WorldWideScience

Sample records for ceacam1 transgenic mice

  1. Sterilizing immunity elicited by Neisseria meningitidis carriage shows broader protection than predicted by serum antibody cross-reactivity in CEACAM1-humanized mice.

    Science.gov (United States)

    Johswich, Kay O; McCaw, Shannon E; Strobel, Lea; Frosch, Matthias; Gray-Owen, Scott D

    2015-01-01

    Neisseria meningitidis asymptomatically colonizes the human upper respiratory tract but is also the cause of meningitis and severe septicemia. Carriage or disease evokes an immune response against the infecting strain. Hitherto, we have known little about the breadth of immunity induced by natural carriage of a single strain or its implications for subsequent infectious challenge. In this study, we establish that transgenic mice expressing human CEACAM1 support nasal colonization by a variety of strains of different capsular types. Next, we nasally challenged these mice with either of the N. meningitidis strains H44/76 (serogroup B, ST-32) and 90/18311 (serogroup C, ST-11), while following the induction of strain-specific immunoglobulin. When these antisera were tested for reactivity with a diverse panel of N. meningitidis strains, very low levels of antibody were detected against all meningococcal strains, yet a mutually exclusive "fingerprint" of high-level cross-reactivity toward certain strains became apparent. To test the efficacy of these responses for protection against subsequent challenge, CEACAM1-humanized mice exposed to strain 90/18311 were then rechallenged with different N. meningitidis strains. As expected, the mice were immune to challenge with the same strain and with a closely related ST-11 strain, 38VI, while H44/76 (ST-32) could still colonize these animals. Notably, however, despite the paucity of detectable humoral response against strain 196/87 (ST-32), this strain was unable to colonize the 90/18311-exposed mice. Combined, our data suggest that current approaches may underestimate the actual breadth of mucosal protection gained through natural exposure to N. meningitidis strains. PMID:25368118

  2. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production.

    Science.gov (United States)

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R; Singer, Bernhard B; Lang, Philipp A; Lang, Karl S

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1(-/-) mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1(-/-) mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  3. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    OpenAIRE

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1 −/− mice limits...

  4. CEACAM1-Mediated Inhibition of Virus Production.

    Science.gov (United States)

    Vitenshtein, Alon; Weisblum, Yiska; Hauka, Sebastian; Halenius, Anne; Oiknine-Djian, Esther; Tsukerman, Pinchas; Bauman, Yoav; Bar-On, Yotam; Stern-Ginossar, Noam; Enk, Jonatan; Ortenberg, Rona; Tai, Julie; Markel, Gal; Blumberg, Richard S; Hengel, Hartmut; Jonjic, Stipan; Wolf, Dana G; Adler, Heiko; Kammerer, Robert; Mandelboim, Ofer

    2016-06-14

    Cells in our body can induce hundreds of antiviral genes following virus sensing, many of which remain largely uncharacterized. CEACAM1 has been previously shown to be induced by various innate systems; however, the reason for such tight integration to innate sensing systems was not apparent. Here, we show that CEACAM1 is induced following detection of HCMV and influenza viruses by their respective DNA and RNA innate sensors, IFI16 and RIG-I. This induction is mediated by IRF3, which bound to an ISRE element present in the human, but not mouse, CEACAM1 promoter. Furthermore, we demonstrate that, upon induction, CEACAM1 suppresses both HCMV and influenza viruses in an SHP2-dependent process and achieves this broad antiviral efficacy by suppressing mTOR-mediated protein biosynthesis. Finally, we show that CEACAM1 also inhibits viral spread in ex vivo human decidua organ culture. PMID:27264178

  5. CEACAM1-Mediated Inhibition of Virus Production

    Directory of Open Access Journals (Sweden)

    Alon Vitenshtein

    2016-06-01

    Full Text Available Cells in our body can induce hundreds of antiviral genes following virus sensing, many of which remain largely uncharacterized. CEACAM1 has been previously shown to be induced by various innate systems; however, the reason for such tight integration to innate sensing systems was not apparent. Here, we show that CEACAM1 is induced following detection of HCMV and influenza viruses by their respective DNA and RNA innate sensors, IFI16 and RIG-I. This induction is mediated by IRF3, which bound to an ISRE element present in the human, but not mouse, CEACAM1 promoter. Furthermore, we demonstrate that, upon induction, CEACAM1 suppresses both HCMV and influenza viruses in an SHP2-dependent process and achieves this broad antiviral efficacy by suppressing mTOR-mediated protein biosynthesis. Finally, we show that CEACAM1 also inhibits viral spread in ex vivo human decidua organ culture.

  6. CEACAM1 mediates B cell aggregation in central nervous system autoimmunity.

    Science.gov (United States)

    Rovituso, Damiano M; Scheffler, Laura; Wunsch, Marie; Kleinschnitz, Christoph; Dörck, Sebastian; Ulzheimer, Jochen; Bayas, Antonios; Steinman, Lawrence; Ergün, Süleyman; Kuerten, Stefanie

    2016-01-01

    B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1(+) B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain -3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease. PMID:27435215

  7. Hepatic CEACAM1 Overexpression Protects Against Diet-induced Fibrosis and Inflammation in White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Sumona Ghosh Lester

    2015-08-01

    Full Text Available CEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1–/–, C57/BL6J mice fed a high-fat diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by high-fat diet in L-CC1 mice. Because CEACAM1 protein is barely detectable in white adipose tissue, we herein investigated whether hepatic CEACAM1-dependent insulin clearance pathways regulate adipose tissue biology in response to dietary fat. While high-fat diet caused a similar body weight gain in L-CC1, this effect was delayed and less intense relative to wild-type mice. Histological examination revealed less expansion of adipocytes in L-CC1 than wild-type by high-fat intake. Immunofluorescence analysis demonstrated a more limited recruitment of crown-like structures and qRT-PCR analysis showed no significant rise in TNFα mRNA levels in response to high-fat intake in L-CC1 than wild-type mice. Unlike wild-type, high-fat diet did not activate TGF-β in white adipose tissue of L-CC1 mice, as assessed by Western analysis of Smad2/3 phosphorylation. Consistently, high-fat diet caused relatively less collagen deposition in L-CC1 than wild-type mice, as shown by Trichome staining. Coupled with reduced lipid redistribution from liver to visceral fat, lower inflammation and fibrosis could contribute to protected energy expenditure against high-fat diet in L-CC1 mice. The data underscore the important role of hepatic insulin clearance in the regulation of adipose tissue inflammation and fibrosis.

  8. Ceacam1 separates graft-versus-host-disease from graft-versus-tumor activity after experimental allogeneic bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Sydney X Lu

    Full Text Available Allogeneic bone marrow transplantation (allo-BMT is a potentially curative therapy for a variety of hematologic diseases, but benefits, including graft-versus-tumor (GVT activity are limited by graft-versus-host-disease (GVHD. Carcinoembryonic antigen related cell adhesion molecule 1 (Ceacam1 is a transmembrane glycoprotein found on epithelium, T cells, and many tumors. It regulates a variety of physiologic and pathological processes such as tumor biology, leukocyte activation, and energy homeostasis. Previous studies suggest that Ceacam1 negatively regulates inflammation in inflammatory bowel disease models.We studied Ceacam1 as a regulator of GVHD and GVT after allogeneic bone marrow transplantation (allo-BMT in mouse models. In vivo, Ceacam1(-/- T cells caused increased GVHD mortality and GVHD of the colon, and greater numbers of donor T cells were positive for activation markers (CD25(hi, CD62L(lo. Additionally, Ceacam1(-/- CD8 T cells had greater expression of the gut-trafficking integrin α(4β(7, though both CD4 and CD8 T cells were found increased numbers in the gut post-transplant. Ceacam1(-/- recipients also experienced increased GVHD mortality and GVHD of the colon, and alloreactive T cells displayed increased activation. Additionally, Ceacam1(-/- mice had increased mortality and decreased numbers of regenerating small intestinal crypts upon radiation exposure. Conversely, Ceacam1-overexpressing T cells caused attenuated target-organ and systemic GVHD, which correlated with decreased donor T cell numbers in target tissues, and mortality. Finally, graft-versus-tumor survival in a Ceacam1(+ lymphoma model was improved in animals receiving Ceacam1(-/- vs. control T cells.We conclude that Ceacam1 regulates T cell activation, GVHD target organ damage, and numbers of donor T cells in lymphoid organs and GVHD target tissues. In recipients of allo-BMT, Ceacam1 may also regulate tissue radiosensitivity. Because of its expression on both the

  9. CEACAM1: Expression and Role in Melanocyte Transformation

    Directory of Open Access Journals (Sweden)

    Gabriela Turcu

    2016-01-01

    Full Text Available Metastases represent the main cause of death in melanoma patients. Despite the current optimized targeted therapy or immune checkpoint inhibitors the treatment of metastatic melanoma is unsatisfactory. Because of the poor prognosis of advanced melanoma there is an urgent need to identify new biomarkers to differentiate melanoma cells from normal melanocytes, to stratify patients according to their risk, and to identify subgroups of patients that require close follow-up or more aggressive therapy. Furthermore, melanoma progression has been associated with the dysregulation of cell adhesion molecules. We have reviewed the literature and have discussed the important role of the expression of the carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1 in the development of melanoma. Thus, novel insights into CEACAM1 may lead to promising strategies in melanoma treatment, in monitoring melanoma patients, in assessing the response to immunotherapy, and in completing the standard immunohistochemical panel used in melanoma examination.

