must move (sliding, rolling, rotating, or spinning) and their successful operation is usually mission-critical. Generally, mechanisms are not redundant and therefore represent potential single point failure modes. Several space missions have suffered anomalies or failures due to problems in applying space mechanisms technology. Mechanisms require a specific qualification through a dedicated test campaign. This paper covers the design, development, testing, production, and in-flight experience of the PICARD/SODISM mechanisms. PICARD is a space mission dedicated to the study of the Sun. The PICARD Satellite was successfully launched, on June 15, 2010 on a DNEPR launcher from Dombarovskiy Cosmodrome, near Yasny (Russia). SODISM (SOlar Diameter Imager and Surface Mapper) is a 11 cm Ritchey-Chretien imaging telescope, taking solar images at five wavelengths. SODISM uses several mechanisms (a system to unlock the door at the entrance of the instrument, a system to open/closed the door using a stepper motor, two filters wheels using a stepper motor, and a mechanical shutter). For the fine pointing, SODISM uses three piezoelectric devices acting on the primary mirror of the telescope. The success of the mission depends on the robustness of the mechanisms used and their life.
Bravetti, Alessandro; Tapias, Diego
2016-01-01
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Introduction to quantum mechanics
International Nuclear Information System (INIS)
An introduction is presented to quantum mechanics dealing with fundamental problems, the physics of the atom (central potential, hydrogen atom, angular momentum, spin, and statistics), nuclear physics (theory of scattering, alpha decay, nucleon-nucleon interaction), and the general quantum mechanics theory using the Dirac notation. The mathematical apparatus is deliberately suppressed. Problems are appended to each chapter. (Z.J.)
Mecanica Clasica (Classical Mechanics)
Rosu, H C
1999-01-01
First Internet undergraduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031
Melrose, Don
2003-01-01
High-energy and radio emission mechanisms for pulsars are reviewed. The source region for high energy emission remains uncertain. Two preferred radio emission mechanism are identified. Some difficulties may be resolved by appealing to nonstationary pair creation distributed widely in height.
DEFF Research Database (Denmark)
Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse;
1996-01-01
litterature. It is argued that this kind of mechanism can only partly explain the experimental observations. The capacitive part of the low frequency response at anodic potentials is shown to be due to gas enclosures at the lectrode-electrolyte interface. As to the inductive activation mechanism of the...
Mecanica Clasica (Classical Mechanics)
H. C. Rosu
1999-01-01
First Internet graduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031
Goryachkin's agricultural mechanics
Chinenova, Vera
2016-03-01
The paper contributes to the development of applied mechanics by establishing a new discipline, namely, agricultural mechanics by academician Vasilii Prohorovich Goryachkin (1868-1935) who was an apprentice of Nikolay Yegorovich Zhukovsky and a graduate of the Moscow University (current known as Moscow State University) and the Imperial Higher Technical School.
Chaichian, Masud; Tureanu, Anca
2012-01-01
Mechanics is one of the oldest and at the same time newest disciplines, in the sense that there are methods and principles developed first in mechanics but now widely used in almost all branches of physics: electrodynamics, quantum mechanics, classical and quantum field theory, special and general theory of relativity, etc. More than that, there are some formalisms like Lagrangian and Hamiltonian approaches, which represent the key stone for the development of the above-mentioned disciplines. During the last 20-25 years, classical mechanics has undergone an important revival associated with the progress in non-linear dynamics, applications of Noether’s theorem and the extension of variational principles in various interdisciplinary sciences (for instance, magnetofluid dynamics). Thus, there ought to exist a book concerned with the applied analytical formalism, first developed in the frame of theoretical mechanics, which has proved to be one of the most efficient tools of investigation in the entire arena of...
Ahn, Doyeol
2011-01-01
A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...
Quantum mechanics for pedestrians
Pade, Jochen
2014-01-01
This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in detail current issues such as interaction-free quantum measurements, neutrino oscillations, various topics in the field of quantum information as well as fundamental problems and epistemological questions, such as the measurement problem, entanglement, Bell's inequality, decoherence, and the realism debate. A chapter on current interpretations of quantum mechanics concludes the book. To develop quickly and clearly the main principles of quantum mechanics and its mathematical formulation, there is a systematic change between wave mechanics and algebraic representation in the first chapters. The required mathematical tools are introduced step by step. Moreover, the appendix coll...
Advanced Visual Quantum Mechanics
Thaller, Bernd
2005-01-01
Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.
Quantum mechanics for mathematicians
Takhtajan, Leon A
2008-01-01
This book provides a comprehensive treatment of quantum mechanics from a mathematics perspective and is accessible to mathematicians starting with second-year graduate students. It addition to traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin, and it introduces the reader to functional methods in quantum mechanics. This includes the Feynman path integral approach to quantum mechanics, integration in functional spaces, the relation between Feynman and Wiener integrals, Gaussian integration and regularized determinants of differential operators, fermion systems and integration over anticommuting (Grassmann) variables, supersymmetry and localization in loop spaces, and supersymmetric derivation of the Atiyah-Singer formula for the index of the Dirac operator. Prior to this book, mathematicians could find these topics only in physics textbooks ...
Mechanics: Ideas, problems, applications
Ishlinskii, A. Iu.
The book contains the published articles and reports by academician Ishlinskii which deal with the concepts and ideas of modern mechanics, its role in providing a general understanding of the natural phenomena, and its applications to various problems in science and engineering. Attention is given to the methodological aspects of mechanics, to the history of the theories of plasticity, friction, gyroscopic and inertial systems, and inertial navigation, and to mathematical methods in mechanics. The book also contains essays on some famous scientists and engineers.
Michell, S J
2013-01-01
Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th
Mechanical engineers data handbook
Carvill, James
1994-01-01
This text provides the student and professional mechanical engineer with a reference text of an essentially practical nature. It is uncluttered by text, and extensive use of illustrations and tables provide quick and clear access to information. It alsoincludes examples of detailed calculations on many of the applications of technology used by mechanical and production engineers, draughtsmen and engineering designers.Although mainly intended for those studying and practising mechanical engineering, a glance at the contents will show that it is also useful to those in related br
Dirac, Paul A M
2001-01-01
The author of this concise, brilliant series of lectures on mathematical methods in quantum mechanics was one of the shining intellects in the field, winning a Nobel prize in 1933 for his pioneering work in the quantum mechanics of the atom. Beyond that, he developed the transformation theory of quantum mechanics (which made it possible to calculate the statistical distribution of certain variables), was one of the major authors of the quantum theory of radiation, codiscovered the Fermi-Dirac statistics, and predicted the existence of the positron.The four lectures in this book were delivered
Mechanical design engineering handbook
Childs, Peter R N
2013-01-01
Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum
Analytical elements of mechanics
Kane, Thomas R
2013-01-01
Analytical Elements of Mechanics, Volume 1, is the first of two volumes intended for use in courses in classical mechanics. The books aim to provide students and teachers with a text consistent in content and format with the author's ideas regarding the subject matter and teaching of mechanics, and to disseminate these ideas. The book opens with a detailed exposition of vector algebra, and no prior knowledge of this subject is required. This is followed by a chapter on the topic of mass centers, which is presented as a logical extension of concepts introduced in connection with centroids. A
Mechanics of Generalized Continua
Maugin, Gerard A
2010-01-01
In their 1909 publication "Theorie des corps deformables", Eugene and Francois Cosserat made a historic contribution to materials science by establishing the fundamental principles of the mechanics of generalized continua. The chapters collected in this volume showcase the many areas of continuum mechanics that grew out of the foundational work of the Cosserat brothers. The included contributions provide a detailed survey of the most recent theoretical developments in the field of generalized continuum mechanics. The diverse topics covered include: the properties of Cosserat media, m
Schieve, William C.; Horwitz, Lawrence P.
2009-04-01
1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.
Supersymmetry in quantum mechanics
Cooper, Fred; Sukhatme, Uday
2001-01-01
This invaluable book provides an elementary description of supersymmetric quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. It gives physicists a fresh outlook and new ways of handling quantum-mechanical problems, and also leads to improved approximation techniques for dealing with potentials of interest in all branches of physics. The algebraic approach to obtaining eigenstates is elegant and important, and all physicists should become familiar with this. The book has been written in such a way that it can be easily appreciated by
Chaves, Eduardo W V
2013-01-01
This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately. The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.
Abstractions for Mechanical Systems
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2012-01-01
This paper proposes a method for discretizing the state space of mechanical systems. This is a first attempt in using reduction techniques for mechanical systems in the partitioning of the state space. The method relies on a combination of transversal and tangential manifolds for the conservative...... mechanical system. The tangential manifolds are generated using constants of motion, which can be derived from Noether's theorem. The transversal manifolds are subsequently generated on a reduced space, given by the Routhian, via action-angle coordinates. The method fully applies for integrable systems. We...
Applications in solid mechanics
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
Problems in solid mechanics constitute perhaps the largest field of application of finite element methods. The vast majority of solid mechanics problems involve the standard momentum balance equation, posed in a Lagrangian setting, with different models distinguished by the choice of nonlinear...... or linearized kinematics, and the constitutive model for determining the stress. For some common models, the constitutive relationships are rather complex. This chapter addresses a number of canonical solid mechanics models in the context of automated modeling, and focuses on some pertinent issues that arise...
Institute of Scientific and Technical Information of China (English)
WU Ning
2006-01-01
It is well known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.
Mechanics classical and quantum
Taylor, T T
2015-01-01
Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e
Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.
2012-11-13
A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.
Institute of Scientific and Technical Information of China (English)
李嘉; 张勇军; 李钦豪; 李琳
2014-01-01
在«太阳系天体相对地球某点的波动式螺线运动(I)»和«太阳系天体相对地球某点的波动式螺线运动(II)»中，推导太阳系天体对地球某点的波动式螺线运动方程。对螺线方程进行分析，并根据傅里叶原理，将各波动方程叠加，并以太阳系天体对地球赤道某点波动式螺线运动方程为例，利用计算机模拟得到各叠加图线，以探讨太阳系天体运动对地球某点的共同影响。模拟结果表明，太阳系天体对地球赤道某点立体波动式螺线叠加后，波形与单个天体类似，仍呈周期性螺线变化，且在三个坐标平面上的投影均为周期性波动，整体传播呈现薄膜状波动面。日月叠加图线与太阳近似，五大行星叠加图线较七大行星规则，五大行星在双波动坐标轴下的波动式螺线叠加在 yz平面的投影在某个阶段非常的密集，之后突然稀疏，七大行星也是，不过五大行星的密集长度比七大行星的长。日月对太阳系行星总体叠加影响不大。%In the thesis of The Undulating Spiral Motion of Celestial Bodies in Solar System Relative to a Certain Point on the Earth (I )and The Undulating Spiral Motion of Celestial Bodies in Solar System Relative to a Certain Point on the Earth (I I ),undulating spiral motion equation of solar system bodies relative to a certain point on the earth has been derived.This thesis will analyze each equation and superimpose the undulating equation based on the Fourier Principle,and then taking the undulating spiral motion equation of solar system bodies relative to a certain point on terrestrial equator for example,use computers simulation to obtain superposition graph to research the common influence of solar system bodies to a certain point on the earth.The simulation result indicates that,after superimposing the stereoscopic undulating spiral of solar system bodies relative to a certain point on terrestrial equator
Mechanical Enterogenesis - A Review
Directory of Open Access Journals (Sweden)
Rebecca Stark
2012-01-01
Full Text Available Mechanical enterogenesis is a novel method of lengthening pre-existing intestine with distractive force. The application of mechanical force on small intestine aims to induce cellular proliferation and ultimately increase bowel length. This has been investigated primarily for the treatment of short bowel syndrome (SBS. Research has been ongoing for well over a decade in this arena and a multitude of advances have been made, both in the understanding of the biology behind force induced cellular proliferation and in the basic mechanics of force delivery systems. Important experimental models have been developed for studying this phenomenon and the collaboration of engineers and medical researchers has lead to the design of several devices that successfully lengthen small intestine. This has catapulted the field forward and there may soon be a device suitable for medical use in humans. This review analyses the past, present and future of mechanical enterogenesis.
Neck fragmentation reaction mechanism
Baran, V; Di Toro, M
2004-01-01
Based on a microscopic transport model, we study the origin of nonstatistical Intermediate Mass Fragment ($IMF$) production in semicentral heavy ion collisions at the Fermi energies. We show that a fast, dynamical $IMF$ formation process, the {\\it neck fragmentation mechanism}, can explain the experimentally observed features: deviations from Viola systematics and anisotropic, narrow angular distributions. It may be regarded as the continuation of the multifragmentation mechanism towards intermediate impact parameters. Its relation to other dynamical mechanisms, the induced fission and the abrasion of the spectator zones, that can also contribute to mid-rapidity $IMF$ production, is discussed. The dependence on beam energy and centrality of the collision is carefully analysed. The competition between volume and surface instabilities makes this mechanism very sensitive to the in-medium nucleon-nucleon interactions, from the cross sections for hard collisions to the compressibility and other Equation of State (...
Beyond conventional quantum mechanics
International Nuclear Information System (INIS)
The author reviews some recent attempts to overcome the conceptual difficulties encountered by trying to interpret quantum mechanics as giving a complete, objective and unified description of natural phenomena. 38 refs
Mechanism of Seizure Termination
J Gordon Millichap
2008-01-01
Physiological mechanisms contributing to seizure termination and organized according to membranes, synapses, networks, and circuits are reviewed by researchers from Albert Einstein College of Medicine, and Montefiore Medical Center, Bronx, New York.
