WorldWideScience

Sample records for celastrol destabilizes tubulin

  1. Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers

    Directory of Open Access Journals (Sweden)

    Hsieh Hsing-Pang

    2009-07-01

    stability of microtubules, but not with caspases inhibition. Over-expression of survivin counteracts the therapeutic effect of microtubule de-stabilizer BPR0L075 probably by stabilizing tubulin polymers, instead of the inhibition of caspase activity in cancer cells. Besides microtubule-related caspase-dependent cell death, caspase-independent mitotic cell death could be initiated in survivin/BPR0L075 combination treatments. We suggest that combining microtubule de-stabilizers with a survivin inhibitor may attribute to a better clinical outcome than the use of anti-mitotic monotherapy in clinical situations.

  2. Microtubule-Destabilizing Agents: Structural and Mechanistic Insights from the Interaction of Colchicine and Vinblastine with Tubulin

    Science.gov (United States)

    Gigant, B.; Cormier, A.; Dorléans, A.; Ravelli, R. B. G.; Knossow, M.

    Microtubules (MTs) are dynamic structures of the eukaryotic cytoskeleton that, during cell division, form the mitotic spindle. Perturbing them leads to mitotic arrest and ultimately to cell death. Consistently, MTs and their building block, αβ tubulin, are one of the best characterized targets in anti-cancer chemotherapy. Drugs that interfere with MTs either stabilize or destabilize them. The latter class is the subject of this review. These ligands bind to the colchicine site or to the vinca domain, two distinct sites located at a distance from each other on tubulin. Nevertheless the effects of both classes of ligands share a common theme, they prevent the formation of MT specific contacts, therefore triggering their disassembly.

  3. Polyalkoxybenzenes from plants. 5. Parsley seed extract in synthesis of azapodophyllotoxins featuring strong tubulin destabilizing activity in the sea urchin embryo and cell culture assays.

    Science.gov (United States)

    Semenova, Marina N; Kiselyov, Alex S; Tsyganov, Dmitry V; Konyushkin, Leonid D; Firgang, Sergei I; Semenov, Roman V; Malyshev, Oleg R; Raihstat, Mikhail M; Fuchs, Fabian; Stielow, Anne; Lantow, Margareta; Philchenkov, Alex A; Zavelevich, Michael P; Zefirov, Nikolay S; Kuznetsov, Sergei A; Semenov, Victor V

    2011-10-27

    A series of 4-azapodophyllotoxin derivatives with modified rings B and E have been synthesized using allylpolyalkoxybenzenes from parsley seed oil. The targeted molecules were evaluated in vivo in a phenotypic sea urchin embryo assay for antimitotic and tubulin destabilizing activity. The most active compounds identified by the in vivo sea urchin embryo assay featured myristicin-derived ring E. These molecules were determined to be more potent than podophyllotoxin. Cytotoxic effects of selected molecules were further confirmed and evaluated by conventional assays with A549 and Jurkat human leukemic T-cell lines including cell growth inhibition, cell cycle arrest, cellular microtubule disruption, and induction of apoptosis. The ring B modification yielded 6-OMe substituted molecule as the most active compound. Finally, in Jurkat cells, compound induced caspase-dependent apoptosis mediated by the apical caspases-2 and -9 and not caspase-8, implying the involvement of the intrinsic caspase-9-dependent apoptotic pathway. PMID:21916509

  4. Treatment of obesity with celastrol.

    Science.gov (United States)

    Liu, Junli; Lee, Jaemin; Salazar Hernandez, Mario Andres; Mazitschek, Ralph; Ozcan, Umut

    2015-05-21

    Despite all modern advances in medicine, an effective drug treatment of obesity has not been found yet. Discovery of leptin two decades ago created hopes for treatment of obesity. However, development of leptin resistance has been a big obstacle, mitigating a leptin-centric treatment of obesity. Here, by using in silico drug-screening methods, we discovered that Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium Wilfordi (thunder god vine) plant, is a powerful anti-obesity agent. Celastrol suppresses food intake, blocks reduction of energy expenditure, and leads to up to 45% weight loss in hyperleptinemic diet-induced obese (DIO) mice by increasing leptin sensitivity, but it is ineffective in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mouse models. These results indicate that Celastrol is a leptin sensitizer and a promising agent for the pharmacological treatment of obesity. PMID:26000480

  5. Elucidation of the Intestinal Absorption Mechanism of Celastrol Using the Caco-2 Cell Transwell Model.

    Science.gov (United States)

    Li, Hong; Li, Jie; Liu, Lu; Zhang, Yichuan; Luo, Yili; Zhang, Xiaoli; Yang, Peng; Zhang, Manna; Yu, Weifeng; Qu, Shen

    2016-08-01

    Celastrol, a triterpenoid isolated from stem (caulis) of Celastrus orbiculatus Thunb. (Celastraceae), has been known to have various pharmacological effects, including anti-inflammatory, anticancer, and antioxidant activities. However, the mechanism of the intestinal absorption of celastrol is unknown. The aim of this study was to investigate the intestinal absorption of celastrol using the Caco-2 cell transwell model. First, the bidirectional transport of celastrol in Caco-2 cell monolayers was observed. Then, the effects of time, concentration, temperature, paracellular pathway, and efflux transport inhibition on the transport of celastrol across the Caco-2 cell monolayers were investigated. The P-glycoprotein inhibitor verapamil and cyclosporin A, the multidrug resistance protein 2 inhibitor MK571, and the breast cancer resistance protein inhibitor reserpine were used. Additionally, the effects of celastrol on the activity of P-glycoprotein were evaluated using the rhodamine 123 uptake assay. In this study, we found that the intestinal transport of celastrol was a time- and concentration-dependent active transport. The paracellular pathway was not involved in the transport of celastrol, and the efflux of celastrol was energy dependent. The results indicated that celastrol is a substrate of P-glycoprotein but not multidrug resistance protein 2 or the breast cancer resistance protein. In addition, celastrol could not affect the uptake of rhodamine 123 in Caco-2 cells, which indicated that celastrol could not inhibit or induce the activity of P-glycoprotein. PMID:27159672

  6. NF-kappa B modulation is involved in celastrol induced human multiple myeloma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Haiwen Ni

    Full Text Available Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX, a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.

  7. Celastrol Attenuates Inflammatory and Neuropathic Pain Mediated by Cannabinoid Receptor Type 2

    Directory of Open Access Journals (Sweden)

    Longhe Yang

    2014-08-01

    Full Text Available Celastrol, a major active ingredient of Chinese herb Tripterygium wilfordii Hook. f. (thunder god vine, has exhibited a broad spectrum of pharmacological activities, including anti-inflammation, anti-cancer and immunosuppression. In the present study, we used animal models of inflammatory pain and neuropathic pain, generated by carrageenan injection and spared nerve injury (SNI, respectively, to evaluate the effect of celastrol and to address the mechanisms underlying pain processing. Intraperitoneal (i.p. injection of celastrol produced a dose-dependent inhibition of carrageenan-induced edema and allodynia. Real-time PCR analysis showed that celastrol (0.3 mg/kg, i.p. significantly reduced mRNA expressions of inflammatory cytokines, TNF-α, IL-6, IL-1β, in carrageenan-injected mice. In SNI mice, pain behavior studies showed that celastrol (1 mg/kg, i.p. effectively prevented the hypersensitivity of mechanical nociceptive response on the third day post-surgery and the seventh day post-surgery. Furthermore, the anti-hyperalgesic effects of celastrol in carrageenan-injected mice and SNI mice were reversed by SR144528 (1 mg/kg, i.p., a specific cannabinoid receptor-2 (CB2 receptor antagonist, but not by SR141716 (1 mg/kg, i.p., a specific cannabinoid receptor-1 (CB1 receptor antagonist. Taken together, our results demonstrate the analgesia effects of celastrol through CB2 signaling and propose the potential of exploiting celastrol as a novel candidate for pain relief.

  8. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    OpenAIRE

    Mohamad Hafizi Abu Bakar; Kian-Kai Cheng; Mohamad Roji Sarmidi; Harisun Yaakob; Hasniza Zaman Huri

    2015-01-01

    Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA) in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathwa...

  9. Solid self-microemulsifying dispersible tablets of celastrol: formulation development, charaterization and bioavailability evaluation.

    Science.gov (United States)

    Qi, Xiaole; Qin, Jiayi; Ma, Ning; Chou, Xiaohua; Wu, Zhenghong

    2014-09-10

    The aims of this study were to choose a suitable adsorbent of self-microemulsion and to develop a fine solid self-microemulsifying dispersible tablets for promoting the dissolution and oral bioavailability of celastrol. Solubility test, self-emulsifying grading test, droplet size analysis and ternary phase diagrams test were performed to screen and optimize the composition of liquid celastrol self-microemulsifying drug delivery system (SMEDDS). Then microcrystalline cellulose KG 802 was added as a suitable adsorbent into the optimized liquid celastrol-SMEDDS formulation to prepare the dispersible tablets by wet granulation compression method. The optimized formulation of celastrol-SMEDDS dispersible tablets was finally determinated by the feasibility of the preparing process and redispersibility. The in vitro study showed that the dispersible tablets could disperse in the dispersion medium within 3 min with the average particle size of 25.32 ± 3.26 nm. In vivo pharmacokinetic experiments of rats, the relative bioavailability of celastrol SMEDDS and SMEDDS dispersible tablets compared to the 0.4% CMC-Na suspension was 569 ± 7.07% and 558 ± 6.77%, respectively, while there were no significant difference between the SMEDDS and SMEDDS dispersible tablets. The results suggest the potential use of SMEDDS dispersible tablets for the oral delivery of poorly water-soluble terpenes drugs, such as celastrol. PMID:24929011

  10. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  11. Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network.

    Science.gov (United States)

    Chen, Sujuan; Gu, Chenjian; Xu, Chong; Zhang, Jinfei; Xu, Yijiao; Ren, Qian; Guo, Min; Huang, Shile; Chen, Long

    2014-01-01

    Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant-derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd-induced neurotoxicity. Here, we show that celastrol protected against Cd-induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd-induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase-3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd-induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over-expression of dominant negative c-Jun potentiated celastrol protection against Cd-induced cell death. Furthermore, pre-treatment with celastrol prevented Cd down-regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3'-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over-expression of wild-type PTEN enhanced celastrol inhibition of Cd-activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders. Celastrol, a plant-derived triterpene, has shown neuroprotective effects. However, little is known regarding the effect of celastrol on cadmium (Cd) neurotoxicity. This study underscores that celastrol prevents Cd-induced neuronal apoptosis via inhibiting activation of JNK (c-Jun N-terminal kinase) and Akt/mTOR network. Celastrol suppresses Cd-activated Akt/mTOR pathway by elevating PTEN (phosphatase and tensin homolog). The

  12. Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells

    International Nuclear Information System (INIS)

    Celastrol is an active ingredient of the traditional Chinese medicinal plant Tripterygium Wilfordii, which exhibits significant antitumor activity in different cancer models in vitro and in vivo; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity. The downregulation of heat shock protein 90 (HSP90) client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK), and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS) was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP) and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC) complexes. Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC), an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP). Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 μM celastrol in the absence and presence of NAC. Moreover, the inhibition of MRC complex I activity

  13. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    International Nuclear Information System (INIS)

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT

  14. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  15. Nucleolar gamma-tubulin

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Barbora; Marková, Vladimíra; Vinopal, Stanislav; Richterová, Věra; Dráberová, Eduarda; Sulimenko, Vadym; Philimonenko, Anatoly; Hozák, Pavel; Katsetos, C.D.; Dráber, Pavel

    Shanghai : CSBMB (The Chinese Society of Biochemistry and Molecular Biology ), 2009. s. 86-86. [IUMB /21./ and FAOBMB International congress of Biochemistry and Molecular Biology /12./. 02.04.2009-07.04.2009, shanghai] R&D Projects: GA AV ČR KAN200520701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : gamma-tubulin * nucleolus Subject RIV: EB - Genetics ; Molecular Biology

  16. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Yao Dai

    Full Text Available Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1, with IC₅₀ in the range of 1-2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be

  17. Development of B cells and erythrocytes is specifically impaired by the drug celastrol in mice.

    Directory of Open Access Journals (Sweden)

    Sophie Kusy

    Full Text Available BACKGROUND: Celastrol, an active compound extracted from the root of the Chinese medicine "Thunder of God Vine" (Tripterygium wilfordii, exhibits anticancer, antioxidant and anti-inflammatory activities, and interest in the therapeutic potential of celastrol is increasing. However, described side effects following treatment are significant and require investigation prior to initiating clinical trials. Here, we investigated the effects of celastrol on the adult murine hematopoietic system. METHODOLOGY/PRINCIPAL FINDINGS: Animals were treated daily with celastrol over a four-day period and peripheral blood, bone marrow, spleen, and peritoneal cavity were harvested for cell phenotyping. Treated mice showed specific impairment of the development of B cells and erythrocytes in all tested organs. In bone marrow, these alterations were accompanied by decreases in populations of common lymphoid progenitors (CLP, common myeloid progenitors (CMP and megakaryocyte-erythrocyte progenitors (MEP. CONCLUSIONS/SIGNIFICANCE: These results indicate that celastrol acts through regulators of adult hematopoiesis and could be used as a modulator of the hematopoietic system. These observations provide valuable information for further assessment prior to clinical trials.

  18. Direct photoaffinity labeling of tubulin with colchicine

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, J.; Knipling, L.; Cahnmann, H.J.; Palumbo, G. (National Institutes of Health, Bethesda, MD (USA))

    1991-04-01

    Ultraviolet irradiation of the ({sup 3}H)colchicine-tubulin complex leads to direct photolabeling of tubulin with low but practicable efficiency. The bulk (70% to greater than 90%) of the labeling occurs on beta-tubulin and appears early after irradiation, whereas {alpha}-tubulin is labeled later. The labeling ratio of {beta}-tubulin to {alpha}-tubulin ({beta}/{alpha} ratio) is reduced by prolonged incubation, prolonged irradiation, urea, high ionic strength, the use of aged tubulin, dilution of tubulin, or large concentrations of colchicine or podophyllotoxin. Glycerol increases the {beta}/{alpha} ratio. Limited data with ({sup 3}H)podophyllotoxin show that it covalently bound with a similar {beta}/{alpha} distribution. Vinblastine, on the other hand, exhibits preferential attachment to {alpha}-tubulin. The possibilities that colchicine binds at the interface between {alpha}-tubulin and {beta}-tubulin, that the drug spans this interface, and that both subunits may contribute to the binding site are suggested.

  19. Tau-tubulin kinase

    Directory of Open Access Journals (Sweden)

    Seiko Ikezu

    2014-04-01

    Full Text Available Tau-tubulin kinase (TTBK belongs to casein kinase superfamily and can phosphorylate microtubule-associated protein tau and tubulin. TTBK has two isoforms, TTBK1 and TTBK2, which contain highly homologous catalytic domains but their non-catalytic domains are distinctly different. TTBK1 is expressed specifically in the central nervous system and is involved in phosphorylation and aggregation of tau. TTBK2 is ubiquitously expressed in multiple tissues and genetically linked to spinocerebellar ataxia type 11. TTBK1 directly phosphorylates tau protein, especially at Ser422, and also activates cycline-dependent kinase 5 in a unique mechanism. TTBK1 protein expression is significantly elevated in Alzheimer’s disease brains, and genetic variations of the TTBK1 gene are associated with late-onset Alzheimer’s disease in two cohorts of Chinese and Spanish populations. TTBK1 transgenic mice harboring the entire 55-kilobase genomic sequence of human TTBK1 show progression of tau accumulation, neuroinflammation, and neurodegeneration when crossed with tau mutant mice. Our recent study shows that there is a striking switch in mononuclear phagocyte and activation phenotypes in the anterior horn of the spinal cord from alternatively activated (M2-skewed microglia to pro-inflammatory (M1-skewed infiltrating peripheral monocytes in P301L tau mutant mice by crossing with TTBK1 transgenic mice. TTBK1 is responsible for mediating M1-activated microglia-induced neurotoxicity, and its overexpression induces axonal degeneration in vitro. These studies suggest that TTBK1 is an important molecule for the inflammatory axonal degeneration, which may be relevant to the pathobiology of tauopathy including Alzheimer’s disease.

  20. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  1. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  2. Celastrol, an NF-κB inhibitor, ameliorates hypercalciuria and articular cartilage lesions in a mouse model of secondary osteoporosis.

    Science.gov (United States)

    Liu, Xiaodong; Cai, Feng; Zhang, Yan; Yang, Anli; Liu, Liang

    2016-04-01

    Notwithstanding compelling contribution of NF-κB to the progression of osteoporosis has been reported, little is known regarding direct inhibition of NF-κB benefiting osteoporosis. In this study, therefore, we evaluated the role of celastrol, an NF-κB inhibitor, in a mouse model of secondary osteoporosis. Animals were divided into three groups as Sham (control), SO (secondary osteoporosis) and SO + CA (secondary osteoporosis treated with celastrol). Significant decreases in body weight and body fat were observed following celastrol treatment in SO group, but leptin levels were much higher. Celastrol also exhibited a significant decrease in urinary calcium excretion. Moreover, other important events were observed after celastrol treatment, covering substantial decrements in serum concentrations of PTH, TRAP-5b, CTX and DPD, improved structure of articular cartilage and cancellous bone (revealed by H&E and safranin-O staining), and significant decline in levels of NF-κB (P65), MMP-1, and MMP-9. These findings demonstrated that celastrol treatment not only improved abnormal lipid metabolism and hypercalciuria in mice subjected to secondary osteoporosis, but also ameliorated articular cartilage lesions. Our results provided evidence of targeted therapy for NF-κB in the clinical treatment of secondary osteoporosis. PMID:26980429

  3. Tubulin-perturbing naphthoquinone spiroketals.

    Science.gov (United States)

    Balachandran, Raghavan; Hopkins, Tamara D; Thomas, Catherine A; Wipf, Peter; Day, Billy W

    2008-02-01

    Several natural and synthetic naphthoquinone spiroketals are potent inhibitors of the thioredoxin-thioredoxin reductase redox system. Based on the antimitotic and weak antitubulin actions noted for SR-7 ([8-(furan-3-ylmethoxy)-1-oxo-1,4-dihydronaphthalene-4-spiro-2'-naphtho[1'',8''-de][1',3'][dioxin]), a library of related compounds was screened for tubulin-perturbing properties. Two compounds, TH-169 (5'-hydroxy-4'H-spiro[1,3-dioxolane-2,1'-naphthalen]-4'-one) and TH-223 (5'-methoxy-4'H-spiro[1,3-dioxane-2,1'-naphthalen]-4'-one), had substantial effects on tubulin assembly and were antiproliferative at low micromolar concentrations. TH-169 was the most potent at blocking GTP-dependent polymerization of 10 mum tubulin in vitro with a remarkable 50% inhibitory concentration of ca. 400 nm. It had no effect on paclitaxel-induced microtubule assembly and did not cause microtubule hypernucleation. TH-169 failed to compete with colchicine for binding to beta-tubulin. The 50% antiproliferative concentration of TH-169 against human cancer cells was at or slightly below 1 mum. Flow cytometry showed that 1 mum TH-169 caused an increase in G(2)/M and hypodiploid cells. TH-169 eliminated the PC-3 cells' polyploid population and increased their expression of p21(WAF1) and Hsp70 in a concentration-dependent manner. The antiproliferative effect of TH-169 was irreversible and independent of changes in caspases, actin, tubulin, glyceraldehyde phosphate dehydrogenase or Bcl-x(S/L). This structurally simple naphthoquinone spiroketal represents a small molecule, tubulin-interactive agent with a novel apoptotic pathway and attractive biological function. PMID:18194192

  4. Celastrol inhibits IL-1β-induced inflammation in orbital fibroblasts through the suppression of NF-κB activity.

    Science.gov (United States)

    Li, Hong; Yuan, Yifei; Zhang, Yali; He, Qianwen; Xu, Rongjuan; Ge, Fangfang; Wu, Chen

    2016-09-01

    Graves' disease is an autoimmune disease of the thyroid gland, which is characterized by hyperthyroidism, diffuse goiter and Graves' ophthalmopathy (GO). Although several therapeutic strategies for the treatment of GO have been developed, the effectiveness and the safety profile of these therapies remain to be fully elucidated. Therefore, examination of novel GO therapies remains an urgent requirement. Celastrol, a triterpenoid isolated from traditional Chinese medicine, is a promising drug for the treatment of various inflammatory and autoimmune diseases. CCK‑8 and apoptosis assays were performed to investigate cytotoxicity of celastrol and effect on apoptosis on orbital fibroblasts. Reverse transcription‑polymerase chain reaction, western blotting and ELISAs were performed to examine the effect of celastrol on interleukin (IL)‑1β‑induced inflammation in orbital fibroblasts from patients with GO. The results demonstrated that celastrol significantly attenuated the expression of IL‑6, IL‑8, cyclooxygenase (COX)‑2 and intercellular adhesion molecule‑1 (ICAM‑1), and inhibited IL‑1β‑induced increases in the expression of IL‑6, IL‑8, ICAM‑1 and COX‑2. The levels of prostaglandin E2 in orbital fibroblasts induced by IL‑1β were also suppressed by celastrol. Further investigation revealed that celastrol suppressed the IL‑1β‑induced inflammatory responses in orbital fibroblasts through inhibiting the activation of nuclear factor (NF)‑κB. Taken together, these results suggested that celastrol attenuated the IL‑1β‑induced pro‑inflammatory pathway in orbital fibroblasts from patients with GO, which was associated with the suppression of NF-κB activation. PMID:27484716

  5. Moduli destabilization via gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics

    2013-06-15

    We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.

  6. Moduli destabilization via gravitational collapse

    International Nuclear Information System (INIS)

    We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.

  7. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model

    Directory of Open Access Journals (Sweden)

    Li ZR

    2012-05-01

    Full Text Available Zhanrong Li,1,* Xianghua Wu,1,* Jingguo Li,2 Lin Yao,1 Limei Sun,1 Yingying Shi,1 Wenxin Zhang,1 Jianxian Lin,1 Dan Liang,1 Yongping Li1 1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, 2School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China*These authors contributed equally to this workBackground: Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs on retinoblastoma and to investigate the potential mechanisms involved.Methods: Celastrol-loaded poly(ethylene glycol-block-poly(ε-caprolactone nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4-nitrophenyl-3-(4-nitrophenyl-5-(2,4-disulf-ophenyl-2H tetrazolium monosodium salt (WST-8 assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma.Results: CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC50 of 17.733 µg/mL (celastrol-loading content: 7.36% after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65

  8. Design, Synthesis and Biological Evaluation of C(6-Modified Celastrol Derivatives as Potential Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Kaiyong Tang

    2014-07-01

    Full Text Available New six C6-celastrol derivatives were designed, synthesized, and evaluated for their in vitro cytotoxic activities against nine human cancer cell lines (BGC-823, H4, Bel7402, H522, Colo 205, HepG2 and MDA-MB-468. The results showed that most of the compounds displayed potent inhibition against BGC823, H4, and Bel7402, with IC50s of 1.84–0.39 μM. The best compound NST001A was tested in an in vivo antitumor assay on nude mice bearing Colo 205 xenografts, and showed significant inhibition of tumor growth at low concentrations. Therefore, celastrol C-6 derivatives are potential drug candidates for treating cancer.

  9. Electrochemical Studies of Paclitaxel Interaction with Tubulin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A highly sensitive linear sweep voltammetric method was developed for the determination of paclitaxel and the mechanism of the binding of paclitaxel to tubulin was studied. Tubulin dimer formed with paclitaxel an electrochemically nonactive complex with a combination ratio of 2:2. Its stability constant was 2.85×1022. So the tubulin dimer had two binding sites for paclitaxel. The experiment showed that the binding sites of paclitaxel to tubulin dimer were different from that of Ca2+ to tubulin dimer.

  10. Sucralose Destabilization of Protein Structure

    Science.gov (United States)

    Cho, Inha; Chen, Lee; Shukla, Nimesh; Othon, Christina

    2015-03-01

    Sucralose is a commonly employed artificial sweetener. Sucralose behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of the globular protein Bovine Serum Albumin (BSA). The melting temperature decreases as a linear function of sucralose concentration. We correlate this destabilization with the increased polarity of the sucralose molecule as compared to sucrose. The strongly polar nature is observed as a large dielectric friction exerted on the excited state rotational diffusion of tryptophan using time-resolved fluorescence anisotropy. Tryptophan exhibits rotational diffusion proportional to the measured bulk viscosity for sucrose solutions over a wide range of concentrations, consistent with a Stokes-Einstein diffusional model. For sucralose solutions however, the diffusion is linearly dependent with the concentration, strongly diverging from the viscosity predictions. The polar nature of sucralose causes a dramatically different interaction with biomolecules than natural disaccharide molecules. Connecticut Space Grant Consortium.

  11. Rationalization of paclitaxel insensitivity of yeast β-tubulin and human βIII-tubulin isotype using principal component analysis

    OpenAIRE

    Das Lalita; Bhattacharya Bhabatarak; Basu Gautam

    2012-01-01

    Abstract Background The chemotherapeutic agent paclitaxel arrests cell division by binding to the hetero-dimeric protein tubulin. Subtle differences in tubulin sequences, across eukaryotes and among β-tubulin isotypes, can have profound impact on paclitaxel-tubulin binding. To capture the experimentally observed paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin, within a common theoretical framework, we have performed structural principal component analyses of β-tubulin ...

  12. Tyrosine phosphorylation of plant tubulin

    Czech Academy of Sciences Publication Activity Database

    Blume, Y. B.; Yemets, A.; Sulimenko, Vadym; Sulimenko, Tetyana; Chan, J.; Lloyd, C.; Dráber, Pavel

    2008-01-01

    Roč. 229, č. 1 (2008), s. 143-150. ISSN 0032-0935 R&D Projects: GA MŠk LC545; GA ČR GA204/05/2375 Grant ostatní: EU(XE) INTAS 03-51-6459 Institutional research plan: CEZ:AV0Z50520514 Keywords : plant microtubules * tubulin * post-translation modifications Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.088, year: 2008

  13. Destabilizing force of labyrinth seal

    Science.gov (United States)

    Kanki, Hiroshi; Morit, Shigeki

    1987-01-01

    A great deal of research has recently been conducted to solve the subsynchronous rotor vibration problems in high-performance turbomachinery. Particularly, the destabilizing effect of the labyrinth seal on compressors or turbines has been investigated for many years. In spite of many efforts the dynamic effect of the labyrinth seal had not been fully determined from qualitative and quantitative points of view. But from theoretical and experimental work, the dynamic characteristics of the labyrinth seal have been established. The results of recent theoretical and experimental works are presented.

  14. GDP-Tubulin Incorporation into Growing Microtubules Modulates Polymer Stability.

    OpenAIRE

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-01-01

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin inco...

  15. Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Divya, Thomas; Dineshbabu, Vadivel; Soumyakrishnan, Syamala; Sureshkumar, Anandasadagopan; Sudhandiran, Ganapasam

    2016-02-25

    Pulmonary fibrosis (PF) is characterized by excessive accumulation of extracellular matrix components in the alveolar region which distorts the normal lung architecture and impairs the respiratory function. The aim of this study is to evaluate the anti-fibrotic effect of celastrol, a quinine-methide tri-terpenoid mainly found in Thunder God Vine root extracts against bleomycin (BLM)-induced PF through the enhancement of antioxidant defense system. A single intratracheal instillation of BLM (3 U/kg.bw) was administered in rats to induce PF. Celastrol (5 mg/kg) was given intraperitoneally, twice a week for a period of 28 days. BLM-induced rats exhibits declined activities of enzymatic and non-enzymatic antioxidants which were restored upon treatment with celastrol. BLM-induced rats show increased total and differential cell counts as compared to control and celastrol treated rats. Histopathological analysis shows increased inflammation and alveolar damage; while assay of hydroxyproline and Masson's trichrome staining shows an increased collagen deposition in BLM-challenged rats that were decreased upon celastrol treatment. Celastrol also reduces inflammation in BLM-induced rats as evidenced by decrease in the expressions of mast cells, Tumor necrosis factor-alpha (TNF- α) and matrix metalloproteinases (MMPs) 2 and 9. Further, Western blot analysis shows that celastrol is a potent inducer of NF-E2-related factor 2 (Nrf2) and it restores the activities of Phase II enzymes such as hemoxygenase-1 (HO-1), glutathione-S-transferase (GSTs) and NADP(H): quinine oxidoreductase (NQO1) which were declined upon BLM administration. The results of this study show evidence on the protective effect of celastrol against BLM-induced PF through its antioxidant and anti-fibrotic effects. PMID:26768587

  16. Measurement of antibodies to tubulin by radioimmunoassay

    International Nuclear Information System (INIS)

    A solid-phase double antibody radioimmunoassay capable of measuring antibody to tubulin, the principal component of microtubules, is described. This assay is simple, combining sensitivity with specificity and also allowing determination of antibody subclasses. (Auth.)

  17. New strategy of photodynamic treatment of TiO2 nanofibers combined with celastrol for HepG2 proliferation in vitro

    Science.gov (United States)

    Li, Jingyuan; Wang, Xuemei; Jiang, Hui; Lu, Xiaohua; Zhu, Yudan; Chen, Baoan

    2011-08-01

    As one of the best biocompatible semiconductor nanomaterials, TiO2 nanofibers can act as a good photosensitizer material and show potential application in the field of drug carriers and photodynamic therapy to cure diseases. Celastrol, one of the active components extracted from T. wilfordii Hook F., was widely used in traditional Chinese medicine for many diseases. In this study, the cytotoxicity of celastrol for HepG2 cancer cells was firstly explored. The results showed that celastrol could inhibit cancer cell proliferation in a time-dependent and dose-dependent manner, inducing apoptosis and cell cycle arrest at G2/M phase in HepG2 cells. After the TiO2 nanofibers were introduced into the system of celastrol, the cooperation effect showed that the nanocomposites between TiO2 nanofibers and celastrol could enhance the cytotoxicity of celastrol for HepG2 cells and cut down the drug consumption so as to reduce the side-effect of the related drug. Associated with the photodynamic effect, it is evident that TiO2 nanofibers could readily facilitate the potential application of the active compounds from natural products like celastrol. Turning to the advantages of nanotechnology, the combination of nanomaterials with the related monomer active compounds of promising Chinese medicine could play an important role to explore the relevant mechanism of the drug cellular interaction and promote the potential application of TiO2 nanofibers in the clinical treatment.As one of the best biocompatible semiconductor nanomaterials, TiO2 nanofibers can act as a good photosensitizer material and show potential application in the field of drug carriers and photodynamic therapy to cure diseases. Celastrol, one of the active components extracted from T. wilfordii Hook F., was widely used in traditional Chinese medicine for many diseases. In this study, the cytotoxicity of celastrol for HepG2 cancer cells was firstly explored. The results showed that celastrol could inhibit cancer cell

  18. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization

    International Nuclear Information System (INIS)

    Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of α-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of α-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. γ-tubulin staining showed that cells treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70

  19. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability

    OpenAIRE

    1984-01-01

    Nerve extracts containing tubulin labeled by axonal transport were analyzed by electrophoresis and differential extraction. We found that a substantial fraction of the tubulin in the axons of the retinal ganglion cell of guinea pigs is not solubilized by conventional methods for preparation of microtubules from whole brain. In two-dimensional polyacrylamide gel electrophoresis this cold-insoluble tubulin was biochemically distinct from tubulin obtained from whole brain microtubules prepared b...

  20. Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes

    NARCIS (Netherlands)

    R. Oegema (Renske); T.D. Cushion (Thomas); I.G. Phelps (Ian G.); S.-K. Chung (Seo-Kyung); J.C. Dempsey (Jennifer C.); S. Collins (Sarah); J.G.L. Mullins (Jonathan G.L.); T. Dudding (Tracy); H. Gill (Harinder); A.J. Green (Andrew J.); W.B. Dobyns (William); G.E. Ishak (Gisele E.); M.I. Rees (Mark); D. Doherty (Dan)

    2015-01-01

    textabstractMutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in

  1. The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Gambogic acid (GA) is a major active ingredient of gamboge, a widely used traditional Chinese medicine that has been reported to be a potent cytotoxic agent against some malignant tumors. Many studies have shown that the NF-kappa B signaling pathway plays an important role in anti-apoptosis and the drug resistance of tumor cells during chemotherapy. In this study, the effects and mechanisms of GA and the NF-kappa B inhibitor celastrol on oral cancer cells were investigated. Three human oral squamous cell carcinoma cell lines, Tca8113, TSCC and NT, were treated with GA alone, celastrol alone or GA plus celastrol. Cytotoxicity was assessed by MTT assay. The rate of apoptosis was examined with annexin V/PI staining as well as transmission electronic microscopy in Tca8113 cells. The level of constitutive NF-kappa B activity in oral squamous cell carcinoma cell lines was determined by immunofluorescence assays and nuclear extracts and electrophoretic mobility shift assays (EMSAs) in vitro. To further investigate the role of NF-kappa B activity in GA and celastrol treatment in oral squamous cell carcinoma, we used the dominant negative mutant SR-IκBα to inhibit NF-kappa B activity and to observe its influence on the effect of GA. The results showed that GA could inhibit the proliferation and induce the apoptosis of the oral squamous cell carcinoma cell lines and that the NF-kappa B pathway was simultaneously activated by GA treatment. The minimal cytotoxic dose of celastrol was able to effectively suppress the GA-induced NF-kappa B pathway activation. Following the combined treatment with GA and the minimal cytotoxic dose of celastrol or the dominant negative mutant SR-IκBα, proliferation was significantly inhibited, and the apoptotic rate of Tca8113 cells was significantly increased. The combination of GA and celastrol has a synergistic antitumor effect. The effect can be primarily attributed to apoptosis induced by a decrease in NF-kappa B pathway activation. The

  2. Assembly Properties of Divergent Tubulin Isotypes and Altered Tubulin Polypeptides in Vivo

    Science.gov (United States)

    Gu, Wei

    1990-01-01

    Mbeta1 is one of the closely related (though distinct) gene products termed isotypes encoded by the mouse beta-tubulin multigene family. These isotypes typically share 95%-98% homology at the amino acid level. However, Mbeta 1 is unusual in its relatively high degree of divergence compared to other beta-tubulin isotypes; furthermore, its tissue-restricted pattern of expression (Mbeta1 is only expressed in hematopoietic tissue) led to speculation that this isotype might be specialized for assembly into unique microtubule structures (such as the marginal band in some erythropoietic cell types). To test if this isotype is capable of coassembly into microtubules in cell types other than those in which it is normally expressed, a method was developed for the generation of an anti-Mbeta1 specific antibody. The Mbeta1 tubulin isotype was introduced into tissue culture cells by transfection and its expression and assembly properties were studied in both transiently transfected cells and stable cell lines using the anti -Mbeta1 specific antibody. The successful expression and coassembly of a 'foreign' tubulin isotype into microtubules in tissue culture cells and the generation of an antibody that can specifically recognize this isotype provided an approach to study the properties of altered beta-tubulin polypeptides in vivo. beta-tubulin synthesis in eukaryotic cells is autoregulated by a posttranscriptional mechanism in which the first four amino acids are responsible for determining the stability of beta -tubulin mRNA. To test if the beta -tubulin amino-terminal regulatory domain also contributes to the capacity of the tubulin monomer to polymerize into microtubules, altered sequences encoding Mbeta 1 but containing deletions encompassing amino acids 2-5 were expressed in HeLa cells. Stable cell lines expressing the altered Mbeta1 isotype were also generated. The assembly properties and stability of these altered Mbeta1 tubulin polypeptides were tested using the anti

  3. Rationalization of paclitaxel insensitivity of yeast β-tubulin and human βIII-tubulin isotype using principal component analysis

    Directory of Open Access Journals (Sweden)

    Das Lalita

    2012-08-01

    Full Text Available Abstract Background The chemotherapeutic agent paclitaxel arrests cell division by binding to the hetero-dimeric protein tubulin. Subtle differences in tubulin sequences, across eukaryotes and among β-tubulin isotypes, can have profound impact on paclitaxel-tubulin binding. To capture the experimentally observed paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin, within a common theoretical framework, we have performed structural principal component analyses of β-tubulin sequences across eukaryotes. Results The paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin uniquely mapped on to the lowest two principal components, defining the paclitaxel-binding site residues of β-tubulin. The molecular mechanisms behind paclitaxel-resistance, mediated through key residues, were identified from structural consequences of characteristic mutations that confer paclitaxel-resistance. Specifically, Ala277 in βIII isotype was shown to be crucial for paclitaxel-resistance. Conclusions The present analysis captures the origin of two apparently unrelated events, paclitaxel-insensitivity of yeast tubulin and human βIII tubulin isotype, through two common collective sequence vectors.

  4. Suprafenacine, an indazole-hydrazide agent, targets cancer cells through microtubule destabilization.

    Directory of Open Access Journals (Sweden)

    Bo-Hwa Choi

    Full Text Available Microtubules are a highly validated target in cancer therapy. However, the clinical development of tubulin binding agents (TBA has been hampered by toxicity and chemoresistance issues and has necessitated the search for new TBAs. Here, we report the identification of a novel cell permeable, tubulin-destabilizing molecule--4,5,6,7-tetrahydro-1H-indazole-3-carboxylic acid [1p-tolyl-meth-(E-ylidene]-hydrazide (termed as Suprafenacine, SRF. SRF, identified by in silico screening of annotated chemical libraries, was shown to bind microtubules at the colchicine-binding site and inhibit polymerization. This led to G2/M cell cycle arrest and cell death via a mitochondria-mediated apoptotic pathway. Cell death was preceded by loss of mitochondrial membrane potential, JNK-mediated phosphorylation of Bcl-2 and Bad, and activation of caspase-3. Intriguingly, SRF was found to selectively inhibit cancer cell proliferation and was effective against drug-resistant cancer cells by virtue of its ability to bypass the multidrug resistance transporter P-glycoprotein. Taken together, our results suggest that SRF has potential as a chemotherapeutic agent for cancer treatment and provides an alternate scaffold for the development of improved anti-cancer agents.

  5. Molecular insight of isotypes specific β-tubulin interaction of tubulin heterodimer with noscapinoids.

    Science.gov (United States)

    Santoshi, Seneha; Naik, Pradeep K

    2014-07-01

    Noscapine and its derivatives bind stoichiometrically to tubulin, alter its dynamic instability and thus effectively inhibit the cellular proliferation of a wide variety of cancer cells including many drug-resistant variants. The tubulin molecule is composed of α- and β-tubulin, which exist as various isotypes whose distribution and drug-binding properties are significantly different. Although the noscapinoids bind to a site overlapping with colchicine, their interaction is more biased towards β-tubulin. In fact, their precise interaction and binding affinity with specific isotypes of β-tubulin in the αβ-heterodimer has never been addressed. In this study, the binding affinity of a panel of noscapinoids with each type of tubulin was investigated computationally. We found that the binding score of a specific noscapinoid with each type of tubulin isotype is different. Specifically, amino-noscapine has the highest binding score of -6.4, -7.2, -7.4 and -7.3 kcal/mol with αβI, αβII, αβIII and αβIV isotypes, respectively. Similarly 10 showed higher binding affinity of -6.8 kcal/mol with αβV, whereas 8 had the highest binding affinity of -7.2, -7.1 and -7.2 kcal/mol, respectively with αβVI, αβVII and αβVIII isotypes. More importantly, both amino-noscapine and its clinical derivative, bromo-noscapine have the highest binding affinity of -46.2 and -38.1 kcal/mol against αβIII (overexpression of αβIII has been associated with resistance to a wide range of chemotherapeutic drugs for several human malignancies) as measured using MM-PBSA. Knowledge of the isotype specificity of the noscapinoids may allow for development of novel therapeutic agents based on this class of drugs. PMID:24916062

  6. Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by initiating the ROS/Akt/p70S6K signaling pathway and enhancing hypoxia-inducible factor-1α protein synthesis.

    Directory of Open Access Journals (Sweden)

    Xiaoxi Han

    Full Text Available Celastrol, a tripterine derived from the traditional Chinese medicine plant Tripterygium wilfordii Hook F. ("Thunder of God Vine", has been reported to have multiple effects, such as anti-inflammation, suppression of tumor angiogenesis, inhibition of tumor growth, induction of apoptosis and protection of cells against human neurodegenerative diseases. However, the mechanisms that underlie these functions are not well defined. In this study, we reported for the first time that Celastrol could induce HIF-1α protein accumulation in multiple cancer cell lines in an oxygen-independent manner and that the enhanced HIF-1α protein entered the nucleus and promoted the transcription of the HIF-1 target genes VEGF and Glut-1. Celastrol did not influence HIF-1α transcription. Instead, Celastrol induced the accumulation of the HIF-1α protein by inducing ROS and activating Akt/p70S6K signaling to promote HIF-1α translation. In addition, we found that the activation of Akt by Celastrol was transient. With increased exposure time, inhibition of Hsp90 chaperone function by Celastrol led to the subsequent depletion of the Akt protein and thus to the suppression of Akt activity. Moreover, in HepG2 cells, the accumulation of HIF-1α increased the expression of BNIP3, which induced autophagy. However, HIF-1α and BNIP3 did not influence the cytotoxicity of Celastrol because the main mechanism by which Celastrol kills cancer cells is through stimulating ROS-mediated JNK activation and inducing apoptosis. Furthermore, our data showed that the dose required for Celastrol to induce HIF-1α protein accumulation and enhance HIF-1α transcriptional activation was below its cytotoxic threshold. A cytotoxic dose of Celastrol for cancer cells did not display cytotoxicity in LO2 normal human liver cells, which indicated that the novel functions of Celastrol in regulating HIF-1 signaling and inducing autophagy might be used in new applications, such as in anti

  7. Thermal island destabilization and the Greenwald limit

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B.; Gates, D. A.; Brennan, D. P. [Plasma Physics Laboratory, Princeton University, P.O.Box 451, Princeton, New Jersey 08543 (United States)

    2015-02-15

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.

  8. Thermal island destabilization and the Greenwald limit

    Science.gov (United States)

    White, R. B.; Gates, D. A.; Brennan, D. P.

    2015-02-01

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.

  9. Thermal island destabilization and the Greenwald limit

    International Nuclear Information System (INIS)

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit

  10. Probing the origin of tubulin rigidity with molecular simulations

    OpenAIRE

    Dima, Ruxandra I.; Joshi, Harshad

    2008-01-01

    Tubulin heterodimers are the building blocks of microtubules, a major component of the cytoskeleton, whose mechanical properties are fundamental for the life of the cell. We uncover the microscopic origins of the mechanical response in microtubules by probing features of the energy landscape of the tubulin monomers and tubulin heterodimer. To elucidate the structures of the unfolding pathways and reveal the multiple unfolding routes, we performed simulations of a self-organized polymer (SOP) ...

  11. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. class III beta-tubulin

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Dráberová, Eduarda; Legido, A.; Dumontet, C.; Dráber, Pavel

    2009-01-01

    Roč. 221, č. 3 (2009), s. 505-513. ISSN 0021-9541 R&D Projects: GA AV ČR KAN200520701 Institutional research plan: CEZ:AV0Z50520514 Keywords : Beta-II-tubulin * glioblastoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.586, year: 2009

  12. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    International Nuclear Information System (INIS)

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of ∼50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers

  13. Drosophila Stathmins Bind Tubulin Heterodimers with High and Variable Stoichiometries*

    Science.gov (United States)

    Lachkar, Sylvie; Lebois, Marion; Steinmetz, Michel O.; Guichet, Antoine; Lal, Neha; Curmi, Patrick A.; Sobel, André; Ozon, Sylvie

    2010-01-01

    In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins. Two of the D-stathmins are maternally deposited and then restricted to germ cells, and the other two are detected in the nervous system during embryo development. Like in vertebrates, the nervous system-enriched stathmins contain an N-terminal domain involved in subcellular targeting. All the D-stathmins possess a domain containing three or four predicted TBRs, and we demonstrate here, using complementary biochemical and biophysical methods, that all four predicted TBR domains actually bind tubulin. D-stathmins can indeed bind up to four tubulins, the resulting complex being directly visualized by electron microscopy. Phylogenetic analysis shows that the presence of regulated multiple tubulin sites is a conserved characteristic of stathmins in invertebrates and allows us to predict key residues in stathmin for the binding of tubulin. Altogether, our results reveal that the single Drosophila stathmin gene codes for a stathmin family similar to the multigene vertebrate one, but with particular tubulin binding properties. PMID:20145240

  14. Drosophila stathmins bind tubulin heterodimers with high and variable stoichiometries.

    Science.gov (United States)

    Lachkar, Sylvie; Lebois, Marion; Steinmetz, Michel O; Guichet, Antoine; Lal, Neha; Curmi, Patrick A; Sobel, André; Ozon, Sylvie

    2010-04-01

    In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins. Two of the D-stathmins are maternally deposited and then restricted to germ cells, and the other two are detected in the nervous system during embryo development. Like in vertebrates, the nervous system-enriched stathmins contain an N-terminal domain involved in subcellular targeting. All the D-stathmins possess a domain containing three or four predicted TBRs, and we demonstrate here, using complementary biochemical and biophysical methods, that all four predicted TBR domains actually bind tubulin. D-stathmins can indeed bind up to four tubulins, the resulting complex being directly visualized by electron microscopy. Phylogenetic analysis shows that the presence of regulated multiple tubulin sites is a conserved characteristic of stathmins in invertebrates and allows us to predict key residues in stathmin for the binding of tubulin. Altogether, our results reveal that the single Drosophila stathmin gene codes for a stathmin family similar to the multigene vertebrate one, but with particular tubulin binding properties. PMID:20145240

  15. A Unifying Hypothesis for the Conformational Change of Tubulin

    CERN Document Server

    Fygenson, D K

    2001-01-01

    Microtubule dynamic instability arises from the hydrolysis of GTP bound to the beta-monomer of the tubulin dimer. The conformational change induced by hydrolysis is unknown, but microtubules disassemble into protofilaments of GDP-bound tubulin that curve away from the microtubule axis. This paper presents the unfolding of a portion of the tubulin molecule into the microtubule interior as a plausible, unifying explanation for diverse structural and kinetic features of microtubules. This is the first specific structural hypothesis for the hydrolysis induced conformational change of tubulin that simultaneously explains weakening of lateral bonds, bending about longitudinal bonds, changes in protofilament supertwist associated with GTP hydrolysis, structural features of GDP-tubulin double rings, faster disassembly at higher temperatures and slower disassembly in the presence of glycerol and deuterium oxide. The hypothesis suggests further theoretical investigations and direct experimental tests.

  16. Phosphorylation of a neuronal-specific beta-tubulin isotype

    International Nuclear Information System (INIS)

    Adult rats were intracraneally injected with [32P] phosphate and brain microtubules isolated. The electrophoretically purified, in vivo phospholabeled, beta-tubulin was digested with the V8-protease and the labeled peptide purified by reversed-phase liquid chromatography. Its amino acid sequence corresponds to the COOH-terminal sequence of a minor neuronal beta 3-tubulin isoform from chicken and human. The phosphorylation site was at serine 444. A synthetic peptide with sequence EMYEDDEEESESQGPK, corresponding to that of the COOH terminus of beta 3-tubulin, was efficiently phosphorylated in vitro by casein kinase II at the same serine 444. The functional meaning of tubulin phosphorylation is still unclear. However, the modification of the protein takes place after microtubule assembly, and phosphorylated tubulin is mainly present in the assembled microtubule protein fraction

  17. Cembrene Diterpenoids: Conformational Studies and Molecular Docking to Tubulin

    Directory of Open Access Journals (Sweden)

    Heather E. Villanueva

    2010-04-01

    Full Text Available A conformational analysis of the cembrene diterpenoids cembrene, cembrene A, (3Z-cembrene A, isocembrene, casbene, and incensole, has been carried out using density functional theory at the B3LYP/6-31G* level of theory. A molecular docking analysis of these cembrenoids with tubulin has also been performed in order to assess the potential of tubulin binding of these cytotoxic agents. The macrocyclic cembrenoids are conformationally mobile and numerous low-energy conformations were found. Molecular docking reveals that the cembrenoids dock into the colchicine binding site of tubulin with comparable docking energies to colchicine.

  18. The role of gama tubulin in acentrosomal plant cells

    Czech Academy of Sciences Publication Activity Database

    Petrovská; Cenklová, Věra; Procházková, Jiřina; Doskočilová, Anna; Volc, Jindřich; Binarová, Pavla

    2007. s. 35. [Konference experimentální biologie rostlin, dny fyziologie rostlin /11./. 09.07.2007-12.07.2007, Olomouc] Keywords : gama tubulin * acentrosomal plant cells Subject RIV: EB - Genetics ; Molecular Biology

  19. Gama Tubulin and its role in Arabidopsis development

    Czech Academy of Sciences Publication Activity Database

    Cenklová, Věra; Doskočilová, Anna; Petrovská; Gallová, Barbora; Kofroňová, Olga; Benada, Oldřich; Binarová, Pavla

    2007. s. 79. [International Symposium on Plant Neurobiology/3./. 14.05.2007-18.05.2007, Štrbské Pleso] Keywords : gama tubulin * Arabidopsis development Subject RIV: EB - Genetics ; Molecular Biology

  20. Mass spectrometry identifies multiple organophosphorylated sites on tubulin

    OpenAIRE

    Grigoryan, Hasmik; Schopfer, Lawrence M.; Peeples, Eric S.; Duysen, Ellen G.; Grigoryan, Marine; Thompson, Charles M.; Lockridge, Oksana

    2009-01-01

    Acute toxicity of organophosphorus poisons (OP) is explained by inhibition of acetylcholinesterase in nerve synapses. Low dose effects are hypothesized to result from modification of other proteins, whose identity is not yet established. The goal of the present work was to obtain information that would make it possible to identify tubulin as a target of OP exposure. Tubulin was selected for study because live mice injected with a nontoxic dose of a biotinylated organophosphorus agent appeared...

  1. Tubulin as a molecular component of coated vesicles

    OpenAIRE

    1983-01-01

    Two proteins of 53,000 and 56,000 mol wt have been found to be associated with coated vesicles (CV) purified from bovine brain and chicken liver. These proteins share molecular weights, isoelectric points, and antigenic determinants with alpha- and beta-tubulins purified from bovine brain. Based on SDS PAGE and electron microscopic analysis of controlled pore glass bead exclusion column fractions, both the tubulins and the major CV polypeptide clathrin were found to chromatograph as component...

  2. Hypothiocyanous acid oxidation of tubulin cysteines inhibits microtubule polymerization

    OpenAIRE

    Clark, Hillary M; Hagedorn, Tara D.; Landino, Lisa M.

    2013-01-01

    Thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. In addition, protein thiol redox reactions are increasingly identified as a mechanism to regulate protein structure and function. We assessed the effect of hypothiocyanous acid on the cytoskeletal protein tubulin. Total cysteine oxidation by hypothiocyanous and hypochlorous acids was monitored by labeling tubulin with 5-iodoacetamidofluorescein and by detecting higher molecula...

  3. Inhibition of tubulin polymerization by hypochlorous acid and chloramines

    OpenAIRE

    Landino, Lisa M.; Hagedorn, Tara D.; Kim, Shannon B.; Hogan, Katherine M.

    2011-01-01

    Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-sele...

  4. Alpha particle destabilization of the TAE modes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed vα ≥ vA/(2|m-nq|), where vA is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10-2ωA, where ωA = vA/qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  5. Effect of Celastrol on AGS Cell Migration%雷公藤红素对 AGS 细胞迁移的影响

    Institute of Scientific and Technical Information of China (English)

    杜娜; 李健; 刘福生; 刘泽洲; 许可嘉; 张寅; 刘婷; 苏泽琦; 丁霞

    2015-01-01

    目的:观察不同浓度雷公藤红素在不同时间对 AGS 细胞形态及细胞迁移的影响,探索雷公藤红素对 AGS 细胞迁移较佳抑制作用浓度及时间。方法将 AGS 细胞铺于6孔板并培养,待贴壁细胞密度达到70%~80%后,采用划痕法制造细胞迁移模型,分为 DMSO 及雷公藤红素5μM、1μM、0.5μM、0.1μM、0.01μM 浓度组,并分别于0 h、6 h、12 h、24 h 观察细胞的形态及细胞的迁移情况,且拍照记录,计算细胞迁移速度及细胞迁移抑制率并进行各组之间的比较。结果高浓度雷公藤红素使 AGS 细胞形态发生改变;雷公藤红素能够抑制 AGS 细胞迁移,且终浓度为1μM 时抑制作用最明显。同一浓度不同作用时间其对 AGS 细胞迁移的抑制作用差异有统计学意义(P ﹤0.05);同一时间不同浓度雷公藤红素对 AGS 细胞迁移的抑制作用差异有统计学意义(P ﹤0.05)。结论高浓度雷公藤红素能够使 AGS 细胞形态发生改变并凋亡;雷公藤红素抑制了 AGS 细胞的迁移,且该抑制作用与浓度、时间相关,且在终浓度为1μM 作用于 AGS 细胞12 h 时,其对 AGS 细胞迁移的抑制作用最明显。%Objective To observe the effects of different concentration of celastrol on cellular mor-phology and migration of AGS cells at different time points;to explore a better inhibitory effect of concentra-tion and time of celastrol on migration of AGS cells. Methods AGS cells were planted and cultured in 6 -well plate. When the adherent cell density reached 70 ~ 80% ,cell migration was manufactured by scratch ex-periment. Thereafter,cell morphology and cell migration were observed under microscope with different con-centration of celastrol of 5 μM、1 μM、0. 5 μM、0. 1 μM、0. 01 μM at indicated time points. Results 1. High concentration of celastrol cause severe changed in the cell morphology. 2. Celastrol inhibited AGS cell migra-tion,and its

  6. 雷公藤红素醇质体的制备及体外透皮性能研究%Study on Preparation of Celastrol Ethosome and Its Skin Penetration Properties in Vitro

    Institute of Scientific and Technical Information of China (English)

    吴军; 吴明; 刘荻; 马卓

    2015-01-01

    Objective To prepare celastrol ethosomes and to observe the permeability characteristics of the ethosomes which act as the transdermal delivery carriers of celastrol in vitro. Methods Celastrol ethosomes were prepared by ethanol injection method, and then the encapsulation efficiency, particle size, polydispersity index ( PDI) and zeta potential of the ethosomes were analyzed. TP2A intelligent percutaneous penetration instrument was used to compare the skin penetration properties of celastrol ethosomes, celastrol solution and the mixture of blank ethosomes with celastrol solution. Results The prepared celastrol ethosomes were spherical, and the average particle size was (401.3 ± 5.5) nm, PDI was 0.21± 0.02, steady zeta potential was (-2.75 ± 0.1) mV, and average encapsulation efficiency was ( 80.6 ± 0.7) %. The amount of accumulative penetration of celastrol ethosomes at 48 h was 76.86 μg·cm -2 and the permeation rate was 1.640 9 μg·cm -2·h -1, which were significantly higher than the celastrol solution and the mixture of blank ethosomes with celastrol solution. Conclusion The prepared ethosomes have high encapsulation efficiency, uniform particle size and stable quality, and are beneficial to the transdermal absorption of celastrol.%【目的】制备雷公藤红素(Cel)醇质体,并考察醇质体作为雷公藤红素经皮给药载体的渗透特性。【方法】采用乙醇注入法制备雷公藤红素醇质体,并对其包封率、粒径、多分散指数(PDI)及Zeta电位进行分析;采用TP2A型智能透皮试验仪进行体外透皮试验,比较雷公藤红素醇质体、空白醇质体/Cel溶液和Cel溶液的透皮行为。【结果】此方法制备的雷公藤红素醇质体为类球形结构,平均粒径为(401.3±5.5) nm, PDI为(0.21±0.02), Zeta电位为(-2.75±0.1) mV,平均包封率为(80.6±0.7)%;醇质体48 h的累积透过量76.86μg·cm-2,渗透速率为1.6409μg·cm-2·h-1,与空白

  7. Methods to Stabilize and Destabilize Ammonium Borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Thomas K.; Karkamkar, Abhijeet J.; Bowden, Mark E.; Besenbacher, Fleming; Jensen, Torben R.; Autrey, Thomas

    2013-01-21

    Ammonium borohydride, NH4BH4, has a high hydrogen content of ρm = 24.5 wt% H2 and releases 18 wt% H2 below T = 160 °C. However, the half-life of bulk NH4BH4 at ambient temperatures, ~6 h, is insufficient for practical applications. The decomposition of NH4BH4 (ABH2) was studied at variable hydrogen and argon back pressures to investigate possible pressure mediated stabilization effects. The hydrogen release rate from solid ABH2 at ambient temperatures is reduced by ~16 % upon increasing the hydrogen back pressure from 5 to 54 bar. Similar results were obtained using argon pressure and the observed stabilization may be explained by a positive volume of activation in the transition state leading to hydrogen release. Nanoconfinement in mesoporous silica, MCM-41, was investigated as alternative means to stabilize NH4BH4. However, other factors appear to significantly destabilize NH4BH4 and it rapidly decomposes at ambient temperatures into [(NH3)2BH2][BH4] (DADB) in accordance with the bulk reaction scheme. The hydrogen desorption kinetics from nanoconfined [(NH3)2BH2][BH4] is moderately enhanced as evidenced by a reduction in the DSC decomposition peak temperature of ΔT = -13 °C as compared to the bulk material. Finally, we note a surprising result, storage of DADB at temperature < -30 °C transformed, reversibly, the [(NH3)2BH2][BH4] into a new low temperature polymorph as revealed by both XRD and solid state MAS 11B MAS NMR. TA & AK are thankful for support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle.

  8. Rotational stabilization and destabilization of an optical cavity

    CERN Document Server

    Habraken, Steven J M

    2008-01-01

    We investigate the effects of rotation about the axis of an astigmatic two-mirror cavity on its optical properties. This simple geometry is the first example of an optical system that can be destabilized and, more surprisingly, stabilized by rotation. As such, it has some similarity with both the Paul trap and the gyroscope. We illustrate the effects of rotational (de)stabilization of a cavity in terms of the spatial structure and orbital angular momentum of its modes.

  9. Inhibition and enhancement of contextual fear memory destabilization

    OpenAIRE

    Lee, Jonathan L. C.; Charlotte eFlavell

    2014-01-01

    The reactivation of a memory can result in its destabilization, necessitating a process of memory reconsolidation to maintain its persistence. Here we show that the destabilization of a contextual fear memory is potentiated by the cannabinoid CB1 receptor agonist ACEA. Co-infusion of ACEA and the IKK inhibitor sulfasalazine into the dorsal hippocampus impaired contextual fear memory reconsolidation. This observation was achieved under behavioural conditions that, by themselves, did not result...

  10. Inhibition and enhancement of contextual fear memory destabilization

    Directory of Open Access Journals (Sweden)

    Jonathan L C Lee

    2014-04-01

    Full Text Available The reactivation of a memory can result in its destabilization, necessitating a process of memory reconsolidation to maintain its persistence. Here we show that the destabilization of a contextual fear memory is potentiated by the cannabinoid CB1 receptor agonist ACEA. Co-infusion of ACEA and the IKK inhibitor sulfasalazine into the dorsal hippocampus impaired contextual fear memory reconsolidation. This observation was achieved under behavioural conditions that, by themselves, did not result in either a reconsolidation impairment by sulfasalazine alone or reactivation-induced upregulation of Zif268 expression. Moreover, we show that the destabilization of a contextual fear memory is dependent upon neuronal activity in the dorsal hippocampus, but not memory expression per se. The effect on contextual fear memory destabilization of intra-hippocampal ACEA was replicated by systemic injections, allowing an amnestic effect of MK-801. These results indicate that memory expression and destabilization, while being independent from one another, are both dependent upon memory reactivation. Moreover, memory destabilization can be enhanced pharmacologically, which may be of therapeutic potential.

  11. Tubulin acetylation: responsible enzymes, biological functions and human diseases.

    Science.gov (United States)

    Li, Lin; Yang, Xiang-Jiao

    2015-11-01

    Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function. PMID:26227334

  12. Combretastatin A-4 and Derivatives: Potential Fungicides Targeting Fungal Tubulin.

    Science.gov (United States)

    Ma, Zhong-lin; Yan, Xiao-jing; Zhao, Lei; Zhou, Jiu-jiu; Pang, Wan; Kai, Zhen-peng; Wu, Fan-hong

    2016-02-01

    Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management. PMID:26711170

  13. Purification and Fluorescent Labeling of Tubulin from Xenopus laevis Egg Extracts.

    Science.gov (United States)

    Groen, Aaron C; Mitchison, Timothy J

    2016-01-01

    For many years, microtubule research has depended on tubulin purified from cow and pig brains, which may not be ideal for experiments using proteins or extracts from non-brain tissues and cold-blooded organisms. Here, we describe a method to purify functional tubulin from the eggs of the frog, Xenopus laevis. This tubulin has many benefits for the study of microtubules and microtubule based structures assembled in vitro at room temperature. Frog tubulin lacks many of the highly stabilizing posttranslational modifications present in pig brain-derived tubulin, and polymerizes efficiently at room temperature. In addition, fluorescently labeled frog egg tubulin incorporates into meiotic spindles assembled in egg extract more efficiently than brain tubulin, and is thus superior as a probe for Xenopus egg extract experiments. Frog egg tubulin will provide excellent opportunities to identify active nucleation complexes and revisit microtubule polymerization dynamics in vitro. PMID:27193841

  14. In vitro assembly of plant tubulin in the absence of microtubule-stabilizing reagents

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The assembly of microtubules is essential for physiological functions of microtubules. Addition of microtubule-stabilizing reagents or microtubule "seeds" is usually necessary for plant tubulin assembly in vitro, which hinders the investigation of plant microtubule dynamics. In the present note, highly purified plant tubulins have been obtained from lily pollen, a non-microtubule-stabilizing reagent or microtubule "seed" system for plant tubulin assembly has been established and the analysis of plant tubulin assembly performed. Experiment results showed that purified tubulin polymerized in vitro, and a typical microtubule structure was observed with electron microscopy. The kinetics curve of tubulin assembly exhibited typical "parabola". The presence of taxol significantly altered the character of plant tubulin assembly, including that abnormal microtubules were assembled and the critical concentration for plant tubulin assembly was decreased exceedingly from 3 mg/mL in the absence of taxol to 0.043 mg/mL in the presence of taxol.

  15. A vital role of tubulin-tyrosine-ligase for neuronal organization

    OpenAIRE

    Erck, Christian; Peris, Leticia; Andrieux, Annie; Meissirel, Claire; Gruber, Achim; Vernet, Muriel; Schweitzer, Annie; Saoudi, Yasmina; Pointu, Hervé; Bosc, Christophe; Salin, Paul; Job, Didier; Wehland, Juergen

    2005-01-01

    http://www.pnas.org/content/102/22/7853.long International audience Tubulin is subject to a special cycle of detyrosination/tyrosination in which the C-terminal tyrosine of alpha-tubulin is cyclically removed by a carboxypeptidase and readded by a tubulin-tyrosine-ligase (TTL). This tyrosination cycle is conserved in evolution, yet its physiological importance is unknown. Here, we find that TTL suppression in mice causes perinatal death. A minor pool of tyrosinated (Tyr-)tubulin persist...

  16. Tubulin phosphorylation by casein kinase II is similar to that found in vivo

    OpenAIRE

    1987-01-01

    Purified brain tubulin subjected to an exhaustive phosphatase treatment can be rephosphorylated by casein kinase II. This phosphorylation takes place mainly on a serine residue, which has been located at the carboxy- terminal domain of the beta-subunit. Interestingly, tubulin phosphorylated by casein kinase II retains its ability to polymerize in accordance with descriptions by other authors of in vivo phosphorylated tubulin. Moreover, the V8 phosphopeptide patterns of both tubulin phosphoryl...