  10. Role of CEACAM1, ECM, and Mesenchymal Stem Cells in an Ortho topic Model of Human Breast Cancer

    International Nuclear Information System (INIS)

    Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is a morphogens in an in vitro model for lumen formation and plays a similar role in breast epithelial cells implanted in humanized mammary fat pads in NOD-SCID mice. Although extra cellular matrix alone is sufficient to stimulate lumen formation in CEACAM1 transfected MCF-7 cells grown in 3D culture, there is an additional requirement for stromal or mesenchymal cells (MSCs) for these cells to form xenografts with glandular structures in an ortho topic site. We demonstrate that optimal in vitro conditions include both Matrigel and MSCs and that the inclusion of collagen I inhibits xenograft differentiation. Additionally, there is no need to remove the nascent murine mammary gland. The previously observed difference in gland development between the long and short cytoplasmic domain isoforms of CEACAM1 is no longer observed in pregnant NOD/SCID mice suggesting that stimulation of the mammary fat pad by pregnancy critically affects xenograft differentiation.

  11. Characterization of gastric adenocarcinoma cell lines established from CEA424/SV40 T antigen-transgenic mice with or without a human CEA transgene

    International Nuclear Information System (INIS)

    Gastric carcinoma is one of the most frequent cancers worldwide. Patients with gastric cancer at an advanced disease stage have a poor prognosis, due to the limited efficacy of available therapies. Therefore, the development of new therapies, like immunotherapy for the treatment of gastric cancer is of utmost importance. Since the usability of existing preclinical models for the evaluation of immunotherapies for gastric adenocarcinomas is limited, the goal of the present study was to establish murine in vivo models which allow the stepwise improvement of immunotherapies for gastric cancer. Since no murine gastric adenocarcinoma cell lines are available we established four cell lines (424GC, mGC3, mGC5, mGC8) from spontaneously developing tumors of CEA424/SV40 T antigen (CEA424/Tag) mice and three cell lines derived from double-transgenic offsprings of CEA424/Tag mice mated with human carcinoembryonic antigen (CEA)-transgenic (CEA424/Tag-CEA) mice (mGC2CEA, mGC4CEA, mGC11CEA). CEA424/Tag is a transgenic C57BL/6 mouse strain harboring the Tag under the control of a -424/-8 bp CEA gene promoter which leads to the development of invasive adenocarcinoma in the glandular stomach. Tumor cell lines established from CEA424/Tag-CEA mice express the well defined tumor antigen CEA under the control of its natural regulatory elements. The epithelial origin of the tumor cells was proven by morphological criteria including the presence of mucin within the cells and the expression of the cell adhesion molecules EpCAM and CEACAM1. All cell lines consistently express the transgenes CEA and/or Tag and MHC class I molecules leading to their susceptibility to lysis by Tag-specific CTL in vitro. Despite the presentation of CTL-epitopes derived from the transgene products the tumor cell lines were tumorigenic when grafted into C57BL/6, CEA424/Tag or CEA424/Tag-CEA-transgenic hosts and no significant differences in tumor take and tumor growth were observed in the different hosts. Although

  12. Carcinoembryonic antigen-related cell adhesion molecules (CEACAM 1, 5 and 6 as biomarkers in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Florian Gebauer

    Full Text Available BACKGROUND: Aim of this study was to assess the biological function in tumor progression and metastatic process carcinoembryonic antigen-related cell adhesion molecules (CEACAM 1, 5 and 6 in pancreatic adenocarcinoma (PDAC. EXPERIMENTAL DESIGN: CEACAM knock down cells were established and assessed in vitro and in a subcutaneous and intraperitoneal mouse xenograft model. Tissue and serum expression of patients with PDAC were assessed by immunohistochemistry (IHC and by enzyme linked immunosorbent assays. RESULTS: Presence of lymph node metastasis was correlated with CEACAM 5 and 6 expression (determined by IHC and tumor recurrence exclusively with CEACAM 6. Patients with CEACAM 5 and 6 expression showed a significantly shortened OS in Kaplan-Meier survival analyses. Elevated CEACAM6 serum values showed a correlation with distant metastasis and. Survival analysis revealed a prolonged OS for patients with low serum CEACAM 1 values. In vitro proliferation and migration capacity was increased in CEACAM knock down PDAC cells, however, mice inoculated with CEACAM knock down cells showed a prolonged overall-survival (OS. The number of spontaneous pulmonary metastasis was increased in the CEACAM knock down group. CONCLUSION: The effects mediated by CEACAM expression in PDAC are complex, though overexpression is correlated with loco-regional aggressive tumor growth. However, loss of CEACAM can be considered as a part of epithelial-mesenchymal transition and is therefore of rather importance in the process of distant metastasis.

  13. Increased CD4+ T Cell Co-Inhibitory Immune Receptor CEACAM1 in Neonatal Sepsis and Soluble-CEACAM1 in Meningococcal Sepsis: A Role in Sepsis-Associated Immune Suppression?

    OpenAIRE

    Michiel van der Flier; Sharma, Dyana B.; Silvia Estevão; Marieke Emonts; Denise Rook; Hazelzet, Jan A.; van Goudoever, Johannes B.; Hartwig, Nico G.

    2013-01-01

    textabstractThe co-inhibitory immune receptor carcinoembryonic antigen-related cell-adhesion molecule 1 (CEACAM1) and its self-ligand CEACAM1 can suppress T cell function. Suppression of T cell function in sepsis is well documented. Late-onset neonatal sepsis in VLBW-infants was associated with an increased percentage CEACAM1 positive CD4+ T-cells. Meningococcal septic shock in children was associated with increased serum soluble CEACAM1. In conclusion our data demonstrate increased surface e...

  14. Increased CD4(+) T cell co-inhibitory immune receptor CEACAM1 in neonatal sepsis and soluble-CEACAM1 in meningococcal sepsis: a role in sepsis-associated immune suppression?

    NARCIS (Netherlands)

    Flier, M. van der; Sharma, D.B.; Estevao, S.; Emonts, M.; Rook, D.; Hazelzet, J.A.; Goudoever, J.B. van; Hartwig, N.G.

    2013-01-01

    The co-inhibitory immune receptor carcinoembryonic antigen-related cell-adhesion molecule 1 (CEACAM1) and its self-ligand CEACAM1 can suppress T cell function. Suppression of T cell function in sepsis is well documented. Late-onset neonatal sepsis in VLBW-infants was associated with an increased per

  15. Melanosis and associated tumors in transgenic mice.

    OpenAIRE

    Klein-Szanto, A.; Bradl, M; Porter, S; Mintz, B

    1991-01-01

    Melanosis was found to various extents in a wide array of tissues of all 23 autopsied mice whose transgene consisted of the tyrosinase promoter fused to the simian virus 40 early-region oncogenic sequences. Pigmentation in a given animal was attributable to any or all of the following; an increase in numbers of some normally pigmented cells of neural crest origin (a result compatible with early stages of transformation); elicitation of melanin synthesis in some cells that normally have little...