Playing at Statistical Mechanics
Clark, Paul M.; And Others
1974-01-01
Discussed are the applications of counting techniques of a sorting game to distributions and concepts in statistical mechanics. Included are the following distributions: Fermi-Dirac, Bose-Einstein, and most probable. (RH)
Mechanical plasticity of cells
Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben
2016-10-01
Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Mechanisms based on piezoactuators
Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Lhermet, Nicolas; Fabbro, H.; Guay, Philippe; Yorck, Mickael; Bouchilloux, Philippe
2001-06-01
In several fields (optics, space, aircraft, fluid control, biomedical, and manufacturing) there is a strong need for compact, robust and efficient positioning mechanisms that also offer high precision, short response times, low power consumption, low electromagnetic interference and multiple degrees of freedom. Piezoelectric actuators are generally good candidates for building such mechanisms. The products manufactured by Cedrat Recherche SA are piezoelectric actuators offering compact size, high deformation (up to 1%) and high stiffness. These actuators have successfully passed different qualification tests (air and space qualification, lifetime tests). They can easily be integrated in applications, as shown by examples of mechanisms taken from various fields: a super amplified actuator for a MRI biomedical device, a tip-tilt for mirrors, a chopper for X-ray diffraction, a helicopter flap mechanism and an XYZ stage for the AFM microscope of the MIDAS instrument of the ESA ROSETTA space mission.
Molecular Mechanisms of Preeclampsia
Vitoratos, N.; Hassiakos, D.; C. Iavazzo
2012-01-01
Preeclampsia is one of the leading causes of maternal morbidity/mortality. The pathogenesis of preeclampsia is still under investigation. The aim of this paper is to present the molecular mechanisms implicating in the pathway leading to preeclampsia.
Statistical mechanics of superconductivity
Kita, Takafumi
2015-01-01
This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...
Computational Continuum Mechanics
Shabana, Ahmed A
2011-01-01
This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.
Bower, Allan F
2009-01-01
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based. Develop Intuitive Ability to Identify and Avoid Physically Meaningless Predictions Applied Mechanics of Solids is a powerful tool for understanding how to take advantage of these revolutionary computer advances in the field of solid mechanics. Beginning with a description of the physical and mathematical laws that govern deformation in solids, the text presents modern constitutive equations, as well as analytical and computational methods of stress analysis and fracture mechanics. It also addresses the nonlinear theory of deformable rods, membranes, plates, and shells, and solutions to important boundary and initial value problems in solid mechanics. The author uses the step-by-step manner of a blackboard lecture to explain problem solving methods, often providing...
Federal Laboratory Consortium — NETL’s Mechanical Testing Laboratory in Albany, OR, helps researchers investigate materials that can withstand the heat and pressure commonly found in fossil energy...
Miniature Release Mechanism Project
National Aeronautics and Space Administration — The objective is to design, build and functionally test a miniature release mechanism for CubeSats and other small satellites. The WFF 6U satellite structure will...
Glulam mechanical characterization
Sousa, Hélder S.; Branco, Jorge M.; Lourenço, Paulo B.
2013-01-01
The glued laminated timber (glulam) mechanical properties may be evaluated through the determination of the key mechanical properties of the lamellae that compose that element. Simple bending and tension parallel to the grain tests were performed in order to assess the strength class of three glulam elements. Regarding the bending tests, 8 samples were taken from a glulam beam and assessed. Values for the resistant bending tension and both local and global modulus of elasticity were obtained....
Gajdošech, Martin
2012-01-01
My diploma thesis focuses on the M&A transaction closing mechanisms. Their function is to reflect the value changes of the target company into the purchase price. Value change occurs during the time lag between the date of the financial statements and the date of the transaction closing. Throughout history, there have been two major approaches developed. The "Completion Accounts Mechanism" uses post-completion price adjustments to reflect the change of the net working capital and net debt dur...
Бовтрук, Алла Георгіївна; Мєняйлов, Сергій Миколайович; Максимов, Сергій Леонідович; Поліщук, Аркадій Петрович
2009-01-01
Ukraine’s joining Bologna process requires creating new books in physics (in English in particular). The book is developed for all forms of studying physics on the Credit-based Modular System basis in higher school. «Physics. Module 1. Mechanics» presents Newtonian mechanics and Special theory of relativity. It contains eight Study Units which include theoretical information, test questions, sample problems, laboratory works and individual home tasks. It is designed for students of engi...
Advanced Mechanics of Piezoelectricity
Qin, Qing-Hua
2013-01-01
"Advanced Mechanics of Piezoelectricity" presents a comprehensive treatment of piezoelectric materials using linear electroelastic theory, symplectic models, and Hamiltonian systems. It summarizes the current state of practice and presents the most recent research findings in piezoelectricity. It is intended for researchers and graduate students in the fields of applied mechanics, material science and engineering, computational engineering, and aerospace engineering. Dr. Qinghua Qin is a professor at the School of Engineering, Australian National University, Australia.
Institute of Scientific and Technical Information of China (English)
王昊; 彭晓峰; 王补宣; 李笃中
2003-01-01
A series of subcooled boiling experiments was conducted on very small platinum wires having diameters of 0.1 and 0.025 mm. Vapor bubbles were visually observed to sweep back and forth along the wires in the experiments. The dynamic characteristics of bubble-sweeping phenomenon are described, and the induced bubble interaction and nonlinear growth are investigated to understand the boiling heat transfer mechanisms. An unsymmetrical temperature model is proposed to explain the physical mechanism.
Holography and Quantum Mechanics
Wang, X J
2002-01-01
It is illustrated that quantum mechanics can be interpreted as holographic projection of higher dimension classical gravity. In this explanation every quantum path in D-dimension is dual to a classical path of (D+1)-dimension gravity under definite holographic projection. I consider 2-dimension non-relativitic free particle and harmonic oscillator as two examples, and find their gravity dual. I conjecture that every quantum mechanics system has their dual gravity description.
Halperin, Henry; Carver, David J.
2010-01-01
It is recognized that the quality of cardiopulmonary resuscitation (CPR) is an important predictor of outcome from cardiac arrest. Mechanical chest-compression devices provide an alternative to manual CPR. Physiological and animal data suggest that mechanical chest-compression devices are more effective than manual CPR. Consequently, there has been much interest in the development of new techniques and devices to improve the efficacy of CPR. This review will consider the evidence ...
The monetary transmission mechanism
Peter N. Ireland
2005-01-01
The monetary transmission mechanism describes how policy-induced changes in the nominal money stock or the short-term nominal interest rate impact on real variables such as aggregate output and employment. Specific channels of monetary transmission operate through the effects that monetary policy has on interest rates, exchange rates, equity and real estate prices, bank lending, and firm balance sheets. Recent research on the transmission mechanism seeks to understand how these channels work ...
Experimental unsaturated soil mechanics
Delage, Pierre
2002-01-01
In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an ela...
Elementary Nonrelativistic Quantum Mechanics
Rosu, H C
2000-01-01
This is a graduate course on elementary quantum mechanics written for the benefit of undergraduate and graduate students. It is the English version of physics/0003106, which I did at the suggestion of several students from different countries. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Molecular mechanisms in gliomagenesis
DEFF Research Database (Denmark)
Hulleman, Esther; Helin, Kristian
2005-01-01
, in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal......-scale genomics and proteomics in combination with relevant mouse models will most likely provide novel insights into the molecular mechanisms underlying glioma formation and will hopefully lead to development of treatment modalities for GBM....
Phase Field Fracture Mechanics.
Energy Technology Data Exchange (ETDEWEB)
Robertson, Brett Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-11-01
For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.
Ross, Donald
1976-01-01
Mechanics of Underwater Noise elucidates the basic mechanisms by which noise is generated, transmitted by structures and radiated into the sea. Organized into 10 chapters, this book begins with a description of noise, decibels and levels, significance of spectra, and passive sonar equation. Subsequent chapters discuss sound waves in liquids; acoustic radiation fundamentals; wind-generated ocean ambient noise; vibration isolation and structural damping; and radiation by plate flexural vibrations. Other chapters address cavitation, propeller cavitation noise, radiation by fluctuating-force (dipo
Suki, Béla; Stamenović, Dimitrije; Hubmayr, Rolf
2011-07-01
The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This chapter focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644
Swanson, Theodore
2008-01-01
The focus of this chapter is on the long term wear and tear, or aging, of the mechanical subsystem of a spacecraft. The mechanical subsystem is herein considered to be the primary support structure (as in a skeleton or exoskeleton) upon which all other spacecraft systems rest, and the associated mechanisms. Mechanisms are devices which have some component that moves at least once, in response to some type of passive or active control system. For the structure, aging may proceed as a gradual degradation of mechanical properties and/or function, possibly leading to complete structural failure over an extended period of time. However, over the 50 years of the Space Age such failures appear to be unusual. In contrast, failures for mechanisms are much more frequent and may have a very serious effect on mission performance. Just as on Earth, all moving devices are subject to normal (and possibly accelerated) degradation from mechanical wear due to loss or breakdown of lubricant, misalignment, temperature cycling effects, improper design/selection of materials, fatigue, and a variety of other effects. In space, such environmental factors as severe temperature swings (possibly 100's of degrees C while going in and out of direct solar exposure), hard vacuum, micrometeoroids, wear from operation in a dusty or contaminated environment, and materials degradation from radiation can be much worse. In addition, there are some ground handling issues such as humidity, long term storage, and ground transport which may be of concern. This chapter addresses the elements of the mechanical subsystem subject to wear, and identifies possible causes. The potential impact of such degradation is addressed, albeit with the recognition that the impact of such wear often depends on when it occurs and on what specific components. Most structural elements of the mechanical system typically are conservatively designed (often to a safety factor of greater than approximately 1.25 on yield for
Spins, shapes, and orbits for potentially hazardous near-earth objects by NEON
DEFF Research Database (Denmark)
Muinonen, K.; Jørgensen, U.G.
2006-01-01
radiative transfer, scattering, celestial mechanics, methods: analytical, methods: data analysis, methods: numerical, methods: statistical, techniques: photometric, astrometry, comets: general, minor planets, asteroids...
Huang, Zhen; Ding, Huafeng
2013-01-01
This book contains mechanism analysis and synthesis. In mechanism analysis, a mobility methodology is first systematically presented. This methodology, based on the author's screw theory, proposed in 1997, of which the generality and validity was only proved recently, is a very complex issue, researched by various scientists over the last 150 years. The principle of kinematic influence coefficient and its latest developments are described. This principle is suitable for kinematic analysis of various 6-DOF and lower-mobility parallel manipulators. The singularities are classified by a new point of view, and progress in position-singularity and orientation-singularity is stated. In addition, the concept of over-determinate input is proposed and a new method of force analysis based on screw theory is presented. In mechanism synthesis, the synthesis for spatial parallel mechanisms is discussed, and the synthesis method of difficult 4-DOF and 5-DOF symmetric mechanisms, which was first put forward by the a...
Bruhns, Otto T
2003-01-01
Mechanics, and in particular, the mechanics of solids, forms the basis of all engi neering sciences. It provides the essential foundations for understanding the action of forces on bodies, and the effects of these forces on the straining of the body on the one hand, and on the deformation and motion of the body on the other. Thus, it provides the solutions of many problems with which the would-be engineer is going to be confronted with on a daily basis. In addition, in engineering studies, mechanics has a more vital importance, which many students appreciate only much later. Because of its clear, and analyt ical setup, it aids the student to a great extent in acquiring the necessary degree of abstraction ability, and logical thinking, skills without which no engineer in the practice today would succeed. Many graduates have confirmed to me that learning mechanics is generally per ceived as difficult. On the other hand, they always also declared that the preoccu pation with mechanics made an essential c...
Directory of Open Access Journals (Sweden)
Roman B. Golovkin
2015-12-01
Full Text Available Objective to establish the essential properties of the mechanism of charitable activities and to formulate the concept of quotmechanism of charitable activityquot. Methods the objective of the study is achieved using the complex of methods which are based on the interaction of dialectical and metaphysical analysis the epistemological properties of which allowed to reveal various aspects of the charitable activities mechanism functioning taking into account the principles of comprehensiveness complexity specificity and objectivity of the research. Results the rules are stated of using the term quotmechanismquot to characterize actions of state and law the essence of the charity mechanism is defined the definition of quotthe mechanism of charitable activity quot is formulated. Scientific novelty for the first time at theoretical level in legal science the definition of quotthe mechanism of charitable activityquot is formulated and its essential properties are set. Practical significance the research will contribute to improving the legal regulation in the field of philanthropy as well as to improving the efficiency and quality of charitable activity in the Russian Federation. nbsp
Conventional mechanical ventilation
Directory of Open Access Journals (Sweden)
Tobias Joseph
2010-01-01
Full Text Available The provision of mechanical ventilation for the support of infants and children with respiratory failure or insufficiency is one of the most common techniques that are performed in the Pediatric Intensive Care Unit (PICU. Despite its widespread application in the PICUs of the 21st century, before the 1930s, respiratory failure was uniformly fatal due to the lack of equipment and techniques for airway management and ventilatory support. The operating rooms of the 1950s and 1960s provided the arena for the development of the manual skills and the refinement of the equipment needed for airway management, which subsequently led to the more widespread use of endotracheal intubation thereby ushering in the era of positive pressure ventilation. Although there seems to be an ever increasing complexity in the techniques of mechanical ventilation, its successful use in the PICU should be guided by the basic principles of gas exchange and the physiology of respiratory function. With an understanding of these key concepts and the use of basic concepts of mechanical ventilation, this technique can be successfully applied in both the PICU and the operating room. This article reviews the basic physiology of gas exchange, principles of pulmonary physiology, and the concepts of mechanical ventilation to provide an overview of the knowledge required for the provision of conventional mechanical ventilation in various clinical arenas.
Arraut, Ivan
2015-01-01
The Higgs mechanism at the graviton level formulated as a Vainshtein mechanism in time domains implies that the extra-degrees of freedom become relevant depending on the direction of time (frame of reference) with respect to the preferred time direction (preferred frame) defined by the St\\"uckelberg function $T_0(r,t)$ which contains the information of the extra-degrees of freedom of the theory. In this manuscript, I make the general definition of the Higgs mechanism by analyzing the gauge symmetries of the action and the general form of the vacuum solutions for the graviton field. In general, the symmetry generators depending explicitly on the St\\"uckelberg fields are broken at the vacuum level. These broken generators, define the number of Nambu-Goldstone bosons which will be eating up by the dynamical metric in order to become massive.
