WorldWideScience

Sample records for celdas fotovoltaicasgeneric photovoltaic

  1. Modelo genérico de celdas fotovoltaicas

    OpenAIRE

    Fernández, Herman; Martínez, Abelardo; Guzmán, Víctor Manuel; Giménez, María Isabel

    2008-01-01

    Este trabajo presenta el modelado y la simulación en PSpice de un circuito que se comporta eléctricamente como un panel solar. El modelo permite seleccionar un circuito que representa una única celda o combinaciones de múltiples celdas solares conectadas en serie y paralelo. La evaluación del modelo se realiza mediante una herramienta computacional, que permite ingresar parámetros relacionados con el número de celdas conectadas en distintas configuraciones serie-paralelo, las resistencias de ...

  2. Catalizadores anodicos basados en platino para celdas de combustible de etanol

    Directory of Open Access Journals (Sweden)

    BIBIAN HOYOS

    2007-01-01

    Full Text Available Se estudió el comportamiento electro catalítico de platino puro y aleaciones basadas en él con Ru, Sn, Ir y Os soportados en carbón para la electro oxidación de etanol con el propósito de desarrollar catalizadores anódicos para celdas de combustible directas de etanol. Adicionalmente, se construyeron electrodos porosos y ensambles electrodo-membrana para celdas de combustible poliméricas, en las cuales se probaron los ánodos. La caracterización de los catalizadores se realizó mediante voltametría cíclica, mientras que las pruebas del desempeño de las celdas se realizaron mediante pruebas de polarización corriente-potencial. En general, todas las aleaciones mostraron un menor potencial de inicio de la reacción y mayor actividad catalítica que el platino puro. Sin embargo en la zona de altos sobre potenciales, el platino puro tiene mayor actividad catalítica que las aleaciones. De acuerdo con estos resultados, las aleaciones estudiadas podrían ser útiles en celdas de combustible operando a corrientes moderadas y bajas

  3. PRODUCCIÓN DE ELECTRICIDAD EN CELDAS DE COMBUSTIBLE MICROBIANAS UTILIZANDO AGUA RESIDUAL: EFECTO DE LA DISTANCIA ENTRE ELECTRODOS

    Directory of Open Access Journals (Sweden)

    Germán Buitrón

    2011-01-01

    Full Text Available Se evaluó la influencia de la separación de electrodos sobre la producción de electricidad y la eliminación de materia orgánica en celdas de combustible microbianas usando agua residual. Para ello se construyeron tres celdas de geometría semejante pero con diferente volumen. En promedio, se obtuvo una eficiencia de eliminación de materia orgánica del 71%. La duración del ciclo fue de 0.97 días para la celda de 40 mL, 1.03 días para la celda de 80 mL y 5.93 días para la celda de 120 mL. El aumento de distancia entre los electrodos (4, 8 y 12 cm no causó un efecto negativo en la generación de electricidad, pues en la mayor separación (celda de 120 mL se alcanzó un voltaje máximo de 660 mV, mientras que para las celdas de 40 y 80 mL fue de 540 mV y 532 mV, respectivamente. La densidad de potencia máxima se presentó en la celda con separación de 12 cm (408 mW/m2. Sin embargo, se observó que la potencia volumétrica disminuyó a medida que aumentó la separación entre los electrodos.

  4. Estudio comparativo de las diferentes tecnologías de celdas de combustible

    Directory of Open Access Journals (Sweden)

    Alvarado-Flores, J.

    2013-06-01

    Full Text Available Fuel cells generate electricity and heat during electrochemical reaction which happens between the oxygen and hydrogen to form the water. Fuel cell technology is a promising way to provide energy for rural areas where there is no access to the public grid or where there is a huge cost of wiring and transferring electricity. In addition, applications with essential secure electrical energy requirement such as uninterruptible power supplies (UPS, power generation stations and distributed systems can employ fuel cells as their source of energy. The current paper includes a comparative study of basic design, working principle, applications, advantages and disadvantages of various technologies available for fuel cells. In addition, techno-economic features of hydrogen fuel cell vehicles (FCV and internal combustion engine vehicles (ICEV are compared. The results indicate that fuel cell systems have simple design, high reliability, noiseless operation, high efficiency and less environmental impact. The aim of this paper is to serve as a convenient reference for fuel cell power generation reviews.Las celdas de combustible generan electricidad y calor durante la reacción electroquímica que ocurre entre el oxígeno e hidrógeno para formar agua. La tecnología de la celda de combustible es un camino prometedor para proporcionar energía en áreas rurales, donde no hay acceso a la red eléctrica pública, o donde hay un costo enorme en el cableado y transferencia de electricidad. Además, las celdas de combustible, pueden emplearse como fuente de energía, para asegurar la energía eléctrica como por ejemplo, en fuentes de potencia ininterrumpida (uninterruptible power supplies, UPS, estaciones de generación de energía y sistemas de distribución. En este artículo, se hace un estudio comparativo sobre diseño básico, principios de funcionamiento, aplicaciones, ventajas y desventajas de las diversas tecnologías disponibles para celdas de

  5. 40 years of solar cell research in the CINVESTAV of the IPN; 40 anos de investigacion de celdas solares en el CINVESTAV del IPN

    Energy Technology Data Exchange (ETDEWEB)

    Morales Acevedo, Arturo [Centro de Investigaciones y Estudios Avanzados del Instituto Politecnico Nacional, Mexico (Mexico)

    2007-06-15

    Basically, this presentation describes what the Centro de Investigaciones y de Estudios Avanzados (CINVESTAV) has been working on during this last 40 years, e.g. solar cells. Firstly, it is explained the starting point of the research of solar cells in this institute. Next, it is briefly described the project focused on the factory, which produced 3-inch solar cells, and there are also explained the methodologies that were used in order to produce such sort of cells. In addition, the issues related to photovoltaic systems are explained, among there are found: the characteristics and the first places where they were installed, among others. Next, it is described the program of the PV system installation in the facilities of some child hostel of the Republic of Mexico, carried out with the collaboration of the National Indigenist Institute (INI). Next, it is presented the technology that the CINVESTAV is currently working on, i.e. crystalline silicon solar cells. Besides, it is shown by graphic and illustrative means the process of the same. Finally, it is described the strategic plan suggested in order to produce solar cells in Mexico; besides, there are shown the got conclusions a long with the future expectations. [Spanish] En esta presentacion se describe basicamente todo lo que ha pasado a lo largo de 40 anos en el Centro de Investigaciones y de Estudios Avanzados (CINVESTAV), en relacion a las celdas solares. En primer plano, se describe el punto de inicio de la investigacion de celdas solares en esta institucion. Enseguida, se describe brevemente el proyecto que se realizo sobre la planta piloto fabricante de celdas solares de 3 pulgadas de diametro, tambien se explican las metodologias que se seguian para fabricar dichas celdas. Mas adelante, se explican cuestiones relacionadas con los modulos fotovoltaicos entre las que se encuentran: las caracteristicas y los primeros lugares donde fueron instalados este tipo de sistemas. Enseguida, se describe el programa

  6. Avances en el desarrollo de interconectores metálicos de celdas SOFC

    Directory of Open Access Journals (Sweden)

    Alvarado-Flores, J.

    2013-08-01

    Full Text Available Interest in solid oxide fuel cells (SOFC stems from their higher efficiencies and lower levels of emitted pollutants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i.e., to maintain high electrical conductivity, good stability in both reducing and oxidizing atmospheres, and close thermal expansion coefficient (TEC match and good compatibility with other SOFC ceramic components. This paper reviewed the interconnect materials, and coatings for metallic interconnect materials in a SOFC cell.El interés en las celdas de combustible de óxido sólido (SOFC, se deriva de su alta eficiencia y la capacidad de tener un bajo nivel de emisiones contaminantes, en comparación con los métodos tradicionales de producción de energía. Los interconectores, son parte crítica del ordenamiento de una celda SOFC, debido a que conecta en serie las celdas y además, separa el aire u oxígeno (cátodo del combustible (ánodo. Por lo tanto, los requisitos del interconector son muy exigentes, por ejemplo, es necesario mantener conductividad eléctrica elevada, óptima estabilidad tanto en atmósferas reductoras como oxidantes y el coeficiente de expansión térmica (TEC, debe ser compatible con los otros componentes cerámicos de la celda SOFC. Este artículo, revisa los materiales de interconexión, y materiales de revestimiento para interconectores metálicos en una celda SOFC.

  7. Prospective of the photovoltaic solar technology for electricity generation (Annexe 7 in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Prospectiva de la tecnologia solar fotovoltaica para la generacion de electricidad (Anexo 7 en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Agredano Diaz, Jaime [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-08-15

    The first experience where it was found the relationship between the light of the sun and its conversion to electricity was reported by the French physicist Edmund Bequerel in 1839, nevertheless the development of the modern photovoltaic cell, as it is known now, occurred until the middle of the last century in the Bell labs of the United States, that in year 1955 presented the first patent of photovoltaic silicon cells. The main elements of a photovoltaic system are: the photovoltaic cells, (some times referred to as solar cells), interconnected and encapsulated to form one photovoltaic module, the structure of assembly for the module or modules, the inversor (essential for systems connected to the network and for systems outside the network that require provision of alternating current), storage battery and a load controller (required solely for systems outside the network). [Spanish] La primera experiencia donde se encontro la relacion entre la luz del sol y su conversion a electricidad la reporto el fisico Frances Edmund Bequerel en 1839, sin embargo el desarrollo de la celda fotovoltaica moderna tal y como se conoce ahora, se dio hasta mediados del siglo pasado en los laboratorios Bell en los Estados Unidos, quienes en 1955 presentaron la primera patente de celdas fotovoltaicas de silicio. Los elementos principales de un sistema fotovoltaico son: las celdas fotovoltaicas, (algunas veces referidas como celdas solares), interconectadas y encapsuladas para formar un modulo fotovoltaico, la estructura de montaje para el modulo o modulos, el inversor (esencial para sistemas conectados a red y necesario para sistemas fuera de red que requieren suministro de corriente alterna), bateria de almacenamiento y un controlador de carga (requerido unicamente para sistemas fuera de red).

  8. Caracterización de las antocianinas de la flor de ceibo como sensibilizadores naturales para su uso en celdas fotovoltaicas

    Directory of Open Access Journals (Sweden)

    María Paula Enciso

    2014-12-01

    Full Text Available La energía solar es la fuente de energía más promisoria del futuro, ya que la conversión directa de luz solar en energía eléctrica mediante el uso de celdas solares posee muchas ventajas sobre los métodos usados en la actualidad, debido a que no genera desechos o contaminantes.En particular, las celdas solares sensibilizadas con pigmentos (DSSC o celdas de Graetzel representan una alternativa a las convencionales celdas solares de silicio. En las últimas tres décadas han atraído considerable atención como una forma de producir celdas fotovoltaicas de bajo costo debido a la posibilidad de alcanzar una alta eficiencia de conversión (de aprox. 12% y su alto rendimiento durante períodos de luz prolongados e incluso en condiciones de stress térmico.En este trabajo se evalúan pigmentos de origen natural, la mezcla de antocianinas provenientes de la flor del ceibo, como sensibilizadores de estas celdas. Se utilizan medidas de absorbancia UV-visible, voltamperometría cíclica y espectroscopía de impedancia electroquímica como forma de caracterización.

  9. Construcción de celdas calorimétricas metálicas con escudos adiabáticos

    Directory of Open Access Journals (Sweden)

    Carlos A. Ruiz

    2010-07-01

    Full Text Available Se discuten los criterios de diseño y la caracterización térmica de ccldiis calorimétricas construidas en cobre dorado y aluminio, que son acopladas a un calorímetro de inmersión para el estudio de mojado de sólidos porosos. Los resultados muestran que las celdas metálicas presentan constantes fugas térmicas y tiempos de equilibrio menores que los hallados en las celdas de vidrios tradicionales tipo Dewar. Los mejores resultados se obtiene con la celda de aluminio provista de escudos adiabáticos flotantes, construidos en lámina del mismo material, con valores de constantes de fugas tcrinicas del orden de 3,5 * 10 ' min" ' y tiempos de equilibrio de solamente 8 minutos. La instalación calorimétrica completa se calibra secundariamente, con la determinación del calor de mezcla del sistema benccnociclohcxano; los resultados están en buen acuerdo con los registrados en la literatura.

  10. Diseño de celda de carga optoelectrónica

    Directory of Open Access Journals (Sweden)

    Francisco J. Martínez Serrano

    2008-01-01

    Full Text Available Los sistemas de medición representan una herramienta indispensable en todas las actividades productivas, y en el caso de empresas que aprovechan los avances del desarrollo tecnológico para mejorar la calidad de sus productos éstos son fundamentales. Frecuentemente en la industria de la manufactura metalmecánica se requiere controlar con gran precisión el ajuste de dos piezas ensambladas a presión, los materiales de ingeniería deben someterse constantemente a pruebas de resistencia, los equipos de pruebas de balanceo y vibraciones mecánicas funcionan bajo el principio de medición de fuerzas. Los métodos de medición más precisos utilizan dispositivos electromecánicos conocidos como celdas de carga, que consisten básicamente en una fina resistencia eléctrica adherida a un elemento mecánico sometido directamente o no, a las cargas de trabajo. Las cargas cíclicas que sufre el elemento mecánico afectan igualmente a la resistencia eléctrica, y debido a que está hecha de un alambre muy delgado, su capacidad a resistir elásticamente deformación es limitada. Con este proyecto se pretende construir una celda de carga opto-mecatrónica, cuyo principio de funcionamiento está basado en que gracias a la aplicación de carga en un elemento mecánico, se produce en éste cierta deformación. Esta deformación reduce la distancia entre el emisor y el receptor, provocando un cambio en la señal eléctrica. Cabe señalar que la distribución de intensidad luminosa varía entre el emisor y el receptor debido al desplazamiento generado (R. Jones, 1985; Martínez, 2004. A la celda de carga se le adaptó un emisor de infrarrojo cuya señal es recibida por el detector en el otro extremo. Se pretende demostrar que este sistema optoelectrónico es capaz de medir cargas externas sobre un elemento mecánico a través de un método indirecto para medir esfuerzos. Se ha implementado un prototipo sensible a deformación inducida a un elemento mec

  11. Diseño del programa de control para una celda de manufactura flexible didáctica

    Directory of Open Access Journals (Sweden)

    Luis Diego Murillo-Soto

    2014-09-01

    El presente trabajo describe la interpretación de la teoría ABM con la finalidad de implementarla en un PLC comercial. El programa de control diseñado se probó con tres políticas de producción, en una celda de manufactura flexible multireentrante (MRF ubicada en el Instituto Tecnológico de Costa Rica; el objeto de las pruebas fue observar el rendimiento de la celda de manufactura ante distintas políticas de despacho en la producción.

  12. Tolerancia al co en celdas de combustible

    Directory of Open Access Journals (Sweden)

    BIBIAN HOYOS

    2008-01-01

    Full Text Available El entendimiento completo del proceso de adsorción y posterior oxidación de moléculas de CO en platino es de fundamental importancia para el desarrollo de celdas de combustible poliméricas que operan a baja temperatura. En este trabajo se presenta una revisión de las cinco estrategias experimentales más importantes en la búsqueda de mejorar la tolerancia al CO: disminución del potencial de inicio de la reacción de oxidación, reducción de la cantidad de CO adsorbido, utilización de pequeñas cantidades de oxígeno en la corriente de alimentación al ánodo, aumento de la temperatura de operación y limpieza del CO a la entrada. Aunque se han desarrollado catalizadores bastante promisorios (PtMo y PdAu, todavía se sigue considerando a la mezcla Pt-Ru como el catalizador anódico más eficiente para combustibles que contienen 10 ppm de CO o más. La estrategia de inyectar oxígeno al ánodo parece promisoria pero requiere el desarrollo de nuevas membranas más resistentes y de la implementación de condiciones más seguras de operación de la celda. El diseño estructural de ánodos especiales con múltiples capas soportando catalizadores específicos para cada tipo de combustible puede ser una estrategia muy atractiva.

  13. Improvement of the performance of a new type of single chamber microbial fuel cell compared to a conventional cell; Mejora del desempeno de un nuevo tipo de celda de combustible microbiana de una camara comparado con una celda convencional

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Larios, A.L.; Vazquez-Huerta, G.; Esparza-Garcia, F.; Solorza-Feria, O.; Poggi Varaldo, H.M. [Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: hectorpoggi2001@gmail.com; linevazquez@yahoo.com.mx

    2009-09-15

    The objective of this work was to design, build and operate a new type of microbial fuel cell (MFC-A) and evaluate the architectural changes in the production of electricity. The results were compared with those of a standard fuel cell (MFC-B). The MFC-A consisted of a horizontal acrylate cylinder with two systems of sandwiched electrodes (each with a anode proton exchange membrane-cathode) separated by 78 mm. The MFC-B consisted of an anode and a cathode each in the opposite faces of the cell. The internal resistance of the cells were determined with polarization curves. The cells were operated in batch during 50 h at 30 degrees Celsius obtained with 38 mW/m{sup 2} and 5 mW/m{sup 2} for MFC-A and MFC-B, respectively. The changes in the architecture of the cell and design of the electrodes occurred at a power density 8 times greater, associated with the decrease in internal resistance of 1200 and 3900 {Omega} for MFC-A and MFC-B, respectively. The change in architecture (double electrode in the same volume for MFC-A) enabled obtaining a 13 times greater potential per unit volume, with 922 mW/m{sup 3} in the new MFC-A cell versus 69 mW/m{sup 3} in MFC-B. [Spanish] El objetivo de este trabajo fue disenar, construir y operar una celda de combustible microbiana de nuevo tipo (CCM-A), y evaluar los cambios de arquitectura en la produccion de electricidad. Los resultados fueron comparados con los de una celda de combustible estandar (CCM-B). La CCM-A consistio de un cilindro horizontal de acrilato, con dos sistemas de electrodos emparedados (cada uno con catodo/membrana de intercambio protonico/anodo) separados por 78 mm. La CCM-B consistio de un anodo y un catodo cada uno en las caras opuestas de la celda. Las Ri de las celdas fueron determinadas por curva de polarizacion. Las celdas fueron operadas en lote durante 50 h, a 30 grados centigrados, y fueron inoculadas con un inoculo sulfato reductor (In-SR) y cargadas con un extracto modelo similar al perfil de metabolitos

  14. Potential of energy saving with photovoltaic systems; Potencialidad de ahorro de energia con sistemas fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Guzman S, Eusebio; Bratu S, Neagu [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents an approach on the application of photovoltaic systems in energy saving. The problem of the electric energy demand in the coming years is analyzed and its consequences on the environment and on the energy reserves of conventional sources. A model of the electric circuit equivalent to a photovoltaic cell illustrates the behavior of the photovoltaic cell in function of the climatological conditions. The former in order to show some of the limiting factors in this type of generator. Also, the evolution of the applications of the photovoltaic systems and its forecasting in the installed capacity in the next 20 years, is described. [Espanol] En este trabajo se presenta un enfoque de la aplicacion de los sistemas fotovoltaicos en el ahorro de energia. Se plantea el problema del crecimiento de la demanda energetica en los proximos anos y sus consecuencias sobre el medio ambiente y las reservas de energia por fuentes convencionales. Un modelo del circuito electrico equivalente de una celda fotovoltaica ilustra el comportamiento del generador fotovoltaico en funcion de las condiciones climatologicas. Lo anterior con el fin de mostrar algunas limitantes de este tipo de generador. Tambien se describe la evolucion de las aplicaciones de los sistemas fotovoltaicos y el pronostico de la potencia instalada en los proximos 20 anos.

  15. Potential of energy saving with photovoltaic systems; Potencialidad de ahorro de energia con sistemas fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Guzman S, Eusebio; Bratu S, Neagu [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1999-12-31

    This paper presents an approach on the application of photovoltaic systems in energy saving. The problem of the electric energy demand in the coming years is analyzed and its consequences on the environment and on the energy reserves of conventional sources. A model of the electric circuit equivalent to a photovoltaic cell illustrates the behavior of the photovoltaic cell in function of the climatological conditions. The former in order to show some of the limiting factors in this type of generator. Also, the evolution of the applications of the photovoltaic systems and its forecasting in the installed capacity in the next 20 years, is described. [Espanol] En este trabajo se presenta un enfoque de la aplicacion de los sistemas fotovoltaicos en el ahorro de energia. Se plantea el problema del crecimiento de la demanda energetica en los proximos anos y sus consecuencias sobre el medio ambiente y las reservas de energia por fuentes convencionales. Un modelo del circuito electrico equivalente de una celda fotovoltaica ilustra el comportamiento del generador fotovoltaico en funcion de las condiciones climatologicas. Lo anterior con el fin de mostrar algunas limitantes de este tipo de generador. Tambien se describe la evolucion de las aplicaciones de los sistemas fotovoltaicos y el pronostico de la potencia instalada en los proximos 20 anos.

  16. Estudio del efecto del plano de masa en filtros pasa banda usando celdas OSRR

    Directory of Open Access Journals (Sweden)

    Iván Díaz-Pardo

    2015-01-01

    Full Text Available En este artículo se presenta un estudio del efecto del plano de masa en filtros pasa banda mediante la utilización de celdas m eta material en estructura de resonadores abiertos en anillo dividi do OSRR (Open Split Ring Resonator sobre sustratos microstrip. Se plantean tres tipos de configuraciones, a saber: eliminar parci almente el plano de masa en la parte posterior a las celdas OSR R, diseñar ventanas sobre el plano de masa al respaldo de cada cel da y colocar el plano de masa co mpleto. El análisis llevado a cabo muestra que la respuesta de transmisión del filtro con ventanas en el plano de masa resulta ser la más plana de los tres caso s y de igual manera con un ancho de ba nda intermedio. Por otra parte, el desempeño de este tipo de filtros es similar al de un filtro convencional en tecnología microstrip de tres polos, sin embarg o su tamaño resulta ser un 60% más pequeño.

  17. Estimación de la cantidad de potencia suministrada por las celdas fotovoltaicas de un CubeSat

    Directory of Open Access Journals (Sweden)

    Jesús D. González Llorente

    2014-04-01

    Full Text Available Los CubeSat son pequeños satélites que, debido a las restricciones propias de sus dimensiones, tienen como única fuente de energía celdas foto-voltaicas sobre su superficie. El propósito de este artículo es estimar la cantidad máxima de potencia que puede obtenerse de estas celdas solares, de manera que sea posible realizar un balance de energía cuando se diseñan misiones espaciales con este tipo de satélites. En el escenario analizado, un CubeSat de 10cm x 10cm x 10cm (1U tiene una cara siempre orientada hacia la Tierra. Se consideran las pérdidas por el coseno del ángulo y la variación de la temperatura debido a la órbita del satélite. Para la estimación se usa un modelo matemático de las celdas solares, con el cual se calcula el punto de máxima potencia según el ángulo de incidencia de la radiación solar y la temperatura sobre una órbita baja alrededor de la Tierra. Los resultados muestran la variación de la potencia eléctrica máxima suministrada por los paneles sobre la porción iluminada de la órbita, sin considerar el albedo de la Tierra. Además de la potencia, se estiman las curvas corriente-voltaje para diferentes ubicaciones sobre la órbita del CubeSat.

  18. para celdas de combustible de etanol

    Directory of Open Access Journals (Sweden)

    CARLOS MONSALVE GIL

    2008-01-01

    Full Text Available En este trabajo se elaboraron dos membranas nanocompuestas de Nafion®- TiO2 con 2 y 4% del cerámico por el método del “recasting”. El análisis de composición del microscopio de barrido electrónico (SEMEDS mostró una estructura de dos capas, una enriquecida en cerámico y otra con menos cantidad, pero con dispersión uniforme. Se midió la velocidad de permeación de etanol y la absorción de solventes en estas membranas a diferentes temperaturas y concentraciones y los resultados fueron comparados con los obtenidos para la membrana de Nafion® sin modificar. Los resultados experimentales mostraron un incremento de la permeación y de la absorción de solvente con la concentración de etanol y la temperatura. La absorción de agua también mostró un incremento en las membranas compuestas lo cual puede permitir operar a mayores temperaturas y menores humedades relativas y aumentar el desempeño de la celda de combustible.

  19. Estimación de los Parámetros de un Modelo de una Celda Fotovoltaica Utilizando un Algoritmo de Optimización de Búsqueda de Patrones

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Tobón-Mejía

    2015-07-01

    Full Text Available En este artículo se propone un nuevo método para la estimación de los parámetros del modelo matemático de una celda fotovoltaica de un solo diodo. El trabajo está basado en el algoritmo de optimización llamado Pattern Search Method (MPS, por sus siglas en inglés. Los parámetros estimados son: corriente de diodo, corriente de saturación, resistencia en serie, resistencia en paralelo y el factor del diodo ideal. Los resultados muestran que es posible obtener el modelo equivalente a través de la identificación de los parámetros. Adicionalmente, los resultados obtenidos son comparados con datos obtenidos mediante un emulador de celdas fotovoltaicas. Para realizar los experimentos se asumió condiciones controladas, es decir, temperatura e irradiación constantes. De esta manera, se puede deducir que el método propuesto se puede utilizar en aplicaciones de control para el seguimiento del máximo punto de potencia (MPPT, por sus siglas en inglés de celdas fotovoltaicas.

  20. CELDAS FOTOVOLTAICAS DE ALTA EFICIENCIA Y SISTEMA DE PANELES SOLARES DEL CUBESAT COLOMBIA 1

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Salamanca Céspedes

    2013-01-01

    Full Text Available El presente documento presenta el resultado parcial de la investigación acerca de las tecnologías de celdas solares multijuntura para uso espacial. Asimismo, se presenta una recopilación de los pasos que se han seguido hasta la fecha en el diseño de un prototipo de paneles fotovoltaicos de acuerdo a los requerimientos físicos, eléctricos y financieros  del picosatélite Cubesat Colombia 1 de la Universidad Distrital Francisco José de Caldas.

  1. Infrastructure of the hydrogen use and materials for fuel cells: key for its soon use; Infraestructura de uso de hidrogeno y materiales para celdas de combustible: clave para su pronto uso

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Rejon Garcia, Leonardo; Ojeda Hernandez, Mirna [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    Nowadays, many products for the personal generation of electrical energy exist, such as the batteries and the of internal combustion machines; that have developed and established the infrastructure required for their manufacture, distribution and commercial use. Nevertheless, disadvantages as well as practical limitations and their relationship with the environment exist. The fuel cells are able to increase their applications, as well as to solve practical and environmental challenges, but still they face challenges related to the initial cost and the infrastructure required for their uses. In this article the materials and the fuel cells (PEM) are described (membrane cells of proton interchange or of polymeric membrane electrolyte), of the proton interchanging membrane, gas diffuser, current collector plates of with fields gas flow fields and electrocatalizers. A table of fuel cells applications is shown according to the type of cell from a power of less than 1 KW to greater than 1 MW. Also there is a table of hydrogen production methods and tables where it is represented the hydrogen route in a PEM cell and the basic components of a type PEM fuel cell. In the article appears a table where a comparison of some properties of current collector plates is shown, as well as a graph of the spectra of electrochemical impedances. [Spanish] Hoy en dia, existen muchos productos para la generacion personal de energia electrica, como las baterias y las maquinas de combustion interna; que han desarrollado y establecido la infraestructura requerida para su fabricacion, distribucion y su uso comercial. Sin embargo, existen desventajas en cuanto a limitaciones practicas y su relacion con el ambiente. Las celdas de combustion son capaces de aumentar sus aplicaciones, asi como resolver retos practicos y ambientales, pero asi enfrentan retos relacionados con el costo inicial y las infraestructura requerida para su usos. En este articulo se describen los materiales y la descripcion

  2. The solar energy photovoltaic one option to the Cuban rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Alabart, J. A. [Centro de Investigaciones de Energia Solar (CIES), (Cuba); Friedman, D. [ECOSOL (COPEXTELL S. A.), (Cuba); Ramos, R.; Moreira, J.; Batista, I.; Garcia, R.; Rodriguez, M. [Centro de Investigaciones de Energia Solar (CIES), (Cuba)

    1995-12-31

    This paper analyzes the work done in Cuba over the last years in the field of photovoltaic, from its R and D and Industrial capacities to the Rural Electrification Program. Based on this work a Development Program for the PV industry is proposed, which is defected towards the integration of all necessary factors that will ensure a sustainable Rural Electrification Program. This program is divided in 5 main stages: 1. Import of solar cells and other elements for the assembly in Cuba of modules and diverse system components (1995-2005). 2. Production of solar cells from imported wafers (1997-2005). 3. Production of monocrystalline silicon wafers from imported plycrystalline silicon (1998-2005). 4. Production of polycrystalline silicon from Cuban silica sand (2000-2005). 5. Development and introduction of new technologies for the production of solar cells (2000-2005). The combination of the PV Development program and the Rural Electrification program will guarantee the supply of electricity to 100% of the Cuban population, and at same time accelerate the technological, industrial and research infrastructure on which a large scale national PV industry would be supported. The implementation of such a program would also make cost on the National Electrical Grid (NEG), avoiding the need for new generation facilities based on fossil fuels. [Espanol] Este articulo analiza el trabajo hecho en Cuba durante los ultimos anos en el campo de los fotovoltaicos, desde su Investigacion y Desarrollo y capacidades Industriales, hasta el Programa de Electrificacion Rural. Basado en este trabajo se propone un Programa de Desarrollo para la industria de PV que esta dirigido hacia la integracion de todos los factores necesarios que aseguraran un Programa de Electrificacion sostenido. Este programa esta dividido en 5 principales etapas: 1. Importacion de celdas solares y otros elementos para el ensamblado en Cuba de modulos y diversos componentes del sistema (1995-2005); 2. Produccion de

  3. The solar energy photovoltaic one option to the Cuban rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Alabart, J A [Centro de Investigaciones de Energia Solar (CIES), (Cuba); Friedman, D [ECOSOL (COPEXTELL S. A.), (Cuba); Ramos, R; Moreira, J; Batista, I; Garcia, R; Rodriguez, M [Centro de Investigaciones de Energia Solar (CIES), (Cuba)

    1996-12-31

    This paper analyzes the work done in Cuba over the last years in the field of photovoltaic, from its R and D and Industrial capacities to the Rural Electrification Program. Based on this work a Development Program for the PV industry is proposed, which is defected towards the integration of all necessary factors that will ensure a sustainable Rural Electrification Program. This program is divided in 5 main stages: 1. Import of solar cells and other elements for the assembly in Cuba of modules and diverse system components (1995-2005). 2. Production of solar cells from imported wafers (1997-2005). 3. Production of monocrystalline silicon wafers from imported plycrystalline silicon (1998-2005). 4. Production of polycrystalline silicon from Cuban silica sand (2000-2005). 5. Development and introduction of new technologies for the production of solar cells (2000-2005). The combination of the PV Development program and the Rural Electrification program will guarantee the supply of electricity to 100% of the Cuban population, and at same time accelerate the technological, industrial and research infrastructure on which a large scale national PV industry would be supported. The implementation of such a program would also make cost on the National Electrical Grid (NEG), avoiding the need for new generation facilities based on fossil fuels. [Espanol] Este articulo analiza el trabajo hecho en Cuba durante los ultimos anos en el campo de los fotovoltaicos, desde su Investigacion y Desarrollo y capacidades Industriales, hasta el Programa de Electrificacion Rural. Basado en este trabajo se propone un Programa de Desarrollo para la industria de PV que esta dirigido hacia la integracion de todos los factores necesarios que aseguraran un Programa de Electrificacion sostenido. Este programa esta dividido en 5 principales etapas: 1. Importacion de celdas solares y otros elementos para el ensamblado en Cuba de modulos y diversos componentes del sistema (1995-2005); 2. Produccion de