  16. Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available OBJECTIVE: The present study aimed to explore the clinical significance of neutrophils infiltration and carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1 expression in the tongue squamous cell carcinoma (TSCC, and to probe the possible relationship between them. MATERIALS AND METHODS: Tissue microarray and immunohistochemistry were used to detect neutrophils density and CEACAM1 expression in 74 cases of primary TSCC specimens and 17 cases of corresponding peritumoral tissues. The relationship of CEACAM1 expression and neutrophils density with clinicopathologic parameters and cancer-related survival of TSCC patients were evaluated. The correlation between CEACAM1 expression and neutrophils density was also evaluated. Real-time quantitative transcription polymerase chain reaction (qRT-PCR was used to explore the possible molecular mechanisms between CEACAM1 expression and neutrophils infiltration. RESULTS: Immunohistochemistry evaluation revealed that there was more neutrophils infiltration in TSCC tissues than in peritumoral tissues. High neutrophil density was associated with LN metastasis (P=0.01, higher clinical stage (P=0.037 and tumor recurrence (P=0.024. CEACAM1 overexpression was also associated with lymph node metastasis (P=0.000 and higher clinical stage (P=0.001. Survival analysis revealed that both neutrophils infiltration and CEACAM1 overexpression were associated with poorer cancer-related survival of TSCC patients (P<0.05, and neutrophils infiltration was an independent prognostic factor for TSCC (P<0.05. Furthermore, overexpression of CEACAM1 was correlated with more neutrophils infiltration in TSCC tissues (P<0.01. qRT-PCR results showed that CEACAM1-4L can upregulate the mRNA expression of IL-8 and CXCL-6, which were strong chemotactic factors of neutrophils. CONCLUSION: Our results demonstrated that more neutrophils infiltration and overexpression of CEACAM1 were associated with poor clinical outcomes in TSCC

  17. Reduction of choline acetyltransferase activities in APP770 transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.

  18. Efforts of Transgene Oncostatin M on the Development of Retinal Neuron in Transgenic Mice

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Xia; Qin Chen

    2003-01-01

    Purpose:Oncostatin M(OSM) is a cytokine released by macrophages and lymphocytesthat can function as a growth regulator. A current study shows that leukemia inhibitoryfactor (LIF), a homologue of OSM, can prevent photoreceptor cell death when expressedin the lens of transgenic mice. We determined the efforts of lens-specific overexpressionof OSM on the development of eye.Methods: A truncated mouse OSM cDNA ( ~ 660 bp) was linked to the αA-crytallinpromoter, and injected into single-cell embryos with microinjection. Then, transgenic micewere established. The mRNA expression of transgene OSM was detected by in situhybridization. Immunohistochemistry was used to detect the expression of syntaxin, glialfibrillary acidic protein (GFAP), synaptophysin in the retinas of transgenic mice.Results: At embryonic day (E 17.5), the expression of the syntaxin at the inner and midportion of the retinas of transgenic mice was much higher than that of the retinas ofnon-transgenic mice. The expression of GFAP was detected in the retinas of transgenicmice, while no expression in non-transgenic normal FVB(FVB/N) mice was detected inthis stage. At postnatal day one (P1), the expression of synaptophysin was detected inthe retinas of transgenic mice, but there was no such expression in FVB/N mice.Conclusions: Lens-specific overexpression of OSM induces premature differentiation ofamacrine cells, gial cells, and photoreceptors in vivo.

  19. The Short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction

    OpenAIRE

    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, E lizabeth M.; da Cunha, Andre Pires; Flak, Magdalena B.; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, J anelle C.; Dery, Ken J.; Nagaishi, Takashi; Beauchemin, Nicole; Kathryn V Holmes; Joshua W K Ho

    2012-01-01

    Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in ti...

  20. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion.

    Science.gov (United States)

    Li, Caixia; Culver, Silas A; Quadri, Syed; Ledford, Kelly L; Al-Share, Qusai Y; Ghadieh, Hilda E; Najjar, Sonia M; Siragy, Helmy M

    2015-11-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis.

  1. Efficient Generation of Mice with Consistent Transgene Expression by FEEST.

    Science.gov (United States)

    Gao, Lei; Jiang, Yonghua; Mu, Libing; Liu, Yanbin; Wang, Fengchao; Wang, Peng; Zhang, Aiqun; Tang, Nan; Chen, Ting; Luo, Minmin; Yu, Lei; Gao, Shaorong; Chen, Liang

    2015-01-01

    Transgenic mouse models are widely used in biomedical research; however, current techniques for producing transgenic mice are limited due to the unpredictable nature of transgene expression. Here, we report a novel, highly efficient technique for the generation of transgenic mice with single-copy integration of the transgene and guaranteed expression of the gene-of-interest (GOI). We refer to this technique as functionally enriched ES cell transgenics, or FEEST. ES cells harboring an inducible Cre gene enabled the efficient selection of transgenic ES cell clones using hygromycin before Cre-mediated recombination. Expression of the GOI was confirmed by assaying for the GFP after Cre recombination. As a proof-of-principle, we produced a transgenic mouse line containing Cre-activatable tTA (cl-tTA6). This tTA mouse model was able to induce tumor formation when crossed with a transgenic mouse line containing a doxycycline-inducible oncogene. We also showed that the cl-tTA6 mouse is a valuable tool for faithfully recapitulating the clinical course of tumor development. We showed that FEEST can be easily adapted for other genes by preparing a transgenic mouse model of conditionally activatable EGFR L858R. Thus, FEEST is a technique with the potential to generate transgenic mouse models at a genome-wide scale. PMID:26573149

  2. Enhanced Malignant Tumorigenesis in Cdk4-Transgenic Mice

    Science.gov (United States)

    Miliani de Marval, Paula L.; Macias, Everardo; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2010-01-01

    In a previous study, we reported that overexpression of CDK4 in mouse epidermis results in epidermal hyperplasia, hypertrophy and severe dermal fibrosis. In this study, we have investigated the susceptibility to skin tumor formation by forced expression of CDK4. Skin tumors from transgenic mice showed a dramatic increase in the rate of malignant progression to squamous cell carcinomas (SCC) in an initiation-promotion protocol. Histopathological analysis of papillomas from transgenic mice showed an elevated number of premalignant lesions characterized by dysplasia and marked atypia. Interestingly, transgenic mice also developed tumors in initiated but not promoted skin, demonstrating that CDK4 replaced the action of tumor promoters. These results suggest that expression of cyclin D1 upon ras activation synergizes with CDK4 overexpression. However, cyclin D1 transgenic mice and double transgenic mice for cyclin D1 and CDK4 did not show increased malignant progression in comparison to CDK4 transgenic mice. Biochemical analysis of tumors showed that CDK4 sequesters the CDK2 inhibitors p27Kip1 and p21Cip1 suggesting that indirect activation of CDK2 plays an important role in tumor development. These results indicate that, contrary to the general assumption, the catalytic subunit, CDK4, has higher oncogenic activity than cyclin D1, revealing a potential use of CDK4 as therapeutic target. PMID:14647432

  3. CCK Response Deficiency in Synphilin-1 Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Wanli W Smith

    Full Text Available Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1, in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK, amylin, and the glucagon like peptide-1 (GLP-1 receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1-10 nmol/kg significantly reduced glucose intake in wild type (WT mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.

  4. Pancreatic expression of human insulin gene in transgenic mice.

    OpenAIRE

    Bucchini, D; Ripoche, M A; Stinnakre, M G; Desbois, P; Lorès, P; Monthioux, E; Absil, J; Lepesant, J A; Pictet, R; Jami, J

    1986-01-01

    We have investigated the possibility of obtaining integration and expression of a native human gene in transgenic mice. An 11-kilobase (kb) human chromosomal DNA fragment including the insulin gene (1430 base pairs) was microinjected into fertilized mouse eggs. This fragment was present in the genomic DNA of several developing animals. One transgenic mouse and its progeny were analyzed for expression of the foreign gene. Synthesis and release of human insulin was revealed by detection of the ...

  5. Chimeric elk/mouse prion proteins in transgenic mice

    OpenAIRE

    Tamguney, G; Giles, K; Oehler, A.; Johnson, NL; DeArmond, SJ; Prusiner, SB

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). ...

  6. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin.