  17. Recent advances in the field of tubulin polymerization inhibitors.

    Science.gov (United States)

    Prinz, Helge

    2002-12-01

    In recent years, enormous progress has been made in the field of tubulin targeting agents. Several companies and academic laboratories have entered this field and competition has become very strong. Nevertheless, clinically promising compounds often face substantial limitations, such as high systemic toxicity, poor water solubility and bioavailability, as well as complex synthesis and isolation procedures. As a drawback of established drugs, like paclitaxel or the vinca alkaloids, the outcome of cancer chemotherapy is often affected by the emergence of the multidrug resistance phenotype. Among the recently disclosed tubulin polymerization inhibitors, there are several interesting low molecular weight compounds with improved oral bioavailability and demonstrated activity against multi-drug resistance positive phenotypes. As documented by the imidazole-based combretastatin analogs, to name just one example, chemical optimization of a lead structure resulted in compounds with potent in vitro and in vivo activity along with appropriate pharmacodynamic and pharmacokinetic requirements for a potential therapeutic candidate. Currently, several compounds are undergoing Phase I or Phase II clinical trials, among them orally bioavailable sulfonamides or dolastatin 10. Several other compounds are close to entering Phase I trials. The purpose of this review is to focus on the most recent advances in tubulin polymerization inhibitors from a survey of the published patent literature and related publications between late 1999 and April 2002. However, biological data, especially for the inhibition of tubulin polymerization, obtained from different laboratories cannot easily be compared. PMID:12503216

  18. Dictyoceratidan poisons: Defined mark on microtubule-tubulin dynamics.

    Science.gov (United States)

    Gnanambal K, Mary Elizabeth; Lakshmipathy, Shailaja Vommi

    2016-03-01

    Tubulin/microtubule assembly and disassembly is characterized as one of the chief processes during cell growth and division. Hence drugs those perturb these process are considered to be effective in killing fast multiplying cancer cells. There is a collection of natural compounds which disturb microtubule/tubulin dis/assemblage and there have been a lot of efforts concerted in the marine realm too, to surveying such killer molecules. Close to half the natural compounds shooting out from marine invertebrates are generally with no traceable definite mechanisms of action though may be tough anti-cancerous hits at nanogram levels, hence fatefully those discoveries conclude therein without a capacity of translation from laboratory to pharmacy. Astoundingly at least 50% of natural compounds which have definite mechanisms of action causing disorders in tubulin/microtubule kinetics have an isolation history from sponges belonging to the Phylum: Porifera. Poriferans have always been a wonder worker to treat cancers with a choice of, yet precise targets on cancerous tissues. There is a specific order: Dictyoceratida within this Phylum which has contributed to yielding at least 50% of effective compounds possessing this unique mechanism of action mentioned above. However, not much notice is driven to Dictyoceratidans alongside the order: Demospongiae thus dictating the need to know its select microtubule/tubulin irritants since the unearthing of avarol in the year 1974 till date. Hence this review selectively pinpoints all the compounds, noteworthy derivatives and analogs stemming from order: Dictyoceratida focusing on the past, present and future. PMID:26874035

  19. Anticancer Activity of Chamaejasmine: Effect on Tubulin Protein

    Directory of Open Access Journals (Sweden)

    Yingkun Nie

    2011-07-01

    Full Text Available In this work, the anticancer activity of chamaejasmine was studied by evaluating its in vitro cytotoxicity against several human cancer cell lines (MCF-7, A549, SGC-7901, HCT-8, HO-4980, Hela, HepG2, PC-3, LNCap, Vero and MDCK using the MTT assay. Results indicated chamaejasmine showed more notable anticancer activity than taxol against PC-3 cells, with IC50 values of 2.28 and 3.98 µM, respectively. Furthermore, Western blot analysis showed that chamaejasmine was able to increase the expression of β-tubulin, but not α-tubulin. In silico simulations indicated that chamaejasmine specifically interacts with the active site which is located at the top of β-tubulin, thanks to the presence of strong hydrophobic effects between the core templates and the hydrophobic surface of the TB active site. The binding energy (Einter was calculated to be −164.77 kcal·mol−1. Results presented here suggest that chamaejasmine possesses anti-cancer properties relating to β-tubulin depolymerization inhibition, and therefore is a potential source of anticancer leads for the pharmaceutical industry.

  20. DSC Study on Brain Tubulin and the Effect of Cisplatin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The thermal property of the polymerization of brain tubulin was studied by a high-sensitivity differential scanning calorimeter. The phenomenon that heat flows increased and decreased consistently and obviously was observed. This phenomenon was called heat flow oscillation. It was probably correlated to the dynamic instability of microtubules. The effect of cisplatin on it was reported, too.

  1. Increased expression of class III β-tubulin in castration-resistant human prostate cancer

    OpenAIRE

    Terry, S; Ploussard, G; Allory, Y; Nicolaiew, N; Boissière-Michot, F; Maillé, P; Kheuang, L; Coppolani, E; Ali, A.; Bibeau, F; Culine, S; Buttyan, R.; de la Taille, A; Vacherot, F

    2009-01-01

    Background: Class III β-tubulin (βIII-tubulin) is expressed in tissues of neuronal lineage and also in several human malignancies, including non-small-cell lung carcinoma, breast and ovarian cancer. Overexpression of βIII-tubulin in these tumours is associated with an unfavourable outcome and resistance to taxane-based therapies. At present, βIII-tubulin expression remains largely uncharacterised in prostate cancer. Methods: In this report, we evaluated the expression of βIII-tubulin in 138 d...

  2. Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization

    Directory of Open Access Journals (Sweden)

    Jaroszewski Lukasz

    2003-10-01

    Full Text Available Abstract Background The correct folding and dimerization of tubulins, before their addition to the microtubular structure, needs a group of conserved proteins called cofactors A to E. The biochemical analysis of cofactors gave an insight to their general functions, however not much is known about the domain structure and detailed, molecular function of these proteins. Results Combining modelling and fold prediction tools, we present 3D models of all cofactors, including several previously unannotated domains of cofactors B-E. Apart from the new HEAT and Armadillo domains in cofactor D and an unusual spectrin-like domain in cofactor C, we have identified a new subfamily of ubiquitin-like domains in cofactors B and E. Together, these observations provide a reliable, molecular level model of cofactor complex. Conclusion Distant homology searches allowed the identification of unknown regions of cofactors as self-reliant domains and allow us to present a detailed hypothesis of how a cofactor complex performs its function.

  3. Relating destabilizing regions to known functional sites in proteins

    Directory of Open Access Journals (Sweden)

    Wodak Shoshana J

    2007-04-01

    Full Text Available Abstract Background Most methods for predicting functional sites in protein 3D structures, rely on information on related proteins and cannot be applied to proteins with no known relatives. Another limitation of these methods is the lack of a well annotated set of functional sites to use as benchmark for validating their predictions. Experimental findings and theoretical considerations suggest that residues involved in function often contribute unfavorably to the native state stability. We examine the possibility of systematically exploiting this intrinsic property to identify functional sites using an original procedure that detects destabilizing regions in protein structures. In addition, to relate destabilizing regions to known functional sites, a novel benchmark consisting of a diverse set of hand-curated protein functional sites is derived. Results A procedure for detecting clusters of destabilizing residues in protein structures is presented. Individual residue contributions to protein stability are evaluated using detailed atomic models and a force-field successfully applied in computational protein design. The most destabilizing residues, and some of their closest neighbours, are clustered into destabilizing regions following a rigorous protocol. Our procedure is applied to high quality apo-structures of 63 unrelated proteins. The biologically relevant binding sites of these proteins were annotated using all available information, including structural data and literature curation, resulting in the largest hand-curated dataset of binding sites in proteins available to date. Comparing the destabilizing regions with the annotated binding sites in these proteins, we find that the overlap is on average limited, but significantly better than random. Results depend on the type of bound ligand. Significant overlap is obtained for most polysaccharide- and small ligand-binding sites, whereas no overlap is observed for most nucleic acid binding

  4. Tubulin Tyrosine Ligase-like Genes ttll3 and ttll6 Maintain Zebrafish Cilia Structure and Motility*

    OpenAIRE

    Pathak, Narendra; Austin, Christina A.; Drummond, Iain A.

    2011-01-01

    Tubulin post-translational modifications generate microtubule heterogeneity and modulate microtubule function, and are catalyzed by tubulin tyrosine ligase-like (TTLL) proteins. Using antibodies specific to monoglycylated, polyglycylated, and glutamylated tubulin in whole mount immunostaining of zebrafish embryos, we observed distinct, tissue-specific patterns of tubulin modifications. Tubulin modification patterns in cilia correlated with the expression of ttll3 and ttll6 in ciliated cells. ...

  5. The solution structure of the N-terminal domain of human tubulin binding cofactor C reveals a platform for tubulin interaction.

    Directory of Open Access Journals (Sweden)

    Ma Flor Garcia-Mayoral

    Full Text Available Human Tubulin Binding Cofactor C (TBCC is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure. Accordingly, TBCC is found at the centrosome and is implicated in bipolar spindle formation. We also determine by NMR the structure of the N-terminal domain of TBCC. The TBCC N-terminal domain adopts a spectrin-like fold topology composed of a left-handed 3-stranded α-helix bundle. Remarkably, the 30-residue N-terminal segment of the TBCC N-terminal domain is flexible and disordered in solution. This unstructured region is involved in the interaction with tubulin. Our data lead us to propose a testable model for TBCC N-terminal domain/tubulin recognition in which the highly charged N-terminus as well as residues from the three helices and the loops interact with the acidic hypervariable regions of tubulin monomers.

  6. Sequence divergence of Entamoeba histolytica tubulin is responsible for its altered tertiary structure

    International Nuclear Information System (INIS)

    Atypical microtubular structures of the protozoan parasite Entamoeba histolytica (Eh) have been attributed to amino acid sequence divergence of Eh tubulin. To investigate if this sequence divergence leads to significant differences in the tertiary structure of the Eh αβ-tubulin heterodimer, we have modeled αβ-tubulin heterodimer of Eh based on the crystal structure of mammalian tubulin. The predicted 3D homology model exhibits an overall resemblance with the known crystal structure of mammalian tubulin except for the 16 residue long carboxy terminal region of Eh β-tubulin. We propose that this C-terminal region may provide steric hindrance in the polymerization of Eh αβ-tubulin for microtubule formation. Using docking studies, we have identified the binding sites for different microtubule specific drugs on Eh β-tubulin. Our model provides a rational framework, both for understanding the contribution of Ehβ-tubulin C-terminal region to αβ-tubulin polymerization and design of new anti-protozoan drugs in order to control amoebiasis

  7. Tubulins as therapeutic targets in cancer: from bench to bedside

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Dráber, Pavel

    2012-01-01

    Roč. 18, č. 19 (2012), s. 2778-2792. ISSN 1381-6128 R&D Projects: GA ČR GA204/09/1777; GA AV ČR KAN200520701; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : microtubules * tubulin * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.311, year: 2012

  8. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization.

    Science.gov (United States)

    Herdman, Christine A; Devkota, Laxman; Lin, Chen-Ming; Niu, Haichan; Strecker, Tracy E; Lopez, Ramona; Liu, Li; George, Clinton S; Tanpure, Rajendra P; Hamel, Ernest; Chaplin, David J; Mason, Ralph P; Trawick, Mary Lynn; Pinney, Kevin G

    2015-12-15

    The discovery of 3-methoxy-9-(30,40,50-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol (a benzosuberene-based analogue referred to as KGP18) was originally inspired by the natural products colchicine and combretastatin A-4 (CA4). The relative structural simplicity and ease of synthesis of KGP18, coupled with its potent biological activity as an inhibitor of tubulin polymerization and its cytotoxicity (in vitro) against human cancer cell lines, has resulted in studies focused on new analogue design and synthesis. Our goal was to probe the relationship of structure to function in this class of anticancer agents. A series of twenty-two new benzosuberene-based analogues of KGP18 was designed and synthesized. These compounds vary in their methoxylation pattern and separately incorporate trifluoromethyl groups around the pendant aryl ring for the evaluation of the effect of functional group modifications on the fused six-membered aromatic ring. In addition, the 8,9-saturated congener of KGP18 has been synthesized to assess the necessity of unsaturation at the carbon atom bearing the pendant aryl ring. Six of the molecules from this benzosuberene-series of compounds were active (IC50 < 5 lM) as inhibitors of tubulin polymerization while four analogues were comparable (IC50 approximately 1 lM) in their tubulin inhibitory activity to CA4 and KGP18. The potency of a bis-trifluoromethyl analogue 74 and the unsaturated KGP18 derivative 73 as inhibitors of tubulin assembly along with their moderate cytotoxicity suggested the potential utility of these compounds as vascular disrupting agents (VDAs) to selectively target microvessels feeding tumors. Accordingly, water-soluble and DMSO-soluble phosphate prodrug salts of each were synthesized for preliminary in vivo studies to assess their potential efficacy as VDAs. PMID:26775540

  9. RNAi Depletion of Gamma -Tubulin as a Tool for Studying Gamma -Tubulin Role in Organization of Acentrosomal Cells

    Czech Academy of Sciences Publication Activity Database

    Doskočilová, Anna; Procházková, Jiřina; Cenklová, Věra; Binarová, Pavla

    San Diego : Springer, 2006, s. 137-137. [Annual Meeting of The American Society for Cell Biology /46./. San Diego (US), 09.12.2006-13.12.2006] R&D Projects: GA AV ČR IAA5020302; GA MŠk LC545; GA ČR GD204/05/H023 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50380511 Keywords : microtubules * gamma-tubulin * mitosis Subject RIV: EE - Microbiology, Virology

  10. Tubulin tyrosine ligase expression corresponds to changes in the tyrosination/detyrosination status of alpha tubulin in prostate cancer cells

    Czech Academy of Sciences Publication Activity Database

    Souček, Karel; Phung, A.D.; Bulinski, J.Ch.; Harper, R.W.; McManus, M.; Eiserich, J.P.

    2006-01-01

    Roč. 100, č. 5 (2006), s. 406-406. ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků /6./. 14.06.2006-17.06.2006, Milovy] Institutional research plan: CEZ:AV0Z50040507 Keywords : prostate cancer * tubulin * tyrosination/detyrosination cycle Subject RIV: BO - Biophysics

  11. Is more memory in evolutionary selection (de)stabilizing?

    OpenAIRE

    C.H. Hommes; Kiseleva, T.; Y. Kuznetsov; Verbic, M.

    2012-01-01

    We investigate the effects of memory on the stability of evolutionary selection dynamics based on a multinomial logit model in a simple asset pricing model with heterogeneous beliefs. Whether memory is stabilizing or destabilizing depends in general on three key factors: (1) whether or not the weights on past observations are normalized; (2) the ecology or composition of forecasting rules, in particular the average trend extrapolation factor and the spread or diversity in biased forecasts; an...

  12. Is more memory in evolutionary selection (de)stabilizing?

    OpenAIRE

    Hommes, C.; Kiseleva, T.; Y. Kuznetsov; Verbic, M.

    2009-01-01

    We investigate the effects of memory on the stability of evolutionary selection dynamics based on a multi-nomial logit model in an asset pricing model with heterogeneous beliefs. Whether memory is stabilizing or destabilizing depends in general on three key factors: (1) whether or not the weights on past observations are normalized; (2) the ecology of forecasting rules, in particular the average strength of trend extrapolation and the spread in biased forecasts, and (3) whether or not costs f...

  13. Is more memory in evolutionary selection (de)stabilizing?

    OpenAIRE

    Hommes, Cars; Kiseleva, T.; Y. Kuznetsov; Verbic, M.

    2012-01-01

    We investigate the effects of memory on the stability of evolutionary selection dynamics based on a multi-nomial logit model in an asset pricing model with heterogeneous beliefs. Whether memory is stabilizing or destabilizing depends in general on three key factors: (1) whether or not the weights on past observations are normalized; (2) the ecology of forecasting rules, in particular the average strength of trend extrapolation and the spread in biased forecasts, and (3) whether or not costs f...

  14. Atherosclerotic Plaque Destabilization in Mice: A Comparative Study.

    Directory of Open Access Journals (Sweden)

    Helene Hartwig

    Full Text Available Atherosclerosis-associated diseases are the main cause of mortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions that may become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-threatening thrombotic events associated with high-risk vulnerable plaques. Hyperlipidemic mouse models have been extensively used in studying the mechanisms controlling initiation and progression of atherosclerosis. However, the understanding of mechanisms leading to atherosclerotic plaque destabilization has been hampered by the lack of proper animal models mimicking this process. Although various mouse models generate atherosclerotic plaques with histological features of human advanced lesions, a consensus model to study atherosclerotic plaque destabilization is still lacking. Hence, we studied the degree and features of plaque vulnerability in different mouse models of atherosclerotic plaque destabilization and find that the model based on the placement of a shear stress modifier in combination with hypercholesterolemia represent with high incidence the most human like lesions compared to the other models.

  15. Catastrophic destabilization of tunnel under rocks slipping in faultage

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-qing; WANG Xue-qing; YUAN Jing

    2008-01-01

    The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were presented. On the basis of the results above, through Taylor series expansion of the equation of equilibrium surface, its standard form was obtained. Analysis show that catastrophic destabilization of tunnel will occur only when stiffness ratio between elastic sector and strain weakening sector of soft rocks was larger than or equal to 1. On the other hand,sliding behavior and evolution path of fault were directly affected by exogenous process,and it was a major extraneous factor which leads to catastrophic destabilization of tunnel.In the condition of system catastrophe could be generated, if external forces vary from smaller to larger, firstly, fault sticks or creeps, and secondly, when external force equal to or larger than critical value, fault turns to slip suddenly. Inverse, if external forces vary from larger to smaller, fault smoothly slips firstly, when external force equal to or smaller than critical value, and fault turns to stick or creep suddenly.

  16. βIII-Tubulin: A novel mediator of chemoresistance and metastases in pancreatic cancer.

    OpenAIRE

    Erkan, Murat Mert; McCarroll, Joshua A.; Sharbeen, George; Liu, Jie; Youkhana, Janet; Goldstein, David; McCarthy, Nigel; Limbri, Lydia F.; Dischl, Dominic; Ceyhan, Gueralp O.; Johns, Amber L.; Biankin, Andrew V.; Kavallaris, Maria; Phillips, Phoebe A.

    2015-01-01

    Pancreatic cancer is a leading cause of cancer-related deaths in Western societies. This poor prognosis is due to chemotherapeutic drug resistance and metastatic spread. Evidence suggests that microtubule proteins namely, beta-tubulins are dysregulated in tumor cells and are involved in regulating chemosensitivity. However, the role of beta-tubulins in pancreatic cancer are unknown. We measured the expression of different beta-tubulin isotypes in pancreatic adenocarcinoma tissue and pancreati...

  17. β class II tubulin predominates in normal and tumor breast tissues

    International Nuclear Information System (INIS)

    Antimitotic chemotherapeutic agents target tubulin, the major protein in mitotic spindles. Tubulin isotype composition is thought to be both diagnostic of tumor progression and a determinant of the cellular response to chemotherapy. This implies that there is a difference in isotype composition between normal and tumor tissues. To determine whether such a difference occurs in breast tissues, total tubulin was fractionated from lysates of paired normal and tumor breast tissues, and the amounts of β-tubulin classes I + IV, II, and III were measured by competitive enzyme-linked immunosorbent assay (ELISA). Only primary tumor tissues, before chemotherapy, were examined. Her2/neu protein amplification occurs in about 30% of breast tumors and is considered a marker for poor prognosis. To gain insight into whether tubulin isotype levels might be correlated with prognosis, ELISAs were used to quantify Her2/neu protein levels in these tissues. β-Tubulin isotype distributions in normal and tumor breast tissues were similar. The most abundant β-tubulin isotypes in these tissues were β-tubulin classes II and I + IV. Her2/neu levels in tumor tissues were 5–30-fold those in normal tissues, although there was no correlation between the Her2/neu biomarker and tubulin isotype levels. These results suggest that tubulin isotype levels, alone or in combination with Her2/neu protein levels, might not be diagnostic of tumorigenesis in breast cancer. However, the presence of a broad distribution of these tubulin isotypes (for example, 40–75% β-tubulin class II) in breast tissue, in conjunction with other factors, might still be relevant to disease progression and cellular response to antimitotic drugs

  18. Novel Suicide Ligands of Tubulin Arrest Cancer Cells in S-Phase

    OpenAIRE

    Ashley Davis; Jian-Dong Jiang; Middleton, Kim M; Yue Wang; Imre Weisz; Yi-He Ling; J. George Bekesi

    1999-01-01

    It is presently accepted that the mechanism of action for all anti-tumor tubulin ligands involves the perturbation of microtubule dynamics during the G2/M phase of cell division and subsequent entry into apoptosis 1]. In this report, we challenge the established dogma by describing a unique mechanism of action caused by a novel series of tubulin ligands, halogenated derivatives of acetamido benzoyl ethyl ester. We have developed a suicide ligand for tubulin, which covalently attaches to the t...

  19. Novel Suicide Ligands of Tubulin Arrest Cancer Cells in S-Phase1

    OpenAIRE

    Davis, Ashley; Jiang, Jian-Dong; Middleton, Kim M; Wang, Yue; Weisz, Imre; Ling, Yi-He; Bekesi, J George

    1999-01-01

    It is presently accepted that the mechanism of action for all anti-tumor tubulin ligands involves the perturbation of microtubule dynamics during the G2/M phase of cell division and subsequent entry into apoptosis [1]. In this report, we challenge the established dogma by describing a unique mechanism of action caused by a novel series of tubulin ligands, halogenated derivatives of acetamido benzoyl ethyl ester. We have developed a suicide ligand for tubulin, which covalently attaches to the ...

  20. The 90-kDa Heat Shock Protein Hsp90 Protects Tubulin against Thermal Denaturation*

    OpenAIRE

    Weis, Felix; Moullintraffort, Laura; Heichette, Claire; Chrétien, Denis; Garnier, Cyrille

    2010-01-01

    Hsp90 and tubulin are among the most abundant proteins in the cytosol of eukaryotic cells. Although Hsp90 plays key roles in maintaining its client proteins in their active state, tubulin is essential for fundamental processes such as cell morphogenesis and division. Several studies have suggested a possible connection between Hsp90 and the microtubule cytoskeleton. Because tubulin is a labile protein in its soluble form, we investigated whether Hsp90 protects it against thermal denaturation....

  1. Risk assessment of mountain infrastructure destabilization in the French Alps

    Science.gov (United States)

    Duvillard, Pierre-Allain; Ravanel, Ludovic; Deline, Philip

    2015-04-01

    In the current context of imbalance of geosystems in connection with the rising air temperature for several decades, high mountain environments are especially affected by the shrinkage of glaciers and the permafrost degradation which can trigger slope movements in the rock slopes (rockfall, rock avalanches) or in superficial deposits (slides, rock glacier rupture, thermokarst). These processes generate a risk of direct destabilization for high mountain infrastructure (huts, cable-cars...) in addition to indirect risks for people and infrastructure located on the path of moving rock masses. We here focus on the direct risk of infrastructure destabilization due to permafrost degradation and/or glacier shrinkage in the French Alps. To help preventing these risks, an inventory of all the infrastructure was carried out with a GIS using different data layers among which the Alpine Permafrost Index Map and inventories of the French Alps glaciers in 2006-2009, 1967-1971 and at the end of the Little Ice Age. 1769 infrastructures have been identified in areas likely characterized by permafrost and/or possibly affected by glacier shrinkage. An index of risk of destabilization has been built to identify and to rank infrastructure at risk. This theoretical risk index includes a characterization of hazards and a diagnosis of the vulnerability. The value of hazard is dependent on passive factors (topography, lithology, geomorphological context...) and on so-considered active factors (thermal state of the permafrost, and changing constraints on slopes related to glacier shrinkage). The diagnosis of vulnerability has meanwhile been established by combining the level of potential damage to the exposed elements with their operational and financial values. The combination of hazard and vulnerability determines a degree of risk of infrastructure destabilization (from low to very high). Field work and several inventories of infrastructure damages were used to validate it. The

  2. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: Implications for neurotoxicity

    International Nuclear Information System (INIS)

    Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.

  3. Dimethyl Sulfoxide Is Feasible for Plant Tubulin Assembly In vitro: A Comprehensive Analysis

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua XU; Shan-Jin HUANG; Ming YUAN

    2005-01-01

    It is much more difficult for tubulin from plant sources to polymerize in vitro than tubulin from animal sources. Taxol, a most widely used reagent in microtubule studies, enhances plant microtubule assembly, but hinders microtubule dynamics. Dimethyl sulfoxide (DMSO), a widely used reagent in animal microtubule studies, is a good candidate for the investigation of plant microtubule assembly in vitro.However, proper investigation is lacking about the effects of DMSO on plant microtubule assembly in vitro.In the present study, DMSO was used to establish optimal conditions for the polymerization of plant tubulin. Tubulin, purified from lily pollen, polymerizes into microtubules at a critical concentration of 1.2mg/mL in the presence of 10% DMSO. The polymers appear to have a normal microtubule structure, as revealed by electron microscopy. In the presence of 10% DMSO, microtubule polymerization decreases when the pH of the medium is increased from 6.5 to 7.4. Both the polymerization rate and the mass of the polymers increase as temperature increases from 25 to 40 ℃. Tubulin polymerizes and depolymerizes along with cycling of temperature, from 37 to 4 ℃, or following the addition to or the removal of Ca2+ from the medium. When incubated with nuclei isolated from tobacco BY-2 suspension cells, tubulin assembles onto the nuclear surface in the presence of 10% DMSO. Labeling lily pollen tubulin with 5- (and 6-)carboxytetramethyl-rhodamine succinimidyl ester (NHS-rhodamine) was performed successfully in the presence of 10% DMSO. Labeled tubulin assembles into a radial structure on the surface of BY-2 nuclei. The polymerization of lily pollen tubulin is also enhanced by microtubule-associated proteins from animal sources in the presence of 10% DMSO. All the experimental results indicate that plant tubulin functions normally in the presence of DMSO. Therefore, DMSO is an appropriate reagent for plant tubulin polymerization and investigation of plant microtubules in

  4. Anastral spindle assembly and γ-tubulin in Drosophila oocytes

    Directory of Open Access Journals (Sweden)

    Hallen Mark A

    2011-01-01

    Full Text Available Abstract Background Anastral spindles assemble by a mechanism that involves microtubule nucleation and growth from chromatin. It is still uncertain whether γ-tubulin, a microtubule nucleator essential for mitotic spindle assembly and maintenance, plays a role. Not only is the requirement for γ-tubulin to form anastral Drosophila oocyte meiosis I spindles controversial, but its presence in oocyte meiosis I spindles has not been demonstrated and is uncertain. Results We show, for the first time, using a bright GFP fusion protein and live imaging, that the Drosophila maternally-expressed γTub37C is present at low levels in oocyte meiosis I spindles. Despite this, we find that formation of bipolar meiosis I spindles does not require functional γTub37C, extending previous findings by others. Fluorescence photobleaching assays show rapid recovery of γTub37C in the meiosis I spindle, similar to the cytoplasm, indicating weak binding by γTub37C to spindles, and fits of a new, potentially more accurate model for fluorescence recovery yield kinetic parameters consistent with transient, diffusional binding. Conclusions The FRAP results, together with its mutant effects late in meiosis I, indicate that γTub37C may perform a role subsequent to metaphase I, rather than nucleating microtubules for meiosis I spindle formation. Weak binding to the meiosis I spindle could stabilize pre-existing microtubules or position γ-tubulin for function during meiosis II spindle assembly, which follows rapidly upon oocyte activation and completion of the meiosis I division.

  5. Unfolding Ubiquitin by force: water mediated H-bond destabilization

    Directory of Open Access Journals (Sweden)

    Germán Pabón

    2012-12-01

    Full Text Available Using the “pull and wait” (PNW simulation protocol at 300 K, we studied the unfolding by force of an ubiquitin molecule. PNW was implemented in the CHARMM program using an integration time step of 1 fs and a uniform dielectric constant of 1. The ubiquitin molecule, initially solvated, was put under mechanical stress, exerting forces from different directions. The rupture of five hydrogen bonds between parallel strands β1 and β5 takes place during the extension from 13 to 15 Å, defines a mechanical barrier for unfolding and dominates the point of maximum unfolding force. The simulations described here show that given adequate time, a small applied force can destabilize those five H-bonds relative to the bonds that can be created to water molecules; allowing the formation of stable H-bonds between a single water molecule and the donor and acceptor groups of the interstrand H-bonds. Thus, simulations run with PNW show that the force is not responsible for “ripping apart” the backbone H-bonds; it merely destabilizes them making them less stable than the H-bonds they can make with water. Additional simulations show that the force necessary to destabilize the H-bonds and allow them to be replaced by H-bonds to water molecules depends strongly on the pulling direction. By using a simulation protocol that allows equilibration at each extension we have been able to observe the details of the events leading to the unfolding of ubiquitin by mechanical force.

  6. Destabilization of artificial biomembrane induced by the penetration of tryptophan

    International Nuclear Information System (INIS)

    The effect of tryptophan on the membrane stability was studied by using three artificial biological membranes including liposome, Langmuir monolayer and solid supported bilayer lipid membrane (s-BLM) as models. All the results indicate that the penetration of tryptophan can destabilize different artificial biological membranes. The diameter of liposome and the leakage of calcein from liposome increased with the increase of tryptophan concentration because the penetration of tryptophan was beneficial for dehydrating the polar head groups of lipids and the formation of fusion intermediates. π-A isotherms of lecithin on the subphase of tryptophan solution further confirm that tryptophan can penetrate into lipid monolayer and reduce the stability of lipid monolayer. When the concentration of tryptophan increased from 0 to 2 x 10-3 mol L-1, the limiting molecular area of lecithin increased from 110.5 to 138.5 A2, but the collapse pressure of the monolayer decreased from 47.6 to 42.3 mN m-1, indicating the destabilization of lipid monolayer caused by the penetration of tryptophan. The resistance spectra of s-BLM demonstrate that the existence of tryptophan leads to the formation of some defects in s-BLM and the destabilization of s-BLM. The values of electron-transfer resistance and double layer capacitance respectively decreased from 5.765 x 106 Ω and 3.573 x 10-8 F to 1.391 x 106 Ω and 3.340 x 10-8 F when the concentration of tryptophan increased from 0 to 2 x 10-3 mol L-1. Correspondingly, the breakdown voltage of s-BLM decreased from 2.51 to 1.72 V.

  7. Geometrical destabilization of heavy scalar fields during inflation

    CERN Document Server

    Renaux-Petel, Sébastien

    2015-01-01

    We show the existence of a general mechanism by which heavy scalar fields can be destabilized during inflation. It relies on the fact that the effective mass of fluctuations orthogonal to the inflationary direction contains a contribution proportional to the curvature tensor of the field space metric, and that it can render the entropic fluctuations tachyonic. We describe a simple and rather universal setup in which apparently benign higher-order operators trigger this instability. This phenomenon can prematurely end inflation and have important observational consequences, sometimes excluding models that would otherwise perfectly fit the data. More generally, it modifies the interpretation of cosmological constraints in terms of fundamental physics.

  8. 应用新型立式逆流色谱制备分离南蛇藤中的南蛇藤素%Preparative isolation and purification of celastrol from Celastrus orbiculatus Thunb. by a new countercurrent chromatography with upright coil planet centrifuge

    Institute of Scientific and Technical Information of China (English)

    孙翠荣; 吴世华; 王奎武; 潘远江

    2003-01-01

    A versatile countercurrent chromatography with upright multilayer coil planet centrifuge, named upright countercurrent chromatography (UCCC), was applied to the isolation and purification of celastrol from the roots of Celastrus orbiculatus Thunb. The crude celastrol was obtained by elution with petroleum ether from ethanol extracts using a 15 cm length and 5 cm I.D. of silica gel flash chromatography. Preparative UCCC (Fig. 1) with a two-phase system composed of petroleum ether (b. p. 60 ~ 90 ℃ )-ethyl acetate-tetrachloromethanemethanol-water ( 1:1:8:6: 1, v/v) was successfully performed, yielding 705 mg celastrol at 99.5 % purity from 1020 rng of the crude extract in one step separation.

  9. Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry

    International Nuclear Information System (INIS)

    Binding of dengue virus 2 (DENV-2) to C6/36 mosquito cells protein was investigated. A 48 kDa DENV-2-binding C6/36 cells protein (D2BP) was detected in a virus overlay protein-binding assay. The binding occurred only to the C6/36 cells cytosolic protein fraction and it was inhibited by free D2BP. D2BP was shown to bind to DENV-2 E in the far-Western-binding studies and using mass spectrometry (MS) and MS/MS, peptide masses of the D2BP that matched to β-tubulin and α-tubulin chains were identified. These findings suggest that DENV-2 through DENV-2 E binds directly to a 48 kDa tubulin or tubulin-like protein of C6/36 mosquito cells

  10. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization.

    Directory of Open Access Journals (Sweden)

    Mohamed Youssef Banora

    2011-12-01

    Full Text Available Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2 and two γ-tubulin complex proteins genes (GCP3 and GCP4 are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.

  11. Brain tubulin and actin cDNA sequences: isolation of recombinant plasmids.

    OpenAIRE

    Ginzburg, I.(Sobolev Institute of Mathematics and Novosibirsk State University, 630090, Novosibirsk, Russia); de Baetselier, A; Walker, M D; Behar, L; Lehrach, H; Frischauf, A M; Littauer, U Z

    1980-01-01

    Rat brain mRNA enriched for tubulin and actin sequences was used to prepare double stranded cDNA. A library of recombinant clones was constructed by inserting the dsDNA into the Pst1 site of pBR322 plasmid and transformation of E. coli chi 1776 host. Clones bearing sequences coding for tubulin and actin were identified and characterized.

  12. Unusual tubulin-clustering ability of specifically c7-modified colchicine analogues.

    Science.gov (United States)

    Zefirova, Olga N; Lemcke, Heiko; Lantow, Margareta; Nurieva, Evgeniya V; Wobith, Birgit; Onishchenko, Galina E; Hoenen, Antje; Griffiths, Gareth; Zefirov, Nikolay S; Kuznetsov, Sergei A

    2013-08-19

    Highly cytotoxic C7-modified colchicine analogues, exemplified by tubuloclustin, promote microtubule disassembly followed by the formation of very stable tubulin clusters, both in vitro and in cells. The proposed mechanism of action of tubuloclustin and its analogues, beyond that of colchicine, includes additional specific interactions with the α-tubulin subunit. PMID:23843347

  13. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.

    2016-03-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.

  14. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.

    2016-05-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.

  15. Plant polar growth in tobacco disturbed by y-tubulin gene silencing

    Institute of Scientific and Technical Information of China (English)

    Shuang Zhao; Kun Yang; Qian Ma; Qi Wang; Xiaodan Wang; Yanhong Li

    2009-01-01

    To further understand the functions of y-tubulin in plant cells, we conducted a study in which the y-tubulin gene was down-regulated in tobacco plants (obtained by the Agrobacterium-mediated method). This involved transforming the target fragments, in which the sense and antisense partial y-tubulin cDNA fragments were ligated together, into Nicotiana tabacum var. Samsun NN. The y-tubulin down-regulated transformants developed multiple meristems or branches with trumpet-shaped leaves; their root generation also appeared abnormal, with the taproots undeveloped, whereas lateral roots were developed. In addition, the content of indole-3-acetic acid (IAA) and expression of polarity transportation vector PGPI were aberrant. These results suggest that y-tubulin gene silencing disturbed the polar growth of tobacco plants, and that this phenomenon was probably correlated with the IAA content and the polar transpor-tation process.

  16. Bacterial lipopolysaccharide promotes destabilization of lung surfactant-like films.

    Science.gov (United States)

    Cañadas, Olga; Keough, Kevin M W; Casals, Cristina

    2011-01-01

    The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the biophysical properties of lung surfactant-like films composed of either DPPC or DPPC/palmitoyloleoylphosphatidylglycerol (POPG)/palmitic acid (PA) (28:9:5.6, w/w/w). Our results show that low amounts of S-LPS fluidized DPPC monolayers, as demonstrated by fluorescence microscopy and changes in the compressibility modulus. This promoted early collapse and prevented the attainment of high surface pressures. These destabilizing effects could not be relieved by repeated compression-expansion cycles. Similar effects were observed with surfactant-like films composed of DPPC/POPG/PA. On the other hand, the interaction of SP-A, a surfactant membrane-associated alveolar protein that also binds to LPS, with surfactant-like films containing S-LPS increased monolayer destabilization due to the extraction of lipid molecules from the monolayer, leading to the dissolution of monolayer material in the aqueous subphase. This suggests that SP-A may act as an LPS scavenger. PMID:21190662

  17. Mechanisms involved in vibratory destabilization of NAPL ganglia in sands

    International Nuclear Information System (INIS)

    Immiscible liquids when spilled into the ground or leaked from underground storage tanks tend to remain trapped in the form of discrete ganglia due to strong capillary forces. These ganglia often have low solubility in water and may remain in the subsurface over long periods of time creating a continuous source of pollution. Previous studies, which were exploratory in nature, showed that creation of localized vibrations could recover high percentages of trapped ganglia. In this paper, the mechanisms involved in the vibratory destabilization of ganglia are analyzed using results from two sets of experimental studies. It is postulated that, when vibrations result in compaction of sands, viscous pressures tend to destabilize the ganglia by splitting them whereas buoyancy pressures increase the maximum sustainable lengths. The roles of viscous and buoyancy pressures are reversed when vibrations result in increased porosities due to expansion (dilation) of soil. The volumes of trapped ganglia recovered during the experiments are consistent with these postulates. Experimental results also indicate significant recoveries in the cases where the ganglia are supposed to remain stable. These recoveries are attributed to the transient particle rearrangement during vibrations, which is concluded to be an important mechanism

  18. Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility.

    Science.gov (United States)

    Pathak, Narendra; Austin, Christina A; Drummond, Iain A

    2011-04-01

    Tubulin post-translational modifications generate microtubule heterogeneity and modulate microtubule function, and are catalyzed by tubulin tyrosine ligase-like (TTLL) proteins. Using antibodies specific to monoglycylated, polyglycylated, and glutamylated tubulin in whole mount immunostaining of zebrafish embryos, we observed distinct, tissue-specific patterns of tubulin modifications. Tubulin modification patterns in cilia correlated with the expression of ttll3 and ttll6 in ciliated cells. Expression screening of all zebrafish tubulin tyrosine ligase-like genes revealed additional tissue-specific expression of ttll1 in brain neurons, ttll4 in muscle, and ttll7 in otic placodes. Knockdown of ttll3 eliminated cilia tubulin glycylation but had surprisingly mild effects on cilia structure and motility. Similarly, knockdown of ttll6 strongly reduced cilia tubulin glutamylation but only partially affected cilia structure and motility. Combined loss of function of ttll3 and ttll6 caused near complete loss of cilia motility and induced a variety of axonemal ultrastructural defects similar to defects previously observed in zebrafish fleer mutants, which were shown to lack tubulin glutamylation. Consistently, we find that fleer mutants also lack tubulin glycylation. These results indicate that tubulin glycylation and glutamylation have overlapping functions in maintaining cilia structure and motility and that the fleer/dyf-1 TPR protein is required for both types of tubulin post-translational modification. PMID:21262966

  19. Celastrol's Anticancer Mechanism Revealed

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The Thunder of God Vine (Tripterygium wilfordii Hook F.), or Lei Gong Teng in Chinese, is a plant that has been used for ages by traditional Chinese medicine to treat inflammatory conditions. In recent years it has aroused attention of scientists around the world because of its proved efficacies in treating such diseases as rheumatoid arthritis.

  20. Molecular modeling reveals binding interface of γ-tubulin with GCP4 and interactions with noscapinoids.

    Science.gov (United States)

    Suri, Charu; Joshi, Harish C; Naik, Pradeep Kumar

    2015-05-01

    The initiation of microtubule assembly within cells is guided by a cone shaped multi-protein complex, γ-tubulin ring complex (γTuRC) containing γ-tubulin and atleast five other γ-tubulin-complex proteins (GCPs), i.e., GCP2, GCP3, GCP4, GCP5, and GCP6. The rim of γTuRC is a ring of γ-tubulin molecules that interacts, via one of its longitudinal interfaces, with GCP2, GCP3, or GCP4 and, via other interface, with α/β-tubulin dimers recruited for the microtubule lattice formation. These interactions however, are not well understood in the absence of crystal structure of functional reconstitution of γTuRC subunits. In this study, we elucidate the atomic interactions between γ-tubulin and GCP4 through computational techniques. We simulated two complexes of γ-tubulin-GCP4 complex (we called dimer1 and dimer2) for 25 ns to obtain a stable complex and calculated the ensemble average of binding free energies of -158.82 and -170.19 kcal/mol for dimer1 and -79.53 and -101.50 kcal/mol for dimer2 using MM-PBSA and MM-GBSA methods, respectively. These highly favourable binding free energy values points to very robust interactions between GCP4 and γ-tubulin. From the results of the free-energy decomposition and the computational alanine scanning calculation, we identified the amino acids crucial for the interaction of γ-tubulin with GCP4, called hotspots. Furthermore, in the endeavour to identify chemical leads that might interact at the interface of γ-tubulin-GCP4 complex; we found a class of compounds based on the plant alkaloid, noscapine that binds with high affinity in a cavity close to γ-tubulin-GCP4 interface compared with previously reported compounds. All noscapinoids displayed stable interaction throughout the simulation, however, most robust interaction was observed for bromo-noscapine followed by noscapine and amino-noscapine. This offers a novel chemical scaffold for γ-tubulin binding drugs near γ-tubulin-GCP4 interface. PMID:25662919

  1. Nutrient flows between ecosystems can destabilize simple food chains.

    Science.gov (United States)

    Marleau, Justin N; Guichard, Frédéric; Mallard, François; Loreau, Michel

    2010-09-01

    Dispersal of organisms has large effects on the dynamics and stability of populations and communities. However, current metacommunity theory largely ignores how the flows of limiting nutrients across ecosystems can influence communities. We studied a meta-ecosystem model where two autotroph-consumer communities are spatially coupled through the diffusion of the limiting nutrient. We analyzed regional and local stability, as well as spatial and temporal synchrony to elucidate the impacts of nutrient recycling and diffusion on trophic dynamics. We show that nutrient diffusion is capable of inducing asynchronous local destabilization of biotic compartments through a diffusion-induced spatiotemporal bifurcation. Nutrient recycling interacts with nutrient diffusion and influences the susceptibility of the meta-ecosystem to diffusion-induced instabilities. This interaction between nutrient recycling and transport is further shown to depend on ecosystem enrichment. It more generally emphasizes the importance of meta-ecosystem theory for predicting species persistence and distribution in managed ecosystems. PMID:20600133

  2. Non-perturbative Vacuum Destabilization and D-brane Dynamics

    CERN Document Server

    Camara, Pablo G; Dudas, E; Lennek, M

    2010-01-01

    We analyze the process of string vacuum destabilization due to instanton induced superpotential couplings which depend linearly on charged fields. These non-perturbative instabilities result in potentials for the D-brane moduli and lead to processes of D-brane recombination, motion and partial moduli stabilization at the non-perturbative vacuum. By using techniques of D-brane instanton calculus, we explicitly compute this scalar potential in toroidal orbifold compactifications with magnetized D-branes by summing over the possible discrete instanton configurations. We illustrate explicitly the resulting dynamics in globally consistent models. These instabilities can have phenomenological applications to breaking hidden sector gauge groups, open string moduli stabilization and supersymmetry breaking. Our results suggest that breaking supersymmetry by Polonyi-like models in string theory is more difficult than expected.

  3. The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation.

    Science.gov (United States)

    Pathak, Narendra; Obara, Tomoko; Mangos, Steve; Liu, Yan; Drummond, Iain A

    2007-11-01

    Cilia and basal bodies are essential organelles for a broad spectrum of functions, including the development of left-right asymmetry, kidney function, cerebrospinal fluid transport, generation of photoreceptor outer segments, and hedgehog signaling. Zebrafish fleer (flr) mutants exhibit kidney cysts, randomized left-right asymmetry, hydrocephalus, and rod outer segment defects, suggesting a pleiotropic defect in ciliogenesis. Positional cloning flr identified a tetratricopeptide repeat protein homologous to the Caenorhabditis elegans protein DYF1 that was highly expressed in ciliated cells. flr pronephric cilia were shortened and showed a reduced beat amplitude, and olfactory cilia were absent in mutants. flr cilia exhibited ultrastructural defects in microtubule B-tubules, similar to axonemes that lack tubulin posttranslational modifications (polyglutamylation or polyglycylation). flr cilia showed a dramatic reduction in cilia polyglutamylated tubulin, indicating that flr encodes a novel modulator of tubulin polyglutamylation. We also found that the C. elegans flr homologue, dyf-1, is also required for tubulin polyglutamylation in sensory neuron cilia. Knockdown of zebrafish Ttll6, a tubulin polyglutamylase, specifically eliminated tubulin polyglutamylation and cilia formation in olfactory placodes, similar to flr mutants. These results are the first in vivo evidence that tubulin polyglutamylation is required for vertebrate cilia motility and structure, and, when compromised, results in failed ciliogenesis. PMID:17761526

  4. Detection of beta-tubulin in the cytoplasm of the interphasic Entamoeba histolytica trophozoites.

    Science.gov (United States)

    Gómez-Conde, Eduardo; Vargas-Mejía, Miguel Ángel; Díaz-Orea, María Alicia; Hernández-Rivas, Rosaura; Cárdenas-Perea, María Elena; Guerrero-González, Tayde; González-Barrios, Juan Antonio; Montiel-Jarquín, Álvaro José

    2016-08-01

    It is known that the microtubules (MT) of Entamoeba histolytica trophozoites form an intranuclear mitotic spindle. However, electron microscopy studies and the employment of anti-beta-tubulin (β-tubulin) antibodies have not exhibited these cytoskeletal structures in the cytoplasm of these parasites. The purpose of this work was to detect β-tubulin in the cytoplasm of interphasic E. histolytica trophozoites. Activated or non-activated HMI-IMSS-strain E. histolytica trophozoites were used and cultured for 72 h at 37 °C in TYI-S-33 medium, and then these were incubated with the anti-β-tubulin antibody of E. histolytica. The anti-β-tubulin antibody reacted with the intranuclear mitotic spindle of E. histolytica-activated trophozoites as control. In contrast, in non-activated interphasic parasites, anti-β-tubulin antibody reacted with diverse puntiform structures in the cytoplasm and with ring-shaped structures localized in the cytoplasm, cellular membrane and endocytic stomas. In this work, for the first time, the presence of β-tubulin is shown in the cytoplasm of E. histolytica trophozoites. PMID:27156446

  5. The kinesin–tubulin complex: considerations in structural and functional complexity

    Directory of Open Access Journals (Sweden)

    Olmsted ZT

    2015-02-01

    Full Text Available Zachary T Olmsted, Andrew G Colliver, Janet L Paluh State University of New York Polytechnic Institute, Colleges of Nanoscale Science and Engineering, College of Nanoscale Science, Nanobioscience Constellation, Albany, NY, USA Abstract: The ability of cells to respond to external cues by appropriately manipulating their internal environment requires a dynamic microtubule cytoskeleton that is facilitated by associated kinesin motor interactions. The evolutionary adaptations of kinesins and tubulins when merged generate a highly adaptable communication and infrastructure cellular network that is important to understanding specialized cell functions, human disease, and disease therapies. Here, we review the state of the field in the complex relationship of kinesin–tubulin interactions. We propose 12 mechanistic specializations of kinesins. In one category, referred to as sortability, we describe how kinesin interactions with tubulin isoforms, isotypes, or posttranslationally modified tubulins contribute to diverse cellular roles. Fourteen kinesin families have previously been described. Here, we illustrate the great depth of functional complexity that is possible in members within a single kinesin family by mechanistic specialization through discussion of the well-studied Kinesin-14 family. This includes new roles of Kinesin-14 in regulating supramolecular structures such as the microtubule-organizing center γ-tubulin ring complex of centrosomes. We next explore the value of an improved mechanistic understanding of kinesin–tubulin interactions in regard to human development, disease mechanisms, and improving treatments that target kinesin–tubulin complexes. The ability to combine the current kinesin nomenclature along with a more precisely defined kinesin and tubulin molecular toolbox is needed to support more detailed exploration of kinesin–tubulin interaction mechanisms including functional uniqueness, redundancy, or adaptations to new

  6. The interplay between tubulins and P450 cytochromes during Plasmodium berghei invasion of Anopheles gambiae midgut.

    Directory of Open Access Journals (Sweden)

    Rute C Félix

    Full Text Available BACKGROUND: Plasmodium infection increases the oxidative stress inside the mosquito, leading to a significant alteration on transcription of Anopheles gambiae detoxification genes. Among these detoxification genes several P450 cytochromes and tubulins were differently expressed, suggesting their involvement in the mosquito's response to parasite invasion. P450 cytochromes are usually involved in the metabolism and detoxification of several compounds, but are also regulated by several pathogens, including malaria parasite. Tubulins are extremely important as components of the cytoskeleton, which rearrangement functions as a response to malaria parasite invasion. METHODOLOGY/PRINCIPAL FINDINGS: Gene silencing methods were used to uncover the effects of cytochrome P450 reductase, tubulinA and tubulinB silencing on the A. gambiae response to Plasmodium berghei invasion. The role of tubulins in counter infection processes was also investigated by inhibiting their effect. Colchicine, vinblastine and paclitaxel, three different tubulin inhibitors were injected into A. gambiae mosquitoes. Twenty-four hours post injection these mosquitoes were infected with P. berghei through a blood meal from infected CD1 mice. Cytochrome P450 gene expression was measured using RT-qPCR to detect differences in cytochrome expression between silenced, inhibited and control mosquitoes. Results showed that cytochrome P450 reductase silencing, as well as tubulin (A and B silencing and inhibition affected the efficiency of Plasmodium infection. Silencing and inhibition also affected the expression levels of cytochromes P450. CONCLUSIONS: Our results suggest the existence of a relationship between tubulins and P450 cytochromes during A. gambiae immune response to P. berghei invasion. One of the P450 cytochromes in this study, CYP6Z2, stands out as the potential link in this association. Further work is needed to fully understand the role of tubulin genes in the response to

  7. 不同促渗剂对雷公藤红素醇质体体外透皮吸收的研究%Effects of Several Kinds of Penetration Enhancers on Percutaneous Absorption of Celastrol Ethosomes in Vitro

    Institute of Scientific and Technical Information of China (English)

    吴军; 刘荻; 马卓

    2015-01-01

    以离体小鼠皮肤为屏障,采用 TP2A 型智能透皮试验仪进行体外透皮试验,用 HPLC 法测定不同促渗剂对雷公藤红素醇质体的累积渗透量和渗透速率的影响。研究发现,不同促渗剂对雷公藤红素醇质体的累积渗透量和渗透速率的影响大小依次为:丙二醇>氮酮>甘油>薄荷脑,而15%丙二醇的促渗效果最佳,可以作为雷公藤红素醇质体的最佳促渗剂。%The paper studied the effects of several kinds of penetration enhancers on percutaneous absorp-tion of Celastrol ethosomes in vitro.TP2A-type intelligent transdermal test instrument was adopted as the apparatus for in vitro mouse skin permeation.The cumulative permeation quantity and penetration rate of different penetration enhancers on Celastrol ethosomes waere determined by HPLC.Results shuggest tha the ordering of the effects of penetration enhancers was propylene glycol > azone > glycerol > menthol. The effect of 15% propylene glycol was the most influencing enhancer.The conclusion can be arrived at that 15% propylene glycol can be the best penetration enhancers for Celastrol ethosomes.

  8. Heterogeneity in the properties of NEFL mutants causing Charcot-Marie-Tooth disease results in differential effects on neurofilament assembly and susceptibility to intervention by the chaperone-inducer, celastrol.

    Science.gov (United States)

    Gentil, Benoit J; Mushynski, Walter E; Durham, Heather D

    2013-07-01

    Aberrant aggregation of neurofilament proteins is a common feature of neurodegenerative diseases. For example, neurofilament light protein (NEFL) mutants causing Charcot-Marie-Tooth disease induce misassembly of neurofilaments. This study demonstrated that mutations in different functional domains of NEFL have different effects on filament assembly and susceptibility to interventions to restore function. The mouse NEFL mutants, NEFL(Q333P) and NEFL(P8R), exhibited different assembly properties in SW13-cells, cells lacking endogenous intermediate filaments, indicating different consequences of these mutations on the biochemical properties of NEFL. The p.Q333P mutation caused reversible misfolding of the protein. NEFL(Q333P) could be refolded and form coil-coiled dimers, in vitro using chaotropic agent, and in cultured cells by induction of HSPA1 and HSPB1. Celastrol, an inducer of chaperone proteins, induced HSPA1 expression in motor neurons and prevented the formation of neurofilament inclusions and mitochondrial shortening induced by expression of NEFL(Q333P), but not in sensory neurons. Conversely, celastrol had a protective effect against the toxicity of NEFL(P8R), a mutant which is sensitive to HSBP1 but not HSPA1 chaperoning, only in large-sized sensory neurons, not in motor neurons. Importantly, sensory and motor neurons do not respond identically to celastrol and different chaperones are upregulated by the same treatment. Thus, effective therapy of CMT not only depends on the identity of the mutated gene, but the consequences of the specific mutation on the properties of the protein and the neuronal population targeted. PMID:23618875

  9. Molecular simulations of Taxawallin I inside classical taxol binding site of β-tubulin.

    Science.gov (United States)

    Khan, Inamullah; Nisar, Muhammad; Ahmad, Manzoor; Shah, Hamidullah; Iqbal, Zafar; Saeed, Muhammad; Halimi, Syed Muhammad Ashhad; Kaleem, Waqar Ahmad; Qayum, Mughal; Aman, Akhter; Abdullah, Syed Muhammad

    2011-03-01

    A new taxoid Taxawallin I (1) along with two known taxoids (2-3) were isolated from methanolic bark extract of Taxus wallichiana Zucc. Structural characterization was confirmed by mass and NMR spectral techniques. Taxawallin I exhibited significant in-vitro anticancer activity against HepG2, A498, NCI-H226 and MDR 2780AD cancer lines. Tubulin binding assay was performed to assess its tubulin binding activity. Molecular docking analysis was performed to study the potential binding mode inside the taxol binding site of β-tubulin. PMID:20969934

  10. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus

    International Nuclear Information System (INIS)

    Highlights: •The effect of Cd2+ on Clathrina clathrus microtubule network was studied. •Cd2+ exposure increases acetylated and detyrosinated α-tubulin levels. •Microtubules enriched in acetylated/detyrosinated α-tubulin were resistant to cold. •Clathrina clathrus exposed to Cd2+ showed cytoplasmic microtubules with an enhanced stability. -- Abstract: As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl2, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24 h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd2+-treated cells indicates that divalent Cd ions

  11. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus

    Energy Technology Data Exchange (ETDEWEB)

    Ledda, F.D., E-mail: f.ledda@hotmail.it [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy); Ramoino, P. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Ravera, S. [Dipartimento di Farmacia (DIFAR), Viale Cembrano 4, I-16147 Genova (Italy); Perino, E. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Bianchini, P. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Diaspro, A. [Istituto Italiano di Tecnologia (IIT), Dipartimento di Nanofisica, Via Morego 30, I-16163 Genova (Italy); Dipartimento di Fisica (DIFI), Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Gallus, L.; Pronzato, R. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova (Italy); Manconi, R. [Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Muroni 25, I-07100 Sassari (Italy)

    2013-09-15

    Highlights: •The effect of Cd{sup 2+} on Clathrina clathrus microtubule network was studied. •Cd{sup 2+} exposure increases acetylated and detyrosinated α-tubulin levels. •Microtubules enriched in acetylated/detyrosinated α-tubulin were resistant to cold. •Clathrina clathrus exposed to Cd{sup 2+} showed cytoplasmic microtubules with an enhanced stability. -- Abstract: As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl{sub 2}, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24 h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd{sup 2+}-treated cells

  12. Exploration of the binding mode between (-)-zampanolide and tubulin using docking and molecular dynamics simulation.

    Science.gov (United States)

    Liao, Si-Yan; Mo, Guang-Quan; Chen, Jin-Can; Zheng, Kang-Cheng

    2014-02-01

    The binding mode of (-)-zampanolide (ZMP) to tubulin was investigated using docking, molecular dynamics (MD) simulation, and binding free-energy calculations. The docking studies validated the experimental results indicating that the paclitaxel site is the binding site for (-)-ZMP. The 18 ns MD simulation shows the docking mode has changed a lot, whereas it offers more reliable binding data. MM-PBSA binding free-energy calculations further confirmed the results of the MD simulation. The study revealed that hydrophobic interactions play an important role in stabilizing the binding, and the strong hydrogen bond formed with Asp224 enhances the affinity for tubulin. Meanwhile, the results support the assumption that (-)-ZMP can be attacked by His227, leading to a nucleophilic reaction and covalent binding. These theoretical results lead to a greater understanding of the mechanism of action of binding to tubulin, and will therefore aid the design of new compounds with higher affinities for tubulin. PMID:24478043

  13. Zampanolide and Dactylolide: Cytotoxic Tubulin-Assembly Agents and Promising Anticancer Leads

    OpenAIRE

    Chen, Qiao-Hong; Kingston, David G. I.

    2014-01-01

    Zampanolide is a marine natural macrolide and a recent addition to the family of microtubule-stabilizing cytotoxic agents. Zampanolide exhibits unique effects on tubulin assembly and is more potent than paclitaxel against several multi-drug resistant cancer cell lines. A high-resolution crystal structure of xB-tubulin in complex with zampanolide explains how taxane-site microtubule-stabilizing agents promote microtubule assemble and stability. This review provides an overview of current devel...

  14. Zampanolide and dactylolide: cytotoxic tubulin-assembly agents and promising anticancer leads

    OpenAIRE

    Chen, Qiao-Hong; Kingston, David G. I.

    2014-01-01

    Covering: through January 2014 Zampanolide is a marine natural macrolide and a recent addition to the family of microtubule-stabilizing cytotoxic agents. Zampanolide exhibits unique effects on tubulin assembly and is more potent than paclitaxel against several multi-drug resistant cancer cell lines. A high-resolution crystal structure of αβ-tubulin in complex with zampanolide explains how taxane-site microtubule-stabilizing agents promote microtubule assemble and stability. This review provid...

  15. Dlic1 deficiency impairs ciliogenesis of photoreceptors by destabilizing dynein

    Institute of Scientific and Technical Information of China (English)

    Shanshan Kong; Xinrong Du; Chao Peng; Yiming Wu; Huirong Li; Xi Jin; Ling Hou

    2013-01-01

    Cytoplasmic dynein 1 is fundamentally important for transporting a variety of essential cargoes along microtubules within eukaryotic cells.However,in mammals,few mutants are available for studying the effects of defects in dynein-controlled processes in the context of the whole organism.Here,we deleted mouse Dlic1 gene encoding DLIC1,a subunit of the dynein complex.Dlic1-/-mice are viable,but display severe photoreceptor degeneration.Ablation of Dlic1 results in ectopic accumulation of outer segment (OS) proteins,and impairs OS growth and ciliogenesis of photoreceptors by interfering with Rabll-vesicle trafficking and blocking efficient OS protein transport from Golgi to the basal body.Our studies show that Dlic1 deficiency partially blocks vesicle export from endoplasmic reticulum (ER),but seems not to affect vesicle transport from the ER to Golgi.Further mechanistic study reveals that lack of Dlic1 destabilizes dynein subunits and alters the normal subcellular distribution of dynein in photoreceptors,probably due to the impaired transport function of dynein.Our results demonstrate that Dlic1 plays important roles in ciliogenesis and protein transport to the OS,and is required for photoreceptor development and survival.The Dlic1-/-mice also provide a new mouse model to study human retinal degeneration.

  16. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family

    Directory of Open Access Journals (Sweden)

    Gadagkar Sudhindra R

    2010-04-01

    Full Text Available Abstract Background The completion of 19 insect genome sequencing projects spanning six insect orders provides the opportunity to investigate the evolution of important gene families, here tubulins. Tubulins are a family of eukaryotic structural genes that form microtubules, fundamental components of the cytoskeleton that mediate cell division, shape, motility, and intracellular trafficking. Previous in vivo studies in Drosophila find a stringent relationship between tubulin structure and function; small, biochemically similar changes in the major alpha 1 or testis-specific beta 2 tubulin protein render each unable to generate a motile spermtail axoneme. This has evolutionary implications, not a single non-synonymous substitution is found in beta 2 among 17 species of Drosophila and Hirtodrosophila flies spanning 60 Myr of evolution. This raises an important question, How do tubulins evolve while maintaining their function? To answer, we use molecular evolutionary analyses to characterize the evolution of insect tubulins. Results Sixty-six alpha tubulins and eighty-six beta tubulin gene copies were retrieved and subjected to molecular evolutionary analyses. Four ancient clades of alpha and beta tubulins are found in insects, a major isoform clade (alpha 1, beta 1 and three minor, tissue-specific clades (alpha 2-4, beta 2-4. Based on a Homarus americanus (lobster outgroup, these were generated through gene duplication events on major beta and alpha tubulin ancestors, followed by subfunctionalization in expression domain. Strong purifying selection acts on all tubulins, yet maximum pairwise amino acid distances between tubulin paralogs are large (0.464 substitutions/site beta tubulins, 0.707 alpha tubulins. Conversely orthologs, with the exception of reproductive tissue isoforms, show little sequence variation except in the last 15 carboxy terminus tail (CTT residues, which serve as sites for post-translational modifications (PTMs and interactions

  17. Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. Satisfying the resonance condition requires that the α-particle birth speed vα ≥ vA/2|m-nq|, where vA is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4. Typical growth rates of the n=1 TAE mode can be in the order of 10-2ωA, where ωA=vA/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects

  18. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.

    Directory of Open Access Journals (Sweden)

    Mohammad Haeri

    Full Text Available Mutations in rhodopsin cause retinitis pigmentosa in humans and retinal degeneration in a multitude of other animals. We utilized high-resolution live imaging of the large rod photoreceptors from transgenic frogs (Xenopus to compare the properties of fluorescently tagged rhodopsin, Rho-EGFP, and Rho(P23H-EGFP. The mutant was abnormally distributed both in the inner and outer segments (OS, accumulating in the OS to a concentration of ∼0.1% compared to endogenous opsin. Rho(P23H-EGFP formed dense fluorescent foci, with concentrations of mutant protein up to ten times higher than other regions. Wild-type transgenic Rho-EGFP did not concentrate in OS foci when co-expressed in the same rod with Rho(P23H-EGFP. Outer segment regions containing fluorescent foci were refractory to fluorescence recovery after photobleaching, while foci in the inner segment exhibited recovery kinetics similar to OS regions without foci and Rho-EGFP. The Rho(P23H-EGFP foci were often in older, more distal OS disks. Electron micrographs of OS revealed abnormal disk membranes, with the regular disk bilayers broken into vesiculotubular structures. Furthermore, we observed similar OS disturbances in transgenic mice expressing Rho(P23H, suggesting such structures are a general consequence of mutant expression. Together these results show that mutant opsin disrupts OS disks, destabilizing the outer segment possibly via the formation of aggregates. This may render rods susceptible to mechanical injury or compromise OS function, contributing to photoreceptor loss.

  19. Tubulin tyrosine ligase expression corresponds to changes in the tyrosination/detyrosination status of alpha-tubulin in prostate cancer cells

    Czech Academy of Sciences Publication Activity Database

    Souček, Karel; Phung, A.D.; Bulinski, J.C.; Harper, R.W.; McManus, M.T.; Eserich, J.P.

    Quebec City: ISAC, 2006 - (Robinson, J.). s. 134-134 [ISAC XXIII International Congress. 20.05.2006-24.05.2006, Québec City] Institutional research plan: CEZ:AV0Z50040507 Keywords : prostate cancer * tubulin * tyrosination/detyrosination cycle Subject RIV: BO - Biophysics

  20. Fodrin in centrosomes: implication of a role of fodrin in the transport of gamma-tubulin complex in brain.

    Directory of Open Access Journals (Sweden)

    Sasidharan Shashikala

    Full Text Available Gamma-tubulin is the major protein involved in the nucleation of microtubules from centrosomes in eukaryotic cells. It is present in both cytoplasm and centrosome. However, before centrosome maturation prior to mitosis, gamma-tubulin concentration increases dramatically in the centrosome, the mechanism of which is not known. Earlier it was reported that cytoplasmic gamma-tubulin complex isolated from goat brain contains non-erythroid spectrin/fodrin. The major role of erythroid spectrin is to help in the membrane organisation and integrity. However, fodrin or non-erythroid spectrin has a distinct pattern of localisation in brain cells and evidently some special functions over its erythroid counterpart. In this study, we show that fodrin and γ-tubulin are present together in both the cytoplasm and centrosomes in all brain cells except differentiated neurons and astrocytes. Immunoprecipitation studies in purified centrosomes from brain tissue and brain cell lines confirm that fodrin and γ-tubulin interact with each other in centrosomes. Fodrin dissociates from centrosome just after the onset of mitosis, when the concentration of γ-tubulin attains a maximum at centrosomes. Further it is observed that the interaction between fodrin and γ-tubulin in the centrosome is dependent on actin as depolymerisation of microfilaments stops fodrin localization. Image analysis revealed that γ-tubulin concentration also decreased drastically in the centrosome under this condition. This indicates towards a role of fodrin as a regulatory transporter of γ-tubulin to the centrosomes for normal progression of mitosis.