  4. Construction and evaluation of a fuel cell prototype (proton exchange fuel cell); Construccion y evaluacion de un prototipo de celda a combustible (proton exchange fuel cell)

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L. [Laboratorio de Pesquisa em Energia - LAPEN, Universidade do Vale do Itajai, São Jose, SC (Brasil)] e-mail: luciano.silva@univali.br; Paula, M.M.S.; Fiori, M [Lasicom, Universidade do Extremos Sul Catarinense (UNESC), Criciuma, S.C. (Brasil); Benavides, R. [Centro de Investigacion en Quimica Aplicada (CIQA), Saltillo, Coahuila (Mexico); Santos, V. [Laboratorio de Pesquisa em Energia - LAPEN, Universidade do Vale do Itajai, São Jose, SC (Brasil)

    2009-09-15

    Because electric energy is a vitally important material for the development of the country, this work is aimed at offering an alternative methodology for the construction and operational demonstration of a PEMFC fuel cell. Recently discovered natural gas reserves can be exploited using modern methods and its use fulfills generation, distribution and low environmental impact priorities. All these factors can be observed with the use of fuel cells, especially when working with reformed natural gas. In addition to its low environmental impact during the generation of this energy, the use of fuel cells reflects a generator source that can be located with the consumer, further reducing problems created by transmission lines, fuel transport, etc. Fuel cells are receiving a great deal of attention from the international community and some models are already commercially available. They are showing excellent possibilities for becoming one of the future technologies to generate electric energy with low environmental impact. [Spanish] En funcion de la necesidad de energia electrica como insumo de vital importancia para el desarrollo del pais, este trabajo pretende ofrecer una metodologia alternativa para la construccion y demostracion operacional de una celda a combustible del tipo PEMFC. La explotacion de las reservas de gas natural descubiertas recientemente puede realizarse a traves de metodos modernos y su uso tiene las prioridades de generacion, distribucion y bajo impacto ambiental. Todos estos aspectos se pueden observar dentro del uso de celdas a combustible, especialmente cuando se trabaja con gas natural reformado. Ademas del factor de bajo impacto ambiental durante la misma generacion de energia, el uso de las celdas a combustible involucra una fuente generadora, que puede colocarse junto al consumidor, reduciendo aun mas los problemas generados por las lineas de transmision, el transporte del combustible, etc. Las celdas a combustible estan recibiendo una gran

  5. Research and development of hydrogen and fuel cells technology at the IIE; Investigacion y desarrollo de tecnologia de hidrogeno y celdas de combustible en el IIE

    Energy Technology Data Exchange (ETDEWEB)

    Cano C, Ulises; Arriaga H, Gerardo; Romero C, T; Medrano V, M. Consolacion; Gonzalez, A. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-07-01

    In April, 2001, a fuel cells project was initiated at the Instituto de Investigaciones Electricas (IIE) as a part of the interest of this institution for such a technology. Towards end of that same year, a group dedicated to research and development (R and D) activities was implemented and efforts were initiated for the assembly of a laboratory with specialized infrastructure that would support these activities. Thus, in the last two years, the hydrogen and fuel cells group has taken under its responsibility the task of renewing and conditioning a space to receive specialized instrumentation and to initiate its operation, as well as to develop its own knowledge on the technology of fuel cells. The R and D work related to fuel cells was initiated from basic electrochemical studies of platinum electrodes on vitreous coal in acid solutions, to determine kinetic parameters and structural properties. Since the main components of PEM cells to a great extent define the cost of the technology, other additional efforts related to basic studies for the development of components as bipolar plates, are described by the same author in 2001. Other work on basic research is bound to the response of fuel monocells under different operation conditions, and that also will be reviewed in this article. [Spanish] En abril del 2001, se inicio un proyecto de celdas de combustible en el IIE como parte del interes de esta institucion por tal tecnologia. Hacia finales de ese mismo ano, se conformo un grupo dedicado a actividades de investigacion y desarrollo (I y D) y se iniciaron esfuerzos para el montaje de un laboratorio con infraestructura especializada que apoyara estas actividades. Asi, en los ultimos dos anos, el grupo de hidrogeno y celdas de combustible se ha dado a la tarea de renovar y acondicionar un espacio para recibir instrumentacion especializada e iniciar su operacion, asi como a desarrollar su propio conocimiento de tecnologia de celdas de combustible. Los trabajos de I y

  6. Monitoring system for individual cells in energy backing banks; Sistema para monitorizar las celdas individuales en bancos de respaldo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Ortega S, Cesar A; Pacheco A, Maria Jojutla; Orozco V, Jaime A; Cristin V, Miguel A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2004-07-01

    relatively smaller investment compared with the cost of a fault in the energy supply system. [Spanish] Las baterias plomo-acido (BPA) son ampliamente utilizadas en la industria para almacenar energia quimica y liberarla en forma de electricidad. Los fenomenos que ocurren en el interior de una BPA -durante sus ciclos de carga y descarga - afectan la vida util de la bateria a largo plazo. En este sentido, se han realizado diversas investigaciones alrededor del mundo; no obstante, dichos estudios han arrojado solo dos conclusiones: a) La seleccion de un algoritmo de carga adecuado puede extender la vida util de la bateria. b) Un monitoreo continuo del banco puede ayudar a estimar el estado de salud de las baterias y a detectar los elementos del banco que estan mas proximos a fallar. Una bateria plomo-acido esta formada por un conjunto de celdas plomo-acido conectadas en serie. A mayor numero de celdas, mayor el voltaje de la bateria. Las BPA que se utilizan para formar bancos de respaldo de energia son dispositivos sumamente delicados cuya vida util depende fuertemente de factores como: temperatura de operacion, regimen de descarga, regimen de carga. Las BPA se conectan, en serie, para elevar el voltaje, o bien, en paralelo, para elevar la corriente suministrada por el banco. Con una combinacion de arreglos serie-paralelo es posible lograr casi cualquier especificacion de voltaje y corriente. Por otro lado, la operacion confiable de un arreglo de celdas requiere que todos los elementos de este funcionen correctamente. Si una celda falla en un arreglo serie, el resto deja de funcionar, lo que ocasiona costos de mantenimiento ademas de reducir la confiabilidad del sistema de respaldo. Para incrementar la confiabilidad de los arreglos de celdas Pb-A, es necesario un monitoreo individual y continuo de las celdas. Ello permite determinar cuales son las que tienen mayor probabilidad de falla y, entonces, poder reemplazarlas. Entre los principales beneficios de un sistema de monitoreo

  7. Changes in the internal resistance of a single chamber microbial fuel cell associated with architectural changes and inoculation; Cambios en la resistencia interna de una celda de combustible microbiana de una camara asociados a cambios de arquitectura y tipo de inoculo

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Larios, A.L.; Vazquez-Huerta, G.; Esparza-Garcia, F.; Solorza-Feria, O.; Poggi Varaldo, H.M. [Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: hectorpoggi2001@gmail.com; linevazquez@yahoo.com.mx

    2009-09-15

    The objective of this work was to electrochemically characterize a new type of microbial fuel cell (MFC-A) and evaluate the effect of three inoculated types on internal resistance (Ir). The results were compared with those from a standard fuel cell (MFC-B). The MFC-A consisted of a horizontal acrylate cylinder equipped with two sandwiched electrode systems (each with a anode proton exchange membrane-cathode) at each end of the chamber. The MFC-B consisted of an anode and cathode each placed at opposing faces of the chamber, separated by 78 mm. The Ir of the cells were determined using a polarization curve. The inoculates were from continuous complete-mix reactors, biomass in suspension, at the laboratory scale. The inoculate with the lowest Ir value (1 200 and 3900 {Omega}) was sulfate reduction (SR-In). The second corresponded to methanogen inoculated cells (M-In) with Ir of 5300 and 7500 {Omega}. Aerobic inoculated cells (A-IN) had extremely high Ir values, 100000 and 130000 {Omega} for MFC-A and MFC-B, respectively. The Ir for all the inoculates was the lowest in the MFC-A, attributed to the change in the cell's architecture and the design of the electrodes. These results are encouraging since a decrease in Ir is required to increase the power and efficiency of a microbial fuel cell. [Spanish] El objetivo de este trabajo fue caracterizar electroquimicamente una celda de combustible microbiana de nuevo tipo (CCM-A), y evaluar el efecto de tres tipos de inoculos sobre la resistencia interna (R{sub i}). Los resultados fueron comparados con los de una celda de combustible estandar (CCM-B). La CCM-A consistio de un cilindro horizontal de acrilato, equipado con dos sistemas de electrodos emparedados (cada uno con catodo/membrana de intercambio protonico/anodo) en cada uno de los extremos de la camara. La CCM-B consistio de un anodo y un catodo colocados cada uno en las caras opuestas de la celda, separados por 78 mm. Las Ri de las celdas fueron determinadas por

  8. Estudio de una celda de fabricación flexible mediante la simulación de eventos discretos

    OpenAIRE

    Sanz Lucero, Flavia

    2014-01-01

    En la actualidad las fábricas se ven afectadas por la alta competencia tanto nacional como internacional, y obligadas a mejorar sus procesos productivos para poder continuar siendo competitivas en un mercado cada vez más hostil. El presente proyecto trata de resolver una parte importante de esta mejora: la reducción de los tiempos improductivos o muertos, mediante la búsqueda de una secuencia óptima de alimentación en una celda de fabricación flexible compuesta por máquinas ali...

  9. Procedimiento para la caracterización de una celda de punto triple de agua Isotech en el LATU

    Directory of Open Access Journals (Sweden)

    Ofelia Robatto

    2011-05-01

    Full Text Available La realización en el punto triple de agua es crucial para una mejor aproximación a la Escala Internacional de Temperatura (ITS-90, ya que la definición de esta última está directamente vinculada al punto fijo citado. Es necesario conocer la influencia de la presión hidrostática en el punto triple de agua para corregir los valores de resistencia medidos y obtener una mejor aproximación al valor real de la temperatura en dicho punto.Este artículo describe las dificultades encontradas al estudiar el perfil térmico correspondiente a una celda de punto triple de agua comercial bajo condiciones normales de operación con un baño Dewar termostatizado con hielo picado. Este trabajo fue llevado a cabo en dos fases: en la primera se detectaron problemas con los perfiles de temperatura, cuyo comportamiento era lejano al ideal. Para mejorar dicho comportamiento se hicieron cambios en el equipamiento, con el fin de minimizar el tiempo de estabilización de la celda y mejorar la transferencia de calor. El aislamiento del baño fue mejorado y se colocó un dispositivo ecualizador de temperatura de cobre en el pozo de la celda. Los resultados se discuten en el presente artículo.AbstractThe Realization of the Triple Point of Water (TPW is of main importance when approximating to the International Temperature Scale of 1990 (ITS-90, because it is properly involved in its definition. Therefore it is necessary to know the Hydrostatic Pressure influence at the Triple Point of Water to correct the values of resistance measured and to obtain a better approximation of the real temperature of this point. This article shows the difficulties found when studying the thermal profile of one commercial cell of the triple point of water under normal operation conditions in a Dewar thermostatic bath with crushed ice. The work was performed in two phases. In the first phase problems were detected with the temperature profiles, whose behaviors were far away from

  10. The fuel cells: Truths on the generation of clean and efficient electricity electrochemical way; Las celdas de combustible: Verdades sobre la generacion de electricidad limpia y eficiente via electroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In the search of alternative technologies for the generation of electrical energy, the Instituto de Investigaciones Electricas (IIE) has put special attention in a technology that promises to be key in the next years: The fuel cells, it is for this reason that in this article a review of this type of cells is presented, as well as its basic characteristics and benefits as a result of its use for the generation of electrical energy. [Spanish] En la busqueda de tecnologias alternativas de generacion de energia electrica, el Instituto de Investigaciones Electricas (IIE) ha puesto atencion especial en una tecnologia que promete ser clave en los proximos anos: Las celdas de combustible, es por ello que en este articulo se presenta una resena de este tipo de celdas, asi como sus caracteristicas principales y beneficios como resultado de su utilizacion para la generacion de energia electrica.

  11. Experimental comparison of standard fuel cells PEM in radial configuration, coil and spiral; Comparacion experimental de celdas de combustible tipo PEM en configuracion radial, serpentin y espiral

    Energy Technology Data Exchange (ETDEWEB)

    Cano Andrade, Sergio

    2008-12-15

    sustituir al petroleo surge la siguiente pregunta: cual de todas las fuentes posibles es la adecuada? Sin duda se debe tomar en cuenta otro factor importante en la eleccion de dicha fuente, el cual tiene que ver con el gran problema que la humanidad trata a diario: el efecto invernadero. Tomando en cuenta el efecto invernadero, las celdas de combustible en base a hidrogeno son la fuente de energia mas viable para sustituir al petroleo, ya que en su funcionamiento son amigables con el medio ambiente pues no producen contaminantes, reduciendo enormemente el problema del calentamiento global en que esta enfrascado el planeta. Es muy cierto que aun existen muchas desventajas en estas celdas de combustible en base a hidrogeno, pero las arduas investigaciones realizadas hasta la actualidad auguran un excelente futuro donde el plantea podra satisfacer su demanda energetica diaria en base a la tecnologia de hidrogeno. En trabajos futuros se debe tener especial cuidado en el control de la humedad de los gases antes de entrar a la celda de combustible, ya que es un parametro importante en el funcionamiento correcto de las celdas de combustible tipo PEM. En la presente investigacion se ilustra el avance en el estado del arte de la tecnologia de hidrogeno, especificamente con la generacion de electricidad en base a las novedosas configuraciones de celdas de combustible tipo PEM. Hasta el momento no se ha encontrado en bibliografia trabajo semejante donde se experimente con este tipo de configuracion radial para las tecnologias de hidrogeno. La geometria y los resultados presentados en este analisis corresponden a un trabajo de la mas alta categoria en el estado del arte de las celdas de combustible, ademas de que se tiene una amplia expectativa debido a los resultados altamente satisfactorios encontrados tanto numericamente como experimentalmente, en comparacion con otras geometrias.

  12. Fuel cells applied to transport; Celdas de combustible aplicadas al transporte

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Gonzalez, Miguel [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    The future demand of energy as well as the preservation of the environment have generated, in several countries, the necessity of developing alternative means for the most efficient transformation of energy that causes minimum damages to the environment. The fuel cells technology is outlined as one of the alternating means to the traditional forms of transforming the energy for residential use as well as for the automotive vehicles. At present it is in a final stage of demonstration, reason why as of year 2003 the possibility will exist on automobiles and trucks circulating normally. [Spanish] La futura demanda de energeticos asi como la preservacion del medio ambiente ha generado, en varios paises, la necesidad de desarrollar medios alternos para la transformacion mas eficiente de la energia que cause minimos danos al ambiente. La tecnologia de celdas de combustible se perfila como uno de los medios alternos a la forma tradicional de transformar la energia tanto para uso residencial como para los vehiculos automotores. En la actualidad se encuentra en una etapa final de demostracion por lo que posiblemente a partir del ano 2003 se cuente con automoviles y camiones circulando normalmente.

  13. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  14. Construction of an electrolytic photocell fuel cell system used to energize a cellular telephone; Construccion de un sistema fotocelda-electrolizador-celda de combustible, utilizado para energizar un telefono celular

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Quezada, Eduardo; Rodriguez-Castellanos, A.; Solorza Feria, O. [CINVESTAV-IPN, Mexico, D.F. (Mexico)]. E-mail: edfq_1986@hotmail.com

    2009-09-15

    de carbono que es liberado a la atmosfera, ademas de contribuir en gran parte al calentamiento global del planeta. Una alternativa para la generacion de energia electrica es la utilizacion de celdas de combustible de membrana polimerica (PEMFC) las cuales promoveran la utilizacion de combustibles alternos como el hidrogeno. En este trabajo se presenta la puesta en operacion de un sistema constituido por una celda fotovoltaica un electrolizador y una PEMFC. La celda fotovoltaica trasforma la energia solar en electrica con la que se electroliza el agua proporcionando hidrogeno (combustible) y oxigeno (comburente). Se diseno y construyo un electrolizador el cual fue caracterizado mediante ensayos de polarizacion. Los gases obtenidos del electrolizador son alimentados a una celda de combustible disenada y construida en el laboratorio. Para darle aplicacion a este trabajo la energia producida en la celda de combustible es alimentada a un dispositivo de baja potencia como lo es la carga electrica de un telefono movil. La integracion de dispositivos electroquimicos revolucionaran por completo las fuentes de energia que hoy en dia estan basadas en los derivados del petroleo. Estos sistemas integrados son eficientes para la produccion de energia electrica sin emisiones de gases contaminantes.

  15. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  16. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA) (Fort Worth, Texas, October 22-24, 2013)

    Science.gov (United States)

    Sampson, Demetrios G., Ed.; Spector, J. Michael, Ed.; Ifenthaler, Dirk, Ed.; Isaias, Pedro, Ed.

    2013-01-01

    These proceedings contain the papers of the IADIS International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA 2013), October 22-24, 2013, which has been organized by the International Association for Development of the Information Society (IADIS), co-organized by The University of North Texas (UNT), sponsored by the…

  17. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  18. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  19. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA) (13th, Mannheim, Germany, October 28-30, 2016)

    Science.gov (United States)

    Sampson, Demetrios G., Ed.; Spector, J. Michael, Ed.; Ifenthaler, Dirk, Ed.; Isaias, Pedro, Ed.

    2016-01-01

    These proceedings contain the papers of the 13th International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA 2016), October 28-30, 2016, which has been organized by the International Association for Development of the Information Society (IADIS), co-organized by the University of Mannheim, Germany, and endorsed by the…

  20. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA) (11th, Porto, Portugal, October 25-27, 2014)

    Science.gov (United States)

    Sampson, Demetrios G., Ed.; Spector, J. Michael, Ed.; Ifenthaler, Dirk, Ed.; Isaias, Pedro, Ed.

    2014-01-01

    These proceedings contain the papers of the 11th International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA 2014), October 25-27, 2014, which has been organized by the International Association for Development of the Information Society (IADIS) and endorsed by the Japanese Society for Information and Systems in…

  1. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  2. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  3. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA) (12th, Maynooth, Greater Dublin, Ireland, October 24-26, 2015)

    Science.gov (United States)

    Sampson, Demetrios G., Ed.; Spector, J. Michael, Ed.; Ifenthaler, Dirk, Ed.; Isaias, Pedro, Ed.

    2015-01-01

    These proceedings contain the papers of the 12th International Conference on Cognition and Exploratory Learning in the Digital Age (CELDA 2015), October 24-26, 2015, which has been organized by the International Association for Development of the Information Society (IADIS), co-organized by Maynooth University, Ireland, and endorsed by the…

  4. Implementación de un generador de hidrógeno de celda seca en un vehículo Chevrolet Steem 1.6L

    OpenAIRE

    Quezada Romero, Edison Miguel; Torres Gualan, Diego Fernando

    2014-01-01

    El documento consiste en la implementación de un generador de gas hidrógeno de celda seca en un vehículo Chevrolet Steem 1.6L, con el fin de adicionar gas hidrógeno a la mezcla aire-combustible que utilizan los motores de combustión interna ciclo Otto con el fin de obtener una combustión completa, reduciendo así la cantidad de emisiones de gases contaminantes hacia la atmosfera. The document consists of implementing a hydrogen gas generator cell dry Steem Chevrolet 1.6L vehicle, in order t...

  5. Study of the flooding and dehydration processes of a PEM fuel cell using the EIS technique; Estudio de los procesos de inundacion y deshidratacion en una celda de combustible tipo PEM mediante la tecnica EIS

    Energy Technology Data Exchange (ETDEWEB)

    Loyola-Morales, F.; Cano-Castillo, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: feloyola@yahoo.com.mx

    2009-09-15

    In this work, a study was conducted of the flooding and dehydration processes of a PEM fuel cell using the EIS technique. The experiments were conducted in a 50 cm{sup 2} cell. The gradual flooding of the system was induced by operating the cell at a potential of 0.3 V and maintaining the gas outlet closed (that is, stoichiometry of 1 for the anode (H{sub 2}) and the cathode (O{sub 2})) to enable the water produced by the reaction to accumulate inside. The gradual dehydration was induced by operating the cell at a potential of 0.3V and establishing a oxidized gas flow at a stoichiometry of 4. EIS tests were applied throughout both processes. The results showed that the EIS technique is highly sensitive for the analysis of the different degrees of the flooding processes by monitoring variations in the imaginary components of total impedance (Z{sup )} or the phase angle ({theta}). For low degrees of flooding, the technique had good sensitivity, between 1 and 6 Hz, while at high degrees of flooding the technique's greatest sensitivity was limited to a range between 1 and 2 Hz. In the case of the dehydration process of the system, the results showed that this type of process can be analyzed for variations in the value of the real component (Z{sup '}) as well as for the imaginary component of total impedance and variations in the phase angle. The analysis of dehydration with Z{sup '} was possible at a rather wide range, from 100 to 1000 Hz; with Z{sup }or {theta} it was only possible at a range of 20 to 200 Hz. [Spanish] En el presente trabajo, se llevo a cabo el estudio de los procesos de inundacion y deshidratacion de una celda de combustible tipo PEM mediante la tecnica EIS. Los experimentos fueron realizados en una celda de 50 cm{sup 2}. La inundacion gradual del sistema se indujo operando la celda a un potencial de 0.3 V de celda y manteniendo la salida de gases cerrada (i. e. estequiometria de 1 tanto en anodo (H{sub 2}) como en catodo (O{sub 2

  6. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  7. Impregnación de la perovskita La0.8Sr0.2Cr0.5Mn0.5O3-δ como ánodo en celdas SOFC

    Directory of Open Access Journals (Sweden)

    José Juan Alvarado Flores

    2015-09-01

    Full Text Available Se han sintetizado a través del método sol-gel, y caracterizado por varias técnicas, nuevos compósitos tipo perovskita de La0,8Sr0,2Cr0,5Mn0,5O3-δ (LSCM, utilizando cobre (XCu; X = 25, 35 y 45% como aditivo formador del cermet LSCM + Cu para utilizarse como ánodos alternativos en celdas de combustible de óxido sólido de temperatura intermedia (IT-SOFC. Se confirma por difracción de rayos X (XRD la formación de fase de los cermets LSCM-Cu. La conductividad eléctrica obtenida desde temperatura ambiente hasta 800 °C indica la presencia de 2 tipos de comportamiento tanto semiconductor como metálico. Cuando la concentración de Cu fue del 25 y del 35%, el comportamiento que dominó fue del tipo semiconductor. La determinación de los coeficientes de expansión térmica (TEC mostró una dependencia lineal inversamente proporcional a la concentración de Cu. Nuestros resultados de conductividad eléctrica, análisis morfológico y TEC sugieren que los ánodos con 25 y 35% de Cu tienen la mayor posibilidad para aplicarse en las celdas tipo SOFC-IT.

  8. LA CELDA, EL HÁBITO Y LA EVASIÓN EPISTOLAR EN SOR JUANA INÉS DE LA CRUZ

    Directory of Open Access Journals (Sweden)

    Luz Ángela Martínez

    2012-04-01

    Full Text Available Centrado en las representaciones plásticas de Sor Juana Inés de la Cruz, el presente trabajo reflexiona sobre la relación entre la representación del Barroco de Indias y su contexto de producción. A partir de las anteriores coordenadas, revisa la obra de la monja y la orientación epistolar que adquieren sus poemas como forma de evasión de la celda y el hábito.Focused on the visual representations of Sor Juana Inés de la Cruz, this paper reflects on the relationship between the Baroque of the Indies aesthetics and their context o production. Based on the above coordinates, it reviews the nun's work and the epistolary orientation that her poems acquire as a form of escape from the convent and habit.

  9. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  10. A photovoltaic module

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photovoltaic module comprising a carrier substrate, said carrier substrate carrying a purely printed structure comprising printed positive and negative module terminals, a plurality of printed photovoltaic cell units each comprising one or more printed...... photovoltaic cells, wherein the plurality of printed photovoltaic cell units are electrically connected in series between the positive and the negative module terminals such that any two neighbouring photovoltaic cell units are electrically connected by a printed interconnecting electrical conductor....... The carrier substrate comprises a foil and the total thickness of the photovoltaic module is below 500 [mu]m. Moreover, the nominal voltage level between the positive and the negative terminals is at least 5 kV DC....

  11. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  12. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  13. Celdas combustibles: una opción para la transformación descentralizada de energía

    Directory of Open Access Journals (Sweden)

    Julio Alberto Gavilán Yodú

    2011-02-01

    Full Text Available La solución a los problemas energéticos actuales y al progresivo deterioro del medio ambiente está estrechamenterelacionada con la elección de sistemas energéticos alternativos que sean capaces de garantizar el desarrollosostenible de todos los países. La producción descentralizada de energía, fundamentada con acierto por losdefensores del denominado camino energético suave o el camino del Sol, permite la transformación de energíacon tecnologías preferentemente no contaminantes en el lugar de consumo. Con esto se reducirían de modoconsiderable las pérdidas energéticas ocasionadas por los procesos de transmisión y distribución. La celdacombustible constituye la tecnología de mayor potencial para revolucionar el panorama energético en este siglo.Como transformador electroquímico, la conversión energética máxima posible se define por la energía libre dereacción en un régimen de temperatura relativamente bajo. En este trabajo se realiza un análisis de los diferentestipos de celdas combustibles y se caracteriza el estado actual de esta tecnología. Además, se analiza el usodel hidrógeno solar en celdas combustibles.  The solution to the actual energy problems and to the progressive damage of the environment is closely relatedwith the election of alternative energy systems that it be able to guarantee the sustainable development of all thecountries. The decentralized energy production, based with success by the defenders of the one denominatedsoft energy way or Sun way, allows the energy transformation with technologies preferably not pollutants in theplace of  consumption. It would decrease in a considerable way the energy losses caused by the transmissionprocesses and distribution. The fuel cell constitutes the technology of more potential to revolutionize the energypanorama in this century. As electrochemical transformer, the possible maximum energy conversion is definedfor the free energy of reaction in a relatively

  14. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  15. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The global solar photovoltaic market enjoyed a strong revival in 2013. Preliminary estimates put it in excess of 37 GWp, compared to 30 GWp in 2012 and 2011. The solar photovoltaic sector led the annual installed capacity ratings for renewable energies, taking worldwide capacity up to 137 GWp by the end of the year which means a 35% year-on-year increase. At global level the high growth markets - China, Japan and America - contrast sharply with the contracting European Union market. The strong recovery of the global photovoltaic market is due to the drop in module prices which in some zones has dropped below the conventional electricity price. In the E.U, in 2013 the photovoltaic electricity reached 80.2 TWh while the capacity connected during this year was 9922.2 MWp. Concerning the capacity connected in 2013 the 2 main contributors in Europe are Germany (3310.0 MWc) and Italy (1462.0 MWc). These 2 countries represent also 68% of the cumulated and connected capacity in Europe. All along the article various charts and tables give the figures of the photovoltaic capacity per inhabitant for each E.U country in 2013, the electricity production from photovoltaic power for each E.U country, and the main photovoltaic module manufacturers in 2013 worldwide reporting production and turnover

  16. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  17. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  18. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2013-01-01

    After the euphoria of 2011, the European Union's photovoltaic market slowed right down in 2012. EurObserv'ER puts newly connected capacity in 2012 at 16.5 GWp compared to 22 GWp in 2011, which is a 25% drop. At global level the market generally held up, with just over 30 GWp installed, bolstered by the build-up of the American and Asian markets. The photovoltaic electricity generated in the EU reached 68.1 TWh in 2012. The article begins with the description of the worldwide situation of photovoltaic electricity, then details the situation for each EU member with the help of tables and charts and ends with the state of photovoltaic industry at the world scale

  19. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  20. Caracterización fisicoquímica de arenas en el distrito de San Juan Bautista y su potencial uso en la fabricación de celdas solares

    OpenAIRE

    V. R., Trigoso; Universidad Nacional de la Amazonía Peruana; J. M., Rojas A.; Universidad Nacional de la Amazonía Peruana; M. I., Silveira B.; Universidad Nacional de la Amazonía Peruana; T. L., Gómez; Universidad Nacional de la Amazonía Peruana; M. W., Ruiz; Universidad Nacional de la Amazonía Peruana; M. B., Lozano; Universidad Nacional de la Amazonía Peruana; H. J., Arce; Universidad Nacional de la Amazonía Peruana; R. J., Ríos; Universidad Nacional de la Amazonía Peruana

    2016-01-01

    Esta investigación se desarrolló en la ciudad de Iquitos entre los años 2010 y 2011, por la necesidad imperativa de aprovechar los recursos naturales existentes en la comunidad de San Juan Bautista, mediante la caracterización fisicoquímica de arenas observadas en cinco canteras de esta comunidad. Los análisis realizados fueron con vistas a un potencial uso como materia prima en la fabricación de celdas solares. La caracterización fisicoquímica mostró que las arenas analizadas tienen elevada ...

  1. Applications of photovoltaics

    International Nuclear Information System (INIS)

    Pearsall, N.

    1999-01-01

    The author points out that although photovoltaics can be used for generating electricity for the same applications as many other means of generation, they really come into their own where disadvantages associated with an intermittent unpredictable supply are not severe. The paper discusses the advantages and disadvantages to be taken into account when considering a photovoltaic power system. Five main applications, based on the system features, are listed and explained. They are: consumer, professional, rural electrification, building-integrated, centralised grid connected and space power. A brief history of the applications of photovoltaics is presented with statistical data on the growth of installed capacity since 1992. The developing market for photovoltaics is discussed together with how environmental issues have become a driver for development of building-integrated photovoltaics

  2. Customized color patterning of photovoltaic cells

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  3. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The european photovoltaic market once again reached the heights in 2006, thanks to the dynamism of the German market. White paper objectives have thus been fulfilled four years ahead of schedule. The european photovoltaic sector remains however very heterogeneous with both an ultra-dominant German market (estimated at 1150 MWp in 2006) and other countries of the European Union that vary from a few kWP to a few dozen MWp. This analysis provides statistical data on the market, the capacity installed during 2005 and 2006, the photovoltaic parks and the evolution of the photovoltaic cell production. (A.L.B.)

  4. Estudios de materiales de cátodos híbridos y ánodos vítreos. Caracterización en celdas de ion litio

    Directory of Open Access Journals (Sweden)

    Cuentas-Gallegos, A. K.

    2002-02-01

    Full Text Available This paper is based on new materials applied as electrodes in rechargeable lithium batteries. We have approached the study of glassy and hybrid materials as an alternative to crystalline active materials, which capacity is frequently limited by irreversible phase transitions. We present here our latest results on hybrid cathodes, PPy/MnO2 (PPy= PPi= polypirrol and PAni/V2O5 (PAni= polyaniline, and anodes based on glasses of V-Ni-Te-O, and their combination in reversible lithium ion batteries. We have obtained the PPy/MnO2 hybrid by direct one-pot reaction of pyrrole and permanganate, and for the preparation of PAni/V2O5 we have determined the positive influence of some parameters on the electrochemical behaviour.

    Como parte de nuestros estudios de nuevos materiales de electrodos para aplicación en celdas reversibles de litio, hemos abordado el estudio de materiales vítreos e híbridos [1] como posibles alternativas a los materiales activos cristalinos, que ven frecuentemente limitada su capacidad como resultado de transiciones de fase irreversibles. Dentro de este trabajo se presentan aquí los resultados recientes sobre cátodos híbridos de PPi/MnO2 (PPi= polipirrol y de PAni/V2O5 (PAni= polianilina, y de ánodos basados en vidrios en el sistema V-Ni-Te-O, así como de su combinación en celdas reversibles de ion litio. Hemos logrado obtener mediante reacción directa de pirrol con permanganato el híbrido PPi/MnO2, y hemos observado que en la síntesis de PAni/V2O5 existen factores que influyen positivamente en su comportamiento electroquímico.