    Science.gov (United States)

    Nicolas, Gaël; Bennoun, Myriam; Porteu, Arlette; Mativet, Sandrine; Beaumont, Carole; Grandchamp, Bernard; Sirito, Mario; Sawadogo, Michèle; Kahn, Axel; Vaulont, Sophie

    2002-04-01

    We recently reported the hemochromatosis-like phenotype observed in our Usf2 knockout mice. In these mice, as in murine models of hemochromatosis and patients with hereditary hemochromatosis, iron accumulates in parenchymal cells (in particular, liver and pancreas), whereas the reticuloendothelial system is spared from this iron loading. We suggested that this phenotypic trait could be attributed to the absence, in the Usf2 knockout mice, of a secreted liver-specific peptide, hepcidin. We conjectured that the reverse situation, namely overexpression of hepcidin, might result in phenotypic traits of iron deficiency. This question was addressed by generating transgenic mice expressing hepcidin under the control of the liver-specific transthyretin promoter. We found that the majority of the transgenic mice were born with a pale skin and died within a few hours after birth. These transgenic animals had decreased body iron levels and presented severe microcytic hypochromic anemia. So far, three mosaic transgenic animals have survived. They were unequivocally identified by physical features, including reduced body size, pallor, hairless and crumpled skin. These pleiotropic effects were found to be associated with erythrocyte abnormalities, with marked anisocytosis, poikylocytosis and hypochromia, which are features characteristic of iron-deficiency anemia. These results strongly support the proposed role of hepcidin as a putative iron-regulatory hormone. The animal models devoid of hepcidin (the Usf2 knockout mice) or overexpressing the peptide (the transgenic mice presented in this paper) represent valuable tools for investigating iron homeostasis in vivo and for deciphering the molecular mechanisms of hepcidin action. PMID:11930010

  7. Tolerance induced by physiological levels of secreted proteins in transgenic mice expressing human insulin.

    OpenAIRE

    Whiteley, P J; Lake, J P; Selden, R F; Kapp, J A

    1989-01-01

    We have used transgenic mice to study immune tolerance to autologous, non-MHC encoded proteins that are expressed at physiological levels in the circulation. The transgenic mice used in these studies express the human preproinsulin gene and synthesize human proinsulin. Human and mouse insulin are secreted from the pancreatic islets of transgenic mice in response to normal physiological stimuli, such as glucose. Our data demonstrate that the transgenic mice have acquired tolerance to human ins...

  8. Generation of the regulatory protein rtTA transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Kang Xu; Xin-Yan Deng; Ying Yue; Zhong-Min Guo; Bing Huang; Xun Hong; Dong Xiao; Xi-Gu Chen

    2005-01-01

    AIM: To translate Tet-on system into a conditional mouse model, in which hepatitis B or C virus (HBV or HCV) gene could be spatiotemporally expressed to overcome "immune tolerance" formed during the embryonic development and "immune escape" against hepatitis virus antigen(s), an effector mouse, carrying the reverse tetracycline-responsive transcriptional activator (rtTA) gene under the tight control of liver-specific human apoE promoter, is required to be generated. METHODS: To address this end, rtTA fragment amplified by PCR was effectively inserted into the vector of pLiv.7 containing apoE promoter to create the rtTA expressing vector, I.e., pApoE-rtTA. ApoE-rtTA transgenic fragment (-6.9 kb) released from pApoE-rtTA was transferred into mice by pronucleus injection, followed by obtaining one transgene (+) founder animal from microinjection through PCR and Southern blot analysis.RESULTS: rtTA transgene which could be transmitted to subsequent generation (F1) derived from founder was expressed in a liver-specific fashion. CONCLUSION: Taken together, these findings demonstrate that rtTA transgenic mice, in which rtTA expression is appropriately targeted to the murine liver, are successfully produced, which lays a solid foundation to 'off-on-off' regulate expression of target gene (s) (e.g., HBV and/or HCV) in transgenic mice mediated by Tet-on system.

  9. ADAM 12 protease induces adipogenesis in transgenic mice

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie;

    2002-01-01

    ADAM 12 (meltrin-alpha) is a member of the ADAM (a disintegrin and metalloprotease) family. ADAM 12 functions as an active metalloprotease, supports cell adhesion, and has been implicated in myoblast differentiation and fusion. Human ADAM 12 exists in two forms: the prototype membrane......-anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the muscle creatine kinase promoter. Cells expressing a marker of early adipogenesis were apparent...... in the perivascular space in muscle tissue of 1- to 2-week-old transgenic mice whereas mature lipid-laden adipocytes were seen at 3 to 4 weeks. Moreover, female transgenics expressing ADAM 12-S exhibited increases in body weight, total body fat mass, abdominal fat mass, and herniation, but were normoglycemic and did...

  10. Application of a nuclear localization signal gene in transgene mice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Efficient gene transfer by cytoplasm co-injec- tion will offer a powerful means for transgenic animals. Using co-injection in cytoplasm, two independent gene constructs, including bovine (?-s1-casein-hG-CSF and a mammal expression vector expressing a nuclear localization signal (mNLS), were introduced into fertilized mouse eggs. The target gene construct was docked into host nucleus probably by the nuclear localization signal. Transgene mice have been obtained at 58% (29/50) of integration ratio. Expression level of the positive transgene mice was detected by Western blotting. Maximal expression of human G-CSF was estimated about 540 mg/L of milk. The expression ratio was up to 75% (9/12). The results here have important practical implications for the generation of mammary gland bioreactors and other transgene studies. Co-injection of a target gene with an expression vector of a mammal nuclear localization signal by cytoplasm appears to be a useful, efficient and easy strategy for generating transgenic animals, which may be able to substitute the routine method of pronucleus-injection of fertilized eggs.

  11. Establishment and use of HBV-replication transgenic mice

    Directory of Open Access Journals (Sweden)

    Xiang-ping KONG

    2011-09-01

    Full Text Available Despite the existence of a preventive vaccine,hepatitis B virus(HBV infection is still a major worldwide health problem,especially in China.As HBV naturally Despite of the existence of a preventive vaccine,hepatitis B virus(HBV infection is still a major worldwide healthy problem,especially in China.As HBV naturally infects only human and chimpanzees,many issues pertaining to the biology and the therapeutic of HBV infection remain unresolved due to the limitation of the establishment of a HBV model.However,the establishment of HBV-replication transgenic mice has greatly improved our understanding of life cycle,immunobiology and pathogensis of HBV.The establishment of HBV transgenic mice and its use in assessing the antiviral potential of pharmacological agents and HBV immunopathogenesis are herewith briefly described in the present paper.

  12. Efficient production of human immunodeficiency virus proteins in transgenic mice.

    OpenAIRE

    Jolicoeur, P.; Laperrière, A; Beaulieu, N.

    1992-01-01

    Transgenic mice containing the complete human immunodeficiency virus (HIV) coding sequences fused to the mouse mammary tumor virus long terminal repeat were generated. They were found to produce high levels of authentic gag and env HIV proteins in several tissues known to support mouse mammary tumor virus-driven transcription. HIV proteins were also detected in serum and in body fluids (milk and epididymal secretions) known to be natural sites of retrovirus, and specifically of HIV, productio...

  13. Building of hFⅨ transgenic mice by spermatogenic cells

    Institute of Scientific and Technical Information of China (English)

    WANG Ning; CHEN Xiaoguang; CHEN Li; YAO Jihua; CHEN Haoming; SHEN Qi; XUE Jinglun

    2003-01-01

    Human FⅨ expression vector pCMVⅨ was packaged by EffecteneTM reagent and injected into mice seminiferous tubules with glass pipettes. The expressional frame of pCMVⅨ was examined by PCR and Southern blotting among 41 progenies. There were 2 (4%) mice being integrated with hFⅨ gene into chromosomes. 4.6 ng/mL of hFⅨ protein was expressed in plasma of one mouse, which was tested by ELISA. We demonstrated that building of transgenic animals by spermatogonial stem cells is an efficient method. Meanwhile, it has also been proved to be an alternative choice for mammary gland bioreactor.

  14. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  15. Functional screening of an asthma QTL in YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Symula, Derek J.; Frazer, Kelly A.; Ueda, Yukihiko; Denefle, Patrice; Stevens, Mary E.; Wang, Zhi-En; Locksley, Richard; Rubin, Edward M.

    1999-07-02

    While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q33, the authors characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a one megabase interva2048 chromosome 5q31 containing 23 genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180 kb region containing 5 genes, including human interleukin 4 (IL4) and interleukin 13 (IL13), which induce IgE class switching in B cells5. Further analysis of these mice and mice transgenic for only murine Il4 and Il13 demonstrated that moderate changes in murine Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled them to sift through multiple genes in the 5q3 asthma QTL without prior consideration of assumed individual gene function and identify genes that influence the QTL phenotype in vivo.

  16. Magnetic biomineralisation in Huntington's disease transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Beyhum, W [London Centre for Nanotechnology, University College London, London, WC1E 7HN (United Kingdom); Hautot, D [London Centre for Nanotechnology, University College London, London, WC1E 7HN (United Kingdom); Dobson, J [Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB (United Kingdom); Pankhurst, Q A [London Centre for Nanotechnology, University College London, London, WC1E 7HN (United Kingdom)

    2005-01-01

    The concentration levels of biogenic magnetite nanoparticles in transgenic R6/2 Huntington's disease (HD) mice have been investigated, using seven control and seven HD mice each from an 8 week-old litter and from a 12 week-old litter. Hysteresis and isothermal remnant magnetisation data were collected on a SQUID magnetometer, and analysed using a model comprising dia/paramagnetic, ferrimagnetic and superparamagnetic contributions, to extract the magnetite and ferritin concentrations present. It was found that magnetite was present in both superparamagnetic and blocked states. A larger spread and higher concentration of magnetite levels was found in the diseased mice for both the 8 week-old and 12 week-old batches, compared to the controls.