  1. New potential peptide therapeutics perturbing CK1δ/α-tubulin interaction.

    Science.gov (United States)

    Krüger, Marc; Kalbacher, Hubert; Kastritis, Panagiotis L; Bischof, Joachim; Barth, Holger; Henne-Bruns, Doris; Vorgias, Constantinos; Sarno, Stefania; Pinna, Lorenzo A; Knippschild, Uwe

    2016-06-01

    Members of the CK1 family are highly conserved serine/threonine specific kinases being expressed in all eukaryotes. They are involved in many cellular processes and therefore tightly regulated. A central mechanism to modulate CK1 activity is via interaction with cellular proteins. CK1δ interacts with α-/β-tubulin and is involved in the regulation of microtubule dynamics. Therefore, it is important to identify the structural elements responsible for the interaction between these proteins. Using a peptide library covering the human CK1δ amino acid sequence in SPR and ELISA analyses, we identified peptide 39 (P39), encompassing aa361-aa375 of CK1δ, as a prominent binding partner of α-tubulin. P39 decreases α-tubulin phosphorylation by CK1δ and reduces the thermodynamic stability of α-tubulin in fluorescence thermal shift assays. Furthermore, P39 induces an inhibition of mitotic progression and a disruption of cells entering mitosis in CV-1 cells. Taken together our data provide valuable information regarding the interaction of CK1δ and α-tubulin and a novel approach for the development of pharmacological tools to inhibit proliferation of cancer cells. PMID:26996302

  2. The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities.

    Directory of Open Access Journals (Sweden)

    Saar Oz

    Full Text Available Microtubules (MTs, key cytoskeletal elements in living cells, are critical for axonal transport, synaptic transmission, and maintenance of neuronal morphology. NAP (NAPVSIPQ is a neuroprotective peptide derived from the essential activity-dependent neuroprotective protein (ADNP. In Alzheimer's disease models, NAP protects against tauopathy and cognitive decline. Here, we show that NAP treatment significantly affected the alpha tubulin tyrosination cycle in the neuronal differentiation model, rat pheochromocytoma (PC12 and in rat cortical astrocytes. The effect on tubulin tyrosination/detyrosination was coupled to increased MT network area (measured in PC12 cells, which is directly related to neurite outgrowth. Tubulin beta3, a marker for neurite outgrowth/neuronal differentiation significantly increased after NAP treatment. In rat cortical neurons, NAP doubled the area of dynamic MT invasion (Tyr-tubulin into the neuronal growth cone periphery. NAP was previously shown to protect against zinc-induced MT/neurite destruction and neuronal death, here, in PC12 cells, NAP treatment reversed zinc-decreased tau-tubulin-MT interaction and protected against death. NAP effects on the MT pool, coupled with increased tau engagement on compromised MTs imply an important role in neuronal plasticity, protecting against free tau accumulation leading to tauopathy. With tauopathy representing a major pathological hallmark in Alzheimer's disease and related disorders, the current findings provide a mechanistic basis for further development. NAP (davunetide is in phase 2/3 clinical trial in progressive supranuclear palsy, a disease presenting MT deficiency and tau pathology.

  3. FtsZ Protofilament Curvature Is the Opposite of Tubulin Rings.

    Science.gov (United States)

    Housman, Max; Milam, Sara L; Moore, Desmond A; Osawa, Masaki; Erickson, Harold P

    2016-07-26

    FtsZ protofilaments (pfs) form the bacterial cytokinetic Z ring. Previous work suggested that a conformational change from straight to curved pfs generated the constriction force. In the simplest model, the C-terminal membrane tether is on the outside of the curved pf, facing the membrane. Tubulin, a homologue of FtsZ, also forms pfs with a curved conformation. However, it is well-established that tubulin rings have the C terminus on the inside of the ring. Could FtsZ and tubulin rings have the opposite curvature? In this study, we explored the FtsZ curvature direction by fusing large protein tags to the FtsZ termini. Thin section electron microscopy showed that the C-terminal tag was on the outside, consistent with the bending pf model. This has interesting implications for the evolution of tubulin. Tubulin likely began with the curvature of FtsZ, but evolution managed to reverse direction to produce outward-curving rings, which are useful for pulling chromosomes. PMID:27368355

  4. Sequencing of the β-tubulin genes in the ascarid nematodes Parascaris equorum and Ascaridia galli.

    Science.gov (United States)

    Tydén, E; Engström, A; Morrison, D A; Höglund, J

    2013-07-01

    Benzimidazoles (BZ) are used to control infections of the equine roundworm Parascaris equorum and the poultry roundworm Ascaridia galli. There are still no reports of anthelmintic resistance (AR) to BZ in these two nematodes, although AR to BZ is widespread in several other veterinary parasites. Several single nucleotide polymorphisms (SNP) in the β-tubulin genes have been associated with BZ-resistance. In the present study we have sequenced β-tubulin genes: isotype 1 and isotype 2 of P. equorum and isotype 1 of A. galli. Phylogenetic analysis of all currently known isotypes showed that the Nematoda has more diversity among the β-tubulin genes than the Vertebrata. In addition, this diversity is arranged in a more complex pattern of isotypes. Phylogenetically, the A. galli sequence and one of the P. equorum sequences clustered with the known Ascaridoidea isotype 1 sequences, while the other P. equorum sequence did not cluster with any other β-tubulin sequences. We therefore conclude that this is a previously unreported isotype 2. The β-tubulin gene sequences were used to develop a PCR for genotyping SNP in codons 167, 198 and 200. No SNP was observed despite sequencing 95 and 100 individual adult worms of P. equorum and A. galli, respectively. Given the diversity of isotype patterns among nematodes, it is likely that associations of genetic data with BZ-resistance cannot be generalised from one taxonomic group to another. PMID:23685342

  5. Novel Suicide Ligands of Tubulin Arrest Cancer Cells in S-Phase

    Directory of Open Access Journals (Sweden)

    Ashley Davis

    1999-12-01

    Full Text Available It is presently accepted that the mechanism of action for all anti-tumor tubulin ligands involves the perturbation of microtubule dynamics during the G2/M phase of cell division and subsequent entry into apoptosis 1]. In this report, we challenge the established dogma by describing a unique mechanism of action caused by a novel series of tubulin ligands, halogenated derivatives of acetamido benzoyl ethyl ester. We have developed a suicide ligand for tubulin, which covalently attaches to the target and shows potent cancericidal activity in tissue culture assays and in animal tumor models. These compounds target early S-phase at the G1/S transition rather than the G2/M phase and mitotic arrest. Bcl-2 phosphorylation, a marker of mitotic microtubule inhibition by other tubulin ligands was dramatically altered, phosphorylation was rapid and biphasic rather than a slow linear event. The halogenated ethyl ester series of derivatives thus constitute a unique set of tubulin ligands which induce a novel mechanism of apoptosis.

  6. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation.

    Directory of Open Access Journals (Sweden)

    Jachen A Solinger

    2010-01-01

    Full Text Available Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3 and in a scaffold subunit (Elp1 have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.

  7. A Proteolytic Cascade Controls Lysosome Rupture and Necrotic Cell Death Mediated by Lysosome-Destabilizing Adjuvants

    OpenAIRE

    Jürgen Brojatsch; Heriberto Lima; Alak K Kar; Jacobson, Lee S.; Stefan M Muehlbauer; Kartik Chandran; Felipe Diaz-Griffero

    2014-01-01

    Recent studies have linked necrotic cell death and proteolysis of inflammatory proteins to the adaptive immune response mediated by the lysosome-destabilizing adjuvants, alum and Leu-Leu-OMe (LLOMe). However, the mechanism by which lysosome-destabilizing agents trigger necrosis and proteolysis of inflammatory proteins is poorly understood. The proteasome is a cellular complex that has been shown to regulate both necrotic cell death and proteolysis of inflammatory proteins. We found that the p...

  8. Biochemical characterization and molecular dynamic simulation of β-sitosterol as a tubulin-binding anticancer agent.

    Science.gov (United States)

    Mahaddalkar, Tejashree; Suri, Charu; Naik, Pradeep Kumar; Lopus, Manu

    2015-08-01

    Βeta-sitosterol (β-SITO), a phytosterol present in pomegranate, peanut, corn oil, almond, and avocado, has been recognized to offer health benefits and potential clinical uses. β-SITO is orally bioavailable and, as a constituent of edible natural products, is considered to have no undesired side effects. It has also been considered as a potent anticancer agent. However, the molecular mechanism of action of β-SITO as a tubulin-binding anticancer agent and its binding site on tubulin are poorly understood. Using a combination of biochemical analyses and molecular dynamic simulation, we investigated the molecular details of the binding interactions of β-SITO with tubulin. A polymer mass assay comparing the effects of β-SITO and of taxol and vinblastine on tubulin assembly showed that this phytosterol stabilized microtubule assembly in a manner similar to taxol. An 8-anilino-1-naphthalenesulfonic acid assay confirmed the direct interaction of β-SITO with tubulin. Although β-SITO did not show direct binding to the colchicine site on tubulin, it stabilized the colchicine binding. Interestingly, no sulfhydryl groups of tubulin were involved in the binding interaction of β-SITO with tubulin. Based on the results from the biochemical assays, we computationally modeled the binding of β-SITO with tubulin. Using molecular docking followed by molecular dynamic simulations, we found that β-SITO binds tubulin at a novel site (which we call the 'SITO site') adjacent to the colchicine and noscapine sites. Our data suggest that β-SITO is a potent anticancer compound that interferes with microtubule assembly dynamics by binding to a novel site on tubulin. PMID:25912799

  9. Crystallization and preliminary X-ray analysis of tubulin-folding cofactor A from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Tubulin-folding cofactor A from A. thaliana has been crystallized and preliminarily analyzed using X-ray diffraction. Tubulin-folding cofactor A (TFC A) is a molecular post-chaperonin that is involved in the β-tubulin-folding pathway. It has been identified in many organisms including yeasts, humans and plants. In this work, Arabidopsis thaliana TFC A was expressed in Escherichia coli and purified to homogeneity. After thrombin cleavage, a well diffracting crystal was obtained by the sitting-drop vapour-diffusion method at 289 K. The crystal diffracted to 1.6 Å resolution using synchrotron radiation and belonged to space group I41, with unit-cell parameters a = 55.0, b = 55.0, c = 67.4 Å

  10. Significance of β-tubulin Expression in Breast Premalignant Lesions and Carcinomas

    Institute of Scientific and Technical Information of China (English)

    Yuxia Gao; Yun Niu; Xiumin Ding; Yong Yu

    2008-01-01

    OBJECTIVE To explore the expression of β-tubulin in premalignant lesions and carcinomas of the breast, and to observe the relationship of its expression with breast cancer pathological features.METHODS The expression of β-tubulin was detected immunohistochemically in 50 specimens of premalignant lesions of the breast (ADH and Peri-PM with ADH), 50 specimens of breast in situ ductal carcinomas (DCIS), and 50 specimens of invasive ductal carcinomas (IDC). Thirty specimens of normal breast tissues served as a control group.RESULTS Immunohistochemical analysis showed that: the differences among the 4 groups (normal breast tissues, breast premalignant lesions, DCIS and IDC, P < 0.05) were significant,and there were also statistically significant differences between any 2 groups (P < 0.05) except for the β-tubulin positive expression comparing DCIS versus IDC (P > 0.05). In addition, β-tubulin was expressed at a higher level in Peri-PM with ADH compared to ADH (P < 0.05). Following the degree of breast epithelial hyperplasia involved, and its development into carcinoma, the β-tubulin positive expression displayed an elevating tendency.We also found a significant positive relationship of β-tubulin expression with lymph node metastasis (P < 0.05), but no significant correlation with histological grading and nuclear grade.CONCLUSION Centrosome defects may be an early event in the development of breast cancer and they can also promote tumor progression. Studies of aberrations of centrosomal proteins provide a new way to explore the mechanism of breast tumorigenesis.

  11. Synthesis of triazoloquinazolinone based compounds as tubulin polymerization inhibitors and vascular disrupting agents.

    Science.gov (United States)

    Driowya, Mohsine; Leclercq, Julien; Verones, Valerie; Barczyk, Amélie; Lecoeur, Marie; Renault, Nicolas; Flouquet, Nathalie; Ghinet, Alina; Berthelot, Pascal; Lebegue, Nicolas

    2016-06-10

    A series of 1-phenyl-[1,2,4]triazolo[4,3-a]quinazolin-5-ones designed as conformationally restricted CA-4 analogues, were tested for their tubulin polymerization and growth inhibitory activities. The 3-hydroxy-4-methoxy derivatives 11d and 12d are potent inhibitors of tubulin assembly but only the N-methylated amid counterpart 12d possesses potent anticancer activity in a large panel of cancer cell lines. Upon treatment with compound 12d, remarkable cell shape changes as cell migration and tube formation were elicited in HUVECs, consistent with vasculature damaging activity. PMID:27031215

  12. Molecular Modeling of the Axial and Circumferential Elastic Moduli of Tubulin

    OpenAIRE

    Zeiger, A. S.; Layton, B. E.

    2008-01-01

    Microtubules play a number of important mechanical roles in almost all cell types in nearly all major phylogenetic trees. We have used a molecular mechanics approach to perform tensile tests on individual tubulin monomers and determined values for the axial and circumferential moduli for all currently known complete sequences. The axial elastic moduli, in vacuo, were found to be 1.25 GPa and 1.34 GPa for α- and β-bovine tubulin monomers. In the circumferential direction, these moduli were 378...

  13. Identification of microtubular structures in diverse plant and animal cells by immunological cross-reaction revealed in immunofluorescence microscopy using antibodies against tubulin from porcine brain

    OpenAIRE

    Weber, Klaus; Osborn, Mary; Franke, Werner W.; Seib, Erinita; Scheer, Ulrich; Herth, Werner

    2010-01-01

    Antibody against tubulin from porcine brain was used to evaluate the immunological cross reactivity of tubulin from a variety of animal and plant cells. Indirect immunofluorescence microscopy revealed microtubule-containing structures including cytoplasmic microtubules, spindle microtubules, cilia and fIagella. Thus tubulin from diverse species of both mammals and plants show immunological cross-reactivity with tubulin from porcine brain. Results obtained by immunofluorescence microscopy are ...

  14. Effect of visual experience on tubulin synthesis during a critical period of visual cortex development in the hooded rat.

    Science.gov (United States)

    Cronly-Dillon, J; Perry, G W

    1979-08-01

    1. In some species, restriction of visual experience in early life may affect normal functional development of visual cortical cells. The purpose of the present study was to determine if visual deprivation during post-natal development in the hooded rat also affects the production in brain cells of certain molecular components such as tubulin, that are needed for growth and maintenance of synapses and neurites. 2. Norwegian black hooded rats were reared under a variety of conditions of visual deprivation. At various stages of development the animals were killed and the rate of synthesis of tubulin in visual and motor cortex determined. Tritiated colchicine was used to assay tubulin and L-[14C]leucine injected into the brain ventricles 2 hr before death was used to measure rate of tubulin synthesis. 3. In rats reared in normal light there is a marked elevation in visual cortex tubulin synthesis that spans the period from eye-opening (13 days) until approximately 35 days. This elevation in tubulin synthesis is absent in animals reared in darkness from birth or deprived of pattern vision by eyelid suture. Also the effect of visual deprivation on tubulin synthesis was specifically confined to visual cortex and was not found for the motor cortex. Similarly, the incorporation of L-[14C]leucine into total protein in visual cortex was unaffected by dark rearing. Hence the stimulation of tubulin synthesis by visual experience in rat visual cortex is not attributable to a general non-specific stimulation of protein synthesis. 4. Rats that were dark-reared from birth and then exposed to a lighted environment for 24 hr during a certain critical period that extends from eye-opening (13 days) until approximately 35 days, displayed a significant increase in visual cortex tubulin rats that were brought into the light later than 35 days showed no significant increase in tubulin synthesis when compared with their continuously dark-rearer controls. 5. It is suggested that the number

  15. (-)-Rhazinilam and the diphenylpyridazinone NSC 613241: Two compounds inducing the formation of morphologically similar tubulin spirals but binding apparently to two distinct sites on tubulin.

    Science.gov (United States)

    Bai, Ruoli; Hamel, Ernest

    2016-08-15

    The most potent microtubule assembly inhibitor of newer diphenylpyridazinone derivatives examined was NSC 613241. Because NSC 613241 and (-)-rhazinilam also induce the formation of similar 2-filament spirals, these aberrant reactions were compared. Spiral formation with both compounds was enhanced by GTP and inhibited by GDP and by 15 other inhibitors of microtubule assembly. Similarly, microtubule assembly induced by paclitaxel or laulimalide is enhanced by GTP and inhibited by GDP and assembly inhibitors, but neither [(3)H]NSC 613241 nor [(3)H](-)-rhazinilam bound to microtubules or inhibited the binding of [(3)H]paclitaxel or [(3)H]peloruside A to microtubules. Differences in the pitch of aberrant polymers were found: NSC 613241-induced and (-)-rhazinilam-induced spirals had average repeats of 85 and 79-80 nm, respectively. We found no binding of [(3)H]NSC 613241 or [(3)H](-)-rhazinilam to αβ-tubulin dimer, but both compounds were incorporated into the polymers they induced in substoichiometric reactions, with as little as 0.1-0.2 mol compound/mol of tubulin, and no cross-inhibition by NSC 613241 or (-)-rhazinilam into spirals occurred. Under reaction conditions where neither compound induced spiral formation, both compounds together synergistically induced substantial spiral formation. We conclude that (-)-rhazinilam and NSC 613241 bind to different sites on tubulin that differ from binding sites for other antitubulin agents. PMID:27311615

  16. Pattern destabilization and emotional processing in cognitive therapy for personality disorders

    Science.gov (United States)

    Hayes, Adele M.; Yasinski, Carly

    2015-01-01

    Clinical trials of treatments for personality disorders can provide a medium for studying the process of therapeutic change with particularly entrenched and self-perpetuating systems and might reveal important principles of system transition. We examined the extent to which maladaptive personality patterns were destabilized in a trial of cognitive therapy personality disorders (CT-PD) and how destabilization was associated with emotional processing and treatment outcomes. Dynamic systems theory was used as a theoretical framework for studying change. Method: Participants were 27 patients diagnosed with Avoidant or Obsessive Compulsive Personality Disorder (AVPD or OCPD), who completed an open trial of CT-PD. Raters coded treatment sessions using a coding system that operationalizes emotional processing, as well as cognitive, affective, behavioral, and somatic components of pathological (negative) and more adaptive (positive) patterns of functioning. Pattern destabilization (dispersion) scores during the early phase of treatment (phase 1: session 1–10) and the schema-focused phase (phase 2: session 11–34) were calculated using a program called GridWare. Results: More pattern destabilization and emotional processing in the schema-focused phase of CT-PD predicted more improvement in personality disorder symptoms and positive pattern strength at the end of treatment, whereas these variables in phase 1 did not predict outcome. Conclusion: In addition to illustrating a quantitative method for studying destabilization and change of patterns of psychopathology, we present findings that are consistent with recent updates of emotional processing theory and with principles from dynamic systems theory. PMID:25755647

  17. Pattern destabilization and emotional processing in cognitive therapy for personality disorders

    Directory of Open Access Journals (Sweden)

    Adele M. Hayes

    2015-02-01

    Full Text Available Clinical trials of treatments for personality disorders can provide a medium for studying the process of therapeutic change with particularly entrenched and self-perpetuating systems and might reveal important principles of system transition. We examined the extent to which maladaptive personality patterns were destabilized in a trial of cognitive therapy personality disorders (CT-PD and how destabilization was associated with emotional processing and treatment outcomes. Dynamic systems theory was used as a theoretical framework for studying change. Method: Participants were 27 patients diagnosed with Avoidant or Obsessive Compulsive Personality Disorder, who completed an open trial of CT-PD. Raters coded treatment sessions using a coding system that operationalizes emotional processing, as well as cognitive, affective, behavioral, and somatic components of pathological (negative and more adaptive (positive patterns of functioning. Pattern destabilization (dispersion scores during the early phase of treatment (phase 1: session 1-10 and the schema-focused phase (phase 2: session 11-34 were calculated using a program called GridWare. Results: More pattern destabilization and emotional processing in the schema-focused phase of CT-PD predicted more improvement in personality disorder symptoms and positive pattern strength at the end of treatment, whereas these variables in phase 1 did not predict outcome. Conclusions: In addition to illustrating a quantitative method for studying destabilization and change of patterns of psychopathology, we present findings that are consistent with recent updates of emotional processing theory and with principles from dynamic systems theory.

  18. Lymphocytes with cytotoxic activity induce rapid microtubule axonal destabilization independently and before signs of neuronal death

    Directory of Open Access Journals (Sweden)

    Arundhati Jana

    2013-02-01

    Full Text Available MS (multiple sclerosis is the most prevalent autoimmune disease of the CNS (central nervous system historically characterized as an inflammatory and demyelinating disease. More recently, extensive neuronal pathology has lead to its classification as a neurodegenerative disease as well. While the immune system initiates the autoimmune response it remains unclear how it orchestrates neuronal damage. In our previous studies, using in vitro cultured embryonic neurons, we demonstrated that MBP (myelin basic protein-specific encephalitogenic CD4 T-cells induce early neuronal damage. In an extension of those studies, here we show that polarized CD4 Th1 and Th17 cells as wells as CD8 T-cells and NK (natural killer cells induce microtubule destabilization within neurites in a contact-independent manner. Owing to the cytotoxic potential of these immune cells, we isolated the luminal components of lytic granules and determined that they were sufficient to drive microtubule destabilization. Since lytic granules contain cytolytic proteins, we determined that the induction of microtubule destabilization occurred prior to signs of apoptosis. Furthermore, we determined that microtubule destabilization was largely restricted to axons, sparing dendrites. This study demonstrated that lymphocytes with cytolytic activity have the capacity to directly drive MAD (microtubule axonal destabilization in a bystander manner that is independent of neuronal death.

  19. Analysis of the binding mode of laulimalide to microtubules: Establishing a laulimalide-tubulin pharmacophore.

    Science.gov (United States)

    Churchill, Cassandra D M; Klobukowski, Mariusz; Tuszynski, Jack A

    2016-07-01

    Laulimalide (LA) is a microtubule-stabilizing agent, currently in preclinical studies. However, studying the binding of this species and successfully synthesizing potent analogues have been challenging. The LA binding site is located between tubulin protofilaments, and therefore LA is in contact with two adjacent [Formula: see text]-tubulin units. Here, an improved model of the binding mode of LA in microtubules is presented, using the newly available crystal structure pose and an extended tubulin heterodimer complex, as well as molecular dynamics simulations. With this model, a series of LA analogues developed by Mooberry and coworkers are also analyzed in order to establish important pharmacophores in LA binding and cytotoxicity. In the side chain, [Formula: see text]-[Formula: see text] interactions are important contributors to LA binding, as are water-mediated hydrogen bonds. An intramolecular hydrogen bond is correlated with high cytotoxicity, and is dependent on macrocycle conformation. Therefore, while the epoxide and olefin groups in the macrocycle do not engage in specific interactions with the protein, they are essential contributions to an active macrocycle conformation, and therefore potency. Calculations reveal that a balance in binding affinity is important for LA activity, where the more potent compounds have larger interactions with the adjacent tubulin unit than the less-active analogs. Several modifications are suggested for the rational design of LA analogues that should not disrupt the active macrocycle conformation. PMID:26230757

  20. Phylogenetic analysis of Penicillium subgenus Penicillium using partial P-tubulin sequences

    DEFF Research Database (Denmark)

    Samson, R.A.; Seifert, K.A.; Kuijpers, A.F.A.; Houbraken, J.A.M.P.; Frisvad, Jens Christian

    2004-01-01

    Partial beta-tubulin sequences were determined for 180 strains representing all accepted species of Penicillium subgenus Penicillium. The overall phylogenctic structure of the subgenus was determined by a parsimony analysis with each species represented by its type (or other reliably identified) ...

  1. Recovery of tubulin functions after freeze-drying in the presence of trehalose

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym

    Praha: ÚMG AV ČR, Československá biologická společnost, 2010. [Cytoskeletal Club /18./. 05.05.10-07.05.10, Vranovská ves] Institutional research plan: CEZ:AV0Z50520514 Keywords : tubulin * freeze - drying * stability Subject RIV: EB - Genetics ; Molecular Biology

  2. Recovery of tubulin functions after freeze-dying in the presence of trehalose

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; Sulimenko, Vadym; Sulimenko, Tetyana; Böhm, K. J.; Dráber, Pavel

    2010-01-01

    Roč. 397, č. 1 (2010), s. 67-72. ISSN 0003-2697 R&D Projects: GA AV ČR KAN200520701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : Tubulin * Freeze - drying * Stability Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.236, year: 2010

  3. Tubulin dipole moment, dielectric constant and quantum behavior: computer simulations, experimental results and suggestions

    CERN Document Server

    Mershin, A; Schüssler, H A; Nanopoulos, Dimitri V; Mershin, Andreas; Kolomenski, Alexandre A.; Schuessler, Hans A.; Nanopoulos, Dimitri V.

    2004-01-01

    We used computer simulation to calculate the electric dipole moments of the alpha and beta tubulin monomers and dimer and found those to be |palpha|=552D, |pbeta|=1193D and |palpha-beta|=1740D respectively. Independent surface plasmon resonance (SPR) and refractometry measurements of the high-frequency dielectric constant and polarizability strongly corroborated our previous SPR-derived results giving delta-n/delta-c ~1.800x10^-3 ml/mg. The refractive index of tubulin was measured to be n_tub ~2.90 and the high frequency tubulin dielectric constant kappa_tub ~8.41 while the high-frequency polarizability was found to be alpha_tub ~ 2.1x10^-33 C m^2/V. Methods for the experimental determination of the low-frequency p are explored as well as ways to test the often conjectured quantum coherence and entanglement properties of tubulin. Biobits, bioqubits and other applications to bioelectronics are discussed.

  4. Evidence for the presence of gamma-tubulin in the nucleolus

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Barbora; Marková, Vladimíra; Vinopal, Stanislav; Richterová, Věra; Dráberová, Eduarda; Sulimenko, Vadym; Philimonenko, Anatoly; Hozák, Pavel; Katsetos, C.D.; Dráber, Pavel

    San Francisko : The American Society for Cell Biology, 2008. ---. [The American Society for Cell Biology, Annual Meeting/48/. 13.12.2088-17.12.2008, San Francisko] R&D Projects: GA AV ČR KAN200520701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : gamma-tubulin * nucleolus Subject RIV: EB - Genetics ; Molecular Biology

  5. Targeting beta III-tubulin in glioblastoma multiforme: from cell biology and histopathology to cancer therapeutics

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Dráber, Pavel; Kavallaris, M.

    2011-01-01

    Roč. 11, č. 8 (2011), s. 719-728. ISSN 1871-5206 R&D Projects: GA ČR GAP302/10/1759 Institutional research plan: CEZ:AV0Z50520514 Keywords : glioblastoma multiforme * tubulin binding agent * epothilones Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.862, year: 2011

  6. Antibody formation against beta-tubulin class III in response to brain trauma

    Czech Academy of Sciences Publication Activity Database

    Škoda, D.; Kranda, K.; Bojar, M.; Glosová, L.; Bäurle, J.; Kenney, Jana; Romportl, D.; Pelichovská, M.; Cvachovec, K.

    2006-01-01

    Roč. 68, č. 4 (2006), s. 213-216. ISSN 0361-9230 R&D Projects: GA MZd(CZ) NR8114 Institutional research plan: CEZ:AV0Z5011922 Keywords : autoantibodies * beta–tubulin * brain injury Subject RIV: FH - Neurology Impact factor: 1.684, year: 2006

  7. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    Science.gov (United States)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  8. Destabilization of low-n peeling modes by trapped energetic particles

    International Nuclear Information System (INIS)

    The kinetic effect of trapped energetic particles (EPs), arising from perpendicular neutral beam injection, on the stable low-n peeling modes in tokamak plasmas is investigated, through numerical solution of the mode's dispersion relation derived from an energy principle. A resistive-wall peeling mode with m/n=6/1, with m and n being the poloidal and toroidal mode numbers, respectively, is destabilized by trapped EPs as the EPs' pressure exceeds a critical value βc*, which is sensitive to the pitch angle of trapped EPs. The dependence of βc* on the particle pitch angle is eventually determined by the bounce average of the mode eigenfunction. Peeling modes with higher m and n numbers can also be destabilized by trapped EPs. Depending on the wall distance, either a resistive-wall peeling mode or an ideal-kink peeling mode can be destabilized by EPs

  9. Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks

    International Nuclear Information System (INIS)

    An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles

  10. GTP binding to the β-subunit of tubulin is greatly reduced in Alzheimers disease

    International Nuclear Information System (INIS)

    A decrease occurs (80-100%) in the [32P]8N3GTP photoinsertion into a cytosolic protein (55K M/sub r/) of Alzheimer's (AD) brain, tentatively identified as the β-subunit of tubulin (co-migration with purified tubulin, concentration dependence of interaction with GTP, ATP and their 8-azido photoprobes, and similar effects of Ca2+ and EDTA on photoinsertion). This agrees with prior observations of [32P]8N3GTP interactions with brain tubulin and a recent report on faulty microtubular assembly in AD brain. The decrease in [32P]8N3GTP photoinsertion into the 55K M/sub r/ protein of AD brain was in contrast with other photolabeled proteins, which remained at equal levels in AD and age-matched normal brain tissues. The 55K and 45K M/sub r/ were the two major [32P]8N3GTP photoinsertion species in non-AD brain. Of 5 AD brains, the photoinsertion of [32P]8N3GTP into the 55K M/sub r/ region was low or absent in 4 (55K/45K=0.1); one was 75% below normals (55K/45K=0.24). Total protein migrating at 55K M/sub r/ was similar in AD and controls. AD brain tubulin, while present, has its exchangeable GTP binding site on β-tubulin blocked/modified such that [32P]8N3GTP cannot interact normally with this site

  11. A new method for fibrous protein analysis illustrated by application to tubulin microtubule polymerisation and depolymerisation.

    Science.gov (United States)

    Marrington, Rachel; Seymour, Mark; Rodger, Alison

    2006-09-01

    A thermostatted micro volume Couette cell has been designed to enable linear dichroism (LD) data to be collected at a range of temperatures. The cell is a development of the traditional Couette flow LD cell and includes the recent development of micro-volume LD (20-40 microL) coupled with the addition of a heating element, temperature probe and controller. This new micro volume Couette LD cell opens the way not only to the LD analysis of systems where sample volume is critical, but also for the LD analysis of temperature sensitive samples. The polymerization of the microtubule protein tubulin has been followed in a range of different conditions using the thermostatted micro volume Couette LD cell. The focusing lenses on the cell, which are required for the microvolume cell, have the side benefit of significantly reducing the light-scattering artifacts caused by the large size of tubulin microtubules. It is now possible to monitor real-time polymerization and depolymerization kinetics, and any structural rearrangements of chromophores within the polymer. In the case of tubulin, the LD spectra revealed a greater change in the orientation of tryptophan residues at approximately 290 nm during polymerization compared to other contributing chromophores-guanine, phenylalanine, and tyrosine. The improvements in instrumental design have also allowed LD spectra of tubulin to be collected down to approximately 230 nm (previous data have only been available from the near UV region), which means that some indication of protein backbone-orientation changes are now available. It was observed during this work that apparent LD intensity maxima are in fact artifacts when the high-tension voltage is high. The onset of such artifacts has been observed at much lower voltages with light-scattering fibrous proteins (including tubulin) than with nonscattering samples. Therefore, caution must be used when interpreting LD data collected with medium to high photomultiplier tube voltages

  12. GTP binding to the. beta. -subunit of tubulin is greatly reduced in Alzheimers disease

    Energy Technology Data Exchange (ETDEWEB)

    Khatoon, S.; Slevin, J.T.; Haley, B.E.

    1987-05-01

    A decrease occurs (80-100%) in the (/sup 32/P)8N/sub 3/GTP photoinsertion into a cytosolic protein (55K M/sub r/) of Alzheimer's (AD) brain, tentatively identified as the ..beta..-subunit of tubulin (co-migration with purified tubulin, concentration dependence of interaction with GTP, ATP and their 8-azido photoprobes, and similar effects of Ca/sup 2 +/ and EDTA on photoinsertion). This agrees with prior observations of (/sup 32/P)8N/sub 3/GTP interactions with brain tubulin and a recent report on faulty microtubular assembly in AD brain. The decrease in (/sup 32/P)8N/sub 3/GTP photoinsertion into the 55K M/sub r/ protein of AD brain was in contrast with other photolabeled proteins, which remained at equal levels in AD and age-matched normal brain tissues. The 55K and 45K M/sub r/ were the two major (/sup 32/P)8N/sub 3/GTP photoinsertion species in non-AD brain. Of 5 AD brains, the photoinsertion of (/sup 32/P)8N/sub 3/GTP into the 55K M/sub r/ region was low or absent in 4 (55K/45K=0.1); one was 75% below normals (55K/45K=0.24). Total protein migrating at 55K M/sub r/ was similar in AD and controls. AD brain tubulin, while present, has its exchangeable GTP binding site on ..beta..-tubulin blocked/modified such that (/sup 32/P)8N/sub 3/GTP cannot interact normally with this site.

  13. Molecular Basis for the Cu2+ Binding-Induced Destabilization of β2-Microglobulin Revealed by Molecular Dynamics Simulation

    OpenAIRE

    Deng, Nan-Jie; Yan, Lisa; Singh, Deepak; Cieplak, Piotr

    2006-01-01

    According to experimental data, binding of the Cu2+ ions destabilizes the native state of β2-microglobulin (β2m). The partial unfolding of the protein was generally considered an early step toward fibril formation in dialysis-related amyloidosis. Recent NMR studies have suggested that the destabilization of the protein might be achieved through increased flexibility upon Cu2+ binding. However, the molecular mechanism of destabilization due to Cu2+, its role in amyloid formation, and the relat...

  14. Drosophila Stathmin: A Microtubule-destabilizing Factor Involved in Nervous System Formation

    OpenAIRE

    Ozon, Sylvie; Guichet, Antoine; Gavet, Olivier; Roth, Siegfried; Sobel, André

    2002-01-01

    Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoprot...

  15. Active-site alkylation destabilizes human O6-alkylguanine DNA alkyltransferase

    OpenAIRE

    Rasimas, Joseph J.; Dalessio, Paula A.; Ropson, Ira J; Pegg, Anthony E.; Fried, Michael G.

    2004-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) repairs pro-mutagenic O6-alkylguanine and O4-alkylthymine lesions in DNA. The alkylated form of the protein is not reactivated; instead, it is rapidly ubiquitinated and degraded. Here, we show that alkylation destabilizes the native fold of the protein by 0.5–1.2 kcal/mole and the DNA-binding function by 0.8–1.4 kcal/mole. On this basis, we propose that destabilization of the native conformational ensemble acts as a signal for ubiquitination.

  16. Destabilization of fast particle stabilized sawteeth in ASDEX Upgrade with electron cyclotron current drive

    DEFF Research Database (Denmark)

    Igochine, V.; Chapman, I.T.; Bobkov, V.; Günter, S.; Maraschek, M.; Moseev, Dmitry; Pereversev, G.; Reich, M.; Stober, J.

    2011-01-01

    It is often observed that large sawteeth trigger the neoclassical tearing mode well below the usual threshold for this instability. At the same time, fast particles in the plasma core stabilize sawteeth and provide these large crashes. The paper presents results of first experiments in ASDEX...... Upgrade for destabilization of fast particle stabilized sawteeth with electron cyclotron current drive (ECCD). It is shown that moderate ECCD from a single gyrotron is able to destabilize the fast particle stabilized sawteeth. A reduction in sawtooth period by about 40% was achieved in first experiments...

  17. Destabilization of hydromagnetic drift-Alfven waves in a finite pressure, collisional plasma

    International Nuclear Information System (INIS)

    The hydromagnetic drift mode of the coupled drift-Alfven wave is destabilized as a standing wave in a dense, current-free plasma in the presence of a density gradient. When an axial electron current is drawn, a localized Alfven mode propagating against the current is destabilized, in addition to the unstable drift mode now propagating along the current. The measured wave properties, dispersion, and dependence on plasma parameters are found to agree with the theory derived for a finite β, collisional plasma

  18. Biphasic regulation by dibutyryl cyclic AMP of tubulin and actin mRNA levels in neuroblastoma cells.

    OpenAIRE

    Ginzburg, I.; Rybak, S.; Kimhi, Y; Littauer, U. Z.

    1983-01-01

    Blot hybridization analysis that used labeled tubulin cDNA probes revealed that N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate [dibutyryl cyclic AMP (Bt2cAMP)] initially increases and later decreases the level of tubulin mRNA in a neuroblastoma-glioma hybrid cell line as well as in the parent cells. A significant increase in tubulin mRNA sequences is already evident 1 hr after the addition of Bt2cAMP to the neuroblastoma cells, and a maximal induction of 2-fold is seen after 12 hr. Cont...

  19. Design, Synthesis and Biological Evaluation of 1,4-Disubstituted-3,4-dihydroisoquinoline Compounds as New Tubulin Polymerization Inhibitors

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2015-05-01

    Full Text Available A series of 1,4-disubstituted-3,4-dihydroisoquinoline derivatives designed as tubulin polymerization inhibitors were synthesized. Their cytotoxic activities against the CEM leukemia cell line were evaluated. Most of them displayed moderate cytotoxic activities, and compounds 21 and 32 showed good activities with IC50 of 4.10 and 0.64 μM, respectively. The most potent compound 32 was further confirmed to be able to inhibit tubulin polymerization, and its hypothetical binding mode with tubulin was obtained by molecular docking.

  20. RASSF1A Suppresses Cell Migration through Inactivation of HDAC6 and Increase of Acetylated α-Tubulin

    OpenAIRE

    Jung, Hae-Yun; Jung, Jun Seok; Whang, Young Mi; Kim, Yeul Hong

    2013-01-01

    Purpose The RAS association domain family protein 1 (RASSF1) has been implicated in a tumor-suppressive function through the induction of acetylated α-tubulin and modulation of cell migration. However, the mechanisms of how RASSF1A is associated with acetylation of α-tubulin for controlling cell migration have not yet been elucidated. In this study, we found that RASSF1A regulated cell migration through the regulation of histon deacetylase 6 (HDAC6), which functions as a tubulin deacetylase. ...

  1. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates

    Institute of Scientific and Technical Information of China (English)

    JIANG Ganqing; SHI Xiaoying; ZHANG Shihong

    2006-01-01

    Methane hydrates constitute the largest pool of readily exchangeable carbon at the Earth's sedimentary carapace and may destabilize, in some cases catastrophically, during times of global-scale warming and/or sea level changes. Given the extreme cold during Neoproterozoic ice ages, the aftermath of such events is perhaps amongst the most likely intervals in Earth history to witness a methane hydrate destabilization event. The coincidence of localized but widespread methane seep-like structures and textures, methane-derived isotopic signal,low sulfate concentration, marine barites, and a prominent, short-lived carbon isotope excursion (δ13C≤-5‰) from the post-Marinoan cap carbonates (~635 Ma) provides strong evidence for a methane hydrate destabilization event during the late Neoproterozoic postglacial warming and transgression. Methane release from hydrates could cause a positive feedback to global warming and oxidation of methane could result in ocean anoxia and fluctuation of atmospheric oxygen, providing an environmental force for the early animal evolution in the latest Neoproterozoic. The issues that remain to be clarified for this event include the trigger of methane hydrate destabilization, the time of initial methane release, the predicted ocean anoxia event and its relationship with the biological innovation, additional geochemical signals in response to methane release, and the regional and global synchrony of cap carbonate precipitation. The Doushantuo cap carbonate in South China provides one of the best examples of its age for a better understanding of these issues.

  2. Partial Unfolding of Tubulin Heterodimers Induced by Two-Photon Excitation of Bound meso-Tetrakis(sulfonatophenyl)porphyrin.

    Science.gov (United States)

    McMicken, Brady; Thomas, Robert J; Brancaleon, Lorenzo

    2016-04-21

    The water-soluble porphyrin meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) can be noncovalently bound to tubulin and used as a photosensitizer, which upon irradiation triggers photochemical reactions that lead to conformational changes of the protein. These conformational changes in turn inhibit tubulin's primary function of polymerizing into microtubules. We explored the possibility of using two-photon excitation of the bound porphyrin to induce photosensitized protein unfolding. Although TSPP has a relatively low cross section (∼30 GM) our results did find that two-photon excitation of the ligand causes partial unfolding of the tubulin host and the inhibition of the in vitro formation of microtubules. Conversely, irradiating tubulin alone caused no such effects despite the large irradiance per pulse (97-190 GW/cm(2)). The conformational changes were characterized using spectroscopic studies and provide a promising protocol for the future application of non-native photosensitization of proteins. PMID:27035156

  3. Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze

    Directory of Open Access Journals (Sweden)

    Kim Ryang

    2011-02-01

    Full Text Available Abstract Background Memory retrieval is not a passive process. Recent studies have shown that reactivated memory is destabilized and then restabilized through gene expression-dependent reconsolidation. Molecular studies on the regulation of memory stability after retrieval have focused almost exclusively on fear memory, especially on the restabilization process of the reactivated fear memory. We previously showed that, similarly with fear memories, reactivated spatial memory undergoes reconsolidation in the Morris water maze. However, the underlying molecular mechanisms by which reactivated spatial memory is destabilized and restabilized remain poorly understood. In this study, we investigated the molecular mechanism that regulates the stability of the reactivated spatial memory. Results We first showed that pharmacological inactivation of the N-methyl-D-aspartate glutamate receptor (NMDAR in the hippocampus or genetic inhibition of cAMP-responsible element binding protein (CREB-mediated transcription disrupted reactivated spatial memory. Finally, we showed that pharmacological inhibition of cannabinoid receptor 1 (CB1 and L-type voltage gated calcium channels (LVGCCs in the hippocampus blocked the disruption of the reactivated spatial memory by the inhibition of protein synthesis. Conclusions Our findings indicated that the reactivated spatial memory is destabilized through the activation of CB1 and LVGCCs and then restabilized through the activation of NMDAR- and CREB-mediated transcription. We also suggest that the reactivated spatial memory undergoes destabilization and restabilization in the hippocampus, through similar molecular processes as those for reactivated contextual fear memories, which require CB1 and LVGCCs for destabilization and NMDAR and CREB for restabilization.

  4. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  5. Identification of three coated vesicle components as alpha- and beta- tubulin linked to a phosphorylated 50,000-dalton polypeptide

    OpenAIRE

    1983-01-01

    Coated vesicles are involved in the intracellular transport of membrane proteins between a variety of membrane compartments. The coats of bovine brain coated vesicles contain at least six polypeptides in addition to an 180,000-dalton polypeptide called clathrin. In this report we show that the 54,000- and 56,000-dalton coated vesicle polypeptides are alpha- and beta-tubulin, determined by immunoblotting and two-dimensional gel electrophoresis. An affinity-purified tubulin antiserum can precip...

  6. Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance.

    Science.gov (United States)

    Aoyama, Aki; Katayama, Ryohei; Oh-Hara, Tomoko; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya

    2014-12-01

    Tivantinib (ARQ197) was first reported as a highly selective inhibitor of c-MET and is currently being investigated in a phase III clinical trial. However, as recently reported by us and another group, tivantinib showed cytotoxic activity independent of cellular c-MET status and also disrupted microtubule dynamics. To investigate if tivantinib exerts its cytotoxic activity by disrupting microtubules, we quantified polymerized tubulin in cells and xenograft tumors after tivantinib treatment. Consistent with our previous report, tivantinib reduced tubulin polymerization in cells and in mouse xenograft tumors in vivo. To determine if tivantinib directly binds to tubulin, we performed an in vitro competition assay. Tivantinib competitively inhibited colchicine but not vincristine or vinblastine binding to purified tubulin. These results imply that tivantinib directly binds to the colchicine binding site of tubulin. To predict the binding mode of tivantinib with tubulin, we performed computer simulation of the docking pose of tivantinib with tubulin using GOLD docking program. Computer simulation predicts tivantinib fitted into the colchicine binding pocket of tubulin without steric hindrance. Furthermore, tivantinib showed similar IC50 values against parental and multidrug-resistant cells. In contrast, other microtubule-targeting drugs, such as vincristine, paclitaxel, and colchicine, could not suppress the growth of cells overexpressing ABC transporters. Moreover, the expression level of ABC transporters did not correlate with the apoptosis-inducing ability of tivantinib different from other microtubule inhibitor. These results suggest that tivantinib can overcome ABC transporter-mediated multidrug-resistant tumor cells and is potentially useful against various tumors. PMID:25313010

  7. Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers

    CERN Document Server

    Schüssler, H A; Kolomenskij, A A; Nanopoulos, Dimitri V; Schuessler, Hans A.; Mershin, Andreas; Kolomenskii, Alexander A.

    2003-01-01

    Biosensors based on the principle of surface plasmon resonance (SPR) detection were used to measure biomolecular interactions in sarcomeres and changes of the dielectric constant of tubulin samples with varying concentration. At SPR, photons of laser light efficiently excite surface plasmons propagating along a metal (gold) film. This resonance manifests itself as a sharp minimum in the reflection of the incident laser light and occurs at a characteristic angle. The dependence of the SPR angle on the dielectric permittivity of the sample medium adjacent to the gold film allows the monitoring of molecular interactions at the surface. We present results of measurements of cross-bridge attachment/detachment within intact mouse heart muscle sarcomeres and measurements on bovine tubulin molecules pertinent to cytoskeletal signal transduction models.

  8. On the Nature and Shape of Tubulin Trails: Implications on Microtubule Self-Organization

    CERN Document Server

    Glade, Nicolas

    2012-01-01

    Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction-diffusion processes and emergent phenomena were proposed to explain some of these behaviors. In the particular case of microtubule spatial self-organization, it has been advanced that microtubules could behave like ants, self-organizing by 'talking to each other' by way of hypothetic (because never observed) concentrated chemical trails of tubulin that are expected to be released by their disassembling ends. Deterministic models based on this idea yielded indeed like-looking spatio-temporal self-organizing behaviors. Nevertheless the question remains of whether microscopic tubulin trails produced by individual or bundles of several microtubules are intense enough to allow microtubule self-organization at a macr...

  9. The Tubulin Binding Mode of Microtubule Stabilizing Agents Studied by Electron Crystallography

    Science.gov (United States)

    Nettles, James H.; Downing, Kenneth H.

    Since tubulin was discovered in 1967, drug probes have been used to manipulate mechanisms of microtubule polymerization and disassembly. In parallel, advances in optical imagery, electron microscopy, along with both electron and X-ray diffraction have provided ability to "see" the molecular underpinning of these machines. Nanoscale mapping of different tubulin polymers formed in the presence of different drugs and cofactors provide a context for examining the dynamic features relevant to their biological activity. Models built from EM maps have been used to understand the binding of stabilizing drugs such as taxanes and epothilones, to predict more effective molecules, and to explain mutation based resistance. Here, we discuss drug binding in the context of different polymeric forms and propose a trigger mechanism associated with microtubules' dynamic instability.

  10. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42

    DEFF Research Database (Denmark)

    Pleines, Irina; Dütting, Sebastian; Cherpokova, Deya; Eckly, Anita; Meyer, Imke; Morowski, Martina; Krohne, Georg; Schulze, Harald; Gachet, Christian; Debili, Najet; Brakebusch, Cord Herbert; Nieswandt, Bernhard

    2013-01-01

    and tubulin cytoskeleton. Rho GTPases, such as RhoA, Rac1, and Cdc42, are important regulators of cytoskeletal rearrangements in platelets; however, the specific roles of these proteins during platelet production have not been established. Using conditional knockout mice, we show here that Rac1 and...... Cdc42 possess redundant functions in platelet production and function. In contrast to a single-deficiency of either protein, a double-deficiency of Rac1 and Cdc42 in MKs resulted in macrothrombocytopenia, abnormal platelet morphology, and impaired platelet function. Double-deficient bone marrow MKs...... matured normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and...

  11. Tubulin-Targeting Chemotherapy Impairs Androgen Receptor Activity in Prostate Cancer

    OpenAIRE

    Zhu, Meng-Lei; Horbinski, Craig; Garzotto, Mark; Qian, David Z.; Beer, Tomasz M.; Kyprianou, Natasha

    2010-01-01

    Recent insights into the regulation of the androgen receptor (AR) activity led to novel therapeutic targeting of AR function in prostate cancer patients. Docetaxel is an approved chemotherapy for treatment of castration-resistant-prostate cancer (CRPC), but the mechanism underlying the action of this tubulin-targeting drug is not fully understood. This study investigates the contribution of microtubules and the cytoskeleton to androgen-mediated signaling, and the consequences of their inhibit...

  12. Overexpression of γ-tubulin in non-small cell lung cancer

    Czech Academy of Sciences Publication Activity Database

    Maounis, N.F.; Dráberová, Eduarda; Mahera, E.; Chorti, M.; Caracciolo, V.; Sulimenko, Tetyana; Riga, D.; Trakas, N.; Emmanouilidou, A.; Giordano, A.; Dráber, Pavel; Katsetos, C.D.

    2012-01-01

    Roč. 27, č. 9 (2012), s. 1183-1194. ISSN 0213-3911 R&D Projects: GA ČR GA204/09/1777; GA ČR GAP302/10/1701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : gamma-tubulin * microtubules * NSCLC Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.281, year: 2012

  13. C239S Mutation in the β-Tubulin of Phytophthora sojae Confers Resistance to Zoxamide

    Science.gov (United States)

    Cai, Meng; Miao, Jianqiang; Song, Xi; Lin, Dong; Bi, Yang; Chen, Lei; Liu, Xili; Tyler, Brett M.

    2016-01-01

    Zoxamide is the sole β-tubulin inhibitor registered for the control of oomycete pathogens. The current study investigated the activity of zoxamide against Phytophthora sojae and baseline sensitivity was established with a mean EC50 of 0.048 μg/ml. The data is critical for monitoring changes in zoxamide-sensitivity in the field. Three stable resistant mutants with a high resistance level were obtained by selection on zoxamide amended media. Although the development of resistance occurred at a low frequency, there were no apparent fitness penalty in the acquired mutants in terms of growth rate, sporulation, germination and pathogenicity. Based on the biological profiles and low mutagenesis rate, the resistance risk of P. sojae to zoxamide can be estimated as low to medium. Further investigation revealed all the zoxamide-resistant mutants had a point mutation of C239S in their β-tubulin. Zoxamide also exhibited high activity against most species from the genus Pythium in which only Pythium aphanidermatum was found naturally resistant to zoxamide and harboring the natural point mutation S239 in the β-tubulin. Back-transformation in P. sojae with the mutated allele (S239) confirmed the C239S mutation can induce resistance to zoxamide, and the resistance level was positively related to the expression level of the mutated gene. In contrast, the overexpression of the wild type gene was unable to cause zoxamide resistance. It is the first report on the resistance molecular mechanism of zoxamide in oomycetes. Based on our study, C239 is supposed to be a key target site of zoxamide, which distinguishes zoxamide from benzimidazoles and accounts for its low resistance risk. The result can provide advice on the design of new β-tubulin inhibitors in future.

  14. Recovery of tubulin functions after freeze-drying in the presence of trehalose

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Dráberová, Eduarda; Sulimenko, Tetyana; Böhm, K. J.; Dráber, Pavel

    San Diego: The American Society for Cell Biology, 2009. s. 32-32. [The American Society for Cell Biology, 49th Annual Meeting. 05.12.2009-09.12.2009, San Diego] R&D Projects: GA AV ČR KAN200520701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : tubulin * freeze - drying * cytoskleteon * stability Subject RIV: EB - Genetics ; Molecular Biology

  15. Selective Expression of β Tubulin Isotypes in Gerbil Vestibular Sensory Epithelia and Neurons

    OpenAIRE

    Perry, Brian; Jensen–Smith, Heather C.; Ludueña, Richard F.; Hallworth, Richard

    2003-01-01

    The seven mammalian isotypes of β tubulin are strikingly similar in amino acid sequence. The differences in isotypic sequence, although small, are nonetheless conserved in evolution, which suggests that they may confer distinct functional roles. If so, such roles should be reflected in the selective expression of isotypes by cell type, or even in the sorting of isotypes to within-cell pools. Hair cells of the vestibular sensory epithelia each possess a kinocilium, a microtubule-based organell...

  16. Design, synthesis, and bioactivity of putative tubulin ligands with adamantane core.

    Science.gov (United States)

    Zefirova, Olga N; Nurieva, Evgeniya V; Lemcke, Heiko; Ivanov, Andrei A; Shishov, Dmitrii V; Weiss, Dieter G; Kuznetsov, Sergei A; Zefirov, Nikolay S

    2008-09-15

    Several adamantane-based taxol mimetics were synthesized and found to be cytotoxic at micromolar concentrations and to cause tubulin aggregation. The extent of the aggregation is maximal for N-benzoyl-(2R,3S)-phenylisoseryloxyadamantane (5) and is very sensitive to the structural modifications. A hybrid compound (15), combining adamantane-based taxol mimetic with colchicine was synthesized and found to possess both microtubule depolymerizing and microtubule bundling activities in A549 human lung carcinoma cells. PMID:18715782

  17. Gamma-Tubulin In chicken Erythrocytes: Changes in Locakalization During Cell Differentiation of Cytoplasmic Complexes

    Czech Academy of Sciences Publication Activity Database

    Linhartová, Irena; Novotná, Božena; Sulimenko, Vadym; Dráberová, Eduarda; Dráber, Pavel

    2002-01-01

    Roč. 223, - (2002), s. 229-240. ISSN 1058-8388 R&D Projects: GA AV ČR IAA5052701; GA ČR GA304/00/0553; GA MŠk LN00A026 Institutional research plan: CEZ:AV0Z5039906; CEZ:AV0Z5052915 Keywords : chick embryo * marginal band * gamma-tubulin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.804, year: 2002

  18. M233I Mutation in the β-Tubulin of Botrytis cinerea Confers Resistance to Zoxamide.

    Science.gov (United States)

    Cai, Meng; Lin, Dong; Chen, Lei; Bi, Yang; Xiao, Lu; Liu, Xi-li

    2015-01-01

    Three phenotypes were detected in 161 Botrytis cinerea field isolates, including Zox(S)Car(S) (sensitive to zoxamide and carbendazim), Zox(S)Car(R) (sensitive to zoxamide and resistant to carbendazim), and Zox(R)Car(R) (resistant to zoxamide and carbendazim), but not Zox(R)Car(S) (resistant to zoxamide and sensitive to carbendazim). The baseline sensitivity to zoxamide was determined with a mean EC50 of 0.76 μg/ml. Two stable Zox(R)Car(S) isolates were obtained with a resistance factor of 13.28 and 20.43; there was a fitness penalty in mycelial growth rate, sporulation, virulence and sclerotium production. The results suggest that the resistance risk of B. cinerea to zoxamide is low where benzimidazoles have not been used. E198V, E198K and M233I, were detected in the β-tubulin of Zox(S)Car(R), Zox(R)Car(R), Zox(R)Car(S), respectively. Molecular docking indicated that position 198 in β-tubulin were targets for both zoxamide and carbendazim. The mutations at 198 prevented formation of hydrogen bonds between β-tubulin and carbendazim (E198V/K), and changed the conformation of the binding pocket of zoxamide (E198K). M233I had no effect on the binding of carbendazim but resulted in loss of a hydrogen bond between zoxamide and F200. M233 is suggested to be a unique target site for zoxamide and be very important in the function of β tubulin. PMID:26596626

  19. Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells.

    Science.gov (United States)

    Caperta, A D; Delgado, M; Ressurreição, F; Meister, A; Jones, R N; Viegas, W; Houben, A

    2006-05-01

    The microtubule cytoskeleton plays a crucial role in the cell cycle and in mitosis. Colchicine is a microtubule-depolymerizing agent that has long been used to induce chromosome individualization in cells arrested at metaphase and also in the induction of polyploid plants. Although attempts have been made to explain the processes and mechanisms underlying polyploidy induction, the role of the cytoskeleton still remains largely unknown. Through immunodetection of alpha-tubulin, different concentrations (0.5 or 5 mM) of colchicine were found to produce opposite effects in the organization of the cytoskeleton in rye (Secale cereale L.). A low concentration (0.5 mM) induced depolymerization of the microtubular cytoskeleton in all phases of the cell cycle. In contrast, a high concentration (5 mM) was found to induce the polymerization of new tubulin-containing structures in c-metaphase cells. Furthermore, both treatments also showed contrasting effects in the induction of polyploid cells. Flow cytometric analysis and quantitative assessments of nucleolus-organizing regions revealed that only the high-concentration colchicine treatment was effective in the formation of polyploid cells. Our studies indicate that spindle disruption alone is insufficient for the induction of polyploid cells. The absence of any tubulin structures in plants treated with colchicine at the low concentration induced cell anomalies, such as the occurrence of nuclei with irregular shape and/or (additional) micronuclei, 12 h after recovery, pointing to a direct effect on cell viability. In contrast, the almost insignificant level of cell anomalies in the high-concentration treatment suggests that the presence of new tubulin-containing structures allows the reconstitution of 4C nuclei and their progression into the cell cycle. PMID:16520877

  20. Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers

    OpenAIRE

    Schuessler, Hans A.; Kolomenskii, Alexander A.; Mershin, Andreas; Nanopoulos, D. V.

    2003-01-01

    Biosensors based on the principle of surface plasmon resonance (SPR) detection were used to measure biomolecular interactions in sarcomeres and changes of the dielectric constant of tubulin samples with varying concentration. At SPR, photons of laser light efficiently excite surface plasmons propagating along a metal (gold) film. This resonance manifests itself as a sharp minimum in the reflection of the incident laser light and occurs at a characteristic angle. The dependence of the SPR angl...

  1. Regulation of five tubulin isotypes by thyroid hormone during brain development.

    Science.gov (United States)

    Aniello, F; Couchie, D; Gripois, D; Nunez, J

    1991-11-01

    Nucleic acid probes derived from the 3' noncoding region of five tubulin cDNAs were used to study the effects of thyroid hormone deficiency on the expression of the mRNAs encoding two alpha (alpha 1 and alpha 2)- and three beta (beta 2, beta 4, and beta 5)-tubulin isotypes in the developing cerebral hemispheres and cerebellum. The content of alpha 1, which markedly declines during development in both brain regions, is maintained at high levels in the hypothyroid cerebellum, whereas it is decreased in the cerebral hemispheres. The alpha 2 level also declines during development and is decreased in both regions by thyroid hormone deficiency, but only during the two first postnatal weeks. Thyroid hormone deficiency slightly increases at all stages the beta 2 level in the cerebellum, whereas a decrease is observed at early stages in the cerebral hemispheres. The beta 5 level seems to be independent of thyroid hormone in the cerebral hemispheres, whereas it decreases at early stages in the hypothyroid cerebellum. Finally, the expression of the brain-specific beta 4 isotype is markedly depressed by thyroid hormone deficiency, particularly in the cerebellum. These data suggest that the genes encoding the tubulin isotypes are, directly or not, differently regulated by thyroid hormone during brain development. This might contribute to abnormal neurite outgrowth seen in the hypothyroid brain and therefore to impairment in brain functions produced by thyroid hormone deficiency. PMID:1717658

  2. Theoretical studies on QSAR and mechanism of 2-indolinone derivatives as tubulin inhibitors

    Science.gov (United States)

    Liao, Si Yan; Qian, Li; Miao, Ti Fang; Lu, Hai Liang; Zheng, Kang Cheng

    The theoretical studies on three-dimensional quantitative structure activity relationship (3D-QSAR) and action mechanism of a series of 2-indolinone derivatives as tubulin inhibitors against human breast cancer cell line MDA-MB-231 have been carried out. The established 3D-QSAR model from the comparative molecular field analysis (CoMFA) shows not only significant statistical quality but also predictive ability, with high correlation coefficient (R2 = 0.986) and cross-validation coefficient (q2 = 0.683). In particular, the appropriate binding orientations and conformations of these 2-indolinone derivatives interacting with tubulin are located by docking study, and it is very interesting to find that the plot of the energy scores of these compounds in DOCK versus the corresponding experimental pIC50 values exhibits a considerable linear correlation. Therefore, the inhibition mechanism that 2-indolinone derivatives were regarded as tubulin inhibitors can be theoretically confirmed. Based on such an inhibition mechanism along with 3D-QSAR results, some important factors improving the activities of these compounds were discussed in detail. These factors can be summarized as follows: the H atom adopted as substituent R1, the substituent R2 with higher electropositivity and smaller bulk, the substituents R4-R6 (on the phenyl ring) with higher electropositivity and larger bulk, and so on. These results can offer useful theoretical references for understanding the action mechanism, designing more potent inhibitors, and predicting their activities prior to synthesis.

  3. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells.

    Science.gov (United States)

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-10-28

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies suggested that fisetin binds to β-tubulin with superior affinity compared to paclitaxel. Fisetin treatment of human prostate cancer cells resulted in robust up-regulation of microtubule associated proteins (MAP)-2 and -4. In addition, fisetin treated cells were enriched in α-tubulin acetylation, an indication of stabilization of microtubules. Fisetin significantly inhibited PCa cell proliferation, migration, and invasion. Nudc, a protein associated with microtubule motor dynein/dynactin complex that regulates microtubule dynamics, was inhibited with fisetin treatment. Further, fisetin treatment of a P-glycoprotein overexpressing multidrug-resistant cancer cell line NCI/ADR-RES inhibited the viability and colony formation. Our results offer in vitro proof-of-concept for fisetin as a microtubule targeting agent. We suggest that fisetin could be developed as an adjuvant for treatment of prostate and other cancer types. PMID:26235140

  4. β-tubulin mutations in ovarian cancer using single strand conformation analysis – risk of false positive results from paraffin embedded tissues

    OpenAIRE

    Green, Henrik; Rosenberg, Per; Söderkvist, Peter; Horvath, György; Peterson, Curt

    2006-01-01

    Mutations in the β-tubulin gene have been proposed as a resistance mechanism to paclitaxel. We therefore investigated the presence of mutations in the β-tubulin M40 gene in 40 ovarian tumours (16 paraffin-embedded and 24 freshly frozen) selected for good or poor response to chemotherapy with paclitaxel or non-tubulin-affecting regimens. The presence of mutations was investigated using single strand conformation analysis followed by sequencing of the products with altered mobility. No sequence...

  5. Class III β-tubulin overexpression within the tumor microenvironment is a prognostic biomarker for poor overall survival in ovarian cancer patients treated with neoadjuvant carboplatin/paclitaxel

    OpenAIRE

    Roque, Dana M; Buza, Natalia; Glasgow, Michelle; Bellone, Stefania; Bortolomai, Ileana; Gasparrini, Sara; Cocco, Emiliano; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Rutherford, Thomas J.; Schwartz, Peter E.; Alessandro D Santin

    2013-01-01

    Critics have suggested that neoadjuvant chemotherapy (NACT) followed by interval debulking may select for resistant clones or cancer stem cells when compared to primary cytoreduction. β-tubulins are chemotherapeutic targets of taxanes and epothilones. Class III β-tubulin overexpression has been linked to chemoresistance and hypoxia. Herein, we describe changes in class III β-tubulin in patients with advanced ovarian carcinoma in response to NACT, in relationship to clinical outcome, and betwe...

  6. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks

    Science.gov (United States)

    Hata, Shigefumi; Nakao, Hiroya; Mikhailov, Alexander S.