Foundations of quantum mechanics
International Nuclear Information System (INIS)
Starting from a set of assumptions mainly of an operational or experimentally based nature, a derivation of quantum mechanics is presented, with the aim of clarifying the essential features of the theory and their interpretation. Various properties of quantum mechanics such as the addition of amplitudes, the calculation of probabilities, de Broglie's equations, and energy-momentum conservation are derived from first principles. It is investigated whether quantum amplitudes may be constructed from quantities of higher order than complex numbers. Measurable physical quantitics, as traditionally understood, are seen to play a role distinct from and supplementary to the behavior of the quantum amplitudes themselves. This is related to two distinct aspects of the nature of time in the context of quantum mechanics
Rock mechanics research awards
Wagner, John E.
The U.S. National Committee for Rock Mechanics, at its June 1983 annual meeting, adopted three actions to enhance the competition and public awareness of its annual awards program for rock mechanics papers. It will issue a call for nominations of outstanding papers; it will request participating societies to announce the names of award winners and the titles of papers, and it will publish an abstract of the winning papers in the proceedings of the annual U.S. Rock Mechanics Symposium in the year following the awards.The competition is open to papers, by U.S residents or students in a U.S. school, published in an English language publication normally available in the United States. The following authors and papers are the 1983 award winners:
Molecular mechanisms of meditation.
Jindal, Vishal; Gupta, Sorab; Das, Ritwik
2013-12-01
Meditation is a complex process involving change in cognition, memory, and social and emotional control, and causes improvement in various cardiovascular, neurological, autoimmune, and renal pathologies. Meditation also become widely used in medical and psychological treatment therapies for stress-related physical and mental disorders. But still, biological mechanisms in terms of effect on brain and body are poorly understood. This paper explains the basic changes due to meditation in cerebral cortex, prefrontal area, cingulate gyrus, neurotransmitters, white matter, autonomic nervous system, limbic system, cytokines, endorphins, hormones, etc. The following is a review of the current literature regarding the various neurophysiological mechanisms, neuro-endocrine mechanisms, neurochemical substrates, etc. that underlies the complex processes of meditation. PMID:23737355
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577
Epigenetics: Biology's Quantum Mechanics
Directory of Open Access Journals (Sweden)
Richard A Jorgensen
2011-04-01
Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
Integrating function and mechanism.
McNamara, John M; Houston, Alasdair I
2009-12-01
Behavioural ecology often makes the assumption that animals can respond flexibly by adopting the optimal behaviour for each circumstance. However, as ethologists have long known, behaviour is determined by mechanisms that are not optimal in every circumstance. As we discuss here, we believe that it is necessary to integrate these separate traditions by considering the evolution of mechanisms, an approach referred to as 'Evo-mecho'. This integration is timely because there is a growing awareness of the importance of environmental complexity in shaping behaviour; there are established and effective computational procedures for simulating evolution and there is rapidly increasing knowledge of the neuronal basis of decision-making. Although behavioural ecologists have built complex models of optimal behaviour in simple environments, we argue that they need to focus on simple mechanisms that perform well in complex environments.
Mechanical Biological Treatment
DEFF Research Database (Denmark)
Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund
2011-01-01
The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...
Arraut, Ivan
2015-09-01
The Higgs mechanism at the graviton level formulated as a Vainshtein mechanism in time domains implies that the extra-degrees of freedom become relevant depending on the direction of time (frame of reference) with respect to the preferred time direction (preferred frame) defined by the Stückelberg function T_0(r,t) which contains the information of the extra-degrees of freedom of the theory. In this manuscript, I make the general definition of the Higgs mechanism by analyzing the gauge symmetries of the action and the general form of the vacuum solutions for the graviton field. In general, the symmetry generators depending explicitly on the Stückelberg fields are broken at the vacuum level. These broken generators, define the number of Nambu-Goldstone bosons which will be eating up by the dynamical metric in order to become massive.
Molecular mechanisms of meditation.
Jindal, Vishal; Gupta, Sorab; Das, Ritwik
2013-12-01
Meditation is a complex process involving change in cognition, memory, and social and emotional control, and causes improvement in various cardiovascular, neurological, autoimmune, and renal pathologies. Meditation also become widely used in medical and psychological treatment therapies for stress-related physical and mental disorders. But still, biological mechanisms in terms of effect on brain and body are poorly understood. This paper explains the basic changes due to meditation in cerebral cortex, prefrontal area, cingulate gyrus, neurotransmitters, white matter, autonomic nervous system, limbic system, cytokines, endorphins, hormones, etc. The following is a review of the current literature regarding the various neurophysiological mechanisms, neuro-endocrine mechanisms, neurochemical substrates, etc. that underlies the complex processes of meditation.
Geometrisation of Statistical Mechanics
Brody, D C; Brody, Dorje C.; Hughston, Lane P.
1997-01-01
Classical and quantum statistical mechanics are cast here in the language of projective geometry to provide a unified geometrical framework for statistical physics. After reviewing the Hilbert space formulation of classical statistical thermodynamics, we introduce projective geometry as a basis for analysing probabilistic aspects of statistical physics. In particular, the specification of a canonical polarity on $RP^{n}$ induces a Riemannian metric on the state space of statistical mechanics. In the case of the canonical ensemble, we show that equilibrium thermal states are determined by the Hamiltonian gradient flow with respect to this metric. This flow is concisely characterised by the fact that it induces a projective automorphism on the state manifold. The measurement problem for thermal systems is studied by the introduction of the concept of a random state. The general methodology is then extended to include the quantum mechanical dynamics of equilibrium thermal states. In this case the relevant state ...
Understanding Defense Mechanisms.
Cramer, Phebe
2015-12-01
Understanding defense mechanisms is an important part of psychotherapy. In this article, we trace the history of the concept of defense, from its origin with Freud to current views. The issue of defense as an unconscious mechanism is examined. The question of whether defenses are pathological, as well as their relation to pathology, is discussed. The effect of psychotherapy on the use of defenses, and their relation to a therapeutic alliance is explored. A series of empirical research studies that demonstrate the functioning of defense mechanisms and that support the theory is presented. Research also shows that as part of normal development, different defenses emerge at different developmental periods, and that gender differences in defense use occur. PMID:26583439
Yamane, Takashi
2016-01-01
This book first describes medical devices in relation to regenerative medicine before turning to a more specific topic: artificial heart technologies. Not only the pump mechanisms but also the bearing, motor mechanisms, and materials are described, including expert information. Design methods are described to enhance hemocompatibility: main concerns are reduction of blood cell damage and protein break, as well as prevention of blood clotting. Regulatory science from R&D to clinical trials is also discussed to verify the safety and efficacy of the devices.
Mechanical engineer's reference book
Parrish, A
1973-01-01
Mechanical Engineer's Reference Book: 11th Edition presents a comprehensive examination of the use of Systéme International d' Unités (SI) metrication. It discusses the effectiveness of such a system when used in the field of engineering. It addresses the basic concepts involved in thermodynamics and heat transfer. Some of the topics covered in the book are the metallurgy of iron and steel; screw threads and fasteners; hole basis and shaft basis fits; an introduction to geometrical tolerancing; mechanical working of steel; high strength alloy steels; advantages of making components as castings
Volokh, Konstantin
2016-01-01
This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .
Rosu, H C
2000-01-01
This is the first graduate course on elementary quantum mechanics in Internet written in Romanian for the benefit of Romanian speaking students (Romania and Moldova). It is a translation (with corrections) of the Spanish version of the course (physics/9808031, English translation is under consideration), which I did at the request of students of physics in Bucharest. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Basniev, Kaplan S; Chilingar, George V 0
2012-01-01
The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry. This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike. It is a must-have for any engineer working in the oil and gas industry.
Saxon, David S
2012-01-01
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, m
Classical mechanics with Maxima
Timberlake, Todd Keene
2016-01-01
This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.
Computational statistical mechanics
Hoover, WG
1991-01-01
Computational Statistical Mechanics describes the use of fast computers to simulate the equilibrium and nonequilibrium properties of gases, liquids, and solids at, and away from equilibrium. The underlying theory is developed from basic principles and illustrated by applying it to the simplest possible examples. Thermodynamics, based on the ideal gas thermometer, is related to Gibb's statistical mechanics through the use of Nosé-Hoover heat reservoirs. These reservoirs use integral feedback to control temperature. The same approach is carried through to the simulation and anal
International Nuclear Information System (INIS)
The need for the training of mechanics is discussed, and the increased interest within the utility industry of placing a similar importance on this training as it has traditionally placed on operator training, is expressed. Effective approaches and techniques are described. Fundamental mechanical maintenance concepts and their practical application are discussed, including the use of supporting video programs. The importance of follow-up practical shop exercise which reinforces classroom instruction is stressed, drawing from practical utility experience. Utilizing success in training as a measure of eligibility for advancement is discussed as well as the interface between training and the company bargaining unit
Mitchell, J. K.; Bromwell, L. G.; Carrier, W. D., III; Costes, N. C.; Houston, W. N.; Scott, R. F.
1972-01-01
The Apollo 15 soil-mechanics experiment has offered greater opportunity for study of the mechanical properties of the lunar soil than previous missions, not only because of the extended lunar-surface stay time and enhanced mobility provided by the lunar roving vehicle (rover), but also because four new data sources were available for the first time. These sources were: (1) the self-recording penetrometer (SRP), (2) new, larger diameter, thin-walled core tubes, (3) the rover, and (4) the Apollo lunar-surface drill (ALSD). These data sources have provided the best bases for quantitative analyses thus far available in the Apollo Program.
Computational contact mechanics
Wriggers, Peter
2006-01-01
Contact mechanics has its application in many engineering problems. No one can walk without frictional contact, and no car would move for the same r- son. Hence contact mechanics has, from an engineering point of view, a long history, beginning in ancient Egypt with the movement of large stone blocks, over ?rst experimental contributions from leading scientists like Leonardo da Vinci andCoulomb, to today's computational methods. In the past c- tact conditions were often modelled in engineering analysis by more simple boundary conditions since analytical solutions were not present for real worl
Vortex mechanism in hydrocyclones
Institute of Scientific and Technical Information of China (English)
徐继润; 刘正宁; 邢军; 李新跃; 黄慧; 徐海燕; 罗茜
2001-01-01
On the basis of analyzing the vortex characteristics, a new mechanism of the vortex formation in hydrocyclones is developed. The main concept of the mechanism is that the vortex flow in a hydrocyclone is resulted from the overlapping of container rotation and hole leakage. The model is then used to explain the compound distribution of free vortex and forced vortex, predict the similarity of tangential velocity at different input pressures, and make count of the principle of small hydrocyclone with lower cut-size than large one. Meanwhile a new possible approach to a large hydro-cyclone with lower cut-size by minimizing or eliminating the air core is discussed briefly.
Introduction to continuum mechanics
Lai, W Michael; Rubin, David
1996-01-01
Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a
Kogan, VI; Gersch, Harold
2011-01-01
Written by a pair of distinguished Soviet mathematicians, this compilation presents 160 lucidly expressed problems in nonrelativistic quantum mechanics plus completely worked-out solutions. Some were drawn from the authors' courses at the Moscow Institute of Engineering, but most were prepared especially for this book. A high-level supplement rather than a primary text, it constitutes a masterful complement to advanced undergraduate and graduate texts and courses in quantum mechanics.The mathematics employed in the proofs of the problems-asymptotic expansions of functions, Green's functions, u
Fundamentals of continuum mechanics
Rudnicki, John W
2014-01-01
A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ
Probabilistic approach to mechanisms
Sandler, BZ
1984-01-01
This book discusses the application of probabilistics to the investigation of mechanical systems. The book shows, for example, how random function theory can be applied directly to the investigation of random processes in the deflection of cam profiles, pitch or gear teeth, pressure in pipes, etc. The author also deals with some other technical applications of probabilistic theory, including, amongst others, those relating to pneumatic and hydraulic mechanisms and roller bearings. Many of the aspects are illustrated by examples of applications of the techniques under discussion.
Quantum mechanics selected topics
Perelomov, Askold Mikhailovich
1998-01-01
It can serve as a good supplement to any quantum mechanics textbook, filling the gap between standard textbooks and higher-level books on the one hand and journal articles on the other. This book provides a detailed treatment of the scattering theory, multidimensional quasi-classical approximation, non-stationary problems for oscillators and the theory of unstable particles. It will be useful for postgraduate students and researchers who wish to find new, interesting information hidden in the depths of non-relativistic quantum mechanics.
Mechanical Parking System Logistics
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
As the number of motor vehicles increases rapidly in many populated countries, t he shortage of parking space has become a difficult problem to all cities around the world. The contradiction between the shortage of parking space and the incr easing number of motor vehicles is still growing in the recent years. The utiliz ation of various kinds of mechanical parking facilities is an effective solution to this problem. How to organize a reasonable logistics system in a mechanical parking lot so that as man...
Experimental unsaturated soil mechanics
Delage, Pierre
2008-01-01
In this general report, experimental systems and procedures of investigating the hydro-mechanical behaviour of unsaturated soils are presented. The water retention properties of unsaturated soils are commented and linked to various physical parameters and properties of the soils. Techniques of controlling suction are described together with their adaptation in various laboratory testing devices. Some typical features of the mechanical behaviour of unsaturated soils are presented within an elasto-plastic framework. An attempt to describe the numerous and significant recent advances in the investigation of the behaviour of unsaturated soils, including the contributions to this Conference, is proposed.