  17. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  18. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  19. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  20. Expression of recombinant human lysozyme in the milk of transgenic mice

    Institute of Scientific and Technical Information of China (English)

    YU Zhengquan; FAN Baoliang; DAI Yunping; ZHENG Ming; NIU Huiling; WANG Meili; WANG Lili; FEI Jing; LI Ning

    2003-01-01

    Human lysozyme is a 130-aa (amino acid) alkaline polypeptide, and has both anti-bacterial and anti-viral properties which make it an important component of human natural immunity system. As a first step toward the ultimate goal ofimproving the anti-bacterial properties of bovine and ovine milk, a transgenic mouse that contains the genomic DNA sequence of the human lysozme gene has been generated for the first time. From 83 mice generated by microinjection, a total of 6 positive transgenic mice were identified by PCR and Southern blot. F1 mice positive for transgene in lines were also detected by PCR. This shows that transgene could be transmitted from founder transgenic mice to their offspring. Recombinant human lysozyme (rHlys) was found in the whey of 3 female positive transgenic mice by Western blot. The highest concentration of rHlys for transgenic micewas 0.2 mg/mL. The antibacterial activity of the whey for transgenic mice was highly enhanced up to 0.4 times as much as that of human, while that of non-transgenic mouse was very low. Although the lysozyme activity of transgenic mice is still lower than that of human, the rHlys exhibits the same specific activity as that of human lysozyme. It provides a strong basis for further studies into the possible application of rHlys express in mammary gland.

  1. WIF1 causes dysfunction of heart in transgenic mice

    OpenAIRE

    Lu, Dan; Dong, Wei; Zhang, Xu; Quan, Xiongzhi; Bao, Dan; Lu, Yingdong; Zhang, Lianfeng

    2013-01-01

    Wnt activity is a key regulator of cardiac progenitor cell self-renewal, differentiation and morphogenesis. However, Wnt inhibitory factor 1 (WIF1), a antagonists of Wnt signaling activity, its potential effects on heart development has not yet been approached by either in vivo or in vitro studies. Here, the expression of WIF1 was regulated in a different way in the dilated and hypertrophic cardiomyopathy heart from transgenic mice by mutations in cardiac troponin T, cTnTR141W and cTnTR92Q. T...

  2. Transgenic mice with overexpression of mutated human optineurin(E50K) in the retina.

    Science.gov (United States)

    Meng, Qingfeng; Xiao, Zheng; Yuan, Huiping; Xue, Fei; Zhu, Yuanmao; Zhou, Xinrong; Yang, Binbin; Sun, Jingbo; Meng, Bo; Sun, Xian; Cheng, Fang

    2012-02-01

    In the present work, Site-directed mutagenesis to insert the Glu50Lys amino acid substitution was achieved by PCR using plasmid pBluescript-OPTN. Mutated human OPTN(E50K) gene-driven mouse c-kit promoter was constructed and confirmed by endonuclease digestion and sequence analysis. Transgenic mice were generated via the microinjection method. PCR and DNA dot blot were used to screen the positive transgenic mice. RT-PCR analyzed the RNA level and location of mutated human OPTN(E50K) mRNA expression in transgenic mice. Western blot and immunohistochemistry were used to detect the level and location of mutated human OPTN(E50K) expression in transgenic mice. A transgenic mouse model with overexpression of mutated human OPTN(E50K) in retina was successfully established. The transgene was integrated and transmitted into the chromosome of transgenic mice. Mutated human OPTN(E50K) gene was controlled by c-kit promoter and expressed in the retina in mice. Mutated human OPTN(E50K) in transgenic mice was higher than that of wild type C57BL/6J mice. Our studies had provided a new transgenic model for investigating the molecular properties of mutated human OPTN(E50K). PMID:21681420

  3. Next-generation transgenic mice for optogenetic analysis of neural circuits

    Directory of Open Access Journals (Sweden)

    Brent eAsrican

    2013-11-01

    Full Text Available Here we characterize several new lines of transgenic mice useful for optogenetic analysis of brain circuit function. These mice express optogenetic probes, such as enhanced halorhodopsin or several different versions of channelrhodopsins, behind various neuron-specific promoters. These mice permit photoinhibition or photostimulation both in vitro and in vivo. Our results also reveal the important influence of fluorescent tags on optogenetic probe expression and function in transgenic mice.

  4. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available BACKGROUND: The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  5. Characterization of atherosclerotic lesions in apo E3-leiden transgenic mice

    NARCIS (Netherlands)

    Leppänen, P.; Luoma, J.S.; Hofker, M.H.; Havekes, L.M.; Ylä-Herttuala, S.

    1998-01-01

    Apo E3-leiden transgenic mice express human dysfunctional apo E variant and develop hyperlipidemia and atherosclerosis on a high fat/high cholesterol diet. We characterized diet-induced atherosclerotic lesions in apo E3-leiden transgenic mice using immunocytochemical methods in order to examine foam

  6. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L;

    1992-01-01

    It has been shown that mice transgenic for human GH-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs, lactotrophs, and mammosomatotrophs, cells capable of producing both GH and PRL, by 8 months of age. We now report that GRH transgenic mice 10-24 months of age develop pituita...

  7. Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice : An immunohistochemical study

    NARCIS (Netherlands)

    Gijbels, M.J.J.; Cammen, M. van der; Laan, L.J.W. van der; Emeis, J.J.; Havekes, L.M.; Hofker, M.H.; Kraal, G.

    1999-01-01

    Apolipoprotein E3-Leiden (APOE3-Leiden) transgenic mice develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. We have studied the progression and regression of atherosclerosis using immunohistochemistry. Female transgenic mice were fed a moderate fat diet to study athero

  8. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  9. Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene.

    OpenAIRE

    Strasser, A.; Harris, A W; von Boehmer, H; Cory, S

    1994-01-01

    To explore the role of bcl-2 in T-cell development, a bcl-2 transgene was introduced into mice expressing a T-cell receptor (TCR) transgene encoding reactivity for the mouse male antigen HY presented by the H-2Db class I antigen of the major histocompatibility complex (MHC). Normal thymic development is contingent on the ability of immature thymocytes to interact with self-MHC molecules presented by thymic stroma (positive selection). Thus, thymocyte numbers are low in femal...

  10. Gene expression profile in liver of hB1F transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Shui-Liang Wang; Hua Yang; You-Hua Xie; Yuan Wang; Jian-Zhong Li; Long Wang; Zhu-Gang Wang; Ji-Liang Fu

    2004-01-01

    AIM: To analyze the tissue morphologic phenotype and liver gene expression profile of hB1F transgenic mice.METHODS: Transgene expression was analyzed with RTPCR and Western blotting. For one of the transgenic mouse lines, tissue expression pattern of the transgene was also examined with immunochemical methods. Pathological analysis was used to examine the tissue morphologic phenotype of established transgenic mice. The liver gene expression profile of transgenic mice was analyzed with microchip, and some of the differentially expressed genes were verified with RT-PCR.RESULTS: The expressions of hB1F were shown in livers from 6 of 7 transgenic mouse lines. The overexpression of hB1F transgene did not cause pathological changes. Expressions of three genes were up-regulated, while down-regulation was observed for 25 genes.CONCLUSION: The overexpression of hB1F transgene may cause changes of gene expression profiles in the liver of transgenic mice.

  11. The human apoE7 and apoE4 transgenic mice models

    Institute of Scientific and Technical Information of China (English)

    孙明增; 琦祖和

    2001-01-01

    To scrutinize the disorders caused by human mutant apoE7/apoE4, human apoE4 and E7 transgenic mice were established with microinjection technique to examine molecular genetic phenomena in vivo. The integration and expression of h-apoE mutant genes in transgenic mice were determined with Southern blot, Northern blot and ELISA. The current studies indicated that the transgenes and the phenotypes regarding expression of transgenes could be transmitted stably in transgenic lines. The levels of serum lipid in transgenic mice showed the characteristics of hyperlipidemia. Besides, behavior tests demonstrated the degeneration of learning and memory in transgenic mice. Short life span was observed in 2 transgenic lines. After fed with high lipid food high serum lipid was found both in normal and transgenic mice, but their mechanism regulating lipid metabolism was different. It was also verified that the human apoE mutants located at either N-terminal or C-terminal had the same pathogenesis regarding disorders of lipid metabolism in murine.

  12. Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice ubiquitously overexpressing murine γaminobutyric acid transporter subtype I were created. Unexpectedly, these mice markedly exhibited heritable obesity,which features significantly increased body weight and fat deposition. Behavioral examination revealed that transgenic mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern. This preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.