    2014-01-01

    As shown by Alan Turing in 1952, differential diffusion may destabilize uniform distributions of reacting species and lead to emergence of patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and sometimes called the wave bifurcation, remains less investigated. Here, we extend the original analysis by Turing to networks and apply it to ecological metapopulations with dispersal connections between habitats. Remarkably, the oscillatory Turing instability does not lead to wave patterns in networks, but to spontaneous development of heterogeneous oscillations and possible extinction of species. We find such oscillatory instabilities for all possible food webs with three predator or prey species, under various assumptions about the mobility of individual species and nonlinear interactions between them. Hence, the oscillatory Turing instability should be generic and must play a fundamental role in metapopulation dynamics, providing a common mechanism for dispersal-induced destabilization of ecosystems.

  7. Finite element analysis of the lumbar destabilization following pedicle subtraction osteotomy.

    Science.gov (United States)

    Ottardi, Claudia; Galbusera, Fabio; Luca, Andrea; Prosdocimo, Liliana; Sasso, Maurizio; Brayda-Bruno, Marco; Villa, Tomaso

    2016-05-01

    This study aims to analyze the destabilization produced following a pedicle subtraction osteotomy (PSO), with a calibrated numerical model. A 30° resection was created on L3 and L4. Range of Motion (ROM) and the force acting on the vertebral body were calculated. Osteotomies consistently increased the ROMs. In the intact model, 87% of the compressive load was acting on the vertebral bodies whereas in the destabilized models all the load was on the fractured surface. Osteotomies at both levels induced a marked instability but the PSO at L4 seemed to have a greater influence on the ROM. Despite the significant deformity corrections which could be achieved with PSO, this technique needs further analyses. PMID:26968784

  8. Chaos in temporarily destabilized regular systems with the slow passage effect

    International Nuclear Information System (INIS)

    We provide evidences for chaotic behaviour in temporarily destabilized regular systems. In particular, we focus on time-continuous systems with the slow passage effect. The extreme sensitivity of the slow passage phase enables the existence of long chaotic transients induced by random pulsatile perturbations, thereby evoking chaotic behaviour in an initially regular system. We confirm the chaotic behaviour of the temporarily destabilized system by calculating the largest Lyapunov exponent. Moreover, we show that the newly obtained unstable periodic orbits can be easily controlled with conventional chaos control techniques, thereby guaranteeing a rich diversity of accessible dynamical states that is usually expected only in intrinsically chaotic systems. Additionally, we discuss the biological importance of presented results

  9. Phosphorylation site analysis of the anti-inflammatory and mRNA destabilizing protein tristetraprolin

    OpenAIRE

    Cao, Heping; Deterding, Leesa J.; Blackshear, Perry J.

    2007-01-01

    Tristetraprolin (TTP) is a member of the CCCH zinc finger proteins and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. TTP binds to mRNA AU-rich elements with high affinity for UUAUUUAUU nucleotides and causes destabilization of those mRNA molecules. TTP is phosphorylated extensively in vivo and is a substrate for multiple protein kinases in vitro. A number of approaches have been use...

  10. RNA-destabilizing Factor Tristetraprolin Negatively Regulates NF-κB Signaling*

    OpenAIRE

    Liang, Jian; Lei, Tianhua; Song, Yuting; Yanes, Natalie; Qi, Yongfen; Fu, Mingui

    2009-01-01

    Tristetraprolin (TTP) is a CCCH zinc finger-containing protein that destabilizes mRNA by binding to an AU-rich element. Mice deficient in TTP develop a severe inflammatory syndrome mainly because of overproduction of tumor necrosis factor α. We report here that TTP also negatively regulates NF-κB signaling at the transcriptional corepressor level, by which it may repress inflammatory gene transcription. TTP expression inhibited NF-κB-dependent transcription. However, overexpression of TTP did...

  11. Economic Activity and Natural Gas as a Potential Destabilizer of the Slovenian Economy

    OpenAIRE

    Mejra FESTIC; Repina, Sebastijan

    2009-01-01

    This article empirically investigates whether natural gas has the potential of destabilizing the Slovenian economy. The results confirmed the indirect relation that the increase in gas prices decelerates the dynamics of aggregate domestic consumption, which further decelerates activities in individual industries. An empirical analysis has proven that the natural gas does have the potential of forecasting the production trends in individual industries within the Slovenian economy. By using the...

  12. Does herding among Swedish institutional investors stabilize or destabilize stock prices?

    OpenAIRE

    Frosteby, Martin; Iliesiu, Silviu

    2016-01-01

    Empirical findings on herding behavior among institutional investors suggest that those market participants speed up the price adjustment to new information and as such stabilize stock prices. Other findings indicate the opposite, that institutional herds drive stock prices away from fundamental values, and thus destabilize stock prices. This study examines the effect that Swedish institutional investors have on the stock prices on the Stockholm Stock Exchange. More precisely, we analyze the ...

  13. Dendrimers destabilize proteins in a generation-dependent manner involving electrostatic interactions

    DEFF Research Database (Denmark)

    Gichm, Lise; Christensen, Casper; Boas, Ulrik;

    2008-01-01

    Dendrimers are well-defined chemical polymers with a characteristic branching pattern that gives rise to attractive features such as antibacterial and antitumor activities as well as drug delivery properties. In addition, dendrimers can solubilize prion protein aggregates at very low concentrations...... mediated by electrostatics, confirmed by studies on four other proteins. Ability to precipitate and destabilize are positively correlated, in contrast to conventional small-molecule denaturants and stabilizers, indicating that surface immobilization of denaturing groups profoundly affects its interactions...

  14. Playing and Passing: Expressions of Identity and the Destabilization of Gender Construction

    OpenAIRE

    Palmore, Kim J.

    2010-01-01

    In this dissertation, I demonstrate that non-traditional gender expression by women has significantly developed and expanded ranges of acceptable gender performance for all people. The gender deviancy these women communicate functions not only to promote gender fluidity but to undermine compliance with constructed images of originality. "Playing and Passing: Expressions of Identity and the Destabilization of Gender Construction" addresses women who resist gender conformity. Notions of how...

  15. Erythrocyte membrane protein destabilization versus clinical outcome in 160 Portuguese Hereditary Spherocytosis patients

    OpenAIRE

    Rocha, Susana; Costa, Elísio; Rocha-Pereira, Petronila; Ferreira, Fátima; Cleto, Esmeralda; Barbot, José; Quintanilha, Alexandre; Belo, Luís; Santos-Silva, Alice

    2010-01-01

    Abstract Hereditary Spherocytosis (HS) is a haemolytic anaemia caused by erythrocyte protein membrane defects ? spectrin, ankyrin, band 3 or protein 4.2 ? that lead to membrane destabilization. Ours aims were to evaluate the prevalence of protein deficiencies and the role of membrane proteins or of membrane linked proteins in membrane disturbance and in HS clinical outcome. We studied 215 Portuguese individuals ? 203 from 71 families plus 12 individual unrelated subjects, and found...

  16. Dispersal-induced destabilization of metapopulations and oscillatory Turing patterns in ecological networks

    OpenAIRE

    Shigefumi Hata; Hiroya Nakao; Mikhailov, Alexander S.

    2014-01-01

    As proposed by Alan Turing in 1952 as a ubiquitous mechanism for nonequilibrium pattern formation, diffusional effects may destabilize uniform distributions of reacting chemical species and lead to both spatially and temporally heterogeneous patterns. While stationary Turing patterns are broadly known, the oscillatory instability, leading to traveling waves in continuous media and also called the wave bifurcation, is rare for chemical systems. Here, we extend the analysis by Turing to general...

  17. Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze

    OpenAIRE

    Kim, Ryang; Moki, Ryouichi; Kida, Satoshi

    2011-01-01

    Background Memory retrieval is not a passive process. Recent studies have shown that reactivated memory is destabilized and then restabilized through gene expression-dependent reconsolidation. Molecular studies on the regulation of memory stability after retrieval have focused almost exclusively on fear memory, especially on the restabilization process of the reactivated fear memory. We previously showed that, similarly with fear memories, reactivated spatial memory undergoes reconsolidation ...

  18. Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze

    OpenAIRE

    Kim Ryang; Moki Ryouichi; Kida Satoshi

    2011-01-01

    Abstract Background Memory retrieval is not a passive process. Recent studies have shown that reactivated memory is destabilized and then restabilized through gene expression-dependent reconsolidation. Molecular studies on the regulation of memory stability after retrieval have focused almost exclusively on fear memory, especially on the restabilization process of the reactivated fear memory. We previously showed that, similarly with fear memories, reactivated spatial memory undergoes reconso...

  19. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification

    OpenAIRE

    Biastoch, Arne; Treude, Tina; Rüpke, Lars H.; Riebesell, Ulf; Roth, Christina; Burwicz, Ewa B.; Park, Wonsun; Latif, Mojib; Böning, Claus W.; Madec, Gurvan; Wallmann, Klaus

    2011-01-01

    Formed under low temperature – high pressure conditions vast amounts of methane hydrates are considered to be locked up in sediments of continental margins including the Arctic shelf regions[1-3]. Because the Arctic has warmed considerably during the recent decades and because climate models predict accelerated warming if global greenhouse gas emissions continue to rise [3], it is debated whether shallow Arctic hydrate deposits could be destabilized in the near future[4, 5]. Me...

  20. Mechanism for the catastrophe-promoting activity of the microtubule destabilizer Op18/stathmin

    OpenAIRE

    Gupta, Kamlesh K.; Li, Chunlei; Duan, Aranda; Alberico, Emily O.; Kim, Oleg V.; Alber, Mark S.; Goodson, Holly V.

    2013-01-01

    The microtubule (MT) cytoskeleton is a dynamic polymer network that plays a crucial role in cell function and disease. MT assembly and dynamics are precisely controlled; a key regulator is the MT destabilizer known as stathmin. Stathmin’s mechanism of action remains controversial: one well-supported model is that it reduces polymer indirectly by sequestering MT subunits; the alternative is that it acts directly on MTs by an as yet unknown mechanism. We provide a resolution to this debate by p...

  1. Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to γ-tubulin dimer.

    Science.gov (United States)

    Suri, C; Naik, P K

    2015-06-01

    γ-tubulin plays crucial role in the nucleation and organization of microtubules during cell division. Recent studies have also indicated its role in the regulation of microtubule dynamics at the plus end of the microtubules. Moreover, γ-tubulin has been found to be over-expressed in many cancer types, such as carcinomas of the breast and glioblastoma multiforme. These studies have led to immense interest in the identification of chemical leads that might interact with γ-tubulin and disrupt its function in order to explore γ-tubulin as potential chemotherapeutic target. Recently a colchicine-interacting cavity was identified at the interface of γ-tubulin dimer that might also interact with other similar compounds. In the same direction we theoretically investigated binding of a class of compounds, noscapinoids (noscapine and its derivatives) at the interface of the γ-tubulin dimer. Molecular interaction of noscapine and two of its derivatives, amino-noscapine and bromo-noscapine, was investigated by molecular docking, molecular dynamics simulation and binding free energy calculation. All noscapinoids displayed stable interaction throughout simulation of 25 ns. The predictive binding free energy (ΔGbind) indicates that noscapinoids bind strongly with the γ-tubulin dimer. However, bromo-noscapine showed the best binding affinity (ΔGbind = -37.6 kcal/mol) followed by noscapine (ΔGbind = -29.85 kcal/mol) and amino-noscapine (ΔGbind = -23.99 kcal/mol) using the MM-PBSA method. Similarly using the MM-GBSA method, bromo-noscapine showed highest binding affinity (ΔGbind = -43.64 kcal/mol) followed by amino-noscapine (ΔGbind = -37.56 kcal/mol) and noscapine (ΔGbind = -34.57 kcal/mol). The results thus generate compelling evidence that these noscapinoids may hold great potential for preclinical and clinical evaluation. PMID:26274780

  2. Tubulin tail sequences and post-translational modifications regulate closure of mitochondrial voltage-dependent anion channel (VDAC).

    Science.gov (United States)

    Sheldon, Kely L; Gurnev, Philip A; Bezrukov, Sergey M; Sackett, Dan L

    2015-10-30

    It was previously shown that tubulin dimer interaction with the mitochondrial outer membrane protein voltage-dependent anion channel (VDAC) blocks traffic through the channel and reduces oxidative metabolism and that this requires the unstructured anionic C-terminal tail peptides found on both α- and β-tubulin subunits. It was unclear whether the α- and β-tubulin tails contribute equally to VDAC blockade and what effects might be due to sequence variations in these tail peptides or to tubulin post-translational modifications, which mostly occur on the tails. The nature of the contribution of the tubulin body beyond acting as an anchor for the tails had not been clarified either. Here we present peptide-protein chimeras to address these questions. These constructs allow us to easily combine a tail peptide with different proteins or combine different tail peptides with a particular protein. The results show that a single tail grafted to an inert protein is sufficient to produce channel closure similar to that observed with tubulin. We show that the β-tail is more than an order of magnitude more potent than the α-tail and that the lower α-tail activity is largely due to the presence of a terminal tyrosine. Detyrosination activates the α-tail, and activation is reversed by the removal of the glutamic acid penultimate to the tyrosine. Nitration of tyrosine reverses the tyrosine inhibition of binding and even induces prolonged VDAC closures. Our results demonstrate that small changes in sequence or post-translational modification of the unstructured tails of tubulin result in substantial changes in VDAC closure. PMID:26306046

  3. Posturographic destabilization in eating disorders in female patients exposed to body image related phobic stimuli.

    Science.gov (United States)

    Forghieri, M; Monzani, D; Mackinnon, A; Ferrari, S; Gherpelli, C; Galeazzi, G M

    2016-08-26

    Human postural control is dependent on the central integration of vestibular, visual and proprioceptive inputs. Psychological states can affect balance control: anxiety, in particular, has been shown to influence balance mediated by visual stimuli. We hypothesized that patients with eating disorders would show postural destabilization when exposed to their image in a mirror and to the image of a fashion model representing their body ideal in comparison to body neutral stimuli. Seventeen females patients attending a day centre for the treatment of eating disorders were administered psychometric measures of body dissatisfaction, anxiety, depression and underwent posturographic measures with their eyes closed, open, watching a neutral stimulus, while exposed to a full length mirror and to an image of a fashion model corresponding to their body image. Results were compared to those obtained by eighteen healthy subjects. Eating disordered patients showed higher levels of body dissatisfaction and higher postural destabilization than controls, but this was limited to the conditions in which they were exposed to their mirror image or a fashion model image. Postural destabilization under these conditions correlated with measures of body dissatisfaction. In eating disordered patients, body related stimuli seem to act as phobic stimuli in the posturographic paradigm used. If confirmed, this has the potential to be developed for diagnostic and therapeutic purposes. PMID:27397012

  4. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change

    Science.gov (United States)

    Gruber, S.; Haeberli, W.

    2007-06-01

    Permafrost in steep bedrock is abundant in many cold-mountain areas, and its degradation can cause slope instability that is unexpected and unprecedented in location, magnitude, frequency, and timing. These phenomena bear consequences for the understanding of landscape evolution, natural hazards, and the safe and sustainable operation of high-mountain infrastructure. Permafrost in steep bedrock is an emerging field of research. Knowledge of rock temperatures, ice content, mechanisms of degradation, and the processes that link warming and destabilization is often fragmental. In this article we provide a review and discussion of existing literature and pinpoint important questions. Ice-filled joints are common in bedrock permafrost and possibly actively widened by ice segregation. Broad evidence of destabilization by warming permafrost exists despite problems of attributing individual events to this phenomenon with certainty. Convex topography such as ridges, spurs, and peaks is often subject to faster and deeper thaw than other areas. Permafrost degradation in steep bedrock can be strongly affected by percolating water in fractures. This degradation by advection is difficult to predict and can lead to quick and deep development of thaw corridors along fractures in permafrost and potentially destabilize much greater volumes of rock than conduction would. Although most research on steep bedrock permafrost originates from the Alps, it will likely gain importance in other geographic regions with mountain permafrost.

  5. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition

    Science.gov (United States)

    Kuznetsov, Nikita A.; Bergonzo, Christina; Campbell, Arthur J.; Li, Haoquan; Mechetin, Grigory V.; de los Santos, Carlos; Grollman, Arthur P.; Fedorova, Olga S.; Zharkov, Dmitry O.; Simmerling, Carlos

    2015-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination. PMID:25520195

  6. First principles screening of destabilized metal hydrides for high capacity H2 storage using scandium

    International Nuclear Information System (INIS)

    Favorable thermodynamics are a prerequisite for practical H2 storage materials for vehicular applications. Destabilization of metal hydrides is a versatile route to finding materials that reversibly store large quantities of H2. First principles calculations have proven to be a useful tool for screening large numbers of potential destabilization reactions when tabulated thermodynamic data are unavailable. We have used first principles calculations to screen potential destabilization schemes that involve Sc-containing compounds. Our calculations use a two-stage strategy in which reactions are initially assessed based on their reaction enthalpy alone, followed by more detailed free energy calculations for promising reactions. Our calculations indicate that mixtures of ScH2 + 2LiBH4, which will release 8.9 wt.% H2 at completion and will have an equilibrium pressure of 1 bar at around 330 K, making this compound a promising target for experimental study. Along with thermodynamics, favorable kinetics are also of enormous importance for practical usage of these materials. Experiments would help identify possible kinetic barriers and modify them by developing suitable catalysts

  7. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.

    Science.gov (United States)

    Alapati, Sudhakar V; Karl Johnson, J; Sholl, David S

    2007-03-28

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work. PMID:17356751

  8. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.

    Science.gov (United States)

    Alapati, Sudhakar V; Johnson, J Karl; Sholl, David S

    2006-05-01

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through alloying with other elements. A very large number of possible destabilized metal hydride reaction schemes exist. The thermodynamic data required to assess the enthalpies of these reactions, however, are not available in many cases. We have used first principles density functional theory calculations to predict the reaction enthalpies for more than 100 destabilization reactions that have not previously been reported. Many of these reactions are predicted not be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low. More importantly, our calculations identify five promising reaction schemes that merit experimental study: 3LiNH(2) + 2LiH + Si --> Li(5)N(3)Si + 4H(2), 4LiBH(4) + MgH(2) --> 4LiH + MgB(4) + 7H(2), 7LiBH(4) + MgH(2) --> 7LiH + MgB(7) + 11.5H(2), CaH(2) + 6LiBH(4) --> CaB(6) + 6LiH + 10H(2), and LiNH(2) + MgH(2) --> LiMgN + 2H(2). PMID:16640434

  9. Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability.

    Science.gov (United States)

    Aguergaray, Claude; Runge, Antoine; Erkintalo, Miro; Broderick, Neil G R

    2013-08-01

    We report on the destabilization of the mode-locking operation of a long cavity fiber laser. We show that the destabilization is accompanied by the abrupt emergence of a strong frequency-downshifted Stokes signal, and simultaneously, we find that the laser output displays characteristics typical of noise-like pulses. We use numerical simulations to illustrate how the Stokes signal grows from stimulated Raman scattering and plays a key role in the destabilization of the laser output. Our results indicate that stimulated Raman scattering may impose an ultimate limit on the energy scalability via cavity lengthening. PMID:23903099

  10. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors.

    Science.gov (United States)

    Shobeiri, Nikta; Rashedi, Maryam; Mosaffa, Fatemeh; Zarghi, Afshin; Ghandadi, Morteza; Ghasemi, Ali; Ghodsi, Razieh

    2016-05-23

    A new series of 2-aryl-trimethoxyquinoline analogues was designed and synthesized as tubulin inhibitors using methoxylated flavones as the lead compounds. The cytotoxic activity of the synthesized compounds was evaluated against four human cancer cell lines including MCF-7, MCF-7/MX, A-2780, and A-2780/RCIS. All the alcoholic derivatives (6a-6e) showed significant cytotoxic activity with IC50 in the range of 7.98-60 μM. The flow cytometry analysis of the four human cancer cell lines treated with 6e and 5b showed that 6e induced cell cycle arrest at G2/M phase and apoptosis as well. The effect of quinolines on tubulin polymerization was also evaluated. Compound 6e that demonstrated the best antiproliferative activity in the series was identified as the most potent inhibitor of tubulin polymerization as well. Molecular docking studies of 6e into the colchicine-binding site of tubulin displayed possible mode of interaction between this compound and tubulin. PMID:26974371

  11. A synchrotron X-ray scattering characterization of purified tubulin and of its expansion induced by mild detergent binding

    International Nuclear Information System (INIS)

    This report presents a synchrotron radiation X-ray scattering characterization of calf brain tubulin purified by the modified Weisenberg procedure. The results show that under nonassembly conditions these preparations consist of a uniform population of molecules with a radius of gyration of 3.1 ± 0.1 nm, which can be interpreted as arising from the native α-β heterodimer. The uniformity in the population persists even at unusually high concentrations of protein. Binding of colchicine or substitution of GTP by GDP does not induce, within the statistical accuracy and resolution range of our measurements, any significant structural modification in soluble tubulin. In assembly buffer, these preparations readily assemble into microtubules upon increasing the temperature from 4 to 37 degree C. Binding of nondenaturing amphiphiles to soluble tubulin provides a simplified model for tubulin-membrane interactions. The X-ray scattering data show that the radius of gyration of tubulin progressively increases upon binding of the mild detergent sodium deoxycholate, reaching a maximum value of 4.3 ± 0.1 nm at detergent saturation. The relative increase in the radius of gyration coincides within experimental error with the previously determined relative increase in the frictional coefficient. Analysis of these observations suggests that the effect of detergent binding is to induce an isotropic swelling of the protein structure

  12. Efficient gusA Transient Expression in Porphyra yezoensis Protoplasts Mediated by Endogenous Beta-tubulin Flanking Sequences

    Institute of Scientific and Technical Information of China (English)

    GONG Qianhong; YU Wengong; DAI Jixun; LIU Hongquan; XU Rifu; GUAN Huashi; PAN Kehou

    2007-01-01

    Endogenous tubulin promoter has been widely used for expressing foreign genes in green algae, but the efficiency and feasibility of endogenous tubulin promoter in the economically important Porphyra yezoensis (Rhodophyta) are tmknown. In this study, the flanking sequences of beta-tubulin gene from P. yezoensis were amplified and two transient expression vectors were constructed to determine their transcription promoting feasibility for foreign gene gusA. The testing vector pATubGUS was constructed by inserting 5'- and 3'-flanking regions (Tub5'and Tub3') up- and down-stream of β-glucuronidase (GUS) gene (gusA), respectively,into pA, a derivative of pCAT(R)3-enhancer vector. The control construct, pAGUSTub3, contains only gusA and Tub3 '. These constructs were electroporated into P. yezoensis protoplasts and the GUS activities were quantitatively analyzed by spectrometry. The results demonstrated that gusA gene was efficiently expressed in P. yezoensis protoplasts under the regulation of 5'-flanking sequence of the beta-tubulin gene. More interestingly, the pATubGUS produced stronger GUS activity in P. yezoensis protoplasts when compared to the result from pBI221, in which the gusA gene was directed by a constitutive CaMV 35 S promoter. The data suggest that the integration of P. yezoensis protoplast and its endogenous beta-tubulin flanking sequences is a potential novel system for foreign gene expression.

  13. Efficient gusA transient expression in Porphyra yezoensis protoplasts mediated by endogenous beta-tubulin flanking sequences

    Science.gov (United States)

    Gong, Qianhong; Yu, Wengong; Dai, Jixun; Liu, Hongquan; Xu, Rifu; Guan, Huashi; Pan, Kehou

    2007-01-01

    Endogenous tubulin promoter has been widely used for expressing foreign genes in green algae, but the efficiency and feasibility of endogenous tubulin promoter in the economically important Porphyra yezoensis (Rhodophyta) are unknown. In this study, the flanking sequences of beta-tubulin gene from P. yezoensis were amplified and two transient expression vectors were constructed to determine their transcription promoting feasibility for foreign gene gusA. The testing vector pATubGUS was constructed by inserting 5'-and 3'-flanking regions ( Tub5' and Tub3') up-and down-stream of β-glucuronidase (GUS) gene ( gusA), respectively, into pA, a derivative of pCAT®3-enhancer vector. The control construct, pAGUSTub3, contains only gusA and Tub3'. These constructs were electroporated into P. yezoensis protoplasts and the GUS activities were quantitatively analyzed by spectrometry. The results demonstrated that gusA gene was efficiently expressed in P. yezoensis protoplasts under the regulation of 5'-flanking sequence of the beta-tubulin gene. More interestingly, the pATubGUS produced stronger GUS activity in P. yezoensis protoplasts when compared to the result from pBI221, in which the gusA gene was directed by a constitutive CaMV 35S promoter. The data suggest that the integration of P. yezoensis protoplast and its endogenous beta-tubulin flanking sequences is a potential novel system for foreign gene expression.

  14. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Directory of Open Access Journals (Sweden)

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  15. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity

    Science.gov (United States)

    Magalhaes, Luma G.; Marques, Fernando B.; da Fonseca, Marina B.; Rogério, Kamilla R.; Graebin, Cedric S.; Andricopulo, Adriano D.

    2016-01-01

    Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497

  16. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization.

    Science.gov (United States)

    Mahale, S; Bharate, S B; Manda, S; Joshi, P; Jenkins, P R; Vishwakarma, R A; Chaudhuri, B

    2015-01-01

    The marine natural product fascaplysin (1) is a potent Cdk4 (cyclin-dependent kinase 4)-specific inhibitor, but is toxic to all cell types possibly because of its DNA-intercalating properties. Through the design and synthesis of numerous fascaplysin analogues, we intended to identify inhibitors of cancer cell growth with good therapeutic window with respect to normal cells. Among various non-planar tryptoline analogues prepared, N-(biphenyl-2-yl) tryptoline (BPT, 6) was identified as a potent inhibitor of cancer cell growth and free from DNA-binding properties owing to its non-planar structure. This compound was tested in over 60 protein kinase assays. It displayed inhibition of Cdk4-cyclin D1 enzyme in vitro far more potently than many other kinases including Cdk family members. Although it blocks growth of cancer cells deficient in the mitotic-spindle checkpoint at the G0/G1 phase of the cell cycle, the block occurs primarily at the G2/M phase. BPT inhibits tubulin polymerization in vitro and acts as an enhancer of tubulin depolymerization of paclitaxel-stabilized tubulin in live cells. Western blot analyses indicated that, in p53-positive cells, BPT upregulates the expression of p53, p21 and p27 proteins, whereas it downregulates the expression of cyclin B1 and Cdk1. BPT selectively kills SV40-transformed mouse embryonic hepatic cells and human fibroblasts rather than untransformed cells. BPT inhibited the growth of several human cancer cells with an IC50anticancer agent than fascaplysin with an unusual ability to block two overlapping yet crucial phases of the cell cycle, mitosis and G0/G1. Its ability to effectively halt tumour growth in human tumour-bearing mice would suggest that BPT has the potential to be a candidate for further clinical development. PMID:25950473

  17. Beta tubulin isoforms are not interchangeable for rescuing impaired radial migration due to Tubb3 knockdown.

    Science.gov (United States)

    Saillour, Yoann; Broix, Loïc; Bruel-Jungerman, Elodie; Lebrun, Nicolas; Muraca, Giuseppe; Rucci, Julien; Poirier, Karine; Belvindrah, Richard; Francis, Fiona; Chelly, Jamel

    2014-03-15

    Over the last years, the critical role of cytoskeletal proteins in cortical development including neuronal migration as well as in neuronal morphology has been well established. Inputs from genetic studies were provided through the identification of several mutated genes encoding either proteins associated with microtubules (DCX, LIS1, KIF2A, KIF5C, DYNC1H1) or tubulin subunits (TUBA1A, TUBB2B, TUBB5 and TUBG1), in malformations of cortical development (MCD). We also reported the identification of missense mutations in TUBB3, the postmitotic neuronal specific tubulin, in six different families presenting either polymicrogyria or gyral disorganization in combination with cerebellar and basal ganglial abnormalities. Here, we investigate further the association between TUBB3 mutations and MCDs by analyzing the consequences of Tubb3 knockdown on cortical development in mice. Using the in utero-electroporation approach, we demonstrate that Tubb3 knockdown leads to delayed bipolar morphology and radial migration with evidence, suggesting that the neuronal arrest is a transient phenomenon overcome after birth. Silenced blocked cells display a round-shape and decreased number of processes and a delay in the acquisition of the bipolar morphology. Also, more Tbr2 positive cells are observed, although less cells express the proliferation marker Ki67, suggesting that Tubb3 inactivation might have an indirect effect on intermediate progenitor proliferation. Furthermore, we show by rescue experiments the non-interchangeability of other beta-tubulins which are unable to rescue the phenotype. Our study highlights the critical and specific role of Tubb3 on the stereotyped morphological changes and polarization processes that are required for initiating radial migration to the cortical plate. PMID:24179174

  18. Localization of betav tubulin in the cochlea and cultured cells with a novel monoclonal antibody.

    Science.gov (United States)

    Banerjee, Asok; Jensen-Smith, Heather; Lazzell, Anna; Prasad, Veena; Elguezabal, Gerardo; Hallworth, Richard; Ludueña, Richard F

    2008-06-01

    Tubulin, the dimeric structural protein of microtubules, is a heterodimer of alpha and beta subunits; both alpha and beta exist as numerous isotypes encoded by different genes. In vertebrates the sequence differences among the beta(I), beta(II), beta(III), beta(IV) and beta(V) isotypes are highly conserved in evolution, implying that the isotypes may have functional significance. Isotype-specific monoclonal antibodies have been useful in determining the cellular and sub-cellular distributions and possible functions of the beta(I), beta(II), beta(III), and beta(IV) isotypes; however, little is known about the beta(V) isotype. We here report the creation and purification of a monoclonal antibody (SHM.12G11) specific for beta(V). The antibody was designed to be specific for the C-terminal sequence EEEINE, which is unique to rodent and chicken beta(V). The antibody was found to bind specifically to the C-terminal peptide EEEINE, and does not cross-react with the carboxy-termini of either alpha-tubulin or the other beta-tubulin isotypes. However, the antibody also binds to the peptide EEEVNE, but not to the peptide EEEIDG, corresponding respectively to the C-terminal peptides of bovine and human beta(V). Immunofluorescence analysis indicates that beta(V) is found in microtubules of both the interphase network and the mitotic spindle. In gerbils, beta(V) also occurs in the cochlea where it is found largely in the specialized cells that are unique in containing bundled microtubules with 15 protofilaments. PMID:18412253

  19. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity.

    Science.gov (United States)

    Magalhaes, Luma G; Marques, Fernando B; da Fonseca, Marina B; Rogério, Kamilla R; Graebin, Cedric S; Andricopulo, Adriano D

    2016-01-01

    Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497

  20. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.

    Science.gov (United States)

    Hayashi, Masahito; Nishiyama, Masayoshi; Kazayama, Yuki; Toyota, Taro; Harada, Yoshie; Takiguchi, Kingo

    2016-04-19

    Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 μm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure. PMID:27023063

  1. Conservation of tubulin-binding sequences in TRPV1 throughout evolution.

    Directory of Open Access Journals (Sweden)

    Puspendu Sardar

    Full Text Available BACKGROUND: Transient Receptor Potential Vanilloid sub type 1 (TRPV1, commonly known as capsaicin receptor can detect multiple stimuli ranging from noxious compounds, low pH, temperature as well as electromagnetic wave at different ranges. In addition, this receptor is involved in multiple physiological and sensory processes. Therefore, functions of TRPV1 have direct influences on adaptation and further evolution also. Availability of various eukaryotic genomic sequences in public domain facilitates us in studying the molecular evolution of TRPV1 protein and the respective conservation of certain domains, motifs and interacting regions that are functionally important. METHODOLOGY AND PRINCIPAL FINDINGS: Using statistical and bioinformatics tools, our analysis reveals that TRPV1 has evolved about ∼420 million years ago (MYA. Our analysis reveals that specific regions, domains and motifs of TRPV1 has gone through different selection pressure and thus have different levels of conservation. We found that among all, TRP box is the most conserved and thus have functional significance. Our results also indicate that the tubulin binding sequences (TBS have evolutionary significance as these stretch sequences are more conserved than many other essential regions of TRPV1. The overall distribution of positively charged residues within the TBS motifs is conserved throughout evolution. In silico analysis reveals that the TBS-1 and TBS-2 of TRPV1 can form helical structures and may play important role in TRPV1 function. CONCLUSIONS AND SIGNIFICANCE: Our analysis identifies the regions of TRPV1, which are important for structure-function relationship. This analysis indicates that tubulin binding sequence-1 (TBS-1 near the TRP-box forms a potential helix and the tubulin interactions with TRPV1 via TBS-1 have evolutionary significance. This interaction may be required for the proper channel function and regulation and may also have significance in the context

  2. High LET Radiation Amplifies Centrosome Overduplication Through a Pathway of γ-Tubulin Monoubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Mikio [Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto (Japan); Hirayama, Ryoichi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Komatsu, Kenshi, E-mail: komatsu@house.rbc.kyoto-u.ac.jp [Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto (Japan)

    2013-06-01

    Purpose: Radiation induces centrosome overduplication, leading to mitotic catastrophe and tumorigenesis. Because mitotic catastrophe is one of the major tumor cell killing factors in high linear energy transfer (LET) radiation therapy and long-term survivors from such treatment have a potential risk of secondary tumors, we investigated LET dependence of radiation-induced centrosome overduplication and the underlying mechanism. Methods and Materials: Carbon and iron ion beams (13-200 keV/μm) and γ-rays (0.5 keV/μm) were used as radiation sources. To count centrosomes after IR exposure, human U2OS and mouse NIH3T3 cells were immunostained with antibodies of γ-tubulin and centrin 2. Similarly, Nbs1-, Brca1-, Ku70-, and DNA-PKcs-deficient mouse cells and their counterpart wild-type cells were used for measurement of centrosome overduplication. Results: The number of excess centrosome-containing cells at interphase and the resulting multipolar spindle at mitosis were amplified with increased LET, reaching a maximum level of 100 keV/μm, followed by sharp decrease in frequency. Interestingly, Ku70 and DNA-PKcs deficiencies marginally affected the induction of centrosome overduplication, whereas the cell killings were significantly enhanced. This was in contrast to observation that high LET radiation significantly enhanced frequencies of centrosome overduplication in Nbs1- and Brca1-deficient cells. Because NBS1/BRCA1 is implicated in monoubiquitination of γ-tubulin, we subsequently tested whether it is affected by high LET radiation. As a result, monoubiquitination of γ-tubulin was abolished in 48 to 72 hours after exposure to high LET radiation, although γ-ray exposure slightly decreased it 48 hours postirradiation and was restored to a normal level at 72 hours. Conclusions: High LET radiation significantly reduces NBS1/BRCA1-mediated monoubiquitination of γ-tubulin and amplifies centrosome overduplication with a peak at 100 keV/μm. In contrast, Ku70 and DNA

  3. Nuclear gamma-tubulin associates with nucleoli and interacts with tumor suppressor protein C53

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Barbora; Vinopal, Stanislav; Sládková, Vladimíra; Dráberová, Eduarda; Sulimenko, Vadym; Sulimenko, Tetyana; Vosecká, Věra; Philimonenko, Anatoly; Hozák, Pavel; Katsetos, C.D.; Dráber, Pavel

    2012-01-01

    Roč. 227, č. 1 (2012), s. 367-382. ISSN 0021-9541 R&D Projects: GA ČR GA204/09/1777; GA ČR(CZ) GD204/09/H084; GA ČR GAP302/10/1701; GA MŠk LC545; GA AV ČR KAN200520701; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : nucleolus * gamma-tubulin * C53 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.218, year: 2012

  4. γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis

    Czech Academy of Sciences Publication Activity Database

    Vinopal, Stanislav; Černohorská, Markéta; Sulimenko, Vadym; Sulimenko, Tetyana; Vosecká, Věra; Flemr, Matyáš; Dráberová, Eduarda; Dráber, Pavel

    2012-01-01

    Roč. 7, č. 1 (2012), e29919. E-ISSN 1932-6203 R&D Projects: GA MŠk LC545; GA MŠk 1M0506; GA ČR(CZ) GD204/09/H084; GA ČR GA204/09/1777; GA AV ČR KAN200520701; GA ČR GAP302/10/1701 Institutional research plan: CEZ:AV0Z50520514 Keywords : γ-tubulin 2 * nucleation * embryogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  5. Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides

    OpenAIRE

    Herce, H.D.; Garcia, A. E.; Litt, J.; Kane, R. S.; Martin, P.; Enrique, N.; Rebolledo, A.; Milesi, V.

    2009-01-01

    Recent molecular dynamics simulations (Herce and Garcia, PNAS, 104: 20805 (2007)) have suggested that the arginine-rich HIV Tat peptides might be able to translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, arginine residues play a fundamental role not only in the binding of the peptide to the surface of the membrane but also in the destabilization and nucleation of transient pores across the bilayer, despite being char...

  6. In vitro and in vivo evaluation of tubulin inhibitors with non-small cell lung cancer pre-clinical models

    Directory of Open Access Journals (Sweden)

    Lama R

    2015-05-01

    Full Text Available Synthetic small molecule tubulin inhibitors have many advantages as novel anti-cancer agents compared to the current tubulin inhibitors generated from natural products. Our previous studies led to the design and synthesis of a series of novel tubulin inhibitors. Some of these compounds also inhibited heat shock protein 27 (Hsp27, and showed promising in vitro anti-cancer activities in several breast cancer cell lines at sub nano-molar concentrations. However, whether these compounds could suppress tumor growth in animals was not investigated yet. In the current study, to identify the best drug candidates, therapeutic efficacy of the representative compounds from previous analyses was evaluated using non-small cell lung cancer preclinical models. These agents dose-dependently inhibited the growth of lung cancer cells in both monolayer cultures and three-dimensional multicellular spheroids. Several compounds also showed promising tumor growth suppressive activity in nude mice xenograft model

  7. New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships.

    Science.gov (United States)

    Zghaib, Zahraa; Guichou, Jean-François; Vappiani, Johanna; Bec, Nicole; Hadj-Kaddour, Kamel; Vincent, Laure-Anaïs; Paniagua-Gayraud, Stéphanie; Larroque, Christian; Moarbess, Georges; Cuq, Pierre; Kassab, Issam; Deleuze-Masquéfa, Carine; Diab-Assaf, Mona; Bonnet, Pierre-Antoine

    2016-06-01

    Microtubules are considered as important targets of anticancer therapy. EAPB0503 and its structural imidazo[1,2-a]quinoxaline derivatives are major microtubule-interfering agents with potent anticancer activity. In this study, the synthesis of several new derivatives of EAPB0503 is described, and the anticancer efficacy of 13 novel derivatives on A375 human melanoma cell line is reported. All new compounds show significant antiproliferative activity with IC50 in the range of 0.077-122μM against human melanoma cell line (A375). Direct inhibition of tubulin polymerization assay in vitro is also assessed. Results show that compounds 6b, 6e, 6g, and EAPB0503 highly inhibit tubulin polymerization with percentages of inhibition of 99%, 98%, 90%, and 84% respectively. Structure-activity relationship studies within the series are also discussed in line with molecular docking studies into the colchicine-binding site of tubulin. PMID:27094151

  8. Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia

    Directory of Open Access Journals (Sweden)

    Yongjun Fan

    2014-05-01

    Full Text Available Hereditary Spastic Paraplegia (HSP is a genetically heterogeneous group of disorders, diagnosed by progressive gait disturbances with muscle weakness and spasticity, for which there are no treatments targeted at the underlying pathophysiology. Mutations in spastin are a common cause of HSP. Spastin is a microtubule-severing protein whose mutation in mouse causes defective axonal transport. In human patient-derived olfactory neurosphere-derived (ONS cells, spastin mutations lead to lower levels of acetylated α-tubulin, a marker of stabilised microtubules, and to slower speed of peroxisome trafficking. Here we screened multiple concentrations of four tubulin-binding drugs for their ability to rescue levels of acetylated α-tubulin in patient-derived ONS cells. Drug doses that restored acetylated α-tubulin to levels in control-derived ONS cells were then selected for their ability to rescue peroxisome trafficking deficits. Automated microscopic screening identified very low doses of the four drugs (0.5 nM taxol, 0.5 nM vinblastine, 2 nM epothilone D, 10 µM noscapine that rescued acetylated α-tubulin in patient-derived ONS cells. These same doses rescued peroxisome trafficking deficits, restoring peroxisome speeds to untreated control cell levels. These results demonstrate a novel approach for drug screening based on high throughput automated microscopy for acetylated α-tubulin followed by functional validation of microtubule-based peroxisome transport. From a clinical perspective, all the drugs tested are used clinically, but at much higher doses. Importantly, epothilone D and noscapine can enter the central nervous system, making them potential candidates for future clinical trials.

  9. Functional Role of Tia1/Pub1 and Sup35 Prion Domains: Directing Protein Synthesis Machinery to the Tubulin Cytoskeleton

    OpenAIRE

    Li, Xiang; Joseph B. Rayman; Kandel, Eric R.; Derkatch, Irina L.

    2014-01-01

    Tia1/Pub1 is a stress granule component carrying a Q/N-rich prion domain. We provide direct evidence that Tia1 forms a prion in yeast. Moreover, Tia1/Pub1 acts co-operatively with release factor Sup35/eRF3 to establish a two-protein self-propagating state. This two-protein prion driven by the Q/N-rich prion domains of Sup35 and Tia1/Pub1 can be visualized as distinctive line structures along tubulin cytoskeleton. Furthermore, we find that tubulin-associated complex containing Pub1 and Sup35 o...

  10. Overexpression and Nucleolar Localization of γ-Tubulin Small Complex Proteins GCP2 and GCP3 in Glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; D'Agostino, L.; Caracciolo, V.; Sládková, Vladimíra; Sulimenko, Tetyana; Sulimenko, Vadym; Sobol, Margaryta; Maounis, N.F.; Tzelepis, E.; Mahera, E.; Křen, L.; Legido, A.; Giordano, A.; Moerk, S.; Hozák, Pavel; Dráber, Pavel; Katsetos, C.D.

    2015-01-01

    Roč. 74, č. 7 (2015), s. 723-742. ISSN 0022-3069 R&D Projects: GA MŠk LH12050; GA MZd NT14467; GA ČR GAP302/12/1673; GA TA ČR(CZ) TE01020118; GA MPO FR-TI3/588 Grant ostatní: GA AV ČR M200521203PIPP; St. Christopher's Hospital for Children Reunified Endowment(US) 323256 Institutional support: RVO:68378050 Keywords : Gamma-tubulin * Gamma-tubulin complex proteins * GCP2 * Glioma * Glioblastoma * Nucleolus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.797, year: 2014

  11. Isolation, characterization, and expression of a second beta-tubulin-encoding gene from Colletotrichum gloeosporioides f. sp. aeschynomene.

    OpenAIRE

    Buhr, T L; Dickman, M B

    1994-01-01

    Colletotrichum gloeosporioides f. sp. aeschynomene is a fungal plant pathogen of Aeschynomene virginica. A beta-tubulin-encoding gene (TUB2) from this pathogen was cloned and sequenced. The deduced amino acid sequence of TUB2 had a high degree of homology to other fungal beta-tubulins. A portion of TUB2 from a benomyl-resistant C. gloeosporioides f. sp. aeschynomene mutant was also cloned and sequenced. A point mutation resulting in a glutamic acid-to-lysine substitution at amino acid 198 lik...

  12. Destabilizing Effects of Pore-Scale Disorder on Capillary Invasion in Partially-Wettable Porous Media

    CERN Document Server

    Holtzman, Ran

    2016-01-01

    We present a systematic, quantitative assessment of the impact of pore size disorder and its interplay with flow rates and the wettability on immiscible fluid displacement. Pore-scale simulations and micromodel experiments show that increasing disorder destabilizes the displacement, reducing the its efficiency and increasing the fluid-fluid interfacial area, by enhancing trapping at low rates, and fingering at high rates. Lowering disorder enhances the effect of the underlying lattice. Increasing wettability of the invading fluid (contact angle) stabilizes the invasion, smoothing the interface and inhibiting trapping--effects which are suppressed at low disorder and high rates.

  13. Observations and considerations on destabilizing active rock glaciers in the European Alps

    OpenAIRE

    Roer, I.; Haeberli, W.; M. Avian; Kaufmann, V.; R. Delaloye; Lambiel, C; A. Kääb

    2008-01-01

    In many high mountain regions, warming of perennially frozen ground in both coarse debris and rock walls has a major influence on slope stability. In this context, indications of destabilizing active rock glaciers, such as high horizontal velocities (up to 4 ma-1), front advance rates of up to 4 ma-1, and development of crevasse-like cracks (up to 14 m deep), have been documented and monitored in the Alps for a few years. Beside the limited knowledge of rock glacier dynamics, our principle hy...

  14. Thermodynamically destabilized hydride formation in "bulk" Mg-AlTi multilayers for hydrogen storage.

    Science.gov (United States)

    Kalisvaart, Peter; Shalchi-Amirkhiz, Babak; Zahiri, Ramin; Zahiri, Beniamin; Tan, XueHai; Danaie, Mohsen; Botton, Gianluigi; Mitlin, David

    2013-10-21

    Thermodynamic destabilization of MgH2 formation through interfacial interactions in free-standing Mg-AlTi multilayers of overall "bulk" (0.5 μm) dimensions with a hydrogen capacity of up to 5.5 wt% is demonstrated. The interfacial energies of Mg-AlTi and Mg-Ti (examined as a baseline) are calculated to be 0.81 and 0.44 J m(-2). The enhanced interfacial energy of AlTi opens the possibility of creating ultrathin alloy interlayers that provide further thermodynamic improvements in metal hydrides. PMID:23955681

  15. Gravity-induced encapsulation of liquids by destabilization of granular rafts

    Science.gov (United States)

    Abkarian, Manouk; Protière, Suzie; Aristoff, Jeffrey M.; Stone, Howard A.

    2013-05-01

    Droplets and bubbles coated by a protective armour of particles find numerous applications in encapsulation, stabilization of emulsions and foams, and flotation techniques. Here we study the role of a body force, such as in flotation, as a means of continuous encapsulation by particles. We use dense particles, which self-assemble into rafts, at oil-water interfaces. We show that these rafts can be spontaneously or controllably destabilized into armoured oil-in-water droplets, which highlights a possible role for common granular materials in environmental remediation. We further present a method for continuous production and discuss the generalization of our approach towards colloidal scales.

  16. Substrate Phosphorylation and Feedback Regulation in JFK-promoted p53 Destabilization*

    OpenAIRE

    Sun, Luyang; Shi, Lei; Wang, Feng; Huangyang, Peiwei; Si, Wenzhe; Yang, Jie; Yao, Zhi; Shang, Yongfeng

    2010-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Previously, we reported that JFK, the only Kelch domain-containing F-box protein in human, promotes ubiquitination and degradation of p53 and that unlike the other E3 ligases for p53, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assem...

  17. Chloroplast FtsZ assembles into a contractible ring via tubulin-like heteropolymerization.

    Science.gov (United States)

    Yoshida, Yamato; Mogi, Yuko; TerBush, Allan D; Osteryoung, Katherine W

    2016-01-01

    Chloroplast division is driven by a ring containing FtsZ1 and FtsZ2 proteins, which originated from bacterial FtsZ, a tubulin-like protein; however, mechanistic details of the chloroplast FtsZ ring remain unclear. Here, we report that FtsZ1 and FtsZ2 can heteropolymerize into a contractible ring ex vivo. Fluorescently labelled FtsZ1 and/or FtsZ2 formed single rings in cells of the yeast Pichia pastoris. Photobleaching experiments indicated that co-assembly of FtsZ1 and FtsZ2 imparts polarity to polymerization. Assembly of FtsZ chimaeras revealed that the protofilaments assemble via heteropolymerization of FtsZ2 and FtsZ1. Contraction of the ring was accompanied by an increase in the filament turnover rate. Our findings suggest that the evolutionary duplication of FtsZ in plants may have increased the mobility and kinetics of FtsZ ring dynamics in chloroplast division. Thus, the gene duplication and heteropolymerization of chloroplast FtsZs may represent convergent evolution with eukaryotic tubulin. PMID:27322658

  18. Specific expression of a β-tubulin gene (GhTub1) in developing cotton fibers

    Institute of Scientific and Technical Information of China (English)

    李园莉; 孙杰; 李春红; 朱勇清; 夏桂先

    2003-01-01

    A cDNA library was constructed using poly (A)+ RNA isolated from -1-15 DPA fibers of upland cotton (Gossypium hirsutum). The cDNA encoding a β-tubulin isoform (designated as GhTub1) was identified through EST search. Northern blot analysis using 3′-UTR of the cDNA as a gene-specific probe was performed to investigate the expression levels of GhTub1 in various organs and in the developing fibers. The results showed that GhTub1 gene was specifically expressed in cotton fiber cells. During fiber development, GhTub1 transcripts accumulated highlyat the stage of cell rapid elongation with the highest expression appearing at the time when fiber expansion reaches the peak rate. To probe the in vivo function of GhTub1, its cDNA was cloned in the yeast expression vector pREP1 and transformed into the fission yeast Schizosaccharomyces pombe. Overexpression of GhTub1 in yeast cells caused severe changes in the cell morphology. These results suggest that GhTub1 may play a role in the polar elongation of cotton fibers. To our knowledge, this is the first report on the fiber-specific transcript accumulation of a cotton β-tubulin gene.

  19. βIII-Tubulin Regulates Breast Cancer Metastases to the Brain.

    Science.gov (United States)

    Kanojia, Deepak; Morshed, Ramin A; Zhang, Lingjiao; Miska, Jason M; Qiao, Jian; Kim, Julius W; Pytel, Peter; Balyasnikova, Irina V; Lesniak, Maciej S; Ahmed, Atique U

    2015-05-01

    Brain metastases occur in about 10% to 30% of breast cancer patients, which culminates in a poor prognosis. It is, therefore, critical to understand the molecular mechanisms underlying brain metastatic processes to identify relevant targets. We hypothesized that breast cancer cells must express brain-associated markers that would enable their invasion and survival in the brain microenvironment. We assessed a panel of brain-predominant markers and found an elevation of several neuronal markers (βIII-tubulin, Nestin, and AchE) in brain metastatic breast cancer cells. Among these neuronal predominant markers, in silico analysis revealed overexpression of βIII-tubulin (TUBB3) in breast cancer brain metastases (BCBM) and its expression was significantly associated with distant metastases. TUBB3 knockdown studies were conducted in breast cancer models (MDA-Br, GLIM2, and MDA-MB-468), which revealed significant reduction in their invasive capabilities. MDA-Br cells with suppressed TUBB3 also demonstrated loss of key signaling molecules such as β3 integrin, pFAK, and pSrc in vitro. Furthermore, TUBB3 knockdown in a brain metastatic breast cancer cell line compromised its metastatic ability in vivo, and significantly improved survival in a brain metastasis model. These results implicate a critical role of TUBB3 in conferring brain metastatic potential to breast cancer cells. PMID:25724666

  20. Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein

    International Nuclear Information System (INIS)

    The kinase domain (residues 1–331) of human tau-tubulin kinase 2 was expressed in insect cells, purified and crystallized. Diffraction data have been collected to 2.9 Å resolution. Tau-tubulin kinase 2 (TTBK2) is a Ser/Thr kinase that putatively phosphorylates residues Ser208 and Ser210 (numbered according to a 441-residue human tau isoform) in tau protein. Functional analyses revealed that a recombinant kinase domain (residues 1–331) of human TTBK2 expressed in insect cells with a baculovirus overexpression system retains kinase activity for tau protein. The kinase domain of TTBK2 was crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P212121, with unit-cell parameters a = 55.6, b = 113.7, c = 117.3 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.9 Å resolution using synchrotron radiation at BL24XU of SPring-8

  1. Class III β-tubulin overexpression within the tumor microenvironment is a prognostic biomarker for poor overall survival in ovarian cancer patients treated with neoadjuvant carboplatin/paclitaxel.

    Science.gov (United States)

    Roque, Dana M; Buza, Natalia; Glasgow, Michelle; Bellone, Stefania; Bortolomai, Ileana; Gasparrini, Sara; Cocco, Emiliano; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Rutherford, Thomas J; Schwartz, Peter E; Santin, Alessandro D

    2014-01-01

    Critics have suggested that neoadjuvant chemotherapy (NACT) followed by interval debulking may select for resistant clones or cancer stem cells when compared to primary cytoreduction. β-tubulins are chemotherapeutic targets of taxanes and epothilones. Class III β-tubulin overexpression has been linked to chemoresistance and hypoxia. Herein, we describe changes in class III β-tubulin in patients with advanced ovarian carcinoma in response to NACT, in relationship to clinical outcome, and between patients who underwent NACT versus primary debulking; we characterize in vitro chemosensitivity to paclitaxel/patupilone of cell lines established from this patient population, and class III β-tubulin expression following repeated exposure to paclitaxel. Using immunohistochemistry, we observed among 22 paired specimens obtained before/after NACT decreased expression of class III β-tubulin following therapy within stroma (p=0.07), but not tumor (p=0.63). Poor median overall survival was predicted by high levels of class III β-tubulin in both tumor (HR 3.66 [1.11,12.05], p=0.03) and stroma (HR 4.53 [1.28,16.1], p=0.02). Class III β-tubulin expression by quantitative-real-time-polymerase-chain-reaction was higher among patients who received NACT (n=12) compared to primary cytoreduction (n=14) (mean±SD fold-change: 491.2±115.9 vs. 224.1±55.66, p=0.037). In vitro subculture with paclitaxel resulted in class III β-tubulin upregulation, however, cell lines that overexpressed class III β-tubulin remained sensitive to patupilone. Overexpression of class III β-tubulin in patients dispositioned to NACT may thus identify an intrinsically aggressive phenotype, and predict poor overall survival and paclitaxel resistance. Decreases in stromal expression may represent normalization of the tumor microenvironment following therapy. Epothilones warrant study for patients who have received neoadjuvant carboplatin and paclitaxel. PMID:24005572

  2. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    Science.gov (United States)

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  3. Rational destabilizing speculation, positive feedback trading, and the oil bubble of 2008

    International Nuclear Information System (INIS)

    This article examines how the interaction of different participants in the crude oil futures markets affects the crude oil price efficiency. Normally, the commercial market participants, such as oil producers and oil consumers, act as arbitrageurs and ensure that the price of crude oil remains within the fundamental value range. However, institutional investors that invest in crude oil to diversify their portfolios and/or hedge inflation can destabilize the interaction among commercial participants and liquidity-providing speculators. We argue that institutional investors can impose limits to arbitrage, particularly during the financial crisis when the investment demand for commodities is particularly strong. In support, we show that commercials hedgers had significantly reduced their short positions leading to the 2008 oil bubble-they were potentially aggressively offsetting their short hedges. As a result, by essentially engaging in a positive feedback trading, commercial hedgers at least contributed to 'the 2008 oil bubble'. These findings have been mainly overlooked by the existing research. - Research Highlights: → This article finds that commercial hedgers at least contributed to the 2008 oil bubble. → Commercial hedgers were aggressively offsetting their short hedges leading to the oil bubble peak. → Commercial hedgers, thus, unwillingly engaged in positive feedback trading. → Institutional investors potentially destabilized the oil markets in 2008.

  4. Formation of asphaltene deposits from crude oil destabilized by addition of propane

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Creek, J. [Chevron Energy Technology Co., Houston, TX (United States); Fan, T.; Buckley, J. [New Mexico Inst. of Mining and Technology, NM (United States)

    2008-07-01

    As oil development moves into deeper water and deeper wells, it is increasingly important to predict the formation of asphaltene deposits. The first step toward predicting deposition is knowing the asphaltene stability as a function of temperature, pressure, and composition. Flocculated asphaltenes can segregate under the influence of gravity in low energy environments. The challenge lies in understanding the deposits that form on pipe walls in producing wells. This paper reported on a continuing study of arterial deposition from destabilized crude oils in stainless steel capillary tubing as a function of several variables, including the molecular size of the paraffinic precipitating agent. The initial studies revealed that destabilization of asphaltenes from a given crude oil with higher molecular weight precipitants produced a larger volume of asphaltene enriched deposit compared to a lower molecular weight precipitant with the same crude oil. Liquid n-paraffins precipitants from n-pentane to n-pentadecane were used in the initial studies. The data was then used to forecast precipitation with solution gas at different pressures and temperatures. In this present study, the range of paraffinic precipitants was extended to include propane for a comparative evaluation to determine the driving force for asphaltene precipitation in reservoir fluids.

  5. 腺相关病毒介导重组血管抑素联合雷公藤红素对大鼠颅内C6胶质瘤的抗血管生成作用%Anti-angiogenesis effect of adeno-associated virus-mediated recombinant angiostatin combined with celastrol on intracranial C6 glioma in rats

    Institute of Scientific and Technical Information of China (English)

    王冠; 周洁; 冯珂珂; 田麒

    2011-01-01

    目的:腺相关病毒(adeno-associated virus,AAV)介导的重组血管抑素(angiostatin,AS)联合应用雷公藤红素( celastrol)治疗大鼠颅内C6胶质瘤,观察其对肿瘤体积、新生血管密度及肿瘤细胞凋亡的影响,探讨抗血管生成重组基因联合雷公藤红素对胶质瘤治疗的前景.方法:建立颅内原位荷C6脑胶质瘤大鼠模型,7d后随机分为4组,分别给予0.9%氯化钠溶液(作为对照)、AAV-AS、雷公藤红素及两者联合用药.每隔7d行头部强化MRI检查,计算肿瘤体积.于22 d后处死动物,检测AS蛋白表达、血管密度及肿瘤细胞凋亡情况.结果:联合治疗组及AAV-AS治疗组均检测到AS蛋白表达,证实基因转导成功.联合治疗组第22天时肿瘤体积、血管密度和凋亡指数均与对照组、雷公藤红素组及AAV-AS治疗组相比差异有统计学意义(P<0.05),联合治疗可以抑制肿瘤生长,降低新生血管密度,促进肿瘤细胞凋亡.结论:基因治疗联合雷公藤红素可通过抑制胶质瘤血管生成而抑制肿瘤生长;两者联合应用具有协同作用,可弥补两者单独应用的不足之处.%Objective: To examine the effects of therapeutic alliance of adeno-associated virus-mediated recombinant angiostatin (AAV-AS) combined with celastrol on tumor growth, microvessel density and apoptosis of intracranial glioma in rats, and to give a prospective of this therapeutic alliance. Methods: A rat intracranial C6 glioma model was established, and then the rats (n=40) were randomly assigned into four groups after 7 days, which were saline control group, AAV-AS group, celastrol group and therapeutic alliance group. The tumor growth was examined by magnetic resonance imaging (MRI) every 7 days, and the volume of tumor was calculated. The rats were killed after 22 days, and the expression of AS protein, the microvessel density and the apoptosis of tumor cells were detected. Results: The expression of AS protein was detectable in AAV

  6. Class III β-tubulin in advanced NSCLC of adenocarcinoma subtype predicts superior outcome in a randomized trial

    DEFF Research Database (Denmark)

    Vilmar, Adam Christian; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2011-01-01

    Platinum-based doublets are the cornerstone of treatment in advanced non-small-cell lung cancer (NSCLC) and often include vinorelbine or taxanes. A predictive biomarker is greatly needed to select chemotherapy-sensitive patients for these microtubule-interfering agents. Class III β-tubulin (TUBB3...

  7. Altered cellular distribution and subcellular sorting of gamma-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.; Path, M.; Reddy, G.; Dráberová, Eduarda; Šmejkalová, Barbora; Del Valle, L.; Asfraf, Q.; Tadevosyan, A.; Yelin, K.; Maraziotis, T.; Mörk, S.; Mishra, O.; Legido, A.; Nissanov, J.; Baas, P.; De Chadarevian, J.; Dráber, Pavel

    2006-01-01

    Roč. 65, č. 5 (2006), s. 465-477. ISSN 0022-3069 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z5052915 Keywords : anaplastic changes * glioblastoma * gamma tubulin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.371, year: 2006

  8. Pharmacophore Modeling, Atom based 3D-QSAR and Docking Studies of Chalcone derivatives as Tubulin inhibitors

    Directory of Open Access Journals (Sweden)

    Naresh Kandakatla

    2014-09-01

    Full Text Available Tubulin is attractive target for anticancer drug design and their inhibitors are useful in treatment of various cancers. Pharmacophore and Atom based QSAR studies were carried out for series of Chalcone derivatives. Pharmacophore model was developed using 38 compounds, having pIC50 ranging 4.003 to 6.552. The best Pharmacophoric hypothesis AHHRR.10 (one H-acceptor, two hydrophobic groups, two aromatic rings had survival score of 4.824. Atom based 3D QSAR was built for the best hypothesis with training set of 31 and test set of 7 compounds using PLS factor. The obtained QSAR model has excellent regression coefficient of R2 = 0.954, cross validated correlation coefficient q2 = 0.681, Pearson-R = 0.886 and Fisher ratio F = 136.9. The QSAR results explain electron withdrawing, positive, negative ionic and hydrophobic groups are crucial for tubulin inhibition. The docking studies of these inhibitors on the active site of the beta-tubulin shows crucial hydrogen bond interactions with the Gln11, Asn101, Thr145 amino acids. These findings provide designing of novel compounds with better tubulin inhibitory potential.

  9. X-ray fiber diffraction analysis shows dynamic changes in axial tubulin repeats in native microtubules depending on paclitaxel content, temperature and GTP-hydrolysis.

    Science.gov (United States)

    Kamimura, Shinji; Fujita, Yosuke; Wada, Yuuko; Yagi, Toshiki; Iwamoto, Hiroyuki

    2016-03-01

    Microtubules are key components of the cytoskeleton in eukaryotic cells. The dynamics between assembled microtubules and free tubulin dimers in the cytoplasm is closely related to the active shape changes of microtubule networks. One of the most fundamental questions is the association of microtubule dynamics with the molecular conformation of tubulin within microtubules. To address this issue, we applied a new technique for the rapid shear-flow alignment of biological filaments, enabling us to acquire the structural periodicity data of microtubules by X-ray fiber diffraction under various physiological conditions. We classified microtubules into three main groups on the basis of distinct axial tubulin periodicities and mean microtubule diameters that varied depending on GTP hydrolysis and the content of paclitaxel, a microtubule stabilizer. Paclitaxel induced rapid changes in tubulin axial repeats in a cooperative manner. This is the first demonstration of dynamic changes of axial tubulin repeats within native microtubules without fixation. We also found extraordinary features of negative thermal expansion of axial tubulin repeats in both paclitaxel-stabilized and GMPCPP-containing microtubules. Our results suggest that even in assembled microtubules, both GTP- and GDP-tubulin dimers can undergo dynamic conversion between at least two different states: short and long configurations. © 2016 Wiley Periodicals, Inc. PMID:26873786

  10. Dependency of microtubule-associated proteins (MAPs) for tubulin stability and assembly; use of estramustine phosphate in the study of microtubules.

    Science.gov (United States)

    Fridén, B; Wallin, M

    1991-07-10

    Microtubule-associated proteins (MAPs) were separated from tubulin with several different methods. The ability of the isolated MAPs to reinduce assembly of phosphocellulose purified tubulin differed markedly between the different methods. MAPs isolated by addition of 0.35 M NaCl to taxol-stabilized microtubules stimulated tubulin assembly most effectively, while addition of 0.6 M NaCl produced MAPs with a substantially lower ability to stimulate tubulin assembly. The second best preparation was achieved with phosphocellulose chromatographic separation of MAPs with 0.6 M NaCl elution. The addition of estramustine phosphate to microtubules reconstituted of MAPs prepared by 0.35 M NaCl or phosphocellulose chromatography, induced less disassembly than for microtubules assembled from unseparated proteins, and was almost without effect on microtubules reconstituted from MAPs prepared by taxol and 0.6 M NaCl. Estramustine phosphate binds to the tubulin binding part of the MAPs, and the results do therefore indicate that the MAPs are altered by the separation methods. Since the MAPs are regarded as highly stable molecules, one probable alteration could be aggregation of the MAPs, as also indicated by the results. The purified tubulin itself seemed not to be affected by the phosphocellulose purification, since the microtubule proteins were unchanged by the low buffer strenght used during the cromatography. However, the assembly competence after a prolonged incubation of the microtubule proteins at 4 degrees C was dependent on intact bindings between the tubulin and MAPs. PMID:1681420

  11. Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chris Ambrose

    Full Text Available Microtubules emanate from distinct organizing centers in fungal and animal cells. In plant cells, by contrast, microtubules initiate from dispersed sites in the cell cortex, where they then self-organize into parallel arrays. Previous ultrastructural evidence suggested that cell edges participate in microtubule nucleation but so far there has been no direct evidence for this. Here we use live imaging to show that components of the gamma tubulin nucleation complex (GCP2 and GCP3 localize at distinct sites along the outer periclinal edge of newly formed crosswalls, and that microtubules grow predominantly away from these edges. These data confirm a role for cell edges in microtubule nucleation, and suggest that an asymmetric distribution of microtubule nucleation factors contributes to cortical microtubule organization in plants, in a manner more similar to other kingdoms than previously thought.