Principles of Mechanical Excavation
International Nuclear Information System (INIS)
Mechanical excavation of rock today includes several methods such as tunnel boring, raiseboring, roadheading and various continuous mining systems. Of these raiseboring is one potential technique for excavating shafts in the repository for spent nuclear fuel and dry blind boring is promising technique for excavation of deposition holes, as demonstrated in the Research Tunnel at Olkiluoto. In addition, there is potential for use of other mechanical excavation techniques in different parts of the repository. One of the main objectives of this study was to analyze the factors which affect the feasibility of mechanical rock excavation in hard rock conditions and to enhance the understanding of factors which affect rock cutting so as to provide an improved basis for excavator performance prediction modeling. The study included the following four main topics: (a) phenomenological model based on similarity analysis for roller disk cutting, (b) rock mass properties which affect rock cuttability and tool life, (c) principles for linear and field cutting tests and performance prediction modeling and (d) cutter head lacing design procedures and principles. As a conclusion of this study, a test rig was constructed, field tests were planned and started up. The results of the study can be used to improve the performance prediction models used to assess the feasibility of different mechanical excavation techniques at various repository investigation sites. (orig.)
DEFF Research Database (Denmark)
Hansen, John Michael
1999-01-01
These notes describe an automated procedure for analysis and synthesis of mechanisms. The analysis method is based on the body coordinate formulation, and the synthesis is based on applying optimization methods, used to minimize the difference between an actual and a desired behaviour...
Transformable topological mechanical metamaterials
Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming
We present a class of mechanical metamaterials characterized by a uniform soft deformation--a large, zero-energy homogeneous elastic deformation mode of the structure--that may be used to induce topological transitions and dramatically change mechanical and acoustic properties of the structure. We show that the existence of such a mode determines certain exotic mechanical and acoustic properties of the structure and its activation can reversibly alter and tune these properties. This serves as the basis for a design principle for mechanical metamaterials with tunable properties. When the structure's uniform mode is primarily dilational (shearing) its surface (bulk) possesses phonon modes with vanishing speed of sound. Maxwell lattices comprise a subclass of such material which, owing to their critical coordination number (four, in 2D), necessarily possess such a uniform zero mode, often termed a Guest mode, and which may be topologically polarized, such that zero modes are moved from one edge to another. We show that activating the deformation can alter the shear/dilational character of the mode and topologically polarize the structure, thereby altering the bulk and surface properties at no significant energy cost. arXiv:1510.06389 [cond-mat.soft] NWO, Delta Institute of Physics, ICAM fellowship (DZR) and NSF Grant PHY-1402971 at University of Michigan (KS).
Structured Mechanical Collage.
Huang, Zhe; Wang, Jiang; Fu, Hongbo; Lau, Rynson W H
2014-07-01
We present a method to build 3D structured mechanical collages consisting of numerous elements from the database given artist-designed proxy models. The construction is guided by some graphic design principles, namely unity, variety and contrast. Our results are visually more pleasing than previous works as confirmed by a user study.
Making "The Mechanical Universe"
Goodstein, David L.; Olenick, Richard P.
1988-01-01
‘‘The Mechanical Universe and Beyond’’ is an introductory college‐level physics telecourse, including calculus, made for broadcast television and classroom use. This article describes the inception and history of the project and the techniques and strategies that were used in producing it. A project to adapt the series for use in high schools is also discussed.
Mechanical integrity of canisters
International Nuclear Information System (INIS)
This document constitutes the final report from 'SKBs reference group for mechanical integrity of canisters for spent nuclear fuel'. A complete list of all reports initiated by the reference group can be found in the summary report in this document. The main task of the reference group has been to advice SKB regarding the choice (ranking of alternatives) of canister type for different types of storage. The choice should be based on requirements of impermeability for a given time period and identification of possible limiting mechanisms. The main conclusions from the work were: From mechanical point of view, low phosphorous oxygen free copper (Cu-OFP) is a preferred canisters material. It exhibits satisfactory ductility both during tensile and creep testing. The residual stresses in the canisters are of such a magnitude that the estimated time to creep rupture with the data obtained for the Cu-OFP material is essentially infinite. Based on the present knowledge of stress corrosion cracking of copper there appears to be a small risk for such to occur in the projected environment. This risk need some further study. Rock shear movements of the size of 10 cm should pose no direct threat to the integrity of the canisters. Considering mechanical integrity, the composite copper/steel canister is an advantageous alternative. The recommendations for further research included continued studies of the creep properties of copper and of stress corrosion cracking. However, the studies should focus more directly on the design and fabrication aspect of the canister
Mechanisms of multidrug transporters
Bolhuis, H; van Veen, H.W.; Poolman, B.; Driessen, A.J.M.; Konings, W.N
1997-01-01
Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of multidr
Motorcycle Mechanic. Teacher Edition.
Baugus, Mickey; Fulkerson, Dan, Ed.
These teacher's materials are for a 19-unit competency-based course on entry-level motorcycle mechanics at the secondary and postsecondary levels. The 19 units are: (1) introduction to motorcycle repair; (2) general safety; (3) tools and equipment; (4) metric measurements; (5) fasteners; (6) service department operations; (7) motorcycle engines;…
Industrial Mechanical Maintenance.
Hendrix, Laborn J.
This manual was developed to assist teachers in Oklahoma in preparing students for industrial mechanical maintenance. The materials in this teacher's guide are organized in 14 units of instruction covering the following four areas: receiving and setting equipment; equipment hookup and operation; equipment layout, anchoring, and setup; and…
Principles of Mechanical Excavation
Energy Technology Data Exchange (ETDEWEB)
Lislerud, A. [Tamrock Corp., Tampere (Finland)
1997-12-01
Mechanical excavation of rock today includes several methods such as tunnel boring, raiseboring, roadheading and various continuous mining systems. Of these raiseboring is one potential technique for excavating shafts in the repository for spent nuclear fuel and dry blind boring is promising technique for excavation of deposition holes, as demonstrated in the Research Tunnel at Olkiluoto. In addition, there is potential for use of other mechanical excavation techniques in different parts of the repository. One of the main objectives of this study was to analyze the factors which affect the feasibility of mechanical rock excavation in hard rock conditions and to enhance the understanding of factors which affect rock cutting so as to provide an improved basis for excavator performance prediction modeling. The study included the following four main topics: (a) phenomenological model based on similarity analysis for roller disk cutting, (b) rock mass properties which affect rock cuttability and tool life, (c) principles for linear and field cutting tests and performance prediction modeling and (d) cutter head lacing design procedures and principles. As a conclusion of this study, a test rig was constructed, field tests were planned and started up. The results of the study can be used to improve the performance prediction models used to assess the feasibility of different mechanical excavation techniques at various repository investigation sites. (orig.). 21 refs.
Residential Mechanical Precooling
Energy Technology Data Exchange (ETDEWEB)
German, A.; Hoeschele, M.
2014-12-01
This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.
International Nuclear Information System (INIS)
Quantum mechanics represents the central revolution of modern natural science and reaches in its importance farely beyond physics. Neither chemistry nor biology on the molecular scale would be understandable without it. Modern information technology from the laptop over the mobile telephone and the flat screen until the supercomputer would be unthinkable without quantum-mechanical effects. It desribes the world on the atomic and subatomic scale and is by this the starting point of our modern worldview. The Nobel-prize carrier Steven Weinberg has done ever among others by his theory of the unification of the weak and the electromagnetic interaction one of the most important contributions to this revolution. In this book he reproduces his personal view of quantum mechanics, which captivates by its strictly logic construction, precise linguistic representation, and mathematical clearness and completeness. This book appeals to studyings of natural sciences, especially of physics. Accompanied is the test by exercise problems, which allow the studying to apply immediately the knowledge, but also test their understanding. Because of its precision and clearness ''Lectures on Quantum Mechanics'' by Weinberg is also essentially suited for the self-study.
Heiss, Jonny
2000-01-01
Assuming the existence of a Multidirectional Homogeneous and Constant Shower of Elementary Particles (MHCSEP) traveling at light speed in space, several basic laws of physics are derived mainly by geometrical considerations. When placing two bodies in space, obstruction of the MHCSEP creates an attractive force among them that coincides, for two bodies, with Newton's law of gravity, generating a mechanical explanation for gravity.
Fuzziness in Quantum Mechanics
Granik, A
1996-01-01
It is shown that quantum mechanics can be regarded as what one might call a "fuzzy" mechanics whose underlying logic is the fuzzy one, in contradistinction to the classical "crisp" logic. Therefore classical mechanics can be viewed as a crisp limit of a "fuzzy" quantum mechanics. Based on these considerations it is possible to arrive at the Schroedinger equation directly from the Hamilton-Jacobi equation. The link between these equations is based on the fact that a unique ("crisp") trajectory of a classical particle emerges out of a continuum of possible paths collapsing to a single trajectory according to the principle of least action. This can be interpreted as a consequence of an assumption that a quantum "particle" "resides" in every path of the continuum of paths which collapse to a single(unique) trajectory of an observed classical motion. A wave function then is treated as a function describing a deterministic entity having a fuzzy character. As a consequence of such an interpretation, the complimentar...
Marine Corps Inst., Washington, DC.
This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…
Mechanical Measurements Laboratory
Maximilien Brice
2007-01-01
The CERN mechanical measurements team check the sensors on one of the ATLAS inner detector end-caps using high precision measurement equipment. Remote checks like this must be made on these sensitive detector components before they can be transported to make sure that all systems are working correctly.
DEFF Research Database (Denmark)
Sonne, David P; Hansen, Morten; Knop, Filip K
2014-01-01
Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, ...
International Nuclear Information System (INIS)
In 1929 Paul Dirac pronounced that 'the underlying physical laws necessary for the mathematical theory for a large part of physics and the whole of chemistry are ...completely known'. Indeed, the fundamental aspects of non-relativistic quantum mechanics have remained essentially unchanged ever since, while physics and chemistry have been driven largely by experiment. Since the time of Dirac, of course, we have entered the computer era. Increasingly fast computers have led to better, although still approximate, models for the quantum-mechanical equations that govern fundamental processes such as chemical reactions. So far, however, the goal of matching the accuracy of experiments for any chemical reaction has eluded computational scientists. Now Steven Miekle of the Pacific Northwest National Laboratory in the US and co-workers have performed quantum-mechanical calculations from first principles that reproduce the measured reaction rate of a chemical reaction for the first time (Phys. Rev. Lett. 91 063201). The team studied the gas-phase hydrogen exchange reaction H + H2 goes to H2 + H over temperatures ranging from -100 to 1900 C. This reaction has tantalized quantum chemists since the initial formulation of quantum- mechanics 75 years ago. In the November issue of Physics World Jonathan Tennyson in the Department of Physics and Astronomy at University College London explains how theory and experiment have converged to solve this problem. (U.K.)
Gelis, Francois
2015-01-01
In this article, we review recent theoretical works on the Schwingermechanism of particle production in external electrical fields. Although the non-perturbative Schwinger mechanism is at the center of this discussion, many of the approaches that we discuss can cope with general time and space dependent fields, and therefore also capture the perturbative contributions to particle production.
Classical Mechanics Laboratory
Brosing, Juliet W.
2006-12-01
At Pacific University we have included a lab with our upper division Classical Mechanics class. We do a combination of physical labs (air resistance, harmonic motion, amusement park physics), Maple labs (software), and projects. Presentation of some of the labs, results and challenges with this course will be included.
DEFF Research Database (Denmark)
van Gelderen, Laurens; Malmquist, Linus Mattias Valdemar; Jomaas, Grunde
2015-01-01
In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame he...
Multidomain multiphase fluid mechanics
Energy Technology Data Exchange (ETDEWEB)
Sha, W.T.; Soo, S.L.
1976-10-01
A set of multiphase field equations--conversion of mass, momentum and energy--based on multiphase mechanics is developed. Multiphase mechanics applies to mixtures of phases which are separated by interfaces and are mutually exclusive. Based on the multiphase mechanics formulation, additional terms appear in the field equations when the physical size of the dispersed phase (bubble or droplet) is many times larger than the inter-molecular spacing. These terms are the inertial coupling due to virtual mass and the additional viscous coupling due to unsteadiness of the flow field. The multiphase formulation given here takes into account the discreteness of particles of dispersed phases and, at the same time, the necessity of the distributive representation of field variables via space-time averaging when handling a large number of particles. The provision for multidomain transition further permits us to treat dispersed phases which are large compared to the characteristic dimension of the flow system via interdomain relations. The multidomain multiphase approach provides a framework for us to model the various flow regimes. Because some of the transport parameters associated with the system equations are not well known at the present time, an idealized two-domain two-phase solution approach is proposed as a first step. Finally, comparisons are made between the field equations formulated based on the multidomain-multiphase fluid mechanics and the pertinent existing models, and their relative significances are discussed. The desirability of consistent approximation and simplifications possible for dilute suspensions are discussed.
Horticultural Mechanics Competencies
Shipley, W. Edward
1974-01-01
Ornamental horticulture teachers and managers of ornamental horticulture businesses were surveyed to determine which agricultural mechanics knowledges and skills are needed for entry-level employment in nursery, greenhouse, turf, and landscape management, which are common to the four areas, and the appropriate grade level at which they should be…
Quantum Chaos and Statistical Mechanics
Srednicki, Mark
1994-01-01
We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.
Valenza, John J., II
Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of
Quantum Mechanics As A Limiting Case of Classical Mechanics
Ghose, Partha
2000-01-01
In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative point of view in which quantum mechanics emerges as a limiting case of classical mechanics in which the classical system is decoupled from its environment.
Mechanically reinforced glass beams
DEFF Research Database (Denmark)
Nielsen, Jens Henrik; Olesen, John Forbes
2007-01-01
The use of glass as a load carrying material in structural elements is rarely seen even though glass is a popular material for many architects. This is owed to the unreliable and low tensile strength, which is due to surface flaws and high brittleness of the material. These properties lead...... to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...
Glass, J.A.F.