  13. Transgenic mice overexpressing γ—aminobutyric acid transporter subtype I develop obesity

    Institute of Scientific and Technical Information of China (English)

    MAYINGHUA; ZHENTONGMEI; 等

    2000-01-01

    Transgenic mice ubiquitously overexpressing murine γ-aminobutyric acid transporter subtype I were created.Unexpectedly,these mice markedly exhibited heritable obesity,which features significantly increased body weight and fat deposition.Behavioral examination revealed that transgenic mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern.This preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.

  14. Expression of hepatitis B virus X protein in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Jun Xiong; Yi-Ping Hu; Yu-Cheng Yao; Xiao-Yuan Zi; Jian-Xiu Li; Xin-Min Wang; Xu-Ting Ye; Shu-Min Zhao; Yong-Bi Yan; Hong-Yu Yu

    2003-01-01

    AIM: To establish a mice model harboring hepatitis B virusx gene (adr subtype) for studying the function of hepatitis Bvirus X protein, a transactivator of viral and cellular promoter/enhancer elements.METHODS: Expression vector pcDNA3-HBx, containing CMVpromoter and hepatitis B virus x gene open reading fragment,was constructed by recombination DNA technique. Hela cellswere cultured in DMEM and transfected with pcDNA3-HBxor control pcDNA3 plasmids using FuGENE6 TransfectionReagent. Expression of pcDNA3-HBx vectors in thetransfected Hela cells was confirmed by Western blotting.After restriction endonudease digestion, the coding elementswere microinjected into male pronuclei of mice zygotes. Thepups were evaluated by multiplex polymerase chain reaction(PCR) at genomic DNA level. The x gene transgenic micefounders were confirmed at protein level by Western blotting,immunohistochemistry and immunogold transmissionelectron microscopy.RESULTS: Expression vector pcDNA3-HBxwas constructedby recombination DNA technique and identified right byrestriction endonuclease digestion and DNA directsequencing. With Western blotting, hepatitis X protein wasdetected in Hela cells transfected with pcDNA3-HBxplasmids,suggesting pcDNA3-HBxplasmids could express in eukaryoticcells. Following microinjection of coding sequence ofpcDNA3-HBx, the embryos were transferred to oviducts ofpsedopregnant females. Four pups were born and survived.Two of them were verified to have the HBxgene integratedin their genomic DNA by multiplex PCR assay, and namedC57-TgN(HBx)SMMU1 and C57-TgN(HBx)SMMU3respectively. They expressed 17KD X protein in liver tissueby Western blotting assay. With the immunohistochemistry,X protein was detected mainly in hepatocytes cytoplasm oftransgenic mice, which was furthermore confirmed byimmunogold transmission electon microscopy.CONCLUSION: We have constructed the expression vectorpcDNA3-HBxthat can be used to study the function of HBxgene in eukaryotic cellsin vitro. We

  15. RNAi-mediated knockdown of IKK1 in transgenic mice using a transgenic construct containing the human H1 promoter.

    Science.gov (United States)

    Moreno-Maldonado, Rodolfo; Murillas, Rodolfo; Navarro, Manuel; Page, Angustias; Suarez-Cabrera, Cristian; Alameda, Josefa P; Bravo, Ana; Casanova, M Llanos; Ramirez, Angel

    2014-01-01

    Inhibition of gene expression through siRNAs is a tool increasingly used for the study of gene function in model systems, including transgenic mice. To achieve perdurable effects, the stable expression of siRNAs by an integrated transgenic construct is necessary. For transgenic siRNA expression, promoters transcribed by either RNApol II or III (such as U6 or H1 promoters) can be used. Relatively large amounts of small RNAs synthesis are achieved when using RNApol III promoters, which can be advantageous in knockdown experiments. To study the feasibility of H1 promoter-driven RNAi-expressing constructs for protein knockdown in transgenic mice, we chose IKK1 as the target gene. Our results indicate that constructs containing the H1 promoter are sensitive to the presence of prokaryotic sequences and to transgene position effects, similar to RNApol II promoters-driven constructs. We observed variable expression levels of transgenic siRNA among different tissues and animals and a reduction of up to 80% in IKK1 expression. Furthermore, IKK1 knockdown led to hair follicle alterations. In summary, we show that constructs directed by the H1 promoter can be used for knockdown of genes of interest in different organs and for the generation of animal models complementary to knockout and overexpression models. PMID:24523631

  16. Improved method to raise polyclonal antibody using enhanced green fluorescent protein transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Jianke Ren; Long Wang; Guoxiang Liu; Wen Zhang; Zhejin Sheng; Zhugang Wang; Jian Fei

    2008-01-01

    Recombinant fusion protein is widely used as an antigen to raise antibodies against the epitope of a target protein. However, the concomitant anticarrier antibody in resulting antiserum reduces the production of the desired antibody and brings about unwanted non-specific immune reactions. It is proposed that the carrier protein transgenic animal could be used to solve this problem. To validate this hypothesis, enhanced green fluorescent protein (EGFP) transgenic mice were produced. By immunizing the mice with fusion protein His6HAtag-EGFP, we showed that the antiserum from the transgenic mice had higher titer antibody against His6HA tag and lower titer antibody against EGFP compared with that from wild-type mice. Therefore, this report describes an improved method to raise high titer antipeptide polyclonal antibody using EGFP transgenic mice that could have application potential in antibodypreparation.

  17. Establishment of transgenic mice carrying gene encoding human zinc finger protein 191

    Institute of Scientific and Technical Information of China (English)

    Jian-Zhong Li; Ji-Liang Fu; Xia Chen; Hua Yang; Shui-Liang Wang; Xue-Lian Gong; Hao Feng; Bao-Yu Guo; Long Yu; Zhu-Gang Wang

    2004-01-01

    AIM: Human zinc finger protein 191 (ZNF191) was cloned and characterized as a Kruppel-like transcription factor, which might be relevant to many diseases such as liver cancer,neuropsychiatric and cardiovascular diseases. Although progress has been made recently, the biological function of ZNF191 remains largely unidentified. The aim of this study was to establish a ZNF191 transgenic mouse model, which would promote the functional study of ZNF191.METHODS: Transgene fragments were microinjected into fertilized eggs of mice. The manipulated embryos were transferred into the oviducts of pseudo-pregnant female mice. The offsprings were identified by PCR and Southern blot analysis. ZNF 191 gene expression was analyzed by RT-PCR. Transgenic founder mice were used to establish transgenic mouse lineages. The first generation (F1) and the second generation (F2) mice were identified by PCR analysis. Ten-week transgenic mice were used for pathological examination.RESULTS: Four mice were identified as carrying copies of ZNF191 gene. The results of RT-PCR showed that ZNF191gene was expressed in the liver, testis and brain in one of the transgenic mouse lineages. Genetic analysis of transgenic mice demonstrated that ZNF191 gene was integrated into the chromosome at a single site and could be transmitted stably. Pathological analysis showed that the expression of ZNF 191 did not cause obvious pathological changes in multiple tissues of transgenic mice.CONCLUSION: ZNF 191 transgenic mouse model would facilitate the investigation of biological functions of ZNF191 in vivo.

  18. Enhanced spontaneous locomotor activity in bovine GH transgenic mice involves peripheral mechanisms.

    Science.gov (United States)

    Bohlooly-Y, M; Olsson, B; Gritli-Linde, A; Brusehed, O; Isaksson, O G; Ohlsson, C; Söderpalm, B; Törnell, J; Ola, B

    2001-10-01

    Clinical and experimental studies indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. Recently we showed that transgenic mice with general overexpression of bovine GH display increased spontaneous locomotor activity. In the present study, we investigated whether this behavioral change is owing to a direct action of GH in the central nervous system or to peripheral GH actions. A transgenic construct, containing the glial fibrillary acidic protein promoter directing specific expression of bovine GH to the central nervous system, was designed. The central nervous system-specific expression of bovine GH in the glial fibrillary acidic protein-bovine GH transgenic mice was confirmed, but no effect on spontaneous locomotor activity was observed. Serum bovine GH levels were increased in glial fibrillary acidic protein-bovine GH transgenic mice but clearly lower than in transgenic mice with general overexpression of bovine GH. In contrast to the transgenic mice with general overexpression of bovine GH, glial fibrillary acidic protein-bovine GH mice did not display any difference in serum IGF-I levels. The levels of free T(3) and the conversion of the free T(4) to free T(3) were only increased in transgenic mice with general overexpression of bovine GH, but serum corticosterone levels were similarly increased in both transgenic models. These results suggest that free T(3) and/or IGF-I, affecting dopamine and serotonin systems in the central nervous system, may mediate the enhanced locomotor activity observed in transgenic mice with general overexpression of bovine GH. PMID:11564723

  19. INCREASED LIVER PATHOLOGY IN HEPATITIS C VIRUS TRANSGENIC MICE EXPRESSING THE HEPATITIS B VIRUS X PROTEIN

    Science.gov (United States)

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was id...