  5. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  6. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  7. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  8. Análisis y optimización de una celda de combustible de membrana de intercambio protónico; Analysis and optimization of a proton exchange membrane fuel cell using modeling techniques

    Directory of Open Access Journals (Sweden)

    Raciel de la Torre Valdés

    2015-04-01

    Full Text Available En el presente trabajo se realizó la modelación tridimensional y estacionaria de una celda de combustible de intercambio protónico empleando técnicas de modelación de dinámica de fluidos computacional, específicamente el software ANSYS FLUENT 14.5. El modelo fue comparado con datos experimentales y con resultados de otro modelo. Se analizaron los parámetros de operación del dispositivo presión y temperatura, sentido de los flujos, porosidad de los electrodos, humidificación de los gases y concentración de oxígeno. Se optimizó el diseño de la celda teniendo en cuenta las dimensiones de los canales y el espesor de la membrana. Se analizó el rendimiento de la celda funcionando con la membrana SPEEK (por sus siglas en inglés. Para realizar este estudio fue necesario modificar la expresión que describe la conductividad iónica. Se encontró que el rendimiento del dispositivo tiene gran sensibilidad a la variación de los parámetros termodinámicos y la composición de los gases. This paper proposes a three-dimensional, non-isothermal and steady-state model of Proton Exchange Membrane Fuel Cell using Computational Fluid Dynamic techniques, specifically ANSYS FLUENT 14.5. It's considered multicomponent diffusion and two-phasic flow. The model was compared with experimental published data and with another model. The operation parameters: reactants pressure and temperature, gases flow direction, gas diffusion layer and catalyst layer porosity, reactants humidification and oxygen concentration are analyzed. The model allows the fuel cell design optimization taking in consideration the channels dimensions, the channels length and the membrane thickness. Furthermore, fuel cell performance is analyzed working with SPEEK membrane, an alternative electrolyte to Nafion. In order to carry on membrane material study, it’s necessary to modify the expression that describes the electrolyte ionic conductivity. It’s found that the device

  9. Flexo-photovoltaic effect.

    Science.gov (United States)

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-04-19

    It is highly desirable to discover photovoltaic mechanisms that enable a higher efficiency of solar cells. Here, we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We introduce strain gradients using either an atomic force microscope or a micron-scale indentation system, creating giant photovoltaic currents from centrosymmetric single crystals of SrTiO 3 , TiO 2 , and Si. This strain-gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p - n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018, American Association for the Advancement of Science.

  10. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  11. Photovoltaic device

    DEFF Research Database (Denmark)

    2011-01-01

    A photovoltaic cell module including a plurality of serially connected photovoltaic cells on a common substrate, each including a first electrode, a printed light-harvesting layer and a printed second electrode, wherein at least one of the electrodes is transparent, and wherein the second electrode...... of a first cell is printed such that it forms an electrical contact with the first electrode of an adjacent second cell without forming an electrical contact with the first electrode of the first cell or the light-harvesting layer of the second cell, and a method of making such photovoltaic cell modules....

  12. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  13. Photovoltaics: The present presages the future

    International Nuclear Information System (INIS)

    Thornton, J.; Brown, L.

    1992-01-01

    This article is a technical assessment on photovoltaics and what effect new technology has on the ability of photovoltaics to compete in the utility market. The topics of the article include the solar resource, photovoltaic cells and systems, thick and thin film cells, the spherical cell, photovoltaic modules and systems, photovoltaic economics and utility applications, and technology transfer programs in the area of photovoltaic manufacturing

  14. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  15. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The european Union photovoltaic market reached the limits of the sector supply capacity for the first time. Meanwhile the prospects of growth in the photovoltaic market are still just as good as before. Silicon producers have finally responded to the expectations of the photovoltaic industry by announcing new production capacities. These extensions led to massively investing in new production capacities, in phase with ever greater demand. This increase in demand remains, however dependent upon the energy policy. (A.L.B.)

  16. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  17. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  18. Photovoltaic Product Directory and Buyers Guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  19. Fuzzy control for the operation of an electrical energy generation system based on standard fuel cells PEM; Control difuso para la operacion de un sistema de generacion de energia electrica basado en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez R, Miguel; Gutierrez A, Ruben [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Rodriguez P, Alejandro [Centro Nacional de Investigacion y Desarrollo Tecnologico (Cenidet), Cuernavaca, Morelos (Mexico)

    2005-07-01

    Fuel cells, as totally clean power plants, have many applications in the industry in general, in the transport system, in the electricity generation for domestic consumption and in the communication systems, among others. When developing new forms of generation with renewable energy sources, it must be considered that petroleum will stop in being an available power resource. The interest in the study of the fuel cells has been increased in the last years because it is considered a solution to the supply of distributed energy problem. Therefore, already exist research institutions that are developing work on this technology. A generation of electrical energy system based on fuel cells is a nonlinear system where the control of the variables of the process, such as the temperature of the system and the pressurization of the reactants, are an important aspect for its proper operation, since it influences in the water balance and therefore in the global efficiency of the system. [Spanish] Las celdas de combustible, como fuente de energia totalmente limpia, tienen muchas aplicaciones en la industria en general: en el sistema de transporte, en la generacion de electricidad para consumo domestico y en los sistemas de comunicacion, entre otros. Al desarrollar nuevas formas de generacion con fuentes de energia renovables, se debe considerar que el petroleo dejara de ser un recurso energetico disponible. El interes en el estudio de las celdas de combustible se ha incrementado en los ultimos anos debido a que se le considera una solucion al problema de abasto de energia distribuida. Por lo tanto, ya existen instituciones de investigacion que estan desarrollando trabajos sobre esta tecnologia. Un sistema de generacion de energia electrica basado en celdas de combustible es un sistema no lineal en donde el control de las variables del proceso, tales como la temperatura del sistema y la presurizacion de los reactantes, es un aspecto importante para su buen funcionamiento, ya que

  20. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  1. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  2. AUTOMATIZACIÓN DEL PROCESO DE PALETIZADO DE LA CELDA HAS-200

    Directory of Open Access Journals (Sweden)

    Iván Mauricio Granada

    2013-01-01

    Full Text Available El sistema HAS-200 se ha desarrollado teniendo en cuenta las necesidades que la industria requiere en capacitación, dado los altos niveles de automatización que se están implantando. La versatilidad y diseño de este sistema logran representar una planta de fabricación con todos los procesos de una manera real, en este proyecto se abordo un proceso que en la versión actual de la maquina no se tenía contemplado, pero si hace parte de todas las industrias y es el final de cualquier línea de producción, el paletizado, que consiste en disponer los productos finales de tal manera que se facilite su proceso de embalaje, despacho y control de almacén. El desarrollo se fundamento en la base de datos que maneja la HAS-200, en esta se encuentra toda la información referente a la producción incluyendo la identificación del cliente para quien se ordeno el producto, que fue el parámetro escogido para realizar el proceso de paletizado. Como resultado se obtuvo una aplicación capaz de realizar la conexión con la base de datos, para accesarla y realizar la consulta pertinente además de visualizar  el estado del almacén, la automatización se implemento con un brazo robótico y los elementos de sensado e identificación del producto, alcanzando una autonomía total del proceso, obteniendo con esto un nuevo modulo para la celda de fabricación flexible, y cerrando por completo el ciclo de producción que se pretende emular mediante la HAS-200.

  3. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  4. Photovoltaic technology diffusion. Contact and interact

    International Nuclear Information System (INIS)

    Kruijsen, J.

    1999-09-01

    How can the diffusion of photovoltaic technologies be advanced? Photovoltaics convert light into electrical energy. They are environmentally friendly, reliable and have minimal maintenance requirements. Up to now, their introduction into the electricity market has been dominated by a technology push perspective. However, this has not yet resulted in a large-scale implementation. This thesis describes a network approach to advance photovoltaic diffusion and presents four guiding principles intended for the parties concerned: those who supply the photovoltaic technologies (e.g., developers of photovoltaic cells); those who integrate photovoltaic technologies into (new) product systems (e.g., engineering firms); the users of photovoltaic systems (e.g., housing corporations); and those who stimulate the use of photovoltaics (e.g., policymakers, subsidisers, branch organisations, financial institutes, and NGOs). refs

  5. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  6. Road map for photovoltaic electricity

    International Nuclear Information System (INIS)

    2011-02-01

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  7. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  8. A novel application for concentrator photovoltaic in the field of agriculture photovoltaics

    Science.gov (United States)

    Liu, Luqing; Guan, Chenggang; Zhang, Fangxin; Li, Ming; Lv, Hui; Liu, Yang; Yao, Peijun; Ingenhoff, Jan; Liu, Wen

    2017-09-01

    Agriculture photovoltaics is a trend setting area which has already led to a new industrial revolution. Shortage of land in some countries and desertification of land where regular solar panels are deployed are some of the major problems in the photovoltaic industry. Concentrator photovoltaics experienced a decline in applicability after the cost erosion of regular solar panels at the end of the last decade. We demonstrate a novel and unique application for concentrator photovoltaics tackling at a same time the issue of conventional photovoltaics preventing the land being used for agricultural purpose where ever solar panels are installed. We leverage the principle of diffractive and interference technology to split the sun light into transmitted wavelengths necessary for plant growth and reflected wavelengths useful for solar energy generation. The technology has been successfully implemented in field trials and sophisticated scientific studies have been undertaken to evaluate the suitability of this technology for competitive solar power generation and simultaneous high-quality plant growth. The average efficiency of the agriculture photovoltaic system has reached more than 8% and the average efficiency of the CPV system is 6.80%.

  9. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  10. Photovoltaic roof construction

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  11. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  12. Photovoltaic product directory and buyers guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  13. Photovoltaic cell module and method of forming

    Science.gov (United States)

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  14. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  15. Photovoltaics in the Department of Defense

    International Nuclear Information System (INIS)

    Chapman, R.N.

    1997-01-01

    This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense's Tri-Service Photovoltaic Review Committee and the committee's strategic plan to realize photovoltaic's full potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic's potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today's prices. The paper describes photovoltaic's potential within the Department of Defense, the status and features of the 2.1-MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s. copyright 1997 American Institute of Physics

  16. US photovoltaic patents: 1991--1993

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  17. Characterization of gold and nickel coating on AISI 304 stainless steel for use in the fabrication of current collector plates for fuel cells; Caracterizacion de recubrimientos de oro y niquel realizados sobre acero inoxidable AISI 304 para su empleo en la fabricacion de placas colectoras de corriente para celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Aguilar Gama, M. Tulio [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Olvera, J. Carlos; Orozco, German [CIDETEQ, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    Among the different components that compose fuel cell technology (MEA, bipolar plates, seals, etc.) current collector plates play an important role in the good performance of fuel cells, since they collect all of the current generated and distribute it to the external circuit. Therefore, the most important properties that the current collector plates should have are excellent conductivity and good resistance to the corrosive conditions present in the fuel cell. This document presents results obtained during the nickel and gold electrodeposition process on AISI 304 stainless steel and the morphology and thickness of each coating, their adhesion, hardness and conductivity values. Finally, results obtained during some of the electrochemical tests performed on the coatings are shown. [Spanish] De los diferentes componentes que integran la tecnologia de celdas de combustible (MEA's, placas bipolares, sellos, etc.), las placas colectoras de corriente tienen un importante rol en el buen desempeno de la celdas de combustibles, ya que en estas placas se colecta toda la corriente generada y se distribuye al circuito externo. Debido a esto, las propiedades mas importantes que deben tener las placas colectaras de corriente son: excelente conductividad y buena resistencia a las condiciones corrosivas presentes en la celda de combustible. En este documento se presentan los resultados obtenidos en el proceso de electrodeposicion de niquel y oro sobre acero inoxidable AISI 304, asi como la morfologia y el espesor de cada recubrimiento, sus valores de adherencia, dureza y conductividad. Finalmente se muestran tambien los resultados obtenidos de algunas pruebas electroquimicas a los que fueron sometidos los recubrimientos.

  18. Photovoltaic applications

    International Nuclear Information System (INIS)

    Sidrach, M.

    1992-01-01

    The most common terrestrial applications of photovoltaic plants are reviewed. Classification of applications can be done considering end-use sectors and load profiles (consumption demand). For those systems with direct coupling the working point is determined by the intersection of the load line with the I-V curve Design guidelines are provided for photovoltaic systems. This lecture focusses on the distribution system and safeguards

  19. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  20. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  1. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  2. Can photovoltaic replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    As the French law on energy transition for a green growth predicts that one third of nuclear energy production is to be replaced by renewable energies (wind and solar) by 2025, and while the ADEME proposes a 100 per cent renewable scenario for 2050, this paper proposes a brief analysis of the replacement of nuclear energy by solar photovoltaic energy. It presents and discusses some characteristics of photovoltaic production: production level during a typical day for each month (a noticeable lower production in December), evolution of monthly production during a year, evolution of the rate between nuclear and photovoltaic production. A cost assessment is then proposed for energy storage and for energy production, and a minimum cost of replacement of nuclear by photovoltaic is assessed. The seasonal effect is outlined, as well as the latitude effect. Finally, the authors outline the huge cost of such a replacement, and consider that public support to new photovoltaic installations without an at least daily storage mean should be cancelled

  3. Organic photovoltaics. Technology and market

    International Nuclear Information System (INIS)

    Brabec, Christoph J.

    2004-01-01

    Organic photovoltaics has come into the international research focus during the past three years. Up to now main efforts have focused on the improvement of the solar conversion efficiency, and in recent efforts 5% white light efficiencies on the device level have been realized. Despite this in comparison to inorganic technologies low efficiency, organic photovoltaics is evaluated as one of the future key technologies opening up completely new applications and markets for photovoltaics. The key property which makes organic photovoltaics so attractive is the potential of reel to reel processing on low cost substrates with standard coating and printing processes. In this contribution we discuss the economical and technical production aspects for organic photovoltaics

  4. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  5. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  6. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  7. Aplicación de celda fotoacústica diferencial en la determinación de la permeabilidad de agua en hueso descalcificado

    Directory of Open Access Journals (Sweden)

    María de Lourdes Cortés-Ibarra

    2008-07-01

    Full Text Available La espectroscopia mediante celda fotoacústica diferencial (CFD tiene la capacidad de medir in situ el desarrollo de diversos procesos dinámicos, entre otros la difusión de agua a través de una membrana. Mediante esta técnica se realizó el estudio de permeación de agua en huesos de rata Wistar sanos y descalcificados. Los huesos descalcificados fueron tratados mediante estimulación electromagnética a fin de evaluar la actividad celular en el hueso y, en su caso, detener la descalcificación del mismo. En este trabajo fue posible determinar la viabilidad de la CFD para la evaluación de densidad ósea indirectamente, siendo posible efectuar la evaluación in situ de permeación de agua, así como la cantidad de agua retenida en la estructura ósea al finalizar las pruebas en CFD. Palabras clave: electromagnetismo; estimulación;  huesos; osteoporosis; electromagnetism; stimulation; bones; osteoporosis

  8. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  9. Organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  10. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects.

    Science.gov (United States)

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-01-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm²) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.

  11. Photovoltaic technologies

    OpenAIRE

    Bagnall, Darren M; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power in...

  12. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    spain and Germany set the pace for the world photovoltaic market in 2008, which grew to more than twice its 2007 size. The European Union continued to drive photocell installation with an additional 4 592.3 MWp in 2008, or 151.6% growth over 2007. However, European growth prospects for the photovoltaic market in 2009 are being dampened by the global financial crisis and the scheduled slow-down of the Spanish market. (author)

  13. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  14. A comparative performance study of a photovoltaic concentrator system with discrete mirror and continuos profile for two different absorber shapes

    Energy Technology Data Exchange (ETDEWEB)

    H, Saiful; Rezau, K.M [University of Dhaka, Dhaka (Bangladesh)

    2000-07-01

    Profiles of parabolic concentrators of discrete mirror and continuos surface mirror have been designed for combined electrical thermal photovoltaic systems. In the design the changes of concentration ratio, effect of reflection, angle of incidence over the absorber have been taken into account for maximum energy collection. The performances of the system are studied for solar cells of modified grid finger for illuminations from 1-10 sun. The local concentration ratio (LCR) distribution over the absorbers for both the concentrator, the optical efficiency, thermal efficiency, electrical and thermal power output and overall efficiency have been evaluated for different values of beam radiation concentration ratio and focal distance. [Spanish] Se han disenado perfiles de concentradores parabolicos de espejo discreto y de superficie continua para sistemas fotovoltaicos combinados electricos y termicos. En el diseno los cambios de la proporcion de concentracion, del efecto de la reflexion, del angulo de incidencia sobre el observador se han tenido en cuenta para una maxima recoleccion de energia. Los rendimientos del sistema se han estudiado para celdas solares de parrilla modificada para iluminaciones solares de 1-10. Han sido evaluados para diferentes valores de la proporcion de la concentracion de la radiacion en el rayo y la distancia focal la proporcion de concentracion local (LCR) de la distribucion en los absorbedores, para el concentrador la eficiencia optica, la eficiencia termica, electrica, la produccion de energia termica y electrica y la eficiencia total.

  15. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  16. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  17. Photovoltaic Bias Generator

    Science.gov (United States)

    2018-02-01

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the photovoltaic bias generator showing wrapped-wire side of circuit board...3 Fig. 4 Interior view of the photovoltaic bias generator showing component side of circuit board

  18. Transparent contacts for stacked compound photovoltaic cells

    Science.gov (United States)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  19. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  20. Interdisciplinariedad aplicada a una tecnología actual, en el diseño de una celda robotizada

    Directory of Open Access Journals (Sweden)

    Odorico, Arnaldo Héctor

    2007-01-01

    Full Text Available En menos de 30 años la robótica ha pasado de ser un mito, propio de la imaginación de algunos autores literarios, a una realidad imprescindible en el actual mercado productivo. La robótica posee un reconocido carácter interdisciplinario, participando en ella diferentes disciplinas básicas, y tecnológicas tales como la teoría de control, la mecánica, la electrónica, y la informática, entre otras. El presente trabajo tiene como objetivo establecer conexiones interdisciplinarias, enfocando el diseño de una celda robotizada y el software apropiado que permita facilitar dicho desarrollo. Se intenta además, responder a la pregunta: ¿Cómo es el uso didáctico de los programas de computadora en el aula, para la concreción de mejores aprendizajes? Por este motivo se ha procurado llegar a un equilibrio entre los temas relacionados con el conocimiento del funcionamiento de un robot (en los aspectos mecánico, informático y de control y aquellos en los que se proporcionan los criterios para evaluar la conveniencia de utilizar un robot y el modo más adecuado de hacerlo.

  1. Photovoltaics in Poland

    International Nuclear Information System (INIS)

    Pietruszko, Stanislaw M.

    2003-01-01

    The legislative framework and financing possibilities for photovoltaics (PV) in Poland are presented. Barriers that exist or can be encountered in implementing PV technology in Poland are identified. This paper also discusses future prospects and possibilities for developing photovoltaics in Poland. Finally, the paper suggests ways to promote, disseminate, and deploy PV technology in Poland. (Author)

  2. Clean electricity from photovoltaics

    CERN Document Server

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  3. International Photovoltaic Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

  4. Materials for Photovoltaic Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana

    Energy priorities are changing nowadays. As mankind will probably have to face energy crisis, factors such as energy independence, energy security, stability of energy supply and the variety of energy sources become much more vital these days. Photovoltaics is exceptional compared to other renewable sources of energy due to its wide opportunity to gain energetic and environmental benefits. An overview of the present state of knowledge of the materials aspects of photovoltaic cells will be given, and new semiconductor materials, including nanomaterials, with potential for application in photovoltaic devices will be identified.

  5. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  6. Photovoltaic research and development

    CSIR Research Space (South Africa)

    Cummings, F

    2009-09-01

    Full Text Available Photovoltaic (PV) is the direct conversion of sunlight into electrical energy through a solar cell. This presentation consists of an introduction to photovoltaics, the South African PV research roadmap, a look at the CSIR PV research and development...

  7. Case Study - Monitoring the Photovoltaic Panels

    OpenAIRE

    PACURAR Ana Talida; TOADER Dumitru; PACURAR Cristian

    2014-01-01

    The photovoltaic cell represents one of the most dynamic and attractive way to converts renewable energy sources in electricity production. That means to convert solar energy into electricity. In this paper is presented a analogy between two types of photovoltaic panels installed, with educational role for students. Also the objective of this paper is to estimate the performance of photovoltaic panels and to provide the best solution for industry. These two types of photovoltaic panels wer...

  8. Grounds of two positions photovoltaic panels

    OpenAIRE

    Castán Fortuño, Fernando

    2008-01-01

    The objective of this Master Thesis is to find the optimum positioning for a two positions photovoltaic panel. Hence, it will be implemented a model in order to optimize the energy of the sun that the photovoltaic panel is receiving by its positioning. Likewise this project will include the comparison with other photovoltaic panel systems as the single position photovoltaics panels. Ultimately, it is also going to be designed a system array for the optimized model of two positions photovoltai...

  9. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  10. Applied photovoltaics

    CERN Document Server

    Wenham, Stuart R; Watt, Muriel E; Corkish, Richard; Sproul, Alistair

    2013-01-01

    The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells,

  11. Special issue photovoltaic

    International Nuclear Information System (INIS)

    2004-01-01

    In this letter of the INES (french National Institute of the Solar Energy), a special interest is given to photovoltaic realizations in Europe. Many information are provided on different topics: the China future fifth world producer of cells in 2005, batteries and hydrogen to storage the solar energy and a technical sheet on a photovoltaic autonomous site installation for electric power production. (A.L.B.)

  12. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  13. Pyroelectric photovoltaic spatial solitons in unbiased photorefractive crystals

    International Nuclear Information System (INIS)

    Jiang, Qichang; Su, Yanli; Ji, Xuanmang

    2012-01-01

    A new type of spatial solitons i.e. pyroelectric photovoltaic spatial solitons based on the combination of pyroelectric and photovoltaic effect is predicted theoretically. It shows that bright, dark and grey spatial solitons can exist in unbiased photovoltaic photorefractive crystals with appreciable pyroelectric effect. Especially, the bright soliton can form in self-defocusing photovoltaic crystals if it gives larger self-focusing pyroelectric effect. -- Highlights: ► A new type of spatial soliton i.e. pyroelectric photovoltaic spatial soliton is predicted. ► The bright, dark and grey pyroelectric photovoltaic spatial soliton can form. ► The bright soliton can also exist in self-defocusing photovoltaic crystals.

  14. International photovoltaic program. Volume 2: Appendices

    Science.gov (United States)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-01-01

    The results of analyses conducted in preparation of an international photovoltaic marketing plan are summarized. Included are compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about the how US government actions could affect this market;international financing issues; and information on issues affecting foreign policy and developing countries.

  15. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  16. Actividades prácticas del grupo GEIO automatizadas en la Celda Manufactura Flexible

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Zuluaga-Ramírez

    2014-01-01

    Full Text Available El artículo expone los resultados de un proyecto que buscó la articulación de las investigaciones realizadas por el Laboratorio de Manufactura Flexible y el Grupo en la Enseñanza de la Investigación de Operaciones GEIO, pertenecientes a la Facultad de Ingeniería Industria de la Universidad Tecnológica de Pereira. Su objetivo principal consistió en permitir a los estudiantes la utilización de espacios de investigación en donde se pudieran generar trabajos para facilitar la interrelación y aplicación de conceptos vistos en diversas materias. Para alcanzar el objetivo, se hizo una adaptación de las lúdicas generadas desde el grupo GEIO, a través de la utilización de los centros automatizados y el software especializado del laboratorio de manufactura flexible, creando así prácticas en donde se unieron de forma sistémica los beneficios brindados desde la lúdica, como son aplicación, contextualización, vivencia de conceptos y los ofrecidos por la celda de manufactura flexible como la automatización de procesos, manejo del lenguaje de programación y uso de tecnologías para mejorar los sistemas productivos. La integración de estos espacios generadores de conocimiento aportó a la formación de competencias técnicas en los estudiantes de Ingeniería Industrial, ya que pudieron tomar un proceso productivo básico poco automatizado, proveniente de un micromundo generado a través de la lúdica y llevarlo a un plano profesional y tecnológico, mecanizándolo con el uso de maquinaria y herramienta especializada empleada en las industrias reales.

  17. Characterization of Photovoltaic Generators

    Science.gov (United States)

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  18. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  19. The players of the photovoltaic sector in France

    International Nuclear Information System (INIS)

    Houot, G.

    2012-01-01

    This document reviews 338 players in the French photovoltaic industry. Each player can be the owner of a photovoltaic power plant, or its operator, or the manufacturer of photovoltaic systems, or the manufacturer of components involved in photovoltaic systems, or the equipment wholesaler, or the designer of photovoltaic projects, or the photovoltaic system installer. For each player some pieces of information are gathered: a brief history of the enterprise, the enterprise activity, its staff, its turnover, its main achievements and its prospects. (A.C.)

  20. Nanostructured Photovoltaics for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NSTRF proposal entitled Nanostructured Photovoltaics for Space Power is targeted towards research to improve the current state of the art photovoltaic...

  1. Print-Assisted Photovoltaic Assembly (PAPA)

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an innovative method for the fabrication of thin-film photovoltaic panels. Print-Assisted Photovoltaic Assembly, or PAPA,...

  2. Plastic photovoltaic devices

    OpenAIRE

    Niyazi Serdar Sariciftci

    2004-01-01

    The development of organic, polymer-based photovoltaic elements has introduced the possibility of obtaining cheap and easy-to-produce energy from light. Photoinduced electron transfer from donor-type semiconducting polymers onto acceptor-type polymers or molecules, such as C60, is the basic phenomenon utilized in these photovoltaic devices. This process mimics the early photo-effects in natural photosynthesis. The polymeric semiconductors combine the photoelectrical properties of inorganic se...

  3. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  4. Photovoltaic venture analysis. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Posner, D.; Schiffel, D.; Doane, J.; Bishop, C.

    1978-07-01

    This appendix contains a brief summary of a detailed description of alternative future energy scenarios which provide an overall backdrop for the photovoltaic venture analysis. Also included is a summary of a photovoltaic market/demand workshop, a summary of a photovoltaic supply workshop which used cross-impact analysis, and a report on photovoltaic array and system prices in 1982 and 1986. The results of a sectorial demand analysis for photovoltaic power systems used in the residential sector (single family homes), the service, commercial, and institutional sector (schools), and in the central power sector are presented. An analysis of photovoltaics in the electric utility market is given, and a report on the industrialization of photovoltaic systems is included. A DOE information memorandum regarding ''A Strategy for a Multi-Year Procurement Initiative on Photovoltaics (ACTS No. ET-002)'' is also included. (WHK)

  5. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  6. Evaluation of the different supported bifunctional electrocatalysts for unified regenerative cells; Evaluacion de diferentes soportes de electrocatalizadores bifuncionales para celdas regenerativas unificadas

    Energy Technology Data Exchange (ETDEWEB)

    Gurrola, M. P.; Torres-Amaya, D. S.; Duron-Torres, S. M.; Escalante-Garcia, I. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Ciencias Quimicas, Zacatecas (Mexico)]. E-mail: duronsm@prodigy.net.mx; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    Unified regenerative fuel cells (URFC) represent an alternative to normal regenerative cells, providing decreased costs and space in one single device. The challenges of these systems are even greater than those for conventional fuel cells, with the most pressing technical problem being the optimization of the oxygen electrode. The high operating potentials of these devices in the electrolyzer mode, E >1.6 V vs. ENH, limit the use of supported Pt/Vulcan electrodes. The electroactivity of Pt is not sufficient to catalyze the oxygen evolution reaction (OER) and at these potentials carbon-based supports undergo corrosion. In addition to studies of materials that function as bifunctional catalysts, a significant amount of research is being aimed at the search of new matrixes for use in supporting electrocatalysts for OER and ORR{sup 1,2}. This work presents the preliminary results of the kinetic study of oxygen reactions on different Pt combinations, with IrO{sub 2} and RuO{sub 2} supported by different forms of carbon and substoichiometric titanium oxide. The studies were conducted using cyclical (CV) and linear (LV) voltamperometry for OER and rotary disc electrode (RDE) for the ORR in watery H{sub 2}SO{sub 4} 0.5M solutions. The chronoamperometry (CA) technique provided information about the electrochemical stability of the electrodes. The results indicate that the performance of the electrodes supported by different forms of carbon decreases gradually as a result of corrosion when consecutive cycles of oxygen reduction and formation reactions occur. Titanium oxide provides the greatest stability to electrodes constructed on that material and thus can potentially support oxygen electrodes based on combinations of Pt, IrO{sub 2} and RuO{sub 2} as binfunctional electrocatalysts for the URFC. [Spanish] Las celdas de combustible regenerativas unificadas (URFC) representan una alternativa a las celdas regenerativas normales que implica disminucion de costos y espacio en

  7. Standard Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic Device and a Photovoltaic Reference Cell

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a procedure for the determination of a spectral mismatch parameter used in performance testing of photovoltaic devices. 1.2 The spectral mismatch parameter is a measure of the error, introduced in the testing of a photovoltaic device, caused by mismatch between the spectral responses of the photovoltaic device and the photovoltaic reference cell, as well as mismatch between the test light source and the reference spectral irradiance distribution to which the photovoltaic reference cell was calibrated. Examples of reference spectral irradiance distributions are Tables E490 or G173. 1.3 The spectral mismatch parameter can be used to correct photovoltaic performance data for spectral mismatch error. 1.4 This test method is intended for use with linear photovoltaic devices. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, a...

  8. A kick to the photovoltaic industry

    International Nuclear Information System (INIS)

    Deye, M.; Remoue, A.

    2010-01-01

    In order to stop the speculation fever and to stabilize the photovoltaic trade, the French government has decided to lower some of the warranted electricity repurchase tariffs related to photovoltaic power generation. This announcement should have important impacts on the photovoltaic industry which will redirect its means and products towards the residential sector. (J.S.)

  9. Process Development for Nanostructured Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  10. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  11. Survey of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    In developing this survey of photovoltaic systems, the University of Alabama in Huntsville assembled a task team to perform an extensive telephone survey of all known photovoltaic manufacturers. Three US companies accounted for 77% of the total domestic sales in 1978. They are Solarex Corporation, Solar Power Croporation, and ARCO Solar, Inc. This survey of solar photovoltaic (P/V) manufacturers and suppliers consists of three parts: a catalog of suppliers arranged alphabetically, data sheets on specific products, and typical operating, installation, or maintenance instructions and procedures. This report does not recommend or endorse any company product or information presented within as the results of this survey.

  12. Photovoltaic barometer; Barometre photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-04-15

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  13. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  14. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  15. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la

  16. A MARKETING STRATEGY ON PHOTOVOLTAIC MARKET

    Directory of Open Access Journals (Sweden)

    Coita Dorin Cristian

    2008-05-01

    Full Text Available Photovoltaic is an increasingly important energy technology. Deriving energy from the sun offers numerous environmental benefits. It is an extremely clean energy source, and few other power-generating technologies have as little environmental impact as photovoltaic. In this article we explored some dimensions of photovoltaic market and suggested a marketing strategy for solar panels manufacturers

  17. Novel Materials for Photovoltaic Technologies: Preprint

    International Nuclear Information System (INIS)

    Alivisatos, P.; Carter, S.; Ginley, D.; Nozik, A.; Meyer, G.; Rosenthal, S.