1958-07-01
A reactor control mechanism is described wherein the control is achieved by the partial or total withdrawal of the fissile material which is in the form of a fuel rod. The fuel rod is designed to be raised and lowered from the reactor core area by means of two concentric ball nut and screw assemblies that may telescope one within the other. These screw mechanisms are connected through a magnetic clutch to a speed reduction gear and an accurately controllable prime motive source. With the clutch energized, the fuel rod may be moved into the reactor core area, and fine adjustments may be made through the reduction gearing. However, in the event of a power failure or an emergency signal, the magnetic clutch will become deenergized, and the fuel rod will drop out of the core area by the force of gravity, thus shutting down the operation of the reactor.
Determinism beneath Quantum Mechanics
Hooft, G
2002-01-01
Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.
Institute of Scientific and Technical Information of China (English)
吴宁; 阮图南
1996-01-01
A quantum mechanical model with one bosonic degree of freedom is discussed in detail. Conventionally, when a quantum mechanical model is constructed, one must know the corresponding classical model. And by applying the correspondence between the classical Poisson brackets and the canonical commutator, the canonical quantization condition can be obtained. In the quantum model, study of the corresponding classical model is needed first. In this model, the Lagrangian is an operator gauge invariant. After localization, in order to keep gauge invariance, the operator gauge potential must be introduced. The Eular-Lagrange equation of motion of the dynamical argument gives the usual operator equation of motion. And the operator gauge potential just gjves a constraint. This constraint is just the usual canonical quantization condition.
Mechanisms of mercury bioremediation.
Essa, A M M; Macaskie, L E; Brown, N L
2002-08-01
Mercury is one of the most toxic heavy metals, and has significant industrial and agricultural uses. These uses have led to severe localized mercury pollution. Mercury volatilization after its reduction to the metallic form by mercury-resistant bacteria has been reported as a mechanism for mercury bioremediation [Brunke, Deckwer, Frischmuth, Horn, Lunsdorf, Rhode, Rohricht, Timmis and Weppen (1993) FEMS Microbiol. Rev. 11, 145-152; von Canstein, Timmis, Deckwer and Wagner-Dobler (1999) Appl. Environ. Microbiol. 65, 5279-5284]. The reduction/volatilization system requires to be studied further, in order to eliminate the escape of the metallic mercury into the environment. Recently we have demonstrated three different mechanisms for mercury detoxification in one organism, Klebsiella pneumoniae M426, which may increase the capture efficiency of mercury.
International Nuclear Information System (INIS)
Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives
Hills, D. A.
1994-06-01
Several aspects of the mechanics of cracks originating at sites of fretting are considered. It is argued that the problem may be distilled into three separate parts: the contact problem itself in full or partial slip, the initiation of a crack from a surface suffering severe distress, and the propagation of a crack under combined contact and bulk loading. The first of these may be solved by either a classical or numerical means, while the last merely requires the careful use of fracture mechanics. However, it is the second element which remains elusive to quantify, and the influence of the intrinsic length scales in the problem, including contact length, surface roughness and amplitude of relative tangential displacement on initiation conditions, is discussed and explored.
Mechanisms of intergranular fracture
Energy Technology Data Exchange (ETDEWEB)
Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering
1999-08-01
The authors present a study of the atomistic mechanisms of crack propagation along grain boundaries in metals and alloys. The failure behavior showing cleavage crack growth and/or crack-tip dislocation emission is demonstrated using atomistic simulations for an embedded-atom model. The simulations follow the quasi-equilibrium growth of a crack as the stress intensity applied increases. Dislocations emitted from crack tips normally blunt the crack and inhibit cleavage, inducing ductile behavior. When the emitted dislocations stay near the crack tip (sessile dislocations), they do blunt the crack but brittle cleavage can occur after the emission of a sufficient number of dislocations. The fracture process occurs as a combination of dislocation emission/micro-cleavage portions that are controlled by the local atomistic structure of the grain boundary. The grain boundary is shown to be a region where dislocation emission is easier, a mechanism that competes with the lower cohesive strength of the boundary region.
DEFF Research Database (Denmark)
van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde
2015-01-01
In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....
Institute of Scientific and Technical Information of China (English)
Weijun Cai; Wolfgang Schaper
2008-01-01
Patients with occlusive atherosclerotic vascular diseases have frequently developed collateral blood vessels that bypass areas of arterial obstructions. The growth of these collateral arteries has been termed "arteriogenesis", which describes the process of a small arteriole's transformation into a much larger conductance artery.In recent years,intensive investi-gations using various animal models have been performed to unravel the molecular mechanisms of arteriogenesis.The increasing evidence suggests that arteriogenesis seems to be triggered mainly by fluid shear stress,which is induced by the altered blood flow conditions after an arterial occlusion.Arteriogenesis involves endothelial cell activation,basal membrane degradation,leukocyte invasion,proliferation of vascular cells,neonitima formation(in most species studied),changes of the extracellular matrix and cytokine participation.This paper is an in-depth review of the research critical to recent advaces in the field of arteriogenesis that have provided a better understanding of its mechanism.
PARALLEL MOVING MECHANICAL SYSTEMS
Directory of Open Access Journals (Sweden)
Florian Ion Tiberius Petrescu
2014-09-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.
Papavassiliou, Joannis
2011-01-01
The generation of a momentum-dependent gluon mass proceeds through a sophisticated implementation, at the level of the Schwinger-Dyson equation for the gluon propagator, of the Schwinger mechanism, whose central dynamical ingredient is the nonperturbative formation of longitudinally coupled massless bound-state excitations. In addition to triggering the aforementioned mechanism, these excitations introduce poles in the various off-shell Green's functions of the theory, in such a way as to maintain the Slavnov-Taylor identities intact in the presence of massive gluon propagators, acting effectively as composite Nambu-Goldstone bosons. In this work we focus on the dynamics leading to the actual formation of such bound states. Specifically, we derive and solve numerically an approximate version of the homogeneous Bethe-Salpeter equation governing the wave function of this special bound state. It is found that this integral equation admits physically meaningful non-trivial solutions, indicating that the QCD dynam...
Mechanics of collective unfolding
Caruel, M; Truskinovsky, L
2015-01-01
Mechanically induced unfolding of passive crosslinkers is a fundamental biological phenomenon encountered across the scales from individual macro-molecules to cytoskeletal actin networks. In this paper we study a conceptual model of athermal load-induced unfolding and use a minimalistic setting allowing one to emphasize the role of long-range interactions while maintaining full analytical transparency. Our model can be viewed as a description of a parallel bundle of N bistable units confined between two shared rigid backbones that are loaded through a series spring. We show that the ground states in this model correspond to synchronized, single phase configurations where all individual units are either folded or unfolded. We then study the fine structure of the wiggly energy landscape along the reaction coordinate linking the two coherent states and describing the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the fundamental difference in the size and structure of the folding-u...
Computation in Classical Mechanics
Timberlake, Todd
2007-01-01
There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.
Mayato, R; Egusquiza, I
2002-01-01
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the theory. This book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory, such as the parametric (clock) time, tunneling times, decay times, dwell times, delay times, arrival times or jump times. This multiauthored book, written as an introductory guide for the non-initiated as well as a useful source of information for the expert, covers many of the open questions. A brief historical overview is to be found in the introduction. It is followed by 12 chapters devoted to conceptual and theoretical investigations as well as experimental issues in quantum-mechanical time measurements. This unique monograph should attract physicists as well as philosophers of science working in the foundations of quantum physics.
Responding to Mechanical Antigravity
Millis, Marc G.; Thomas, Nicholas E.
2006-01-01
Based on the experiences of the NASA Breakthrough Propulsion Physics Project, suggestions are offered for constructively responding to proposals that purport breakthrough propulsion using mechanical devices. Because of the relatively large number of unsolicited submissions received (about 1 per workday) and because many of these involve similar concepts, this report is offered to help the would-be submitters make genuine progress as well as to help reviewers respond to such submissions. Devices that use oscillating masses or gyroscope falsely appear to create net thrust through differential friction or by misinterpreting torques as linear forces. To cover both the possibility of an errant claim and a genuine discovery, reviews should require that submitters meet minimal thresholds of proof before engaging in further correspondence; such as achieving sustained deflection of a level-platform pendulum in the case of mechanical thrusters.
Directory of Open Access Journals (Sweden)
Guangjian Ni
2014-01-01
Full Text Available The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM. Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.
Inflammatory mechanisms of endometritis.
Woodward, E M; Troedsson, M H T
2015-07-01
Transient post breeding endometritis is a normal physiological reaction in the mare, as it is believed that an inflammatory response is necessary for the effective removal of contaminating bacteria and excess spermatozoa introduced into the uterus. While most mares can clear endometritis within a reasonable amount of time, persistent endometritis caused by either bacteria or spermatozoa can threaten the success of a pregnancy. A subpopulation of mares is susceptible to persistent endometritis, and these mares are a concern in equine reproductive medicine. Research has identified several factors that contribute to susceptibility; however, the exact mechanisms of the progression of the disease are still being elucidated. Current research focuses on endometrial gene expression during endometritis in an attempt to understand the timing of specific inflammatory processes involved with the development of susceptibility to persistent endometritis. With an increased understanding of the mechanisms involved with the disease, current treatments can be improved upon, and new treatments can be developed to target affected pathways. PMID:25537084
Csanády, Etele
2013-01-01
Wood is one of the most valuable materials for mankind, and since our earliest days wood materials have been widely used. Today we have modern woodworking machine and tools; however, the raw wood materials available are continuously declining. Therefore we are forced to use this precious material more economically, reducing waste wherever possible. This new textbook on the “Mechanics of Wood Machining” combines the quantitative, mathematical analysis of the mechanisms of wood processing with practical recommendations and solutions. Bringing together materials from many sources, the book contains new theoretical and experimental approaches and offers a clear and systematic overview of the theory of wood cutting, thermal loading in wood-cutting tools, dynamic behaviour of tool and work piece, optimum choice of operational parameters and energy consumption, the wear process of the tools, and the general regularities of wood surface roughness. Diagrams are provided for the quick estimation of various process ...
Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf
2011-01-01
The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key de...
Statistical mechanics and fractals
Dobrushin, Roland Lvovich
1993-01-01
This book is composed of two texts, by R.L. Dobrushin and S. Kusuoka, each representing the content of a course of lectures given by the authors. They are pitched at graduate student level and are thus very accessible introductions to their respective subjects for students and non specialists. CONTENTS: R.L. Dobrushin: On the Way to the Mathematical Foundations of Statistical Mechanics.- S. Kusuoka: Diffusion Processes on Nested Fractals.
Conventional mechanical ventilation
Tobias Joseph
2010-01-01
The provision of mechanical ventilation for the support of infants and children with respiratory failure or insufficiency is one of the most common techniques that are performed in the Pediatric Intensive Care Unit (PICU). Despite its widespread application in the PICUs of the 21st century, before the 1930s, respiratory failure was uniformly fatal due to the lack of equipment and techniques for airway management and ventilatory support. The operating rooms of the 1950s and 1960s provided the ...
Generalised Business Mechanics
Peter Johnson
2007-01-01
In this paper an analogy is established between a generalised system of point masses described by classical mechanics, and a set of discrete economic entities within a generalized resource framework. If the economic system is subject to a generalised variational Principle of Economy, the counterpart to Hamiltonâ€™s Principle Action, the evolution of the system will be governed by a set of canonical equations that relate defined system measures of fortune and prosperity to changes in prices, a...
MECHANISMS OF PERCEPTUAL LEARNING
Lu, Zhong-Lin; Dosher, Barbara Anne
2009-01-01
What is learned in perceptual learning? How does perceptual learning change the perceptual system? We investigate these questions using a systems analysis of the perceptual system during the course of perceptual learning using psychophysical methods and models of the observer. Effects of perceptual learning on an observer’s performance are characterized by external noise tests within the framework of noisy observer models. We find evidence that two independent mechanisms, external noise exclu...
Semiclassical statistical mechanics
International Nuclear Information System (INIS)
On the basis of an approach devised by Miller, a formalism is developed which allows the nonperturbative incorporation of quantum effects into equilibrium classical statistical mechanics. The resulting expressions bear a close similarity to classical phase space integrals and, therefore, are easily molded into forms suitable for examining a wide variety of problems. As a demonstration of this, three such problems are briefly considered: the simple harmonic oscillator, the vibrational state distribution of HCl, and the density-independent radial distribution function of He4. A more detailed study is then made of two more general applications involving the statistical mechanics of nonanalytic potentials and of fluids. The former, which is a particularly difficult problem for perturbative schemes, is treated with only limited success by restricting phase space and by adding an effective potential. The problem of fluids, however, is readily found to yield to a semiclassical pairwise interaction approximation, which in turn permits any classical many-body model to be expressed in a convenient form. The remainder of the discussion concentrates on some ramifications of having a phase space version of quantum mechanics. To test the breadth of the formulation, the task of constructing quantal ensemble averages of phase space functions is undertaken, and in the process several limitations of the formalism are revealed. A rather different approach is also pursued. The concept of quantum mechanical ergodicity is examined through the use of numerically evaluated eigenstates of the Barbanis potential, and the existence of this quantal ergodicity - normally associated with classical phase space - is verified. 21 figures, 4 tables
Cohen, Paul R.
2015-07-01
Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.
Riskfactors and underlying mechanisms
Bockers, Estelle Simone
2015-01-01
Childhood interpersonal traumatizations increase the risk for revictimizations as well as for psychological disorders like the posttraumatic stress disorder (PTSD). Different variables and mechanisms underlying revictimization are discussed in current literature. However, empiri-cal data on revictimization is poor and inconsistant. Guilt and shame following traumatic events are considered as risk factors for the development and persistence of PTSD. PTSD is frequently associated with trauma-re...
Mart??nez Rico, Ricardo; Moreno, Bernardo
2014-01-01
We study voting mechanisms, which consist of two elements: a profile of sets of votes (this profile describes the votes that voters are allowed to cast) and a voting scheme (which explains how to aggregate those votes). To investigate how these two elements interact, we impose some properties on the sets of votes (i.e., regularity ) and on the voting scheme (i.e., candidate monotonicity, candidate anonymity, and weak neutrality ). We characterize the family of voting schemes that satisfy some...
What is semiquantum mechanics?