  20. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L;

    1990-01-01

    It has been shown that mice transgenic for human growth hormone-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs and mammosomatotrophs, cells capable of producing both growth hormone and prolactin, by 8 months of age. We now report for the first time that old GRH-transgenic m...

  1. Enhanced conditioned approach responses in transgenic mice with impaired glucocorticoid receptor function.

    Science.gov (United States)

    Steckler, T; Holsboer, F

    1999-07-01

    The long-term consequences of impaired glucocorticoid receptor (GR) function on reward-related learning were studied in transgenic mice with impaired GR function in a series of experiments taxing conditioned and unconditioned approach responses to stimuli predictive of food. There was a double-dissociation in that transgenic mice with impaired GR activity showed enhanced conditioned exploration in situations when stimuli predicted reward, while free-feeding food consumption over 24 h was reduced. Previous experiments have shown altered accumbens dopaminergic activity in these animals. In line with these findings, we observed an enhanced behavioural stimulation of transgenic mice following administration of d-amphetamine (2 mg/kg). This suggests that the increase in preparatory responses in transgenic mice may be mediated via an enhanced accumbens dopaminergic activity, possibly secondary to alterations in other brain systems. PMID:10403023

  2. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  3. Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype

    Directory of Open Access Journals (Sweden)

    Li Yi

    2004-06-01

    Full Text Available Abstract Background MMTV-Wnt1 transgenic mice develop mammary hyperplasia early in development, followed by the appearance of solitary mammary tumors with a high proportion of cells expressing early lineage markers and many myoepithelial cells. The occurrence of tumors is accelerated in experiments that activate FGF proto-oncogenes or remove the tumor suppressor genes Pten or P53, implying that secondary oncogenic events are required for progression from mammary hyperplasia to carcinoma. It is not known, however, which oncogenic pathways contribute to Wnt1-induced tumorigenesis – further experimental manipulation of these mice is needed. Secondary events also appear to be required for mammary tumorigenesis in MMTV-Neu transgenic mice because the transgene in the tumors usually contains an acquired mutation that activates the Neu protein-tyrosine kinase. Methods cDNA or DNA from the mammary glands and mammary tumors from MMTV-Wnt1, MMTV-Wnt1/p53-/-, MMTV-Neu transgenic mice, and newly generated MMTV-Wnt1/MMTV-Neu bitransgenic mice, was sequenced to seek activating mutations in H-Ras, K-Ras, and N-Ras genes, or in the MMTV-Neu transgene. In addition, tumors from bitransgenic animals were examined to determine the cellular phenotype. Results We found activating mutations at codons 12, 13, and 61 of H-Ras in just over half of the mammary tumors in MMTV-Wnt1 transgenic mice, and we confirmed the high frequency of activating mutations of Neu in tumors in MMTV-Neu transgenic mice. Tumors appeared earlier in bitransgenic MMTV-Wnt1/MMTV-Neu mice, but no Ras or MMTV-Neu mutations were found in these tumors, which were phenotypically similar to those arising in MMTV-Wnt1 mice. In addition, no Ras mutations were found in the mammary tumors that arise in MMTV-Wnt1 transgenic mice lacking an intact P53 gene. Conclusions Tumorigenic properties of cells undergoing functionally significant secondary mutations in H-Ras or the MMTV-Neu transgene allow selection

  4. Establishment and identification of OVA-HBsAg transgenic mice regulated by Cre recombinase

    OpenAIRE

    Xiu-mei LI; Guang-ze LIU; Mei-juan CHEN; Xie, Yong; Kong, Xiang-Ping

    2015-01-01

    Objective To breed OVA-HBsAg transgenic mice regulated by Cre recombinase in order to provide a better animal model for the study of HBV prevention and therapy. Methods The OVA-HBsAg transgenic mice were generated by microinjection of OVA-HBsAg gene with LoxP sites into the pronucleus of C57BL/6J×DBA zygotes. Pups of F1 OVA-HBsAg female mice cross-fertilized with Alb-Cre male mice were assayed for the expression of HBsAg induced by Cre recombinase. PCR, ELISA and immunohistochemical methods w...

  5. Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors.

    Science.gov (United States)

    Kamioka, Yuji; Sumiyama, Kenta; Mizuno, Rei; Sakai, Yoshiharu; Hirata, Eishu; Kiyokawa, Etsuko; Matsuda, Michiyuki

    2012-01-01

    Genetically-encoded biosensors based on the principle of Förster resonance energy transfer (FRET) have been widely used in biology to visualize the spatiotemporal dynamics of signaling molecules. Despite the increasing multitude of these biosensors, their application has been mostly limited to cultured cells with transient biosensor expression, due to particular difficulties in the development of transgenic mice that express FRET biosensors. In this study, we report the efficient generation of transgenic mouse lines expressing heritable and functional biosensors for ERK and PKA. These transgenic mice were created by the cytoplasmic co-injection of Tol2 transposase mRNA and a circular plasmid harbouring Tol2 recombination sites. High expression of the biosensors in a wide range of cell types allowed us to screen newborn mice simply by inspection. Observation of these transgenic mice by two-photon excitation microscopy yielded real-time activity maps of ERK and PKA in various tissues, with greatly improved signal-to-background ratios. Our transgenic mice may be bred into diverse genetic backgrounds; moreover, the protocol we have developed paves the way for the generation of transgenic mice that express other FRET biosensors, with important applications in the characterization of physiological and pathological signal transduction events in addition to drug development and screening.

  6. Expression of human apolipoprotein B and assembly of lipoprotein(a) in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Callow, M.J.; Stoltzfus, L.J.; Rubin, E.M. [Lawrence Berkeley Lab., CA (United States); Lawn, R.M. [Stanford Univ., CA (United States)

    1994-03-15

    The atherogenic macromolecule lipoprotein(a) [Lp(a)] has resisted in vivo analyses partly because it is found in a limited number of experimental animals. Although transgenic mice expressing human apolipoprotein (a) [apo(a)] have previously been described, they failed to assemble Lp(a) particles because of the inability of human apo(a) to associate with mouse apolipoprotein B (apoB). The authors isolated a 90-kilobase P1 phagemid containing the human apoB gene and with this DNA generated 13 lines of transgenic mice of which 11 expressed human apoB. The human apoB transcript was expressed and edited in the liver of the transgenic mice. Plasma concentrations of human apoB, as well as low density lipoprotein (LDL), were related to transgene copy number; the transgenic line with the most copies of human apoB had a >4-fold increase in LDL cholesterol compared with nontransgenics and a lipoprotein profile similar to that of humans. When human apoB and apo(a) transgenic mice were bred together, plasma apo(a) in mice expressing both human proteins was tightly associated with lipoproteins in the LDL density region. These studies demonstrate the successful expression of human apoB and the efficient assembly of Lp(a) in mice.

  7. Enhancement of germ cell apoptosis induced by ethanol in transgenic mice overexpressing Fas Ligand

    Institute of Scientific and Technical Information of China (English)

    HENG CHUAN XIA; FENG LI; ZHEN LI; ZU CHUAN ZHANG

    2003-01-01

    It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing human FasL to investigate whether Fas ligand plays a role in ethanol-induced testicular germ cell apoptosis. Both wild-type (WT)mice and transgenic (TG) mice were treated with acute ethanol (20% v/v) by introperitoneal injection for five times.After ethanol injection, WT mice displayed up-regulation of Fas ligand in the testes, which was shown by FITCconjugated flow cytometry and western blotting. Moreover, TG mice exhibited significantly more apoptotic germ cells than WT mice did after ethanol injection, which was demonstrated by DNA fragmentation, PI staining flow cytometry and TUNEL staining. In addition, histopathological examination revealed that degenerative changes of epithelial component of the tubules occurred in FasL overexpressing transgenic mice while testicular morphology was normal in wild-type mice after acute ethanol exposure, suggesting FasL expression determines the sensitivity of testes to ethanol in mice. In summary, we provide the direct evidences that Fas ligand mediates the apoptosis of testicular germ cells induced by acute ethanol using FasL transgenic mice.

  8. Generating Transgenic Mice by Lentiviral Transduction of Spermatozoa Followed by In Vitro Fertilization and Embryo Transfer.