  12. Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico

    CERN Document Server

    Kononova, Olga; Theisen, Kelly E; Marx, Kenneth A; Dima, Ruxandra I; Ataullakhanov, Fazly I; Grishchuk, Ekaterina L; Barsegov, Valeri

    2015-01-01

    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversib...

  13. Combretastatin dinitrogen-substituted stilbene analogues as tubulin-binding and vascular-disrupting agents.

    Science.gov (United States)

    Siles, Rogelio; Ackley, J Freeland; Hadimani, Mallinath B; Hall, John J; Mugabe, Benon E; Guddneppanavar, Rajsekhar; Monk, Keith A; Chapuis, Jean-Charles; Pettit, George R; Chaplin, David J; Edvardsen, Klaus; Trawick, Mary Lynn; Garner, Charles M; Pinney, Kevin G

    2008-03-01

    Several stilbenoid compounds having structural similarity to the combretastatin group of natural products and characterized by the incorporation of two nitrogen-bearing groups (amine, nitro, serinamide) have been prepared by chemical synthesis and evaluated in terms of biochemical and biological activity. The 2',3'-diamino B-ring analogue 17 demonstrated remarkable cytotoxicity against selected human cancer cell lines in vitro (average GI 50 = 13.9 nM) and also showed good activity in regard to inhibition of tubulin assembly (IC 50 = 2.8 microM). In addition, a single dose (10 mg/kg) of compound 17 caused a 40% tumor-selective blood flow shutdown in tumor-bearing SCID mice at 24 h, thus suggesting the potential value of this compound and its corresponding salt formulations as new vascular-disrupting agents. PMID:18303849

  14. Tubulin and actin interplay at the T cell and Antigen-presenting cell interface

    Directory of Open Access Journals (Sweden)

    Noa B Martín-Cófreces

    2011-07-01

    Full Text Available T cells reorganize their actin and tubulin-based cytoskeletons to provide a physical basis to the immune synapse. However, growing evidence shows that their roles on T cell activation are more dynamic than merely serving as tracks or scaffold for different molecules. The cross-talk between both skeletons may be important for the formation and movement of the lamella at the IS by increasing the adhesion of the T cell to the APC, thus favoring the transport of components towards the plasma membrane and in turn regulating the T-APC intercellular communication. Microtubules and F-actin appear to be essential for the transport of the different signaling microclusters along the membrane, therefore facilitating the propagation of the signal. Finally, they can also be important for regulating the endocytosis, recycling and degradation of the TCR signaling machinery, thus helping both to sustain the activated state and to switch it off.

  15. Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Michalopoulou, Vasiliki A

    2016-03-01

    The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them. PMID:26015161

  16. The adverse outcome pathway (AOP) for chemical binding to tubulin in oocytes leading to aneuploid offspring.

    Science.gov (United States)

    Marchetti, Francesco; Massarotti, Alberto; Yauk, Carole L; Pacchierotti, Francesca; Russo, Antonella

    2016-03-01

    The Organisation for Economic Co-operation and Development (OECD) has launched the Adverse Outcome Pathway (AOP) Programme to advance knowledge of pathways of toxicity and improve the use of mechanistic information in risk assessment. An AOP links a molecular initiating event (MIE) to an adverse outcome (AO) through intermediate key events (KE). Here, we present the scientific evidence in support of an AOP whereby chemicals that bind to tubulin cause microtubule depolymerization resulting in spindle disorganization followed by altered chromosome alignment and segregation and the generation of aneuploidy in female germ cells, ultimately leading to aneuploidy in the offspring. Aneuploidy, an abnormal number of chromosomes that is not an exact multiple of the haploid number, is a well-known cause of human disease and represents a major cause of infertility, pregnancy failure, and serious genetic disorders in the offspring. Among chemicals that induce aneuploidy in female germ cells, a large majority impairs microtubule dynamics and spindle function. Colchicine, a prototypical chemical that binds to tubulin and causes microtubule depolymerization, is used here to illustrate the AOP. This AOP is specific to female germ cells exposed during the periovulation period. Although the majority of the data come from rodent studies, the available evidence suggests that the MIE and KEs are conserved across species and would occur in human oocytes. The development of AOPs related to mutagenicity in germ cells is expected to aid the identification of potential hazards to germ cell genomic integrity and support regulatory efforts to protect population health. Environ. Mol. Mutagen. 57:87-113, 2016. © 2015 Her Majesty the Queen in Right of Canada. PMID:26581746

  17. The mass media destabilizes the cultural homogenous regime in Axelrod's model

    International Nuclear Information System (INIS)

    An important feature of Axelrod's model for culture dissemination or social influence is the emergence of many multicultural absorbing states, despite the fact that the local rules that specify the agents interactions are explicitly designed to decrease the cultural differences between agents. Here we re-examine the problem of introducing an external, global interaction-the mass media-in the rules of Axelrod's model: in addition to their nearest neighbors, each agent has a certain probability p to interact with a virtual neighbor whose cultural features are fixed from the outset. Most surprisingly, this apparently homogenizing effect actually increases the cultural diversity of the population. We show that, contrary to previous claims in the literature, even a vanishingly small value of p is sufficient to destabilize the homogeneous regime for very large lattice sizes.

  18. Non-resonant destabilization of (1/1) internal kink mode by suprathermal electron pressure

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L.; Gates, D. A.; Gorelenkov, N.; Scott, S.; Bertelli, N.; Wilson, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Sugiyama, L. [MIT - Laboratory of Nuclear Science, Cambridge, Massachusetts 02139 (United States); Shiraiwa, S.; Irby, J.; Granetz, R.; Parker, R.; Baek, S. G.; Faust, I.; Wallace, G.; Mumgaard, R.; Gao, C.; Greenwald, M.; Hubbard, A.; Hughes, J.; Marmar, E. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); and others

    2015-05-15

    New experimental observations are reported on the structure and dynamics of short-lived periodic (1, 1) “fishbone”-like oscillations that appear during radio frequency heating and current-drive experiments in tokamak plasmas. For the first time, measurements can directly relate changes in the high energy electrons to the mode onset, saturation, and damping. In the relatively high collisionality of Alcator C-Mod with lower hybrid current drive, the instability appears to be destabilized by the non-resonant suprathermal electron pressure—rather than by wave-particle resonance, rotates toroidally with the plasma and grows independently of the (1, 1) sawtooth crash driven by the thermal plasma pressure.

  19. Periodic force induced stabilization or destabilization of the denatured state of a protein

    CERN Document Server

    Ghosh, Pulak Kumar; Bag, Bidhan Chandra; 10.1063/1.3635774

    2012-01-01

    We have studied the effects of an external sinusoidal force in protein folding kinetics. The externally applied force field acts on the each amino acid residues of polypeptide chains. Our simulation results show that mean protein folding time first increases with driving frequency and then decreases passing through a maximum. With further increase of the driving frequency the mean folding time starts increasing as the noise-induced hoping event (from the denatured state to the native state) begins to experience many oscillations over the mean barrier crossing time period. Thus unlike one-dimensional barrier crossing problems, the external oscillating force field induces both \\emph{stabilization or destabilization of the denatured state} of a protein. We have also studied the parametric dependence of the folding dynamics on temperature, viscosity, non-Markovian character of bath in presence of the external field.

  20. ELM Destabilization by Externally Applied Non-Axisymmetric Magnetic Perturbations in NSTX

    International Nuclear Information System (INIS)

    We report on a recent set of experiments performed in NSTX to explore the effects of non-axisymmetric magnetic perturbations on the stability of edge-localized modes (ELMs). The application of these 3D fields in NSTX was found to have a strong effect on ELM stability, including the destabilization of ELMs in H-modes otherwise free of large ELMs. Exploiting the effect of the perturbations, ELMs have been controllably introduced into lithium-enhanced ELM-free H-modes, causing a reduction in impurity accumulation while maintaining high confinement. Although these experiments show the principle of the combined use of lithium coatings and 3D fields, further optimization is required in order to reduce the size of the induced ELMs.

  1. Engineering FKBP-Based Destabilizing Domains to Build Sophisticated Protein Regulation Systems.

    Directory of Open Access Journals (Sweden)

    Wenlin An

    Full Text Available Targeting protein stability with small molecules has emerged as an effective tool to control protein abundance in a fast, scalable and reversible manner. The technique involves tagging a protein of interest (POI with a destabilizing domain (DD specifically controlled by a small molecule. The successful construction of such fusion proteins may, however, be limited by functional interference of the DD epitope with electrostatic interactions required for full biological function of proteins. Another drawback of this approach is the remaining endogenous protein. Here, we combined the Cre-LoxP system with an advanced DD and generated a protein regulation system in which the loss of an endogenous protein, in our case the tumor suppressor PTEN, can be coupled directly with a conditionally fine-tunable DD-PTEN. This new system will consolidate and extend the use of DD-technology to control protein function precisely in living cells and animal models.

  2. Phosphorylation of ARD1 by IKKβ contributes to its destabilization and degradation

    International Nuclear Information System (INIS)

    IκB kinase β (IKKβ), a major kinase downstream of various proinflammatory signals, mediates multiple cellular functions through phosphorylation and regulation of its substrates. On the basis of protein sequence analysis, we identified arrest-defective protein 1 (ARD1), a protein involved in apoptosis and cell proliferation processes in many human cancer cells, as a new IKKβ substrate. We provided evidence showing that ARD1 is indeed a bona fide substrate of IKKβ. IKKβ physically associated with ARD1 and phosphorylated it at Ser209. Phosphorylation by IKKβ destabilized ARD1 and induced its proteasome-mediated degradation. Impaired growth suppression was observed in ARD1 phosphorylation-mimic mutant (S209E)-transfected cells as compared with ARD1 non-phosphorylatable mutant (S209A)-transfected cells. Our findings of molecular interactions between ARD1 and IKKβ may enable further understanding of the upstream regulation mechanisms of ARD1 and of the diverse functions of IKKβ.

  3. Evidence of sheared sills related to flank destabilization in a basaltic volcano

    Science.gov (United States)

    Berthod, C.; Famin, V.; Bascou, J.; Michon, L.; Ildefonse, B.; Monié, P.

    2016-04-01

    Piton des Neiges basaltic volcano (La Réunion) has been deeply dissected by erosion, exposing large volumes of debris avalanche deposits. To shed light on the factors that led to volcano flank destabilizations, we studied the structure, the crystallographic and magnetic fabrics of the substratum of a debris avalanche unit. This substratum is a complex of > 50 seaward-dipping sills that has been exposed by the avalanche. Structural observations show that the sill plane in contact with the avalanche is one of the latest intrusions in the sill complex. In this uppermost sill, the anisotropy of magnetic susceptibility (AMS) is correlated to the crystallographic preferred orientation of magmatic silicate minerals, allowing us to use AMS as a proxy to infer the magmatic flow. The AMS fabric across the intrusion is strongly asymmetric, which reveals that the contact sill was emplaced with a normal shear displacement of its hanging wall. The shear displacement and the magma flow in the intrusion are both directed toward the NNE, i.e. toward the sea, which is also the direction of the slope and of the debris avalanche runout. Because all the sills in the intrusion complex have a similar dip and dip direction, it is likely that several of them also underwent a cointrusive slip toward the NNE. We conclude that this cointrusive normal slip, repeated over many intrusions of the sill complex, increased the flank instability of the volcano. This incremental instability may have ended up into the observed debris avalanche deposit. At Piton de la Fournaise, the active volcano of La Réunion, sill intrusion and cointrusive flank displacement have been inferred from geophysical studies for the April 2007 eruption. By providing direct evidence of sheared sills, our study substantiates the idea that repeated sill intrusions may eventually trigger flank destabilizations in basaltic volcanoes.

  4. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization.

    Science.gov (United States)

    Shi, Jiong; Zhou, Jing; Shah, Vaibhav B; Aiken, Christopher; Whitby, Kevin

    2011-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is dependent on the proper disassembly of the viral capsid, or "uncoating," in target cells. The HIV-1 capsid consists of a conical multimeric complex of the viral capsid protein (CA) arranged in a hexagonal lattice. Mutations in CA that destabilize the viral capsid result in impaired infection owing to defects in reverse transcription in target cells. We describe here the mechanism of action of a small molecule HIV-1 inhibitor, PF-3450074 (PF74), which targets CA. PF74 acts at an early stage of HIV-1 infection and inhibits reverse transcription in target cells. We show that PF74 binds specifically to HIV-1 particles, and substitutions in CA that confer resistance to the compound prevent binding. A single point mutation in CA that stabilizes the HIV-1 core also conferred strong resistance to the virus without inhibiting compound binding. Treatment of HIV-1 particles or purified cores with PF74 destabilized the viral capsid in vitro. Furthermore, the compound induced the rapid dissolution of the HIV-1 capsid in target cells. PF74 antiviral activity was promoted by binding of the host protein cyclophilin A to the HIV-1 capsid, and PF74 and cyclosporine exhibited mutual antagonism. Our data suggest that PF74 triggers premature HIV-1 uncoating in target cells, thereby mimicking the activity of the retrovirus restriction factor TRIM5α. This study highlights uncoating as a step in the HIV-1 life cycle that is susceptible to small molecule intervention. PMID:20962083

  5. Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors.

    Science.gov (United States)

    Funhoff, Arjen M; van Nostrum, Cornelus F; Lok, Martin C; Kruijtzer, John A W; Crommelin, Daan J A; Hennink, Wim E

    2005-01-01

    A membrane-disrupting peptide derived from the influenza virus was covalently linked to different polymethacrylates (pDMAEMA, pDAMA and the degradable pHPMA-DMAE, monomers depicted in Fig. 1) using N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) as coupling agent to increase the transfection efficiency of polyplexes based on these polymers. It was shown by circular dichroism (CD) measurements that the polymer-conjugated peptide was, as the free peptide, able to undergo a conformational change of a random coil to an alpha helix upon lowering the pH to 5.0. This indicates that the property of the peptide to destabilize the endosomal membrane was preserved after its conjugation to the cationic polymers. In line herewith, a liposome leakage assay revealed that the polymer-bound peptide has comparable activity as the free peptide. The DNA condensing properties of the synthesized polymer-peptide conjugates were studied with dynamic light scattering and zeta-potential measurements, and it was shown that small (100 to 250 nm), positively charged (+15 to +20 mV) particles were formed. In vitro transfection and toxicity was tested in COS-7 cells, and these experiments showed that the polyplexes with grafted peptide had a substantially higher transfection activity than the control polyplexes, while the toxicity remained unchanged. Cellular uptake of the polyplexes was visualized with confocal laser scanning microscopy, and no differences in cellular uptake could be determined between the peptide containing systems and the control formulation. This shows that the increased transfection activity is indeed due to a better endosomal escape of the peptide grafted polyplexes. This study demonstrates that it is possible to covalently conjugate an endosome disruptive peptide to cationic gene delivery polymers with preservation of its membrane destabilization activity, making these conjugates suitable for in vivo DNA delivery. PMID:15588908

  6. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly

    Energy Technology Data Exchange (ETDEWEB)

    Barrack, Keri L.; Fyfe, Paul K.; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dow Street, Dundee DD1 5EH, Scotland (United Kingdom)

    2015-04-21

    The structure of a tubulin-binding cofactor from L. major is reported and compared with yeast, plant and human orthologues. Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area.

  7. Simulation of Asymmetric Destabilization of Mine-void Rock Masses Using a Large 3D Physical Model

    Science.gov (United States)

    Lai, X. P.; Shan, P. F.; Cao, J. T.; Cui, F.; Sun, H.

    2016-02-01

    When mechanized sub-horizontal section top coal caving (SSTCC) is used as an underground mining method for exploiting extremely steep and thick coal seams (ESTCS), a large-scale surrounding rock caving may be violently created and have the potential to induce asymmetric destabilization from mine voids. In this study, a methodology for assessing the destabilization was developed to simulate the Weihuliang coal mine in the Urumchi coal field, China. Coal-rock mass and geological structure characterization were integrated with rock mechanics testing for assessment of the methodology and factors influencing asymmetric destabilization. The porous rock-like composite material ensured accuracy for building a 3D geological physical model of mechanized SSTCC by combining multi-mean timely track monitoring including acoustic emission, crack optical acquirement, roof separation observation, and close-field photogrammetry. An asymmetric 3D modeling analysis for destabilization characteristics was completed. Data from the simulated hydraulic support and buried pressure sensor provided effective information that was linked with stress-strain relationship of the working face in ESTCS. The results of the 3D physical model experiments combined with hybrid statistical methods were effective for predicting dynamic hazards in ESTCS.

  8. Effect of Destabilizing Heat Treatment on Solid-State Phase Transformation in High-Chromium Cast Irons

    Science.gov (United States)

    Efremenko, Vasily; Shimizu, Kazumichi; Chabak, Yuliia

    2013-12-01

    This work describes the influence of secondary carbide precipitation at destabilizing heat treatment on kinetics of austenite phase transformation at a subcritical range of temperatures in high-Cr cast irons, alloyed with 4 to 6 wt pct of Mn or by complex Mn-Ni-Mo (Mn-Cu-Mo). The samples were soaked at 1073 K to 1373 K (800 °C to 1100 °C) (destabilization) or at 573 K to 973 K (300 °C to 700 °C) (subcritical treatment); the combination of destabilization and subcritical treatment was also used. The investigation was carried out with application of optical and electron microscopy and bulk hardness measurement. Time-temperature-transformation (TTT) curves of secondary carbide precipitation and pearlite transformation for as-cast austenite and destabilized austenite were built in this work. It was determined that the secondary carbide precipitation significantly inhibited the pearlite transformation rate at 823 K to 973 K (550 °C to 700 °C). The inhibition effect is more evident in cast irons alloyed with complex Mn-Ni-Mo or Mn-Cu-Mo. The possible reasons for transformation decelerating could be austenite chemical composition change (enriching by Ni, Si, and Cu, and depleting by Cr) and stresses induced by secondary carbide precipitation.

  9. NMR studies on the mechanism of structural destabilization of the globular proteins and DNA by aliphatic alcohols

    International Nuclear Information System (INIS)

    The concept that the mechanism of structural destabilization of the biologically active macromolecules by typical denaturing agents should find a reflection in the NMR spectra of the denaturants themselves has been followed by proton NMR for some aliphatic alcohols in the system containing the serum albumin of DNA. (author)

  10. Evaluation of the Tubulin-Bound Paclitaxel Conformation: Synthesis, Biology and SAR Studies of C-4 to C-3′ Bridged Paclitaxel Analogs

    OpenAIRE

    Ganesh, Thota; Yang, Chao; Norris, Andrew,; Glass, Tom; Bane, Susan; Ravindra, Rudravajhala; Banerjee, Abhijit; Metaferia, Belhu; Thomas, Shala L.; Giannakakou, Paraskevi; Alcaraz, Ana A.; Lakdawala, Ami S.; Snyder, James P.; Kingston, David G I

    2007-01-01

    The important anticancer drug paclitaxel binds to the β-subunit of the αβ-tubulin dimer in the microtubule in a stoichiometric ratio, promoting microtubule polymerization and stability. The conformation of microtubule-bound drug has been the subject of intense study, and various suggestions have been made for it. In previous work we presented experimental and theoretical evidence that paclitaxel adopts a T-shaped conformation when it is bound to tubulin. In this study we report additional exp...

  11. Design, synthesis, and biological evaluation of combretastatin nitrogen-containing derivatives as inhibitors of tubulin assembly and vascular disrupting agents.

    Science.gov (United States)

    Monk, Keith A; Siles, Rogelio; Hadimani, Mallinath B; Mugabe, Benon E; Ackley, J Freeland; Studerus, Scott W; Edvardsen, Klaus; Trawick, Mary Lynn; Garner, Charles M; Rhodes, Monte R; Pettit, George R; Pinney, Kevin G

    2006-05-01

    A series of analogs with nitro or serinamide substituents at the C-2'-, C-5'-, or C-6'-position of the combretastatin A-4 (CA4) B-ring was synthesized and evaluated for cytotoxic effects against heart endothelioma cells, blood flow reduction to tumors in SCID mice, and as inhibitors of tubulin polymerization. The synthesis of these analogs typically featured a Wittig reaction between a suitably functionalized arylaldehyde and an arylphosphonium salt followed by separation of the resultant E- and Z-isomers. Several of these nitrogen-modified CA4 derivatives (both amino and nitro) demonstrate significant inhibition of tubulin assembly as well as cytotoxicity and in vivo blood flow reduction. 2'-Aminostilbenoid 7 and 2'-amino-3'-hydroxystilbenoid 29 proved to be the most active in this series. Both compounds, 7 and 29, have the potential for further pro-drug modification and development as vascular disrupting agents for treatment of solid tumor cancers and certain ophthalmological diseases. PMID:16442292

  12. Ferrocenyl 2,5-Piperazinediones as Tubulin-Binding Organometallic ABCB1 and ABCG2 Inhibitors Active against MDR Cells.

    Science.gov (United States)

    Wieczorek, Anna; Błauż, Andrzej; Zakrzewski, Janusz; Rychlik, Błażej; Plażuk, Damian

    2016-06-01

    The tubulin-microtubule system is a common target of many anticancer drugs. However, the use of chemotherapeutics frequently leads to the development of a clinically relevant phenomenon of multidrug resistance (MDR). One of the basic mechanisms involved in MDR involves elevated expression and/or activity of several ATP-binding cassette superfamily members (ABC transporters) which are normally responsible for the efflux of xenobiotics or secondary metabolites outside the cell. Here we present the synthesis and biological characteristics of ferrocenyl analogues of plinabulin, i.e. one of the so-called "spindle poisons". We found that replacement of the phenyl group of plinabulin by the ferrocenyl moiety turns this compound into a potent inhibitor of ABCB1 and ABCG2, thus making it possible to overcome the multidrug resistance phenomenon. We also demonstrated that the alkyl group attached to the imidazole moiety of ferrocenyl analogues of plinabulin strongly affects their potency to inhibit tubulin polymerization. PMID:27326336

  13. Pironetin Binds Covalently to αCys316 and Perturbs a Major Loop and Helix of α-Tubulin to Inhibit Microtubule Formation.

    Science.gov (United States)

    Prota, Andrea E; Setter, Jocelyn; Waight, Andrew B; Bargsten, Katja; Murga, Juan; Diaz, José Fernando; Steinmetz, Michel O

    2016-07-31

    Microtubule-targeting agents are among the most powerful drugs used in chemotherapy to treat cancer patients. Pironetin is a natural product that displays promising anticancer properties by binding to and potently inhibiting tubulin assembly into microtubules; however, its molecular mechanism of action remained obscure. Here, we solved the crystal structure of the tubulin-pironetin complex and found that the compound covalently binds to Cys316 of α-tubulin. The structure further revealed that pironetin perturbs the T7 loop and helix H8 of α-tubulin. Since both these elements are essential for establishing longitudinal tubulin contacts in microtubules, this result explains how pironetin inhibits the formation of microtubules. Together, our data define the molecular details of the pironetin binding site on α-tubulin and thus offer a promising basis for the rational design of pironetin variants with improved activity profiles. They further extend our knowledge on strategies evolved by natural products to target and perturb the microtubule cytoskeleton. PMID:27395016

  14. Inhibition of AmpC beta-lactamase through a destabilizing interaction in the active site

    Energy Technology Data Exchange (ETDEWEB)

    Trehan, I.; Beadle, B.M.; Shoichet, B.K. (NWU)

    2010-03-08

    {beta}-Lactamases hydrolyze {beta}-lactam antibiotics, including penicillins and cephalosporins; these enzymes are the most widespread resistance mechanism to these drugs and pose a growing threat to public health. {beta}-Lactams that contain a bulky 6(7){alpha} substituent, such as imipenem and moxalactam, actually inhibit serine {beta}-lactamases and are widely used for this reason. Although mutant serine {beta}-lactamases have arisen that hydrolyze {beta}-lactamase resistant {beta}-lactams (e.g., ceftazidime) or avoid mechanism-based inhibitors (e.g., clavulanate), mutant serine {beta}-lactamases have not yet arisen in the clinic with imipenemase or moxalactamase activity. Structural and thermodynamic studies suggest that the 6(7){alpha} substituents of these inhibitors form destabilizing contacts within the covalent adduct with the conserved Asn152 in class C {beta}-lactamases (Asn132 in class A {beta}-lactamases). This unfavorable interaction may be crucial to inhibition. To test this destabilization hypothesis, we replaced Asn152 with Ala in the class C {beta}-lactamase AmpC from Escherichia coli and examined the mutant enzyme's thermodynamic stability in complex with imipenem and moxalactam. Consistent with the hypothesis, the Asn152 {yields} Ala substitution relieved 0.44 and 1.10 kcal/mol of strain introduced by imipenem and moxalactam, respectively, relative to the wild-type complexes. However, the kinetic efficiency of AmpC N152A was reduced by 6300-fold relative to that of the wild-type enzyme. To further investigate the inhibitor's interaction with the mutant enzyme, the X-ray crystal structure of moxalactam in complex with N152A was determined to a resolution of 1.83 {angstrom}. Moxalactam in the mutant complex is significantly displaced from its orientation in the wild-type complex; however, moxalactam does not adopt an orientation that would restore competence for hydrolysis. Although Asn152 forces {beta}-lactams with 6(7){alpha

  15. Complexes of gamma-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells

    Czech Academy of Sciences Publication Activity Database

    Kukharskyy, Vitaliy; Sulimenko, Vadym; Macůrek, Libor; Sulimenko, Tetyana; Dráberová, Eduarda; Dráber, Pavel

    2004-01-01

    Roč. 298, - (2004), s. 218-228. ISSN 0014-4827 R&D Projects: GA AV ČR IAA5052004; GA ČR GA304/00/0553; GA ČR GA304/04/1273; GA MŠk LN00A026 Keywords : gamma-tubulin * P19 cells * Fyn and Src kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.007, year: 2004

  16. Stabilization of protein by freeze-drying in the presence of trehalose: a case study of tubulin

    Czech Academy of Sciences Publication Activity Database

    Dráber, Pavel; Sulimenko, Vadym; Sulimenko, Tetyana; Dráberová, Eduarda

    2014-01-01

    Roč. 1129, February (2014), s. 443-458. ISSN 1064-3745 R&D Projects: GA MŠk LH12050; GA AV ČR M200521203; GA ČR GAP302/10/1701; GA ČR GPP302/11/P709 Institutional support: RVO:68378050 Keywords : Freeze - drying * Microtubules * Stability * Trehalose * Tubulin Subject RIV: EB - Genetics ; Molecular Biology

  17. Assessing Whether Alpha-Tubulin Sequences Are Suitable for Phylogenetic Reconstruction of Ciliophora with Insights into Its Evolution in Euplotids

    OpenAIRE

    Yi, Zhenzhen; Katz, Laura A.; Song, Weibo

    2012-01-01

    The current understanding of ciliate phylogeny is mainly based on analyses of a single gene, the small subunit ribosomal RNA (SSU-rDNA). However, phylogenetic trees based on single gene sequence are not reliable estimators of species trees, and SSU-rDNA genealogies are not useful for resolution of some branches within Ciliophora. Since congruence between multiple loci is the best tool to determine evolutionary history, we assessed the usefulness of alpha-tubulin gene, a protein-coding gene th...

  18. The novel tubulin polymerization inhibitor MHPT exhibits selective anti-tumor activity against rhabdomyosarcoma in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yan Mu

    Full Text Available The dose-limiting toxicity caused by standard chemotherapy has become a major roadblock to successful rhabdomyosarcoma chemotherapy. By screening a thiazolidinone library including 372 compounds, a novel synthetic compound, 2-((4-hydroxyphenylimino-5-(3-methoxybenzylidenethiazolidin-4-one (MHPT, was identified as a potent and selective anti-rhabdomyosarcoma agent. MHPT inhibited 50% of the growth of the rhabdomyosarcoma cell lines RD and SJ-RH30 at 0.44 μM and 1.35 μM, respectively, while displaying no obvious toxicity against normal human fibroblast cells at 100 μM. Further investigation revealed that MHPT suppressed the polymerization of tubulin, leading to rhabdomyosarcoma cell growth arrest at the G2/M phase followed by apoptosis. In vivo, MHPT inhibited tumor growth by 48.6% relative to the vehicle control after 5 intraperitoneal injections of 40 mg/kg without appreciable toxicity to normal tissues and systems in an RD xenograft mouse model, while vincristine caused lethal toxicity when similar growth inhibition was achieved. As a moderate tubulin polymerization inhibitor compared with vincristine, MHPT requires a more dynamic tubulin to exert its cytotoxicity, which is a situation that only exists in cancer cells. This attribute may account for the low toxicity of MHPT in normal cells. Our data suggest that MHPT has the potential to be further developed into a selective anti-rhabdomyosarcoma drug with low toxicity.

  19. Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin.

    Science.gov (United States)

    Zhong, Meigong; Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Jin, Fujun; Ma, Kaiqi; Qiu, Xianxiu; Wang, Qiaoli; Peng, Tao; Kitazato, Kaio; Wang, Yifei

    2014-01-01

    Although it is known that inhibitors of heat shock protein 90 (Hsp90) can inhibit herpes simplex virus type 1 (HSV-1) infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus. Hsp90 knockdown by siRNA or treatment with Hsp90 inhibitors significantly inhibited the nuclear transport of viral capsid protein (ICP5) at the early stage of HSV-1 infection. In contrast, overexpression of Hsp90 restored the nuclear transport that was prevented by the Hsp90 inhibitors, suggesting that Hsp90 is required for nuclear transport of viral capsid protein. Furthermore, HSV-1 infection enhanced acetylation of α-tubulin and Hsp90 interacted with the acetylated α-tubulin, which is suppressed by Hsp90 inhibition. These results demonstrate that Hsp90, by interacting with acetylated α-tubulin, plays a crucial role in viral capsid protein nuclear transport and may provide novel insight into the role of Hsp90 in HSV-1 infection and offer a promising strategy to overcome drug-resistance. PMID:24901434

  20. Functional Role of Tia1/Pub1 and Sup35 Prion Domains: Directing Protein Synthesis Machinery to the Tubulin Cytoskeleton

    Science.gov (United States)

    Li, Xiang; Rayman, Joseph B.; Kandel, Eric R; Derkatch, Irina L.

    2014-01-01

    SUMMARY Tia1/Pub1 is a stress granule component carrying a Q/N-rich prion domain. We provide direct evidence that Tia1 forms a prion in yeast. Moreover, Tia1/Pub1 acts co-operatively with release factor Sup35/eRF3 to establish a two-protein self-propagating state. This two-protein prion driven by the Q/N-rich prion domains of Sup35 and Tia1/Pub1 can be visualized as distinctive line structures along tubulin cytoskeleton. Furthermore, we find that tubulin-associated complex containing Pub1 and Sup35 oligomers normally exists in yeast, and its assembly depends on prion domains of Pub1 and Sup35. This Sup35/Pub1 complex, which also contains TUB1 mRNA and components of translation machinery, is important for the integrity of the tubulin cytoskeleton: PUB1 disruption and Sup35 depletion from the complex lead to cytoskeletal defects. We propose that the complex is implicated in protein synthesis at the site of microtubule assembly. Thus our study identifies the role for prion domains in the assembly of multi-protein complexes. PMID:24981173

  1. Synthesis and SAR requirements of adamantane-colchicine conjugates with both microtubule depolymerizing and tubulin clustering activities.

    Science.gov (United States)

    Zefirova, Olga N; Nurieva, Evgeniya V; Shishov, Dmitrii V; Baskin, Igor I; Fuchs, Fabian; Lemcke, Heiko; Schröder, Fabian; Weiss, Dieter G; Zefirov, Nikolay S; Kuznetsov, Sergei A

    2011-09-15

    A series of analogues of conjugate 1, combining an adamantane-based paclitaxel (taxol) mimetic with colchicine was synthesized and tested for cytotoxicity in a cell-based assay with the human lung carcinoma cell line A549. The most active compounds (10 EC(50) 2 ± 1.0 nM, 23 EC(50) 6 ± 1.4 nM, 26 EC(50) 5 ± 1.8 nM, 28 EC(50) 11 ± 1.7 nM, 30 EC(50) 4.8 ± 0.5 nM) were found to interfere with the microtubule dynamics in an interesting manner. Treatment of the cells with these compounds promoted disassembly of microtubules followed by the formation of stable tubulin clusters. Structure-activity relationships for the analogues of 23 revealed the sensitivity of both cytotoxicity and tubulin clustering ability to the linker length. The presence of adamantane (or another bulky hydrophobic and non-aromatic moiety) in 23 was found to play an important role in the formation of tubulin clusters. Structural requirements for optimal activity have been partially explained by molecular modeling. PMID:21873068

  2. C1, a highly potent novel curcumin derivative, binds to tubulin, disrupts microtubule network and induces apoptosis

    Science.gov (United States)

    Srivastava, Shalini; Mishra, Satyendra; Surolia, Avadhesha; Panda, Dulal

    2016-01-01

    We have synthesized a curcumin derivative, 4-{5-(4-hydroxy-3-methoxy-phenyl)-2-[3-(4-hydroxy-3-methoxy-phenyl)-acryloyl]-3-oxo-penta-1,4-dienyl}-piperidine-1-carboxylic acid tert-butyl ester (C1) that displays much stronger antiproliferative activity against various types of cancer cells including multidrug resistance cells than curcumin. C1 depolymerized both interphase and mitotic microtubules in MCF-7 cells and also inhibited the reassembly of microtubules in these cells. C1 inhibited the polymerization of purified tubulin, disrupted the lattice structure of microtubules and suppressed their GTPase activity in vitro. The compound bound to tubulin with a dissociation constant of 2.8±1 μM and perturbed the secondary structures of tubulin. Further, C1 treatment reduced the expression of Bcl2, increased the expression of Bax and down regulated the level of a key regulator of p53, murine double minute 2 (Mdm2) (S166), in MCF-7 cells. C1 appeared to induce p53 mediated apoptosis in MCF-7 cells. Interestingly, C1 showed more stability in aqueous buffer than curcumin. The results together showed that C1 perturbed microtubule network and inhibited cancer cells proliferation more efficiently than curcumin. The strong antiproliferative activity and improved stability of C1 indicated that the compound may have a potential as an anticancer agent. PMID:26980197

  3. Susceptibility to superhelically driven DNA duplex destabilization: a highly conserved property of yeast replication origins.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available Strand separation is obligatory for several DNA functions, including replication. However, local DNA properties such as A+T content or thermodynamic stability alone do not determine the susceptibility to this transition in vivo. Rather, superhelical stresses provide long-range coupling among the transition behaviors of all base pairs within a topologically constrained domain. We have developed methods to analyze superhelically induced duplex destabilization (SIDD in genomic DNA that take into account both this long-range stress-induced coupling and sequence-dependent local thermodynamic stability. Here we apply this approach to examine the SIDD properties of 39 experimentally well-characterized autonomously replicating DNA sequences (ARS elements, which function as replication origins in the yeast Saccharomyces cerevisiae. We find that these ARS elements have a strikingly increased susceptibility to SIDD relative to their surrounding sequences. On average, these ARS elements require 4.78 kcal/mol less free energy to separate than do their immediately surrounding sequences, making them more than 2,000 times easier to open. Statistical analysis shows that the probability of this strong an association between SIDD sites and ARS elements arising by chance is approximately 4 x 10. This local enhancement of the propensity to separate to single strands under superhelical stress has obvious implications for origin function. SIDD properties also could be used, in conjunction with other known origin attributes, to identify putative replication origins in yeast, and possibly in other metazoan genomes.

  4. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease.

    Science.gov (United States)

    van der Crabben, Saskia N; Hennus, Marije P; McGregor, Grant A; Ritter, Deborah I; Nagamani, Sandesh C S; Wells, Owen S; Harakalova, Magdalena; Chinn, Ivan K; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M; Terheggen-Lagro, Suzanne W; van Lieshout, Stef; van Roosmalen, Markus J; Renkens, Ivo; Duran, Karen; Nijman, Isaac J; Kloosterman, Wigard P; Hennekam, Eric; Orange, Jordan S; van Hasselt, Peter M; Wheeler, David A; Palecek, Jan J; Lehmann, Alan R; Oliver, Antony W; Pearl, Laurence H; Plon, Sharon E; Murray, Johanne M; van Haaften, Gijs

    2016-08-01

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood. PMID:27427983

  5. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Jimcy Platholi

    Full Text Available General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.

  6. α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state.

    Science.gov (United States)

    McCarren, Hilary S; Chalifoux, Michael R; Han, Bo; Moore, Jason T; Meng, Qing Cheng; Baron-Hionis, Nina; Sedigh-Sarvestani, Madineh; Contreras, Diego; Beck, Sheryl G; Kelz, Max B

    2014-12-01

    The sleep-promoting ventrolateral preoptic nucleus (VLPO) shares reciprocal inhibitory inputs with wake-active neuronal nuclei, including the locus ceruleus. Electrophysiologically, sleep-promoting neurons in the VLPO are directly depolarized by the general anesthetic isoflurane and hyperpolarized by norepinephrine, a wake-promoting neurotransmitter. However, the integration of these competing influences on the VLPO, a sleep- and anesthetic-active structure, has yet to be evaluated in either brain slices in vitro or the intact organism. Single-cell multiplex RT-PCR conducted on both isoflurane-activated, putative sleep-promoting VLPO neurons and neighboring, state-indifferent VLPO neurons in mouse brain slices revealed widespread expression of α2A-, α2B- and α2C-adrenergic receptors in both populations. Indeed, both norepinephrine and the highly selective α2 agonist dexmedetomidine each reversed the VLPO depolarization induced by isoflurane in slices in vitro. When microinjected directly into the VLPO of a mouse lightly anesthetized with isoflurane, dexmedetomidine increased behavioral arousal and reduced the depressant effects of isoflurane on barrel cortex somatosensory-evoked potentials but failed to elicit spectral changes in spontaneous EEG. Based on these observations, we conclude that local modulation of α-adrenergic activity in the VLPO destabilizes, but does not fully antagonize, the anesthetic state, thus priming the brain for anesthetic emergence. PMID:25471576

  7. Enzyme-responsive destabilization of stabilized plasmid-lipid nanoparticles as an efficient gene delivery.

    Science.gov (United States)

    Song, Su Jeong; Lee, Seulgi; Lee, Yan; Choi, Joon Sig

    2016-08-25

    Stabilized plasmid-lipid particles (SPLPs) have been developed to overcome the low stability issue of cationic liposomes, however, SPLPs that are too stable result in unsatisfactory transfection efficiency. In this article, we prepared enzyme-responsive SPLPs (eSPLPs) composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and mPEG-GLFG-K-(C16)2, a PEG lipid with an enzymatically-cleavable linker (glycine-phenylalanine-leucine-glycine, GFLG). eSPLPs were successfully prepared with plasmid DNA (pDNA) encapsulation efficiency of over 80%, using the detergent dialysis method. The PEG shell stabilized eSPLPs and maintained a hydrodynamic diameter of around 200nm. Although typical SPLPs were relatively intact in endosomal condition, the PEG shell of eSPLPs was cleaved following the degradation of the GFLG linker by cathepsin B in the endosome. Then, eSPLPs collapsed and induced endosomal disruption triggering the controlled release of the encapsulated pDNA into cytoplasm. Owing to the enzyme-responsive destabilization, eSPLPs showed a 10 to 100-fold higher transfection efficiency than control SPLPs, which was confirmed using luciferase assay. These results suggest that eSPLPs might be promising candidates for practical use as gene delivery systems, with both stability and high transfection efficiency for future in vivo applications. PMID:27240779

  8. Cortisol and testosterone increase financial risk taking and may destabilize markets.

    Science.gov (United States)

    Cueva, Carlos; Roberts, R Edward; Spencer, Tom; Rani, Nisha; Tempest, Michelle; Tobler, Philippe N; Herbert, Joe; Rustichini, Aldo

    2015-01-01

    It is widely known that financial markets can become dangerously unstable, yet it is unclear why. Recent research has highlighted the possibility that endogenous hormones, in particular testosterone and cortisol, may critically influence traders' financial decision making. Here we show that cortisol, a hormone that modulates the response to physical or psychological stress, predicts instability in financial markets. Specifically, we recorded salivary levels of cortisol and testosterone in people participating in an experimental asset market (N = 142) and found that individual and aggregate levels of endogenous cortisol predict subsequent risk-taking and price instability. We then administered either cortisol (single oral dose of 100 mg hydrocortisone, N = 34) or testosterone (three doses of 10 g transdermal 1% testosterone gel over 48 hours, N = 41) to young males before they played an asset trading game. We found that both cortisol and testosterone shifted investment towards riskier assets. Cortisol appears to affect risk preferences directly, whereas testosterone operates by inducing increased optimism about future price changes. Our results suggest that changes in both cortisol and testosterone could play a destabilizing role in financial markets through increased risk taking behaviour, acting via different behavioural pathways. PMID:26135946

  9. Chylomicron remnant model emulsions induce intracellular cholesterol accumulation and cell death due to lysosomal destabilization.

    Science.gov (United States)

    Wakita, Kyoko; Morita, Shin-ya; Okamoto, Naoko; Takata, Eriko; Handa, Tetsurou; Nakano, Minoru

    2015-05-01

    Chylomicron remnants, which carry dietary fats and cholesterol, play a role in promoting atherosclerosis. Chylomicron remnants are characterized by high cholesterol content at the surface, different from low-density lipoproteins (LDLs) containing high amounts of esterified cholesterol (CE) in the core. We prepared cholesterol-rich emulsions (TO-PC/cholesterol emulsions) as models for chylomicron remnants and compared their effects on J774 macrophages with acetylated-LDL (ac-LDL). Internalization of TO-PC/cholesterol emulsions into macrophages reduced cell viability, whereas ac-LDL did not. Surprisingly, there was no difference in intracellular free cholesterol content between cells incubated with TO-PC/cholesterol emulsions and with ac-LDL. Furthermore, cholesterol in TO-PC/cholesterol emulsions and ac-LDL both were internalized into J774 macrophages; however, incubation with TO-PC/cholesterol emulsions induced leakage of lysosomal protease, cathepsin-L, to cytosol, which was not observed for incubation with ac-LDL. Inhibition of the activity of cathepsin-L recovered the viability of macrophages that ingested TO-PC/cholesterol emulsions. We suggest an alternative fate of cholesterol-rich emulsions taken up by macrophages, which is different from other atherogenic lipoproteins rich in CE; internalization of TO-PC/cholesterol emulsions into macrophages induces rapid free cholesterol accumulation in lysosomes and cell death due to lysosomal destabilization. PMID:25661161

  10. Entropic (de)stabilization of surface-bound peptides conjugated with polymers

    Science.gov (United States)

    Carmichael, Scott P.; Shell, M. Scott

    2015-12-01

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  11. Destabilizing effect of time-dependent oblique magnetic field on magnetic fluids streaming in porous media.

    Science.gov (United States)

    El-Dib, Yusry O; Ghaly, Ahmed Y

    2004-01-01

    The present work studies Kelvin-Helmholtz waves propagating between two magnetic fluids. The system is composed of two semi-infinite magnetic fluids streaming throughout porous media. The system is influenced by an oblique magnetic field. The solution of the linearized equations of motion under the boundary conditions leads to deriving the Mathieu equation governing the interfacial displacement and having complex coefficients. The stability criteria are discussed theoretically and numerically, from which stability diagrams are obtained. Regions of stability and instability are identified for the magnetic fields versus the wavenumber. It is found that the increase of the fluid density ratio, the fluid velocity ratio, the upper viscosity, and the lower porous permeability play a stabilizing role in the stability behavior in the presence of an oscillating vertical magnetic field or in the presence of an oscillating tangential magnetic field. The increase of the fluid viscosity plays a stabilizing role and can be used to retard the destabilizing influence for the vertical magnetic field. Dual roles are observed for the fluid velocity in the stability criteria. It is found that the field frequency plays against the constant part for the magnetic field. PMID:14651916

  12. Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization.

    Directory of Open Access Journals (Sweden)

    Elisa Dominguez

    Full Text Available Branch retinal vein occlusion (BRVO leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined.We here show that laser-induced experimental BRVO in mice leads to a wave of TUNEL-positive endothelial cell (EC apoptosis in the upstream vascular network associated with a transient edema and hemorrhages. Subsequently, we observe an induction of EC proliferation within the dilated vein and capillaries, detected by EdU incorporation, and the edema resolves. However, the pericytes of the upstream capillaries are severely reduced, which was associated with continuing EC apoptosis and proliferation. The vascular remodeling was associated with increased expression of TGFβ, TSP-1, but also FGF2 expression. Exposure of the experimental animals to hypoxia, when pericyte (PC dropout had occurred, led to a dramatic increase in endothelial cell proliferation, confirming the vascular instability induced by the experimental BRVO.Experimental BRVO leads to acute endothelial cells apoptosis and increased permeability. Subsequently the upstream vascular network remains destabilized, characterized by pericyte dropout, un-physiologically high endothelial cells turnover and sensitivity to hypoxia. These early changes might pave the way for capillary loss and subsequent chronic ischemia and edema that characterize the late stage disease.

  13. Entropic (de)stabilization of surface-bound peptides conjugated with polymers.

    Science.gov (United States)

    Carmichael, Scott P; Shell, M Scott

    2015-12-28

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications. PMID:26723588

  14. The destabilization of the French electricity supply industry nascent competition in an open environment

    Energy Technology Data Exchange (ETDEWEB)

    Finon, D

    2001-06-01

    In February 2000 France, compelled by the 1996 European Directive 96/92, undertook a minimal reform of the organisation of its electricity industry, while preserving the boundaries of the incumbent company. The aim of this paper is to analyse the conditions of destabilization of the industrial organisation of the French ESI, by identifying the economic factors of endogenous and exogenous erosion. Firstly, after setting out the main elements of the French reform, which is aimed at making the electricity market contestable, the effectiveness of the ''contestability'' of the French power market is discussed. Secondly in order to test the stability of the new institutional arrangements, an institutional prospect is developed, on the basis of economic factors of instability and resistance, to produce two contrasting scenarios: one in which the particularly French model is retained (limited contestability market scenario); another in which there is movement towards a de-integrated competitive model (contamination by competition scenario). Thirdly the author concludes on the basis of recent elements, that the future would be a mix of these two trajectories which will come within in the progressive integration of the national markets in continental Europe. (A.L.B.)

  15. The destabilization of the French electricity supply industry nascent competition in an open environment

    International Nuclear Information System (INIS)

    In February 2000 France, compelled by the 1996 European Directive 96/92, undertook a minimal reform of the organisation of its electricity industry, while preserving the boundaries of the incumbent company. The aim of this paper is to analyse the conditions of destabilization of the industrial organisation of the French ESI, by identifying the economic factors of endogenous and exogenous erosion. Firstly, after setting out the main elements of the French reform, which is aimed at making the electricity market contestable, the effectiveness of the ''contestability'' of the French power market is discussed. Secondly in order to test the stability of the new institutional arrangements, an institutional prospect is developed, on the basis of economic factors of instability and resistance, to produce two contrasting scenarios: one in which the particularly French model is retained (limited contestability market scenario); another in which there is movement towards a de-integrated competitive model (contamination by competition scenario). Thirdly the author concludes on the basis of recent elements, that the future would be a mix of these two trajectories which will come within in the progressive integration of the national markets in continental Europe. (A.L.B.)

  16. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    International Nuclear Information System (INIS)

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes

  17. Structural and Functional Studies Indicate That Shigella VirA Is Not a Protease and Does Not Directly Destabilize Microtubules

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L.; Ohi, Ryoma; Goldberg, Marcia B.; Spiller, Benjamin W. (Harvard-MED); (Vanderbilt)

    2008-11-24

    VirA, an essential virulence factor in Shigella disease pathogenesis, is involved in the uptake, motility, and cell-to-cell spread of Shigella organisms within the human host. These functions have been attributed to a VirA protease activity and a mechanism of microtubule destruction via tubulin degradation [Yoshida, S., et al. (2006) Science 314, 985--989]. We report functional and crystallographic data indicating a novel VirA structure that lacks these activities but highlights the homology to the EspG virulence factor of pathogenic Escherichia coli.

  18. A Single Amino-Acid Substitution at Lysine 40 of an Arabidopsis thaliana α-tubulin Causes Extensive Cell Proliferation and Expansion Defects

    Institute of Scientific and Technical Information of China (English)

    Xue Xiong; Deyang Xu; Zhongnan Yang; HaiHuang; Xiaofeng Cui

    2013-01-01

    Microtubules are highly dynamic cytoskeletal polymers of α/β-tubulin heterodimers that undergo multiple post-translational modifications essential for various cellular functions in eukaryotes.The lysine 40 (K40) is largely conserved in α-tubulins in many eukaryote species,and the post-translational modification by acetylation at K40 is critical for neuronal development in vertebrates.However,the biological function of K40 of α-tubulins in plants remains unexplored.In this study,we show in Arabidopsis thaliana that constitutive expression of mutated forms of α-tubulin6 (TUA6) at K40 (TUA6κ40A or TUA6κ40Q),in which K40 is replaced by alanine or glutamine,result in severely reduced plant size.Phenotypic characterization of the 35S:TUA6κ40A transgenic plants revealed that both cell proliferation and cell expansion were affected.Cytological and biochemical analyses showed that the accumulation ofα-and β-tubulin proteins was significantly reduced in the transgenic plants,and the cortical microtubule arrays were severely disrupted,indicating that K40 of the plant α-tubulin is critical in maintaining microtubule stability.We also constructed 35S:TUA6κ40R transgenic plants in which K40 of the engineered TUA6 protein is replaced by an arginine,and found that the 35S:TUA6K40R plants were phenotypically indistinguishable from the wild-type.Since lysine and arginine are similar in biochemical nature but arginine cannot be acetylated,these results suggest a structural importance for K40 of α-tubulins in cell division and expansion.

  19. Singlet oxygen mediated DNA damage induced phototoxicity by ketoprofen resulting in mitochondrial depolarization and lysosomal destabilization

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Photomodification and phototixicity of KP at ambient environmental intensities of UV-radiation. • Phototoxicity of KP through type-II photodynamic reaction by generating 1O2. • Role of DNA damage and lipid peroxidation in KP phototoxicity. • Apototic cell death and involvement of lysosomes and mitochondria. • Cytochrome-c release from mitochondria and up-regulation of p21 and Bax genes expression. - Abstract: Ketoprofen (KP) is a widely used nonsteroidal anti-inflammatory drug for the treatment of osteoarthritis and various rheumatic diseases. Currently, KP is applied topically on skin as gel to treat symptoms of pain and inflammation. We have studied the photomodification of KP under natural environmental conditions. KP generates reactive oxygen species (ROS) like 1O2 through Type-II photodynamic reaction. 1O2 mediated 2′-dGuO photodegradation, single and double strand breakage were significantly induced by photosensitized KP under sunlight/UV-R exposure. Significant intracellular ROS generation was measured through DCF-DA fluorescence. Linoleic acid photoperoxidation and role of 1O2 were substantiated by using specific quencher like sodium azide. KP induced cell cycle arrest in G2/M phase and cell death through MTT assay. We found apoptosis as the pattern of cell death which was confirmed through caspase-3 activation, cytochrome-c release from mitochondria, up-regulation of Bax protein and phosphatidylserine translocation. Our RT-PCR result strongly supports our view point of apoptotic cell death through up-regulation of p21 and pro-apoptotic Bax genes expression. Mitochondrial depolarization and lysosomal destabilization were also parallel to apoptotic process. Therefore, much attention should be paid to the topical application of KP and sunlight exposure in the light of skin related photosensitivity and cancers

  20. Electric field driven destabilization of the insulating state in nominally pure LaMnO3

    International Nuclear Information System (INIS)

    We report an electric field driven destabilization of the insulating state in nominally pure LaMnO3 single crystal with a moderate field which leads to a resistive state transition below 300 K. The transition is between the insulating state in LaMnO3 and a high resistance bad metallic state that has a temperature independent resistivity. The transition occurs at a threshold field (Eth) that shows a steep enhancement on cooling. While at lower temperatures the transition is sharp and involves a large change in resistance, it softens on heating and is eventually absent above 280 K. When the Mn4+ content is increased by Sr substitution up to x = 0.1, the observed transition, although observable in a certain temperature range, softens considerably. This observation has been explained as a bias driven percolation type transition between two co-existing phases, where the majority phase is a charge and orbitally ordered polaronic insulating phase and the minority phase is a bad metallic phase. The mobile fraction f of the bad metallic phase deduced from the experimental data follows an activated kinetics as f = fo(E)exp(−Δ/kBT) with the activation energy Δ ≈ 200 meV, and the pre-factor fo(E) is a strong function of the field that leads to a rapid enhancement of f on application of field, leading to the resistive state transition. We suggest likely scenarios for such co-existing phases in nominally pure LaMnO3 that can lead to the bias driven percolation type transition. (paper)

  1. Destabilization of the 6H-SrIrO3 polymorph through partial substitution of zinc and lithium

    DEFF Research Database (Denmark)

    Bremholm, Martin; K. Kim, Cindi; Hirai, Daigo; Climent-Pascual, Esteban; Xu, Qiang; W. Zandbergen, Henny; N. Ali, Maz; Cava, Robert J.

    2012-01-01

    We report on the destabilization of the 6H-SrIrO3 polymorph through partial substitutions of zinc and lithium for iridium to form perovskites. The perovskites crystallize in the orthorhombic space group Pbnm: SrIr1−xZnxO3 is found for 0.25 ≤ x ≤ 0.33, while SrIr1−xLixO3 is found only for x = 0.25...

  2. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis

    OpenAIRE

    Ma, Zhanjun; SHOU, KANGQUAN; LI, ZONGHUAN; Jian, Chao; QI, BAIWEN; Yu, Aixi

    2016-01-01

    Negative pressure wound therapy (NPWT) has been observed to accelerate the wound healing process in humans through promoting angiogenesis. However, the potential biological effect and relevant molecular mechanisms, including microvessel destabilization, regression and endothelial cell proliferation in the early stage (1–3 days), and the neovascular stabilization and maturation in the later stage (7–15 days), have yet to be fully elucidated. The current study aimed to research the potential ef...

  3. Real or nominal shock – which one does more to destabilize developing economies? The case of money velocity in Kazakhstan

    OpenAIRE

    Murat Alikhanov; Leon Taylor

    2015-01-01

    Volatility in money velocity destabilizes spending and output, generating business cycles. This note develops a gauge of this volatility, based on the quantity equation of exchange. In contrast to ad hoc regression, the gauge measures the impacts on volatility of the three determinants of velocity – money supply, output, and the price level. The algorithm allows covariances among these variables. An application to a fast-growing transition economy, Kazakhstan, finds that at the margin, price ...

  4. Hydrogen storage in 2NaBH{sub 4} + MgH{sub 2} mixtures: Destabilization by additives and nanoconfinement

    Energy Technology Data Exchange (ETDEWEB)

    Mulas, G., E-mail: mulas@uniss.it [Dipartimento di Chimica, Universita di Sassari and INSTM, Via Vienna 2, I-07100 Sassari (Italy); Campesi, R. [JRC-IE, Westernduinweg 3, 1755 ZG Petten (Netherlands); Garroni, S.; Napolitano, E. [Dipartimento di Chimica, Universita di Sassari and INSTM, Via Vienna 2, I-07100 Sassari (Italy); Milanese, C. [Pavia H2 Lab, C.S.G.I. and Dipartimento di Chimica, Sezione di Chimica Fisica, Universita di Pavia, Viale Taramelli 16, I-27100 Pavia (Italy); Dolci, F. [JRC-IE, Westernduinweg 3, 1755 ZG Petten (Netherlands); Pellicer, E.; Baro, M.D. [Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Marini, A. [Pavia H2 Lab, C.S.G.I. and Dipartimento di Chimica, Sezione di Chimica Fisica, Universita di Pavia, Viale Taramelli 16, I-27100 Pavia (Italy)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Nanoconfinement of 2NaBH{sub 4} + MgH{sub 2} into SBA-15 silica was successful in improving the thermodynamic and kinetic properties of the multi-component system Black-Right-Pointing-Pointer The use of NbF{sub 5} as additive reduced the NaBH{sub 4} decomposition temperature and increased the desorption kinetics. Black-Right-Pointing-Pointer Destabilization of hydrides can be gained by synergic effect of nanoconfinement and use of additive materials. - Abstract: We focus on the H{sub 2} desorption properties of the 2NaBH{sub 4} + MgH{sub 2} system destabilized by different methods. Nanostructured powder mixtures were prepared by ball milling the starting hydrides and nanoconfined reactive composites were obtained by melting infiltration of the hydrides into a Si-based SBA-15 support. NbF{sub 5} was tested as catalyst in both the preparations. Structural characterization by X Ray Diffraction and Transmission Electron Microscopy allowed evaluating the successful synthesis of SBA15 matrix, the microstructural features of ball milled and nanoconfined hydrides as well as the success of infiltration process. The evaluation of the sorption properties, by manometric Sievert-type apparatus and thermal desorption spectroscopy, revealed the efficiency of the hydride destabilization, obtained by the different routes, in decreasing the hydrogen release temperature and improving desorption kinetics.

  5. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  6. Dynamic and Static Water Molecules Complement the TN16 Conformational Heterogeneity inside the Tubulin Cavity.

    Science.gov (United States)

    Majumdar, Sarmistha; Maiti, Satyabrata; Ghosh Dastidar, Shubhra

    2016-01-19

    TN16 is one of the most promising inhibitors of α, β dimer of tubulin that occupies the cavity in the β-subunit located at the dimeric interface, known as the colchicine binding site. The experimentally determined structure of the complex (Protein Data Bank entry 3HKD) presents the conformation and position of the ligand based on the "best fit", keeping the controversy of other significant binding modes open for further investigation. Computation has already revealed that TN16 experiences fluctuations within the binding pocket, but the insight from that previous report was limited by the shorter windows of sampling and by the approximations on the surrounding environment by implicit solvation. This article reports that in most of the cases straightforward MMGBSA calculations of binding energy revealed a gradual loss of stabilization that was inconsistent with the structural observations, and thus, it indicated the lack of consideration of stabilizing factors with appropriate weightage. Consideration of the structurally packed water molecules in the space between the ligand and receptor successfully eliminated such discrepancies between the structure and stability, serving as the "litmus test" of the importance of explicit consideration of such structurally packed water in the calculations. Such consideration has further evidenced a quasi-degenerate character of the different binding modes of TN16 that has rationalized the observed intrinsic fluctuations of TN16 within the pocket, which is likely to be the most critical insight into its entropy-dominated binding. Quantum mechanical calculations have revealed a relay of electron density from TN16 to the protein via a water molecule in a concerted manner. PMID:26666704

  7. Expression of α-tubulin and β-tubulin at different stages in the course of breast carcinoma and its significance%α、β-微管蛋白在乳腺癌变不同阶段的表达及意义

    Institute of Scientific and Technical Information of China (English)

    应荣彪; 冯俊; 李建军; 瞿海江; 姚俊

    2011-01-01

    Background and purpose: Taxanes is one of the most important chemotherapeutic drugs in treating breast cancer. By promoting tubulin polymerization, it encourages apoptosis of breast tumor cells. However, resistance to taxanes makes it difficult for disease control. Therefore, it is important to reveal the expression level changes of α, β-tubulin in the breast cancer process. We studied the expression of α-tubulin and β-tubulin in breast atypical ductal hyperplasia(ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma(IDC) and its relationship in the development of breast cancer. Methods: Immunohistochemistry was used to examine the expression of α-tubulin and P-tubulin in 3 groups including ADH, DCIS and IDC with 30 cases in each group; 30 cases of normal breast tissues were selected as a control group. Results: a-tubulin and β-tubulin expression in normal breast tissues, ADH, DCIS and IDC showed a gradual increasing trend where the difference was statistically significant (P0.05), the differences of the vestige groups were statistically significant (P0.05),其余各组间差异均有统计学意义(P

  8. Hg sup 2+ induces GTP-tubulin interactions in rat brain similar to those observed in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Duhr, E.; Pendergrass, C.; Kasarskis, E.; Slevin, J.; Haley, B. (Univ. of Kentucky, Lexington (United States))

    1991-03-11

    The pathogenesis of Alzheimer's Disease (AD) is unknown. Using SDS-PAGE and autoradiography the authors' laboratory has shown: (1) that the tubulin in AD brain is less photolabeled by ({sup 32}P)8N{sub 3}GTP than is tubulin from control brain and (2) that low {mu}M levels of preformed Hg{sup 2+}EDTA specifically blocked interactions of tubulin-({sup 32}P)8N{sub 3}GTP in control human brain homogenates giving a photolabeling profile identical to AD brain. Elevated levels of Hg{sup 2+} have been reported in AD brain by others. Earlier work using ({sup 32}P)8N{sub 3}GTP with Al{sup 3+} treated rat and rabbit brain showed no differences from control with regards to tubulin photolabeling. However, our latest data show that brain samples from Hg{sup 2+} fed rats display an abolished GTP-tubulin interaction similar to AD brain samples as determined by ({sup 32}P)8N{sub 3}GTP photolabeling profiles. Removal of Hg{sup 2+} from treated rats did not reverse the effect. These results suggest that certain complexed forms of Hg{sup 2+} must be considered as a potential source for the etiology of AD.

  9. A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons

    International Nuclear Information System (INIS)

    The expression of major cytoskeletal protein mRNAs was studied in adult rat dorsal root ganglion (DRG) neurons after crushing either their central or peripheral branch axons. mRNA levels in DRG neurons were examined by quantitative in situ hybridization with radiolabeled cDNA probes specific for the low-molecular-weight neurofilament protein (NF-L) and beta-tubulin. The large-sized (greater than 1000 microns 2) neurons which give rise to myelinated axons in lumbar ganglia (L4 and L5) were studied 1 d through 8 weeks after either dorsal root or sciatic nerve crush. NF-L and beta-tubulin mRNA levels in axotomized DRG neurons were compared to those in contralateral control DRG neurons, as well as to those in normal (completely untreated) DRG cells. In the case of NF-L mRNA, changes were observed after central as well as peripheral branch axotomy and the time course and magnitude of changes were similar after both types of axotomy. NF-L mRNA levels initially decreased (first 2 weeks after crush) and then began to return towards control levels at longer survival times. Similar, but less pronounced, changes in NF-L mRNA levels also occurred in contralateral DRG neurons (which were uninjured); the changes in contralateral neurons were not simply a result of surgical stress since no changes in NF-L mRNA levels were observed in sham-operated DRG neurons. In the case of tubulin mRNA, changes were observed after central as well as peripheral branch axotomy by in situ hybridization, but the time course and magnitude of changes were different after each type of axotomy

  10. Genotypic analysis of β-tubulin in Onchocerca volvulus from communities and individuals showing poor parasitological response to ivermectin treatment.

    Science.gov (United States)

    Osei-Atweneboana, Mike Y; Boakye, Daniel A; Awadzi, Kwablah; Gyapong, John O; Prichard, Roger K

    2012-12-01

    Ivermectin (IVM) has been in operational use for the control of onchocerciasis for two decades and remains the only drug of choice. To investigate the parasitological responses and genetic profile of Onchocerca volvulus, we carried out a 21 month epidemiological study to determine the response of the parasite to IVM in 10 Ghanaian endemic communities. Onchocerca nodules were surgically removed from patients in three IVM response categories (good, intermediate and poor) and one IVM naïve community. DNA from adult worms was analyzed to determine any association between genotype and IVM response phenotypic. Embryogramme analysis showed significantly higher reproductive activity in worms from poor response communities, which had up to 41% of females with live stretched microfilaria (mf) in utero, despite IVM treatment, compared with good response communities, which had no intra-uterine stretched mf. β-tubulin isotype 1 gene has been shown to be linked to IVM selection in O. volvulus and also known to be associated with IVM resistance in veterinary nematodes. We have genotyped the full length genomic DNA sequence of the β-tubulin gene from 127 adult worms obtained from the four community categories. We found SNPs at 24 sites over the entire 3696 bp. Eight of the SNPs occurred at significantly higher (p < 0.05) frequencies in the poor response communities compared with the good response communities and the IVM naïve community. Phenotypic and genotypic analyses show that IVM resistance has been selected and the genotype (1183GG/1188CC/1308TT/1545GG) was strongly associated with the resistance phenotype. Since the region in the β-tubulin gene where these four SNPs occur is within 362 bp, it is feasible to develop a genetic marker for the early detection of IVM resistance. PMID:24533268

  11. Cardiac glycosides induce resistance to tubulin-dependent anticancer drugs in androgen-independent human prostate cancer.