Bracken, A. J.
2006-01-01
Semiclassical approximations to quantum dynamics are almost as old as quantum mechanics itself. In the approach pioneered by Wigner, the evolution of his quasiprobability density function on phase space is expressed as an asymptotic series in increasing powers of Planck's constant, with the classical Liouvillean evolution as leading term. Successive semiclassical approximations to quantum dynamics are defined by successive terms in the series. We consider a complementary approach, which explo...
Graduate Quantum Mechanics Reform
Carr, L. D.; McKagan, S. B.
2008-01-01
We address four main areas in which graduate quantum mechanics education can be improved: course content, textbook, teaching methods, and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all these areas. In particular, we have modified the content of the course to reflect progress in the field in the last 50 years, used textbooks that include such content, incorporated a variety of teaching techniques based on physics educatio...
Fusco, Maria
2010-01-01
The Mechanical Copula is a solo-authored collection of short stories. Stripping bare the accord of culture and commodity, this sequence of stories tracks the slimy path of social mobility with serious playfulness and an eye for the absurd. Tales of Donald Sutherland fucking a doll, two men eating a clown and how the obsessive searching of bins can transform trash into meaning, this is a book about the porous relationship between the extramundane and the average.
Gunawardena, J. A.
1992-01-01
This cache mechanism is transparent but does not contain associative circuits. It does not rely on locality of reference of instructions or data. No redundant instructions or data are encached. Items in the cache are accessed without address arithmetic. A cache miss is detected by the simplest test; compare two bits. These features would result in faster access, higher hit rate, reduced chip area, and less power dissipation in comparison with associative systems of similar size.
MECHANISMS OF BACTERIAL POLYHOSTALITY
Directory of Open Access Journals (Sweden)
Markova Yu.A.
2007-12-01
Full Text Available In the review data about factors of pathogenicity of the bacteria, capable to amaze both animals, and a plant are collected. Such properties of microorganisms as adhesion, secretion of some enzymes, mobility, a phenomenon of cooperative sensitivity - play an essential role at defeat of different organisms. They are used for many universal offensive strategy overcoming protection of an organism, irrespective of its evolutionary origin. Studying of these mechanisms, will allow to provide new approaches to monitoring illnesses.
Indian Academy of Sciences (India)
S. R. Verma
2006-06-01
The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar corona. Recent observations show that Magnetic Carpet is a potential candidate for solar coronal heating.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
@@ Yang: In recent years, under the new international security environment, multilateralism has gradually played greater roles in various international and regional topics, especially in the settlement of regional security issues. Theoretically, regional multi-lateral security cooperation can increase the cost of destroying the status quo or invasion while increasing mutual confidence, alleviating feeling of security threat, decreasing or eliminating security predicament. This is caused by the limitations of the mechanism and the consideration of cost.
Burki, Nausherwan K; Lee, Lu-Yuan
2010-01-01
The mechanisms and pathways of the sensation of dyspnea are incompletely understood, but recent studies have provided some clarification. Studies of patients with cord transection or polio, induced spinal anesthesia, or induced respiratory muscle paralysis indicate that activation of the respiratory muscles is not essential for the perception of dyspnea. Similarly, reflex chemostimulation by CO2 causes dyspnea, even in the presence of respiratory muscle paralysis or cord transection, indicati...
Probability in quantum mechanics
Directory of Open Access Journals (Sweden)
J. G. Gilson
1982-01-01
Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.
Acoustic Mechanical Feedthroughs
Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea
2013-01-01
Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be
International Nuclear Information System (INIS)
Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam
Time Asymmetric Quantum Mechanics
Directory of Open Access Journals (Sweden)
Arno R. Bohm
2011-09-01
Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
Nishimura, Hirokazu
1996-06-01
Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.
Mechanical Properties of Materials
Pelleg, Joshua
2013-01-01
The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years. This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a differ...
Directory of Open Access Journals (Sweden)
C.U. Atuanya
2014-01-01
Full Text Available This work presents a systematic approach to evaluate the physio-mechanical properties of bean pod ash particles (BPAp reinforced recycled polyethylene (RLDPE polymer based composites. The bean pod ash particles of 75 μm with a weight percentage of 0, 5, 10, 15, 20, 25, 30 (wt% and recycled polyethylene (RLDPE were prepared. The surface morphology, physical and the mechanical properties of the composites were examined. The results showed that the fair distribution of the bean pod ash particles in the microstructure of the polymer composites is the major factor responsible for the improvement in the mechanical properties. The bean pod ash particles added to the RLDPE polymer increased the percentage of water absorption and improved its rigidity, modulus and hardness values of the composites. The tensile and flexural strengths increased to a maximum of 20.1 and 39.0 N/mm2 at 20 wt% BPAp respectively. Based on the results obtained in this study, it is recommended that the composites can be used in the production of indoor and outdoor applications.
Soil mechanics: breaking ground.
Einav, Itai
2007-12-15
In soil mechanics, student's models are classified as simple models that teach us unexplained elements of behaviour; an example is the Cam clay constitutive models of critical state soil mechanics (CSSM). 'Engineer's models' are models that elaborate the theory to fit more behavioural trends; this is usually done by adding fitting parameters to the student's models. Can currently unexplained behavioural trends of soil be explained without adding fitting parameters to CSSM models, by developing alternative student's models based on modern theories?Here I apply an alternative theory to CSSM, called 'breakage mechanics', and develop a simple student's model for sand. Its unique and distinctive feature is the use of an energy balance equation that connects grain size reduction to consumption of energy, which enables us to predict how grain size distribution (gsd) evolves-an unprecedented capability in constitutive modelling. With only four parameters, the model is physically clarifying what CSSM cannot for sand: the dependency of yielding and critical state on the initial gsd and void ratio. PMID:17855225
Fracture Mechanics of Concrete
DEFF Research Database (Denmark)
Ulfkjær, Jens Peder
Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... and the goveming equations are explicit and simple. These properties of the model make it a very powerful tool, which is applicable for the designing engineer. The method is also extended to reinforced concrete, where the results look very promising. The large experimental investigation on high-strength concrete...
Hollowood, Timothy J.
2016-07-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists' laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr's quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.
Design on hopping locomotion mechanism
Institute of Scientific and Technical Information of China (English)
LU Yong-kui; WU Yue-hua; YANG Jie; Hisayuki AOYAMA
2005-01-01
A new type of locomotion mechanism is introduced in this paper. With vibrating motors used in controling the movement of the hopping locomotion mechanism, the simple hopping locomotion mechanism had two motors, when the current went through the vertical motor, the vertical motor would vibrate to cause the mechanism to go forward, and when the current went through the horizontal motor, the mechanism will go around itself. A spring was added to the mechanism to change the natural frequency of the mechanism, when the frequency of the motor was equal to the natural frequency of the mechanism, the mechanism would hop resonantly. With the resonant hopping, the load of the mechanism was greatly enlarged, and some sensors could be added to the mechanism. Optical sensors were used to detect the infrared source, the current that went through the sensors related to the distance between the infrared light. Three optical sensors was put on the left, right and the front the mechanism, when the mechanism detect the special infrared source, it would turn itself to the light, and go forward to the light. The experiments of the mechanism shown that the mechanism could work well on different surfaces freely, and the resonant hopping locomotion mechanism with infrared sensors could move to the special light by automatic regulation. Experimental results and theoretical studies demonstrate that the innovative design for hopping locomotion mechanism is superior.
Cooper, Ryan C.
This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate
On Foundations of Newtonian Mechanics
Cheremensky, Al
2010-01-01
Being based on V. Konoplev's axiomatic approach to continuum mechanics, the paper broadens its frontiers in order to bring together continuum mechanics with classical mechanics in a new theory of mechanical systems. There are derived motion equations of `abstract' mechanical systems specified for mass-points, multibody systems and continua: Newton-Euler equations, Lagrange equations of II kind and Navier-Stokes ones. Quasi-linear constitutive equations are introduced in conformity with V. Konoplev's definition of stress and strain (rate) matrices.
[Mechanism of Cryptococcus Meningoencephalitis].
Miyazato, Akiko
2016-01-01
Cryptococcus neoformans and Cryptococcus gattii are fungal pathogens that cause diseases in humans. Cryptococcal species mainly enter the body by inhalation and in most cases are eliminated by host defense mechanisms. Some cases, however, progress to pneumonia and subsequent dissemination of the infection to the central nervous system (CNS), leading to meningoencephalitis. Cryptococcus can cross the blood-brain barrier transcellularly, paracellularly and through infected phagocytes (the Trojan horse mechanism). The reason for the tropism of Cryptococcus to the CNS could be partially explained by the abundance of inositol in the brain, which causes the hyaluronic acid in fungal cells to bind to host CD44 receptors. There are differences in the clinical characteristics of C. neoformans and C. gattii. HIV infection is the most common risk factor for cryptococcosis due to C. neoformans, whereas C. gattii infection with CNS involvement is frequently found in otherwise healthy individuals exposed to plant propagules found in tropical and subtropical regions. As the virulence traits of C. neoformans contributing to CNS disease, high macrophage uptake and laccase activity are associated with the fungal burden and the rate of clearance of the infection from the brain. Recent reports suggested that the C. gattii VGII strain suppresses host immune responses in the lung and causes more lung infections than CNS diseases. Furthermore, the anti-GM-CSF autoantibodies are a risk factor for CNS infection by the C. gattii VGI strain. To understand the mechanism by which Cryptococcus causes CNS disease, it is important to consider the specific characteristics of the species and the molecular types. PMID:26936349
Mega Key Authentication Mechanism
Kloss, Guy
2016-01-01
For secure communication it is not just sufficient to use strong cryptography with good and strong keys, but to actually have the assurance, that the keys in use for it are authentic and from the contact one is expecting to communicate with. Without that, it is possible to be subject to impersonation or man-in-the-middle (MitM) attacks. Mega meets this problem by providing a hierarchical authentication mechanism for contacts and their keys. To avoid any hassle when using multiple types of key...
Quantum mechanical Carnot engine
Bender, C M; Meister, B K
2000-01-01
A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.
Exactly Solvable Quantum Mechanics
Sasaki, Ryu
2014-01-01
A comprehensive review of exactly solvable quantum mechanics is presented with the emphasis of the recently discovered multi-indexed orthogonal polynomials. The main subjects to be discussed are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modifications), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, coherent states, various deformation schemes (multiple Darboux transformations) and the infinite families of multi-indexed orthogonal polynomials, the exceptional orthogonal polynomials, and deformed exactly solvable scattering problems.
Supersymmetric Quantum Mechanics
C, David J Fernandez
2009-01-01
Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulas concerning SUSY QM of first and second order for one-dimensional arbitrary systems, and we will illustrate the method through the trigonometric Poschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.
Introduction to continuum mechanics
Rubin, David; Lai, W Michael
1994-01-01
Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive e
Mechanics of elastic composites
Cristescu, Nicolaie Dan; Soós, Eugen
2003-01-01
This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book''s many notable features is the inclusion of more than 400 problems, many of which are solved at the end of the book. Mechanics of Elastic Composites is an outstanding textbook for graduate-level course work and a valuable reference for engineers and researchers. Developed over many years by leading
Mechanical engineering principles
Bird, John
2014-01-01
A student-friendly introduction to core engineering topicsThis book introduces mechanical principles and technology through examples and applications, enabling students to develop a sound understanding of both engineering principles and their use in practice. These theoretical concepts are supported by 400 fully worked problems, 700 further problems with answers, and 300 multiple-choice questions, all of which add up to give the reader a firm grounding on each topic.The new edition is up to date with the latest BTEC National specifications and can also be used on undergraduate courses in mecha
Statistical mechanics of learning
Engel, Andreas
2001-01-01
The effort to build machines that are able to learn and undertake tasks such as datamining, image processing and pattern recognition has led to the development of artificial neural networks in which learning from examples may be described and understood. The contribution to this subject made over the past decade by researchers applying the techniques of statistical mechanics is the subject of this book. The authors provide a coherent account of various important concepts and techniques that are currently only found scattered in papers, supplement this with background material in mathematics and physics, and include many examples and exercises.
International Nuclear Information System (INIS)
This data package provides a summary of available laboratory and in situ stress field test results from site characterization investigations by the Basalt Waste Isolation Project Modeling and Analysis Group. The objective is to furnish rock mechanics information for use by Rockwell Hanford Operations and their subcontractors in performance assessment and engineering studies. This release includes Reference Repository Location (RRL) site specific laboratory and field test data from boreholes RRL-2, RRL-6, and RRL-14 as well as previous Hanford wide data available as of April, 1985. 25 refs., 9 figs., 16 tabs
Yamaguchi, Hiroshi
2008-01-01
This book is intended to serve as a unique and comprehensive textbook for scientists and engineers as well as advanced students in thermo-fluid courses. It provides an intensive monograph essential for understanding dynamics of ideal fluid, Newtonian fluid, non-Newtonian fluid and magnetic fluid. These distinct, yet intertwined subjects are addressed in an integrated manner. It starts with coherent treatment of fundamental continuum mechanics, with an emphasis on the intrinsic angular momentum, by which the concepts of ferrohydrodynamics are progressively built up, and serve as a foundation fo
Mechanics of Generalized Continua
Altenbach, Holm; Erofeev, Vladimir
2011-01-01
This collection on auMechanics of Generalized Continua - from Micromechanical Basics to Engineering Applications" brings together leading scientists in this field from France, Russian Federation, and Germany. The attention in this publication is be focussed on the most recent research items, i.e., - new models, - application of well-known models to new problems, - micro-macro aspects, - computational effort, - possibilities to identify the constitutive equations, and - old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.
Incretin secretion: direct mechanisms
DEFF Research Database (Denmark)
Balk-Møller, Emilie; Holst, Jens Juul; Kuhre, Rune Ehrenreich
2014-01-01
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are secreted from gastro-intestinal K- and L-cells, respectively, and play an important role in post-prandial blood glucose regulation. They do this by direct stimulation of the pancreatic β...... enzyme responsible for incretin degradation (dipeptidyl peptidase-4) is inhibited (drugs are already on the market) while the secretion of endogenous GLP-1 secretion is stimulated at the same time may prove particularly rewarding. In this section we review current knowledge on the mechanisms for direct...