    1999-01-01

    While existing photovoltaic technologies continue to advance, there are still many exciting opportunities in the area of novel materials. These opportunities arise because there is a substantial need for reducing the costs associated with the preparation and processing of photovoltaics, and because the theoretically possible photovoltaic efficiencies have yet to be achieved in practical devices. Thus it remains reasonable to continue photovoltaic research activity aimed at entirely new approaches to processing and at entirely new materials as the active media. This group identified three areas for further consideration: (a) Nano/molecular composites and hierarchical structures; (b) Organic semiconductors; and (c) Hot carrier devices

  18. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  19. Productividad en una celda de manufactura flexible simulada en promodel utilizando path networks type crane

    Directory of Open Access Journals (Sweden)

    María Elena Bernal Loaiza

    2015-04-01

    Full Text Available Esta investigación se centra en el diseño de una simulación del proceso de una celda de manufactura flexible (FMC de la Facultad de Ingeniería Industrial de la Universidad Tecnológica de Pereira, con el propósito de medir y elegir aquella alternativa de solución que mejore en mayor grado la productividad del sistema actual utilizando los resultados que proporciona el software Promodel. Para realizar lo anterior se utilizaron etapas de la simulación como definición del sistema, formulación del modelo, identificación de variables, recolección de datos, implementación e interpretación.Como resultado, se calculó la productividad teniendo en cuenta las variables del modelo y tiempo de la simulación, al mismo tiempo se interpretó la información de cada una de las locaciones, hallando el porcentaje de utilización y total de entidades para las locaciones con capacidad unitaria; para las locaciones con mayor capacidad se encuentra información referente al porcentaje de tiempo vacío, parcialmente ocupado, lleno y no disponible respecto del tiempo disponible. A diferencia de otras simulaciones, en este diseño en la parte de redes se utilizó el tipo de red Crane, asociado a los recursos del modelo. El cual facilita el desplazamiento de los brazos robots con las piezas que circulan a través del sistema.

  20. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  1. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  2. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    The european market showed all of its strength and soundness in 2005. The 2005 installed cells growth could have been even greater if the market had not been continually curbed by a lack of raw materials. Germany remained the leading photovoltaic market in the world in 2005, positioned far ahead of Japan and the USA. This unabashed success inspired both Spain and Italy, which set up conditions in order to rapidly develop their photovoltaic sectors. (A.L.B.)

  3. Photovoltaic policy is questioned

    International Nuclear Information System (INIS)

    Piro, P.; Cessac, M.

    2011-01-01

    The French government has decided a freeze and a reassessment of the measures taken to support the photovoltaic sector. Only the installations with a power output over 3 kWc are concerned so the market of solar roofs for homes is spared. The main reasons for this reversal is the quick and chaotic development of photovoltaic projects, a lot of projects are only motivated by the lure of high purchase prices of the electricity produced imposed by the law on EDF. Another reason is that 90% of the solar panels installed in France come from China, the photovoltaic sector retorts that 75% of the price of a complete installation pays for services produced in France. (A.C.)

  4. Optimal sizing of utility-scale photovoltaic power generation complementarily operating with hydropower: A case study of the world’s largest hydro-photovoltaic plant

    International Nuclear Information System (INIS)

    Fang, Wei; Huang, Qiang; Huang, Shengzhi; Yang, Jie; Meng, Erhao; Li, Yunyun

    2017-01-01

    Highlights: • Feasibility of complementary hydro-photovoltaic operation across the world is revealed. • Three scenarios of the novel operation mode are proposed to satisfy different load demand. • A method for optimally sizing a utility-scale photovoltaic plant is developed by maximizing the net revenue during lifetime. • The influence of complementary hydro-photovoltaic operation upon water resources allocation is investigated. - Abstract: The high variability of solar energy makes utility-scale photovoltaic power generation confront huge challenges to penetrate into power system. In this paper, the complementary hydro-photovoltaic operation is explored, aiming at improving the power quality of photovoltaic and promoting the integration of photovoltaic into the system. First, solar-rich and hydro-rich regions across the world are revealed, which are suitable for implementing the complementary hydro-photovoltaic operation. Then, three practical scenarios of the novel operation mode are proposed for better satisfying different types of load demand. Moreover, a method for optimal sizing of a photovoltaic plant integrated into a hydropower plant is developed by maximizing the net revenue during lifetime. Longyangxia complementary hydro-photovoltaic project, the current world’s largest hydro-photovoltaic power plant, is selected as a case study and its optimal photovoltaic capacities of different scenarios are calculated. Results indicate that hydropower installed capacity and annual solar curtailment rate play crucial roles in the size optimization of a photovoltaic plant and complementary hydro-photovoltaic operation exerts little adverse effect upon the water resources allocation of Longyangxia reservoir. The novel operation mode not only improves the penetration of utility-scale photovoltaic power generation but also can provide a valuable reference for the large-scale utilization of other kinds of renewable energy worldwide.

  5. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  6. Photovoltaic Technology and Applications | Othieno | Discovery and ...

    African Journals Online (AJOL)

    Photovoltaic home systems appear to be the most viable alternative source of electricity. The photovoltaic technology is therefore reviewed and recommendations made on their application for rural electrification in the developing nations. Keywords: solar energy, photovoltaic materials, electrification, rural power, cost, ...

  7. Photorefraction in crystals with nonstationary photovoltaic current

    International Nuclear Information System (INIS)

    Volk, T.R.; Astaf'ev, S.B.; Razumovskij, N.V.

    1995-01-01

    Effect of photovoltaic current nonstationary components, conditioned by nonstationary character of photovoltaic centers, on photorefractive properties of LiNbO 3 crystals is considered. Analytic expressions describing nonstationary photovoltaic current effect on kinetics of recording and optical erasure of photorefraction are obtained. A possibility of nonstationary photovoltaic current occurrence in crystals with multilevel charge transfer circuit is considered. Recording light pulse duration effect on photorefraction in LiNbO 3 is discussed. 25 refs., 8 figs

  8. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  9. Energizing architecture. Design and photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lueling, Claudia (ed.)

    2009-07-01

    Power generation by photovoltaic systems and buildings is much more than just an alternative to traditional electric power generation. As the planning and design of photovoltaics is increasingly shifting to the forefront, it is rapidly becoming a new challenge for architecture. This book describes the whole spectrum of possible applications - from inspiration to detail - of photovoltaics as an integral part of building envelopes and introduces groundbreaking examples and visions for the future, in which photovoltaic elements work as a successful part of exterior facades - combined with highly luminous and economical illuminated wallpaper and curtains inside buildings. Its range extends from early designs by artists such as Daniel Hausig to aspects of material selection to detail drawings of implemented solutions. The enormous variety of possible applications of this new (building) material demonstrates the huge potential it possesses. (orig.)

  10. A sensitivity analysis of central flat-plate photovoltaic systems and implications for national photovoltaics program planning

    Science.gov (United States)

    Crosetti, M. R.

    1985-01-01

    The sensitivity of the National Photovoltaic Research Program goals to changes in individual photovoltaic system parameters is explored. Using the relationship between lifetime cost and system performance parameters, tests were made to see how overall photovoltaic system energy costs are affected by changes in the goals set for module cost and efficiency, system component costs and efficiencies, operation and maintenance costs, and indirect costs. The results are presented in tables and figures for easy reference.

  11. Overview of new-generation photovoltaic technologies

    International Nuclear Information System (INIS)

    Della Sala, D.; Moro, A.; Fidanza, A.; Di Francia, G.; Giorgi, R.

    2008-01-01

    The number of photovoltaic installation is rising in Italy, but they are all based on imported technologies. This article describes some new types of photovoltaic cells that benefit from powerful synergies with other sectors. ENEA can help speed their development by exploiting its long experience with photovoltaic and the growing body of know-how on the new frontiers of electronics and new materials [it

  12. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  13. Silicon processing for photovoltaics II

    CERN Document Server

    Khattak, CP

    2012-01-01

    The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the

  14. Trends of Photovoltaic Research, Development and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Yoon, K. H.; Yu, K. J. [Korea Institute of Energy Research (Korea)

    2000-07-01

    The Korean National Photovoltaic Project was initiated on October 1989 to develop technologies for the generation of economically competitive electric power by photovoltaic systems. It consists of four stages through the year 2006 with technical goals and cost targets related with solar cells, balance of systems and system application. The objectives of the project are to utilize photovoltaic technology, to transfer developed technology to industries and end users by research activities and to diffuse photovoltaic systems by demonstration projects. This paper reviews long-term plan and status of technology R and D, and markets of photovoltaic. Some activities designed to promote collaboration with foreign countries are also introduced. (author). 14 refs., 3 figs., 3 tabs.

  15. Home Photovoltaic System Design in Pangkalpinang City

    Science.gov (United States)

    Sunanda, Wahri

    2018-02-01

    This research aims to obtain the design of home photovoltaic systems in Pangkalpinang and the opportunity of economic savings. The system consists of photovoltaic with batteries. Based on electricity consumption of several houses with installed power of 1300 VA and 2200 VA in Pangkalpinang for one year, the daily load of photovoltaic system is varied to 40%, 30% and 20% of the average value of the daily home electricity consumption. The investment costs, the cost of replacement parts and the cost of electricity consumption accrued to PLN during lifetime of systems (25 years) are also calculated. The result provided that there are no economic saving opportunities for photovoltaic systems with batteries at home with installed power of 1300 VA and 2200 VA in Pangkalpinang. The most economical is the photovoltaic system with the daily load of 20% of the average value of the daily home electricity consumption. The configuration of photovoltaic system for 1300 VA home consists of 10 modules of 200 wattpeak and 4 batteries 150 AH, 12 Volt while photovoltaic system for 2200 VA home consists of 15 modules of 200 wattpeak and 6 batteries 150 AH,12Volt.

  16. International photovoltaic products and manufacturers directory, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  17. Photovoltaic energy in Germany: experience feedback

    International Nuclear Information System (INIS)

    Persem, Melanie

    2011-01-01

    This document presents some key information and figures about the development of photovoltaic energy in Germany: resource potential, 2000-2010 development, share in the energy mix, market, legal framework and incentives, market evolution and electricity feed-in tariffs, 2006-2011 evolution of photovoltaic power plant costs, households' contribution, R and D investments, industry development and employment, the German national energy plan after Fukushima, the expectations of the German photovoltaic industry

  18. Photovoltaics manufacturer's overview of interactions with customers of photovoltaic products

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1982-11-01

    Communications between the customer and manufacturer of photovoltaic products often require time-consuming interaction before each has the necessary information. Customers appear not to know what information is needed by the supplier to size photovoltaic systems properly nor are they adequately able to estimate their own system needs. Customers can make unrealistic measurement demands and do not provide feedback to the supplier on system performance in the field.

  19. Penetration of Photovoltaics in Greece

    Directory of Open Access Journals (Sweden)

    Eugenia Giannini

    2015-06-01

    Full Text Available Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach transformed photovoltaic technology from a prohibitively expensive to a competitive one. This work aims to summarize the relevant legislation and illustrate its effect on the resulting penetration. A sigmoid-shape penetration was observed which was explained by a pulse-type driving force. The return on investment indicator was proposed as an appropriate driving force, which incorporates feed-in-tariffs and turnkey-cost. Furthermore, the resulting surcharge on the electricity price due to photovoltaic penetration was also analyzed.

  20. Microinverters for employment in connection with photovoltaic modules

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat; Johnson, Brian Benjamin; Krein, Philip T.

    2015-09-22

    Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.

  1. Solar Photovoltaic Technology Basics | NREL

    Science.gov (United States)

    Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Photo of a large silicon solar

  2. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  3. Photovoltaics

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the photovoltaics. It presents the principles and the applications, the issues and the current technology, the challenges and the Group Total commitment in the domain. (A.L.B.)

  4. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  5. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  6. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  7. Photovoltaic building sheathing element with anti-slide features

    Science.gov (United States)

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  8. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    Science.gov (United States)

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  9. Optimizing Grid Patterns on Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  10. Photovoltaic Self-Consumption; Autoconsumo fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Abella, M.; Chenlo Romero, F.

    2013-02-01

    This paper analyzes the photovoltaic (PV) self consumption, or the option of using photovoltaic systems connected to the electric grid for the purpose of consuming the PV generated energy in the own installation (homes, small industries, office buildings, etc.) in order to reduce the external demand and the electric bill. At this time there is a legal vacuum regarding the installation of these generation systems for self-consumption, and the PV business sector and society are calling for the establishment of a legal and economic framework. Assuming that what can be saved with a photovoltaic system for domestic self-consumption is the cost of the kWh consumed currently 15c/kWh that there are no additional charges and that the cost of the turnkey photovoltaic system currently ranges from 1.8/Wp to 2.5/Wp, the resulting amortization period would be between 8 and 11 years for the condition of annual net metering. (Author) 31 refs.

  11. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  12. Photovoltaic electricity applications: history and perspectives

    International Nuclear Information System (INIS)

    Juquois, F.

    2010-01-01

    The photoelectric effect has been characterized in 1839 by Henry Becquerel. More than one hundred years later, in 1958, the first photovoltaic cell is developed for the space exploration. After the first oil shock in 1973, the occidental governments have started considering photovoltaic as one of the potential alternative to fossil in the future. 36 years later, photovoltaic is blossoming on the roof tops of dwellings and commercial buildings, as well as on the poor agricultural value lands. (author)

  13. The photovoltaic ambitious of EDF

    International Nuclear Information System (INIS)

    Houot, G.

    2008-01-01

    Added to the wind energy, EDF develops the photovoltaic by its subsidiaries EDF Energies Nouvelles, for the big power plants and EDF Energies Nouvelles Reparties centralized on the market of small installations for roofs. The author analyzes the society management and project concerning the photovoltaic development. (A.L.B.)

  14. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  15. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  16. International Photovoltaic Program Plan. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    This second volume of a two-part report on the International Photovoltaic Program Plan contains appendices summarizing the results of analyses conducted in preparation of the plan. These analyses include compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about how US government actions could affect this market; international financing issues; and information on issues affecting foreign policy and developing countries.

  17. Photovoltaics - why this 'religious war'?

    International Nuclear Information System (INIS)

    Nowak, S.

    2005-01-01

    This article examines the possible reasons behind controversies concerning photovoltaics in Switzerland. The author, who considers that no other energy technology awakes such varying opinions, presents ten points that should be considered in this connection. These include aspects concerning research and development, trade and industry as well as markets and applications. The 'enormous' potential of photovoltaics and questions concerning availability and environmental issues are discussed. Costs, developments and the question of economic viability are looked at. The situation in Switzerland is compared with international conditions. Finally, political issues are reviewed and the key role to be played by photovoltaics in the future is stressed

  18. Electrochemical generation of energy: from the portable electronic devices to industrial plants; Generacion electroquimica de energia electrica: de los dispositivos electronicos portatiles a las plantas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Varela, Javier [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Saltillo (Mexico)

    2006-10-15

    This article proposes the electrical energy generation via electrochemistry as substitute of petroleum and discusses on the development of low and high temperature fuel cells fed by diverse types of fuels: electrolyte fuel cells of polymeric membrane, PEM cells H{sub 2}/O{sub 2}, cell of direct alcohol consumption, PEM cells and bio-fuel cells, SOFC cells and bio-fuel cells. It presents its constitution, operation principles, and use plausibility, present situation in the market, advantages and disadvantages, as well as already made cell insertion projects. [Spanish] Este trabajo propone la generacion de energia electrica via electroquimica como sustituto del petroleo y discurre sobre el desarrollo de celdas de combustible de baja y alta temperatura alimentadas por diversos tipos de combustibles: celdas de combustible de electrolito de membrana polimerica, celda PEM H{sub 2}/O{sub 2}, celda de consumo directo de alcohol, celdas PEM y biocombustibles, celdas de combustible de oxido solido y biocombustibles. Expone su constitucion, principios de operacion, plausibilidad de uso, situacion actual en el mercado, ventajas y desventajas, asi como proyectos de insercion de celdas ya realizados.

  19. Photovoltaic energy generation in Germany

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    An overview is given of the current state of the art regarding photovoltaic research and demonstration programmes in the Federal Republic of Germany. Also attention is paid to the companies and research institutes involved, and the long-term economical and technical prospects of photovoltaic energy. 13 figs., 4 tabs., 10 refs

  20. Conjugated polymer photovoltaic devices and materials

    International Nuclear Information System (INIS)

    Mozer, A.J.; Niyazi, Serdar Sariciftci

    2006-01-01

    The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)

  1. Highway renewable energy : photovoltaic noise barriers

    Science.gov (United States)

    2017-07-01

    Highway photovoltaic noise barriers (PVNBs) represent the combination of noise barrier systems and photovoltaic systems in order to mitigate traffic noise while simultaneously producing renewable energy. First deployed in Switzerland in 1989, PVNBs a...

  2. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  3. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  4. Production and Characterization of Novel Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Marvin [North Carolina Central Univ., Durham, NC (United States)

    2016-06-07

    This project has three major objectives: exploring the potential nanostructured materials in photovoltaic applications; providing photovoltaic research experiences to NCCU students, who are largely members of underrepresented minority groups; and enhancing the photovoltaic research infrastructure at NCCU to increase faculty and student competitiveness. Significant progress was achieved in each of these areas during the project period, as summarized in this report.

  5. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  6. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  7. The 2009 photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global photovoltaic market expanded again in 2009. Germany set a new system installation record while the capacity build-up of the major solar photovoltaic markets contained the fallout generated by the Iberian market derailment. The European Union has the highest photovoltaic plant capacity, with almost 5.5 GWp installed in 2009. Italy is the third European Union country to pass the symbolic 1000 MWp installed mark, following Germany and Spain. France ranks 6 with 185 MWp installed in 2009. The decrease in the price of silicon reached 80% in 2009. The industry is facing a coming-of-age crisis with prices falling and over-production. Most of the major cell manufacturers are located in Asia. The European industry is still well represented with Q-Cells, the German leading cell manufacturer in addition with hefty industry players. (A.C.)

  8. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  9. Development of the French Photovoltaic Program

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, M.

    1980-07-01

    The French photovoltaic research program is reviewed, listing companies involved. Projections of module and system costs are discussed. French industrial experience in photovoltaics is reviewed and several French systems operating in developing countries are mentioned. (MHR)

  10. Price-Efficiency Relationship for Photovoltaic Systems on a Global Basis

    Directory of Open Access Journals (Sweden)

    Mehmet Sait Cengiz

    2015-01-01

    Full Text Available Solar energy is the most abundant, useful, efficient, and environmentally friendly source of renewable energy. In addition, in recent years, the capacity of photovoltaic electricity generation systems has increased exponentially throughout the world given an increase in the economic viability and reliability of photovoltaic systems. Moreover, many studies state that photovoltaic power systems will play a key role in electricity generation in the future. When first produced, photovoltaic systems had short lifetimes. Currently, through development, the technology lifecycle of photovoltaic systems has increased to 20–25 years. Studies showed that photovoltaic systems would be broadly used in the future, a conclusion reached by considering the rapidly decreasing cost of photovoltaic systems. Because price analysis is very important for energy marketing, in this study, a review of the cost potential factors on photovoltaic panels is realized and the expected cost potential of photovoltaic systems is examined considering numerous studies.

  11. Non-destructive evaluation of water ingress in photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  12. Socioeconomic impact of photovoltaic power at Schuchuli, Arizona

    Science.gov (United States)

    Bahr, D.; Garrett, B. G.; Chrisman, C.

    1980-01-01

    The social and economic impact of photovoltaic power on a small, remote native American village is studied. Village history, group life, energy use in general, and the use of photovoltaic-powered appliances are discussed. No significant impacts due to the photovoltaic power system were observed.

  13. Implementing agreement on photovoltaic power systems - Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2000. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance and design of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, the grid interconnection of building-integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, very large scale photovoltaic power generation systems and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Implementing agreement on photovoltaic power systems - Annual report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2001. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  15. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  16. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  17. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  18. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  19. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  20. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  1. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  2. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  3. A molecular spin-photovoltaic device.

    Science.gov (United States)

    Sun, Xiangnan; Vélez, Saül; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Parui, Subir; Zhu, Xiangwei; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E

    2017-08-18

    We fabricated a C 60 fullerene-based molecular spin-photovoltaic device that integrates a photovoltaic response with the spin transport across the molecular layer. The photovoltaic response can be modified under the application of a small magnetic field, with a magnetophotovoltage of up to 5% at room temperature. Device functionalities include a magnetic current inverter and the presence of diverging magnetocurrent at certain illumination levels that could be useful for sensing. Completely spin-polarized currents can be created by balancing the external partially spin-polarized injection with the photogenerated carriers. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Production. Which price for photovoltaic?

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    As the French government decided to reduce its financial support to photovoltaic energy, a first article identifies and comments the issues to be addressed to have a competitive French photovoltaic industry: to bet on second generation arrays (thin layer arrays), to have higher yearly objectives in terms of installed power (800 MW or 1 GW instead of 500 MW, in order to create a reference market), to redefine the financing and the electricity purchase scheme, to promote self consumption, to support exportation. The second article presents the first French photovoltaic test and certification centre, located near Chambery, where solar arrays are inspected and where their ageing is simulated through thermal fatigue and impact testing

  5. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  6. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  7. Economics of production and use of photovoltaics

    International Nuclear Information System (INIS)

    Hill, R.

    1991-01-01

    There are many ways of analysing the comparative costs of photovoltaic systems. All the methods make assumptions, often unrecognised, about the photovoltaic technologies and their costs, and about the systems with which they are being compared. Probably the most difficult and elusive parameter to determine is the cost of energy from non-photovoltaic sources with which the electricity from photovoltaics is being compared. Photovoltaics (and other renewable energy sources) demand an initial capital investment and then need maintenance for the duration of their working life. Nuclear power plants require a major capital investment, highly skilled maintenance, and fuel during their working lifetime, plus storage of waste for some hundreds of years. The fuel costs of fossil fuel plants greatly exceed the initial capital costs of the plants. A fair comparison would thus then have to include the complete life-cycle costs of the plant with identical assumptions made for each technology for the rates of inflation, return on capital, etc. 6 figs, 5 tabs

  8. Developing a mobile stand alone photovoltaic generator

    International Nuclear Information System (INIS)

    Soler-Bientz, R.; Ricalde-Cab, L.O.; Solis-Rodriguez, L.E.

    2006-01-01

    This paper describes a recent work developed to create a mobile stand alone photovoltaic generator that can be easily relocated in remote areas to evaluate the feasibility of photovoltaic energy applications. A set of sensors were installed to monitor the electric current and voltage of the energy generated, the energy stored and the energy used by the loads that may be connected to the system. Other parameters like solar radiations (both on the horizontal and on the photovoltaic generation planes) and temperatures (of both the environment and the photovoltaic module) were monitored. This was done while considering the important role of temperature in the photovoltaic module performance. Finally, a measurement and communication hardware was installed to interface the system developed with a conventional computer. In this way, the performance of the overall system in real rural conditions could be evaluated efficiently. Visual software that reads, visualizes and saves the data generated by the system was also developed by means of the LabVIEW programming environment

  9. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  10. Solar photovoltaics in Sri Lanka: a short history

    International Nuclear Information System (INIS)

    Gunaratne, L.

    1994-01-01

    With a significant unelectrified rural population, Sri Lanka has followed the evolution of solar photovoltaic (PV) technology in the West very closely since the 1970s as terrestrial applications for photovoltaics were developed. It was not until 1980 that the Sri Lankan government embarked on the promotion of solar photovoltaics for rural domestic use when the Ceylon Electricity Board formed the Energy Unit. In addition, Australian and Sri Lankan government-funded pilot projects have given the local promoters further valuable insight into how and how not to promote solar photovoltaics. The establishment of community-based solar photovoltaic programmes by non-governmental organizations has developed a novel approach to bridge the gap between this state-of-the-art technology and the remotely located end-users. (author)

  11. Implementing agreement on photovoltaic power systems - Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2003. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. The programme's tenth anniversary is noted. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system, the deployment of photovoltaic technologies in developing countries and urban-scale PV applications. The status and prospects in the 20 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  12. The photovoltaic pathway

    International Nuclear Information System (INIS)

    Jourde, P.; Guerin de Montgareuil, A.; Mattera, F.; Jaussaud, C.; Boulanger, P.; Veriat, G.; Firon, M.

    2004-01-01

    Photovoltaic conversion, the direct transformation of light into electricity, is, of the three pathways for solar energy, the one experiencing most rapid growth, and for which scientific and technological advances are most promising, as regards significant improvements in its economic balance. While the long-term trend, in Europe, is favorable, with annual growth set at 30%, the cost per photovoltaic kilowatt-hour remains some ten times higher than that achieved with natural gas or nuclear energy (after connection to the grid), this being a handicap, at first blush, for high power ratings. For remote locations, where its advantage is unquestionable, in spite of the added cost of storage between insolation periods (this more than compensating for savings in terms of connection costs), this pathway sets its future prospects on marked module cost reductions. Such reduction may only be achieved by way of technological breakthroughs, to which CEA, active as it has been, in this area, for some thirty years, intends making a contribution, as linchpin of French research and technology, and a key protagonist on the European scene. One of the avenues being pursued concerns fabrication of high-efficiency cells from mineral or organic thin films, with particularly strong expectations with respect to the all-polymer path, complementary of the silicon pathway. Concurrently, device reliability needs must be improved, this being another factor making for an improved overall balance. To achieve easier transfer to industry of laboratory outcomes, CEA is relying, in particular, on the new cell fabrication platform set up in Grenoble, this complementing its other R and D resources, including those installed at Cadarache, allowing testing of cells and entire photovoltaic systems in actual operating conditions. Another path for cost reductions being explored by CEA research workers consists in construction of systems integrated into the built environment: this affords new prospects

  13. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Photovoltaic effect in Bi2TeO5 photorefractive crystal

    International Nuclear Information System (INIS)

    Oliveira, Ivan de; Capovilla, Danilo Augusto; Carvalho, Jesiel F.; Montenegro, Renata; Fabris, Zanine V.; Frejlich, Jaime

    2015-01-01

    We report on the presence of a strong photovoltaic effect on nominally undoped photorefractive Bi 2 TeO 5 crystals and estimated their Glass photovoltaic constant and photovoltaic field for λ = 532 nm illumination. We directly measured the photovoltaic-based photocurrent in this material under λ = 532 nm wavelength laser light illumination and compared its behavior with that of a well known photovoltaic Fe-doped Lithium Niobate crystal. We also show the photovoltaic current to strongly depend on the polarization direction of light. Holographic diffraction efficiency oscillation during recording and the behavior of fringe-locked running holograms in self-stabilized experiments are also demonstrated here as additional indirect proofs of the photovoltaic nature of this material

  15. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  16. Photovoltaic technologies for commercial power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    Photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  17. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  18. Photovoltaic is always more profitable

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    While indicating 31 recommendations made by the ADEME for the development of photovoltaic production, this article outlines a result published in the same report: the cost of solar photovoltaic production keeps on decreasing, and therefore, profitabilities without subsidy might appear before the 2020's in France. The cost of ground-based photovoltaic plant has indeed been decreasing from 6 to 1.5 euro per Watt in less than 10 years, with some regional variations. The connection cost could also be reduced by nearly 30 per cent for individual installations. New business models could then be implemented for a development without subsidy. The new thermal regulation could also have an influence on the development of solar production. These trends can be noticed in the world as well

  19. Photovoltaic Barometer - EurObserv'ER - April 2010

    International Nuclear Information System (INIS)

    2010-04-01

    The global photovoltaic market expanded again in 2009. Germany set a new system installation record while the capacity build-up of the major solar photovoltaic markets contained the fallout generated by the Iberian market derailment. The European Union has the highest photovoltaic plant capacity, with almost 5.5 GWp installed in 2009

  20. Press document. Photovoltaic energy: boosting the evolution

    International Nuclear Information System (INIS)

    2009-04-01

    The french potential in the photovoltaic energy is considerable but not very exploited. In this context the CEA, by its function of applied research institute in the domain of the low carbon energies can be a major actor of the sector development. This document presents the research programs in the photovoltaic domain, developed at the CEA, especially on the silicon performance, the photovoltaic solar cells and their integration in the buildings. (A.L.B.)

  1. Information report from the Economic Affairs commission on photovoltaic energy

    International Nuclear Information System (INIS)

    2009-01-01

    Today and for several years to come, photovoltaic energy represents only a minimal part of the world's electric power production. Photovoltaic energy is only at its beginnings, however several countries have already taken opportunities in the business. This report gives a comprehensive information about photovoltaic energy (basic principles, conversion systems, photovoltaic power plants, incentive programs in other developed countries, regulations ...) and arguments for the development of a structured photovoltaic energy policy in France

  2. Photovoltaic barometer a 29% remarkable growth

    International Nuclear Information System (INIS)

    Maitrot, J.

    2000-01-01

    Day after day, photovoltaic energy is progressing a bit more both technologically and in terms of its different applications. In 1999, world photovoltaic cells production practically reached the 200 MWp mark and the five first cells producers generated a turnover of 430 million euro. (authors)

  3. Recent developments in photovoltaics

    International Nuclear Information System (INIS)

    Green, M.A.

    2004-01-01

    The photovoltaic market is booming with over 30% per annum compounded growth over the last five years. The government-subsidised urban-residential use of photovoltaics, particularly in Germany and Japan, is driving this sustained growth. Most of the solar cells being supplied to this market are 'first generation' devices based on crystalline or multi-crystalline silicon wafers. 'Second generation' thin-film solar cells based on amorphous silicon/hydrogen alloys or polycrystalline compound semiconductors are starting to appear on the market in increasing volume. Australian contributions in this area are the thin-film polycrystalline silicon-on-glass technology developed by Pacific Solar and the dye sensitised nanocrystalline titanium cells developed by Sustainable Technologies International. In these thin-film approaches, the major material cost component is usually the glass sheet onto which the film is deposited. After reviewing the present state of development of both cell and application technologies, the likely future development of photovoltaics is outlined. (author)

  4. Advanced silicon materials for photovoltaic applications

    CERN Document Server

    Pizzini, Sergio

    2012-01-01

    Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Ev

  5. Photovoltaic Cells and Systems: Current State and Future Trends

    OpenAIRE

    Hadj Bourdoucen; Joseph A. Jervase; Abdullah Al-Badi; Adel Gastli; Arif Malik

    2000-01-01

    Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. P...

  6. Direct mounted photovoltaic device with improved front clip

    Science.gov (United States)

    Keenihan, James R; Boven, Michelle; Brown, Jr., Claude; Gaston, Ryan S; Hus, Michael; Langmaid, Joe A; Lesniak, Mike

    2013-11-05

    The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent (overlapping) photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

  7. Direct mounted photovoltaic device with improved side clip

    Science.gov (United States)

    Keenihan, James R; Boven, Michelle L; Brown, Jr., Claude; Eurich, Gerald K; Gaston, Ryan S; Hus, Michael

    2013-11-19

    The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

  8. Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors

    International Nuclear Information System (INIS)

    Holdermann, Claudius; Kissel, Johannes; Beigel, Jürgen

    2014-01-01

    This paper examines the economic viability of small-scale, grid-connected photovoltaics in the Brazilian residential and commercial sectors after the introduction of the net metering regulation in April 2012. This study uses the discounted cash flow method to calculate the specific investment costs that are necessary for photovoltaic systems to be economically viable for each of the 63 distribution networks in Brazil. We compare these values to the system costs that are estimated in the comprehensive study on photovoltaics that was developed by the Brazilian Association of Electric and Electronic Industries (ABINEE). In our calculation, we utilize the current electricity tariffs, including fees and taxes, which we obtained through telephone interviews and publicly available information. We obtained a second important parameter by simulating PV-systems with the program PV ⁎ Sol at the distribution company headquarters' locations. In our base case scenario that reflects the current situation, in none of the distribution networks photovoltaics is economically viable in either the commercial or residential sectors. We improved the environment for grid-connected photovoltaics in our scenarios by assuming both lower PV-system costs and a lower discount rate to determine the effect on photovoltaics viability. - Highlights: • We calculate the economic viability of photovoltaics in the residential and commercial sectors in Brazil. • The PV ⁎ Sol simulations are carried out at the headquarter locations for the 63 distribution companies. • Currently in none of the distribution networks, photovoltaics is economically viable in either the commercial or residential sectors. • We analyze how the variation of the specific investment costs and of the discount rate affects the economic viability

  9. Photovoltaic conversion in Austria: Inventory 1994

    International Nuclear Information System (INIS)

    Faninger, G.