    Science.gov (United States)

    Huang, Dong-Ming; Guh, Jih-Hwa; Huang, Yao-Ting; Chueh, Shih-Chieh; Wang, Hui-Po; Teng, Che-Ming

    2002-01-01

    Due to high prevalence and mortality and the lack of effective therapies, prostate cancer is one of the most crucial health problems in men. Drug resistance aggravates the situation, not only in human prostate cancer but also in other cancers. In this study, we report for the first time that cardiac glycosides (e.g. ouabain and digitoxin) induced resistance of human prostate cancer cells (PC-3) in vitro to tubulin-binding anticancer drugs, such as paclitaxel, colchicine, vincristine and vinblastine. Cardiac glycosides exhibited amazing ability to reverse the G2/M arrest of the cell cycle and cell apoptosis induced by tubulin-binding agents. However, neither ionomycin (a Ca(2+) ionophore) nor veratridine (a Na(+) ionophore) mimicked the preventive action of cardiac glycosides, indicating that elevation of the intracellular Ca(2+) concentration and Na(+) accumulation were not involved in the cardiac glycoside action. Furthermore, cardiac glycosides showed little influence on the effects induced by actinomycin D, anisomycin and doxorubicin, suggesting selectivity for microtubule-targeted anticancer drugs. Using in situ immunofluorescent detection of mitotic spindles, our data showed that cardiac glycosides diminished paclitaxel-induced accumulation of microtubule spindles; however, in a non-cell assay system, cardiac glycosides had little influence on colchicine- and paclitaxel-induced microtubule dynamics. Using an isotope-labeled assay method, we found that ouabain modestly but significantly inhibited the transport of [(14)C]paclitaxel from the cytosol into the nucleus. It is suggested that cardiac glycosides inhibit the G2/M arrest induced by tubulin-binding anticancer drugs via an indirect blockade on microtubule function. The decline in transport of these drugs into the nucleus may partly explain the action of cardiac glycosides. PMID:12218360

  12. Quantification of alpha-tubulin isotypes by sandwich ELISA with signal amplification through biotinyl-tyramide or immuno-PCR

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; Stegurová, Lucie; Sulimenko, Vadym; Hájková, Zuzana; Dráber, Petr; Dráber, Pavel

    2013-01-01

    Roč. 395, 1-2 (2013), s. 63-70. ISSN 0022-1759 R&D Projects: GA AV ČR KAN200520701; GA ČR GAP302/12/1673; GA ČR GPP302/11/P709; GA ČR GAP302/10/1759; GA ČR GA301/09/1826; GA MŠk(CZ) LD13015; GA MŠk LD12073 Institutional support: RVO:68378050 Keywords : alpha-tubulin isotypes * biotinyl-tyramide * ELISA * immuno-PCR * mast cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.005, year: 2013

  13. Positional Scanning Synthesis of a Peptoid Library Yields New Inducers of Apoptosis that Target Karyopherins and Tubulin.

    Science.gov (United States)

    Vendrell-Navarro, Glòria; Rúa, Federico; Bujons, Jordi; Brockmeyer, Andreas; Janning, Petra; Ziegler, Slava; Messeguer, Angel; Waldmann, Herbert

    2015-07-27

    We describe the synthesis of a library of 11, 638 N-alkylglycine peptoid trimers in a positional scanning format with adjustment of reaction conditions to account for different reactivities of the monomer building blocks. Evaluation of the library by high-content phenotypic screening for modulators of the cytoskeleton and mitosis resulted in the identification of two apoptosis-inducing peptoids, which, despite their structural similarity, target different proteins and cellular mechanisms. Whereas one peptoid binds to karyopherins, which mediate nuclear transport, the other N-alkylglycine trimer binds tubulin at the vinca alkaloid binding site. PMID:26010161

  14. Complexes of membrane-associated gamma-tubulin with Fyn kinase and phosphoinositide 3-kinase in differentiating cells

    Czech Academy of Sciences Publication Activity Database

    Sulimenko, Vadym; Macůrek, Libor; Dráberová, Eduarda; Richterová, Věra; Sulimenko, Tetyana; Dráberová, Lubica; Marková, Vladimíra; Dráber, Pavel

    2009-01-01

    Roč. 276, č. 1 (2009), s. 253-253. ISSN 1742-464X. [FEBS Congress /34/. 04.07.2009-09.07.2009, Praha] R&D Projects: GA MŠk 1M0506; GA MŠk LC545; GA ČR GA204/05/2375; GA ČR GA304/04/1273 Institutional research plan: CEZ:AV0Z50520514 Keywords : detergent-resistant membrane * Fyn * PI3K gamma-tubulin Subject RIV: EB - Genetics ; Molecular Biology

  15. Pharmacophore Modeling, Atom based 3D-QSAR and Docking Studies of Chalcone derivatives as Tubulin inhibitors

    OpenAIRE

    Naresh Kandakatla; Geetha Ramakrishnan; J. Karthikeyan; Rajasekhar Chekkara

    2014-01-01

    Tubulin is attractive target for anticancer drug design and their inhibitors are useful in treatment of various cancers. Pharmacophore and Atom based QSAR studies were carried out for series of Chalcone derivatives. Pharmacophore model was developed using 38 compounds, having pIC50 ranging 4.003 to 6.552. The best Pharmacophoric hypothesis AHHRR.10 (one H-acceptor, two hydrophobic groups, two aromatic rings) had survival score of 4.824. Atom based 3D QSAR was built for the best hypothesis w...

  16. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis

    Science.gov (United States)

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C.; Fanarraga, Mónica L.

    2016-05-01

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin

  17. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  18. In trangenic rice, alpha- and beta-tubulin regulatory sequences control GUS amount and distribution through intron mediated enhancement and intron dependent spatial expression.

    Science.gov (United States)

    Gianì, Silvia; Altana, Andrea; Campanoni, Prisca; Morello, Laura; Breviario, Diego

    2009-04-01

    The genomic upstream sequence of the rice tubulin gene OsTub6 has been cloned, sequenced and characterized. The 5'UTR sequence is interrupted by a 446 bp long leader intron. This feature is shared with two other rice beta-tubulin genes (OsTub4 and OsTub1) that, together with OsTub6, group in the same clade in the evolutionary phylogenetic tree of plant beta-tubulins. Similarly to OsTub4, the leader intron of OsTub6 is capable of sustaining intron mediated enhancement (IME) of gene expression, in transient expression assays. A general picture is drawn for three rice alpha-tubulin and two rice beta-tubulin genes in which the first intron of the coding sequence for the formers and the intron present in the 5'UTR for the latters, are important elements for controlling gene expression. We used OsTua2:GUS, OsTua3:GUS, OsTub4:GUS and OsTub6:GUS chimeric constructs to investigate the in vivo pattern of beta-glucuronidase (GUS) expression in transgenic rice plants. The influence of the regulatory introns on expression patterns was evaluated for two of them, OsTua2 and OsTub4. We have thus characterized distinct patterns of expression attributable to each tubulin isotype and we have shown that the presence of the regulatory intron can greatly influence both the amount and the actual site of expression. We propose the term Intron Dependent Spatial Expression (IDSE) to highlight this latter effect. PMID:18668337

  19. TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Highlights: ► TGF-β induces aberrant expression of βIII in RPE cells via the ERK pathway. ► TGF-β increases O-GlcNAc modification of βIII in RPE cells. ► Mature RPE cells have the capacity to express a neuron-associated gene by TGF-β. -- Abstract: The class III β-tubulin isotype (βIII) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III β-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-β (TGF-β) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-β on the aberrant expression of class III β-tubulin and the intracellular signaling pathway mediating these changes. TGF-β-induced aberrant expression and O-linked-β-N-acetylglucosamine (O-GlcNac) modification of class III β-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-β also stimulated phosphorylation of ERK. TGF-β-induced aberrant expression of class III β-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-β stimulated aberrant expression of class III β-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-β stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.

  20. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits (. cap alpha. and. beta. ) biosynthesis and degradation (in newborn brain)

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Cek-Fyne

    1978-01-01

    A DEAE-cellulose filter assay, measuring (/sup 3/H)colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin ..cap alpha.. and ..beta.. subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of (/sup 3/H)leucine. Quantitative changes of the ratio of tritium specific activities of tubulin ..cap alpha.. and ..beta.. subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the ..cap alpha.. subunit is synthesized at a more rapid rate than the ..beta.. subunit. (ERB)

  1. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits (α and β) biosynthesis and degradation (in newborn brain)

    International Nuclear Information System (INIS)

    A DEAE-cellulose filter assay, measuring [3H]colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin α and β subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of [3H]leucine. Quantitative changes of the ratio of tritium specific activities of tubulin α and β subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the α subunit is synthesized at a more rapid rate than the β subunit

  2. A codon change in beta-tubulin which drastically affects microtubule structure in Drosophila melanogaster fails to produce a significant phenotype in Saccharomyces cerevisiae.

    OpenAIRE

    Praitis, V; Katz, W S; Solomon, F

    1991-01-01

    The relative uniformity of microtubule ultrastructure in almost all eukaryotic cells is thought to be a consequence of the conserved elements of tubulin sequence. In support of this idea, a mutation in a beta-tubulin gene of Drosophila melanogaster, occurring at a highly conserved position, produces U-shaped microtubules, suggesting a defect in either nucleation or packing during assembly (M. T. Fuller, J. H. Caulton, J. A. Hutchens, T. C. Kaufman, and E. C. Raff, J. Cell Biol. 104:385-394, 1...

  3. Development a diagnostic pan-dermatophyte TaqMan probe real-time PCR assay based on beta tubulin gene.

    Science.gov (United States)

    Mirhendi, Hossein; Motamedi, Marjan; Makimura, Koichi; Satoh, Kazuo

    2016-08-01

    Early differentiation of dermatophytosis from other cutaneous mycoses is essential to avoid inaccurate therapy. DNA-based techniques including real-time PCR have increasingly been considered for detection of fungal elements in clinical specimens. In this study, after partial sequence analysis of beta tubulin (BT2) gene in 13 common and rare pathogenic dermatophyte species, a pan-dermatophyte primer and probe set was designed in a TaqMan probe-based PCR format. The sensitivity and specificity of the system was tested with 22 reference strains of dermatophytes, 234 positive clinical specimens, 32 DNA samples extracted from normal nails, several fungi other than dermatophytes and human DNAs. Analytical detection limit of the designed PCR on serially diluted DNAs of prepared recombinant plasmid indicated that only five molecules per sample are the minimum number for reliable detection by the assay. A total of 226 out of 234 (96.5%) DNAs extracted from clinical samples, but none of the 32 nail samples, from healthy volunteers were positive in PCR. The real-time PCR targeted beta tubulin gene established in this study could be a sensitive diagnostic tool which is significantly faster than the conventional culture method and should be useful in the clinical settings, in large-scale epidemiological studies and in clinical trials of antifungal therapy. PMID:27071371

  4. Polyglutamylated Tubulin Binding Protein C1orf96/CSAP Is Involved in Microtubule Stabilization in Mitotic Spindles

    Science.gov (United States)

    Ohta, Shinya; Hamada, Mayako; Sato, Nobuko; Toramoto, Iyo

    2015-01-01

    The centrosome-associated C1orf96/Centriole, Cilia and Spindle-Associated Protein (CSAP) targets polyglutamylated tubulin in mitotic microtubules (MTs). Loss of CSAP causes critical defects in brain development; however, it is unclear how CSAP association with MTs affects mitosis progression. In this study, we explored the molecular mechanisms of the interaction of CSAP with mitotic spindles. Loss of CSAP caused MT instability in mitotic spindles and resulted in mislocalization of Nuclear protein that associates with the Mitotic Apparatus (NuMA), with defective MT dynamics. Thus, CSAP overload in the spindles caused extensive MT stabilization and recruitment of NuMA. Moreover, MT stabilization by CSAP led to high levels of polyglutamylation on MTs. MT depolymerization by cold or nocodazole treatment was inhibited by CSAP binding. Live-cell imaging analysis suggested that CSAP-dependent MT-stabilization led to centrosome-free MT aster formation immediately upon nuclear envelope breakdown without γ-tubulin. We therefore propose that CSAP associates with MTs around centrosomes to stabilize MTs during mitosis, ensuring proper bipolar spindle formation and maintenance. PMID:26562023

  5. α-Lipoic acid promotes α-tubulin hyperacetylation and blocks the turnover of mitochondria through mitophagy.

    Science.gov (United States)

    Stoner, Michael W; Thapa, Dharendra; Zhang, Manling; Gibson, Gregory A; Calderon, Michael J; St Croix, Claudette M; Scott, Iain

    2016-06-15

    Lysine acetylation is tightly coupled to the nutritional status of the cell, as the availability of its cofactor, acetyl-CoA, fluctuates with changing metabolic conditions. Recent studies have demonstrated that acetyl-CoA levels act as an indicator of cellular nourishment, and increased abundance of this metabolite can block the induction of cellular recycling programmes. In the present study we investigated the cross-talk between mitochondrial metabolic pathways, acetylation and autophagy, using chemical inducers of mitochondrial acetyl-CoA production. Treatment of cells with α-lipoic acid (αLA), a cofactor of the pyruvate dehydrogenase complex, led to the unexpected hyperacetylation of α-tubulin in the cytosol. This acetylation was blocked by pharmacological inhibition of mitochondrial citrate export (a source for mitochondria-derived acetyl-CoA in the cytosol), was dependent on the α-tubulin acetyltransferase (αTAT) and was coupled to a loss in function of the cytosolic histone deacetylase, HDAC6. We further demonstrate that αLA slows the flux of substrates through autophagy-related pathways, and severely limits the ability of cells to remove depolarized mitochondria through PTEN-associated kinase 1 (PINK1)-mediated mitophagy. PMID:27099338

  6. Tracking the Biogenesis and Inheritance of Subpellicular Microtubule in Trypanosoma brucei with Inducible YFP-α-Tubulin

    Directory of Open Access Journals (Sweden)

    Omar Sheriff

    2014-01-01

    Full Text Available The microtubule cytoskeleton forms the most prominent structural system in Trypanosoma brucei, undergoing extensive modifications during the cell cycle. Visualization of tyrosinated microtubules leads to a semiconservative mode of inheritance, whereas recent studies employing microtubule plus end tracking proteins have hinted at an asymmetric pattern of cytoskeletal inheritance. To further the knowledge of microtubule synthesis and inheritance during T. brucei cell cycle, the dynamics of the microtubule cytoskeleton was visualized by inducible YFP-α-tubulin expression. During new flagellum/flagellum attachment zone (FAZ biogenesis and cell growth, YFP-α-tubulin was incorporated mainly between the old and new flagellum/FAZ complexes. Cytoskeletal modifications at the posterior end of the cells were observed with EB1, a microtubule plus end binding protein, particularly during mitosis. Additionally, the newly formed microtubules segregated asymmetrically, with the daughter cell inheriting the new flagellum/FAZ complex retaining most of the new microtubules. Together, our results suggest an intimate connection between new microtubule formation and new FAZ assembly, consequently leading to asymmetric microtubule inheritance and cell division.

  7. Characterization of tub4P287L, a b-tubulin mutant, revealed new aspects of microtubule regulation in shade

    Institute of Scientific and Technical Information of China (English)

    Jie Yu; Hong Qiu; Xin Liu; Meiling Wang; Yongli Gao; Joanne Chory; Yi Tao

    2015-01-01

    When sun plants, such as Arabidopsis thaliana, are under canopy shade, elongation of stems/petioles will be induced as one of the most prominent responses. Plant hormones mediate the elongation growth. However, how environmental and hormonal signals are translated into cell expansion activity that leads to the elongation growth remains elusive. Through forward genetic study, we identi-fied shade avoidance2 (sav2) mutant, which contains a P287L mutation in b-TUBULIN 4. Cortical microtubules (cMTs) play a key role in anisotropic cell growth. Hypocotyls of sav2 are wild type-like in white light, but are short and highly swollen in shade and dark. We showed that shade not only induces cMT rearrangement, but also affects cMT stability and dynamics of plus ends. Even though auxin and brassinosteroids are required for shade-induced hypocotyl elongation, they had little effect on shade-induced rearrangement of cMTs. Blocking auxin transport suppressed dark phenotypes of sav2, while overexpressing EB1b-GFP, a microtubule plus-end binding protein, rescued sav2 in both shade and dark, suggesting that tub4P287L represents a unique type of tubulin mutation that does not affect cMT function in supporting cell elongation, but may affect the ability of cMTs to respond properly to growth promoting stimuli.

  8. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    Directory of Open Access Journals (Sweden)

    CB Toaldo

    2001-01-01

    Full Text Available The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70 and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  9. Early vessel destabilization mediated by Angiopoietin-2 and subsequent vessel maturation via Angiopoietin-1 induce functional neovasculature after ischemia.

    Directory of Open Access Journals (Sweden)

    Di Qin

    Full Text Available BACKGROUND: We assessed whether Angiopoietin-2 (Ang2, a Tie2 ligand and partial antagonist of Angiopoietin-1 (Ang1, is required for early vessel destabilization during postischemic angiogenesis, when combined with vascular growth factors. METHODS: In vitro, matrigel co-cultures assessed endothelial-cell tube formation and pericyte recruitment after stimulation of VEGF-A, Apelin (APLN, Ang1 with or without Ang2. In a murine hindlimb ischemia model, adeno-associated virus (rAAV, 3×10(12 virusparticles transduction of VEGF-A, APLN and Ang1 with or without Ang2 (continuous or early expression d0-3 was performed intramuscularly (d-14. Femoral artery ligation was performed at d0, followed by laser doppler perfusion meassurements (LDI 7 and 14. At d7 (early timepoint and d14 (late timepoint, histological analysis of capillary/muscle fiber ratio (CMF-R, PECAM-1 and pericyte/capillary ratio (PC-R, NG2 was performed. RESULTS: In vitro, VEGF-A, APLN and Ang1 induced ring formation, but only APLN and Ang1 recruited pericytes. Ang2 did not affect tube formation by APLN, but reduced pericyte recruitment after APLN or Ang1 overexpression. In vivo, rAAV.VEGF-A did not alter LDI-perfusion at d14, consistent with an impaired PC-R despite a rise in CMF-R. rAAV.APLN improved perfusion at d14, with or without continuous Ang2, increasing CMF-R and PC-R. rAAV.Ang1 improved perfusion at d14, when combined with rAAV.Ang2 (d0-3, accompanied by an increased CMF-R and PC-R. CONCLUSION: The combination of early vessel destabilization (Ang2 d0-3 and continuous Ang1 overexpression improves hindlimb perfusion, pointing to the importance of early vessel destabilization and subsequent vessel maturation for enhanced therapeutic neovascularization.

  10. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.

    Science.gov (United States)

    Herce, H D; Garcia, A E; Litt, J; Kane, R S; Martin, P; Enrique, N; Rebolledo, A; Milesi, V

    2009-10-01

    Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes. PMID:19804722

  11. Human Plasma Very Low-Density Lipoproteins Are Stabilized by Electrostatic Interactions and Destabilized by Acidic pH

    Directory of Open Access Journals (Sweden)

    Madhumita Guha

    2011-01-01

    Full Text Available Very low-density lipoproteins (VLDL are precursors of low-density lipoproteins (LDL, or “bad cholesterol”. Factors affecting structural integrity of VLDL are important for their metabolism. To assess the role of electrostatic interactions in VLDL stability, we determined how solvent ionic conditions affect the heat-induced VLDL remodeling. This remodeling involves VLDL fusion, rupture, and fission of apolipoprotein E-containing high-density lipoprotein-(HDL- like particles similar to those formed during VLDL-to-LDL maturation. Circular dichroism and turbidity show that increasing sodium salt concentration in millimolar range reduces VLDL stability and its enthalpic component. Consequently, favorable electrostatic interactions stabilize VLDL. Reduction in pH from 7.4 to 6.0 reduces VLDL stability, with further destabilization detected at pH < 6, which probably results from titration of the N-terminal α-amino groups and free fatty acids. This destabilization is expected to facilitate endosomal degradation of VLDL, promote their coalescence into lipid droplets in atherosclerotic plaques, and affect their potential use as drug carriers.

  12. Dimethyl Sulfoxide Induced Destabilization and Disassembly of Various Structural Variants of Insulin Fibrils Monitored by Vibrational Circular Dichroism.

    Science.gov (United States)

    Zhang, Ge; Babenko, Viktoria; Dzwolak, Wojciech; Keiderling, Timothy A

    2015-12-15

    Dimethyl sulfoxide (DMSO) induced destabilization of insulin fibrils has been previously studied by Fourier transform infrared spectroscopy and interpreted in terms of secondary structural changes. The variation of this process for fibrils with different types of higher-order morphological structures remained unclear. Here, we utilize vibrational circular dichroism (VCD), which has been reported to provide a useful biophysical probe of the supramolecular chirality of amyloid fibrils, to characterize changes in the macroscopic chirality following DMSO-induced disassembly for two types of insulin fibrils formed under different conditions, at different reduced pH values with and without added salt and agitation. We confirm that very high concentrations of DMSO can disaggregate both types of insulin fibrils, which initially maintained a β-sheet conformation and eventually changed their secondary structure to a disordered form. The two types responded to varying concentrations of DMSO, and disaggregation followed different mechanisms. Interconversion of specific insulin fibril morphological types also occurred during the destabilization process as monitored by VCD. With transmission electron microscopy, we were able to correlate the changes in VCD sign patterns to alteration of morphology of the insulin fibrils. PMID:26582046

  13. The alpha-tubulin gene AmTuba1: a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria.

    Science.gov (United States)

    Tarkka, Mika T; Schrey, Silvia; Nehls, Uwe

    2006-05-01

    The apical extension of hyphae is of central importance for extensive spread of fungal mycelium in forest soils and for effective ectomycorrhiza development. Since the tubulin cytoskeleton is known to be important for fungal tip growth, we have investigated the expression of an alpha-tubulin gene from the ectomycorrhizal basidiomycete Amanita muscaria (AmTuba1). The phylogenetic analysis of protein sequences revealed the existence of two subgroups of alpha-tubulins in homobasidiomycetes, clearly distinguishable by defined amino acids. AmTuba1 belongs to subgroup1. The AmTuba1 transcript level is related to mycelial growth rate. Growth induction of carbohydrate starved (non-growing) hyphae resulted in an enhanced AmTuba1 expression as soon as hyphal growth started, reaching a maximum at highest mycelial growth rate. Bacterium-induced hyphal elongation also leads to increased AmTuba1 transcript levels. In mature A. muscaria/P. abies ectomycorrhizas, where fungal hyphae are highly branched, and slowly growing, AmTuba1 expression were even lower than in carbohydrate-starved mycelium, indicating a further down-regulation of gene expression in symbiosis. In conclusion, our analyses show that the AmTuba1 gene can be used as a marker for active apical extension in fly agaric, and that alpha-tubulin proteins are promising tools for the classification of fungi. PMID:16447071

  14. Preventing an identity crisis: unexpected co-expression of class III beta-tubulin and glial fibrillary acidic protein in human fetal astrocytes in culture

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Dráberová, Eduarda; Del Valle, L.; Bertrand, L.; Agamanolis, D.P.; de Chadarévian, J.-P.; Legido, A.; Dráber, Pavel

    2007-01-01

    Roč. 26, č. 11 (2007), s. 107-107. ISSN 0364-5134 R&D Projects: GA MŠk LC545; GA ČR GA204/05/2375 Institutional research plan: CEZ:AV0Z50520514 Keywords : class III beta-tubulin * fetal glia Subject RIV: EB - Genetics ; Molecular Biology

  15. 多疣壁虎tubulin beta 3基因克隆和多克隆抗体制备%Molecular cloning of tubulin beta 3 (TUBB3) in Gekkojaponicus and preparation of its polyclonal antibody

    Institute of Scientific and Technical Information of China (English)

    李静; 秦勇; 顾云; 刘炎; 刘梅

    2012-01-01

    The tubulin beta III (TUBB3) gene encodes a class III member of the beta tubulin protein family that is primarily expressed in neurons and is considered to play a critical role in proper axon guidance and maintenance. This protein is generally used as a specific marker of neurons in the central nervous system. We obtained the full length cDNA sequence of TUBB3 by using the RACE method based on the EST fragment from the brain and spinal cord cDNA library of Gekko japonicus. We further investigated the multi-tissue expression pattern by RT-PCR and identified one transcript of TUBB3 about 1.8 kb in the central nervous system of Gekko japonicus by Northern blotting. The completed cDNA of gecko TUBB3 is 1790 bp with an open reading frame of 1350 bp, encoding a 450 amino-acid protein. The recombinant plasmid of pET-32a-TUBB3 was constructed and induced to express His-tagged TUBB3 protein in prokaryotic BL21 cells. The purified TUBB3 protein was then used to immunize rabbits to generate polyclonal antisera. The titer of the antiserum was more than 1:65 536 determined by ELISA. The result of western blotting showed that the TUBB3 antibody could specifically recognize the recombinant TUBB3 protein and endogenous TUBB3 protein. Our findings provide the tools to further understand the TUBB3 gene and investigate the regeneration of the central nervous system in Gekko japonicas.%Tubulin beta 3 (TUBB3)是特异表达于神经元的微管蛋白tubulin beta家族成员,被认为在维持轴突正常状态起着重要作用,是神经元特异的标志蛋白.该研究旨在获得多疣壁虎TUBB3全长cDNA序列并制备其多克隆抗体,为进一步研究多疣壁虎断尾再生提供基因和抗体工具.根据多疣壁虎中枢神经组织cDNA文库中TUBB3的EST片段序列,采用RACE-PCR方法,获得了全长cDNA,序列全长1790 bp,编码450个氨基酸,与其他物种TUBB3蛋白高度同源;RT-PCR方法和Northern blotting检测了TUBB3组织表达谱及其转录本的大

  16. Two novel series of allocolchicinoids with modified seven membered B-rings: design, synthesis, inhibition of tubulin assembly and cytotoxicity.

    Science.gov (United States)

    Büttner, Frank; Bergemann, Silke; Guénard, Daniel; Gust, Ronald; Seitz, Gunther; Thoret, Sylviane

    2005-05-16

    Two new attractive series of allocolchicinoids were designed as inhibitors of tubulin assembly using the potent ketone 4 and the tetracyclic, pyrazole annulated NCME variant 7 (NCME = N-acetyl colchinol-O-methylether (2)) as lead structures. The first group of inhibitors of type 6 with novel oxepine and azepine B-ring structures belongs to the NCME-series and was synthesized via a multistep total synthesis starting from simple and cheap 3-methoxybenzaldehyde (12) and 3,4,5-trimethoxybenzaldehyde (13). Biaryl-coupling of the starting materials 12 and 13 was accomplished via Ziegler-Ullmann-reaction to furnish the biphenyl 11 equipped with two carbaldehyde functions. The subsequent Cannizzaro reaction of this dicarbaldehyde 11 proceeded with high regioselectivity to yield almost exclusively the key compound, the hydroxymethyl carboxylic acid 9. Ring closure to the o,o'-bridged biphenyls was accomplished by two routes: on the one hand, treatment of 9 with aqueous hydrochloric acid yielded the lactone 15. On the other hand, a four step sequence starting from the isomeric mixture 9/10 furnished the constitutionally isomeric lactams 23 and 24; these could be converted to the corresponding thiolactams 25 and 26 and to the tetrazole annulated NCME-type derivatives 27 and 28. The second series of bioactive compounds are congeners of allocolchicine (3). The well known desacetyl allocolchicine (29) was easily oxidized to the oxime 30, which was further transformed to the corresponding ketone 31. This served as key precursor for the syntheses of various tetracyclic allocolchicine modifications 33-36 annulated with a pyrazole, isoxazole, pyrimidine or 2-aminopyrimidine heterocycle, respectively. Unexpectedly, all the NCME-variants with a substituent in position 7 like in NCME (2) inhibited the tubulin assembly only moderately. In contrast, the new series of allocolchicine modifications proved to be highly potent antimicrotubule agents. Inhibition of tubulin assembly occurred at

  17. Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules.

    Science.gov (United States)

    Hari, Malathi; Loganzo, Frank; Annable, Tami; Tan, Xingzhi; Musto, Sylvia; Morilla, Daniel B; Nettles, James H; Snyder, James P; Greenberger, Lee M

    2006-02-01

    Resistance to paclitaxel-based therapy is frequently encountered in the clinic. The mechanisms of intrinsic or acquired paclitaxel resistance are not well understood. We sought to characterize the resistance mechanisms that develop upon chronic exposure of a cancer cell line to paclitaxel in the presence of the P-glycoprotein reversal agent, CL-347099. The epidermoid tumor line KB-3-1 was exposed to increasing concentrations of paclitaxel and 5 micromol/L CL-347099 for up to 1 year. Cells grown in 15 nmol/L paclitaxel plus CL-347099 (KB-15-PTX/099) developed 18-fold resistance to paclitaxel and were dependent upon paclitaxel for maximal growth. They grew well and retained resistance to paclitaxel when grown in athymic mice. Cross-resistance (3- to 5-fold) was observed in tissue culture to docetaxel, the novel taxane MAC-321, and epothilone B. Collateral sensitivity (approximately 3-fold) was observed to the depolymerizing agents vinblastine, dolastatin-10, and HTI-286. KB-15-PTX/099-resistant cells did not overexpress P-glycoprotein nor did they have an alteration of [14C]paclitaxel accumulation compared with parental cells. However, a novel point mutation (T to A) resulting in Asp26 to glutamate substitution in class I (M40) beta-tubulin was found. Based on an electron crystallography structure of Zn-stabilized tubulin sheets, the phenyl ring of C-3' NHCO-C6H5 of paclitaxel makes contact with Asp26 of beta-tubulin, suggesting a ligand-induced mutation. Optimized model complexes of paclitaxel, docetaxel, and MAC-321 in beta-tubulin show a novel hydrogen bonding pattern for the glutamate mutant and rationalize the observed resistance profiles. However, a mutation in the paclitaxel binding pocket does not explain the phenotype completely. KB-15-PTX/099 cells have impaired microtubule stability as determined by a reduced percentage of tubulin in microtubules and reflected by less acetylated tubulin. These results suggest that a mutation in tubulin might affect

  18. Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer

    Science.gov (United States)

    Godet, Julien; Kenfack, Cyril; Przybilla, Frédéric; Richert, Ludovic; Duportail, Guy; Mély, Yves

    2013-01-01

    The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (−)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11–55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger–dependent binding of NC to the G10 and G50 residues. Sequence comparison further revealed that C•A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G10 and G50 the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway. PMID:23511968

  19. SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis.

    Science.gov (United States)

    Germani, A; Bruzzoni-Giovanelli, H; Fellous, A; Gisselbrecht, S; Varin-Blank, N; Calvo, F

    2000-12-01

    SIAH-1, a human homologue of the Drosophila seven in absentia (Sina), has been implicated in ubiquitin-mediated proteolysis of different target proteins through its N-terminal RING finger domain. SIAH-1 is also induced during p53-mediated apoptosis. Furthermore, SIAH-1-transfected breast cancer cell line MCF-7 exhibits an altered mitotic process resulting in multinucleated giant cells. Now, using the two-hybrid system, we identified two new SIAH interacting proteins: Kid (kinesin like DNA binding protein) and alpha-tubulin. We demonstrate that SIAH is involved in the degradation of Kid via the ubiquitin-proteasome pathway. Our results suggest that SIAH-1 but not its N-terminal deletion mutant, affects the mitosis by an enhanced reduction of kinesin levels. Our results imply, for the first time, SIAH-1 in regulating the degradation of proteins directly implicated in the mitotic process. PMID:11146551

  20. Regulation of bolting and identification of the α-tubulin gene family in Brassica rapa L. ssp pekinensis.

    Science.gov (United States)

    Zhang, Y W; Jin, D; Xu, C; Zhang, L; Guo, M H; Fang, Z Y

    2016-01-01

    Microtubules are important components of eukaryotic cells, and they play vital roles in cell morphogenesis, carrying of signaling molecules, transport of materials, and establishing the cell polarity. During bolting of biennial plants, cell division and elongation are involved, and cell elongation inevitably involves the microtubules arrangement and expression of related genes. So we deduce that it is of great significance to figure out the mechanism of bolting and flowering in which TUA genes are involved. In the present study, bioinformatic methods were used to predict and identify the α-tubulin gene family (BrTUAs) in Brassica rapa L. ssp pekinensis (Chinese cabbage) through the alignment of AtTUA gene sequence from Arabidopsis thaliana with the B. rapa genome database (http://brassicadb.org/brad/) using the basic local alignment search tool. The change in the structure and functions of BrTUAs during the process of evolution, cis-acting elements in the promoter sequences of BrTUAs, and the expression of the identified genes was also analyzed. Twelve members of the α-tubulin gene family were identified from Chinese cabbage. The gene length, intron, exon, and promoter regions were determined to have changed significantly during the genome evolution. Only five of the 12 members were encoded completely and were observed to differ in their spatial and temporal expression. The five BrTUA promoter sequences contained different numbers of cis-elements responsive to light and low-temperature response, cis-elements responsive among which hormonal responses were significantly different. We also report that the BrTUAs were involved in the regulation of the bolting in Chinese cabbage, and propose that this process could be controlled by regulating the expression of BrTUAs. PMID:26909938

  1. Synthesis of [sup 14]C labelled electrophilic ligands of the colchicine binding site of tubulin: chloroacetates of demethylthiocolchicines and of N-acetylcolchinol; isothiocyanate of 9-deoxy-N-acetylcolchinol

    Energy Technology Data Exchange (ETDEWEB)

    Boye, O.; Brossi, A. (NIDDK (United States). Lab. of Structural Biology); Getahun, Z.; Grover, S.; Hamel, E. (National Inst. of Health, Bethesda, MD (United States))

    1993-01-01

    [sup 14]C-Chloroacetates of 2-demethylthiocolchicine 7 and of 3-demethylthiocolchicine 8 were synthesized and found to covalently bind with high specificity to the [beta]-subunit of tubulin. The [sup 14]C-chloroacetate of N-acetylcolchinol and the [sup 14]C-isothiocyanate were also prepared and found to react covalently with tubulin but in a nonspecific manner. With the radiolabelled chloroacetates 7 and 8 two compounds are now available to further characterize the colchicine binding site on the [beta] subunit of tubulin. (author).

  2. Neuromusculoskeletal torque-generation process has a large destabilizing effect on the control mechanism of quiet standing.

    Science.gov (United States)

    Masani, Kei; Vette, Albert H; Kawashima, Noritaka; Popovic, Milos R

    2008-09-01

    The delay of the sensory-motor feedback loop is a destabilizing factor within the neural control mechanism of quiet standing. The purposes of this study were 1) to experimentally identify the neuromusculoskeletal torque-generation process during standing posture and 2) to investigate the effect of the delay induced by this system on the control mechanism of balance during quiet standing. Ten healthy adults participated in this study. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the natural ankle angle during quiet standing. Each subject was asked to mimic the ankle torque fluctuation by exerting voluntary ankle extension while keeping the supported standing posture. Using the rectified soleus electromyogram as the input and the ankle torque as the output, a critically damped, second-order system (twitch contraction time of 0.152 +/- 0.027 s) successfully described the dynamics of the torque-generation process. According to the performed Bode analysis, the phase delay induced by this torque-generation process in the frequency region of spontaneous body sway during quiet standing was considerably large, corresponding to an effective time delay of about 200 to 380 ms. We compared the stability of the balance control system with and without the torque-generation process and demonstrated that a much smaller number of gain combinations can stabilize the model with the torque-generation process than without it. We concluded that the phase delay induced by the torque-generation process is a more destabilizing factor in the control mechanism of quiet standing than previously assumed, which restricts the control strategies that can stabilize the entire system. PMID:18596181

  3. Destabilization of Heterologous Proteins Mediated by the GSK3β Phosphorylation Domain of the β-Catenin Protein

    Directory of Open Access Journals (Sweden)

    Yuhan Kong

    2013-11-01

    Full Text Available Background and Aims: Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal degradation domain. Aberrant activation of β-catenin signaling has been implicated in the development of human cancers. It has been recently suggested that GSK3βmay play an essential role in regulating global protein turnover. Here, we investigate if the GSK3β phosphorylation site-containing degradation domain of β-catenin is sufficient to destabilize heterologous proteins. Methods and Results: We engineer chimeric proteins by fusing β-catenin degradation domain at the N- and/or C-termini of the enhanced green fluorescent protein (eGFP. In both transient and stable expression experiments, the chimeric GFP proteins exhibit a significantly decreased stability, which can be effectively antagonized by lithium and Wnt1. An activating mutation in the destruction domain significantly stabilizes the fusion protein. Furthermore, GSK3 inhibitor SB-216763 effectively increases the GFP signal of the fusion protein. Conversely, the inhibition of Wnt signaling with tankyrase inhibitor XAV939 results in a decrease in GFP signal of the fusion proteins, while these small molecules have no significant effects on the mutant destruction domain-GFP fusion protein. Conclusion: Our findings strongly suggest that the β-catenin degradation domain may be sufficient to destabilize heterologous proteins in Wnt signaling-dependent manner. It is conceivable that the chimeric GFP proteins may be used as a functional reporter to measure the dynamic status of β-catenin signaling, and to identify potential anticancer drugs that target β-catenin signaling.

  4. Thermodynamic Destabilization of Ti-O Solid Solution by H2 and Deoxygenation of Ti Using Mg.

    Science.gov (United States)

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Zhang, Tuoyang; Xia, Yang; Zhou, Chengshang; Huang, Zhe

    2016-06-01

    Reactive metals including Ti, Zr, Hf, and V, among others, have a strong chemical affinity to oxygen, which makes them difficult to produce and costly to use. It is especially challenging to produce pure or metal alloy powders of these elements when extremely low oxygen content is required, because they have high solubility for oxygen, and the solid solution of these metals with oxygen is often more stable thermodynamically than their oxides. We report a novel thermochemical approach to destabilize Ti(O) solid solutions using hydrogen, thus enabling deoxygenation of Ti powder using Mg, which has not been possible before because of the thermodynamic stability of Ti(O) solid solutions relative to MgO. The work on Ti serves as an example for other reactive metals. Both analytical modeling and experimental results show that hydrogen can indeed increase the oxygen potential of Ti-O solid solution alloys; in other words, the stability of Ti-O solid solutions is effectively decreased, thus increasing the thermodynamic driving force for Mg to react with oxygen in Ti. Because hydrogen can be easily removed from Ti by a simple heat treatment, it is used only as a temporary alloying element to destabilize the Ti-O systems. The thermodynamic approach described here is a breakthrough and is applicable to a range of different materials. This work is expected to provide an enabling solution to overcome one of the key scientific and technological hurdles to the additive manufacturing of metals, which is emerging rapidly as the future of the manufacturing industry. PMID:27196140

  5. The MitCHAP-60 Disease Is Due to Entropic Destabilization of the Human Mitochondrial Hsp60 Oligomer*

    Science.gov (United States)

    Parnas, Avital; Nadler, Michal; Nisemblat, Shahar; Horovitz, Amnon; Mandel, Hanna; Azem, Abdussalam

    2009-01-01

    The 60-kDa heat shock protein (mHsp60) is a vital cellular complex that mediates the folding of many of the mitochondrial proteins. Its function is executed in cooperation with the co-chaperonin, mHsp10, and requires ATP. Recently, the discovery of a new mHsp60-associated neurodegenerative disorder, MitCHAP-60 disease, has been reported. The disease is caused by a point mutation at position 3 (D3G) of the mature mitochondrial Hsp60 protein, which renders it unable to complement the deletion of the homologous bacterial protein in Escherichia coli (Magen, D., Georgopoulos, C., Bross, P., Ang, D., Segev, Y., Goldsher, D., Nemirovski, A., Shahar, E., Ravid, S., Luder, A., Heno, B., Gershoni-Baruch, R., Skorecki, K., and Mandel, H. (2008) Am. J. Hum. Genet. 83, 30–42). The molecular basis of the MitCHAP-60 disease is still unknown. In this study, we present an in vitro structural and functional analysis of the purified wild-type human mHsp60 and the MitCHAP-60 mutant. We show that the D3G mutation leads to destabilization of the mHsp60 oligomer and causes its disassembly at low protein concentrations. We also show that the mutant protein has impaired protein folding and ATPase activities. An additional mutant that lacks the first three amino acids (N-del), including Asp-3, is similarly impaired in refolding activity. Surprisingly, however, this mutant exhibits profound stabilization of its oligomeric structure. These results suggest that the D3G mutation leads to entropic destabilization of the mHsp60 oligomer, which severely impairs its chaperone function, thereby causing the disease. PMID:19706612

  6. The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer.

    Science.gov (United States)

    Parnas, Avital; Nadler, Michal; Nisemblat, Shahar; Horovitz, Amnon; Mandel, Hanna; Azem, Abdussalam

    2009-10-01

    The 60-kDa heat shock protein (mHsp60) is a vital cellular complex that mediates the folding of many of the mitochondrial proteins. Its function is executed in cooperation with the co-chaperonin, mHsp10, and requires ATP. Recently, the discovery of a new mHsp60-associated neurodegenerative disorder, MitCHAP-60 disease, has been reported. The disease is caused by a point mutation at position 3 (D3G) of the mature mitochondrial Hsp60 protein, which renders it unable to complement the deletion of the homologous bacterial protein in Escherichia coli (Magen, D., Georgopoulos, C., Bross, P., Ang, D., Segev, Y., Goldsher, D., Nemirovski, A., Shahar, E., Ravid, S., Luder, A., Heno, B., Gershoni-Baruch, R., Skorecki, K., and Mandel, H. (2008) Am. J. Hum. Genet. 83, 30-42). The molecular basis of the MitCHAP-60 disease is still unknown. In this study, we present an in vitro structural and functional analysis of the purified wild-type human mHsp60 and the MitCHAP-60 mutant. We show that the D3G mutation leads to destabilization of the mHsp60 oligomer and causes its disassembly at low protein concentrations. We also show that the mutant protein has impaired protein folding and ATPase activities. An additional mutant that lacks the first three amino acids (N-del), including Asp-3, is similarly impaired in refolding activity. Surprisingly, however, this mutant exhibits profound stabilization of its oligomeric structure. These results suggest that the D3G mutation leads to entropic destabilization of the mHsp60 oligomer, which severely impairs its chaperone function, thereby causing the disease. PMID:19706612

  7. Catechins and Procyanidins of Ginkgo biloba Show Potent Activities towards the Inhibition of β-Amyloid Peptide Aggregation and Destabilization of Preformed Fibrils

    Directory of Open Access Journals (Sweden)

    Haiyan Xie

    2014-04-01

    Full Text Available Catechins and procyanidins, together with flavonoid glycosides and terpene trilactones, are three important categories of components in the standard extract of Ginkgo biloba leaves (EGb761. In this research, catechins and proanthocyanidins were found to exist in both the extract of Ginkgo leaves and Ginkgo products. By comparing with reference compounds, six of them were identified as (+-catechin, (−-epicatechin, (−-gallocatechin, (−-epigallocatechin and procyanidins B1 and B3. The activities of these polyphenols in the inhibition of Aβ42 aggregation and the destabilization of preformed fibrils were evaluated using biochemical assays, which showed that all six of the polyphenols, as well as a fraction of the extract of Ginkgo biloba leaves (EGb containing catechins and procyanidins, exerted potent inhibitory activities towards Aβ42 aggregation and could also destabilize the performed fibrils. Catechins and procyanidins can therefore be regarded as the potent active constituents of EGb761 in terms of their inhibition of Aβ42 aggregation and destabilization of the fibrils. Although quantitative mass spectroscopic analysis revealed that the catechins and procyanidins are only present in low concentrations in EGb761, these components should be studied in greater detail because of their potent inhibitory effects towards Aβ42 aggregation and their ability to destabilize preformed fibrils, especially during the quality control of Ginkgo leaves and the manufacture of Ginkgo products.

  8. Optimized Reaction Conditions for Removal of Cellular Organic Matter of Microcystis aeruginosa During the Destabilization and Aggregation Process Using Ferric Sulfate in Water Purification

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Polášek, Pavel; Pivokonská, Lenka; Tomášková, Hana

    2009-01-01

    Roč. 81, č. 5 (2009), s. 514-522. ISSN 1061-4303 R&D Projects: GA ČR GA103/07/0295 Institutional research plan: CEZ:AV0Z20600510 Keywords : Microcystis aeruginosa * cellular organic matter * destabilization * aggregation * optimized reaction conditions * water purification Subject RIV: BK - Fluid Dynamics Impact factor: 0.965, year: 2009

  9. Tubulin Polymerization Promoting Protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Rasmussen, Izabela Zorawska; Tolstrup Nielsen, Troels;

    2013-01-01

    shRNA) or plus-end-directed (Rab8) trafficking of autophagosomes along microtubules. Finally, we show in the absence of tubulin polymerization-promoting protein/p25α that α-synuclein release was modulated by dominant mutants of Rab27A, known to regulate exocytosis of late endosomal (and amphisomal......Aggregation of α-synuclein can be promoted by the tubulin polymerization-promoting protein/p25α, which we have used here as a tool to study the role of autophagy in the clearance of α-synuclein. In NGF-differentiated PC12 catecholaminergic nerve cells, we show that de novo expressed p25α co...

  10. Synthesis of Peptides from α- and β-Tubulin Containing Glutamic Acid Side-Chain Linked Oligo-Glu with Defined Length

    Directory of Open Access Journals (Sweden)

    Werner Tegge

    2010-01-01

    Full Text Available Side-chain oligo- and polyglutamylation represents an important posttranslational modification in tubulin physiology. The particular number of glutamate units is related to specific regulatory functions. In this work, we present a method for the synthesis of building blocks for the Fmoc synthesis of peptides containing main chain glutamic acid residues that carry side-chain branching with oligo-glutamic acid. The two model peptide sequences CYEEVGVDSVEGEG-E(E-EEGEEY and CQDATADEQG-E(E-FEEEEGEDEA from the C-termini of mammalian α1- and β1-tubulin, respectively, containing oligo-glutamic acid side-chain branching with lengths of 1 to 5 amino acids were assembled in good yield and purity. The products may lead to the generation of specific antibodies which should be important tools for a more detailed investigation of polyglutamylation processes.

  11. The size of the primary cilium and acetylated tubulin are modulated during adipocyte differentiation: Analysis of HDAC6 functions in these processes.

    Science.gov (United States)

    Forcioli-Conti, Nicolas; Estève, David; Bouloumié, Anne; Dani, Christian; Peraldi, Pascal

    2016-05-01

    The primary cilium is an organelle present in most of the cells of the organism. Ciliopathies, such as the Bardet Biedl and the Alstrom syndromes are associated with obesity. We, and others, have shown that the primary cilium undergoes size modifications during adipocyte differentiation of human adipose stromal cells. We show here that the levels of acetylated α-tubulin, a constituent of the primary cilium, and the expression of HDAC6, the enzyme that deacetylates α-tubulin and is responsible for the loss of the cilium during mitosis, are modulated during adipogenesis. Moreover, during adipocyte differentiation cells that express higher level of HDAC6 are the first to lose their primary cilium. We have investigated the function of HDAC6 on adipocyte differentiation and on the primary cilium. We observe that inhibition of HDAC6 activity leads to a decrease in adipocyte differentiation. This is associated with an inhibition of the initial elongation of the cilium. Interestingly, overexpression of HDAC6 inhibits adipocyte differentiation and blunts the elongation of the primary cilium. In both situations, inhibition of adipocyte differentiation was not associated with an inhibition of the glucocorticoid receptor activity. This indicates that HDAC6 controls adipogenesis through the levels of acetylated α-tubulin. Moreover, we show that although HDAC6 expression increases during adipocyte differentiation it is not sufficient to provoke the loss of the cilium. This suggests the existence of a novel mechanism for the loss of the cilium. Together, these data indicate that HDAC6, and acetylated α-tubulin, are important regulator of adipocyte differentiation. PMID:26363102

  12. Genetic polymorphism of the beta-tubulin gene of Onchocerca volvulus in ivermectin naive patients from Cameroon, and its relationship with fertility of the worms

    OpenAIRE

    Bourguinat, C.; Pion, Sébastien; Kamgno, J.; Gardon, Jacques; Gardon Wendel, N.; Duke, B.O.L.; Prichard, R. K.; Boussinesq, Michel

    2006-01-01

    Observations of low response of patients infected with Onchocerca volvulus to ivermectin suggest that the parasite may be tinder a selection process toward potential resistance. To limit the extension of this phenomenon, it is crucial to characterize the genes of O. volvulus that are involved. For this, O. volvulus adult worms collected before the introduction of ivermectin in an onchocerciasis endemic area of central Cameroon were genotyped for beta-tubulin. To derive a baseline to investiga...

  13. Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; Del Valle, L.; Gordon, J.; Marková, Vladimíra; Šmejkalová, Barbora; Bertrand, L.; de Chadarévian, J.-P.; Agamanolis, D.P.; Legido, A.; Khalili, K.; Dráber, Pavel; Katsetos, C.D.

    2008-01-01

    Roč. 67, č. 4 (2008), s. 341-354. ISSN 0022-3069 R&D Projects: GA MŠk LC545; GA ČR GA204/05/2375 Institutional research plan: CEZ:AV0Z50520514 Keywords : astrocytes * class III beta-tubulin * fetal glia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.140, year: 2008

  14. Synthesis, Tubulin Assembly, and Antiproliferative Activity Against MCF7 and NCI/ADR-RES Cancer Cells of 10-O-Acetyl-5′-hydroxybutitaxel

    OpenAIRE

    Ge, Haibo; Wang, Jianmei; Kayser, Margaret M.; Himes, Richard H.; Georg, Gunda I.

    2008-01-01

    A highly efficient kinetic resolution of racemic cis-4-(2-tert-butyldimethylsilyloxy-1,1-dimethyl)ethyl-3-tert-butyldimethylsilyloxy-azetidin-2-one with 7-O-triethylsilylbaccatin III was carried out to furnish 10-O-acetyl-5′-hydroxybutitaxel after removal of the silyl protecting groups. The compound was 50% as active as paclitaxel in a tubulin assembly assay and showed significantly decreased activity against MCF7 cell proliferation compared to paclitaxel.

  15. Design, Synthesis and Biological Evaluation of a Simplified Fluorescently Labeled Discodermolide as a Molecular Probe to Study the Binding of Discodermolide to Tubulin

    OpenAIRE

    Qi, Jun; Blanden, Adam R.; Bane, Susan; Kingston, David G I

    2011-01-01

    The design, synthesis, and biological evaluation of a simplified fluorescently labeled discodermolide analogue possessing a dimethylaminobenzoyl fluorophore has been achieved. Stereoselective Suzuki coupling, Horner–Wadsworth–Emmons reaction or the Wittig reaction comprised the key tactics for its construction. The analogue exhibited qualitatively similar activity to paclitaxel in a tubulin assembly assay, and it can thus be used as a fluorescent molecular probe to explore the local environme...

  16. Structure-Function Analysis of the Glioma Targeting NFL-TBS.40-63 Peptide Corresponding to the Tubulin-Binding Site on the Light Neurofilament Subunit

    OpenAIRE

    Berges, Raphael; Balzeau, Julien; Takahashi, Masayuki; Prevost, Chantal; Eyer, Joel

    2012-01-01

    We previously reported that a 24 amino acid peptide (NFL-TBS.40-63) corresponding to the tubulin-binding site located on the light neurofilament subunit, selectively enters in glioblastoma cells where it disrupts their microtubule network and inhibits their proliferation. Here, we analyzed the structure-function relationships using an alanine-scanning strategy, in order to identify residues essential for these biological activities. We showed that the majority of modified peptides present a d...

  17. A De Novo Mutation in the β-Tubulin Gene TUBB4A Results in the Leukoencephalopathy Hypomyelination with Atrophy of the Basal Ganglia and Cerebellum

    Science.gov (United States)

    Simons, Cas; Wolf, Nicole I.; McNeil, Nathan; Caldovic, Ljubica; Devaney, Joseph M.; Takanohashi, Asako; Crawford, Joanna; Ru, Kelin; Grimmond, Sean M.; Miller, David; Tonduti, Davide; Schmidt, Johanna L.; Chudnow, Robert S.; van Coster, Rudy; Lagae, Lieven; Kisler, Jill; Sperner, Jürgen; van der Knaap, Marjo S.; Schiffmann, Raphael; Taft, Ryan J.; Vanderver, Adeline

    2013-01-01

    Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare hereditary leukoencephalopathy that was originally identified by MRI pattern analysis, and it has thus far defied all attempts at identifying the causal mutation. Only 22 cases are published in the literature to date. We performed exome sequencing on five family trios, two family quartets, and three single probands, which revealed that all eleven H-ABC-diagnosed individuals carry the same de novo single-nucleotide TUBB4A mutation resulting in nonsynonymous change p.Asp249Asn. Detailed investigation of one of the family quartets with the singular finding of an H-ABC-affected sibling pair revealed maternal mosaicism for the mutation, suggesting that rare de novo mutations that are initially phenotypically neutral in a mosaic individual can be disease causing in the subsequent generation. Modeling of TUBB4A shows that the mutation creates a nonsynonymous change at a highly conserved asparagine that sits at the intradimer interface of α-tubulin and β-tubulin, and this change might affect tubulin dimerization, microtubule polymerization, or microtubule stability. Consistent with H-ABC’s clinical presentation, TUBB4A is highly expressed in neurons, and a recent report has shown that an N-terminal alteration is associated with a heritable dystonia. Together, these data demonstrate that a single de novo mutation in TUBB4A results in H-ABC. PMID:23582646

  18. Semi-dwarfism and lodging tolerance in tef (Eragrostis tef) is linked to a mutation in the α-Tubulin 1 gene.

    Science.gov (United States)

    Jöst, Moritz; Esfeld, Korinna; Burian, Agata; Cannarozzi, Gina; Chanyalew, Solomon; Kuhlemeier, Cris; Assefa, Kebebew; Tadele, Zerihun

    2015-02-01

    Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop. PMID:25399019

  19. Novel Combretastatin-2-aminoimidazole Analogues as Potent Tubulin Assembly Inhibitors: Exploration of Unique Pharmacophoric Impact of Bridging Skeleton and Aryl Moiety.

    Science.gov (United States)

    Chaudhary, Vikas; Venghateri, Jubina B; Dhaked, Hemendra P S; Bhoyar, Anil S; Guchhait, Sankar K; Panda, Dulal

    2016-04-14

    Combretastatin A-4 (CA-4) in phosphate and serine pro-drug forms is under phase II clinical trials. With our interest of discovering CA-4 inspired new chemical entities, a novel series of 4,5-diaryl-2-aminoimidazole analogues of the compound was designed and synthesized by an efficient and diversity feasible route involving atom economical arene C-H bond arylation. Interestingly, four compounds showed potent cell-based antiproliferative activities in nanomolar concentrations. Among the compounds, compound 12 inhibited the proliferation of several types of cancer cells much more efficiently than CA-4. It depolymerized microtubules, induced spindle defects, and stalled mitosis in cells. Compound 12 bound to tubulin and inhibited the polymerization of tubulin in vitro. In addition, podophyllotoxin and CA-4 inhibited the binding of compound 12 to tubulin. The distinctive pharmacophoric features of the bridging motif as well as quinoline nucleus were explored. We noted also a valuable quality of compound 12 as a potential probe in characterizing new CA-4 analogues. PMID:26938120

  20. (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone inhibits tubulin polymerization, induces G2/M arrest, and triggers apoptosis in human leukemia HL-60 cells

    International Nuclear Information System (INIS)

    (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (PHT) is a known cytotoxic compound belonging to the phenstatin family. However, the exact mechanism of action of PHT-induced cell death remains to be determined. The aim of this study was to investigate the mechanisms underlying PHT-induced cytotoxicity. We found that PHT displayed potent cytotoxicity in different tumor cell lines, showing IC50 values in the nanomolar range. Cell cycle arrest in G2/M phase along with the augmented metaphase cells was found. Cells treated with PHT also showed typical hallmarks of apoptosis such as cell shrinkage, chromatin condensation, phosphatidylserine exposure, increase of the caspase 3/7 and 8 activation, loss of mitochondrial membrane potential, and internucleosomal DNA fragmentation without affecting membrane integrity. Studies conducted with isolated tubulin and docking models confirmed that PHT binds to the colchicine site and interferes in the polymerization of microtubules. These results demonstrated that PHT inhibits tubulin polymerization, arrests cancer cells in G2/M phase of the cell cycle, and induces their apoptosis, exhibiting promising anticancer therapeutic potential. - Highlights: • PHT inhibits tubulin polymerization. • PHT arrests cancer cells in G2/M phase of the cell cycle. • PHT induces caspase-dependent apoptosis

  1. (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone inhibits tubulin polymerization, induces G{sub 2}/M arrest, and triggers apoptosis in human leukemia HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Magalhães, Hemerson I.F. [Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará (Brazil); Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba (Brazil); Wilke, Diego V. [Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará (Brazil); Bezerra, Daniel P., E-mail: danielpbezerra@gmail.com [Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia (Brazil); Cavalcanti, Bruno C. [Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará (Brazil); Rotta, Rodrigo; Lima, Dênis P. de; Beatriz, Adilson [Centro de Ciências Exatas e Tecnológicas (Laboratório LP4), Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul (Brazil); Moraes, Manoel O.; Diniz-Filho, Jairo [Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará (Brazil); Pessoa, Claudia, E-mail: c_pessoa@yahoo.com [Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará (Brazil)

    2013-10-01

    (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (PHT) is a known cytotoxic compound belonging to the phenstatin family. However, the exact mechanism of action of PHT-induced cell death remains to be determined. The aim of this study was to investigate the mechanisms underlying PHT-induced cytotoxicity. We found that PHT displayed potent cytotoxicity in different tumor cell lines, showing IC{sub 50} values in the nanomolar range. Cell cycle arrest in G{sub 2}/M phase along with the augmented metaphase cells was found. Cells treated with PHT also showed typical hallmarks of apoptosis such as cell shrinkage, chromatin condensation, phosphatidylserine exposure, increase of the caspase 3/7 and 8 activation, loss of mitochondrial membrane potential, and internucleosomal DNA fragmentation without affecting membrane integrity. Studies conducted with isolated tubulin and docking models confirmed that PHT binds to the colchicine site and interferes in the polymerization of microtubules. These results demonstrated that PHT inhibits tubulin polymerization, arrests cancer cells in G{sub 2}/M phase of the cell cycle, and induces their apoptosis, exhibiting promising anticancer therapeutic potential. - Highlights: • PHT inhibits tubulin polymerization. • PHT arrests cancer cells in G{sub 2}/M phase of the cell cycle. • PHT induces caspase-dependent apoptosis.

  2. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule

    Science.gov (United States)

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-12-01

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, --fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, ``common frequency point'' is proposed as a tool to regulate protein complex related diseases in the future.

  3. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents.

    Science.gov (United States)

    Wang, Guangcheng; Li, Chunyan; He, Lin; Lei, Kai; Wang, Fang; Pu, Yuzi; Yang, Zhuang; Cao, Dong; Ma, Liang; Chen, Jinying; Sang, Yun; Liang, Xiaolin; Xiang, Mingli; Peng, Aihua; Wei, Yuquan; Chen, Lijuan

    2014-04-01

    A new series of pyrano chalcone derivatives containing indole moiety (3-42, 49a-49r) were synthesized and evaluated for their antiproliferative activities. Among all the compounds, compound 49b with a propionyloxy group at the 4-position of the left phenyl ring and N-methyl-5-indoly on the right ring displayed the most potent cytotoxic activity against all tested cancer cell lines including multidrug resistant phenotype, which inhibits cancer cell growth with IC50 values ranging from 0.22 to 1.80μM. Furthermore, 49b significantly induced cell cycle arrest in G2/M phase and inhibited the polymerization of tubulin. Molecular docking analysis demonstrated the interaction of 49b at the colchicine binding site of tubulin. In experiments in vivo, 49b exerted potent anticancer activity in HepG2 human liver carcinoma in BALB/c nude mice. These results indicated these compounds are promising inhibitors of tubulin polymerization for the potential treatment of cancer. PMID:24629450

  4. A charged residue at the subunit interface of PCNA promotes trimer formation by destabilizing alternate subunit interactions

    International Nuclear Information System (INIS)

    Eukaryotic proliferating cell nuclear antigen (PCNA), an essential accessory factor in DNA replication and repair, is a ring-shaped homotrimer. A novel nontrimeric structure of E113G-mutant PCNA protein is reported, which shows that this protein forms alternate subunit interactions. It is concluded that the charged side chain of Glu113 promotes normal trimer formation by destabilizing these alternate subunit interactions. Eukaryotic proliferating cell nuclear antigen (PCNA) is an essential replication accessory factor that interacts with a variety of proteins involved in DNA replication and repair. Each monomer of PCNA has an N-terminal domain A and a C-terminal domain B. In the structure of the wild-type PCNA protein, domain A of one monomer interacts with domain B of a neighboring monomer to form a ring-shaped trimer. Glu113 is a conserved residue at the subunit interface in domain A. Two distinct X-ray crystal structures have been determined of a mutant form of PCNA with a substitution at this position (E113G) that has previously been studied because of its effect on translesion synthesis. The first structure was the expected ring-shaped trimer. The second structure was an unanticipated nontrimeric form of the protein. In this nontrimeric form, domain A of one PCNA monomer interacts with domain A of a neighboring monomer, while domain B of this monomer interacts with domain B of a different neighboring monomer. The B–B interface is stabilized by an antiparallel β-sheet and appears to be structurally similar to the A–B interface observed in the trimeric form of PCNA. The A–A interface, in contrast, is primarily stabilized by hydrophobic interactions. Because the E113G substitution is located on this hydrophobic surface, the A–A interface should be less favorable in the case of the wild-type protein. This suggests that the side chain of Glu113 promotes trimer formation by destabilizing these possible alternate subunit interactions

  5. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration.

    Science.gov (United States)

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A A; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C M

    2011-12-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-known determining factor for the acetylation status of proteins. However, the influence of Coenzyme A levels on protein acetylation is unknown. Here we investigate whether decreased levels of the central metabolite Coenzyme A induce alterations in protein acetylation and whether this correlates with specific phenotypes of PKAN models. We show that in various organisms proper Coenzyme A metabolism is required for maintenance of histone- and tubulin acetylation, and decreased acetylation of these proteins is associated with an impaired DNA damage response, decreased locomotor function and decreased survival. Decreased protein acetylation and the concurrent phenotypes are partly rescued by pantethine and HDAC inhibitors, suggesting possible directions for future PKAN therapy development. PMID:21998097

  6. Genetic variations in tau-tubulin kinase-1 are linked to Alzheimer's disease in a Spanish case-control cohort.

    Science.gov (United States)

    Vázquez-Higuera, José Luis; Martínez-García, Ana; Sánchez-Juan, Pascual; Rodríguez-Rodríguez, Eloy; Mateo, Ignacio; Pozueta, Ana; Frank, Ana; Valdivieso, Fernando; Berciano, José; Bullido, María J; Combarros, Onofre

    2011-03-01

    Neurofibrillary tangles, one of the characteristic neuropathological lesions found in Alzheimer's disease (AD) brains, are composed of abnormally hyperphosphorylated tau protein. Tau-tubulin kinase-1 (TTBK1) is a brain-specific protein kinase involved in tau phosphorylation at AD-related sites. We examined genetic variations of TTBK1 by genotyping nine haplotype tagging SNPs (htSNPs) (rs2104142, rs2651206, rs10807287, rs7764257, rs3800294, rs1995300, rs2756173, rs6936397, and rs6458330) in a group of 645 Spanish late-onset AD patients and 738 healthy controls. Using a recessive genetic model, minor allele homozygotes for rs2651206 in intron 1 (OR=0.50, p=0.0003), rs10807287 in intron 5 (OR=0.49, p=0.0002), and rs7764257 in intron 9 (OR=0.57, p=0.023), which are in strong linkage disequilibrium, had a lower risk of developing AD than subjects homozygotes and heterozygotes for the major allele. TTBK1 is a promising new candidate tau phosphorylation-related gene for AD risk. PMID:20096481

  7. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure.