Fracture mechanics safety approaches
Energy Technology Data Exchange (ETDEWEB)
Roos, E.; Schuler, X.; Eisele, U. [Materials Testing Inst. (MPA), Univ. of Stuttgart (Germany)
2004-07-01
Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)
Mechanics of tissue compaction.
Turlier, Hervé; Maître, Jean-Léon
2015-12-01
During embryonic development, tissues deform by a succession and combination of morphogenetic processes. Tissue compaction is the morphogenetic process by which a tissue adopts a tighter structure. Recent studies characterized the respective roles of cells' adhesive and contractile properties in tissue compaction. In this review, we formalize the mechanical and molecular principles of tissue compaction and we analyze through the prism of this framework several morphogenetic events: the compaction of the early mouse embryo, the formation of the fly retina, the segmentation of somites and the separation of germ layers during gastrulation.
Nanoantenna using mechanical resonance
Chang Hwa Lee,
2010-11-01
Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.
Directory of Open Access Journals (Sweden)
Chen Rou-Xi
2013-01-01
Full Text Available Fabrication of crimped fibers has been caught much attention recently due to remarkable improvement surface-to-volume ratio. The precise mechanism of the fiber crimp is, however, rare and preliminary. This paper finds that pulsation of fibers is the key factor for fiber crimp, and its configuration (wave formation corresponds to its nature frequency after solidification. Crimping performance can be improved by temperature control of the uncrimped fibers. In the paper, polylactide/ dimethylfomamide solution is fabricated into crimped nanofibers by the bubble electrospinning, an approximate period- amplitude relationship of the wave formation is obtained.
Mechanics of artificial microcapsules
Energy Technology Data Exchange (ETDEWEB)
Fery, A; Dubreuil, F; Moehwald, H [Max-Planck Institute of Colloids and Interfaces, D 14424 Potsdam (Germany)
2004-02-01
In recent years, an increasing number of microcapsule systems have been realized and have found applications in various fields of research and technology. Amongst others, polyelectrolyte multilayer capsules (PMCs) offer a great variety of materials and superior control over the wall thicknesses. We present here a review on the different techniques that are available for characterizing the mechanical properties of PMCs. We compare results that were obtained using these techniques on the same system, namely PMCs made from polyallylamine and polystyrenesulfonate multilayers and discuss perspectives of the field.
Meister, Jeffrey P.
1987-01-01
The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.
Mechanisms of auxin signaling.
Lavy, Meirav; Estelle, Mark
2016-09-15
The plant hormone auxin triggers complex growth and developmental processes. Its underlying molecular mechanism of action facilitates rapid switching between transcriptional repression and gene activation through the auxin-dependent degradation of transcriptional repressors. The nuclear auxin signaling pathway consists of a small number of core components. However, in most plants each component is represented by a large gene family. The modular construction of the pathway can thus produce diverse transcriptional outputs depending on the cellular and environmental context. Here, and in the accompanying poster, we outline the current model for TIR1/AFB-dependent auxin signaling with an emphasis on recent studies. PMID:27624827
Biochemical mechanisms underlying atherogenesis
Directory of Open Access Journals (Sweden)
Dr.P.V.L.N. Srinivasa Rao
2012-02-01
Full Text Available Atherosclerosis remains one of the major causes of death and premature disability in developed countries. Though atherosclerosis was formerly considered a bland lipid storage disease, substantial advances in basic and experimental sciences have illuminated the role of endothelium, inflammation and immune mechanisms in its pathogenesis. Current concept of atherosclerosis is that of a dynamic and progressive disease arising from in- jury to endothelium, also known as endothelial dysfunction and an inflammatory response to that injury. The lesions of atherosclerosis occur principally in large and medium sized arteries. Atherosclerosis affects various regions of the circulation preferentially and can lead to ischemia of heart, brain or extremities resulting in in- farction.This produces distinct clinical manifestations depending on the vessel involved. Several predisposing factors to cardiovascular diseases such as diabetes mellitus, hypertension, obesity, infections act as triggers to the devel- opment of atherosclerosis by causing endothelial dysfunction and/or promoting inflammatory response. The evolution of pathogenetic mechanisms has passed through various directions such as oxidative stress, inflam- mation and immune responses. It is now known that all these are not acting independently but are interrelated and getting unified in the current concept of atherogenesis. The following discussion aims at providing an in- sight into these developments which can help in a better comprehension of the disease and management of its clinical complications
Mechanisms of cadmium carcinogenesis
International Nuclear Information System (INIS)
Cadmium (Cd), a heavy metal of considerable occupational and environmental concern, has been classified as a human carcinogen by the International Agency for Research on Cancer (IARC). The carcinogenic potential of Cd as well as the mechanisms underlying carcinogenesis following exposure to Cd has been studied using in vitro cell culture and in vivo animal models. Exposure of cells to Cd results in their transformation. Administration of Cd in animals results in tumors of multiple organs/tissues. Also, a causal relationship has been noticed between exposure to Cd and the incidence of lung cancer in human. It has been demonstrated that Cd induces cancer by multiple mechanisms and the most important among them are aberrant gene expression, inhibition of DNA damage repair, induction of oxidative stress, and inhibition of apoptosis. The available evidence indicates that, perhaps, oxidative stress plays a central role in Cd carcinogenesis because of its involvement in Cd-induced aberrant gene expression, inhibition of DNA damage repair, and apoptosis.
Variano, Evan
2012-11-01
One impediment to student learning in introductory fluid mechanics courses is that the fundamental laws of physics can become lost in the ``noise'' of dozens of semi-empirical equations describing special cases. This can be exacerbated by trends in textbooks and other teaching media. This talk will explore a minimalist approach, whereby the entire content of introductory fluids is distilled to a single 1-page pamphlet, designed to emphasize the governing equations and their near-universal applicability. We are particularly interested in hearing feedback from the audience on ways to further distill the content while keeping it accessible and useful. To further emphasize the difference between the fundamental laws and the many specific cases, we have begun assembling a complementary resource: a field guide to fluid phenomena, which mixes the approach of Van Dyke's book with a standard field guide. This is designed to emphasize that there is a ``zoology'' of fluid phenomena, to which the same small set of fundamental laws has been applied repeatedly. These materials may be useful in helping AP Physics teachers cover fluid mechanics, which is an under-utilized opportunity to introduce young scientists to our field of study.
International Nuclear Information System (INIS)
A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)
Mechanical cornpicker hand injuries
Directory of Open Access Journals (Sweden)
Momčilović Dragan
2005-01-01
Full Text Available Mechanical cornpicker hand injuries are not frequent in comparison to general hand trauma, but they have a specific mechanism of occurrence and are very severe. This investigation included 221 hand injuries. The sex distribution shows a general male dominance (85.25% in their active age (84.44%. These are, seasonal injuries mostly occurring in October (75.11%. By type of injuries, mutilating crush injuries are most frequent (64.25%. After completing the treatment, in most cases the functional result were estimated as bad (50.68%. Data concerning education and training for operating agricultural machines (96.38% - patients without training and carrying out safety measures (63.35% of injured patients did not apply any protection measures are devastating. The number of these injuries, as well as consequent permanent disabilities, may be considerably reduced by preventive measures, including public health services and media. Use of contemporary agricultural machinery, as well as obligatory training for operating these machines and application of protective measures, may also reduce the incidence of hand injuries during corn picking.
Hollowood, Timothy J
2015-01-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950's development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrodinger cat states are the norm rather than curiosities generat...
Basdevant, Jean-Louis
2007-01-01
Beautifully illustrated and engagingly written, Lectures on Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant's style is clear and stimulating, in the manner of a brisk classroom lecture that students can follow with ease and enjoyment. Here is a sample of the book's style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be 'E = mc2'. Nevertheless, the formula 'E=hV' which was written in the same year 1905 by the same Albert Einstein, and which started quantum theory, concerns their daily life considerably more. In fact, of the three watershed years for physics toward the beginning of the 20th century - 1905: the Special Relativity of Einstein, Lorentz and Poincaré; 1915: the General Relativity of Einstein, with its extraordinary reflections on gravitation, space and time; and 1925: the full development of Quantum Mechanics - it is surely the last which has the mos...
International Nuclear Information System (INIS)
The French capacity mechanism has been design to ensure security of supply in the context of the energy transition. This energy transition challenges the electricity market design with several features: peak load growth, the development of renewables, demand response,... To ensure security of supply in this context, a capacity mechanism is being implemented in France. It is a market wide capacity obligation on electricity suppliers, based on market principles. Suppliers are responsible for forecasting their obligation, which corresponds to their contribution to winter peak load, and must procure enough capacity certificates to meet their obligations. Capacity certificates are granted to capacities through a certification process, which assesses their contribution to security of supply on the basis of availability commitments. This certification process is technology neutral and performance based, associated with controls and penalties in case of non compliance. Demand Side is fully integrated in the market, either through the reduction of suppliers' capacity obligation or direct participation after certification. In addition to the expected benefits in terms of security of supply, the French capacity market will foster the development of demand response. The participation of foreign capacities will require adaptations which are scheduled in a road-map, and could pave the way for further European integration of energy policies. (authors)
Peripheral Auditory Mechanisms
Hall, J; Hubbard, A; Neely, S; Tubis, A
1986-01-01
How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...
Mechanisms of Plasma Therapeutics
Graves, David
2015-09-01
In this talk, I address research directed towards biomedical applications of atmospheric pressure plasma such as sterilization, surgery, wound healing and anti-cancer therapy. The field has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that plasmas readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. It is postulated that cold atmospheric plasma (CAP) can trigger a therapeutic shielding response in tissue in part by creating a time- and space-localized, burst-like form of oxy-nitrosative stress on near-surface exposed cells through the flux of plasma-generated RONS. RONS-exposed surface layers of cells communicate to the deeper levels of tissue via a form of the ``bystander effect,'' similar to responses to other forms of cell stress. In this proposed model of CAP therapeutics, the plasma stimulates a cellular survival mechanism through which aerobic organisms shield themselves from infection and other challenges.
Principles of Quantum Mechanics
Landé, Alfred
2013-10-01
ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
1st National Mechanics Congress
Nieuwstadt, F
1990-01-01
The Department of Applied Mechanics of the Royal Institution of Engineers in the Netherlands (Koninklijk Instituut van Ingenieurs) organised on April 2-4, 1990 the first National Applied Mechanics Congress about the theme: "Integration of Theory and Applications in Applied Mechanics" The idea behind this initiative was to bring together the Applied Mechanics communities in The Netherlands and Belgium and to create an environment in which new developments in the field could be discussed and in which connections to other disciplines could be established. Among an extensive list of possible subjects the following were selected as congress topics: - non-linear material behaviour, - chaos, - mechatronics, - liquid-solid interactions, - mathematics and applied mechanics, - integration of Applied Mechanics and other disciplines. Applied Mechanics comprises both solid mechanics and fluid mechanics. These can be subdivided further into: rheology, plasticity, theory of plates and shells, theory of elasticity, multibody...
Energy Technology Data Exchange (ETDEWEB)
Laouafa, F.; Kazmierczak, J.B. [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique ALATA, 60 - Verneuil en Halatte (France); Armand, G. [Agence Nationale pour la Gestion des Dechets Radioactifs, Lab. de Souterrain de Meuse/Haute-Marne, 55 - Bure (France); Vaunat, J. [Catalonia UPC- Technical Univ., Barcelona (Spain); Jobmann, M.; Polster, M. [DBETEC- DBE Technology GmbH, Peine (Germany); Su, K.; Lebon, P.; Plas, F.; Armand, G.; Abou-Chakra Guery, A.; Cormery, F.; Shao, J.F.; Kondo, D. [ANDRA - Agence Nationale pour la Gestion des Dechets Radioactifs, 92 - Chatenay Malabry (France); Souley, M. [Institut National de l' Environnement Industriel et des Risques (INERIS), 54 - Nancy (France); Coll, C.; Charlier, R.; Collin, F.; Gerard, P. [Liege Univ., Dept. ArGEnCo (Belgium); Xiang Ling, Li [ESV EURIDICE, SCK.CEN, Belgian Nuclear Research Centre, Mol (Belgium); Collin, F. [Liege Univ., Charge de Recherches FNRS (Belgium); Pellet, F.L.; Fabre, G. [University Joseph Fourier, Laboratory 3S-R, 38 - Grenoble (France); Garcia-Sineriz, J.L.; Rey, M. [AITEMIN - Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid (Spain); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Castellanos, E.; Romero, E.; Lloret, A.; Gens, A. [Catalunya Univ. Politecnica, UPC (Spain); Villar, M.V. [CIEMAT - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Chambon, R. [Laboratoire 3S, UJF-INPG-CNRS, 38 - Grenoble (France); Czaikowski, O.; Lux, K.H. [Clausthal Univ. of Technology, Professorship for Waste Disposal and Geomechanics, Clausthal-Zellerfeld (Germany); Van Geet, M.; Bastiaens, W.; Volckaert, G.; Weetjens, E.; Sillen, X. [SCK-CEN, Waste and Disposal dept., Mol (Belgium); ONDRAF/NIRAS, Brussel (Belgium); Imbert, Ch. [CEA Saclay, Dept. de Physico-Chimie (DPC/SCCME/LECBA), 91 - Gif sur Yvette (France)] [and others
2007-07-01
This session gathers 13 articles dealing with: three-dimensional and time stepping modelling of the whole Meuse/Haute-Marne ANDRA URL (F. Laouafa, J.B. Kazmierczak, G. Armand, J. Vaunat, M. Jobmann, M. Polster); a constitutive model for a deep argillaceous rock using Hoek-Brown criteria (K. Su, C. Chavant, M. Souley); the long term behaviour of the Boom clay: influence of viscosity on the pore pressure distribution (C. Coll, R. Charlier, X.L. Li, F. Collin); the microstructural changes induced by viscoplastic deformations in argillaceous rocks (F.L. Pellet, G. Fabre, K. Su, P. Lebon); the engineered barrier experiment at Mont Terri rock laboratory (J.L. Garcia-Sineriz, M. Rey, J.C. Mayor); the chemical influence on the Hydro-Mechanical behaviour of high-density FEBEX bentonite (E. Castellanos, M.V. Villar, E. Romero, A. Lloret, A. Gens); the influence of water exchanges on the gallery convergence (P. Gerard, R. Charlier, R. Chambon, F. Collin); a new method for ageing resistant storage of argillaceous rock samples to achieve reproducible experimental results even after long intermediate storage times (O. Czaikowski, K.H. Lux); the installation and evaluation of a large-scale in-situ shaft seal experiment in Boom clay the RESEAL project M. Van Geet, W. Bastiaens, G. Volckaert, E. Weetjens, X. Sillen, A. Gens, M.V. Villar, Ch. Imbert, M. Filippi, F. Plas); the hydro-Mechanical response of the Callovo-Oxfordian mud-stone around a deep vertical drift (J. Vaunat, B. Garitte, A. Gens, K. Su, G. Armand); the sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite (J.F. Harrington, D.J. Birchall, P. Sellin); the comparison of the poro-elastic behavior of Meuse/Haute Marne and Tournemire argillites: effect of loading and saturation states (E. Bemer, A. Noiret, F. Homand, A. Rejeb); and the multi-scale modelling of the argillites mechanical behaviour (A. Abou-Chakra Guery, F. Cormery, K. Su, J.F. Shao, D. Kondo)
Martel, S. J.