    1995-05-01

    On January 1, 1995 photovoltaic systems with a maxiumum capacity of about 1063 kW (peak) were installed in Austria. 48% of the photovoltaic systems are connected with the grid, 24% are stand-alone systems and about 28% are small systems (<200 W) for different applications. (author)

  10. Photovoltaic System in Progress

    DEFF Research Database (Denmark)

    Shoro, Ghulam Mustafa; Hussain, Dil Muhammad Akbar; Sera, Dezso

    2013-01-01

    This paper provides a comprehensive update on photovoltaic (PV) technologies and the materials. In recent years, targeted research advancement has been made in the photovoltaic cell technologies to reduce cost and increase efficiency. Presently, several types of PV solar panels are commercially...... falls in the third generation PV technologies. However, Multi-junction Cells are still considered new and have not yet achieved commercialization status. The fundamental change observed among all generations has been how the semiconductor material is employed and the development associated with crystal...

  11. Photovoltaic plants in the electronic system

    International Nuclear Information System (INIS)

    Marzio, L.; Vigotti, R.

    1999-01-01

    The article provides a 1998 updated picture of Italy's and the world's photovoltaic market in terms of produced modules and total installed capacity, as well as market growth forecasts up to 2010. After a short description of the state-of-the-art of cell and module manufacturing, ana analysis of the cost of producing a photovoltaic kW is reported for different plant types: stand-alone plants with energy storage batteries, plants connected to low low voltage networks or intended for supporting medium voltage networks, hybrid plants with diesel sets. The article is concluded by illustrating ENEL's (Electric Power Production Company) engagement in the field of photovoltaic solar energy as regards theoretical studies, research and testing of new technologies, and installing plants; over nearly twenty years of activity, ENEL has designed and built a few hundreds of photovoltaic plants for a total capacity of about 4.000 kW, and is currently in the process of setting up a further 370 kW [it

  12. Photovoltaic technologies for commerical power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    The author reports photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  13. Photovoltaic Cells and Modules towards Terawatt Era

    Institute of Scientific and Technical Information of China (English)

    Vitezslav Benda

    2017-01-01

    Progresses in photovoltaic technologies over the past years are evident from the lower costs,the rising efficiency,to the great improvements in system reliability and yield.Cumulative installed power yearly growths were on an average more than 40% in the period from 2007 to 2016 and in 2016,the global cumulative photovoltaic power installed has reached 320 GWp.The level 0.5 TWp could be reached before 2020.The production processes in the solar industry still have great potential for optimization both wafer based and thin film technologies.Trends following from the present technology levels are discussed,also taking into account other parts of photovoltaic systems that influence the cost of electrical energy produced.Present developments in the three generations of photovoltaic modules are discussed along with the criteria for the selection of appropriate photovoltaic module manufacturing technologies.The wafer based crystalline silicon (c-silicon) technologies have the role of workhorse of present photovoltaic power generation,representing more than 90% of total module production.Further technology improvements have to be implemented without significantly increasing costs per unit,despite the necessarily more complex manufacturing processes involved.The tandem of c-silicon and thin film cells is very promising.Durability may be a limiting factor of this technology due to the dependence of the produced electricity cost on the module service time.

  14. Recent facts about photovoltaics in Germany

    International Nuclear Information System (INIS)

    Wirth, Harry

    2015-01-01

    Germany is leaving the age of fossil fuel behind. In building a sustainable energy future, photovoltaics is going to have an important role. The following summary consists of the most recent facts, figures and findings and shall assist in forming an overall assessment of the photovoltaic expansion in Germany.

  15. Bifunctional electrodes with ir and Ru oxide mixtures and pt for unified regenerative cells; Electrodos bifuncionales basados en mezclas de oxidos de Ir y Ru con Pt para celdas regenerativas unificadas

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Escalante-Garcia, I.L. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico); Cruz, J. C.; Arriaga-Hurtado; L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: duronsm@prodigy.net.mx

    2009-09-15

    Unified regenerative fuel cells (URFC) represent an attractive option to obtain hydrogen and generate energy using a compact device. Nevertheless, the fusion of a fuel cell (PEMFC) and a water electrolyzer continue to be a challenge because of the wide range of conditions to which this type of device is subject. Because of its kinetic characteristics, oxygen reduction reaction (ORR) in PEMFC and oxygen evolution reaction (OER) in PEMWE are the limiting stages of the URFC depending on the mode of operation. The primary focus of research related to URFC is the obtainment of bifunctional electrocatalysts that satisfactorily perform in both oxygen reactions and support the different working conditions found in a fuel cell and an electrolyzer. The present work contributes to the research on bifunctional electrocatalysts and shows some preliminary results from the electrochemical study of different Pt gcc, IrO{sub 2} and RuO{sub 2} mixtures supported in Ebonex® as oxygen electrodes. The electrochemical characterization with cyclic voltamperometry (CV), linear voltamperometry (LV) and electrochemical impedance spectroscopy (EIS) in H{sub 2}SO{sub 4} 0.5 M, in the absence and present of oxygen shows that Ebonex®-supported bifunctional electrodes IrO{sub 2}-Pt and RuO{sub 2}-Pt present reasonable electrocatalytic properties for oxygen evolution and reduction reactions and present the possibility of their use in an URFC. The Ir- based oxide electrodes show greater stability than ruthenium-oxide electrodes. [Spanish] Las celdas de combustible regenerativas unificadas (URFC) representan una atractiva opcion para la obtencion de hidrogeno y generacion de energia en un dispositivo compacto. Sin embargo, la fusion de una celda de combustible (PEMFC) y un electrolizador de agua (PEMWE) sigue siendo un reto por la amplia gama de condiciones a que se sujeta un dispositivo de este tipo. Por sus caracteristicas cineticas, la reaccion de reduccion de oxigeno (ORR) en la PEMFC y la

  16. Hole-thru-laminate mounting supports for photovoltaic modules

    Science.gov (United States)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  17. Organic bulk heterojunction photovoltaic structures: design, morphology and properties

    International Nuclear Information System (INIS)

    Bulavko, G V; Ishchenko, A A

    2014-01-01

    Main approaches to the design of organic bulk heterojunction photovoltaic structures are generalized and systematized. Novel photovoltaic materials based on fullerenes, organic dyes and related compounds, graphene, conjugated polymers and dendrimers are considered. The emphasis is placed on correlations between the chemical structure and properties of materials. The effect of morphology of the photoactive layer on the photovoltaic properties of devices is analyzed. Main methods of optimization of the photovoltaic properties are outlined. The bibliography includes 338 references

  18. Photovoltaic solar energy: which realities for 2020? Summarized synthesis

    International Nuclear Information System (INIS)

    2011-01-01

    This report first describes the situation of the photovoltaic as situated at a crossroad with strong development possibilities for the French photovoltaic sector. It presents the photovoltaic energy as a competitive, regulatory and ecologic one, and therefore inescapable. It outlines stakes and obstacles of the French situation regarding the development of this sector. It highlights the economic and social benefit investing in this sector. Some propositions are stated for the promotion of the photovoltaic solar sector. Challenges are identified

  19. Cinética de separación de Cu (II por técnicas de flotación iónica, en celdas con dispersores flexibles

    Directory of Open Access Journals (Sweden)

    Reyes, M.

    2010-04-01

    Full Text Available This research studies and experimentally determines the kinetic parameters and effect of modifying the hydrodynamics and chemical conditions of the air-liquid dispersions during the Cu (II extraction by ion flotation techniques in cells with porous spargers. Results show that the elimination of Cu (II from solution can be carried out by ion flotation in one stage, obtaining efficiencies of 68% and 56% for the flat and cylindrical sparger respectively with a xanthate concentration of 0,02 g/l. In multistage systems five cells, recoveries over 92 % were achieved for both sparger geometries. The behavior of the flotation apparent kinetic constant is linear to the parameters that characterize dispersion (Jg, eg y Db, until a point is achieved where the process instability makes the system inoperable. The results show that removing base metal ions by ion flotation is strongly affected by the following factors: collector concentration [C], Jg, eg, Db, Jl and Sb.

    Este estudio investiga y determina experimentalmente los parámetros cinéticos y el efecto de la modificación de las condiciones químicas e hidrodinámicas de las dispersiones aire-líquido, durante la separación de Cu (II mediante técnicas de flotación iónica en celdas con dispersores porosos. Los resultados muestran que la eliminación de Cu (II de la solución se puede llevar acabo por flotación iónica en una etapa, con 68 y 56 % de recuperación y una concentración de xantato de 0,02 g/l, para los difusores de burbujas cilíndrico y plano, respectivamente. En sistemas multi etapas cinco celdas, se lograron recuperaciones superiores al 92 % para ambas geometrías de dispersión. La constante cinética de flotación aparente mantiene un comportamiento lineal con los parámetros que caracterizan una dispersión (Jg, eg y Db, hasta un punto donde la inestabilidad del proceso vuelve inoperable el sistema. Los resultados muestran que la remoción de iones

  20. Asphaltene based photovoltaic devices

    Science.gov (United States)

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  1. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  2. Distributed photovoltaic grid transformers

    CERN Document Server

    Shertukde, Hemchandra Madhusudan

    2014-01-01

    The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is

  3. High-efficiency photovoltaic technology including thermoelectric generation

    Science.gov (United States)

    Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.

    2014-04-01

    Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.

  4. The photovoltaic sector in Germany, where does it go?

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Opinion polls show that photovoltaic power is very popular in Germany. This sector employs about 130.000 people and although a lot of solar modules are imported from China, other components like current inverters are fabricated in Germany and as a whole the trade balance is positive and the export rate nears 50%. In 2011 Germany invested 25 billion euros in the photovoltaic sector and now about 5% of the consumed electricity is photovoltaic power. Photovoltaic power reached grid parity in february 2012 for some consumers and the German government decided to reduce the purchase tariff drastically which may jeopardize the aim of having a photovoltaic park of 51 GWc by 2020. (A.C.)

  5. Flate-plate photovoltaic power systems handbook for Federal agencies

    Science.gov (United States)

    Cochrane, E. H.; Lawson, A. C.; Savage, C. H.

    1984-01-01

    The primary purpose is to provide a tool for personnel in Federal agencies to evaluate the viability of potential photovoltaic applications. A second objective is to provide descriptions of various photovoltaic systems installed by different Federal agencies under the Federal Photovoltaic Utilization Program so that other agencies may consider similar applications. A third objective is to share lessons learned to enable more effective procurement, design, installation, and operation of future photovoltaic systems. The intent is not to provide a complete handbook, but rather to provide a guide for Federal agency personnel with additional information incorporated by references. The steps to be followed in selecting, procuring, and installing a photovoltaic application are given.

  6. Penetration of Photovoltaics in Greece

    OpenAIRE

    Eugenia Giannini; Antonia Moropoulou; Zacharias Maroulis; Glykeria Siouti

    2015-01-01

    Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach ...

  7. The photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    Georgel, O.

    2005-07-01

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  8. Modeling Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    F. Mavromatakis

    2016-10-01

    Full Text Available A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV facilities the beam and the diffuse solar irradiances are not recorded. The airmass, the angle of incidence and the efficiency drop due to low values of solar irradiance are taken into account. Currently, the model is validated through the use of high quality data available from the National Renewable Energy Laboratory (USA. The data were acquired with IV tracers while the meteorological conditions were also recorded. Several modules of different technologies were deployed but here we present results from a single crystalline module. The performance of the model is acceptable at a level of 5% despite the assumptions made. The dependence of the residuals upon solar irradiance temperature, airmass and angle of incidence is also explored and future work is described.

  9. Photovoltaics in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bolcso, S L

    1983-06-01

    A literature review was carried out for the purpose of summarizing the current conditions existing and affecting photovoltaics (PV) technology in a Canadian context. Information is presented concerning: PV device materials and efficiencies; PV cell manufacturing techniques; other materials/device designs; photovoltaic costs, markets, and research and development; PV and microelectronics; and Canadian strengths and opportunities. It was concluded that PV's simplicity, amenability to mass production and environmentally benign nature will likely assure it a faster and eventually greater market penetration than any other renewable energy form (and possibly some conventional forms). It is recommended that the Ministry of State, Science and Technology coordinate a joint microelectronics-photovoltaic research effort, by: indentifying areas where joint efforts would be mutually beneficial; identifying the strategic value of PV; identifying a set of goals for Canadian programs; coordinating efforts between government, universities and industry; developing supporting strategies for the mining and smelting of indigenous semiconducting materials; determining the economic support required to develop a silicon processing plant for the production of microelectronic chips and PV cells; developing Canadian expertise in providing complete PV systems competitive in world markets; and developing a marketing strategy for a coordinated PV/microelectronics effort. 60 refs., 17 figs., 12 tabs.

  10. Evaluation of the impact of two flow field designs with bipolar plate flow on the performance of a PEM fuel cell; Evaluacion del impacto de dos disenos de campo de flujo de placa bipolar en el desempeno de una celda de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Loyola-Morales, F.; Cano-Castillo, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: feloyola@yahoo.com.mx

    2009-09-15

    The flow field (FF) designs of bipolar plates play a fundamental role in the performance of a set of PEM fuel cells. The FF is directly related with diverse processes that occur inside the cells, such as: feeding and uniform distribution of reactant gases and the handling of water produced by the overall electrochemical reaction. Therefore, a FF design that promotes each one of those processes in an optimal manner is of utmost importance to attain the best performance of a set of fuel cells. The present work evaluated the impact of two different FF on the performance of a fuel cell. The FF designs evaluated were 4 serpentine and parallels (4SP) and 2 serpentine counter flow (SC). The stability tests for the operation of the cell applied to each of the flow fields were: flood tolerance, dehydration tolerance conditions and stoichiometry performance of 1.1, 1.3, 1.5 and 2.5. The 4SP design showed high performance stability during operation with a gradual process of flooding the system and operating at different stoichiometries. Only for the test with dehydration conditions was there a gradual decrease in its performance, of up to 27%. Compared to these results, the SC design showed a rapid fall of 45% in its performance when operating under gradual flooding of the system, a constant fall in its performance (also around 45%) with stoichiometries of 1.1, 1.3 and 1.5 due to accumulation of water, and only with a stoichiometry of 2.5 did it have highly stable performance as a result of good water handling. In the test of operations under dehydration conditions, the performance of the SC design dropped to 40% and remained at this value during the rest of the test. According to these results, the performance of the 4SP design was more stable than the SC design for all of the tests implemented. [Spanish] Los disenos de campo de flujo (CF) de las placas bipolares tienen un papel fundamental en el desempeno de un conjunto de celdas de combustible tipo PEM. Los CF tienen una

  11. A program plan for photovoltaic buildings in Florida

    International Nuclear Information System (INIS)

    Ventre, Gerard G.

    1999-01-01

    The Florida Photovoltaic (PV) Buildings Program will conduct a variety of application experiments over the next decade to gather information that will help define the costs, value and benefits of using photovoltaics with buildings. Four main sources of revenue will support the program: a photovoltaic system buy down (from the present through December 2001), green pricing (present to 2010 and beyond), buy up by end users, and contracts, grants and other subsidies. To give the program sufficient breadth, three different application experiments are planned for each of nine target groups. The data and information from these experiments will help reduce or eliminate key barriers to the commercialisation of photovoltaic buildings. (Author)

  12. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  13. Large scale integration of photovoltaics in cities

    International Nuclear Information System (INIS)

    Strzalka, Aneta; Alam, Nazmul; Duminil, Eric; Coors, Volker; Eicker, Ursula

    2012-01-01

    Highlights: ► We implement the photovoltaics on a large scale. ► We use three-dimensional modelling for accurate photovoltaic simulations. ► We consider the shadowing effect in the photovoltaic simulation. ► We validate the simulated results using detailed hourly measured data. - Abstract: For a large scale implementation of photovoltaics (PV) in the urban environment, building integration is a major issue. This includes installations on roof or facade surfaces with orientations that are not ideal for maximum energy production. To evaluate the performance of PV systems in urban settings and compare it with the building user’s electricity consumption, three-dimensional geometry modelling was combined with photovoltaic system simulations. As an example, the modern residential district of Scharnhauser Park (SHP) near Stuttgart/Germany was used to calculate the potential of photovoltaic energy and to evaluate the local own consumption of the energy produced. For most buildings of the district only annual electrical consumption data was available and only selected buildings have electronic metering equipment. The available roof area for one of these multi-family case study buildings was used for a detailed hourly simulation of the PV power production, which was then compared to the hourly measured electricity consumption. The results were extrapolated to all buildings of the analyzed area by normalizing them to the annual consumption data. The PV systems can produce 35% of the quarter’s total electricity consumption and half of this generated electricity is directly used within the buildings.

  14. Solar spectrum conversion for photovoltaics using nanoparticles

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction

  15. Advances in Photovoltaics at NREL

    Energy Technology Data Exchange (ETDEWEB)

    von Roedern, B.

    1999-09-09

    This paper discusses the critical strategic research and development issues in the development of next-generation photovoltaic technologies, emphasizing thin-film technologies that are believed to ultimately lead to lower production costs. The critical research and development issues for each technology are identified. An attempt is made to identify the strengths and weaknesses of the different technologies, and to identify opportunities for fundamental research activities suited to advance the introduction of improved photovoltaic modules.

  16. Central station market development strategies for photovoltaics

    Science.gov (United States)

    1980-01-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  17. Photovoltaic: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Auer, Herbert J.

    This instructional manual contains 11 learning activity packets for use in a workshop on photovoltaic converters. The lessons cover the following topics: introduction; solar radiation--input for photovoltaic converters; photovoltaic cells; solar electric generator systems; characteristics of silicon cells; photovoltaic module source resistance;…

  18. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  19. The future of the photovoltaic market (demand side/supply side)

    International Nuclear Information System (INIS)

    Zahedi, A.

    1998-01-01

    At present the main PV application market sectors are communications, leisure, boating, solar home systems, and water pumping. It is predicted that in the future, the largest photovoltaic market segments will be solar home photovoltaic systems, grid-connected small-scale photovoltaic systems, grid-connected medium-to-large scale photovoltaic systems, the communications sector and in the electrification of remote and isolated areas. The main factors favoring photovoltaic technology in remote and isolated areas result from: the high costs of conventional energy sources in remote locations; the loss of a scale-economy effect, which means specific costs of small photovoltaic systems are not much higher than those of larger photovoltaic systems; price of fuel, fuel transportation and spare part supplies. The major factors inhibiting the photovoltaic technology include high initial costs, lack of skilled man power, lack of good quality data and social acceptance. A roof top mounted photovoltaic system is one type of PV system which has attracted lots of interest among the people of north America and Europe. The generation of electricity by this system is attractive because: generation is on-site. This results in reduction of transmission costs and transmission losses; the cost of roofing tiles can be eliminated by using mounted PV systems instead; there is no need for additional land for power generation; visual impacts are limited. The objective of this paper is to review the development of the photovoltaic market in the recent 10 year period and discuss the future markets for this technology with respect to supply and demand

  20. Systems and methods for photovoltaic string protection

    Science.gov (United States)

    Krein, Philip T.; Kim, Katherine A.; Pilawa-Podgurski, Robert C. N.

    2017-10-25

    A system and method includes a circuit for protecting a photovoltaic string. A bypass switch connects in parallel to the photovoltaic string and a hot spot protection switch connects in series with the photovoltaic string. A first control signal controls opening and closing of the bypass switch and a second control signal controls opening and closing of the hot spot protection switch. Upon detection of a hot spot condition the first control signal closes the bypass switch and after the bypass switch is closed the second control signal opens the hot spot protection switch.

  1. Photovoltaic procurement strategies: an assessment of supply issues

    Energy Technology Data Exchange (ETDEWEB)

    Posner, D.; Costello, D.

    1980-02-01

    This review report presents the results of an analysis of alternative approaches to the design of a federal photovoltaics procurement program. Advantages and disadvantages of large purchases at fixed prices and smaller purchases for testing and demonstrating the technology are presented. The objectives and possible impacts of these purchase programs on the photovoltaic industry are described. The reactions of the industry to alternative purchase programs were assessed using personal interviews with selected companies currently active in photovoltaics. The report begins with a review of the impacts of federal procurements on other innovations, including the electronics industry, and suggests the relation of these procurements to photovoltaics. The methodology for conducting the interviews is presented next. The results of the interviews are summarized into possible scenarios of future developments in the industry and into discussions of key issues in the design of a procurement program. An appendix on the current structure of the photovoltaic industry is provided.

  2. Photovoltaic sheathing element with one or more tabs

    Energy Technology Data Exchange (ETDEWEB)

    Keenihan, James R; Langmaid, Joseph A; Lopez, Leonardo C.

    2017-02-07

    The present invention is premised upon an assembly that includes at least a photovoltaic sheathing element capable of being affixed on a building structure. The shingle including at least a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly. Wherein the body portion includes one or more top peripheral tabs each capable of fitting under one or more vertically adjoining devices.

  3. Thermal Change for Photovoltaic Panels and Energy Effects

    OpenAIRE

    İmal, Nazım; Hasar, Şahabettin; Çınar, Harun; Şener, Eralp

    2015-01-01

    Photovoltaic panels (solar cells), they receive photon energy from sunlight, convert them to electrical energy by the semiconductor structural features. Photovoltaic panels produce a voltage, depending on the change of functional sunlight exposure. Produced voltage and determining of provided electrical power, must be dealt with the physical parameters that uses the concepts of light and temperature. In this study, usage of monocrystalline and polycrystalline structured photovoltaic panels el...

  4. The importance of silicon photovoltaic manufacturing in Saudi Arabia

    International Nuclear Information System (INIS)

    Elani, U.A.; Bagazi, S.A.

    1998-01-01

    In this paper, the potential of silicon development for photovoltaics will be discussed in conjunction with the availability of raw material and photovoltaic demand in Saudi Arabia. Recent studies suggest that silicon raw material for photovoltaic production should be considered for further investigation towards solar cells manufacturing in Saudi Arabia. (author)

  5. Photovoltaic array with minimally penetrating rooftop support system

    Science.gov (United States)

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  6. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  7. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  8. A Wearable All-Solid Photovoltaic Textile.

    Science.gov (United States)

    Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan

    2016-01-13

    A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of Bond Graph Modeling for Photovoltaic Module Simulation

    Directory of Open Access Journals (Sweden)

    Madi S.

    2016-01-01

    Full Text Available In this paper, photovoltaic generator is represented using the bond-graph methodology. Starting from the equivalent circuit the bond graph and the block diagram of the photovoltaic generator have been derived. Upon applying bond graph elements and rules a mathematical model of the photovoltaic generator is obtained. Simulation results of this obtained model using real recorded data (irradiation and temperature at the Renewable Energies Development Centre in Bouzaréah – Algeria are obtained using MATLAB/SMULINK software. The results have compared with datasheet of the photovoltaic generator for validation purposes.

  10. Photovoltaics and the environment

    International Nuclear Information System (INIS)

    Baumann, A.E.

    1994-01-01

    This paper considers the impact of photovoltaics on the environment and its application and role in the energy supply sector. It discusses the environmental and health impacts associated with photovoltaics by using Life Cycle Analysis as an instrument to determine its environmental effects. Recent Life Cycle studies have shown that PV can be considered an environmentally low risk technology, with its major environmental impacts occurring at the module manufacturing and waste disposal stages. The employment of environmental control mechanisms and statutory health and safety regulations at PV production facilities have helped to further reduce occupational and public health hazards. (author)

  11. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  12. Directory of the French Photovoltaic Industry 2017 - 2018

    International Nuclear Information System (INIS)

    2017-02-01

    More than 500 companies, of which 200 are industrial companies with a manufacturing unit located in France, and some fifty are research centres, this is the rich panorama prepared by the 2017-18 directory of the French photovoltaic industry, representing more than 8,200 jobs. These companies operate throughout the photovoltaic value chain: from chemistry and electronics, to electricity production, to the development, construction and maintenance of photovoltaic systems. They constitute an economic sector in full developmental swing and one that is providing new, high-added value jobs. Therefore, some of our research centres (National Institute of Solar Energy, Photovoltaic Institute of Ile de France) are among the most advanced in the world. Our network of industrial and service companies is filled with little gems that we have to make fruitful. Content of this directory: Presentation of the French renewable energies syndicate (SER); Presentation of SER-SOLER, French solar photovoltaic professionals group; 'Putting France on the map', foreword by Jean-Louis Bal, President of SER and Xavier Daval, President of SER-SOLER; Presentation of France solar industry; Presentation of photovoltaic quality Alliance Photovoltaique; Areas of activity; The members of SER-SOLER; Other members of SER-SOLER; Other Companies; Index (Alphabetical, By activity, By region); Advertisers

  13. Conference: photovoltaic energy - local authorities - Citizen

    International Nuclear Information System (INIS)

    Belon, Daniel; Witte, Sonja; Simonet, Luc; Waldmann, Lars; Fouquet, Doerte; Dupassieux, Henri; Longo, Fabio; Brunel, Arnaud; Kruppert, Andreas; Vachette, Philippe

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the role of photovoltaic energy, local authorities and Citizens as pillars of the energy transition. In the framework of this French-German exchange of experience, about 100 participants exchanged views on the role of local authorities and Citizens in the implementation of the energy transition. This document brings together the available presentations (slides) made during this event: 1 - Solar photovoltaics, local communities and citizens - Cornerstones of the energy revolution. Franco-German viewpoints (Daniel Belon); 2 - Structure and management of the distribution system operators in Germany. efficient, innovative and reliable: Local public enterprises in Germany (Sonja Witte); 3 - Photovoltaic energy: technical challenges for power grids - A distribution network operator's (DNO) point-of-view (Luc Simonet); 4 - The sun and the grid - challenges of the energy transition (Lars Waldmann); 5 - The role of local public authorities in the networks management: legal situation in France, Germany and in the EU (Doerte Fouquet); 6 - Towards energy transition: challenges for renewable energies - Urban solar planning tools (Henri Dupassieux); 7 - The local energy supply as a municipal task - solar land-use planning in practice in Germany (Fabio Longo); 8 - Supporting and facilitating the financing of photovoltaic projects at a community level (Arnaud Brunel); 9 - Photovoltaics in the municipality VG Arzfeld (Andreas Kruppert); 10 - For the energy revolution to be a success: Invest into renewable energy. Local, controllable and renewable 'shared energy' that is grassroots (Philippe Vachette)

  14. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  15. Materials interface engineering for solution-processed photovoltaics

    NARCIS (Netherlands)

    Grätzel, M.; Janssen, R.A.J.; Mitzi, D.B.; Sargent, E.H.

    2012-01-01

    Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their

  16. Directory of French photovoltaic research and industry 2011

    International Nuclear Information System (INIS)

    Poubeau, Romain; Simmonet, Raphael; Canals, Jonathan

    2011-05-01

    After an overview of what is at stake in terms of industrial employment in the photovoltaic sector, a presentation of competitiveness clusters, a description of the value chain (cell manufacturers, arrays manufacturers, power inverter manufacturers, electric equipment manufacturers, structure component manufacturers, fabrication steps, etc.) in the photovoltaic sector, this document proposes a directory (addresses, activity descriptions) of research and industrial actors of the photovoltaic sector in France: research centres, manufacturers, industrial projects

  17. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  18. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  19. Building integrated photovoltaic; Photovaltaique integre aux batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Durable, modular and flexible in use, as demonstrated by the different case studies in this publication, photovoltaic can replace diverse building elements, from glass facades to weather proof roofs. This leaflet towards architects describes aesthetic, technical, economic and environmental interest of building integrated photovoltaic. (author)

  20. Effects of concentrated sunlight on organic photovoltaics

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Katz, Eugene A.; Hirsch, Baruch

    2010-01-01

    We report the effects of concentrated sunlight on key photovoltaic parameters and stability of organic photovoltaics (OPV). Sunlight collected and concentrated outdoors was focused into an optical fiber and delivered onto a 1 cm2 bulk-heterojunction cell. Sunlight concentration C was varied gradu...

  1. Terawatt solar photovoltaics roadblocks and opportunities

    CERN Document Server

    Tao, Meng

    2014-01-01

    Solar energy will undoubtedly become a main source of energy in our life by the end of this century, but how big of a role will photovoltaics play in this new energy infrastructure Besides cost and efficiency, there are other barriers for current solar cell technologies to become a noticeable source of energy in the future. Availability of raw materials, energy input, storage of solar electricity, and recycling of dead modules can all prevent or hinder a tangible impact by solar photovoltaics. This book is intended for readers with minimal technical background and aims to explore not only the fundamentals but also major issues in large-scale deployment of solar photovoltaics. Thought-provoking ideas to overcoming some of the barriers are discussed.

  2. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  3. Practical Handbook of Photovoltaics. Fundamentals and Applications

    International Nuclear Information System (INIS)

    Markvart, T.; Castaner, L.

    2003-01-01

    As part of the growing sustainable and renewable energy movement, the design, manufacture and use of photovoltaic devices is increasing in pace and frequency. This Handbook will be a 'benchmark' publication for those involved in the design, manufacture and use of these devices. It covers the principles of solar cell function, the raw materials, photovoltaic systems, standards, calibration, testing, economics and case studies. The editors have assembled a cast of internationally-respected contributors from industry and academia. The report is essential reading for: Physicists, electronic engineers, designers of systems, installers, architects, policy-makers relating to photovoltaics

  4. Neural network based photovoltaic electrical forecasting in south Algeria

    International Nuclear Information System (INIS)

    Hamid Oudjana, S.; Hellal, A.; Hadj Mahammed, I

    2014-01-01

    Photovoltaic electrical forecasting is significance for the optimal operation and power predication of grid-connected photovoltaic (PV) plants, and it is important task in renewable energy electrical system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic electrical forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) for one year of 2013 using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic electrical forecasting error. (author)

  5. Photovoltaics. [research and development of terrestrial electric power systems

    Science.gov (United States)

    Smith, J. L.

    1981-01-01

    The federal government has sponsored a program of research and development on terrestrial photovoltaic systems that is designed to reduce the costs of such systems through technological advances. There are many potential paths to lower system costs, and successful developments have led to increased private investment in photovoltaics. The prices for photovoltaic collectors and systems that appear to be achievable within this decade offer hope that the systems will soon be attractive in utility applications within the United States. Most of the advances achieved will also be directly applicable to the remote markets in which photovoltaic systems are now commercially successful

  6. REVIEW ON GRID INTERFACING OF MULTIMEGAWATT PHOTOVOLTAIC INVERTERS

    OpenAIRE

    Mr. Vilas S. Solanke*; Mr. Naveen Kumar

    2016-01-01

    This paper presents review on the latest development of control of grid connected photovoltaic energy conversion system. Also this paper present existing systems control algorithm for three-phase and single phase grid-connected photovoltaic (PV) system. This paper focuses on one aspect of solar energy, namely grid interfacing of large-scale PV farms. This Grid-connected photovoltaic i.e. PV systems can provide a number of benefits to electric utilities, such as power loss reduction, improve...

  7. Photovoltaic for the Chinese; Du photovoltaique pour les Chinois

    Energy Technology Data Exchange (ETDEWEB)

    Bahjejian, L.