    Science.gov (United States)

    Banerjee, Saikat; Shi, Heliang; Habte, Habtom H; Qin, Yali; Cho, Michael W

    2016-03-01

    The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; (671)NWFDITNWLWYIK(683)) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies in rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies. PMID:26803471

  8. Gravity-destabilized nonwetting phase invasion in macro-heterogeneous porous media: Experimental observations of invasion dynamics and scale analysis

    Energy Technology Data Exchange (ETDEWEB)

    GLASS JR.,ROBERT J.; CONRAD,STEPHEN H.; PEPLINSKI,WILLIAM J.

    1999-02-16

    The authors designed and conducted experiments in a heterogeneous sand pack where gravity-destabilized nonwetting phase invasion (CO{sub 2} and TCE) could be recorded using high resolution light transmission methods. The heterogeneity structure was designed to be reminiscent of fluvial channel lag cut-and-fill architecture and contain a series of capillary barriers. As invasion progressed, nonwetting phase structure developed a series of fingers and pools; behind the growing front they found nonwetting phase saturation to pulsate in certain regions when viscous forces were low. Through a scale analysis, they derive a series of length scales that describe finger diameter, pool height and width, and regions where pulsation occurs within a heterogeneous porous medium. In all cases, they find that the intrinsic pore scale nature of the invasion process and resulting structure must be incorporated into the analysis to explain experimental results. The authors propose a simple macro-scale structural growth model that assembles length scales for sub-structures to delineate nonwetting phase migration from a source into a heterogeneous domain. For such a model applied at the field scale for DNAPL migration, they expect capillary and gravity forces within the complex subsurface lithology to play the primary roles with viscous forces forming a perturbation on the inviscid phase structure.

  9. Destabilizing Carry Trades

    OpenAIRE

    Plantin, Guillaume; Shin, Hyun Song

    2014-01-01

    We offer a model of currency carry trades in which carry traders generate self-sustained excess returns if they coordinate on supplying excessive capital to a target economy. The interest-rate differential between their funding currency and the target currency is their coordination device. Such self-fulfilling pro table currency trades arise when the central bank of the target economy ignores the impact of carry-trade in flows on domestic asset prices, and responds only to their effect on inf...

  10. Destabilized bioluminescent proteins

    Science.gov (United States)

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  11. Destabilizing carry trades

    OpenAIRE

    Guillaume Plantin; Hyun Song Shin

    2015-01-01

    We offer a model of currency carry trades in which carry traders generate self-sustained excess returns if they coordinate on supplying excessive capital to a target economy. The interest-rate differential between their funding currency and the target currency is their coordination device. Such self-fulfilling pro table currency trades arise when the central bank of the target economy ignores the impact of carry-trade in flows on domestic asset prices, and responds only to their effect on inf...

  12. Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1

    Science.gov (United States)

    Protasevich, Irina; Yang, Zhengrong; Wang, Chi; Atwell, Shane; Zhao, Xun; Emtage, Spencer; Wetmore, Diana; Hunt, John F; Brouillette, Christie G

    2010-01-01

    Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in-frame deletion of phenylalanine (F508del), located in the first nucleotide-binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra- and inter-domain folding is impaired. (F508del)CFTR is a temperature-sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically-controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three-state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate-determining, irreversible formation of a partially folded, aggregation-prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT. PMID:20687133

  13. Flow Regime Destabilizing Effect on Fluid elastic Instability of Tube Array Preferentially Flexible to the Flow Direction

    International Nuclear Information System (INIS)

    U bend region of operating SG is excited by the inclined cross flow due to the gradual change of hydraulic resistance force. The effect of tube array's flexibility direction on FEI is investigated by Khalvatti for rotated triangular tube in single phase (air) cross flow. He showed that FEI strongly depend on the flexibility angle. Reducing bundle flexibility to the flow direction ranging from 90 (out-of-flow direction) to 0 (in-flow direction) degree has a nonlinearly-varying stabilizing effect. Joly studies the same problem under high void fraction in two phase cross flow over 70 % to 90 %. With the Joly's experimental work, there is oddly low-valued Conner's constant in case of higher degree of angle of attack. This gives the motivation to our experimental study for fluid elastic instability of tube array in two phase cross flow. As the flow rate goes up, tube response was measured for each steady state flow condition by the strain gauge. Damping, peak frequency, and the critical velocity were estimated from the response spectrum. It seems that the flow regime for high void fraction can destabilize tube array with preferential flexibility over 60 degree. Because an intermittent flow is inherently unstable compared to the uniform bubbly flow, thus out-of-flow motion of tubes can be more fragile to the unstably rising intermittent flow. From the visual inspection, lateral tube motion seems to block the flow path periodically. Enlarged bubble in an intermittent flow regime can be squeezed-up at the flow gap between tubes

  14. Postural destabilization induced by trunk extensor muscles fatigue is suppressed by use of a plantar pressure-based electro-tactile biofeedback.

    OpenAIRE

    Vuillerme, Nicolas; Pinsault, Nicolas; Chenu, Olivier; Fleury, Anthony; Payan, Yohan; Demongeot, Jacques

    2008-01-01

    Separate studies have reported that postural control during quiet standing could be (1) impaired with muscle fatigue localized at the lower back, and (2) improved through the use of plantar pressure-based electro-tactile biofeedback, under normal neuromuscular state. The aim of this experiment was to investigate whether this biofeedback could reduce postural destabilization induced by trunk extensor muscles. Ten healthy adults were asked to stand as immobile as possible in four experimental c...

  15. Extension of the destabilization paradox to limit cycle amplitudes for a nonlinear self-excited system subject to gyroscopic and circulatory actions

    OpenAIRE

    Hervé, Benjamin; Sinou, Jean-Jacques; Mahé, Hervé; Jezequel, Louis

    2009-01-01

    This study aims at clarifying the phenomenological roots of an acoustical disturbance known as "clutch squeal noise". A nonlinear two-degrees-of-freedom model is introduced in order to illustrate some basic phenomena leading to self-generated vibrations. The damping of the system as well as both circulatory and gyroscopic actions are included in order to highlight their respective influence and the destabilization paradox. Results are obtained on the stability range of the equilibrium, the na...

  16. Class III β-tubulin is a predictive marker for taxane-based chemotherapy in recurrent and metastatic gastric cancer

    International Nuclear Information System (INIS)

    Class III β-tubulin (TUBB3) is a prognostic marker in various tumors, but the role of TUBB3 in advanced gastric cancer is not clearly defined. We analyzed the significance of TUBB3 expression, along with that of excision repair cross-complementation group 1 (ERCC1) in recurrent and metastatic gastric cancer patients receiving taxane-based first-line palliative chemotherapy. We reviewed the cases of 146 patients with advanced gastric adenocarcinoma who received taxane-based first-line palliative chemotherapy between 2004 and 2010 at Chonnam National University Hwasun Hospital (Gwangju, Korea). Immunohistochemical staining for TUBB3 and ERCC1 was performed using paraffin wax-embedded tumor tissues. We evaluated the patients’ response to chemotherapy, progression-free survival (PFS), and overall survival (OS). In total, 146 patients with advanced gastric cancer received docetaxel and cisplatin (n = 15) or paclitaxel and cisplatin (n = 131). The median PFS was significantly shorter for patients with high-level TUBB3 expression than for patients with low-level TUBB3 expression (3.63 vs. 6.67 months, P = 0.001). OS was not associated with TUBB3 expression (13.1 vs. 13.1 months, P = 0.769). By multivariate analysis, only TUBB3 was related to a shorter PFS (HR 2.74, 95% CI 1.91-3.91, P = 0.001). Patients with high-level ERCC1 expression showed a lower response rate than patients with low-level ERCC1 expression (24 vs. 63.2%, P = 0.001); however, ERCC1 had no clinical effect on PFS or OS. TUBB3 was a strong predictive marker in recurrent and metastatic gastric cancer patients receiving taxane-based first-line palliative chemotherapy. No clinical impact of ERCC1 was evident in this setting

  17. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Morgane eBatzenschlager

    2013-11-01

    Full Text Available During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs are nucleated from γ-Tubulin Complexes (γ-TuCs located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope are currently unknown. The γ-TuC Protein 3 (GCP3-Interacting Protein 1 (GIP1 is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects.In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fibre robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the nuclear envelope.These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and nuclear envelope organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum.

  18. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations.

    Science.gov (United States)

    Kumbhar, Bajarang Vasant; Borogaon, Anubhaw; Panda, Dulal; Kunwar, Ambarish

    2016-01-01

    Tubulin isotypes are found to play an important role in regulating microtubule dynamics. The isotype composition is also thought to contribute in the development of drug resistance as tubulin isotypes show differential binding affinities for various anti-cancer agents. Tubulin isotypes αβII, αβIII and αβIV show differential binding affinity for colchicine. However, the origin of differential binding affinity is not well understood at the molecular level. Here, we investigate the origin of differential binding affinity of a colchicine analogue N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) for human αβII, αβIII and αβIV isotypes, employing sequence analysis, homology modeling, molecular docking, molecular dynamics simulation and MM-GBSA binding free energy calculations. The sequence analysis study shows that the residue compositions are different in the colchicine binding pocket of αβII and αβIII, whereas no such difference is present in αβIV tubulin isotypes. Further, the molecular docking and molecular dynamics simulations results show that residue differences present at the colchicine binding pocket weaken the bonding interactions and the correct binding of DAMA-colchicine at the interface of αβII and αβIII tubulin isotypes. Post molecular dynamics simulation analysis suggests that these residue variations affect the structure and dynamics of αβII and αβIII tubulin isotypes, which in turn affect the binding of DAMA-colchicine. Further, the binding free-energy calculation shows that αβIV tubulin isotype has the highest binding free-energy and αβIII has the lowest binding free-energy for DAMA-colchicine. The order of binding free-energy for DAMA-colchicine is αβIV ≃ αβII > αβIII. Thus, our computational approaches provide an insight into the effect of residue variations on differential binding of αβII, αβIII and αβIV tubulin isotypes with DAMA-colchicine and may help to design new analogues with higher

  19. Absence of detectable benzimidazole-resistance associated alleles in Haemonchus placei in cattle in Nigeria revealed by pyrosequencing of β-tubulin isotype 1.

    Science.gov (United States)

    Ademola, Isaiah O; Krücken, Jürgen; Ramünke, Sabrina; Demeler, Janina; von Samson-Himmelstjerna, Georg

    2015-05-01

    Trichostrongyles are gastrointestinal parasites that occur globally and can cause subclinical to severe, sometimes life-threatening, infections in ruminants, particularly young animals. Benzimidazoles (BZ) are commonly used for the treatment of gastrointestinal parasites in ruminants. Increasing spread of worm populations with anthelmintics resistance has been reported and is considered a consequence of highly frequent and longstanding use of anthelmintics. To obtain initial information regarding the occurrence of putatively BZ-resistant Nigerian Haemonchus populations, screening based on the molecular analysis of BZ-resistance-associated β-tubulin isotype 1 gene sequence polymorphisms was undertaken. Genomic DNA was isolated from pooled adult Haemonchus sp. from 35 animals from each of the six states of southwestern Nigeria. Sequencing of internal transcribed spacer 2 (ITS-2) and external transcribed spacer (ETS) regions was used to determine the Haemonchus species. Pyrosequencing assays were used for detection of single-nucleotide polymorphisms (SNPs) in the β-tubulin isotype 1 genes of the worms at codons 200 and 167 (TTC/TAC) or 198 (GAA/GCA). Exclusively, Haemonchus placei was detected and allele frequencies obtained at all three positions showed no evidence for the presence of resistance-related alleles. For Lagos State, pools of 10 worms from 30 different animals were analyzed separately for the codon 200 SNP, successfully excluding the presence of resistance-associated SNPs in very low frequencies. These positive findings, showing absence of elevated frequencies of BZ-resistance-associated β-tubulin alleles, have considerable significance since it suggests that farmers can still rely on the efficacy of this important drug class when used for controlling trichostrongyle infections in cattle in Nigeria. PMID:25782679

  20. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Manchukonda

    Full Text Available Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol than the parent compound, noscapine (-5.505 kCal/mol and its existing derivatives (-5.563 to -6.412 kCal/mol. Free energy (ΔG bind calculations based on the linear interaction energy (LIE empirical equation utilizing Surface Generalized Born (SGB continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol. Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol. The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl noscapine (6f binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM, which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM. All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  1. Relationship between Expression of β-tubulin-Ⅲ Plus Stathmin in Advanced Non-Small Cell Lung Cancer and its Sensitivity to Venorelbine Chemotherapy

    Directory of Open Access Journals (Sweden)

    Xiaolin PU

    2009-01-01

    Full Text Available Background and objective Vinorelbine plus cisplatin/carboplatin (NP is one of the standard combination chemotherapy regimen for advanced non-small cell lung cancer (NSCLC. The aim of this study is toinvestigate the relationship between expression of Stathmin and β-tubulin-Ⅲ in NSCLC biopsies and sensitivity to Vinorelbine, which would provide a basis of the proper medicine choice for the patients' tailored chemotherapy. Methods Western blot was used to investigate the expression of Stathmin and β-tubulin-Ⅲ protein in the biopsies from stage ⅢB-Ⅳ NSCLC patients. All the cases were divided into 4 groups according to the level of the two proteins, of which L represented both protein expressed lowly, B showed β-tubulin-Ⅲ lowly expressed group, while S showed Stathmin lowly, and H represented both protein highly expressed. At the same time, all the patients accepted NP chemotherapy for 2 or 4 cycles according to the responses to this regimen. The responses rate (RR, media survival time (MST, time to progress (TTP were observed. Results A total of 90 stage ⅢB-Ⅳ NSCLC patients were divided into 4 groups, 22 in L group, 23 in B and S group while 22 in H group respectively. The RR of the groups were 68.2%, 26.1%, 30.4% and 22.7% respectively.There were statistically significant differences between L group and other 3 groups (P <0.05. The MST were 377, 305, 321 and 271 days respectively, and the TTP were 240, 182, 190 and 166 days in the 4 groups. Statistically significant differences between L group and other 3 groups (P <0.05 can be seen in both MST and TTP. Conclusion The expression of β-tubulin-Ⅲ and Stathmin in advanced NSCLC biopsies had relationship with the sensitivity to NP chemotherapyregimen in the patients. Cases with high level of these two proteins would have poor responses to this cytotoxic drug.

  2. Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1.

    Science.gov (United States)

    Protasevich, Irina; Yang, Zhengrong; Wang, Chi; Atwell, Shane; Zhao, Xun; Emtage, Spencer; Wetmore, Diana; Hunt, John F; Brouillette, Christie G

    2010-10-01

    Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in-frame deletion of phenylalanine (F508del), located in the first nucleotide-binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra- and inter-domain folding is impaired. (F508del)CFTR is a temperature-sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (T(m)) by 6-7°C and that unfolding occurs via a kinetically-controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three-state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) I(T)(±MgATP) → A(T) → (A(T))(n). The equilibrium unfolding to intermediate, I(T), is followed by the rate-determining, irreversible formation of a partially folded, aggregation-prone, monomeric state, A(T), for which aggregation to (A(T))(n) and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of A(T). PMID:20687133

  3. A novel hybrid drug between two potent anti-tubulin agents as a potential prolonged anticancer approach.

    Science.gov (United States)

    Marchetti, Paolo; Pavan, Barbara; Simoni, Daniele; Baruchello, Riccardo; Rondanin, Riccardo; Mischiati, Carlo; Feriotto, Giordana; Ferraro, Luca; Hsu, Lih-Ching; Lee, Ray M; Dalpiaz, Alessandro

    2016-08-25

    We report the design, synthesis and biological characterisation of a novel hybrid drug by conjugation of two tubulin inhibitors, a hemiasterlin derivative A (H-Mpa-Tle-Aha-OH), obtained by condensation of three non-natural amino acids, and cis-3,4',5-trimethoxy-3'aminostilbene (B). As we have previously demonstrated synergy between A and B, we used a monocarbonyl derivative of triethylene glycol as linker (L) to synthesise compounds A-L and A-L-B; via HPLC we analysed the release of its potential hydrolysis products A, A-L, B and B-L in physiological fluids: the hybrid A-L-B undergo hydrolysis in rat whole blood of the ester bond between A and L (half-life=118.2±9.5min) but not the carbamate bond between B and L; the hydrolysis product B-L was further hydrolyzed, but with a slower rate (half-life=288±12min). The compound A-L was the faster hydrolyzed conjugate (half-life=25.4±1.1min). The inhibitory activity of the compounds against SKOV3 ovarian cancer cell growth was analysed. The IC50 values were 7.48±1.27nM for A, 40.3±6.28nM for B, 738±38.5nM for A-L and 37.9±2.11nM for A-L-B. The anticancer effect of A-L-B was evidenced to be obtained via microtubule dynamics suppression. Finally, we stated the expression of the active efflux transporters P-gp (ABCB1) and MRP1 (ABCC1) in the human normal colon epithelial NCM460 cell line by reverse-transcription PCR. Via permeation studies across NCM460 monolayers we demonstrate the poor aptitude of A to interact with active efflux transporters (AET): indeed, the ratio between its permeability coefficients for the basolateral (B)→apical (A) and B→A transport was 1.5±0.1, near to the ratio of taltobulin (1.12±0.06), an hemiasterlin derivative able to elude AETs, and significantly different form the ratio of celiprolol (3.4±0.2), an AET substrate. PMID:27262542

  4. Long intergenic non-coding RNA APOC1P1-3 inhibits apoptosis by decreasing α-tubulin acetylation in breast cancer

    Science.gov (United States)

    Liao, X-H; Wang, J-G; Li, L-Y; Zhou, D-M; Ren, K-H; Jin, Y-T; Lv, L; Yu, J-G; Yang, J-Y; Lu, Q; Zou, Q; Yu, J; Liu, X-P; Zhou, P

    2016-01-01

    Increasing evidence indicates that long non-coding RNAs (lncRNAs) act as important regulatory factors in tumor progression. However, their roles in breast cancer remain largely unknown. In present studies, we identified aberrantly expressed long intergenic non-coding RNA APOC1P1-3 (lincRNA-APOC1P1-3) in breast cancer by microarray, verified it by quantitative real-time PCR, and assessed methylation status in the promoter region by pyrosequencing. We also investigated the biological functions with plasmid transfection and siRNA silencing experiments, and further explored their mechanisms by RNA pull-down and RNA immunoprecipitation to identify binding proteins. We found that 224 lncRNAs were upregulated in breast cancer, whereas 324 were downregulated. The lincRNA-APOC1P1-3 was overexpressed in breast cancer, which was related to tumor size and hypomethylation in its promoter region. We also found that APOC1P1-3 could directly bind to tubulin to decrease α-tubulin acetylation, to inactivate caspase-3, and to inhibit apoptosis. This study demonstrates that overexpression of APOC1P1-3 can inhibit breast cancer apoptosis. PMID:27228351

  5. Structure of γ-tubulin small complex based on a cryo-EM map, chemical cross-links, and a remotely related structure.

    Science.gov (United States)

    Greenberg, Charles H; Kollman, Justin; Zelter, Alex; Johnson, Richard; MacCoss, Michael J; Davis, Trisha N; Agard, David A; Sali, Andrej

    2016-06-01

    Modeling protein complex structures based on distantly related homologues can be challenging due to poor sequence and structure conservation. Therefore, utilizing even low-resolution experimental data can significantly increase model precision and accuracy. Here, we present models of the two key functional states of the yeast γ-tubulin small complex (γTuSC): one for the low-activity "open" state and another for the higher-activity "closed" state. Both models were computed based on remotely related template structures and cryo-EM density maps at 6.9Å and 8.0Å resolution, respectively. For each state, extensive sampling of alignments and conformations was guided by the fit to the corresponding cryo-EM density map. The resulting good-scoring models formed a tightly clustered ensemble of conformations in most regions. We found significant structural differences between the two states, primarily in the γ-tubulin subunit regions where the microtubule binds. We also report a set of chemical cross-links that were found to be consistent with equilibrium between the open and closed states. The protocols developed here have been incorporated into our open-source Integrative Modeling Platform (IMP) software package (http://integrativemodeling.org), and can therefore be applied to many other systems. PMID:26968363

  6. Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule Dynamics and Dendrite Morphogenesis.

    Science.gov (United States)

    Ori-McKenney, Kassandra M; McKenney, Richard J; Huang, Hector H; Li, Tun; Meltzer, Shan; Jan, Lily Yeh; Vale, Ronald D; Wiita, Arun P; Jan, Yuh Nung

    2016-05-01

    Dendritic arborization patterns are consistent anatomical correlates of genetic disorders such as Down syndrome (DS) and autism spectrum disorders (ASDs). In a screen for abnormal dendrite development, we identified Minibrain (MNB)/DYRK1a, a kinase implicated in DS and ASDs, as a regulator of the microtubule cytoskeleton. We show that MNB is necessary to establish the length and cytoskeletal composition of terminal dendrites by controlling microtubule growth. Altering MNB levels disrupts dendrite morphology and perturbs neuronal electrophysiological activity, resulting in larval mechanosensation defects. Using in vivo and in vitro approaches, we uncover a molecular pathway whereby direct phosphorylation of β-tubulin by MNB inhibits tubulin polymerization, a function that is conserved for mammalian DYRK1a. Our results demonstrate that phosphoregulation of microtubule dynamics by MNB/DYRK1a is critical for dendritic patterning and neuronal function, revealing a previously unidentified mode of posttranslational microtubule regulation in neurons and uncovering a conserved pathway for a DS- and ASD-associated kinase. PMID:27112495

  7. F200Y polymorphism of the β-tubulin isotype 1 gene in Haemonchus contortus and sheep flock management practices related to anthelmintic resistance in eastern Amazon.

    Science.gov (United States)

    Chagas, Alexandre Moura; Sampaio Junior, Francisco Dantas; Pacheco, Adlilton; da Cunha, Amanda Batista; Cruz, Juliana Dos Santos; Scofield, Alessandra; Góes-Cavalcante, Gustavo

    2016-08-15

    The objective of the present study was to determine the frequency of the F200Y polymorphism in the β-tubulin isotype 1 gene of Haemonchus contortus from various sheep flocks in eastern Amazon, and to identify management practices that may favor the emergence of resistance to anthelmintic drugs in the same area. In total, 305 specimens of H. contortus were collected from sheep at 12 farms located in the state of Pará. An allele-specific PCR was performed to detect the F200Y polymorphism, and questionnaires were used to obtain information about the farms and flocks. All genotypes were detected as follows: 31% of the parasites were RR, 37% of the parasites were SR, and 32% were SS. The completed questionnaires revealed that all farms employed semi-intensive farming systems, performed suppressive anthelmintic treatment, and based their choice of drug on cost and availability rather than on any knowledge regarding drugs that remained effective on their property. It can thus be concluded that the SNP in codon 200 of the β-tubulin isotype 1 gene is present in the H. contortus populations from eastern Amazon, and that a series of management practices that favor the emergence of anthelmintic resistance are employed on these farms. PMID:27514894

  8. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    Science.gov (United States)

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  9. The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3

    Directory of Open Access Journals (Sweden)

    Liping He

    2012-11-01

    Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER lumen and ER membrane. ER quality control (ERQC mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508 results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR Cl– channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3wt was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3ΔF508 was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3ΔF508. Efficient degradation of PGP-3ΔF508 required the function of several C. elegans ER-associated degradation (ERAD homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.

  10. Impact of the terminal bulges of HIV-1 cTAR DNA on its stability and the destabilizing activity of the nucleocapsid protein NCp7.

    Science.gov (United States)

    Beltz, Hervé; Azoulay, Joel; Bernacchi, Serena; Clamme, Jean-Pierre; Ficheux, Damien; Roques, Bernard; Darlix, Jean-Luc; Mély, Yves

    2003-04-18

    Reverse transcription of HIV-1 genomic RNA to double-stranded DNA by reverse transcriptase (RT) is a critical step in HIV-1 replication. This process relies on two viral proteins, the RT enzyme and nucleocapsid protein NCp7 that has well documented nucleic acid chaperone properties. At the beginning of the linear DNA synthesis, the newly made minus-strand strong-stop DNA ((-)ssDNA) is transferred to the 3'end of the genomic RNA by means of an hybridization reaction between transactivation response element (TAR) RNA and cTAR DNA sequences. Since both TAR sequences exhibit stable hairpin structures, NCp7 needs to destabilize the TAR structures in order to chaperone their hybridization. To further characterize the relationships between TAR stability and NC-mediated destabilization, the role of the A(49) and G(52) bulged residues in cTAR DNA stability was investigated. The stability of cTAR and mutants where one or the two terminal bulges were replaced by base-pairs as well as the NCp7-mediated destabilization of these cTAR sequences were examined. Thermodynamic data indicate that the two bulges cooperatively destabilize cTAR by reducing the stacking interactions between the bases. This causes a free energy change of about 6.4 kcal/mol and seems to be critical for NC activity. Time-resolved fluorescence data of doubly labelled cTAR derivatives suggest that NC-mediated melting of cTAR ends propagates up to the 10C.A(44) mismatch or T(40) bulge. Fluorescence correlation spectroscopy using two-photon excitation was also used to monitor cTAR ends fraying by NC. Results show that NC causes a very significant increase of cTAR ends fraying, probably limited to the terminal base-pair in the case of cTAR mutants. Since the TAR RNA and cTAR DNA bulges or mismatches appear well conserved among all HIV-1 strains, the present data support the notion of a co-evolutionary relationship between TAR and NC activity. PMID:12684000

  11. Impediment of E. coli UvrD by DNA-destabilizing force reveals a strained-inchworm mechanism of DNA unwinding

    OpenAIRE

    Sun, Bo; Wei, Kong-Ji; Zhang, Bo; Zhang, Xing-Hua; Dou, Shuo-Xing; Li, Ming; Xi, Xu Guang

    2008-01-01

    Escherichia coli UvrD is a non-ring-shaped model helicase, displaying a 3′–5′ polarity in DNA unwinding. Using a transverse magnetic tweezer and DNA hairpins, we measured the unwinding kinetics of UvrD at various DNA-destabilizing forces. The multiform patterns of unwinding bursts and the distributions of the off-times favour the mechanism that UvrD unwinds DNA as a dimer. The two subunits of the dimer coordinate to unwind DNA processively. They can jointly switch strands and translocate back...

  12. Load-dependent destabilization of the γ-rotor shaft in FOF1 ATP synthase revealed by hydrogen/deuterium-exchange mass spectrometry.

    Science.gov (United States)

    Vahidi, Siavash; Bi, Yumin; Dunn, Stanley D; Konermann, Lars

    2016-03-01

    FoF1 is a membrane-bound molecular motor that uses proton-motive force (PMF) to drive the synthesis of ATP from ADP and Pi. Reverse operation generates PMF via ATP hydrolysis. Catalysis in either direction involves rotation of the γε shaft that connects the α3β3 head and the membrane-anchored cn ring. X-ray crystallography and other techniques have provided insights into the structure and function of FoF1 subcomplexes. However, interrogating the conformational dynamics of intact membrane-bound FoF1 during rotational catalysis has proven to be difficult. Here, we use hydrogen/deuterium exchange mass spectrometry to probe the inner workings of FoF1 in its natural membrane-bound state. A pronounced destabilization of the γ C-terminal helix during hydrolysis-driven rotation was observed. This behavior is attributed to torsional stress in γ, arising from γ⋅⋅⋅α3β3 interactions that cause resistance during γ rotation within the apical bearing. Intriguingly, we find that destabilization of γ occurs only when FoF1 operates against a PMF-induced torque; the effect disappears when PMF is eliminated by an uncoupler. This behavior resembles the properties of automotive engines, where bearings inflict greater forces on the crankshaft when operated under load than during idling. PMID:26884184

  13. Activation of β1-adrenoceptor triggers oxidative stress mediated myocardial membrane destabilization in isoproterenol induced myocardial infarcted rats: 7-hydroxycoumarin and its counter action.

    Science.gov (United States)

    Jagadeesh, Govindan Sangaran; Nagoor Meeran, Mohamed Fizur; Selvaraj, Palanisamy

    2016-04-15

    Activation of β1-adrenoceptor stimulates myocardial membrane destabilization in isoproterenol induced rats. Male albino Wistar rats were pre and co-treated with 7-hydroxycoumarin (16mg/kg body weight) daily for 8 days. Myocardial infarction was induced into rats by the subcutaneous administration of isoproterenol (100mg/kg body weight) at an interval of 24h daily for a period of two days (7th and 8th day). The levels/activities of serum cardiac troponin-T, lactate dehydrogenase and the concentrations of heart lipid peroxidation products were significantly increased and the antioxidant status was significantly decreased in isoproterenol induced rats. Furthermore, the activity of sodium/potassium-dependent adenosine triphosphatase was significantly decreased and the activities of calcium and magnesium-dependent adenosine triphosphatases were significantly increased in the heart of isoproterenol induced myocardial infarcted rats. Isoproterenol induced rats also revealed increased concentrations of sodium and calcium and decreased concentrations of potassium in the heart. 7-hydroxycoumarin pre- and co-treatment showed considerable impact on all biochemical parameters assessed. Also, 7-HC greatly reduced the infarct size of the myocardium. The in vitro study confirmed its potent free radical scavenging activity. Thus, the present study revealed that 7-HC attenuates myocardial membrane destabilization by reinstating the activities/levels of adenosine triphosphatases and minerals in isoproterenol induced rats by inhibiting oxidative stress. These effects are attributed to the membrane stabilizing and free radical scavenging properties of 7-hydroxycoumarin. PMID:26930228

  14. Many roads lead to Rome? Multiple modes of Cu,Zn superoxide dismutase destabilization, misfolding and aggregation in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Broom, Helen R; Rumfeldt, Jessica A O; Meiering, Elizabeth M

    2014-01-01

    ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative syndrome characterized by progressive paralysis and motor neuron death. Although the pathological mechanisms that cause ALS remain unclear, accumulating evidence supports that ALS is a protein misfolding disorder. Mutations in Cu,Zn-SOD1 (copper/zinc superoxide dismutase 1) are a common cause of familial ALS. They have complex effects on different forms of SOD1, but generally destabilize the protein and enhance various modes of misfolding and aggregation. In addition, there is some evidence that destabilized covalently modified wild-type SOD1 may be involved in disease. Among the multitude of misfolded/aggregated species observed for SOD1, multiple species may impair various cellular components at different disease stages. Newly developed antibodies that recognize different structural features of SOD1 represent a powerful tool for further unravelling the roles of different SOD1 structures in disease. Evidence for similar cellular targets of misfolded/aggregated proteins, loss of cellular proteostasis and cell-cell transmission of aggregates point to common pathological mechanisms between ALS and other misfolding diseases, such as Alzheimer's, Parkinson's and prion diseases, as well as serpinopathies. The recent progress in understanding the molecular basis for these devastating diseases provides numerous avenues for developing urgently needed therapeutics. PMID:25131593

  15. Inhibition of cytosolic Phospholipase A2 prevents prion peptide-induced neuronal damage and co-localisation with Beta III Tubulin

    Directory of Open Access Journals (Sweden)

    Last Victoria

    2012-08-01

    Full Text Available Abstract Background Activation of phospholipase A2 (PLA2 and the subsequent metabolism of arachidonic acid (AA to prostaglandins have been shown to play an important role in neuronal death in neurodegenerative disease. Here we report the effects of the prion peptide fragment HuPrP106-126 on the PLA2 cascade in primary cortical neurons and translocation of cPLA2 to neurites. Results Exposure of primary cortical neurons to HuPrP106-126 increased the levels of phosphorylated cPLA2 and caused phosphorylated cPLA2 to relocate from the cell body to the cellular neurite in a PrP-dependent manner, a previously unreported observation. HuPrP106-126 also induced significant AA release, an indicator of cPLA2 activation; this preceded synapse damage and subsequent cellular death. The novel translocation of p-cPLA2 postulated the potential for exposure to HuPrP106-126 to result in a re-arrangement of the cellular cytoskeleton. However p-cPLA2 did not colocalise significantly with F-actin, intermediate filaments, or microtubule-associated proteins. Conversely, p-cPLA2 did significantly colocalise with the cytoskeletal protein beta III tubulin. Pre-treatment with the PLA2 inhibitor, palmitoyl trifluoromethyl ketone (PACOCF3 reduced cPLA2 activation, AA release and damage to the neuronal synapse. Furthermore, PACOCF3 reduced expression of p-cPLA2 in neurites and inhibited colocalisation with beta III tubulin, resulting in protection against PrP-induced cell death. Conclusions Collectively, these findings suggest that cPLA2 plays a vital role in the action of HuPrP106-126 and that the colocalisation of p-cPLA2 with beta III tubulin could be central to the progress of neurodegeneration caused by prion peptides. Further work is needed to define exactly how PLA2 inhibitors protect neurons from peptide-induced toxicity and how this relates to intracellular structural changes occurring in neurodegeneration.

  16. Molecular analysis of the F167Y SNP in the β-tubulin gene by screening genotypes of two Ancylostoma caninum populations.

    Science.gov (United States)

    Furtado, Luis Fernando Viana; Rabelo, Élida Mara Leite

    2015-05-30

    Mutations in the β-tubulin isotype 1 gene at codons 167 (F167Y), 198 (E198A) and 200 (F200Y) have been associated with benzimidazole resistance in helminths. The F200Y polymorphism has previously been described for Ancylostom caninum; however, the F167Y polymorphism has not been investigated in members of the Ancylostomatidae family. The aim of this study was to screen for the F167Y polymorphism in A. caninum isolates recovered from naturally infected dogs in two Brazilian states. No mutation was observed at codon 167 in the 230 analyzed samples from the two populations; however, it is possible that this change may be present at a low frequency in other populations of the same species. These results highlight the importance of monitoring the genetic basis involved in the drug resistance process. PMID:25865406

  17. The functionalized amino acid (S-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Sarah M Wilson

    2014-07-01

    Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are

  18. Filamentous fungal-specific septin AspE is phosphorylated in vivo and interacts with actin, tubulin and other septins in the human pathogen Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Juvvadi, Praveen Rao; Belina, Detti [Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC (United States); Soderblom, Erik J.; Moseley, M. Arthur [Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University, Durham, NC (United States); Steinbach, William J., E-mail: bill.steinbach@duke.edu [Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC (United States); Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (United States)

    2013-02-15

    Highlights: ► In vivo interactions of the novel septin AspE were identified by GFP-Trap® affinity purification. ► Septins AspA, AspB, AspC and AspD interacted with AspE in vivo. ► Actin and tubulin interacted with AspE in vivo. ► AspE is phosphorylated at six serine residues in vivo. -- Abstract: We previously analyzed the differential localization patterns of five septins (AspA–E), including a filamentous fungal-specific septin, AspE, in the human pathogen Aspergillus fumigatus. Here we utilized the A. fumigatus strain expressing an AspE–EGFP fusion protein and show that this novel septin with a tubular localization pattern in hyphae is phosphorylated in vivo and interacts with the other septins, AspA, AspB, AspC and AspD. The other major proteins interacting with AspE included the cytoskeletal proteins, actin and tubulin, which may be involved in the organization and transport of the septins. This is the first report analyzing the phosphorylation of AspE and localizing the sites of phosphorylation, and opens opportunities for further analysis on the role of post-translational modifications in the assembly and organization of A. fumigatus septins. This study also describes the previously unknown interaction of AspE with the actin-microtubule network. Furthermore, the novel GFP-Trap® affinity purification method used here complements widely-used GFP localization studies in fungal systems.

  19. Filamentous fungal-specific septin AspE is phosphorylated in vivo and interacts with actin, tubulin and other septins in the human pathogen Aspergillus fumigatus

    International Nuclear Information System (INIS)

    Highlights: ► In vivo interactions of the novel septin AspE were identified by GFP-Trap® affinity purification. ► Septins AspA, AspB, AspC and AspD interacted with AspE in vivo. ► Actin and tubulin interacted with AspE in vivo. ► AspE is phosphorylated at six serine residues in vivo. -- Abstract: We previously analyzed the differential localization patterns of five septins (AspA–E), including a filamentous fungal-specific septin, AspE, in the human pathogen Aspergillus fumigatus. Here we utilized the A. fumigatus strain expressing an AspE–EGFP fusion protein and show that this novel septin with a tubular localization pattern in hyphae is phosphorylated in vivo and interacts with the other septins, AspA, AspB, AspC and AspD. The other major proteins interacting with AspE included the cytoskeletal proteins, actin and tubulin, which may be involved in the organization and transport of the septins. This is the first report analyzing the phosphorylation of AspE and localizing the sites of phosphorylation, and opens opportunities for further analysis on the role of post-translational modifications in the assembly and organization of A. fumigatus septins. This study also describes the previously unknown interaction of AspE with the actin-microtubule network. Furthermore, the novel GFP-Trap® affinity purification method used here complements widely-used GFP localization studies in fungal systems

  20. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo.

    Directory of Open Access Journals (Sweden)

    Anna Bobrowska

    Full Text Available Huntington's disease (HD is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. The molecular pathogenesis of HD is complex and many mechanisms and cellular processes have been proposed as potential sites of therapeutic intervention. However, prior to embarking on drug development initiatives, it is essential that therapeutic targets can be validated in mammalian models of HD. Previous studies in invertebrate and cell culture HD models have suggested that inhibition of SIRT2 could have beneficial consequences on disease progression. SIRT2 is a NAD(+-dependent deacetylase that has been proposed to deacetylate α-tubulin, histone H4 K16 and to regulate cholesterol biogenesis - a pathway which is dysregulated in HD patients and HD mouse models. We have utilized mice in which SIRT2 has been reduced or ablated to further explore the function of SIRT2 and to assess whether SIRT2 loss has a beneficial impact on disease progression in the R6/2 mouse model of HD. Surprisingly we found that reduction or loss of SIRT2 had no effect on the acetylation of α-tubulin or H4K16 or on cholesterol biosynthesis in the brains of wild type mice. Equally, genetic reduction or ablation of SIRT2 had no effect on HD progression as assessed by a battery of physiological and behavioural tests. Furthermore, we observed no change in aggregate load or levels of soluble mutant huntingtin transprotein. Intriguingly, neither the constitutive genetic loss nor acute pharmacological inhibition of SIRT2 affected the expression of cholesterol biosynthesis enzymes in the context of HD. Therefore, we conclude that SIRT2 inhibition does not modify disease progression in the R6/2 mouse model of HD and SIRT2 inhibition should not be prioritised as a therapeutic option for HD.

  1. Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly.

    Science.gov (United States)

    Masuda, Hirohisa; Toda, Takashi

    2016-06-01

    In fission yeast, γ-tubulin ring complex (γTuRC)-specific components Gfh1(GCP4), Mod21(GCP5), and Alp16(GCP6) are nonessential for cell growth. Of these deletion mutants, only alp16Δ shows synthetic lethality with temperature-sensitive mutants of Mzt1(MOZART1), a component of the γTuRC required for recruitment of the complex to microtubule-organizing centers. γ-Tubulin small complex levels at mitotic spindle pole bodies (SPBs, the centrosome equivalent in fungi) and microtubule levels for preanaphase spindles are significantly reduced in alp16Δ cells but not in gfh1Δ or mod21Δ cells. Furthermore, alp16Δ cells often form monopolar spindles and frequently lose a minichromosome when the spindle assembly checkpoint is inactivated. Alp16(GCP6) promotes Mzt1-dependent γTuRC recruitment to mitotic SPBs and enhances spindle microtubule assembly in a manner dependent on its expression levels. Gfh1(GCP4) and Mod21(GCP5) are not required for Alp16(GCP6)-dependent γTuRC recruitment. Mzt1 has an additional role in the activation of the γTuRC for spindle microtubule assembly. The ratio of Mzt1 to γTuRC levels for preanaphase spindles is higher than at other stages of the cell cycle. Mzt1 overproduction enhances spindle microtubule assembly without affecting γTuRC levels at mitotic SPBs. We propose that Alp16(GCP6) and Mzt1 act synergistically for efficient bipolar spindle assembly to ensure faithful chromosome segregation. PMID:27053664

  2. Destabilization emulsion of oil by means of additives based on silicones polyethers; Desestabilizacao de emulsoes de petroleo por meio de aditivos a base de silicones polieteres

    Energy Technology Data Exchange (ETDEWEB)

    Jarque, Erika A.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano], e-mails: alegrio@ima.ufrj.br, celias@ima.ufrj.br

    2011-07-01

    The process of demulsification has great importance in the petroleum industry, since the formation of emulsions is a natural phenomenon in this sector. Several polymers have been used commercially as additives emulsion destabilizing, among them are the block copolymers of poly (ethylene oxide)-poly (propylene oxide) (PEO-PPO). This work aims to study the efficiency of five additives based on silicones polyethers, which have structures in their chains of poly (ethylene oxide) (PEO) or PEO-PPO copolymers. The results show that the addition of these additives in the water / oil reduced the values of interfacial tension of systems. From the testing of gravitational separation water / oil was observed that all the additives promoted the breakdown of water / oil, but those who hold in their structures the chains of block copolymers of PEO-PPO were the most efficient, and that the caused a smaller reduction in the interfacial tensions of these systems. (author)

  3. Effects of Ti-Based Additives on the Hydrogen Storage Properties of a LiBH4/CaH2 Destabilized System

    Directory of Open Access Journals (Sweden)

    Hongwei Yang

    2010-01-01

    Full Text Available The hydrogen storage properties of a destabilized LiBH4/CaH2 system ball-milled with TiCl3, TiF3, and TiO2 additives have been investigated. It is found that the system with TiCl3 additive has a lower dehydrogenation temperature than the ones with other additives. Further study shows that a higher amount of TiCl3 is more effective in reducing the desorption temperature of the LiBH4/CaH2 system, since it leads to a lower activation energy of dehydrogenation. The activations energies for mixtures containing 4, 10, and 25 mol% of TiCl3 are 141, 126, and 110 kJ/mol, respectively. However, the benefits of higher amounts of TiCl3 are offset by a larger reduction in hydrogen capacity of the mixtures.

  4. Improved preimplantation development of bovine ICSI embryos generated with spermatozoa pretreated with membrane-destabilizing agents lysolecithin and Triton X-100.

    Science.gov (United States)

    Zambrano, Fabiola; Aguila, Luis; Arias, María E; Sánchez, Raúl; Felmer, Ricardo

    2016-10-01

    In cattle, intracytoplasmic sperm injection (ICSI) has a low efficiency. The acrosome content may be responsible for this effect because of the large amount of hydrolytic enzymes that are released within the oocyte. With the aim of removing the acrosome and destabilize the membranes, cryopreserved bovine spermatozoa were treated with lysolecithin (LL) and Triton X-100 (TX) at different concentrations. We evaluated the membrane integrity, the acrosome integrity, DNA integrity, and the variation of phospholipase C zeta. The rates of development (cleavage and blastocysts) were also evaluated along with pronuclear formation and the embryo quality. Spermatozoa incubated with LL and TX (0.01%, 0.02%, 0.03%, and 0.04%) decreased (P embryonic development, without affecting the quality of the embryos produced by this technique. PMID:27325573

  5. Effects of water chemistry on the destabilization and sedimentation of commercial TiO2 nanoparticles: Role of double-layer compression and charge neutralization.

    Science.gov (United States)

    Hsiung, Chia-En; Lien, Hsing-Lung; Galliano, Alexander Edward; Yeh, Chia-Shen; Shih, Yang-Hsin

    2016-05-01

    Nanomaterials are considered to be emerging contaminants because their release into the environment could cause a threat to our ecosystem and human health. This study aims to evaluate the effects of pH, ions, and humic acid on the destabilization and sedimentation of commercial stabilized TiO2 nanoparticles (NPs) in aquatic environments. The average hydrodynamic size of TiO2 NPs was determined to be 52 ± 19 nm by dynamic light scattering. The zero point charge (ZPC) of the commercial TiO2 NPs was found to occur at pH 6. The stability of commercial TiO2 NPs is independent of its concentration in the range of 50-200 mg/L. In the absence of NaCl, the commercial TiO2 NPs rapidly settled down near pHzpc when the aggregated nanoparticle size surpassed 1 μm. However, when the commercial TiO2 NPs aggregated with the increase of NaCl concentrations, the large aggregates (>1 μm) were found to remain suspended. For example, even at the critical aggregation concentration of NaCl (100 meq/L), TiO2 NP aggregates suspended for 45 min and then slowly deposited. This implies an increase in the exposure risk of NPs. In the presence of Suwannee river humic acid (SRHA), the commercial TiO2 NPs did not settle down until the SRHA concentration increased to 20 mg/L, and were seen to restabilize at SRHA concentrations of 50 mg/L. The uncommon behaviors of the commercial TiO2 NPs we observed may be attributed to the different destabilization mechanisms caused by different species (i.e., NaCl and SRHA) in water. PMID:26938678

  6. Modification in hydrophobic packing of HAMP domain induces a destabilization of the auto-phosphorylation site in the histidine kinase CpxA.

    Science.gov (United States)

    Martinez, Marlet; Duclert-Savatier, Nathalie; Betton, Jean-Michel; Alzari, Pedro M; Nilges, Michael; Malliavin, Thérèse E

    2016-10-01

    The histidine kinases belong to the family of two-component systems, which serves in bacteria to couple environmental stimuli to adaptive responses. Most of the histidine kinases are homodimers, in which the HAMP and DHp domains assemble into an elongated helical region flanked by two CA domains. Recently, X-ray crystallographic structures of the cytoplasmic region of the Escherichia coli histidine kinase CpxA were determined and a phosphotransferase-defective mutant, M228V, located in HAMP, was identified. In the present study, we recorded 1 μs molecular dynamics trajectories to compare the behavior of the WT and M228V protein dimers. The M228V modification locally induces the appearance of larger voids within HAMP as well as a perturbation of the number of voids within DHp, thus destabilizing the HAMP and DHp hydrophobic packing. In addition, a disruption of the stacking interaction between F403 located in the lid of the CA domain involved in the auto-phosphorylation and R296 located in the interacting DHp region, is more often observed in the presence of the M228V modification. Experimental modifications R296A and R296D of CpxA have been observed to reduce also the CpxA activity. These observations agree with the destabilization of the R296/F403 stacking, and could be the sign of the transmission of a conformational event taking place in HAMP to the auto-phosphorylation site of histidine kinase. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 670-682, 2016. PMID:27124288

  7. Synthesis, Evaluation, and Mechanism Study of Novel Indole-Chalcone Derivatives Exerting Effective Antitumor Activity Through Microtubule Destabilization in Vitro and in Vivo.

    Science.gov (United States)

    Yan, Jun; Chen, Jie; Zhang, Shun; Hu, Jinhui; Huang, Ling; Li, Xingshu

    2016-06-01

    Twenty-nine novel indole-chalcone derivatives were synthesized and evaluated for antiproliferative activity. Among them, 14k exhibited most potent activity, with IC50 values of 3-9 nM against six cancer cells, which displayed a 3.8-8.7-fold increase in activity when compare with compound 2. Further investigation revealed 14k was a novel tubulin polymerization inhibitor binding to the colchicine site. Its low cytotoxicity toward normal human cells and nearly equally potent activity against drug-resistant cells revealed the possibility for cancer therapy. Cellular mechanism studies elucidated 14k arrests cell cycle at G2/M phase and induces apoptosis along with the decrease of mitochondrial membrane potential. Furthermore, good metabolic stability of 14k was observed in mouse liver microsomes. Importantly, 14k and its phosphate salt 14k-P inhibited tumor growth in xenograft models in vivo without apparent toxicity, which was better than the reference compound CA-4P and 2. In summary, 14k deserves consideration for cancer therapy. PMID:27149641

  8. DFP initiated early alterations of PKA/p-CREB pathway and differential persistence of β-tubulin subtypes in the CNS of hens contributes to OPIDN

    International Nuclear Information System (INIS)

    changes in pCREB at time points studied. Similarly another set of animals were treated with DFP and perfused using standard protocols and immunohistochemistry for p-CREB in the brain and spinal cord confirmed the overall protein expression pattern identified by western analysis. Expression of β-tubulin subtypes (1, 2, 3, and 4), studied by Northern blotting showed complex and differential pattern, while immunohistochemistry of the anti-β-tubulin for the entire period of OPIDN developmental stages showed early induction and persistence even in the disintegrating axonal and non-neuronal structures of the CNS. These data thus strongly suggest that early cytoskeletal damage at molecular level mediated by PKA/p-CREB pathways leads to the culmination of gross (microscopically observable) level cytoskeletal changes in various components of central nervous system (CNS), consistent with our earlier findings. Thus, the differential protein expression of PKA, CREB, p-CREB and β-tubulin subtypes appear to contribute to the initiation, progression and development of OPIDN, probably by recruiting other molecular pathways specific to various components of nervous system.

  9. Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of β-tubulin.

    Science.gov (United States)

    Antony, Marie L; Lee, Joomin; Hahm, Eun-Ryeong; Kim, Su-Hyeong; Marcus, Adam I; Kumari, Vandana; Ji, Xinhua; Yang, Zhen; Vowell, Courtney L; Wipf, Peter; Uechi, Guy T; Yates, Nathan A; Romero, Guillermo; Sarkar, Saumendra N; Singh, Shivendra V

    2014-01-17

    Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of β-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys(303) of β-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of β-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells. PMID:24297176

  10. Mass spectrometry identifies covalent binding of soman, sarin, chlorpyrifos oxon, diisopropyl fluorophosphate, and FP-biotin to tyrosines on tubulin: a potential mechanism of long term toxicity by organophosphorus agents

    OpenAIRE

    Grigoryan, Hasmik; Schopfer, Lawrence M.; Thompson, Charles M.; Alvin V Terry; Masson, Patrick; Lockridge, Oksana

    2008-01-01

    Chronic low dose exposure to organophosphorus poisons (OP) results in cognitive impairment. Studies in rats have shown that OP interfere with microtubule polymerization. Since microtubules are required for transport of nutrients from the nerve cell body to the nerve synapse, it has been suggested that disruption of microtubule function could explain the learning and memory deficits associated with OP exposure. Tubulin is a major constituent of microtubules. We tested the hypothesis that OP bi...

  11. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Anna Bobrowska

    Full Text Available Huntington's disease (HD is a progressive neurodegenerative disorder for which there is no effective disease modifying treatment. Following-on from studies in HD animal models, histone deacetylase (HDAC inhibition has emerged as an attractive therapeutic option. In parallel, several reports have demonstrated a role for histone deacetylase 6 (HDAC6 in the modulation of the toxicity caused by the accumulation of misfolded proteins, including that of expanded polyglutamine in an N-terminal huntingtin fragment. An important role for HDAC6 in kinesin-1 dependent transport of brain-derived neurotrophic factor (BDNF from the cortex to the striatum has also been demonstrated. To elucidate the role that HDAC6 plays in HD progression, we evaluated the effects of the genetic depletion of HDAC6 in the R6/2 mouse model of HD. Loss of HDAC6 resulted in a marked increase in tubulin acetylation throughout the brain. Despite this, there was no effect on the onset and progression of a wide range of behavioural, physiological, molecular and pathological HD-related phenotypes. We observed no change in the aggregate load or in the levels of soluble mutant exon 1 transprotein. HDAC6 genetic depletion did not affect the efficiency of BDNF transport from the cortex to the striatum. Therefore, we conclude that HDAC6 inhibition does not modify disease progression in R6/2 mice and HDAC6 should not be prioritized as a therapeutic target for HD.

  12. Disruption of Cortical Microtubules by Overexpression of Green Fluorescent Protein-Tagged α-Tubulin 6 Causes a Marked Reduction in Cell Wall Synthesis

    Institute of Scientific and Technical Information of China (English)

    David H. Burk; Ruiqin Zhong; W. Herbert Morrison Ⅲ; Zheng-Hua Ye

    2006-01-01

    It has been known that the transverse orientation of cortical microtubules (MTs) along the elongation axis is essential for normal cell morphogenesis, but whether cortical MTs are essential for normal cell wall synthesis is still not clear. In the present study, we have investigated whether cortical MTs affect cell wall synthesis by direct alteration of the cortical MT organization in Arabidopsis thaliana. Disruption of the cortical MT organization by expression of an excess amount of green fluorescent protein-tagged α-tubulin 6 (GFP-TUA6)in transgenic Arabidopsis plants was found to cause a marked reduction in cell wall thickness and a decrease in the cell wall sugars glucose and xylose. Concomitantly, the stem strength of the GFP-TUA6overexpressors was markedly reduced compared with the wild type. In addition, expression of excess GFPTUA6 results in an alteration in cell morphogenesis and a severe effect on plant growth and development.Together, these results suggest that the proper organization of cortical MTs is essential for the normal synthesis of plant cell walls.

  13. Design, Synthesis, and Evaluation of in Vitro and in Vivo Anticancer Activity of 4-Substituted Coumarins: A Novel Class of Potent Tubulin Polymerization Inhibitors.

    Science.gov (United States)

    Cao, Dong; Liu, Yibin; Yan, Wei; Wang, Chunyu; Bai, Peng; Wang, Taijin; Tang, Minghai; Wang, Xiaoyan; Yang, Zhuang; Ma, Buyun; Ma, Liang; Lei, Lei; Wang, Fang; Xu, Bixue; Zhou, Yuanyuan; Yang, Tao; Chen, Lijuan

    2016-06-23

    In this paper, a series of novel 4-substituted coumarin derivatives were synthesized. Among these compounds 34, 39, 40, 43, 62, 65, and 67 exhibited significant antiproliferative activity toward a panel of tumor cell lines at subnanomolar IC50 values. Compound 65 showed potent antiproliferative ability (IC50 values of 7-47 nM) and retained full activity in multidrug resistant cancer cells. Compound 65 caused G2/M phase arrest and interacted with the colchicine-binding site in tubulin, as confirmed by immune-fluorescence staining, microtubule dynamics assays, and competition assays with N,N'-ethylene-bis(iodoacetamide). Compound 65 reduced the cell migration and disrupted capillary-like tube formation in HUVEC cells. Importantly, compound 65 significantly and dose-dependently reduced tumor growth in four xenografts models including paclitaxel sensitive and resistant ovarian tumors (A2780s and A2780/T), adrmicycin sensitive and resistant breast tumors (MCF-7 and MCF-7/ADR), suggesting that compound 65 is a promising novel antimitotic compound for the potential treatment of cancer. PMID:27213819

  14. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect. PMID:26475489

  15. Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4' benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations.

    Science.gov (United States)

    Kumar, Akhil; Srivastava, Swati; Tripathi, Shubhandra; Singh, Sandeep Kumar; Srikrishna, Saripella; Sharma, Ashok

    2016-06-01

    Aggregation of amyloid peptide (Aβ) has been shown to be directly related to progression of Alzheimer's disease (AD). Aβ is neurotoxic and its deposition and aggregation ultimately lead to cell death. In our previous work, we reported flavonoid derivative (compound 1) showing promising result in transgenic AD model of Drosophila. Compound 1 showed prevention of Aβ-induced neurotoxicity and neuroprotective efficacy in Drosophila system. However, mechanism of action of compound 1 and its effect on the amyloid is not known. We therefore performed molecular docking and atomistic, explicit-solvent molecular dynamics simulations to investigate the process of Aβ interaction, inhibition, and destabilizing mechanism. Results showed different preferred binding sites of compound 1 and good affinity toward the target. Through the course of 35 ns molecular dynamics simulation, conformations_5 of compound 1 intercalates into the hydrophobic core near the salt bridge and showed major structural changes as compared to other conformations. Compound 1 showed interference with the salt bridge and thus reducing the inter strand hydrogen bound network. This minimizes the side chain interaction between the chains A-B leading to disorder in oligomer. Contact map analysis of amino acid residues between chains A and B also showed lesser interaction with adjacent amino acids in the presence of compound 1 (conformations_5). The study provides an insight into how compound 1 interferes and disorders the Aβ peptide. These findings will further help to design better inhibitors for aggregation of the amyloid oligomer. PMID:26208790

  16. Destabilizing Bodies, Destabilizing Disciplines: Practicing Liminality in Music Therapy

    Directory of Open Access Journals (Sweden)

    Cindy LaCom

    2014-11-01

    Full Text Available Our project began with a consideration of how disability studies might enrich the practice of music therapy. Originally, we were interested in how a greater awareness of disability issues might help music therapists, especially because of the often medicalized (and arguably pathologized implications of the terms (“health” and “help” which define their field and which frame the therapist/client relationship. On these grounds, we argued that greater awareness of the cultural context for such implications might aid the therapist. At the outset, it seemed straightforward enough. But our own unstable embodiments kept disrupting our conversations. The corporeal intransigencies of our bodies as we dealt with the symptoms of Crohn’s disease, autism and multiple sclerosis moved us beyond a critique of disciplinary purity which constructs each field as distinct to an analysis of privilege, power and passing that extends to multiple disciplines and pedagogical practices. In our paper, we raise questions about how the illusion of (stable bodies can reinforce hierarchies (between therapist/client, teacher/student, helper/helped, ablebodied/disabled, especially when the person “in charge” does not have to disclose or discuss the instability of her own body. Upon that privilege rests an array of power dynamics, and we believe that a purposeful contemplation of our own embodiment has to be more central to praxis, whether as therapists, scholars, teachers or professionals. To do this, we must be aware not only of others’ but also of our own relationship to disability -- socially, culturally, and as a marker of identity and potential (inaccess to power.

  17. Destabilizing Bodies, Destabilizing Disciplines: Practicing Liminality in Music Therapy

    OpenAIRE

    Cindy LaCom; Rachel Reed

    2014-01-01

    Our project began with a consideration of how disability studies might enrich the practice of music therapy. Originally, we were interested in how a greater awareness of disability issues might help music therapists, especially because of the often medicalized (and arguably pathologized) implications of the terms (“health” and “help”) which define their field and which frame the therapist/client relationship. On these grounds, we argued that greater awareness of the cultural context for suc...

  18. Berberine and a Berberis lycium extract inactivate Cdc25A and induce {alpha}-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Musa [Department of Plant Sciences, Quaid-i-Azam University Islamabad (Pakistan); Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Giessrigl, Benedikt; Vonach, Caroline; Madlener, Sibylle [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Prinz, Sonja [Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Herbaceck, Irene; Hoelzl, Christine [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Bauer, Sabine; Viola, Katharina [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Mikulits, Wolfgang [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Quereshi, Rizwana Aleem [Department of Plant Sciences, Quaid-i-Azam University Islamabad (Pakistan); Knasmueller, Siegfried; Grusch, Michael [Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a (Austria); Kopp, Brigitte [Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14 (Austria); Krupitza, Georg, E-mail: georg.krupitza@meduniwien.ac.at [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2010-01-05

    Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells. The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H{sub 2}O) extract. The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 {mu}g BuOH extract (that was gained from 1 mg dried root) contained 2.0 {mu}g berberine and 0.3 {mu}g/ml palmatine. 1.2 {mu}g/ml berberine inhibited cell proliferation significantly, while 0.5 {mu}g/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of {alpha}-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.

  19. Gamma-tubulin is required for bipolar spindle assembly and for proper kinetochore microtubule attachments during prometaphase I in Drosophila oocytes.

    Directory of Open Access Journals (Sweden)

    Stacie E Hughes

    2011-08-01

    Full Text Available In many animal species the meiosis I spindle in oocytes is anastral and lacks centrosomes. Previous studies of Drosophila oocytes failed to detect the native form of the germline-specific γ-tubulin (γTub37C in meiosis I spindles, and genetic studies have yielded conflicting data regarding the role of γTub37C in the formation of bipolar spindles at meiosis I. Our examination of living and fixed oocytes carrying either a null allele or strong missense mutation in the γtub37C gene demonstrates a role for γTub37C in the positioning of the oocyte nucleus during late prophase, as well as in the formation and maintenance of bipolar spindles in Drosophila oocytes. Prometaphase I spindles in γtub37C mutant oocytes showed wide, non-tapered spindle poles and disrupted positioning. Additionally, chromosomes failed to align properly on the spindle and showed morphological defects. The kinetochores failed to properly co-orient and often lacked proper attachments to the microtubule bundles, suggesting that γTub37C is required to stabilize kinetochore microtubule attachments in anastral spindles. Although spindle bipolarity was sometimes achieved by metaphase I in both γtub37C mutants, the resulting chromosome masses displayed highly disrupted chromosome alignment. Therefore, our data conclusively demonstrate a role for γTub37C in both the formation of the anastral meiosis I spindle and in the proper attachment of kinetochore microtubules. Finally, multispectral imaging demonstrates the presences of native γTub37C along the length of wild-type meiosis I spindles.

  20. Berberine and a Berberis lycium extract inactivate Cdc25A and induce α-tubulin acetylation that correlate with HL-60 cell cycle inhibition and apoptosis

    International Nuclear Information System (INIS)

    Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells. The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H2O) extract. The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 μg BuOH extract (that was gained from 1 mg dried root) contained 2.0 μg berberine and 0.3 μg/ml palmatine. 1.2 μg/ml berberine inhibited cell proliferation significantly, while 0.5 μg/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of α-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.

  1. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in vitro and in vivo studies.

    Science.gov (United States)

    Jyoti, Kiran; Kaur, Karanvir; Pandey, Ravi Shankar; Jain, Upendra Kumar; Chandra, Ramesh; Madan, Jitender

    2015-05-01

    9-Bromo-noscapine (9-Br-Nos) alters tubulin polymerization in non-small cell lung cancer cells differently from noscapine. However, clinical applications of 9-Br-Nos are limited owing to poor aqueous solubility and high lipophilicity that eventually lead to suboptimal therapeutic efficacy at the site of action. Hence, 9-Br-Nos loaded nanostructured lipid particles (9-Br-Nos-NLPs) were prepared by nanoemulsion method to reduce the particle size below 100 nm. To impart the inhalable and rapid release (RR) attributes, 9-Br-Nos-NLPs were treated with spray dried lactose and effervescent excipients to generate, 9-Br-Nos-RR-NLPs. The mean particle and aerodynamic size of 9-Br-Nos-NLPs were measured to be 13.4±3.2 nm and 2.3±1.5 μm, significantly (Ppassive diffusion mechanism. Pharmacokinetic and distribution analysis demonstrated the superiority of 9-Br-Nos-RR-NLPs that exhibited ∼1.12 and ∼1.75-folds enhancement in half-life of the drug as compared to 9-Br-Nos-NLPs and 9-Br-Nos powder following inhalation route. Continuation to this, 9-Br-Nos-RR-NLPs also displayed ∼3.75-fold increment in half-life of the drug in lungs, as compared to 9-Br-Nos suspension following intravenous route of administration. Furthermore, enhanced drug exposure was measured in terms of AUC(last) in lungs following administration of 9-Br-Nos-RR-NLPs, as compared to 9-Br-Nos-NLPs, 9-Br-Nos powder and 9-Br-Nos suspension. This may be attributed to rapid dispersion, enhanced dissolution and deep lung deposition of nanoparticles following inhalation route. Therefore, inhalable 9-Br-Nos-RR-NLPs claims further in depth in vivo tumor regression study to scale up the technology for clinical applications. PMID:25622047

  2. Analysis of stress-induced duplex destabilization (SIDD properties of replication origins, genes and intergenes in the fission yeast, Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Yadav Mukesh P

    2012-11-01

    Full Text Available Abstract Background Replication and transcription, the two key functions of DNA, require unwinding of the DNA double helix. It has been shown that replication origins in the budding yeast, Saccharomyces cerevisiae contain an easily unwound stretch of DNA. We have used a recently developed method for determining the locations and degrees of stress-induced duplex destabilization (SIDD for all the reported replication origins in the genome of the fission yeast, Schizosaccharomyces pombe. Results We have found that the origins are more susceptible to SIDD as compared to the non-origin intergenic regions (NOIRs and genes. SIDD analysis of many known origins in other eukaryotes suggests that SIDD is a common property of replication origins. Interestingly, the previously shown deletion-dependent changes in the activities of the origins of the ura4 origin region on chromosome 3 are paralleled by changes in SIDD properties, suggesting SIDD’s role in origin activity. SIDD profiling following in silico deletions of some origins suggests that many of the closely spaced S. pombe origins could be clusters of two or three weak origins, similar to the ura4 origin region. Conclusion SIDD appears to be a highly conserved, functionally important property of replication origins in S. pombe and other organisms. The distinctly low SIDD scores of origins and the long range effects of genetic alterations on SIDD properties provide a unique predictive potential to the SIDD analysis. This could be used in exploring different aspects of structural and functional organization of origins including interactions between closely spaced origins.