2015-12-01
Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between
International Nuclear Information System (INIS)
This session gathers 13 articles dealing with: three-dimensional and time stepping modelling of the whole Meuse/Haute-Marne ANDRA URL (F. Laouafa, J.B. Kazmierczak, G. Armand, J. Vaunat, M. Jobmann, M. Polster); a constitutive model for a deep argillaceous rock using Hoek-Brown criteria (K. Su, C. Chavant, M. Souley); the long term behaviour of the Boom clay: influence of viscosity on the pore pressure distribution (C. Coll, R. Charlier, X.L. Li, F. Collin); the microstructural changes induced by viscoplastic deformations in argillaceous rocks (F.L. Pellet, G. Fabre, K. Su, P. Lebon); the engineered barrier experiment at Mont Terri rock laboratory (J.L. Garcia-Sineriz, M. Rey, J.C. Mayor); the chemical influence on the Hydro-Mechanical behaviour of high-density FEBEX bentonite (E. Castellanos, M.V. Villar, E. Romero, A. Lloret, A. Gens); the influence of water exchanges on the gallery convergence (P. Gerard, R. Charlier, R. Chambon, F. Collin); a new method for ageing resistant storage of argillaceous rock samples to achieve reproducible experimental results even after long intermediate storage times (O. Czaikowski, K.H. Lux); the installation and evaluation of a large-scale in-situ shaft seal experiment in Boom clay the RESEAL project M. Van Geet, W. Bastiaens, G. Volckaert, E. Weetjens, X. Sillen, A. Gens, M.V. Villar, Ch. Imbert, M. Filippi, F. Plas); the hydro-Mechanical response of the Callovo-Oxfordian mud-stone around a deep vertical drift (J. Vaunat, B. Garitte, A. Gens, K. Su, G. Armand); the sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite (J.F. Harrington, D.J. Birchall, P. Sellin); the comparison of the poro-elastic behavior of Meuse/Haute Marne and Tournemire argillites: effect of loading and saturation states (E. Bemer, A. Noiret, F. Homand, A. Rejeb); and the multi-scale modelling of the argillites mechanical behaviour (A. Abou-Chakra Guery, F. Cormery, K. Su, J.F. Shao, D. Kondo)
Principles of discrete time mechanics
Jaroszkiewicz, George
2014-01-01
Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.
Energy Technology Data Exchange (ETDEWEB)
Gur' ev, D.K.; Kirilin, V.S.; Mosunov, Yu.Ia.; Tret' iakov, G.I.
1980-12-25
A description is given of a mechanized support section which includes a base, a roof, a hydraulic strut, a border, which consists of an upper panel and a lower panel hinged to it at one end, a support connected to the beam which is connected to the roof by its face and back ends, and a connecting rod that is connected by one end to the beam bracket. In order to increase the height of the area for erecting the flexible cover and to increase the stability, the connector of the beam's face end is built in the form of a telescopic rod; the upper panel and the connecting rod are interconnected by a hydraulic cylinder, while the second end of the connecting rod is connected to the lower panel whose free end is mounted to allow for interacting with the flexible covering; the beam is anchored to the support, which is built to allow for extension.
Ivanov, E; Pashnev, A; Townsend, P K; Ivanov, Evgeny; Mezincescu, Luca; Pashnev, Anatoly; Townsend, Paul K.
2003-01-01
The standard quantum states of n complex Grassmann variables with a free-particle Lagrangian transform as a spinor of SO(2n). However, the same `free-fermion' model has a non-linearly realized SU(n|1) symmetry; it can be viewed as the mechanics of a `particle' on the Grassmann-odd coset space SU(n|1)/U(n). We implement a quantization of this model for which the states with non-zero norm transform as a representation of SU(n|1), the representation depending on the U(1) charge of the wave-function. For a natural charge assignment, the n=2 wave-function can be interpreted as a BRST superfield.
Probabilistic fracture mechanics
International Nuclear Information System (INIS)
It has been attempted to present the elements of probabilistic fracture mechanics in a self-contained way. First, for brittle fracture, damage theories are discussed which allow for the effects of both size and local strength of the structure on the probability of fracture. Second, combined crack and damage theories are presented. They provide insight into macro-crack formation and take into account the effects of crack orientation and multiaxial states of stress. For fatigue, both the two-phase theory of damage and crack extension as well as the cumulative theory (of damage or of crack extension) are presented. They give estimates for the lifetime of a structure under random load. The effect of random material properties may be included. Finally, an assessment of the probability of failure of reactor pressure vessels is discussed. There, brittle fracture and fatigue are taken into account and both fracture toughness and crack size are considered to be random quantities. (Auth.)
DEFF Research Database (Denmark)
Allin, Kristine H.; Nielsen, Trine; Pedersen, Oluf.
2015-01-01
Perturbations of the composition and function of the gut microbiota have been associated with metabolic disorders including obesity, insulin resistance and type 2 diabetes. Studies on mice have demonstrated several underlying mechanisms including host signalling through bacterial...... the intestinal content resulting in systemic immune responses, low-grade inflammation and altered signalling pathways influencing lipid and glucose metabolism. While mechanistic studies on mice collectively support a causal role of the gut microbiota in metabolic diseases, the majority of studies in humans...... are correlative of nature and thus hinder causal inferences. Importantly, several factors known to influence the risk of type 2 diabetes, e.g. diet and age, have also been linked to alterations in the gut microbiota complicating the interpretation of correlative studies. However, based upon the available evidence...
Banichuk, Nikolay; Neittaanmäki, Pekka; Saksa, Tytti; Tuovinen, Tero
2014-01-01
This book deals with theoretical aspects of modelling the mechanical behaviour of manufacturing, processing, transportation or other systems in which the processed or supporting material is travelling through the system. Examples of such applications include paper making, transmission cables, band saws, printing presses, manufacturing of plastic films and sheets, and extrusion of aluminium foil, textiles and other materials. The work focuses on out-of-plane dynamics and stability analysis for isotropic and orthotropic travelling elastic and viscoelastic materials, with and without fluid-structure interaction, using analytical and semi-analytical approaches. Also topics such as fracturing and fatigue are discussed in the context of moving materials. The last part of the book deals with optimization problems involving physical constraints arising from the stability and fatigue analyses, including uncertainties in the parameters. The book is intended for researchers and specialists in the field, providin...
Submunition Dispensing Mechanisms .
Directory of Open Access Journals (Sweden)
S.L. Kholi
1997-10-01
Full Text Available The effectiveness of a weapon system is enhanced manifold when it is incorporated with submunitions instead of being a unitary one. A large unitary warhead produces effects that are too concentrated and localised for many target types, resulting in a very high probability of either causing no damage or an over-kill. The submunition warhead incorporating a single-stage ejection process has the drawbacks of lesser area coverage and non-uniform distribution of submunitions. To overcome the above drawbacks, dispensing mechanisms with multistage ejection of submunitions are being employed worldwide by the warhead designers. Extensive work has been carried out by the authors to achieve wide area coverage by using multistage ejection instead of single-stage ejection.
Mechanisms of postoperative pain
Institute of Scientific and Technical Information of China (English)
YUE Yun
2007-01-01
@@ The practice of modern anaesthesiology has extended into perioperative medicine. Due to their expertise in analgesic drug pharmacology and peripheral nerve blocking, anaesthesiologists have pioneered in the management of acute postoperative pain. Effective postoperative analgesia reduces the incidence of postoperative chronic pain, improves the functioning of organs following surgery and shortens the hospital stay.1,2 Although a variety of analgesic techniques and preventative approaches are at the disposal of modem aneasthesiologists, including patient controlled epidural analgesia (PCEA), patient controlled intravenous analgesia, multimodal analgesia and pre-empty analgesia.Despite this array of strategies, these predominantly opioid based techniques are still limited by side-effects such as vomiting, nausea, itching and urinary retention.To optimize further the management of acute postoperative pain, basic mechanisms of postoperative pain must be explored and new treatments must continue to be developed.
Mechanisms of Phosphine Toxicity
Directory of Open Access Journals (Sweden)
Nisa S. Nath
2011-01-01
Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.
What is semiquantum mechanics?
Bracken, A J
2006-01-01
Semiclassical approximations to quantum dynamics are almost as old as quantum mechanics itself. In the approach pioneered by Wigner, the evolution of his quasiprobability density function on phase space is expressed as an asymptotic series in increasing powers of Planck's constant, with the classical Liouvillean evolution as leading term. Successive semiclassical approximations to quantum dynamics are defined by successive terms in the series. We consider a complementary approach, which explores the quantum-clssical interface from the other direction. Classical dynamics is formulated in Hilbert space, with the Groenewold quasidensity operator as the image of the Liouville density on phase space. The evolution of the Groenewold operator is then expressed as an asymptotic series in increasing powers of Planck's constant. Successive semiquantum approximations to classical dynamics are defined by successive terms in this series, with the familiar quantum evolution as leading term.
Martensitic nucleation mechanism
Institute of Scientific and Technical Information of China (English)
陈奇志; 桑灿; 吴杏芳; 柯俊
1997-01-01
A sort of special dislocation configuration was deformation-induced in an Fe-Ni-V-C alloy by in-situ elongation tests of TEM. The cooling in-situ observations, as well as the SADPs from the region of the special dislocation configurations, proved that they are martensitic nuclei. In martensitic transformation, a nucleus changed into a small martensitic sub-plate, and a group of parallel sub-plates that formed from a group of parallel nuclei made up a big martensitic plate Martensitic transformation involved opposite shear between adjacent martensitic nuclei. By using the reduced-cell method, the crystallographic structure of observed martensitic nuclei was indexed as a face-centered orthogonal (FCO) lattice, which was explained by the nucleation mechanism proposed by the present authors. The crystallographic analysis confirmed that the defect faulting involved in martensitic nucleation took place among three close pakked planes, instead of between two adjacent planes as an ordinary stacking fault.
International Nuclear Information System (INIS)
Studies which promote the use of nuclear energy for peaceful projects in engineering are sponsored by the Atomic Energy Commission under the Plowshare program. Specific projects being considered include the construction of harbors, canals, and dams. Of these projects, perhaps the most difficult to accomplish will be the latter. This paper which is in two parts considers the problems which are associated with the construction of slide dams with nuclear explosives. It examines first the characteristics of conventional earth and rock-fill dams which are based upon proven techniques developed after many years of experience. The characteristics of natural landslide dams are also briefly considered to identify potential problems that must be overcome by slide dam construction techniques. Second, the mechanics of slide dams as determined from small-scale laboratory studies are presented. It is concluded that slide dams can be constructed and that small-scale field tests and additional laboratory studies are justified. (author)
Dolev, S; Kolenda, N
2005-01-01
For more than a century, quantum mechanics has served as a very powerful theory that has expanded physics and technology far beyond their classical limits, yet it has also produced some of the most difficult paradoxes known to the human mind. This book represents the combined efforts of sixteen of today's most eminent theoretical physicists to lay out future directions for quantum physics. The authors include Yakir Aharonov, Anton Zeilinger; the Nobel laureates Anthony Leggett and Geradus 't Hooft; Basil Hiley, Lee Smolin and Henry Stapp. Following a foreword by Roger Penrose, the individual chapters address questions such as quantum non-locality, the measurement problem, quantum insights into relativity, cosmology and thermodynamics, and the possible bearing of quantum phenomena on biology and consciousness.
Mechanical origin of aftershocks.
Lippiello, E; Giacco, F; Marzocchi, W; Godano, C; de Arcangelis, L
2015-10-26
Aftershocks are the most striking evidence of earthquake interactions and the physical mechanisms at the origin of their occurrence are still intensively debated. Novel insights stem from recent results on the influence of the faulting style on the aftershock organisation in magnitude and time. Our study shows that the size of the aftershock zone depends on the fault geometry. We find that positive correlations among parameters controlling aftershock occurrence in time, energy and space are a stable feature of seismicity independently of magnitude range and geographic areas. We explain the ensemble of experimental findings by means of a description of the Earth Crust as an heterogeneous elastic medium coupled with a Maxwell viscoelastic asthenosphere. Our results show that heterogeneous stress distribution in an elastic layer combined with a coupling to a viscous flow are sufficient ingredients to describe the physics of aftershock triggering.