    2010-10-15

    China produces and exports about half of the photovoltaic cells made in the world. About 1000 Chinese enterprises work in the photovoltaic sector and the offer grows too fast to allow some enterprises to cope with lower and lower production costs. Research activities are a key element for the reduction of production costs but small companies can not usually sustain sufficient research. Economists foresee a strong reorganization of the sector: some enterprises will cease their photovoltaic activities, others will face financial difficulties, others will merge to make bigger companies. To make the demand bigger Chinese authorities are taking steps to develop the photovoltaic home market. The installed capacity of photovoltaic plants in China is expected to be somewhere between 11 GWc and 18 GWc in 2015, figures to be compared with only 0.9 GWc in 2010. (A.C.)

  8. Photovoltaic solar energy

    International Nuclear Information System (INIS)

    Mouratoglou, P.; Therond, P.G.

    2009-01-01

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  9. Fundamentals of Grid Connected Photo-Voltaic Power Electronic Converter Design

    OpenAIRE

    Evju, Svein Erik

    2007-01-01

    In this master thesis the basic theory of grid connected photo-voltaic systems is explained, giving an introduction to the different aspects of system design. Starting with a look at the standards concerning grid connection of distributed resources, and working its way through how the photo-voltaic cells work, to how photo-voltaic modules with electrical converters can be arranged. Some different converter topologies suitable for use with photo-voltaics are found, and based on these topologie...

  10. Vacuum-Ultraviolet Photovoltaic Detector.

    Science.gov (United States)

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  11. Photocurrent of Photovoltaic Cells

    Science.gov (United States)

    Peeler, Seth; McIntyre, Max; Cossel, Raquel; Bowser, Chris; Tzolov, Marian

    Photovoltaic cells can be used to harness clean, renewable energy from light. Examined in this project were photovoltaic cells based on a bulk heterojunction between PCPDTBT and PCBM sandwiched between an ITO anode and an Al cathode. Current-voltage characteristics and impedance spectra for multiple photovoltaic devices were taken under varying DC electrical bias and different level of illumination. This data was interpreted in terms of an equivalent circuit with linear elements, e.g. capacitance, series resistance, and parallel resistance. A physical interpretation of each circuit element will be presented. The spectral response of the devices was characterized by optical transmission and photocurrent spectroscopy using a spectrometer in the spectral range from 300 to 900 nm. The DC measurements confirmed that the devices are electrically rectifying. The AC measurements allowed modeling of the devices as a dielectric between two electrodes with injection current passing through it. The characteristic peaks for both PCBDTBT and PCBM are clearly visible in both the photocurrent and transmission data. The good correlation between the photocurrent and transmission data indicates photocurrent generation due to absorption in both materials constituting the heterojunction.

  12. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors; Desarrollo de un program de computo de calculo rapido para el prediseno de celdas de combustible nuclear avanzado 10 x 10 para reactores de agua en ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Montes, J.L.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2005-07-01

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)

  13. Photovoltaic demonstration projects 2

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W B; Hacker, R J [Halcrow (William) and Partners, Swindon (UK); Kaut, W [eds.

    1989-01-01

    This book, the proceedings of the third Photovoltaic Contractors' Meeting organised by the Commission of the European Communities, Directorate-General for Energy provides an overview of the photovoltaic demonstration projects which have been supported by the Energy Directorate of the Commission of the European Communities since 1983. It includes reports by each of the contractors who submitted proposals in 1983, 1984 and 1985, describing progress with their projects. The different technologies which are being demonstrated concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include powering of houses, villages, recreation centres, water desalination, communications, dairy farms, water pumping and warning systems. (author).

  14. Photovoltaic conference on research and innovation

    International Nuclear Information System (INIS)

    Moisan, Francois; Huennekes, Christoph; Malbranche, Philippe; Neuhaus, Holger; Lincot, Daniel; Dimroth, Frank; Signamarcheix, Thomas; Baudrit, Mathieu; Wasselin, Jocelyne; Franz, Oliver; Lippert, Michael; Bena, Michel

    2013-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on photovoltaic research and innovation. In the framework of this French-German exchange of experience, about 80 participants exchanged views on PV research priorities and on the possible cooperation paths capable to meet the challenges of an increasing worldwide competition. Beside the analysis of national and European support programmes, the presentations addressed also the technological advances in the domain of energy efficiency and fabrication of PV systems, but also the energy storage solutions and the problems of integration to grids. This document brings together the available presentations (slides) made during this event: 1 - Photovoltaic R and D financing in France (Francois Moisan); 2 - Research consortia: research promotion in Germany (Christoph Huennekes); 3 - EeRA Joint research Programme Photovoltaic Solar energy: cooperation support to PV research at the European level (Philippe Malbranche); 4 - The Research Project 'SONNe' - A shining example within the German Funding Scheme 'Innovation Alliance' (Holger Neuhaus); 5 - The 'Ile de France Photovoltaic Institute': a huge cooperation between academic and industrial partners for the improvement of photovoltaic energy efficiency and competitiveness (Daniel Lincot); 6 - SOLARBOND the basis for a successful French-German collaboration (Frank Dimroth); 7 - Smart Country model project: Successful integration of distributed generation in rural areas - Smart integration of PV power generation thanks to the combination with a modified biogas storage system (Oliver Franz); 8 - Sol-ion Conversion, storage and management of residential PV energy (Michael Lippert); 9 - Improving Tools to massively integrate Renewables in the European electric System (Michel Bena)

  15. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  16. Cost and Performance Model for Photovoltaic Systems

    Science.gov (United States)

    Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.

    1986-01-01

    Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.

  17. Organic photovoltaics

    Science.gov (United States)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  18. Bulk photovoltaic effect in LiTaO3 : Fe crystals

    International Nuclear Information System (INIS)

    Karabekyan, S.I.; Odoulov, S.G.

    1991-01-01

    The bulk photovoltaic effect that arises in non centrosymmetric crystals is determined by the third rank tensor. In this work four independent components of photovoltaic tensor, responsible for 'linear' photovoltaic currents, are measured for the first time for LiTaO 3 : Fe crystals in the range of photon energy from 2.07 to 3.88 eV. The observed correlation of the spectral dependences of β 15 and β 22 components indicates common origin of the transverse photovoltaic currents in this material

  19. Safety-related requirements for photovoltaic modules and arrays

    Science.gov (United States)

    Levins, A.; Smoot, A.; Wagner, R.

    1984-01-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  20. The role of photovoltaics in reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Blakers, A.; Green, M.; Leo, T.; Outhred, H.; Robins, B.

    1991-01-01

    This report examines the opportunities that will arise for the Australian photovoltaic industry if external costs of energy conversion are internalized. Such external costs include local pollution, resource depletion and the emission of greenhouse gases. Generation of electricity from photovoltaic (PV) modules is now a widely accepted environmentally friendly energy conversion technology. At present, high capital costs restricts its use to the provision of small amounts of power in remote areas, where it successfully competes against small diesel generators. However, as costs continue to decline, photovoltaic systems will compete successfully with progressively larger diesel-electric systems in Australia, in a market worth more than a billion dollars. Direct competition with electricity generated by conventional means for state grids is possible after the turn of the century. The present Australian photovoltaic industry is export oriented. The market for PV systems in poor rural areas in Asia is potentially very large. The cost of supplying small quantities of electricity to millions of rural households is high, making photovoltaics a competitive option. It is concluded that the Australian photovoltaic industry is in a good position to participate in the growth in this market sector. 48 refs., 28 tabs., 18 figs., ills

  1. Basic photovoltaic principles and methods

    Energy Technology Data Exchange (ETDEWEB)

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  2. Photovoltaic effect in Bi{sub 2}TeO{sub 5} photorefractive crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ivan de, E-mail: ivan@ft.unicamp.brg; Capovilla, Danilo Augusto [GOMNI-Faculdade de Tecnologia/UNICAMP, Limeira (Brazil); Carvalho, Jesiel F.; Montenegro, Renata; Fabris, Zanine V. [Instituto de Física/Universidade Federal de Goiás, Goiânia (Brazil); Frejlich, Jaime [Instituto de Física “Gleb Wataghin”/UNICAMP, Campinas (Brazil)

    2015-10-12

    We report on the presence of a strong photovoltaic effect on nominally undoped photorefractive Bi{sub 2}TeO{sub 5} crystals and estimated their Glass photovoltaic constant and photovoltaic field for λ = 532 nm illumination. We directly measured the photovoltaic-based photocurrent in this material under λ = 532 nm wavelength laser light illumination and compared its behavior with that of a well known photovoltaic Fe-doped Lithium Niobate crystal. We also show the photovoltaic current to strongly depend on the polarization direction of light. Holographic diffraction efficiency oscillation during recording and the behavior of fringe-locked running holograms in self-stabilized experiments are also demonstrated here as additional indirect proofs of the photovoltaic nature of this material.

  3. Photovoltaic is redolent of grid parity

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2015-01-01

    This article indicates and comments the current trends of decrease of photovoltaic costs and increase of electricity prices. As a result, grid parity is starting to be reached in some countries (Mexico city, California, Australia, Italy, Germany, Israel, Chile) and nearly in southern France only, as the prices of residential electricity are rather low and therefore don't give any chance to network parity for solar photovoltaic. Curves of evolutions of photovoltaic costs and retail electricity prices are given for different towns (Berlin, London, Rome, Madrid, Marseilles, San Francisco, Sydney, and Copiapo in Chile). These evolutions are a positive factor for the development of self-consumption. The article thus evokes the PV-NET project which gathers several European regions or countries to test and assess different economic solutions of self-consumption

  4. Photovoltaic: state of the arts in France and in the world

    International Nuclear Information System (INIS)

    Jurczak, Ch.; Leclerq, M.

    2005-01-01

    The author analyzes the photovoltaic world solar market. He discusses the photovoltaic solar electricity production cost and more particularly the photovoltaic solar industry in France and the thermal solar. (A.L.B.)

  5. APPLICATION OF A PHOTOVOLTAIC SYSTEM IN WATER ...

    African Journals Online (AJOL)

    use of the Photovoltaic system for water pumping is explored. .... employed to advantage for rural Ethiopia are solar energy, wind ... Kwh/sq.m/day and with a yearly average of about .... equator. Well Data : Total head 62m ... Investment return in photovoltaic potable water ... without any considerable change in performance.

  6. Parameter changes during gradual flooding of a PEM fuel cell through EIS studies; Cambio en parametros de una celda de combustible PEM durante inundacion gradual mediante estudios de EIS

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Cruz Manzo, Samuel; Arriaga Hurtado, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Ortiz, Alondra; Orozco, German [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C. (CIDETEQ) (Mexico)

    2008-07-01

    The gradual flooding of a single PEM fuel cell was produced and Electrochemical Impedance Spectroscopy (EIS) measurements were realized in order to follow changes of the fuel cell impedance parameters. These changes were followed by using two equivalent circuit models: one simple model of the Randles type accounting for cathode and anode interfaces and a more complex model based on distributed elements, more suitable for porous electrodes in order to include protonic resistance of the catalyst layers. [Spanish] La inundacion gradual de una monocelda de combustible tipo PEM fue estudiada empleando espectroscopia de impedancia electroquimica (EIS), con el proposito de seguir cambios en los parametros de impedancia de la celda. Estos cambios fueron estudiados utilizando dos circuitos equivalentes: un modelo simple de tipo Randles, el cual considerara las interfaces del catodo y del anodo, y un modelo mas complejo basado en elementos distribuidos, el cual fuera adecuado para electrodos porosos, a fin de incluir la resistencia protonica de las capas catalizadoras.

  7. La celda Avesta: Un método para evitar problemas de corrosión por resquicios en los ensayos electroquímicos de corrosión por picaduras

    Directory of Open Access Journals (Sweden)

    Fosca, C.

    1996-06-01

    Full Text Available A very common problem, that occurs during the electrochemical pitting corrosion tests of CRAs (corrosion resistant alloys as stainless steels, is the simultaneous occurrence of crevice corrosion that difficults the evaluation of the electrochemical behaviour in presence of pitting corrosion mechanism only. Crevice corrosion appears as a consequence of the formation of crevices during the mountage of the specimen in the electrochemical cell. Several forms have been developed to avoid the presence of crevice during the electrochemical pitting corrosion test, but without satisfactory results. In the present study a relatively new and innovative method to eliminate the risk of crevice corrosion in the electrochemical tests is evaluated the Avesta cell. Anodic polarization electrochemical tests were carried out in a high alloy stainless steel in 3 % NaCl solution. The experimental results obtained using the Avesta cell were more reliable, reproducible and representative of the electrochemical behaviour of the material that those obtained using other methods of samples preparation to avoid the crevice formation.

    Uno de los grandes problemas que suelen presentarse en los ensayos electroquímicos ideados para evaluar la resistencia a la corrosión por picaduras de materiales como los aceros inoxidables es la presencia simultánea de corrosión por resquicios, que suele dificultar e impedir muchas veces la interpretación de los resultados electroquímicos. Este mecanismo de corrosión localizada se produce como consecuencia de la presencia de resquicios en el ensamble de la muestra con la celda electroquímica de ensayo. Se han ideado numerosas formas de evitar este inconveniente, pero ninguna ha resultado completamente satisfactoria. En el presente estudio se evalúa uno de los más nuevos e ingeniosos procedimientos para eliminar el riesgo de corrosión por resquicios en los ensayos de corrosión por picaduras: la celda Avesta. Se efectuaron

  8. Photovoltaic Subcontract Program, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K.A. (ed.)

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  9. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  10. Photovoltaic system criteria documents. Volume 1: Guidelines for evaluating the management and operations planning of photovoltaic applications

    Science.gov (United States)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Guidelines are provided to the Field Centers for organization, scheduling, project and cost control, and performance in the areas of project management and operations planning for Photovoltaics Test and Applications. These guidelines may be used in organizing a T and A Project Team for system design/test, site construction and operation, and as the basis for evaluating T and A proposals. The attributes are described for project management and operations planning to be used by the Field Centers. Specifically, all project management and operational issues affecting costs, schedules and performance of photovoltaic systems are addressed. Photovoltaic tests and applications include residential, intermediate load center, central station, and stand-alone systems. The sub-categories of system maturity considered are: Initial System Evaluation Experiments (ISEE); System Readiness Experiments (SRE); and Commercial Readiness Demonstration Projects (CRDP).

  11. Status of photovoltaic industry in China

    International Nuclear Information System (INIS)

    Hong Yang; He Wang; Guangde Chen; Huacong Yu; Jianping Xi; Rongqiang Cui

    2003-01-01

    In recent years, photovoltaic industry has achieved some remarkable development in China, This paper presents a summary and review of the present status of terrestrial photovoltaic industry, and tries to look at possible future scenarios in China, the recent progress with laboratory cells is also discussed. Topics covered include the production equipment, fabrication technology of cells and modules, storage battery, solar charge controller, DC/AC inverter, market and national policy. (Author)

  12. Charging a Capacitor with a Photovoltaic Module

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco; Navarro, Luis Barba

    2017-01-01

    Charging a capacitor with a photovoltaic module is an experiment which reveals a lot about the modules characteristics. It is customary to represent these characteristics with an equivalent circuit whose elements represent its physical parameters. The behavior of a photovoltaic module is very similar to that of a single cell but the electric…

  13. The Harvard organic photovoltaic dataset.

    Science.gov (United States)

    Lopez, Steven A; Pyzer-Knapp, Edward O; Simm, Gregor N; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-09-27

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  14. Photovoltaic research and development in Japan

    Science.gov (United States)

    Shimada, K.

    1983-01-01

    The status of the Japanese photovoltaic (PV) R&D activities was surveyed through literature searches, private communications, and site visits in 1982. The results show that the Japanese photovoltaic technology is maturing rapidly, consistent with the steady government funding under the Sunshine Project. Two main thrusts of the Project are: (1) completion of the solar panel production pilot plants using cast ingot and sheet silicon materials, and (2) development of large area amorphous silicon solar cells with acceptable efficiency (10 to 12%). An experimental automated solar panel production plant rated at 500 kW/yr is currently under construction for the Sunshine Project for completion in March 1983. Efficiencies demonstrated by experimental large are amorphous silicon solar cells are approaching 8%. Small area amorphous silicon solar cells are, however, currently being mass produced and marketed by several companies at an equivalent annual rate of 2 MW/yr for consumer electronic applications. There is no evidence of an immediate move by the Japanese PV industry to enter extensively into the photovoltaic power market, domestic or otherwise. However, the photovoltaic technology itself could become ready for such an entry in the very near future, especially by making use of advanced process automation technologies.

  15. Organic photovoltaic effects depending on CuPc layer thickness

    International Nuclear Information System (INIS)

    Hur, Sung Woo; Kim, Tae Wan; Chung, Dong Hoe; Oh, Hyun Seok; Kim, Chung Hyeok; Lee, Joon Ung; Park, Jong Wook

    2004-01-01

    Organic photovoltaic effects were studied in device structures of ITO/CuPc/Al and ITO/CuPc/C 60 /BCP/Al by varying the CuPc layer thickness. Since the exciton diffusion length is relatively short in organic semiconductors, a study on the thickness-dependent photovoltaic effects is important. The thickness of the CuPc layer was varied from 10 nm to 50 nm. We found that the optimum CuPc layer thickness was around 40 nm from the analysis of the current density-voltage characteristics in an ITO/CuPc/Al photovoltaic cell. The efficiency of the device shows that the multi-layered heterojunction structure is more appropriate for photovoltaic cells.

  16. Fabrication and performance analysis of concentrated hybrid photovoltaic system

    Directory of Open Access Journals (Sweden)

    Murthy Krishna

    2018-01-01

    Full Text Available Sun is the most important source of renewable source of energy. During the past few decades there has been an ever-increasing interest in Photovoltaic (PV cells as it directly converts solar radiation into electricity. This paper involves the performance study of photovoltaic system under concentrated solar radiation. The main problem with the concentration solar energy is the drastic increase in temperature of the photovoltaic module resulting in a decrease in performance efficiency of the system. This problem of overheating of the system can be overcome by providing cooling which would ensure operation of the module in the optimal temperature range. Hence, the setup would function as a hybrid model serving the dual purpose of power generation while also utilizing the waste heat for water heating applications. The experimental set up consist of a novel arrangement of concentrator and reflector and the cooling system. The Hybrid Photovoltaic System was repeatedly tested under real time conditions on several days. A comparison was drawn between the results obtained from direct exposure of a standard photovoltaic module to that obtained from the hybrid system in order to better understand the improvement in performance parameters. The study shown a significant improvement of output of standard photovoltaic module under the concentrated solar radiation.

  17. Systematic procedures for sizing photovoltaic pumping system, using water tank storage

    International Nuclear Information System (INIS)

    Hamidat, A.; Benyoucef, B.

    2009-01-01

    In this work, the performances of the photovoltaic pumping destined to supply drinking water in remote and scattered small villages have been studied. The methodology adopted proposes various procedures based on the water consumption profiles, total head, tank capacity and photovoltaic array peak power. A method of the load losses probability (LLP) has been used to optimize sizing of the photovoltaic pumping systems with a similarity between the storage energy in batteries and water in tanks. The results were carried out using measured meteorological data for four localities in Algeria: Algiers and Oran in the north, Bechar and Tamanrasset in the south. The results show that the performance of the photovoltaic pumping system depends deeply on the pumping total head and the peak power of the photovoltaic array. Also, for the southern localities, the LLP method shows that the size of the photovoltaic array varies versus LLP on a small scale. On the other hand, for the northern localities, the sizing of the photovoltaic array is situated on a large scale power. Because of the current high crud-oil price, the photovoltaic pumping still to be the best adopted energy resource to supply drinking water in remote and scattered villages

  18. The production of photovoltaic electricity in France

    International Nuclear Information System (INIS)

    Livet, Frederic

    2014-01-01

    The author presents, comments and discusses various data related to photovoltaic energy production in France: evolution of installed power until 2013, installed power, production, hours per year and load factor for different countries (France, Spain, Germany and Italy) and for the different French regions. He highlights and comments the intermittency of photovoltaic production in France. This intermittency is related to the difference between day and night, to the difference between seasons, and to weather conditions. He discusses the possible solutions to this intermittency. In this respect, he outlines that the expansion of the photovoltaic production and the use of interconnection do not solve the problem, and discusses the possibility of massive storage and the possible interest of local consumption

  19. Modeling photovoltaic systems for AC appliances

    Directory of Open Access Journals (Sweden)

    Andreea Maria Neaca

    2009-10-01

    Full Text Available In this paper is described the development of a model which can simulate the performance of a photovoltaic (PV system under specific meteorological conditions and transforming the DC current into AC current. In this model, the accent stands on the design of a series charge regulator. It is treated also the benefit of creating a circuit, with different methods, that can test the maximum power point trackers (MPPT for different photovoltaic applications.

  20. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    Science.gov (United States)

    2016-04-19

    the free energy of the system [3,4,8]. Intensive research has been aimed at bypassing the intrinsic size limits imposed by the depolarization field...Page 1 of 21   Ultrafast photovoltaic response in ferroelectric nanolayers Dan Daranciang1,2, Matthew J. Highland3, Haidan Wen4, Steve M. Young5...ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on

  1. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  2. Optimization of Photovoltaic Self-consumption using Domestic Hot Water Systems

    Directory of Open Access Journals (Sweden)

    Ângelo Casaleiro

    2018-06-01

    Full Text Available Electrified domestic hot water systems, being deferrable loads, are an important demand side management tool and thus have the potential to enhance photovoltaic self-consumption. This study addresses the energy and economic performance of photovoltaic self-consumption by using a typical Portuguese dwelling. Five system configurations were simulated: a gas boiler (with/without battery and an electric boiler (without demand management and with genetic and heuristic optimization. A sensitivity analysis on photovoltaic capacity shows the optimum photovoltaic sizing to be in the range 1.0 to 2.5 kWp. The gas boiler scenario and the heuristic scenario present the best levelized cost of energy, respectively, for the lower and higher photovoltaic capacities. The use of a battery shows the highest levelized cost of energy and the heuristic scenario shows the highest solar fraction (56.9%. Results also highlight the great potential on increasing photovoltaic size when coupled with electrified domestic hot water systems, to accommodate higher solar fractions and achieve lower costs, through energy management.

  3. Fuzzy Controller Design Using FPGA for Photovoltaic Maximum Power Point Tracking

    OpenAIRE

    Basil M Hamed; Mohammed S. El-Moghany

    2012-01-01

    The cell has optimum operating point to be able to get maximum power. To obtain Maximum Power from photovoltaic array, photovoltaic power system usually requires Maximum Power Point Tracking (MPPT) controller. This paper provides a small power photovoltaic control system based on fuzzy control with FPGA technology design and implementation for MPPT. The system composed of photovoltaic module, buck converter and the fuzzy logic controller implemented on FPGA for controlling on/off time of MOSF...

  4. Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

    OpenAIRE

    K. Touafek; A. Khelifa; E. H. Khettaf; A. Embarek

    2013-01-01

    Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a h...

  5. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  6. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  7. Wind/photovoltaic power indicators. Second quarter 2009

    International Nuclear Information System (INIS)

    2009-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  8. Wind/photovoltaic power indicators. Second quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  9. Wind/photovoltaic power indicators. First quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  10. Wind/photovoltaic power indicators. Second quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  11. Wind/photovoltaic power indicators. Fourth quarter 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  12. Wind/photovoltaic power indicators. First quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  13. Wind/photovoltaic power indicators. Third quarter 2009

    International Nuclear Information System (INIS)

    2009-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  14. Wind/photovoltaic power indicators. Fourth quarter 2009

    International Nuclear Information System (INIS)

    2010-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  15. Concentrated photovoltaics, a case study

    Directory of Open Access Journals (Sweden)

    Antonini Piergiorgio

    2014-01-01

    Full Text Available Concentrated Photovoltaics (CPV, once a niche technology, has now reached the maturity and reliability for large scale power generation. Especially in regions where temperatures are very high, the use of high efficiency triple junction solar cells with concentrating optics allows stable energy yield. Thus CPV can be seen as complementary and not in concurrence with silicon photovoltaics. The state of the art, the advantages and limitations of this technology will be shown. Among the main advantages of CPV is the possibility of a much higher energy supply, when compared to silicon photovoltaics, both comparing CPV and silicon with same area or the same installed power. The use of recycled and recyclable materials allows a more environmentally friendly production. The possibility to couple CPV with desalination facilities, energy storage will be analysed. As an example a case study of a CPV installation in Northern Italy is discussed. Here the use of mature technologies, derived from automotive and lighting sectors resulted in a simple and efficient module.

  16. Federal policies to promote the widespread utilization of photovoltaic systems. Volume two. Technical document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The question of photovoltaic system interactions with electric utility grids is addressed. Discussions of system configurations, effects on utility dispatch and generation planning, effects of utility rate structures on photovoltaic deployment and vice versa, interactions of photovoltaic and electrical storage systems, effects on end-use reliability, and the ultimate limitations on photovoltaic penetration into electric grids are presented. Photovoltaic system economic issues are considered. Discussions of the high first cost and the Program plans and strategies to reduce costs (and PV prices), expected evolution of photovoltaic technology, effects of various financial incentives on photovoltaics, implications of utility vs non-utility ownership of photovoltaics, likelihood that sufficient capital will be available to adequately finance the deployment of photovoltaic systems, current status and expected evolution of the photovoltaic supply industry, and the programmatic activities directed at aiding the evolution of a healthy, competitive industry are presented. The basic issues of photovoltaic market development are studied. The potential of various market segments and the complexity involved in defining and identifying the various segments; issues to be faced in deployment of dispersed photovoltaic systems including innovation acceptance on the part of the building industry, building codes, zoning, insurance, information dissemination, public acceptance, solar access, state and local solar photovoltaic incentives, and the implications for urban and suburban land use; and the need for, and method of development of, photovoltaic standards and warranties on photovoltaic systems are discussed. The conclusions of the report with respect to the information requested by Congress are summarized, and findings for congressional action are presented. (WHK)

  17. The German Market for photovoltaic (solar-produced electricity)

    International Nuclear Information System (INIS)

    1999-06-01

    In preparation for reducing the CO2 emission and in so living up to the Kyoto-protocol with the succeeding changes, renewable energy has - including photovoltaic - got an increasing importance in the world over - especially in Germany. If the technical potentials in Germany are utilized optimally, then 75% of the total German electricity production with photovoltaic are covered. At the moment it is only about 1 per thousand. There is a political will to promote photovoltaic in Germany, which results in high account prices and different plant supporting programmes. In the coming 6 years the official aim is that a minimum of 100.000 photovoltaic power plants are installed with an average capacitate for 3 kWp. The competition for the market is hard. There are many national and international suppliers, so the co-operations between the large German producers seem to be obvious. (EHS)

  18. The French photovoltaic between light and shade. Self-consumption, a future way for the photovoltaic sector?

    International Nuclear Information System (INIS)

    Mary, Olivier; Petitot, Pauline

    2016-01-01

    This article outlines that France, after having been a leader in the photovoltaic sector, has lost ground during the 2000's. Companies and particularly hardware manufacturers are suffering in front of a harsh competitive environment. However, France still possesses some assets, notably in research and development, and professionals are waiting for some public support to re-boost a sector which is strongly growing everywhere in the world. To illustrate this situation, figures indicate the rate between added value and production for the various concerned activities, the level of added value for these different activities, the distribution of jobs among them, and the distribution of direct, indirect and induced jobs. A second article quotes interventions of a colloquium which addressed the issue of self-consumption of photovoltaic solar energy. It outlines that the development of self-consumption could be an opportunity for the photovoltaic sector if a favourable evolution of the regulatory and tariff framework is introduced

  19. DOE/OER-sponsored basic research in high-efficiency photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S.K.; Benner, J.P. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A high-efficiency photovoltaic project involving many of the national laboratories and several universities has been initiated under the umbrella of the U.S. Department of Energy (DOE) Center of Excellence for the Synthesis and Processing of Advanced Materials. The objectives of this project are to generate advances in fundamental scientific understanding that will impact the efficiency, cost and reliability of thin-film photovoltaic cells. The project is focused on two areas. (1) Silicon-Based Thin Films, in which key scientific and technological problems involving amorphous and polycrystalline silicon thin films will be addressed, and (2) Next-Generation Thin-Film Photovoltaics, which will be concerned with the possibilities of new advances and breakthroughs in the materials and physics of photovoltaics using non-silicon-based materials.

  20. Photovoltaic energy: an efficient development tool for Sub-Saharan economies

    International Nuclear Information System (INIS)

    Megherbi, Karim

    2013-01-01

    In this report, the author aims at highlighting the main success factors for a photovoltaic program in sub-Saharan Africa, and the benefits of this technology for African electricity operators. He first presents the electricity sector of Sub-Saharan Africa, its current situation, its scenarios of evolution, and the limitations of scenarios based on conventional energies. In a second part, he discusses the role photovoltaic solar energy could have within the energy mix of Sub-Saharan countries. He discusses how to calculate the cost of photovoltaic electricity production, and the value of photovoltaic electricity, discusses the main influencing parameters, and tries to identify when it becomes worth to choose photovoltaic electricity. He describes the implementation of an adapted legal and economic framework, the 'feed-in-tariff'. An appendix contains a proposition for Western Africa and analyses the case of Benin

  1. Carbazole functionalized isocyanide brushes in heterojunction photovoltaic devices

    NARCIS (Netherlands)

    Lim, E.; Gao, F.; Schwartz, E.; Schwartz, E.; Cornelissen, Jeroen Johannes Lambertus Maria; Nolte, R.J.M.; Rowan, A.E.; Greenham, N.C.; Do, L.M.

    2012-01-01

    In this work, carbazole-containing polyisocyanide (PIACz) brushes were used for photovoltaic devices. A photovoltaic device was fabricated on top of the brushes by spin-coating a suitable acceptor and evaporating an Al cathode. Devices with a poly(N-vinylcarbazole) (PVK) bulk polymer were also

  2. The photovoltaic: channels, markets and outlooks

    International Nuclear Information System (INIS)

    Jourde, P.

    2005-01-01

    The photovoltaic market is in expansion with a good energy, political and environmental context. It needs meanwhile to realize developments in the storage domain and in the cost of connexion to the network. To illustrate these conclusions this paper discusses the following chapters: the solar energy, the principle and the channels of the photovoltaic, the applications (autonomous electrification and houses connected to the network) and the markets, a state of the art and the outlooks. (A.L.B.)

  3. Photovoltaic. Solar electricity, a sustainable source of energy

    International Nuclear Information System (INIS)

    Stryi-Hipp, Gerhard; Loyen, Richard; Knaack, Jan; Chrometzka, Thomas

    2008-06-01

    This German publication outlines that solar energy is now essential to any sustainable energy mix, and describes the operation principle of solar photovoltaic energy production. It describes how it can be applied for the production of electricity in isolated areas, and for individual housing as well as commercial buildings, and presents the concept of ground-based solar plants. The next part discusses the development of the photovoltaic market (its huge potential, its world size) and indicates the different associated arrangements of financial support or subsidy. It also discusses how photovoltaic markets can be developed, and proposes an overview of the German model

  4. Power Inverter Topologies for Photovoltaic Modules - A Review

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Pedersen, John Kim; Blaabjerg, Frede

    2002-01-01

    This review-paper focuses on the latest development of inverters for photovoltaic AC-Modules. The power range for these inverters is usually within 90 Watt to 500 Watt, which covers the most commercial photovoltaic-modules. Self-commutated inverters have replaced the grid-commutated ones. The same...... is true for the bulky low-frequency transformers versus the high-frequency transformers, which are used to adapt the voltage level. The AC-Module provides a modular design and a flexible behaviour in various grid conditions. It hereby opens the market for photovoltaic-power for everyone at a low cost due...