  3. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti.

    Science.gov (United States)

    Baumgardt, Kathrin; Šmídová, Klára; Rahn, Helen; Lochnit, Günter; Robledo, Marta; Evguenieva-Hackenberg, Elena

    2016-05-01

    Quorum sensing is a cell density-dependent communication system of bacteria relying on autoinducer molecules. During the analysis of the post-transcriptional regulation of quorum sensing in the nitrogen fixing plant symbiont Sinorhizobium meliloti, we predicted and verified a direct interaction between the 5'-UTR of sinI mRNA encoding the autoinducer synthase and a small RNA (sRNA), which we named RcsR1. In vitro, RcsR1 prevented cleavage in the 5'-UTR of sinI by RNase E and impaired sinI translation. In line with low ribosomal occupancy and transcript destabilization upon binding of RcsR1 to sinI, overproduction of RcsR1 in S. meliloti resulted in lower level and shorter half-life of sinI mRNA, and in decreased autoinducer amount. Although RcsR1 can influence quorum sensing via sinI, its level did not vary at different cell densities, but decreased under salt stress and increased at low temperature. We found that RcsR1 and its stress-related expression pattern, but not the interaction with sinI homologs, are conserved in Sinorhizobium, Rhizobium and Agrobacterium. Consistently, overproduction of RcsR1 in S. meliloti and Agrobacterium tumefaciens inhibited growth at high salinity. We identified conserved targets of RcsR1 and showed that most conserved interactions and the effect on growth under salt stress are mediated by the first stem-loop of RcsR1, while its central part is responsible for the species-specific interaction with sinI. We conclude that RcsR1 is an ancient, stress-related riboregulator in rhizobia and propose that it links stress responses to quorum sensing in S. meliloti. PMID:26588798

  4. The expression and clinical significance of β tubulin Ⅲ in locally advanced cervical cancer%局部晚期宫颈癌中β-微管蛋白Ⅲ的表达及意义

    Institute of Scientific and Technical Information of China (English)

    夏红; 易建华; 徐燕; 杨丽; 褚桂芬

    2012-01-01

    Objective To investigate the expression and chnical significance of β tubulin Ⅲ in locally advanced cervical cancer (LACC).Methods The expression of β tubulin Ⅲ in tumor tissue of 47 patients with LACC was detected by immunohistochemical SP method.The relationship between expression of β tubulin Ⅲ and neoadjuvant chemotherapy (NACT) with paclitaxel,clinical data were analyzed retrospectively.Results The response rate of NACT was 72.3% (34/47).The β tubulin Ⅲ positive expression rate was 72.3%(34/47),(+) expression rate was 40.4%(19/47),(++) expression rate was 12.8%(6/47),(+++) expression rate was 19.1%(9/47).The response rate of NACT in patients with (++) and (+++) expression was significantly lower than that in patients with (-) and (+) expression [46.7%(7/15)vs.84.4% (27/32),P =0.007].The expression of β tubulin Ⅲ was related to pathological grade (P =0.021),it was not related to pathological type,clinical stage,status of lymph node metastasis (P =0.822,0.336,0.839).Conclusions The NACT of paclitaxel combined with cisplatin is effective to LACC.The abnormality expression of β tubulin Ⅲ in LACC tissue relates to drug resistance of paclitaxel and biological behavior of cervical cancer,it may be an index to predict prognosis of cervical cancer.%目的 探讨β-微管蛋白Ⅲ在局部晚期宫颈癌(LACC)组织中的表达及其意义.方法 应用免疫组织化学SP法检测47例LACC组织中β-微管蛋白Ⅲ的表达情况,分析β-微管蛋白Ⅲ的表达与紫杉醇新辅助化疗(NACT)的疗效及临床病理参数的关系.结果 47例LACC中,NACT有效率为72.3% (34/47).β-微管蛋白Ⅲ阳性表达率为72.3%(34/47),其中表达(+)者占40.4%(19/47),(++)者占12.8%(6/47),(+++)者占19.1%(9/47).β-微管蛋白Ⅲ高表达患者NACT有效率为46.7%(7/15),低表达患者为84.4%(27/32),两者比较差异有统计学意义(P=0.007).β-微管蛋白Ⅲ在LACC组织的表达与病理分级呈显著性相关(P=0

  5. Localization of AKAP4 and tubulin proteins in sperm with reduced motility%弱活力精子中AKAP4和微管蛋白的定位

    Institute of Scientific and Technical Information of China (English)

    E. Moretti; G.Scapigliati; N. A.Pascarelli; B.Baccett; G.Collodel

    2007-01-01

    Aim: To perform screening, related to A-kinase anchoring proteins 4 (AKAP4) and tubulin proteins, in spermatozoa with absent or severely reduced motility in order to detect the status of the fibrous sheath and the axonemal structure.Methods: An immunocytochemical study of tubulin, used as a positive control, and AKAP4 was carried out to detect the presence and the distribution of these proteins in different sperm samples. The morphological characteristics of sperm were studied by transmission electron microscope (TEM) and the results were elaborated using a formula reported in previous studies. PCR was carried out on DNA extracted from peripheral blood lymphocytes to analyse partial sequences of the Akap4 and Akap3 genes. Results: Immunolabelling of tubulin and AKAP4 showed different patterns, which led us to divide the patients into groups. In group Ⅰ, the absence of AKAP4 and tubulin was revealed,although these patients did not show alterations in the Akap4/Akap3 binding site. TEM evaluation highlighted that a high presence of necrosis was associated with total sperm immotility. In group Ⅱ, a regular AKAP4 and tubulin signal was present, although motility was reduced and TEM analysis revealed the presence of immaturity. In group Ⅲ, in which a weak AKAP4 label associated with normal tubulin staining and reduced motility was observed, a severe disorganization of the fibrous sheath was highlighted by TEM. Conclusion: While the role of AKAP4 in sperm motility is unclear, absent or weak AKAP4-labelling seems to be associated with absent or weak sperm motility.(Asian J Androl 2007 Sep; 9: 641-649)%目的:检测无运动性或弱运动性精子中的激酶A锚定蛋白4(AKAP4)和微管蛋白,以揭示纤维鞘和轴丝结构.方法:利用免疫组织化学方法研究微管蛋白(阳性对照)和AKAP4在不同精子样品中的比例和分布.用透射电镜(TEM)研究精子形态学特征;用以前发表过的公式描述其结果;用PCR从外

  6. Lipid raft facilitated ligation of K-α1-tubulin by specific antibodies on epithelial cells: Role in pathogenesis of chronic rejection following human lung transplantation

    International Nuclear Information System (INIS)

    Research highlights: → Addition of KAT Abs (+) sera to NHBE culture causes upregulation of growth factors. → Cholesterol depletion causes down regulation of growth factor expression. → Cholesterol depletion is accompanied by loss of membrane bound caveolin. → Thus, we demonstrate lipid raft are critical for efficient ligation of the KAT Abs. -- Abstract: Long term function of human lung allografts is hindered by development of chronic rejection manifested as Bronchiolitis Obliterans Syndrome (BOS). We have previously identified the development of antibodies (Abs) following lung transplantation to K-α1-tubulin (KAT), an epithelial surface gap junction cytoskeletal protein, in patients who develop BOS. However, the biochemical and molecular basis of the interactions and signaling cascades mediated by KAT Abs are yet to be defined. In this report, we investigated the biophysical basis of the epithelial cell membrane surface interaction between KAT and its specific Abs. Towards this, we analyzed the role of the lipid raft-domains in the membrane interactions which lead to cell signaling and ultimately increased growth factor expression. Normal human bronchial epithelial (NHBE) cells, upon specific ligation with Abs to KAT obtained either from the serum of BOS(+) patients or monoclonal KAT Abs, resulted in upregulation of growth factors VEGF, PDGF, and bFGF (6.4 ± 1.1-, 3.2 ± 0.9-, and 3.4 ± 1.1-fold increase, respectively) all of which are important in the pathogenesis of BOS. To define the role for lipid raft in augmenting surface interactions, we analyzed the changes in the growth factor expression pattern upon depletion and enrichment with lipid raft following the ligation of the epithelial cell membranes with Abs specific for KAT. NHBE cells cultured in the presence of β-methyl cyclodextran (βMCD) had significantly reduced growth factor expression (1.3 ± 0.3, vs βMCD untreated being 6.4 ± 1.1-fold increase) upon stimulation with KAT Abs. Depletion

  7. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haihe [The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319 (China); Yang, Zhanchun [Department of General Surgery of Fifth Clinical Hospital of Harbin Medical University, Daqing 163319 (China); Liu, Chunbo; Huang, Shishun; Wang, Hongzhi; Chen, Yingli [The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319 (China); Chen, Guofu, E-mail: zhangyanjie3@aliyun.com [Department of General Surgery of Fifth Clinical Hospital of Harbin Medical University, Daqing 163319 (China)

    2014-11-07

    Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.

  8. Utility of internally transcribed spacer region of rDNA (ITS) and β-tubulin gene sequences to infer genetic diversity and migration patterns of Colletotrichum truncatum infecting Capsicum spp.

    Science.gov (United States)

    Rampersad, Kandyce; Ramdial, Hema; Rampersad, Sephra N

    2016-01-01

    Anthracnose is among the most economically important diseases affecting pepper (Capsicum spp.) production in the tropics and subtropics. Of the three species of Colletotrichum implicated as causal agents of pepper anthracnose, C. truncatum is considered to be the most destructive in agro-ecosystems worldwide. However, the genetic variation and the migration potential of C. truncatum infecting pepper are not known. Five populations were selected for study and a two-locus (internally transcribed spacer region, ITS1-5.8S-ITS2, and β-tubulin, β-TUB) sequence data set was generated and used in the analyses. Sequences of the ITS region were less informative than β -tubulin gene sequences based on comparisons of DNA polymorphism indices. Trinidad had the highest genetic diversity and also had the largest effective population size in pairwise comparisons with the other populations. The Trinidad population also demonstrated significant genetic differentiation from the other populations. AMOVA and STRUCTURE analyses both suggested significant genetic variation within populations more so than among populations. A consensus Maximum Likelihood tree based on β-TUB gene sequences revealed very little intraspecific diversity for all isolates except for Trinidad. Two clades consisting solely of Trinidad isolates may have diverged earlier than the other isolates. There was also evidence of directional migration among the five populations. These findings may have a direct impact on the development of integrated disease management strategies to control C. truncatum infection in pepper. PMID:26843942

  9. Standardization and application of the tetraprimer ARMS-PCR technique for screening of the E198A SNP in the β-tubulin gene of hookworm populations in Brazil.

    Science.gov (United States)

    Furtado, Luis Fernando Viana; Alves, William Pereira; Moreira, Thayse Batista; Costa Junior, Livio Martins; Miranda, Rodrigo Rodrigues Cambraia; Rabelo, Élida Mara Leite

    2016-07-15

    The tetraprimer ARMS-PCR technique is efficient for SNP detection and can be used to search for polymorphisms associated with drug resistance. However, the establishment of this methodology is not always straightforward because of the constraints on primer design due to the restrictions of the polymorphic regions. Here, we describe the standardization of the tetraprimer ARMS-PCR methodology for the detection of a SNP at codon 198 of the Ancylostoma caninum β-tubulin gene. This SNP is associated with resistance to albendazole in various nematodes. The methodology was used to screen 327 individuals from 6 different locations. No mutation was found in any of the samples. This methodology will be useful for screening for the E198A SNP in the β-tubulin gene of canine hookworms in a broader population to determine whether this SNP is associated with benzimidazole resistance in this species. The method could also be adapted for the analysis of other SNPs in other nematode species. PMID:27270392

  10. Early assessment of tumor response to JAC106, an anti-tubulin agent, by 3'-deoxy-3'-[{sup 18}F]fluorothymidine in preclinical tumor models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Kang, Hye Young [University of Ulsan College of Medicine, Asan Medical Center, Institute for Innovative Cancer Research, Seoul (Korea, Republic of); Kim, Seog Young; Chung, Jin Hwa; Oh, Seung Jun; Ryu, Jin-Sook; Moon, Dae Hyuk [University of Ulsan College of Medicine, Asan Medical Center, Institute for Innovative Cancer Research, Seoul (Korea, Republic of); University of Ulsan College of Medicine, Asan Medical Center, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Sung-Bae [University of Ulsan College of Medicine, Asan Medical Center, Department of Oncology, Seoul (Korea, Republic of); Kang, Jong Soon; Park, Song-Kyu; Kim, Hwan Mook [University of Ulsan College of Medicine, Asan Medical Center, Institute for Innovative Cancer Research, Seoul (Korea, Republic of); Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungbuk (Korea, Republic of); Kim, Myung-Hwa [Drug Discovery Laboratory, R and D Center, Jeil Pharmaceutical Co., Ltd., Kyunggi (Korea, Republic of)

    2011-08-15

    We determined whether [{sup 18}F]fluorothymidine (FLT) positron emission tomography (PET) can detect early effects on tumor proliferation of JAC106, a new anti-tubulin agent. Inhibition of tubulin polymerization and [{sup 3}H]colchicine binding were assessed in vitro. The effects of JAC106 on cytotoxicity, mitotic arrest, [{sup 18}F]FLT uptake, and thymidine kinase 1 (TK1) activity were examined in SW620 and KB-V1 cells. Dose-dependent antitumor effects of JAC106 were monitored by measuring tumor growth and by dynamic [{sup 18}F]FLT PET imaging in mice bearing SW620 and KB-V1 tumors. The proliferation status of tumors was examined. JAC106 potently inhibited tubulin polymerization and decreased the viability of SW620 (p < 0.001, half maximal inhibitory concentration, IC{sub 50} = 3.15 {+-} 1.4) and KB-V1 (p < 0.01, IC{sub 50} = 21.84 {+-} 24.59) cells. Exposure to JAC106 induced mitotic arrest starting at 18 h and dose-dependently increased [{sup 18}F]FLT uptake/1 x 10{sup 5} cells (p < 0.05) and TK1 activity and expression in vitro. Administration of 30 mg/kg JAC106 to mice inhibited the growth of SW620 and KB-VI tumors (%T/C 3.34 and 20.6%, respectively). The baseline standardized uptake values (SUV) of SW620 and KB-V1 tumors were 0.96 {+-} 0.31 and 2.29 {+-} 0.70, respectively, with a significant difference (p < 0.01). After 3 days of treatment with 30 mg/kg JAC106, the [{sup 18}F]FLT SUVs of SW620 and KB-V1 tumors, normalized to those before treatment, were 77.9 {+-} 22.4% (p = 0.059) and 43.2 {+-} 14.0% (p < 0.01), respectively. JAC106 significantly decreased the number of Ki-67-positive cells, TK1 activity, cell fraction in G{sub 0}G{sub 1} phase, and tumor expression of cyclins E, A, and B1 on day 3. [{sup 18}F]FLT PET can be used to monitor JAC106 inhibition of tumor growth, beginning 3 days after treatment. Incorporation of [{sup 18}F]FLT PET may be useful in the early clinical development of JAC106. (orig.)

  11. The effect of Colchicine on β-Ⅲ tubulin of olfactory sensory neurons differentiation%秋水仙素对嗅感觉神经元分化过程中β-Ⅲ tubulin的作用研究

    Institute of Scientific and Technical Information of China (English)

    张阳

    2012-01-01

    目的 探讨秋水仙素对在嗅感觉神经元分化增生过程中β-Ⅲ tubulin的作用.方法 孕鼠30只,随机分为秋水仙素组和正常组各15只.秋水仙素组E0.5d起每日尾静脉注射秋水仙素(0.1mg/kg),对照组每日予等量生理盐水尾静脉注射.通过双重免疫荧光检测,分别观察E9.5d、E11.5d、E14.5d、E17.5d胎鼠嗅上皮在分化过程中的形态变化,以及实时定量PCR方法 检测嗅标志蛋白含量改变.结果 秋水仙素处理后,不同发育时期胎鼠β-Ⅲtubulin及嗅标志蛋白表达均较同时期对照组明显减弱,且实时定量PCR检测嗅标志蛋白含量减低.结论 秋水仙素作用于β-Ⅲtubulin蛋白,阻碍了嗅感觉神经元的发育与成熟.%Objective To investigate the role of colchicine on β -Ⅲ tubulin of olfactory sensory neurons differentiation and proliferation. Methods 30 pregnant mice were randomly divided into colchicine and control groups, and 15 mice in each group. Colchicine group was intravenously injected with E0.5 day of colchicine (0.1mg/kg), and the control group was daily injected with saline. Olfactory epithelium hyperplasia in the process of differentiation was observed at E9.5, Ell.5, E14.5, E17.5 days using double immunofluorescence, and olfactory was detected using real-time quantitative PCR. Results after treatment with colchicines, β-Ⅲtubulin and olfactory were decreased at the different stages of fetal development compared with the control group, and the real-time quantitative PCR data showed that olfactory also decreased. Conclusion Colchicine effect on β-Ⅲtubulin protein inhibits olfactory receptor neurons development and mature.

  12. Molecular dynamics simulation and free energy landscape methods in probing L215H, L217R and L225M βI-tubulin mutations causing paclitaxel resistance in cancer cells.

    Science.gov (United States)

    Tripathi, Shubhandra; Srivastava, Gaurava; Sharma, Ashok

    2016-08-01

    Drug resistance poses a threatening challenge for mankind, as the development of resistance to already well-established drugs causes serious therapeutic problems. Resistance to paclitaxel (Ptxl), a complex diterpenoid working as microtubule stabilizer, is one such issue in cancer treatment. Microtubule stabilizer drugs, stabilises microtubules upon binding to β-tubulin subunit of tubulin heterodimer thus causing mitotic arrest leading to death of cancer cell. Leucine point mutations viz. L215H, L217R, and L225M were reported for Ptxl resistance in various cancers. In the current study, molecular mechanism of these resistance causing mutations was explored using molecular docking, molecular dynamics (MD) simulation, binding energy estimation (MMPBSA), free energy decomposition, principle component analysis (PCA) and free energy landscape (FEL) methods. A total of five systems including unbound βI-tubulin (Apo), docked wild+Ptxl, L215H+Ptxl, L217R+Ptxl and L225M+Ptxl were prepared, and 50 ns MD simulation was performed for each system. Binding energy estimation indicated that leucine mutation reduces the binding affinity of Ptxl in mutant types (MTs) as compared to wild type (WT). Further, in contrast to WT Ptxl interactions with the M-loop (PHE270-VAL286), S6-S7 loop and H9-H10 were significantly altered in MTs. Results showed that in MTs, Ptxl had weak interaction with M-loop residues, while having strong affinity with S6-S7 loop and H6-H7 loop. Moreover, PCA and FEL analysis revealed that M-loop flexible region (THR274-LEU284) was strongly bound with Ptxl in WT preventing its flexible movement and the causing factor for microtubule stabilization. In MTs due to poor interaction with Ptxl, M-loop flexible region retains its flexibility, therefore unable to stabilize microtubule. This study will give an insight into the importance of M-loop flexible region interaction with Ptxl for microtubule stabilization. In addition, it clearly provides the molecular basis of

  13. Inmunolocalización de Tubulina en Túbulos testiculares de Fasciola hepatica expuesta a triclabendazole "in vivo" Immunolocalization of Tubulin in testis of fasciola hepatica exposed to triclabendazole "in vivo"

    Directory of Open Access Journals (Sweden)

    H Solana

    2009-12-01

    Full Text Available La fasciolosis es una zoonosis producida por el trematodo Fasciola hepatica afectando a herbívoros rumiantes y el hombre. Ante una fasciolosis generalmente se utiliza triclabendazole, un benzimidazol metilcarbamato halogenado. El mecanismo de acción de los benzimidazoles antihelmínticos se basa en su unión a la β tubulina del helminto con la consecuente despolimerización de sus microtúbulos provocándole la pérdida de función, el desprendimiento y la muerte del parásito. En el caso de triclabendazole (TCBZ dicho mecanismo aún no ha sido resuelto completamente. En el presente trabajo se evaluó el efecto "in vivo" de triclabendazole sobre la distribución de tubulina en los túbulos testiculares de Fasciola spp obtenidas a partir de bovinos expuestos a dicha droga. Se inmunolocalizó α tubulina tirosinada y β tubulina. Los resultados obtenidos confirman que triclabendazole (TCBZ altera la distribución de los micro túbulos y reafirman que éste, es al menos uno de sus principales mecanismos de acción utilizando como molécula blanco la β tubulina del trematodo Si bien esta es una posibilidad no debería descartarse la existencia de otro u otros mecanismos de acción alternativo.Fascioliosis, an important zoonotic disease produced by the trematode Fasciola hepatica, causes significant economic losses in ruminant species over the entire world (worldwide. Its control is largely based on the use of the triclabendazole, a benzimidazole flukicidal compound. The mechanism of action of benzimidazole anthelmintic compounds is based on its union to β tubulin with the consequent depolymerization of its microtubules causing the loss of function and the loosening and the death of the parasite. In the specific case of triclabendazole this mechanism not yet has been resolved completely. In the present work was evaluated the effect "in vivo" of triclabendazole on the distribution of α tyrosinated tubulin and β tubulin in the testis tubules of

  14. Exceptional recurrence of flank destabilizations in the recent activity of the Colima volcanic complex, Mexico; Recurrence exceptionnelle de destabilisations de flanc dans l`activite recente du complexe volcanique du Colima, Mexique

    Energy Technology Data Exchange (ETDEWEB)

    Komorowski, J.C. [IPGP, (Mexico); Siebe, C. [Institut de Geofisica, UNAM (Mexico); Rodriguez, S. [Institut de Geologia, UNAM (Mexico); Cortes, A.; Navarro, C.; Gavilanes, J.C.

    1996-12-31

    This short paper reports on new {sup 14}C datings of debris flow units from the Nevado de Colima and Fuego de Colima volcanoes in Mexico. These new datings in connection with a detailed stratigraphic study in the deep canyons around the volcanoes has revealed an exceptional recurrence of flank destabilizations of the Fuego de Colima during the last 45000 years. The cumulated volume of debris in the whole Colima massif is estimated to 60-100 km{sup 3}. The correlation between Landsat satellite pictures and the distribution and age of the debris flows shows that both volcanoes are made of several post-destabilization remaining structures, and that both volcanoes were active and simultaneously collapsed 18500 years ago. The numerous fluvial-lacustrine sequences intercalated between the successive flows indicate that the debris flow were partially sedimented under water and could have led to catastrophic tsunamis towards the Pacific coast. Implications of this work are important because a population of more than 200000 inhabitants is living in a zone covered by several debris flows. (J.S.).

  15. Synthesis and tubulin polymerization inhibitory activity of osthol stilbene derivatives%蛇床子素二苯乙烯类衍生物的合成及抑制微管蛋白聚合作用

    Institute of Scientific and Technical Information of China (English)

    杨加宾; 陈莉; 苏国强; 任宇

    2011-01-01

    以蛇床子素为先导化合物,合成了6个目标化合物(VI、VI),其结构经MS及的活性最强,值得进一步深入研究.%A series of novel osthole stilbene derivatives were synthesized, and their structures were determined by MS and 1 H NMR. The tubulin polymerization inhibitory activity of the synthesized compounds was evaluated using anti-human umbilical vein endothelial cells in vitro. Preliminary results showed that compound Ⅵ7 was the most potent inhibitor, but was less potent than combretastatin A-4. Compound Ⅵ7 is a promising compound worthy of further studies.

  16. CRISPR/Cas9 allows efficient and complete knock-in of a destabilization domain-tagged essential protein in a human cell line, allowing rapid knockdown of protein function.

    Directory of Open Access Journals (Sweden)

    Arnold Park

    Full Text Available Although modulation of protein levels is an important tool for study of protein function, it is difficult or impossible to knockdown or knockout genes that are critical for cell growth or viability. For such genes, a conditional knockdown approach would be valuable. The FKBP protein-based destabilization domain (DD-tagging approach, which confers instability to the tagged protein in the absence of the compound Shield-1, has been shown to provide rapid control of protein levels determined by Shield-1 concentration. Although a strategy to knock-in DD-tagged protein at the endogenous loci has been employed in certain parasite studies, partly due to the relative ease of knock-in as a result of their mostly haploid lifecycles, this strategy has not been demonstrated in diploid or hyperploid mammalian cells due to the relative difficulty of achieving complete knock-in in all alleles. The recent advent of CRISPR/Cas9 homing endonuclease-mediated targeted genome cleavage has been shown to allow highly efficient homologous recombination at the targeted locus. We therefore assessed the feasibility of using CRISPR/Cas9 to achieve complete knock-in to DD-tag the essential gene Treacher Collins-Franceschetti syndrome 1 (TCOF1 in human 293T cells. Using a double antibiotic selection strategy to select clones with at least two knock-in alleles, we obtained numerous complete knock-in clones within three weeks of initial transfection. DD-TCOF1 expression in the knock-in cells was Shield-1 concentration-dependent, and removal of Shield-1 resulted in destabilization of DD-TCOF1 over the course of hours. We further confirmed that the tagged TCOF1 retained the nucleolar localization of the wild-type untagged protein, and that destabilization of DD-TCOF1 resulted in impaired cell growth, as expected for a gene implicated in ribosome biogenesis. CRISPR/Cas9-mediated homologous recombination to completely knock-in a DD tag likely represents a generalizable and

  17. Localisation spatio-temporelle de tubuline beta III au sein l'organe de Corti et au niveau du ganglion spiral entre le 18e jours embryonnaires (E18) et le 25e jours post-natal (P25) chez le rat

    OpenAIRE

    Johnen, Nicolas; Thelen, Nicolas; Cloes, Marie; Thiry, Marc

    2010-01-01

    The mammalian auditory organ, the organ of Corti (OC), is composed of mechanosensory hair cells and nonsensory supporting cell types. Based on their morphology and physiology, at least two types of sensory cells can be identified in the OC: inner and outer hair cells. The structure of this organ is well reported in adult but its development is still little-known. By using confocal microscopy, we studied the spatial-temporal distribution of beta tubulin III during the differentiation of th...

  18. Genome-wide inhibitory impact of the AMPK activator metformin on [kinesins, tubulins, histones, auroras and polo-like kinases] M-phase cell cycle genes in human breast cancer cells.

    Science.gov (United States)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Menendez, Javier A

    2009-05-15

    Prompted by the ever-growing scientific rationale for examining the antidiabetic drug metformin as a potential antitumor agent in breast cancer disease, we recently tested the hypothesis that the assessment of metformin-induced global changes in gene expression-as identified using 44 K (double density) Agilent's whole human genome arrays-could reveal gene-expression signatures that would allow proper selection of breast cancer patients who should be considered for metformin-based clinical trials. Using Database for Annotation, Visualization and Integrated Discovery bioinformatics (DAVID) resources we herein reveal that, at doses that lead to activation of the AMP-activated protein kinase (AMPK), metformin not only downregulates genes coding for ribosomal proteins (i.e., protein and macromolecule biosynthesis) but unexpectedly suppresses numerous mitosis-related gene families including kinesins, tubulins, histones, auroras and polo-like kinases. This is, to our knowledge, the first genome-scale evidence of a mitotic core component in the transcriptional response of human breast cancer cells to metformin. These findings further support a tight relationship between the activation status of AMPK and the chromosomal and cytoskeletal checkpoints of cell mitosis at the transcriptional level. PMID:19372741

  19. Landslides induced by heavy rainfall in July 2012 in Northern Kyushu District, Japan and the influence of long term rainfall increase comparing with the slope destabilization due to strong seismic shaking

    Science.gov (United States)

    Kubota, Tetsuya; Shinohara, Yoshinori; Aditian, Aril

    2013-04-01

    1. Objective We had a deluge in July 2012 in the northern Kyushu district with intense rainfall of 800mm and 108mm/hr. This intensity yielded countless traces of debris flow and landslides, slope failures that induced tremendous damage and causalities in the area. Hence, several field investigations and reconnaissance tasks were conducted to delve into this sediment-related disaster. The various results and the information obtained through this investigation were reported, mentioning the damage, the meteorological condition, geologic-geomorphologic features and hydraulic characteristics of the debris flows, vegetation effects, and the influence of the climate change. Increase in rainfall that may be induced by the global climate change is obvious in Kyushu district, Japan, according to the analysis of rain data observed in various locations including mountainside points that are not influenced by local warming due to urbanization. On this point of view, we are intrigued to elucidate the response of landslide to this increase in rainfall. Hence, its long term impact on this landslide disaster is also analyzed comparing with the slope destabilization due to strong seismic shaking. 2. Method and target areas Field investigation on landslides slopes, slope failures and torrents where debris flows occurred are conducted to obtain the geologic data, geo-structure, vegetation feature, soil samples and topographic data i.e. cross sections, then soil shear tests and soil permeability tests are also conducted. The rainfall data at the nearest rain observatory were obtained from the database of Japan meteorological agency. The long term impact on the slope stability at some slopes in the area is analyzed by the finite element method (FEM) combined with rain infiltration and seepage analysis with the long term rainfall fluctuation data, obtaining factor of safety ( Fs) on real landslide slopes. The results are compared with the destabilized influence on the slopes due to the

  20. Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro.

    Science.gov (United States)

    Boichuk, Sergei; Galembikova, Aigul; Zykova, Svetlana; Ramazanov, Bulat; Khusnutdinov, Ramil; Dunaev, Pavel; Khaibullina, Svetlana; Lombardi, Vincent

    2016-08-01

    Microtubules are known to be one of the most attractive and validated targets in cancer therapy. However, the clinical use of drugs that affect the dynamic state of microtubules has been hindered by chemoresistance and toxicity issues. Accordingly, the development of novel agents that target microtubules is needed. Here, we report the identification of novel compounds with pirrole and carboxylate structures: ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) that provide potent cytotoxic activities against multiple soft tissue cancer cell lines in vitro. Using the MTS cell proliferation assay, we assessed the activity of EAPCs on various cancer cell lines including leiomyosarcoma SK-LMS-1, rhabdomyosarcoma RD, gastrointestinal stromal tumor GIST-T1, A-673 Ewing's sarcoma, and U-2 OS osteosarcoma. We found that in the majority of cases, two EAPC compounds (EAPC-20 and EAPC-24) considerably inhibited cancer cell proliferation in vitro. The growth-inhibitory effects of EAPC-20 and EAPC-24 were time and dose dependent. The molecular mechanisms of action of these compounds were because of the inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to considerable accumulation of tumor cells in the M-phase. Finally, EAPCs induced tumor cell death by apoptotic pathways. The above-mentioned effects were also observed in most soft tissue tumor cell lines and the gastrointestinal stromal tumor cell line investigated. Taken together, our data identify potent antitumor activity of EAPCs in vitro, thus providing a novel scaffold with which to develop potent chemotherapeutic agents for cancer therapy. PMID:27129079

  1. Destabilization of liquid sheets of dilute emulsions

    OpenAIRE

    Vernay, Clara

    2015-01-01

    One of the major environmental issues related to spraying of pesticides on cultivated crops is the drift phenomenon. Because of the wind, small droplets may drift away from the targeted crop and cause contamination. One way to reduce the drift is to control the spray drop size distribution and reduce the proportion of small drops. In this context, anti-drift additives have been developed, including dilute oil-in-water emulsions. Although being documented, the effects of oil-in-water emulsions...

  2. Slope destabilization during the Messinian Salinity Crisis

    Science.gov (United States)

    Gargani, Julien; Bache, François; Jouannic, Gwenael; Gorini, Christian

    2014-05-01

    During the Messinian Salinity Crisis, ~ 6 Myr ago, deep canyons were incised when a huge sea-level drawdown of ~ 1.5 km affected the Mediterranean Sea. Nearly contemporaneously, more than 2 km of evaporites accumulated in the basin. This event was the consequence of a complex interaction of tectonic movements and global sea-level variation associated with climatic evolution. This unusual event ended with the reflooding of the Mediterranean area. In this paper, using seismic line interpretation, we show that several landslides occurred in various parts of the Mediterranean Basin during this crisis. Three of these landslides are well preserved, and their dynamics were analyzed. Modeling of the slope stability demonstrates that these landslides may have been due to (i) the relief created by the deep erosion, and/or (ii) the reflooding, which triggered a pore pressure increase. The relatively small run-out distances of the three landslides suggest propagation in a submarine environment and triggering by sea-level rise.

  3. Destabilization of cohesive intertidal sediments by infauna

    OpenAIRE

    De Deckere, E.M.G.T.; Tolhurst, T. J.; de Brouwer, J.F.C.

    2001-01-01

    Bioturbation activity was reduced in four plots on an intertidal mudflat in the Humber estuary (UK) during 4 days, by spraying the sediment with an insecticide, namely vydate. Macrofaunal, especially Nereis diversicolor and oligochaeta, and meiofaunal densities decreased, while the diatom biomass did not change. This resulted in a 300% increase in sediment stability, caused by a reduction in bioturbation and grazing pressure and a decrease in the water content.

  4. Destabilization of Cohesive Intertidal Sediments by Infauna

    Science.gov (United States)

    de Deckere, E. M. G. T.; Tolhurst, T. J.; de Brouwer, J. F. C.

    2001-11-01

    Bioturbation activity was reduced in four plots on an intertidal mudflat in the Humber estuary (UK) during 4 days, by spraying the sediment with an insecticide, namely vydate. Macrofaunal, especially Nereis diversicolor and oligochaeta, and meiofaunal densities decreased, while the diatom biomass did not change. This resulted in a 300% increase in sediment stability, caused by a reduction in bioturbation and grazing pressure and a decrease in the water content.

  5. Anthelmintic resistance in Swedish sheep flocks based on a comparison of the results from the faecal egg count reduction test and resistant allele frequencies of the beta-tubulin gene.

    Science.gov (United States)

    Höglund, Johan; Gustafsson, Katarina; Ljungström, Britt-Louise; Engström, Annie; Donnan, Alison; Skuce, Philip

    2009-04-01

    A faecal egg count reduction test (FECRT) survey was conducted during the grazing season 2006 and 2007 to provide an updated indication of the prevalence of anthelmintic resistance in sheep flocks in Sweden. A total of 1330 faecal samples from 90 flocks on 45 farms, with a minimum of 20 ewes each, was collected by local sheep veterinarians. Per treatment group, approximately 15 lambs were dewormed either with oral suspensions of ivermectin (Ivomec vet.) or albendazole (Valbazen vet.). The efficacy on each farm was investigated either in 2006 or 2007 by faecal egg counts collected on the day of treatment and in a new sample from the same animals 7-10 days later. Third-stage larvae (L3) were initially identified morphologically from pooled cultures. These were then used as the source of genomic DNA template for two molecular tests. The first was a PCR-based test for specific identification of Haemonchus contortus, and the second was a Pyrosequencing assay for the analysis of benzimidazole (BZ) resistance targeting the P200 mutation in the parasite's beta-tubulin gene. Larval cultures indicated that Teladorsagia and Trichostrongylus were the predominant genera, but Haemonchus was diagnosed in 37% of the flocks. The PCR results revealed an almost 100% agreement with those farms that had previously been shown to have Haemonchus present, even when the % prevalence was low (approximately 3%). Only two (4%) of the surveyed farms showed evidence of BZ-resistant worm populations, with H. contortus being the species implicated according to post-treatment larval culture results. The Pyrosequencing assay detected BZ resistant allele frequencies of >40% in the Haemonchus-positive farms and 100% resistant alleles in the clinically most resistant farms. These preliminary results suggest that the FECRT is less sensitive than the molecular test at detecting BZ resistance. However, both tests need to be interpreted carefully, bearing in mind the relative proportions of species

  6. Expressions of Thymidylate Synthase, Thymidine Phosphorylase, Class Ⅲ β-tubulin, and Excision Repair Cross-complementing Group 1 Predict Response in Advanced Gastric Cancer Patients Receiving Capecitabine Plus Paclitaxel or Cisplatin

    Institute of Scientific and Technical Information of China (English)

    Ming Lu; Jing Gao; Xi-cheng Wang; Lin Shen

    2011-01-01

    Objective:To evaluate the role of class Ⅲ β-tubulin (TUBB3),thymidylate synthase (TS),thymidine phosphorylase (TP),and excision repair cross-complementing group 1 (ERCC1) in clinical outcome of advanced gastric cancer patients receiving capecitabine plus paclitaxel or cisplatin.Methods:The clinical data and tumor specimens from 57 advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel (cohort 1,n=36) and capecitabine plus cisplatin (cohort 2,n=21) were retrospectively collected,and TUBB3,TS,TP,and ERCC1 expressions were detected by real-time quantitative PCR.The associations between expressions of biomarkers and response or survival were analyzed statistically.Results:The median age of 57 patients was 57 years (range:27-75 years) with 38 males and 19 females.Of all patients,the response rates of patients with high TP,low TP and high TS,low TS expressions were 57.1%,27.6% (P=0.024),and 55.2%,28.6% (P=0.042),respectively.Among cohort 1,the response rates and median overall survivals of patients with low and high TUBB3 expressions were 61.1% vs.33.3% (P=0.095) and 13.8 months vs.6.6 months (P=0.019),respectively; the response rate (87.5%) of patients with low TUBB3 and high TP expressions was higher than that (14.3%) of patients with high TUBB3 and low TP expressions (P=0.01).Among cohort 2,the response rates of patients with low ERCC1 and high ERCC1 expressions were 45.5% and 20.0% respectively (P=0.361).Conclusion:TUBB3,TS and TP expressions could predict the response of advanced gastric cancer patients receiving capecitabine-based and paclitaxel-based chemotherapy.These results will be further confirmed in future large samples.

  7. Repertórios sobre lesbianidade na mídia televisiva: desestabilização de modelos hegemônicos Repertoires on lesbianity in television media: destabilization of hegemonic models

    Directory of Open Access Journals (Sweden)

    Lenise Santana Borges

    2009-12-01

    Full Text Available Este artigo objetiva apresentar uma análise discursiva da telenovela Senhora do Destino (Rede Globo, 2004-2005. A postura construcionista, aliada a uma leitura feminista, permitiu compreender a noção de lesbianidade como uma construção social na qual os discursos e a linguagem empregados variam segundo o contexto social e histórico específico. O foco de análise se deu a partir das práticas discursivas, entendidas como linguagem em ação, sempre múltiplas, situadas e dialógicas. Os resultados desta pesquisa apontam para um duplo efeito na introdução da temática lesbianidade na novela. Se, de um lado, o processo de assimilação da categoria lésbica provoca uma maior "familiarização" na sociedade, bem como a circulação de códigos/modelos propiciam a legitimação de relações afetivo-sexuais entre pessoas do mesmo sexo, de outro, o modo como ocorrem os processos de legitimação/aceitação não propicia uma desestabilização de normas sociais e de modelos hegemônicos.This article aims to present a discursive analysis of the soap opera Senhora do Destino (Rede Globlo, 2004-2005. The constructionist perspective together with a feminist reading allowed to understand the notion of lesbianity as a social construction in which the discourses and the language adopted vary according to the social and historical context. The analysis was centered on discursive practices, understood as language in action, always multiple, situated and dialogical versions of conversation. The results of this research suggest parallel effects of the introduction of the issue of lesbianity in the soap opera. On one hand, the process of assimilation of the lesbian category provokes a broader "familiarity" in society, as well as the presence of codes/models that allow the legitimacy of same sex relations. On the other hand, the legitimizing/acceptance processes occur in ways that do not provoke the destabilization of social norms and hegemonic models.

  8. Gamma - tubulin distribution in differentiating chicken erythrocytes

    Czech Academy of Sciences Publication Activity Database

    Linhartová, Irena; Novotná, Božena; Dráberová, Eduarda; Dráber, Pavel

    Oeiras, 1999. s. P44. [European Cytoskeleton Forum /14./. 28.08.1999-02.09.1999, Oeiras] R&D Projects: GA AV ČR IAA5052701; GA ČR GA204/98/1054 Grant ostatní: NATO(BE) CNS961254 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  9. Natural products triptolide, celastrol, and withaferin A inhibit the chaperone activity of peroxiredoxin i

    NARCIS (Netherlands)

    Zhao, Qian; Ding, Yu; Deng, Zhangshuang; Lee, On Yi; Gao, Peng; Chen, Pin; Rose, Rebecca J.; Zhao, Hong; Zhang, Zhehao; Tao, Xin Pei; Heck, Albert J R; Kao, Richard; Yang, Dan

    2015-01-01

    Peroxiredoxin I (Prx I) plays an important role in cancer development and inflammation. It is a dual-functional protein which acts as both an antioxidant enzyme and a molecular chaperone. While there have been intensive studies on its peroxidase activity, Prx I's chaperone activity remains elusive,

  10. 音乐治疗对慢性应激大鼠脑内5-羟色胺及微管蛋白的影响%Effects of the music therapy on the serotonin and tubulin in brain tissue of chronic unpredictable mild stress rats

    Institute of Scientific and Technical Information of China (English)

    吴涵; 牟晓洁

    2014-01-01

    目的 探讨音乐治疗对慢性轻度不可预测性应激(CUMS)大鼠脑内前额叶、海马、下丘脑等脑区5-羟色胺及微管蛋白的水平及可能作用机制.方法 随机将24只SD雄性大鼠分为音乐治疗应激组(n=8)、应激组(n=8)和正常对照组(n=8).采用慢性轻度不可预测性应激(CUMS)模型连续刺激大鼠21 d,音乐治疗应激组在应激的同时给予音乐治疗.实验结束后对每组大鼠进行行为学观察,然后处死大鼠,检测下丘脑、海马和前额叶皮质中5-羟色胺(5-HT)及其代谢产物5-羟吲哚乙酸(5-HIAA)的含量和微管蛋白的表达.结果 旷场试验的中央格停留时间比较,应激组大鼠显著低于对照组(P<0.01),而音乐治疗应激组与对照组相比差异无统计学意义(P>0.05).与应激组相比,对照组和音乐治疗应激组的海马、前额叶中5-HT及5-HIAA含量均显著升高(P<0.01);但三组下丘脑中5-HT及5-HIAA含量差异无统计学意义(P>0.05).与应激组相比,对照组和音乐治疗应激组的海马中乙酰化微管蛋白表达均显著降低(P<0.01),酪氨酸化微管蛋白表达均显著升高(P<0.01);但三组的前额叶和下丘脑中乙酰化微管蛋白、酪氨酸化微管蛋白表达差异无统计学意义(P>0.05).结论 音乐治疗能改善应激所致的前额叶、海马5-羟色胺水平的低下和海马微管蛋白的降低.%Objective To study the effect of the music therapy on the serotonin and tubulin in frontal cortex,hippocampus and hypothalamus of chronic unpredictable mild stress (CUMS) rats,and to explore the neurobiology of the music therapy on stress disorders.Methods Twenty-four male Sprague-Dawley rats were randomly divided equally to music therapy stress group(n=8),stress group(n=8) and normal control group(n=8).Mild chronic unpredictable stress was used for 21 days in a continuous stimulation pattern to establish the CUMS model.The 5-HT,5-HIAA and tubulin levels in the the frontal cortex

  11. Differential expression of gamma-tubulin and class III beta-tubulin in meduloblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Caracciolo, V.; D´Agostino, L.; Dráberová, Eduarda; Sládková, Vladimíra; Agamanolis, D.; De Chaderevian, J.P.; Legido, A.; Giordano, A.; Dráber, Pavel; Katsetos, C.

    2010-01-01

    Roč. 69, č. 5 (2010), s. 558-558. ISSN 0022-3069. [Annual Meeting of the American-Association-of-Neuropathologists /86./. 10.06.10-13.06.10, Phidadelphia] Institutional research plan: CEZ:AV0Z50520514

  12. Cryolava flow destabilization of crustal methane clathrate hydrate on Titan

    Science.gov (United States)

    Davies, Ashley Gerard; Sotin, Christophe; Choukroun, Mathieu; Matson, Dennis L.; Johnson, Torrence V.

    2016-08-01

    To date, there has been no conclusive observation of ongoing endogenous volcanic activity on Saturn's moon Titan. However, with time, Titan's atmospheric methane is lost and must be replenished. We have modeled one possible mechanism for the replenishment of Titan's methane loss. Cryolavas can supply enough heat to release large amounts of methane from methane clathrate hydrates (MCH). The volume of methane released is controlled by the flow thickness and its areal extent. The depth of the destabilisation layer is typically ≈30% of the thickness of the lava flow (≈3 m for a 10-m thick flow). For this flow example, a maximum of 372 kg of methane is released per m2 of flow area. Such an event would release methane for nearly a year. One or two events per year covering ∼20 km2 would be sufficient to resupply atmospheric methane. A much larger effusive event covering an area of ≈9000 km2 with flows 200 m thick would release enough methane to sustain current methane concentrations for 10,000 years. The minimum size of "cryo-flows" sufficient to maintain the current atmospheric methane is small enough that their detection with current instruments (e.g., Cassini) could be challenging. We do not suggest that Titan's original atmosphere was generated by this mechanism. It is unlikely that small-scale surface MCH destabilisation is solely responsible for long-term (> a few Myr) sustenance of Titan's atmospheric methane, but rather we present it as a possible contributor to Titan's past and current atmospheric methane.

  13. Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    CERN Document Server

    Krasnopolsky, Ruben; Shang, Hsien; Zhao, Bo

    2012-01-01

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known "magnetic flux problem" can in principle be resolved through non-ideal MHD effects. Two dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the pres...

  14. Bacterial Lipopolysaccharide Promotes Destabilization of Lung Surfactant-Like Films

    OpenAIRE

    Cañadas, Olga; Keough, Kevin M.W.; Casals, Cristina

    2011-01-01

    The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the bi...

  15. Cowboys and zombies: destabilizing patriarchal discourse in The Walking Dead

    NARCIS (Netherlands)

    D. Hassler-Forest

    2012-01-01

    The serialized comic book The Walking Dead, written by Robert Kirkman and drawn by Charlie Adlard, has been published by Image Comics from October 2003, and is still being released in monthly instalments as of this writing. It has won numerous awards, including the prestigious Eisner Award for Best

  16. Destabilization of mayonnaise induced by lipid crystallization upon freezing.

    Science.gov (United States)

    Miyagawa, Yayoi; Ogawa, Takenobu; Nakagawa, Kyuya; Adachi, Shuji

    2016-04-01

    The thermal and rheological history of mayonnaise during freezing and its dispersion stability after the freeze-thaw process were investigated. Mayonnaise was cooled to freeze and stored at -20 to -40 °C while monitoring the temperature; penetration tests were conducted on the mayonnaise, which was sampled at selected times during isothermal storage at -20 °C. Significant increases in the temperature and stress values due to water-phase crystallization and subsequent oil-phase crystallization were observed. The water phase crystallized during the cooling step in all the tested mayonnaise samples. The oil phases of the prepared mayonnaise (with rapeseed oil) and commercial mayonnaise crystallized during isothermal storage after 6 and 4 h, respectively, at -20 °C. The dispersion stability was evaluated from the separation ratio, which was defined as the weight ratio of separated oil after centrifuging to the total amount of oil in the commercial mayonnaise. The separation ratio rapidly increased after 4 h of freezing. This result suggests that crystallization of the oil phase is strongly related to the dispersion stability of mayonnaise. PMID:26760458

  17. Destabilized and catalyzed borohydride for reversible hydrogen storage

    Science.gov (United States)

    Mohtadi, Rana F.; Nakamura, Kenji; Au, Ming; Zidan, Ragaiy

    2012-01-31

    A process of forming a hydrogen storage material, including the steps of: providing a first material of the formula M(BH.sub.4).sub.X, where M is an alkali metal or an alkali earth metal, providing a second material selected from M(AlH.sub.4).sub.x, a mixture of M(AlH.sub.4).sub.x and MCl.sub.x, a mixture of MCl.sub.x and Al, a mixture of MCl.sub.x and AlH.sub.3, a mixture of MH.sub.x and Al, Al, and AlH.sub.3. The first and second materials are combined at an elevated temperature and at an elevated hydrogen pressure for a time period forming a third material having a lower hydrogen release temperature than the first material and a higher hydrogen gravimetric density than the second material.

  18. Stabilizing and destabilizing Heegaard splittings of sufficiently complicated 3-manifolds

    CERN Document Server

    Bachman, David

    2012-01-01

    Let M_1 and M_2 be compact, orientable 3-manifolds with incompressible boundary, and M the manifold obtained by gluing with a homeomorphism $\\phi:\\bdy M_1 \\to \\bdy M_2$. We analyze the relationship between the sets of low genus Heegaard splittings of M_1, M_2, and M, assuming the map \\phi is "sufficiently complicated." This analysis yields counter-examples to the Stabilization Conjecture, a resolution of the higher genus analogue of a conjecture of Gordon, and a result about the uniqueness of expressions of Heegaard splittings as amalgamations.

  19. The actors of the photovoltaic sector are destabilized

    International Nuclear Information System (INIS)

    In september 2010 the French authorities decided to cut both the compulsory purchase prices of electricity and the tax incentive that was allowed to particulars setting a photovoltaic unit in their home. These 2 measures followed another decrease in the electricity purchase price that occurred in the beginning of 2010. According to the syndicate of renewable energies these measures have come too early. In some projects involving the installation of solar panels on large industrial roofs the decrease of the electricity purchase price reaches 40% which puts in danger the profitability of the project. The French authorities say that now the purchase tariffs are similar in France and Germany. It would have been better to allow similar profitability in France and Germany for equivalent projects. This similarity in profitability would have implied higher purchase tariffs in France because constraints in the buildings are more important in France than in Germany particularly in terms of insurance. (A.C.)

  20. Destabilization of Terrorist Networks through Argument Driven Hypothesis Model

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2007-01-01

    Social network analysis has been used for quite some time to analyze and understand the behavior of nodes in the network.  Theses nodes could be individuals or group of persons, events or organizations etc.  Infact these nodes could be any thing importantly, these nodes propagate and obviously ha...

  1. Vibration and destabilizing effects of floating ring seals in compressors

    Science.gov (United States)

    Emerick, M. F.

    1982-01-01

    Operating experience on a compressor commissioned 12 years ago has presented an interesting history of sporadic increases in shaft vibration. Initial operation was satisfactory with low levels of vibration. However, after some time the shaft vibration level increased to several mils. Initially this was believed to be due to rotor unbalance from deposits formed in the passages due to process upsets. After cleaning up the rotor, operation was again increased. It was then found that the rotor vibration was primarily subsynchronous. Further investigation revealed that the original seal design was subject to wear and was no longer properly pressure balanced. A modified seal design was installed and it has operated successfully for the past six years.

  2. Destabilization of contained interacting modes by fusion products

    International Nuclear Information System (INIS)

    The instability related to the interaction between high-frequency open-quotes contained modesclose quotes and the fusion products population in a toroidal configuration is studied. Emphasis is placed on the dependence of the growth rate on finite Larmor radius effects of the fusion products, the characteristics of the particle distribution function, and factors, such as the magnetic drift velocity and bounce-averaging, related to the inhomogeneity of the magnetic field in a toroidal configuration. In particular, a sufficient degree of anisotropy in the energetic particle distribution is required in order to have a positive growth rate for realistic parameters. Only a small region of phase space is involved in the resonant interactions associated with the considered modes. We consider first the limit where the growth rate is larger than the bounce frequency (local approximation), that is the simplest case by which it is possible to identify the regions of phase space that are involved in the instability. Another evaluation of the growth rate is given in the case, that we consider realistic, where γ is comparable to the average bounce frequency of the interacting particles. We solve for γ by integrating the linearized Vlasov equation over the unperturbed particle orbits, and by reducing the integrals through saddle-point approximations

  3. (De)stabilizing Self-Identities in Professional Work

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2013-01-01

    It is characteristic of much professional work that it is performed in ambiguous contexts. Thus, uncertainty, unpredictability, indeterminacy, and recurrent organizational transformations are an integral part of modern work for, e.g., engineers, lawyers, business consultants, and other profession...

  4. Visfatin Destabilizes Atherosclerotic Plaques in Apolipoprotein E-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available Although there is evidence that visfatin is associated with atherogenesis, the effect of visfatin on plaque stability has not yet been explored.In vivo, vulnerable plaques were established by carotid collar placement in apolipoprotein E-deficient (ApoE-/- mice, and lentivirus expressing visfatin (lenti-visfatin was locally infused in the carotid artery. The lipid, macrophage, smooth muscle cell (SMC and collagen levels were evaluated, and the vulnerability index was calculated. In vitro, RAW264.7 cells were stimulated with visfatin, and the MMPs expressions were assessed by western blot and immunofluorescence. And the mechanism that involved in visfatin-induced MMP-8 production was investigated.Transfection with lenti-visfatin significantly promoted the expression of visfatin which mainly expressed in macrophages in the plaque. Lenti-visfatin transfection significantly promoted the accumulation of lipids and macrophages, modulated the phenotypes of smooth muscle cells and decreased the collagen levels in the plaques, which significantly decreased the plaque stability. Simultaneously, transfection with lenti-visfatin significantly up-regulated the expression of MMP-8 in vivo, as well as MMP-1, MMP-2 and MMP-9. Recombinant visfatin dose- and time-dependently up-regulated the in vitro expression of MMP-8 in macrophages. Visfatin promoted the translocation of NF-κB, and inhibition of NF-κB significantly reduced visfatin-induced MMP-8 production.Visfatin increased MMP-8 expression, promoted collagen degradation and increased the plaques vulnerability index.

  5. Destabilization of homologous transgene interactions in tobacco cell cultures

    Czech Academy of Sciences Publication Activity Database

    Křížová, Kateřina; Fojtová, Miloslava; Depicker, A.; Kovařík, Aleš

    Olomouc, 2007. s. 63. ISSN 1213-6670. [Konference experimentální biologie rostlin, 11. dny fyziologie rostlin. 09.07.2007-12.07.2007, Olomouc] R&D Projects: GA AV ČR(CZ) IAA600040611; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : gene expression * DNA methylation * transgenic tobacco plants Subject RIV: BO - Biophysics

  6. Data on TREM-1 activation destabilizing carotid plaques.

    Science.gov (United States)

    Rao, Velidi H; Rai, Vikrant; Stoupa, Samantha; Subramanian, Saravanan; Agrawal, Devendra K

    2016-09-01

    The data described herein are related to the article entitled "Tumor necrosis factor-α regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis" (Rao et al., 2016) [1]. Additional data are provided on the dose-response effect of TNF-α, TREM-1 antibody and recombinant rTREM-1/Fc fusion chimera (TREM-1/FC) on the expression of MMP-1 and MMP-9 in vascular smooth muscle cells (VSMCs) isolated from human carotid endarterectomy tissues. Data are also presented on the distribution of CD86+ M1- and CD206+ M2-macrophages and their co-localization with TREM-1 in symptomatic carotid plaques as visualized by dual immunofluorescence. The interpretation of this data and further extensive insights can be found in Rao et al. (2016) [1]. PMID:27331093

  7. Kaleidoscope of Vistas : Identity Destabilization in William S. Burroughs' Novels

    OpenAIRE

    2012-01-01

    William S. Burroughs’ work is generally regarded as narratives of opposition and revolt. However, in this thesis, I will examine how his socially deviant characters are not exempt from discourses that rely on binary hierarchies, and promote coherence. The dissemination of identity shows the limits of essentialist rhetoric, and the impossibility of pure self-representation. For Burroughs, the liability of our ability to create truths is the ignorance of its multiplicity and unavoidability. The...

  8. Isolation, Identification and Analysis of β-tubulin Gene Sequence of Fusarium tricinctum at Different Altitudes in Tianzhu Alpine Grassland%天祝高寒草地三线镰孢的分离鉴定及β-tubulin基因序列分析

    Institute of Scientific and Technical Information of China (English)

    郭成; 李金花; 柴兆祥

    2011-01-01

    In order to know the distribution of Fusarium tricinctum in Tianzhu Alpine Grassland in Gansu.China, thizosphere soils around gramineous grass were sampled through a zigzag way from 16 sampling sites at 30 m interval at a elevation ranging between 2 880~3 360 m, 5 sub-samples in total were picked up from each sampling site, and root debris from the soils was plated on Fusarium specific medium.The Fusarium colonies were purified and single-spored.Based on the morphological characteristics of Fusarium isolates, and according to the references related to Nelson's Fusarium taxonomical system, 212 Fusarium isolates were obtained and 5 of them were identified belonging to F.tricinctum.Two F.tricinctum isolates of the 5were randomly selected for sequences analysis of ,β-tubulin gene.The PCR product of the two isolates were collected, purified,and sequenced.The sequences were aligned in GenBank.It was showed that there was a very close relationship of isolates TZh-4-3-7 and TZh-11-5-2 with the 6 F.tricinctum isolates in New Zealand, and their max similarity was 96%.Microsoft DNAStar was used to draw the phylogenetic tree of isolates TZh-4-3-7 and TZh-11-5-2.The tree showed that both TZh-4-3-7and TZh-11-5 -2 were in the same cluster as the 6 New Zealand isolates.The sequence analysis of ,β-tubulin gene determined the morphological identification of the 5 F.tricincturn isolates in this study, and the analysis was used to identify F.tricincturn for the first time in China.This study would enrich the future research on grassland degeneration associated with Fusarium.Fig 4, Ref 45%按30 m的梯度将海拔2 880~3 360 m分为16个采样点,在同一海拔高度按照“Z”字形取样,共取5个点,对16个采样点的土样混匀后以根残体分离法在镰刀菌选择性培养基上进行分离,对分离得到的镰刀菌菌落进行纯化和单孢分离后,以形态学为基础,参照Nelson分类系统进行鉴定.结果表明:在分离到的212

  9. Nuclear Gamma-Tubulin during Acentriolar Plant Mitosis

    Czech Academy of Sciences Publication Activity Database

    Binarová, Pavla; Cenklová, Věra; Hause, B.; Kubátová, Elena; Lysák, Martin; Doležel, Jaroslav; Bögre, L.; Dráber, Pavel

    2000-01-01

    Roč. 12, č. 3 (2000), s. 433-442. ISSN 1040-4651 R&D Projects: GA AV ČR IAA5020803; GA ČR GA204/98/1054; GA ČR GV521/96/K117; GA AV ČR KSK2038602 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EF - Botanics Impact factor: 11.093, year: 2000

  10. Nuclear ç-Tubulin during Acentriolar Plant Mitosis

    Czech Academy of Sciences Publication Activity Database

    Binarová, Pavla; Cenklová, Věra; Hause, B.; Kubátová, E.; Lysák, Martin; Doležel, Jaroslav; Börge, L.; Dráber, P.

    2000-01-01

    Roč. 12, - (2000), s. 433-442. ISSN 1040-4651 R&D Projects: GA ČR GA204/98/1054; GA ČR GV521/96/K117; GA AV ČR IAA5020803; GA AV ČR KSK2038602 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.093, year: 2000

  11. Gamma-Tubulin distribution in differentiating chicken erythrocytes

    Czech Academy of Sciences Publication Activity Database

    Linhartová, Irena; Novotná, Božena; Dráberová, Eduarda; Dráber, Pavel

    Oeiras, 1999. s. P44. [European Cytoskeleton Forum /14./. 28.08.1999-02.09.1999, Oeiras] R&D Projects: GA AV ČR IAA5052701; GA ČR GA204/98/1054 Grant ostatní: NATO(BE) CNS961254 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  12. ç-Tubulin distribution in differentiating chicken erythrocytes

    Czech Academy of Sciences Publication Activity Database

    Linhartová, Irena; Novotná, Božena; Dráberová, Eduarda; Dráber, Pavel

    Praha : UMG AV CR, 2000. s. 34. [Cytoskeletální klub /8./. 15.03.2000-17.03.2000, Vranovská Ves] R&D Projects: GA AV ČR IAA5052701; GA ČR GA204/98/1054 Grant ostatní: BE(CZ) CNS961254 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  13. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing

    OpenAIRE

    Uchida, Shusaku; Martel, Guillaume; Pavlowsky, Alice; Takizawa, Shuichi; Hevi, Charles; Watanabe, Yoshifumi; Kandel, Eric R.; Alarcon, Juan Marcos; Shumyatsky, Gleb P.

    2014-01-01

    Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin-tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA...

  14. Destabilizing Investment in the Americas. Public Funding for Fossil Fuels After Rio

    International Nuclear Information System (INIS)

    A summary is given of ongoing research by the Sustainable Energy and Economy Network into the financing of fossil fuel and renewables/energy efficiency by U.S. institutions and multilateral development banks in the Americas since 1992, the year of the last Earth Summit. These institutions have been key financers of many of the region's most destructive fossil fuel projects over the past decade

  15. Destabilization and Recuperability of Oil Used in the Formulation of Concentrated Emulsions and Cutting Fluids

    OpenAIRE

    Guimarães, A. P.; D. A. S. Maia; Araújo, R. S.; C.L. Cavalcante Jr.; de Sant’Ana, H. B.

    2010-01-01

    Lubricants known as cutting fluids are used in the metal-mechanic industry with the function of cooling and lubricating the cutting zone. These lubricants normally have a water phase, an oil phase, emulsifying agents and additives. Once the operational capacity of these fluids has ceased, either due to biological deterioration or to overabundance of contaminants, the emulsions being used must be treated in order to adequate their effluents for discharge. This study aims to evaluate the des...

  16. Membrane Association and Destabilization by Aggregatibacter actinomycetemcomitans Leukotoxin Requires Changes in Secondary Structures

    OpenAIRE

    Walters, Michael J.; Brown, Angela C.; Edrington, Thomas C.; Baranwal, Somesh; Du, Yurong; Lally, Edward T.; Boesze-Battaglia, Kathleen

    2013-01-01

    Aggregatibacter actinomycetemcomitans is a common inhabitant of the upper aerodigestive tract of humans and non-human primates and is associated with disseminated infections, including lung and brain abscesses, pediatric infective endocarditis in children, and localized aggressive periodontitis. A. actinomycetemcomitans secretes a repeats-in-toxin protein, leukotoxin, which exclusively kills lymphocyte function-associated antigen-1-bearing cells. The toxin's pathological mechanism is not full...

  17. Destabilization of Alfven eigenmodes by fast particles in W7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Zegenhagen, S.

    2006-02-15

    In the present thesis, a systematic study of beam driven Alfven eigenmodes in high-density and low-temperature plasmas of the W7-AS stellarator is performed. The goal of this thesis is twofold: (I) identification and description of fast particle driven Alfven instabilities in W7-AS, and (II) study of energetic particle losses induced by Alfven instabilities. A total of 133 different Alfven eigenmodes is studied in discharges from different experimental campaigns. The discharges are characterized by high density, n{sub e}=5 x 1019 m{sup -3} to 2.5 x 1020 m{sup -3} at relatively low temperatures of T{sub e}=T{sub i}=150..600 eV. Additional 13 events are found to have frequencies inside the EAE gap and could possibly be EAEs. Evidence for high-frequency Alfven eigenmodes (mirror- and helicity-induced Alfven eigenmodes) is seen, but can not be proven rigorously due to uncertain mode numbers and the complexity of the Alfven continuum. The remaining 41 Alfven eigenmodes can not be classified to be one of the above cases. (orig.)

  18. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available BACKGROUND: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. METHODOLOGY/PRINCIPAL FINDINGS: We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. CONCLUSIONS/SIGNIFICANCE: This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.

  19. Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus

    NARCIS (Netherlands)

    Veenhoff, Liesbeth; Liang, Wei-Jun; Henderson, Peter J.F.; Leblanc, Gérard; Poolman, Bert

    1996-01-01

    The lactose transport protein (LacS) of Streptococcus thermophilus was amplified to levels as high as 8 and 30% of total membrane protein in Escherichia coli and S, thermophilus, respectively, In both organisms the protein was functional and the expression levels were highest with the streptococcal

  20. Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins

    OpenAIRE

    Goodarzi, Hani; Zhang, Steven; Buss, Colin G.; Fish, Lisa; Tavazoie, Saeed; Tavazoie, Sohail F

    2014-01-01

    Aberrant regulation of RNA stability plays an important role in many disease states1,2. Deregulated post-transcriptional modulation, such as that governed by microRNAs targeting linear sequence elements in mRNAs, has been implicated in the progression of many cancer types3-7. A defining feature of RNA is its ability to fold into structures. However, the roles of structural mRNA elements in cancer progression remain unexplored. We performed an unbiased search for post-transcriptional modulator...