  5. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  6. The Harvard organic photovoltaic dataset

    Science.gov (United States)

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-01-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312

  7. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  8. High-resolution global irradiance monitoring from photovoltaic systems

    Science.gov (United States)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  9. Solar Photovoltaic Electricity Applications in France. National Survey Report 2007

    International Nuclear Information System (INIS)

    Claverie, Andre; Jacquin, Philippe

    2008-01-01

    The overall power of installed PV systems in France in 2007 was 31,3 MW which represents a significant growth compared to 2006. This increase is mainly due to the national fiscal measures (new feed-in tariff and tax credit) launched in 2006. The implemented feed-in tariff model application supports building integration of photovoltaic generators with a much higher financial incentive than other type of photovoltaic installations. In the same way, local authorities like regional councils and departmental councils developed new policies to promote photovoltaics through specific grants. As the building integration of photovoltaic generators is encouraged by a feed-in tariff bonus, innovative products are appearing on the market or are under development. In parallel, actors like architects, designers, engineers are now paying attention to building integration of photovoltaic components (BIPV). New actors such as financial institutions, energy operators, and private investors have developed ambitious projects. With the increase of the market, new firms have been created including engineering, consultancies, electricity producers, PV products distributors and retailers, installation and maintenance companies. Photovoltaic industrial sector is getting stronger and large investments have been undertaken in order to develop a vertical integration of the photovoltaic value chain, from feedstock silicon production to final photovoltaic products. A new private-public consortium called 'PV Alliance Lab Fab' has been set up and an important R and D project under the name of 'Solar Nano Crystal' should start by the end of 2008. At the same time, R and D activities focus on photovoltaic silicon cells/modules conversion efficiency and long term reliability, production costs, new materials and device design, yield, environmental impact of industrial processes and optimisation of control and monitoring of photovoltaic systems. In addition to the ADEME and ANR

  10. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  11. A dynamic model of a photovoltaic vapour compression system

    International Nuclear Information System (INIS)

    Renno, C.

    2009-01-01

    A dynamic simulation of a photovoltaic vapour compression system is presented in this paper. In particular, there are several options to convert solar energy into refrigeration effect such as the absorption cycle, the thermo-mechanical refrigeration systems, the regenerative desiccant process or the steam jet system. This effect can also be produced by a conventional vapor compression cycle in which the compressor is driven by an electric motor supplied by means of photovoltaic cells. It is also possible to produce the cooling effect adopting the thermoelectric refrigeration, with electricity supplied by means of photovoltaic cells. Absorption and solar mechanical systems are necessarily larger and require extensive plumbing and electrical connections. The dynamic model allows to obtain some characteristic temperatures of the photovoltaic system and the energy consumptions with and without load perturbations. This model results a useful tool to study the dynamic working, for example, of photovoltaic refrigerators used in rural areas and remote islands, for their simple structure and low costs, to preserve foodstuffs, vaccines and other life saving medicines. (author)

  12. 76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Science.gov (United States)

    2011-12-16

    ...)] Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1... injured by reason of imports from China of crystalline silicon photovoltaic cells and modules, provided... imports of crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October...

  13. Wind/photovoltaic power indicators. First quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  14. Wind/photovoltaic power indicators. Third quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2011-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  15. Wind/photovoltaic power indicators. Fourth quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  16. Wind/photovoltaic power indicators. Second quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  17. Photovoltaic facilities, legal guidebook

    International Nuclear Information System (INIS)

    Maincent, G.

    2011-01-01

    Important debates about the photovoltaic industry took place in 2009 and 2010 which have led to some evolutions of the French law having an economical impact on the arrangement of photovoltaic projects. The aim of this supplement to 'Droit de l'Environnement' journal is to answer some important questions at a time when the electricity market is not fully structured: the setting up of solar cell panels, town planing and property constraints; connection to the grid; project financing: power generation tariffs, partnership contract; the new legal framework set up in 2011: moratorium and new legal scheme; is 'green fiscality' still green and attractive? Settlement of disputes with the French government; actors reactions: authorities and professionals, opinion of an expert. (J.S.)

  18. Interim performance criteria for photovoltaic energy systems. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  19. Photovoltaic power supplies: Energy option feasibility. Solare fotovoltaico come opzione energetica

    Energy Technology Data Exchange (ETDEWEB)

    Coiante, D.; Barra, L. (ENEA, Casaccia (Italy). Area Energetica)

    1993-01-01

    Commercialization prospects for grid connected, stand-alone and hydrogen- production photovoltaic power plants are assessed. The paper traces the evolution of the development of photovoltaic modules and correlates trends in R D expenditure and progress made with subsequent drops in the cost of photovoltaic power equipment. Assessments are made of limits in the marketability of grid connected photovoltaic power supplies and comments are made as to the wisdom of the current directions being taken by research groups operating in this field.

  20. Research on the Electrical Characteristics of Photovoltaic Arrays and Corresponding MPPT Simulation

    Directory of Open Access Journals (Sweden)

    Shengming Li

    2013-05-01

    Full Text Available Photovoltaic cells, as the primary part of a solar photovoltaic system, are a nonlinear DC power supply related to multiple parameters. The demand of increasing the generating efficiency of photovoltaic cells requires having a good understanding of their electrical characteristics. In this study, the mathematical and physical model of the photovoltaic cells was built by the means of Matlab and Simulink based on the internal principles and equivalent circuits of the photovoltaic cells. After the simulation of such practical and versatile model, it’s found that the nonlinear P-V and I-V characteristics of the photovoltaic cells, with the change of sunlight intensity and temperature, could be accurately reflected by this high simulation precision model. Furthermore, the Maximum Power Point Tracking method was proposed using the logical formula dP/dI=0 of the maximum power point of photovoltaic cells. This method can simply and fast implement the tracking for the maximum power point.

  1. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 21st symposium 'Photovoltaic Solar Energy' of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) at Banz Monastery (Bad Staffelstein, Federal Republic of Germany) between 8th and 10th March, 2006, the following lessons were held: (1) Basic conditions for a market support programme in the European context (EEG) (Winfried Hoffmann); (2) Actual developments in the German market of photovoltaics (Gerhard Stryi-Hipp); (3) Become a part of the global economic survey of Task 2 ''PV cost over time'' (Thomas Nordmann); (4) The market of photovoltaic will be a European market in the future (Murray Cameron); (5) Development and state of the art of the photovoltaic industry in the Peoples Republic of China (Frank Haugwitz); (6) Silicon for the photovoltaic industry (Karl Hesse); (7) Cell technology: Impulses for a cost effective photovoltaic with valuable silicon (Rolf Brendel); (8) Thin-film solar modules for the photovoltaic - state of the art and industrial perspectives (Michael Powalla); (9) Modules - bottleneck and flood of orders: How to act an installer? (Helmut Godard); (10) Photovoltaic open-field systems - Actual experiences and conflict lines (Ole Langniss); (11) Comparison of actual and future trends of Balance-of-System costs for large scale ground based PV systems with crystalline and thin-film modules (Manfred Baechler); (12) Financing PX projects from a Bank perspective (Joachim Treder); (13) Criteria of quality for solar fonds - Criteria of evaluation for capital investors and self-commitment for emission houses (Ulla Meixner); (14) Analysis of the distribution pathways for photovoltaic plants from the manufacturer to the final customer considering the decreasing demand and increasing prices (Michael Forst); (15) Solar power 2005 - Evaluation of real operational data of 1,000 plants in Germany (Gerd Heilscher); (16) Improvement of PV-inverter efficiency - targets, pathways

  2. 77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Science.gov (United States)

    2012-12-06

    ... Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1\\ developed... imports of crystalline silicon photovoltaic cells and modules from China, provided for in subheadings 8501... silicon photovoltaic cells and modules from China. Chairman Irving A. Williamson and Commissioner Dean A...

  3. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  4. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, D.S. (ed.)

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  5. Ultrathin TaOx film based photovoltaic device

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2011-01-01

    Application of the economical metal oxide thin-film photovoltaic devices is hindered by the poor energy efficiency. This paper investigates the photovoltaic effect with an ultrathin tantalum oxide (TaOx) tunnel barrier, formed by the plasma oxidation of a pre-deposited tantalum (Ta) film. These ∼ 3 nm TaOx tunnel barriers showed approximately 160 mV open circuit voltage and 3-5% energy efficiency, for varying light intensity. The ultrathin TaOx (∼ 3 nm) could absorb approximately 12% of the incident light radiation in 400-1000 nm wavelength range; this strong light absorbing capability was found to be associated with the dramatically large extinction coefficient. Spectroscopic ellipsometry revealed that the extinction coefficient of 3 nm TaOx was ∼ 0.2, two orders higher than that of tantalum penta oxide (Ta 2 O 5 ). Interestingly, refractive index of this 3 nm thick TaOx was comparable with that of stochiometeric Ta 2 O 5 . However, heating and prolonged high-intensity light exposure deteriorated the photovoltaic effect in TaOx junctions. This study provides the basis to explore the photovoltaic effect in a highly economical and easily processable ultrathin metal oxide tunnel barrier or analogous systems.

  6. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  7. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  8. Flat-plate photovoltaic array design optimization

    Science.gov (United States)

    Ross, R. G., Jr.

    1980-01-01

    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  9. Catalyst-free, III-V nanowire photovoltaics

    Science.gov (United States)

    Davies, D. G.; Lambert, N.; Fry, P. W.; Foster, A.; Krysa, A. B.; Wilson, L. R.

    2014-05-01

    We report on room temperature, photovoltaic operation of catalyst-free GaAs p-i-n junction nanowire arrays. Growth studies were first performed to determine the optimum conditions for controlling the vertical and lateral growth of the nanowires. Following this, devices consisting of axial p-i-n junctions were fabricated by planarising the nanowire arrays with a hard baked polymer. We discuss the photovoltaic properties of this proof-of-concept device, and significant improvements to be made during the growth.

  10. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  11. Antitrust implications of utility participation in the market for remote photovoltaic systems

    International Nuclear Information System (INIS)

    Starrs, T.J.

    1994-01-01

    Remote photovoltaic systems are an important niche market in the development of a viable photovoltaics industry. Electric utilities in the US have started offering remote photovoltaic service. Utilities have the potential to use their monopoly power in regulated markets to unfair competitive advantage in competitive markets. Therefore, utility participation in remote photovoltaic markets raises potentially significant issues of antitrust law and policy. This paper describes some of the legal and factual criteria that US courts and regulatory agencies are likely to use in assessing the antitrust implications of utility participation in the market for remote photovoltaic systems

  12. Singlet-Fission-Sensitized Hybrid Thin-Films For Next-Generation Photovoltaics

    Science.gov (United States)

    2016-04-12

    SECURITY CLASSIFICATION OF: This grant enabled the acquisition of equipment for the fabrication of organic and nanocrystal based photovoltaic (PV... Photovoltaics . The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 singlet fission, nanocrystal, triplet, hybrid, photovoltaic REPORT

  13. Simulation of the optimal size of photovoltaic system using ...

    African Journals Online (AJOL)

    . ... is composed of photovoltaic array, power tracker, battery storage, inverter and load. The data used were the sunshine duration and solar radiation intensity for ... covered by the photovoltaic system without battery storage, monthly-average ...

  14. ANALYSIS OF THE ENERGY EFFICIENCY OF PHOTOVOLTAIC POLYCRYSTALLINE AND THIN-FILM PHOTOVOLTAIC FARM IN THE DOLINA ZIELAWY

    Directory of Open Access Journals (Sweden)

    Piotr Dragan

    2016-12-01

    Full Text Available Renewable energy is an opportunity not only to improve the energy efficiency of individual customers, but also to ensure energy security for local governments. In 2007, in Lublin province 5 municipalities have formed a partnership government called "Valley of Zielawa". The objectives of the partnership is the cooperation in the field of education, tasks in the field of culture, health protection, social welfare, fire protection and street lighting. One of the overarching goals of the partnership include ensure energy security and improving energy efficiency through the utilization of solar energy. Solar energy resources in the Lublin region are mainly characterized by a very high degree of sunlight compared to other regions of the country. The greatest potential for solar energy use is the eastern area of the province (including the area of partnership. In order to ensure the energy security of the community established a company Energy Valley of Zielawa, which in 2014 built a photovoltaic farm with a capacity of 1.4 MW in the Bordziłówka in Municipality Rossosz. This paper presents an analysis of photovoltaic farm work over the year and a half and the analysis of the energy efficiency of various types of photovoltaic panels which produce energy on a farm in photovoltaic Bordziłówce.

  15. Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.

    Science.gov (United States)

    Ho, Elton; Smith, Richard; Goetz, Georges; Lei, Xin; Galambos, Ludwig; Kamins, Theodore I; Harris, James; Mathieson, Keith; Palanker, Daniel; Sher, Alexander

    2018-02-01

    Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We

  16. Photovoltaics: systems considerations

    Energy Technology Data Exchange (ETDEWEB)

    Haq, A M

    1982-08-01

    Photovoltaics applications to date and the potential uses and growth of this alternative energy source for the future are examined in the light of present world economic conditions. In addition, a more detailed description is given, illustrating the method by which system sizing and design are calculated and mentioning such factors as local solar radiation and insolation levels, humidity, wind loading and altitude, all of which affect the optimal system size. The role of computer programming in these calculations is also outlined, illustrating the way in which deterioration, battery losses, poor weather etc. can be accounted and compensated for in the systems design process. The elements of the actual systems are also described, including details of the solar cells and arrays, the electronic controls incorporated in the systems and the characteristics of the batteries used. A resume of projected costs and current technological advances in silicon processing techniques is given together with an analysis of present and future growth trends in the photovoltaics industry.

  17. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  18. The physics of the photovoltaic effect

    International Nuclear Information System (INIS)

    Boeer, K.W.

    1978-01-01

    The main parts of a photovoltaic cell and their function are described. Photovoltaic cells are then classified in respect to their operation. The operation of typical cells is analyzed with the goal to obtain current-voltage characteristics in a self-consistent physical model. This is achieved by connecting the emitter diffusion current with the voltage drop in the junction by a doubly acting boundary condition, the electron density at the emitter-junction interface. The consequently obtained characteristics have near the open circuit voltage (Boltzmann range), the form of the commonly used shifted diode characteristic, however, with parameters in substantially improved agreement with the experiment. Outside the Boltzmann range, integration of transport and Poisson equation yields the shape of the characteristics. This theory is then extended to include photovoltaic cells with dominant interface recombination. Such interface recombination causes mostly a lowering of the open circuit voltage. The agreement between theory and experiment is surprisingly good for CdS/Cu 2 S solar cells. (author)

  19. Automated installation methods for photovoltaic arrays

    Science.gov (United States)

    Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.

    1982-11-01

    Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.

  20. Photovoltaic Barometer - EurObserv'ER - April 2018

    International Nuclear Information System (INIS)

    2018-04-01

    The spectacular growth of solar power based on solid industrial bases, makes photovoltaic one of the mainstays of global energy transition. In 2017, roughly 100 GW was installed worldwide, and just over half of that in China. The global market amounted to slightly less than half the European Union's installed base. The EU ended the year at 106.6 GW, i.e. 5.6 GW more than in 2016. While at just over 2% in 2017 solar photovoltaic output may still seem negligible on a global level, photovoltaic already supplies about 6% of the electricity mix in Japan, and more than 7% in Germany and Italy

  1. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  2. Plasmonic Nanocone Arrays as Photoconductive and Photovoltaic Metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyuknin, Andrey B.

    2014-01-01

    Photoconductive and photovolta ic properties of metamaterials comprising plasmonic nanocone arrays embedded in a semiconductor matrix are studied. Under uniform plane-wave illumination, directed photocurrent and electromotive force arise ne ar asymmetrically shaped nanocones. The resulting giant...... photogalvanic effect is a plasmonic analogue of the bulk photovoltaic effect in ferroelectrics....

  3. UPVG efforts to commercialize photovoltaics

    International Nuclear Information System (INIS)

    Serfass, J.A.; Wills, B.N.

    1995-01-01

    The Utility PhotoVoltaic Group (UPVG) was formed in October of 1992 with a mission to accelerate the use of cost-effective small-scale and emerging grid-connected applications of photovoltaics for the benefit of electric utilities and their customers. The UPVG is now implementing a program to install up to 50 megawatts of photovoltaics in small-scale and grid-connected applications. This program, called TEAM-UP, is a partnership of the US electric utility industry and the US Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP: (1) Small-Scale Applications (SSA)--an initiative to aggregate utility purchases of small-scale, grid-independent applications; and (2) Grid-Connected Applications (GCA)--an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of the TEAM-UP process

  4. The European Photovoltaic Technology Platform

    International Nuclear Information System (INIS)

    Nowak, S.; Aulich, H.; Bal, J.L.; Dimmler, B.; Garnier, A.; Jongerden, G.; Luther, J.; Luque, A.; Milner, A.; Nelson, D.; Pataki, I.; Pearsall, N.; Perezagua, E.; Pietruszko, S.; Rehak, J.; Schellekens, E.; Shanker, A.; Silvestrini, G.; Sinke, W.; Willemsen, H.

    2006-05-01

    The European Photovoltaic Technology Platform is one of the European Technology Platforms, a new instrument proposed by the European Commission. European Technology Platforms (ETPs) are a mechanism to bring together all interested stakeholders to develop a long-term vision to address a specific challenge, create a coherent, dynamic strategy to achieve that vision and steer the implementation of an action plan to deliver agreed programmes of activities and optimise the benefits for all parties. The European Photovoltaic Technology Platform has recently been established to define, support and accompany the implementation of a coherent and comprehensive strategic plan for photovoltaics. The platform will mobilise all stakeholders sharing a long-term European vision for PV, helping to ensure that Europe maintains and improves its industrial position. The platform will realise a European Strategic Research Agenda for PV for the next decade(s). Guided by a Steering Committee of 20 high level decision-makers representing all relevant European PV Stakeholders, the European PV Technology Platform comprises 4 Working Groups dealing with the subjects policy and instruments; market deployment; science, technology and applications as well as developing countries and is supported by a secretariat

  5. Emerging Novel Metal Electrodes for Photovoltaic Applications.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H

    2018-04-01

    Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Modeling and Simulation of Energy Recovery from a Photovoltaic ...

    African Journals Online (AJOL)

    Modeling and Simulation of Energy Recovery from a Photovoltaic Solar cell. ... Photovoltaic (PV) solar cell which converts solar energy directly into electrical energy is one of ... model of the solar panel which could represent the real systems.

  7. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  8. Effects of solar photovoltaic technology on the environment in China.

    Science.gov (United States)

    Qi, Liqiang; Zhang, Yajuan

    2017-10-01

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  9. Building integrated photovoltaics

    NARCIS (Netherlands)

    Ritzen, M.J.; Vroon, Z.A.E.P.; Geurts, C.P.W.; Reinders, Angèle; Verlinden, Pierre; Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Photovoltaic (PV) installations can be realized in different situations and on different scales, such as at a building level. PV installations at the building level can either be added to the building envelope, which is called building added PV (BAPV), or they can be integrated into the building

  10. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  11. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  12. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  13. Photovoltaic power. Industries and market

    International Nuclear Information System (INIS)

    Muller, J.C.

    2007-01-01

    Photovoltaic conversion should become competitive with respect to other power generation sources before the second half of the 21. century. This article treats first of the different solar cell technologies (monocrystalline and polycrystalline silicon, thin film silicon, cadmium telluride-based materials, copper-indium selenide-based materials, multi-spectral cells, organic cells) with respect to their conversion efficiency, production and energy cost, and environmental impact. A second part describes the solar cells market, its growth with respect to the different applications (isolated sites, decentralized generation, power plants). A third part deals with the perspectives of photovoltaic conversion with respect to the advance in the development of new cell materials. (J.S.)

  14. Photovoltaic cell and production thereof

    Science.gov (United States)

    Narayanan, Srinivasamohan [Gaithersburg, MD; Kumar, Bikash [Bangalore, IN

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  15. A Photovoltaic System Payback Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fleming, Jeffrey E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Gerald R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    The Roof Asset Management Program (RAMP) is a DOE NNSA initiative to manage roof repairs and replacement at NNSA facilities. In some cases, installation of a photovoltaic system on new roofs may be possible and desired for financial reasons and to meet federal renewable energy goals. One method to quantify the financial benefits of PV systems is the payback period, or the length of time required for a PV system to generate energy value equivalent to the system's cost. Sandia Laboratories created a simple spreadsheet-based solar energy valuation tool for use by RAMP personnel to quickly evaluate the estimated payback period of prospective or installed photovoltaic systems.

  16. Improved ATIR concentrator photovoltaic module

    Science.gov (United States)

    Adriani, Paul M.; Mao, Erwang

    2013-09-01

    Novel aggregated total internal reflection (ATIR) concentrator photovoltaic module design comprises 2-D shaped primary and secondary optics that effectively combine optical efficiency, low profile, convenient range of acceptance angles, reliability, and manufacturability. This novel optical design builds upon previous investigations by improving the shapes of primary and secondary optics to enable improved long-term reliability and manufacturability. This low profile, low concentration (5x to 10x) design fits well with one-axis trackers that are often used for flat plate crystalline silicon photovoltaic modules in large scale ground mount installations. Standard mounting points, materials, and procedures apply without changes from flat plate modules.

  17. Public attitudes towards photovoltaic developments: Case study from Greece

    International Nuclear Information System (INIS)

    Tsantopoulos, Georgios; Arabatzis, Garyfallos; Tampakis, Stilianos

    2014-01-01

    The present decade is considered to be vitally important both as regards addressing energy requirements and for environmental protection purposes. The decisions taken, both on an individual and a collective level, will have a decisive impact on the environment, and primarily on climate change, due to the increased energy demands and the need to reduce carbon use in energy generation. The present study was designed and carried out while an extensive debate was ongoing in Greece regarding changes to the legislative framework that would specifically disallow new applications for the installation of photovoltaic systems; its aim is to depict the attitude of Greek citizens, through the completion of 1068 questionnaires. The research results show that over half the respondents are informed about the use of photovoltaic systems for electricity generation. Furthermore, almost half are willing to invest in such systems, either at home or on a plot of land. The factors contributing to the installation of photovoltaic systems are mainly “environmental”, “financial” and “social”. Finally, the citizens who are most willing to invest in residential photovoltaic systems are mainly university or technical school graduates; they would rather take such a decision after being motivated by institutional bodies and would do so for reasons of recognition. - Highlights: • The circumstances for RES are favorable both in the EU and in Greece. • The growth of renewable energy sources, particularly photovoltaic systems, is provenly following an upward trend. • The photovoltaic electricity production is an environmentally-friendly, sustainable and socially acceptable answer to the future energy requirements of society. • The Greek citizens state that they are adequately informed and sufficiently willing to invest in photovoltaic systems either residentially or in a plot of land

  18. Temperature compensated photovoltaic array

    Science.gov (United States)

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  19. Study of Temperature Coefficients for Parameters of Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Daniel Tudor Cotfas

    2018-01-01

    Full Text Available The temperature is one of the most important factors which affect the performance of the photovoltaic cells and panels along with the irradiance. The current voltage characteristics, I-V, are measured at different temperatures from 25°C to 87°C and at different illumination levels from 400 to 1000 W/m2, because there are locations where the upper limit of the photovoltaic cells working temperature exceeds 80°C. This study reports the influence of the temperature and the irradiance on the important parameters of four commercial photovoltaic cell types: monocrystalline silicon—mSi, polycrystalline silicon—pSi, amorphous silicon—aSi, and multijunction InGaP/InGaAs/Ge (Emcore. The absolute and normalized temperature coefficients are determined and compared with their values from the related literature. The variation of the absolute temperature coefficient function of the irradiance and its significance to accurately determine the important parameters of the photovoltaic cells are also presented. The analysis is made on different types of photovoltaics cells in order to understand the effects of technology on temperature coefficients. The comparison between the open-circuit voltage and short-circuit current was also performed, calculated using the temperature coefficients, determined, and measured, in various conditions. The measurements are realized using the SolarLab system, and the photovoltaic cell parameters are determined and compared using the LabVIEW software created for SolarLab system.

  20. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Katti, Aavishkar; Yadav, R.A., E-mail: rayadav@bhu.ac.in

    2017-01-23

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping. - Highlights: • Effect of pyroelectric field on screening photovoltaic solitons is studied. • Illumination induced pyroelectric field is considered for the first time. • Self trapping depends on external, pyroelectric and photovoltaic space charge field.

  1. Shading Ratio Impact on Photovoltaic Modules and Correlation with Shading Patterns

    Directory of Open Access Journals (Sweden)

    Alonso Gutiérrez Galeano

    2018-04-01

    Full Text Available This paper presents the study of a simplified approach to model and analyze the performance of partially shaded photovoltaic modules using the shading ratio. This approach integrates the characteristics of shaded area and shadow opacity into the photovoltaic cell model. The studied methodology is intended to improve the description of shaded photovoltaic systems by specifying an experimental procedure to quantify the shadow impact. Furthermore, with the help of image processing, the analysis of the shading ratio provides a set of rules useful for predicting the current–voltage behavior and the maximum power points of shaded photovoltaic modules. This correlation of the shading ratio and shading patterns can contribute to the supervision of actual photovoltaic installations. The experimental results validate the proposed approach in monocrystalline and polycrystalline technologies of solar panels.

  2. Particle Swarm Optimization Based of the Maximum Photovoltaic ...

    African Journals Online (AJOL)

    Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency. In this work, a Particle Swarm ...

  3. Fluorinated tin oxide back contact for AZTSSe photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, Talia S.; Gunawan, Oki; Haight, Richard A.; Lee, Yun Seog

    2017-03-28

    A photovoltaic device includes a substrate, a back contact comprising a stable low-work function material, a photovoltaic absorber material layer comprising Ag.sub.2ZnSn(S,Se).sub.4 (AZTSSe) on a side of the back contact opposite the substrate, wherein the back contact forms an Ohmic contact with the photovoltaic absorber material layer, a buffer layer or Schottky contact layer on a side of the absorber layer opposite the back contact, and a top electrode on a side of the buffer layer opposite the absorber layer.

  4. Solar thermal power and photovoltaic energy are both developing

    International Nuclear Information System (INIS)

    Le Jannic, N.; Houot, G.

    2010-01-01

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  5. Cellules solaires photovoltaïques plastiques enjeux et perspectives

    Science.gov (United States)

    Sicot, L.; Dumarcher, V.; Raimond, P.; Rosilio, C.; Sentein, C.; Fiorini, C.

    2002-04-01

    Après avoir détaillé le fonctionnement d'une cellule photovoltaïque plastique et les paramètres photovoltaïques permettant de caractéiser son efficacité, un état de l'art des technologies de fabrication des cellules est présenté. Des moyens d'amélioration des performances des cellules photovoltaïques organiques sont ensuite illustrés par l'étude de dispositifs développés au Laboratoire Composants Organiques (LCO) du CEA Saclay.

  6. Photovoltaic barometer 33,3 % growth in 2002

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Worldwide photovoltaic cell production increased 33.3% in 2002, and the European Union's installed capacity grew by 37.7% to reach 392 MWp. This dynamism remains however fragile, because the market, at least for a few more years, is still very closely linked to national programmes of grid-connected photovoltaic systems. Current hesitations in launching ambitious new programmes could seriously harm this industry, whose competitiveness is continually improving. (author)

  7. Photovoltaic concentrator assembly with optically active cover

    Science.gov (United States)

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  8. Solar spectrum conversion for photovoltaics using nanoparticles

    OpenAIRE

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction semiconductor solar cells only effectively convert photons of energy close to the semiconductor band gap (Eg) as a result of the mismatch between the incident solar spectrum and the spectral absorption properties...

  9. Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems

    International Nuclear Information System (INIS)

    Al-Hasan, A.Y.; Ghoneim, A.A.; Abdullah, A.H.

    2004-01-01

    Grid connected photovoltaic systems is one of the most promising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because grid power may be used to supplement photovoltaic systems (PV) when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility grid. In this system, the load is the total electrical energy consumption. The main objective of the present work is to optimize the electrical load pattern in Kuwait using grid connected PV systems. In this situation, the electric load demand can be satisfied from both the photovoltaic array and the utility grid. The performance of grid connected photovoltaic systems in the Kuwait climate has been evaluated. It was found that the peak load matches the maximum incident solar radiation in Kuwait, which would emphasize the role of using the PV station to minimize the electrical load demand. In addition, a significant reduction in peak load can be achieved with grid connected PV systems

  10. Outdoor thermal and electrical characterisation of photovoltaic modules and systems

    OpenAIRE

    Herteleer, Bert

    2016-01-01

    Current and future investors in photovoltaic systems are interested in how well the system performs, and how predictable this is over the expected lifetime. To do so, models have been developed and measurements of photovoltaic systems have been done. This dissertation presents the outdoor measurement set-up that has been developed for thermal and electrical characterisation of photovoltaic modules and systems, aimed at measuring transient effects and changes. The main design decisions and ...

  11. The Sun, our prosperity; El Sol, nuestra prosperidad

    Energy Technology Data Exchange (ETDEWEB)

    Nair, P. Karunakaran [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    In the collection of solar radiation for the photo thermal conversion or photovoltaic solar energy, the challenge is to find the materials own technologies, in particular for semiconductor materials. These materials must be in the form of thin films able to cover large areas with little material to lower the cost of solar technology. In the photovoltaic conversion emerge the cell technologies in thin films. These materials interact with solar radiation on a selective basis: they have to absorb, transmit and reflect in a different way in the ultraviolet region, visible and infrared solar radiation. For optical coatings of this type, the challenge is that they are stable under the solar radiation. When a layer of optical absorption of solar radiation in the semiconductor coating results in an electronic effect, as in solar cells, this is an opto-electronic coating. We present here some progress on the subject in the Center of Energy Research of the Universidad Nacional Autonoma de Mexico. [Spanish] En la captacion de la radiacion solar para la conversion fototermica o fotovoltaica de la energia solar, el reto es encontrar tecnologias propias de materiales, en particular para los materiales semiconductores. Estos materiales deben ser en forma de peliculas delgadas capaces de cubrir grandes areas con poco material para abatir el costo de la tecnologia solar. En la conversion fotovoltaica surgen las tecnologias de celdas solares en peliculas delgadas. Estos materiales interactuan con la radiacion solar de manera selectiva: deben absorber, transmitir y reflejar de manera distinta en la region ultravioleta, visible e infrarrojo de la radiacion solar. Para los recubrimientos opticos de este tipo, el reto es que sean estables bajo la radiacion solar. Cuando una capa optica de absorcion de la radiacion solar en el recubrimiento semiconductor resulta en un efecto electronico, como en las celdas solares, se trata de un recubrimiento opto-electronico. Se presentan aqui algunos

  12. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  13. Photovoltaic power without batteries for continuous cathodic protection

    Science.gov (United States)

    Muehl, W. W., Sr.

    1994-02-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  14. Photovoltaics as a worldwide energy source

    International Nuclear Information System (INIS)

    Jones, G.J.

    1991-01-01

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity. 11 refs

  15. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  16. Road map for photovoltaic electricity; Feuille de route sur l'electricite photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  17. SAM Photovoltaic Model Technical Reference 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Freeman, Janine M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dobos, Aron [No longer NREL employee; Ryberg, David [No longer NREL employee

    2018-03-19

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM) software, Version 2016.3.14 Revision 4 (SSC Version 160). It is an update to the 2015 edition of the manual, which describes the photovoltaic model in SAM 2015.1.30 (SSC 41). This new edition includes corrections of errors in the 2015 edition and descriptions of new features introduced in SAM 2016.3.14, including: 3D shade calculator Battery storage model DC power optimizer loss inputs Snow loss model Plane-of-array irradiance input from weather file option Support for sub-hourly simulations Self-shading works with all four subarrays, and uses same algorithm for fixed arrays and one-axis tracking Linear self-shading algorithm for thin-film modules Loss percentages replace derate factors. The photovoltaic performance model is one of the modules in the SAM Simulation Core (SSC), which is part of both SAM and the SAM SDK. SAM is a user-friedly desktop application for analysis of renewable energy projects. The SAM SDK (Software Development Kit) is for developers writing their own renewable energy analysis software based on SSC. This manual is written for users of both SAM and the SAM SDK wanting to learn more about the details of SAM's photovoltaic model.

  18. Maximum power point tracker for photovoltaic power plants

    Science.gov (United States)

    Arcidiacono, V.; Corsi, S.; Lambri, L.

    The paper describes two different closed-loop control criteria for the maximum power point tracking of the voltage-current characteristic of a photovoltaic generator. The two criteria are discussed and compared, inter alia, with regard to the setting-up problems that they pose. Although a detailed analysis is not embarked upon, the paper also provides some quantitative information on the energy advantages obtained by using electronic maximum power point tracking systems, as compared with the situation in which the point of operation of the photovoltaic generator is not controlled at all. Lastly, the paper presents two high-efficiency MPPT converters for experimental photovoltaic plants of the stand-alone and the grid-interconnected type.

  19. Simulated hail impact testing of photovoltaic solar panels

    Science.gov (United States)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  20. Simulation of Photovoltaic generator Connected To a Grid

    Directory of Open Access Journals (Sweden)

    F. Slama

    2014-03-01

    Full Text Available This paper presents the mathematical and the total Matlab-simulink model of the various components, of the photovoltaic power station connected to a network, (PSCN, namely the model of the photovoltaic generator. It is a comprehensive behavioural study which performed according to varying conditions of solar insulation and temperature. The photovoltaic generator and the inverter of single-phase current are modeled. The former by using a mathematical model that gives the values of maximum power according to the variation of the weather conditions, and the latter by a source of voltage controlled by voltage in order to inject a sinusoidal current and to estimate or predict the energy injected monthly or annually into the network.

  1. Photovoltaic Powering And Control System For Electrochromic Windows

    Science.gov (United States)

    Schulz, Stephen C.; Michalski, Lech A.; Volltrauer, Hermann N.; Van Dine, John E.

    2000-04-25

    A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

  2. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots

    International Nuclear Information System (INIS)

    Wang, Chen; Cao, Jianshu; Ren, Jie

    2014-01-01

    We investigate the quantum photovoltaic effect in double quantum dots by applying the nonequilibrium quantum master equation. A drastic suppression of the photovoltaic current is observed near the open circuit voltage, which leads to a large filling factor. We find that there always exists an optimal inter-dot tunneling that significantly enhances the photovoltaic current. Maximal output power will also be obtained around the optimal inter-dot tunneling. Moreover, the open circuit voltage behaves approximately as the product of the eigen-level gap and the Carnot efficiency. These results suggest a great potential for double quantum dots as efficient photovoltaic devices

  3. Moteur photovoltaïque

    OpenAIRE

    Queval , Loic; Coty , Alain; Hebert , Baptiste; Vido , Lionel; Multon , Bernard

    2017-01-01

    International audience; Saurea propose un moteur à reluctance variable photovoltaïque de faible puissance, adapté aux étudiants, pour servir de support de cours aux énergies renouvelables et à la conversion d'énergie.

  4. Photovoltaic Subcontract Program. Annual report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  5. Annual Report: Photovoltaic Subcontract Program FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  6. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.

    Science.gov (United States)

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-07-09

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  7. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  8. Ground mounted photovoltaic installations. Guide for an impact study

    International Nuclear Information System (INIS)

    2011-01-01

    Legally, an impact study must be performed for ground mounted photovoltaic installations with a power greater than 250 kW. This guide is aimed at helping the actors of the photovoltaic sector to perform impact studies. After the description of the characteristics of a photovoltaic installation (principles, technical characteristics of a ground mounted installation, impact of photovoltaic systems on climate) and a presentation of the legal framework (European commitments, Grenelle de l'Environnement, applicable procedures), this report present the objectives and approach of an impact study, describes how the environment is taken into account from the early stages of a project, how the impact study is to be prepared. The last part describes the different components of the impact study: legal content, project description, analysis of the site initial status and environment, analysis of the project effects, rationale for the choice of the project

  9. Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting.

    Science.gov (United States)

    Chen, Chia-Yuan; Jian, Zih-Hong; Huang, Shih-Han; Lee, Kun-Mu; Kao, Ming-Hsuan; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Chin-Li; Chang, Chiung-Wen; Lin, Bo-Zhi; Lin, Ching-Yao; Chang, Ting-Kuang; Chi, Yun; Chi, Cheng-Yu; Wang, Wei-Ting; Tai, Yian; Lu, Ming-De; Tung, Yung-Liang; Chou, Po-Ting; Wu, Wen-Ti; Chow, Tahsin J; Chen, Peter; Luo, Xiang-Hao; Lee, Yuh-Lang; Wu, Chih-Chung; Chen, Chih-Ming; Yeh, Chen-Yu; Fan, Miao-Syuan; Peng, Jia-De; Ho, Kuo-Chuan; Liu, Yu-Nan; Lee, Hsiao-Yi; Chen, Chien-Yu; Lin, Hao-Wu; Yen, Chia-Te; Huang, Yu-Ching; Tsao, Cheng-Si; Ting, Yu-Chien; Wei, Tzu-Chien; Wu, Chun-Guey

    2017-04-20

    Indoor utilization of emerging photovoltaics is promising; however, efficiency characterization under room lighting is challenging. We report the first round-robin interlaboratory study of performance measurement for dye-sensitized photovoltaics (cells and mini-modules) and one silicon solar cell under a fluorescent dim light. Among 15 research groups, the relative deviation in power conversion efficiency (PCE) of the samples reaches an unprecedented 152%. On the basis of the comprehensive results, the gap between photometry and radiometry measurements and the response of devices to the dim illumination are identified as critical obstacles to the correct PCE. Therefore, we use an illuminometer as a prime standard with a spectroradiometer to quantify the intensity of indoor lighting and adopt the reverse-biased current-voltage (I-V) characteristics as an indicator to qualify the I-V sampling time for dye-sensitized photovoltaics. The recommendations can brighten the prospects of emerging photovoltaics for indoor applications.

  10. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  11. University Crystalline Silicon Photovoltaics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  12. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  13. Interference Lithography for Vertical Photovoltaics

    Science.gov (United States)

    Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2009-10-01

    We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.

  14. Photovoltaics at Point Pelee Park

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Case study of an Ontario Hydro-installed photovoltaic system at Point Pelee Park, a bird sanctuary located on Lake Erie, is described. The system consists of a 1080 W photovoltaic array used to supply electricity to one of the washrooms. The cost for installing the system was $30,000 which was considerably cheaper than the $100,000 estimate for an underground power line. The independent system is the only source of energy for the washroom, therefore it was necessary to reduce the total electrical demand required by the facility. Electricity was used for the water pump, chlorinator and lighting. Motion sensors were installed to further reduce electrical demand. Washroom heaters were converted to propane. 2 figs.

  15. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  16. Bulk photovoltaic effect in an organi c polar crystal

    NARCIS (Netherlands)

    Vijayaraghavan, R.K.; Meskers, S.C.J.; Abdul Rahim, M.; Das, S.

    2014-01-01

    Organic polar crystals from the donor–acceptor substituted 1,4-diphenybutadiene 1 can generate a short-circuit photocurrent and a photovoltage upon illumination with near UV light. The photocurrent and photovoltage are attributed to a bulk photovoltaic effect. The bulk photovoltaic effect has been

  17. Design and Implementation of a Simulator for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Kuang-Hui Tang

    2012-01-01

    Full Text Available Proposed in this paper is the development of a photovoltaic module simulator, one capable of running an output characteristic simulation under normal operation according to various electrical parameters specified and exhibiting multiple advantages of being low cost, small sized, and easy to implement. In comparison with commercial simulation tools, Pspice and Solar Pro, the simulator developed demonstrates a comparable I-V as well as a P-V output characteristic curve. In addition, a series-parallel configuration of individual modules constitutes a photovoltaic module array, which turns into a photovoltaic power generation system with an integrated power conditioner.

  18. Remote residential photovoltaic systems in British Columbia: A study

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, R B

    1989-01-01

    A survey of existing residential photovoltaic power systems in remote areas in British Columbia was conducted to collect data on system performance. The 80 respondents had systems with arrays ranging from 5 to 875 watts, costing from $200 to $14,000. An overwhelming majority of users expressed overall satisfaction with the contribution of photovoltaic technology to their life style. Specific advantages of photovoltaic systems over alternative energy sources included cost-effectiveness, low maintenance, lack of noise and pollution, and ease of operation. Problems with the systems included low winter power, unsatisfactory load matching, and improper operation of associated battery storage systems. It was noted that load profile estimation and system sizing calculations are difficult because control over user behavior with respect to the power system is nearly non-existent when compared to industrial installations. Low-level ampere-hour monitoring of 10 representative sites was carried out and results are presented, giving the power contributions of the photovoltaic system along with any backup system that may be present. Remote residential photovoltaic systems should continue to gain acceptance and more widespread use, especially as module costs drop and more efficient loads (especially appliances such as refrigerators) become practical. 10 figs., 2 tabs.

  19. Organic photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    2007-01-01

    Japan finances research programs on photovoltaic conversion since 1974. Research in this domain is one of the 11 priorities of NEDO, the agency of means of the ministry of economy, trade and industry of Japan. The search for an abatement of production costs and of an increase of cells efficiency is mentioned in NEDO's programs as soon as the beginning of the 1990's. A road map has been defined which foresees photovoltaic energy production costs equivalent to the ones of thermal conversion by 2030, i.e. 7 yen/kWh (4.4 cents of euro/kWh). The use of new materials in dye-sensitized solar cells (DSSC) or organic solar cells, and of new structures (multi-junctions) is explored to reach this objective. The organic photovoltaic technology is more particularly considered for small generation units in mobile or domestic technologies. Japan is particularly in advance in the improvement of DSSC cells efficiency, in particular in the domain of the research on solid electrolytes. Europe seems more in advance in the domain of the new generation of organic solar cells. Therefore, a complementarity may be found between Japan and French teams in the domain of organic solar cells improvement through collaboration programs. (J.S.)

  20. Photovoltaic module parameters acquisition model

    Energy Technology Data Exchange (ETDEWEB)

    Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk

    2014-09-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  1. Photovoltaic module parameters acquisition model

    International Nuclear Information System (INIS)

    Cibira, Gabriel; Koščová, Marcela

    2014-01-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model

  2. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Hong-Yun Yang

    2015-07-01

    Full Text Available Many of the photovoltaic (PV systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig, mass loss, heat release rate (HRR, carbon monoxide (CO and carbon dioxide (CO2 concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  3. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Shan Su

    2013-01-01

    Full Text Available The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors. In this study, I analyzed the trends and developments of the solar photovoltaic industry in Taiwan and in the globe. And I also investigated the positioning and competitive advantage of Taiwanese firms in the value chain of the global solar photovoltaic industry. I found that Taiwanese firms continue to have an important and indispensable role in the global solar photovoltaic industry by either differentiation or cost advantage.

  4. Control by hardware of government systems for laser diodes with STM32F4 and Peltier cells; Control por hardware de sistemas de gobierno para diodos laser con STM32F4 y celdas Peltier

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa Solano, Natalia Irina

    2013-07-01

    bajo costo como el Arduino y el Raspberry Pi son comparadas. Una recopilacion bibliografica y documental es realizada para el estudio preliminar de los componentes y herramientas a utilizar en el prototipo. La teoria relacionada con la transferencia de calor entre un diodo laser y el exterior, y una celda Peltier y exterior es resumida. Un modelo de disipacion de calor es propuesto de un sistema formado por un diodo laser y una celda Peltier. Un sistema de control de corriente y temperatura retroalimentado es disenado e implementado para permitir controlar adecuadamente diodos laser sin y con fotodiodo (2 pastillas y 3 pastillas respectivamente). La viabilidad del control con software libre es estudiado y corroborado. El control de la temperatura del diodo laser usando una celda Peltier como enfriador ha sido posible mediante un control sencillo de modo ON/OFF. La integracion de dispositivos tales como ADC, DAC, temporizadores y facilidades del microcontrolador STM32F4, han permitido optimizar costos por hardware, ahorrar tiempo y costos. Asimismo, la incorporacion del procesador Cortex-M4 ha optimizado el consumo de recursos operativos y ha ejecutado gran parte de su set de instrucciones de forma eficiente. Debido a lo anterior, el proyecto ha cumplido con su maxima en cuanto a bajo costo se refiere.

  5. Photovoltaic Barometer - EurObserv'ER - April 2011

    International Nuclear Information System (INIS)

    2011-04-01

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7 000 MWp in 2009). It leapt to over 16 000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp

  6. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  7. Mathematical models for photovoltaic solar panel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br

    2008-07-01

    A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)

  8. Qualification testing of flat-plate photovoltaic modules

    Science.gov (United States)

    Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.

    1982-01-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  9. Status of photovoltaics in the Newly Associated States

    International Nuclear Information System (INIS)

    Pietruszko, S.M.; Mikolajuk, A.; Fara, L.; Fara, S.; Vitanov, P.; Stratieva, N.; Rehak, J.; Barinka, R.; Mellikov, E.; Palfy, M.; Shipkovs, P.; Krotkus, A.; Saly, V.; Nemac, F.; Swens, J.; Nowak, S.; Zachariou, A.; Fechner, H.; Passiniemi, P.

    2004-01-01

    The Status of Photovoltaics in the Central and Eastern Europe presents the state of the art of photovoltaics (PV) in the Newly Associated States (NAS): Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, Slovenia. The attempt was made to cover all photovoltaics activities in NAS, from research to industry and markets as well as from technology development to dissemination and education. The document covers the following topics and issues: organization of PV research and demonstration activities, stakeholders involved in research and technology development (RTD), scientific potential of NAS PV community, PV activities carried out in NAS countries, PV policies and support mechanisms, achievements and barriers, challenges and needs to the development of PV in the NAS. (authors)

  10. Energy level alignment at interfaces in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Opitz, Andreas; Frisch, Johannes; Schlesinger, Raphael; Wilke, Andreas; Koch, Norbert

    2013-01-01

    Highlights: ► Energy level alignment is crucial for organic solar cell efficiency. ► Photoelectron spectroscopy can reliably determine energy levels of organic material interfaces. ► Care must be taken to avoid even subtle sample damage. -- Abstract: The alignment of energy levels at interfaces in organic photovoltaic devices is crucial for their energy conversion efficiency. Photoelectron spectroscopy (PES) is a well-established and widely used technique for determining the electronic structure of materials; at the same time PES measurements of conjugated organic materials often pose significant challenges, such as obtaining sufficiently defined sample structures and radiation-induced damage of the organic layers. Here we report how these challenges can be tackled to unravel the energy levels at interfaces in organic photovoltaic devices, i.e., electrode/organic and organic/organic interfaces. The electronic structure across entire photovoltaic multilayer devices can thus be reconciled. Finally, general considerations for correlating the electronic structure and the photovoltaic performance of devices will be discussed

  11. Conference on photovoltaic energy network parity

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Masson, Gaetan; Henzelmann, Orsten; Joly, Jean-Pierre; Guillemoles, Jean-Francois; Auffret, Jean-Marc; Berger, Arnaud; Binder, Jann; Martin, David; Beck, Bernhard; Mahuet, Audrey; Mueller, Thorsten; Contamin, Raphael

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the present day and future challenges of the development, support and market integration of photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on support models to renewable energy sources, research results on self-consumption and business models for the renewable energies sector. This document brings together the available presentations (slides) made during this event: 1 - Overview of France's PV support policies (Pierre-Marie Abadie); 2 - Grid parity: first step towards PV competitiveness (Gaetan Masson); 3 - How competitive is solar power? Requirements and impact on the European industry (Orsten Henzelmann); 4 - Key elements of the National Institute of Solar energy - INeS (Jean-Pierre Joly); 5 - Research priorities according to the Paris Institute of Photovoltaics (Jean-Francois Guillemoles); 6 - Bosch Solar energy (Jean-Marc Auffret); 7 - Financing and insuring photovoltaics - History and future prospects (Arnaud Berger); 8 - Decentralized Photovoltaics: Autonomy, Self-Consumption and Reduction of Grid Loading through electrical and Thermal Storage (Jann Binder); 9 - Off Grid systems, mini grid and grid parity, field feedback and perspectives. From the producer-consumer to the smart grid: experience feedback of PV management models (David Martin); 10 - Benefits for solar power plants in respect of grid stabilization (Bernhard Beck); 11 - Renewable energies integration to electricity market: impacts and challenges (Audrey Mahuet); 12 - Promotion of PV in Germany: Feed-in tariffs, self-consumption and direct selling - Review and forecast (Thorsten Mueller); 13 - How to support renewable electricity in France? (Raphael Contamin)

  12. Use of photovoltaics for waste heat recovery

    Science.gov (United States)

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  13. Risk management method for small photovoltaic plants

    Directory of Open Access Journals (Sweden)

    Kirova Milena

    2016-09-01

    Full Text Available Risk management is necessary for achieving the goals of the organization. There are many methods, approaches, and instruments in the literature concerning risk management. However, these are often highly specialized and transferring them to a different field can prove difficult. Therefore, managers often face situations where they have no tools to use for risk management. This is the case with small photovoltaic plants (according to a definition by the Bulgarian State Energy and Water Regulatory Commission small applies to systems with a total installed power of 200 kWp. There are some good practices in the energy field for minimizing risks, but they offer only partial risk prevention and are not sufficient. Therefore a new risk management method needs to be introduced. Small photovoltaic plants offer plenty of advantages in comparison to the other renewable energy sources which makes risk management in their case more important. There is no classification of risks for the exploitation of small photovoltaic systems in the available literature as well as to what degree the damages from those risks could spread. This makes risk analysis and evaluation necessary for obtaining information which could aid taking decisions for improving risk management. The owner of the invested capital takes a decision regarding the degree of acceptable risk for his organization and it must be protected depending on the goals set. Investors in small photovoltaic systems need to decide to what degree the existing risks can influence the goals previously set, the payback of the investment, and what is the acceptable level of damages for the investor. The purpose of this work is to present a risk management method, which currently does not exist in the Bulgaria, so that the risks and the damages that could occur during the exploitation of small photovoltaic plants could be identified and the investment in such technology – justified.

  14. Strategies for incorporation of polymer photovoltaics into garments and textiles

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.; Winther-Jensen, B.

    2006-01-01

    device as a structural element. The total area of the device on PET was typically much smaller than the active area due to the decorative design of the aluminium electrode. Elaborate integration of the photovoltaic device into the textile material involved the lamination of a polyethylene (PE) film onto......The incorporation of polymer photovoltaics into textiles was demonstrated following two different strategies. Simple incorporation of a polyethyleneterphthalate (PET) substrate carrying the polymer photovoltaic device prepared by a doctor blade technique necessitated the use of the photovoltaic...... a suitably transparent textile material that was used as substrate. Plasma treatment of the PE-surface allowed the application of a PEDOT electrode that exhibited good adherence. Screen printing of a designed pattern of poly 1,4(2-methoxy-5-(2-ethylhexyloxy))phenylenevinylene (MEH-PPV) from chlorobenzene...

  15. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    International Nuclear Information System (INIS)

    Cooley, W.T.; Adams, S.F.; Reinhardt, K.C.; Piszczor, M.F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cell or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application

  16. Is the photovoltaic to be saved?

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    This paper first proposes a critical overview of the current financial support given to the photovoltaic energy. He notably criticizes the obligation for EDF to purchase the electricity so produced, and the obtained results in terms of renewable energy production, emission reduction, development of the photovoltaic industry sector, and development of decentralized energy productions. He proposes a better philosophy for the development of solar energy in Europe: to use solar in energy rather in Spain than in northern Europe, to use solar energy for heating rather than for electricity production in France, to develop storage practices, to encourage self-consumption

  17. Photovoltaic - Self consumption is gaining ground

    International Nuclear Information System (INIS)

    Le Jannic, Nolwenn

    2017-01-01

    Since July 2016, France has a legislation authorizing the self-consumption of electric power generated by photovoltaic systems. If certain points of the text need to be more precisely stated, the actors of the solar power sector consider this new legislation as a major progress, allowing to elaborate economic models for this autonomous power production. Several examples are given that illustrate recent competitive projects and achievements: photovoltaic power plants for supermarkets, high schools, residential and office buildings, etc. It appears that two thirds of demands concern self-consumption projects with sale of the surplus to the residential sector

  18. Photovoltaics - 10 years after Cherry Hill

    Science.gov (United States)

    Ralph, E. L.

    The status of R&D programs connected with photovoltaic (PV) systems 10 years after the Cherry Hill workshop on 'Photovoltaic Conversion of Solar Energy for Terrestrial Applications' is assessed. The five categories of research recommended by the Cherry Hill Workshop are listed in a table together with their recommended research budget allocations. The workshop categories include: single-crystal Si cells; poly-Si cells; systems and diagnostics. Categories for thin film CdS/Cu2S and CuInSe2 cells are also included. The roles of government and private utility companies in providing adequate financial support for PV research programs is emphasized.

  19. Optimized organic photovoltaics with surface plasmons

    Science.gov (United States)

    Omrane, B.; Landrock, C.; Aristizabal, J.; Patel, J. N.; Chuo, Y.; Kaminska, B.

    2010-06-01

    In this work, a new approach for optimizing organic photovoltaics using nanostructure arrays exhibiting surface plasmons is presented. Periodic nanohole arrays were fabricated on gold- and silver-coated flexible substrates, and were thereafter used as light transmitting anodes for solar cells. Transmission measurements on the plasmonic thin film made of gold and silver revealed enhanced transmission at specific wavelengths matching those of the photoactive polymer layer. Compared to the indium tin oxide-based photovoltaic cells, the plasmonic solar cells showed overall improvements in efficiency up to 4.8-fold for gold and 5.1-fold for the silver, respectively.

  20. Photovoltaics

    International Nuclear Information System (INIS)

    Prince, M.B.

    1994-01-01

    Photovoltaic energy systems have the long range potential for supplying a significant part of the world's need for electricity Even today, such systems offer many benefits compared to other energy systems such as fossil fuel, nuclear and other renewable systems. These include: stability, reliability, require no water, no moving parts, environmentally benign, moderate efficiency, modular, universally usable, easy maintenance, and low power distribution costs. This paper will present information on present costs of the key system components, realistic cost projections and the results of a comparative study of three renewable approaches for a large system. (author), (tabs. 2)

  1. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  2. Artificial intelligence techniques for photovoltaic applications: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, Adel [Department of Electronics, Faculty of Sciences Engineering, LAMEL Laboratory, Jijel University, Oulad-aissa, P.O. Box 98, Jijel 18000 (Algeria); Kalogirou, Soteris A. [Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O. Box 50329, Limassol 3603 (Cyprus)

    2008-10-15

    Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more popular nowadays. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with nonlinear problems and once trained can perform prediction and generalization at high speed. AI-based systems are being developed and deployed worldwide in a wide variety of applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. AI has been used in different sectors, such as engineering, economics, medicine, military, marine, etc. They have also been applied for modeling, identification, optimization, prediction, forecasting and control of complex systems. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in photovoltaic systems application. Problems presented include three areas: forecasting and modeling of meteorological data, sizing of photovoltaic systems and modeling, simulation and control of photovoltaic systems. Published literature presented in this paper show the potential of AI as design tool in photovoltaic systems. (author)

  3. Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module

    International Nuclear Information System (INIS)

    Al-Shohani, Wisam A.M.; Sabouri, Aydin; Al-Dadah, Raya; Mahmoud, Saad; Butt, Haider

    2016-01-01

    Highlights: • New design of Photovoltaic/Thermal system is proposed. • Using the optical water layer as a spectrum splitter is tested experimentally. • Optical rig is developed to study the optical performance of water layer. • Energy conversion under different water layer thicknesses is determined. - Abstract: This paper presents an experimental investigation of a novel optical water filter used for Photovoltaic/Thermal and Concentrating Photovoltaic/Thermal modules. A water layer is used as a spectrum splitter of solar radiation placed above the photovoltaic cells and as a thermal working fluid simultaneously. The water layer absorbs the ultraviolet and part of infrared, which are not used by the photovoltaic, but transmits the visible and some of infrared to the solar cell surface which are used by the photovoltaic. In this work, the transmittance of the optical water filter was measured for different water thicknesses (1, 2, 3, 4, and 5 cm) and radiation wavelength ranging from 0.35 to 1 μm. Results show that there is a significant effect of the water layer thickness on the transmittance of the spectra where the transmittance decreases as the water layer increases. Moreover, energy conversion rate of photovoltaic with the optical water filter at different water layer thicknesses has been determined.

  4. Photovoltaics for professionals solar electric systems marketing, design and installation

    CERN Document Server

    Falk, Antony; Remmers, Karl-Heinz

    2007-01-01

    For the building industry, the installation of photovoltaic systems has become a new field of activity. Interest in solar energy is growing and future business prospects are excellent. Photovoltaics for Professionals describes the practicalities of marketing, designing and installing photovoltaic systems, both grid-tied and stand-alone. It has been written for electricians, technicians, builders, architects and building engineers who want to get involved in this expanding industry. It answers all the beginner's questions as well as serving as a textbook and work of reference

  5. Standard Specification for Physical Characteristics of Nonconcentrator Terrestrial Photovoltaic Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification describes the physical requirements for primary and secondary terrestrial nonconcentrator photovoltaic reference cells. A reference cell is defined as a device that meets the requirements of this specification and is calibrated in accordance with Test Method E1125 or Test Method E1362. 1.2 Reference cells are used in the determination of the electrical performance of photovoltaic devices, as stated in Test Methods E948 and E1036. 1.3 Two reference cell physical specifications are described: 1.3.1 Small-Cell Package Design—A small, durable package with a low thermal mass, wide optical field-of-view, and standardized dimensions intended for photovoltaic devices up to 20 by 20 mm, and 1.3.2 Module-Package Design—A package intended to simulate the optical and thermal properties of a photovoltaic module design, but electric connections are made to only one photovoltaic cell in order to eliminate problems with calibrating series and parallel connections of cells. Physical dimensions ...

  6. Incoherently Coupled Grey-Grey Spatial Soliton Pairs in Biased Two-Photon Photovoltaic Photorefractive Crystals

    International Nuclear Information System (INIS)

    Su Yanli; Jiang Qichang; Ji Xuanmang

    2010-01-01

    The incoherently coupled grey-grey screening-photovoltaic spatial soliton pairs are predicted in biased two-photon photovoltaic photorefractive crystals under steady-state conditions. These grey-grey screening-photovoltaic soliton pairs can be established provided that the incident beams have the same polarization, wavelength, and are mutually incoherent. The grey-grey screening-photovoltaic soliton pairs can be considered as the united form of grey-grey screening soliton pairs and open or closed-circuit grey-grey photovoltaic soliton pairs. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Photovoltaic prospects in Europe

    Science.gov (United States)

    Starr, M. R.

    The economics of solar cells is reviewed with an eye to potential cost reductions in processing, and potential markets are explored. Current solar cell systems costs are noted to be on the road to achieving the U.S. DoE goals of $0.40/kWp by 1990. Continued progress will depend on technical developments in cheaper materials and processes, scaling up production, and the success of sales programs. Various consumer and professional markets are outlined, with a prediction that a 12 MWp deman will be reached as a steady state by 1995. Photovoltaic panels may conceivably replace conventional roofing materials, resulting in the projection that, if grid-supplied power continues to inflate in price, then all new European homes would be equipped with photovoltaics by the year 2000. Further, accomplishment of the cost goals could generate a 1 GWp/yr industrial market at the same time.

  8. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  9. Environmental costs of photovoltaics

    International Nuclear Information System (INIS)

    Hill, R.; Baumann, A.E.

    1993-01-01

    Photovoltaic (PV) systems are almost entirely benign in operation, and potential environmental hazards occur at the production and disposal stages. There are well established methods of monitoring and controlling potential hazards caused by the semiconductor materials used in PV modules such as silicon, copper indium diselenide and cadmium telluride. The main environmental hazards of photovoltaics are connected to the production processes. These processes require an input of energy, and this energy is derived from the standard fuel mix of the nation in which production takes place. The production of PV systems therefore has associated with it, emissions of greenhouse and acidic gases. However, as the new thin film PV technologies come into production, and the scale of production increases, the energy input to PV systems will decrease considerably, with consequent reduction in carbon dioxide emissions, to levels below that of other electricity generating technologies. (Author)

  10. Photovoltaic systems: state of the art and short-medium term perspectives

    International Nuclear Information System (INIS)

    Brofferio, Sergio C.; Rota, Alberto

    2006-01-01

    The paper presents and discusses, from a technology and economic point of view, the characteristics, performances, issues and perspectives of the thin films and the solar concentrating photovoltaic systems in the short and medium terms. Both have well based motivations to be an evolutionary step of current wafer based Silicon systems: the former as Building Integrated Photovoltaic and the latter as high density and high power photovoltaic systems [it

  11. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  12. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  13. Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network

    Science.gov (United States)

    Koo, Hyung-Jun; Velev, Orlin D.

    2013-01-01

    Light-driven degradation of photoactive molecules could be one of the major obstacles to stable long term operation of organic dye-based solar light harvesting devices. One solution to this problem may be mimicking the regeneration functionality of a plant leaf. We report an organic dye photovoltaic system that has been endowed with such microfluidic regeneration functionality. A hydrogel medium with embedded channels allows rapid and uniform supply of photoactive reagents by a convection-diffusion mechanism. A washing-activation cycle enables reliable replacement of the organic component in a dye-sensitized photovoltaic system. Repetitive restoration of photovoltaic performance after intensive device degradation is demonstrated. PMID:23912814

  14. Photovoltaic applications for rural areas in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P. [Helsinki Univ. of Technology, Espoo (Finland); Faninger-Lund, H. [Solpros Ay, Helsinki (Finland)

    1997-12-31

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW{sub e}/a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W{sub p}. The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  15. Photovoltaic applications for rural areas in North-East Europe

    International Nuclear Information System (INIS)

    Lund, P.; Faninger-Lund, H.

    1997-01-01

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW e /a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W p . The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  16. Photovoltaic applications for rural areas in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P [Helsinki Univ. of Technology, Espoo (Finland); Faninger-Lund, H [Solpros Ay, Helsinki (Finland)

    1998-12-31

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW{sub e}/a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W{sub p}. The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  17. Photovoltaic-a technology be appealed in germany?

    International Nuclear Information System (INIS)

    Schulze, Ch.

    2012-01-01

    This paper discusses the development of photovoltaic use, from the perspective of a medium-sized specialist planning consultants, which is placed in Berlin-Lichterfelde. The author of the text is employed in this office for 15 months and that for the business planning specialist for electrical energy and for building services consultancy. Adopted by the German government cuts to feed-in tariffs, especially in the field of photovoltaic systems have in recent months have had an impact on the business area. (Author)

  18. Photovoltaic Barometer - EurObserv'ER - April 2015

    International Nuclear Information System (INIS)

    2015-04-01

    The global photovoltaic market continued to expand between 2013 and 2014, rising from 37.6 GW to almost 40 GW unlike the European Union market that plummeted further. The EurObserv'ER estimate of the European photovoltaic market is about 6.9 GWp in 2014, a 32.3 % drop on 2013, yet three years earlier, in 2011, it hovered around the 22 GWp mark

  19. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  20. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.