    Science.gov (United States)

    Chandrashekran, Anil; Casimir, Colin; Dibb, Nick; Readhead, Carol; Winston, Robert

    2016-01-01

    Most transgenic technologies rely on the oocyte as a substrate for genetic modification. Transgenics animals are usually generated by the injection of the gene constructs (including lentiviruses encoding gene constructs or modified embryonic stem cells) into the pronucleus of a fertilized egg followed by the transfer of the injected embryos into the uterus of a foster mother. Male germ cells also have potential as templates for transgenic development. We have previously shown that mature sperm can be utilized as template for lentiviral transduction and as such used to generate transgenic mice efficiently with germ line capabilities. We provide here a detailed protocol that is relatively simple, to establish transgenic mice using lentivirally transduced spermatozoa. This protocol employs a well-established lentiviral gene delivery system (usual for somatic cells) delivering a variety of transgenes to be directly used with sperm, and the subsequent use of these modified sperm in in vitro fertilization studies and embryo transfer into foster female mice, for the establishment of transgenic mice. PMID:27317176

  9. CMV-hFasL transgenic mice prevent from experimental autoimmune thyroiditis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-lin; LIN Bo; YU Lu-yang; GUO Li-he

    2005-01-01

    Background Previous studies showed that the role of Fas ligand (FasL) is not consistent in the pathogenesis of autoimmune thyroiditis. This study was designed to investigate the effects of FasL on the pathogenesis of experimental autoimmune thyroiditis (EAT) using CMV-human FasL (hFasL) transgenic mice. Methods Transgenic mice ubiquitously expressing hFasL were used as an animal model of EAT by injection of porcine thyroglobulin (pTg). Expression of hFasL was detected by RT-PCR and Western blot. The activity of hFasL transgenic thyrocytes killing Jurket cells was determined. CMV-hFasL transgenic mice and wild type (WT) mice were immunized with pTg and killed 28 days later to evaluate the lymphocytic infiltration of their thyroids. The number of CD4+ and CD8+ lymphocytes from the spleen was detected using FACS. The serum interferon-γ (IFN-γ) concentration was measured by ELISA. Results hFasL expression in the thyroid of CMV-hFasL transgenic mice was confirmed. After co-incubation of Jurket thymocytes with thyroid tissues of CMV-hFasL transgenic mice, the percentage of apoptotic cells in the CMV-hFasL transgenic thyroid group was significantly higher than that of the control WT thyroid group [(23.4±4.3)% vs (6.6±2.5)%, P<0.01]. On day 28 after immunization with pTg, the infiltration index of lymphocytes in thyroids of the CMV-hFasL transgenic mice was significantly lower than that of the WT mice [(1.0±0.5) vs (2.1±0.7), P<0.001]. Moreover, the number of CD4+ and CD8+ lymphocytes of the spleen and serum IFN-γ concentration were significantly decreased in the CMV-hFasL transgenic mice. Conclusions FasL plays an important role in the pathogenesis of autoimmune thyroiditis. Transgenic mice ubiquitously expressing hFasL may strongly inhibit lymphocytic infiltration of the thyroid of EAT and ameliorate the course of this disease.

  10. Collagenlα1 promoter drives the expression of Cre recombinase in osteoblasts of transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Osteoblasts participate in bone formation,bone mineralization,osteoclast differentiation and many pathological processes.To study the function of genes in osteoblasts using Cre-LoxP system,we generated a mouse line expressing the Cre recombinase under the control of the rat Collagenlal (Coilal) promoter(Coilatl-Cre).Two founders were identified by genomic PCR from 16 offsprings.and the integration efficiency is 12.5%.In order tO determine the tissue distribution and the activity of Cre rccombinase in the transgenic mice,the Collal-Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4co/co).Multiple tissue PCR of Collal-Cre;Smad4co/+mice revealed the restricted Cre activity in bone tissues containing osteoblasts and tendon.LacZ staining in the Coilal-Cre;ROSA26 double transgenic mice revealed that the Cre recombinase began to express in the osteoblasts of calvaria at E14.5.Cre activity was observed in the osteoblasts and osteocytes of P10 double transgenic mice.All these data indicated that the Collal-Cre transgenic mice could Serve as a valuabletool for osteoblast lineage analysis and conditional gene knockout in osteoblasts.

  11. Development of atopic dermatitis in mice transgenic for human apolipoprotein C1

    NARCIS (Netherlands)

    Nagelkerken, L.; Verzaal, P.; Lagerweij, T.; Persoon-Deen, C.; Berbee, J.F.P.; Prens, E.P.; Havekes, L.M.; Oranje, A.P.

    2008-01-01

    Mice with transgenic expression of human apolipoprotein C1 (APOC1) in liver and skin have strongly increased serum levels of cholesterol, triglycerides, and free fatty acids, indicative of a disturbed lipid metabolism. Importantly, these mice display a disturbed skin barrier function, evident from i

  12. Adaptation to supraphysiologic levels of insulin gene expression in transgenic mice: evidence for the importance of posttranscriptional regulation.

    OpenAIRE

    Schnetzler, B; Murakawa, G; Abalos, D.; Halban, P.; Selden, R.

    1993-01-01

    Insulin production was studied in transgenic mice expressing the human insulin gene under the control of its own promoter. Glucose homeostasis during a 48-h fast was similar in control and transgenic mice, with comparable levels of serum immunoreactive insulin. Northern blot and primer extension analyses indicated that more than twice as much insulin mRNA is present in pancreata from transgenic mice. Primer extension analysis using oligonucleotides specific for mouse insulins I and II or for ...

  13. A simplified method to prepare PCR template DNA for screening of transgenic and knockout mice.

    Science.gov (United States)

    Ren, S; Li, M; Cai, H; Hudgins, S; Furth, P A

    2001-03-01

    Polymerase chain reaction (PCR) amplification of DNA is the most widely used technique for screening of large numbers of genetically engineered transgenic or knockout mice (Mus musculus). In this report, we present a new DNA preparation procedure for running diagnostic PCR. In this procedure, mouse ear tissue was used directly for PCR after the tissue underwent brief digestion in a solution containing only proteinase K. Using this method, we have successfully screened several lines of single, double, and triple transgenic and knockout mice. The results are reliable and reproducible. The advantage of this new method is that DNA purification by organic extraction or isolation kit was omitted. DNA purification is the limiting factor in terms of time and money when screening transgenic and knockout mice by PCR. In addition, using ear instead of tail tissue can reduce distress of animals because the samples can be obtained when the mice are labeled by ear punch.

  14. Effect of HS2 and HS3 elements on erythroid-specific expression in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    JIA Chunping; YAN Jingbin; XIAO Yanping; FANG Yudan; HUANG Shuzheng; ZENG Yitao

    2003-01-01

    The expression plasmids CMV/GFP, HS2ALL, HS3ALL and HS23ALL were selected to investigate the effect of HS2 and HS3 element on erythroid-specific expression in transgenic mice. These plasmids were digested with restriction enzymes and purified. And five DNA fragments, CMV/GFP, HS2/GFP, CMV/HS2/GFP, HS23/GFP and HS3/GFP were obtained. After purification, the above DNA fragments were microinjected into the pre-nuclei of the mice fertilized eggs and transgenic mice were generated, with an integration rate of 10.89%. The green fluorescence protein(GFP) expression in many transgenic mouse tissues was determined by FACS analysis. The results showed that the HS2 and 1.7 kb of β-globin gene promoter were sufficient for the erythroid-specific expression of β-globin gene. The GFP expression of different recombinant constructs was also analyzed in blood of all the transgenic mice with FACS. The results indicated that HS2 and HS3 had the same enhancement activity on the regulation of β-globin gene expression. Moreover, these two elements showed a significant synergistic effect on gene expression at the transgenic mouse level, although the GFP expression varied largely among different transgenic mouse litters.

  15. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available BACKGROUND: Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5. METHODS AND FINDINGS: To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice. CONCLUSIONS: This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the

  16. Establishment of transgenic mice carrying the gene of human nuclear receptor NRSA2 (hB1F)

    Institute of Scientific and Technical Information of China (English)

    Shui-Liang Wang; Hua Yang; You-Hua Xie; Yuan Wang; Jian-Zhong Li; Long Wang; Zhu-Gang Wang; Ji-Liang Fu

    2003-01-01

    AIM: Human hepatitis B virus enhancer Ⅱ B1 binding factor (hB1F) was cloned and characterized as a novel member of the Ftz-F1 (NRSA) nuclear receptor subfamily. Although progresses have recently been made, its biological function remains largely unidentified. The aim of this study was to establish an hB1F transgenic mouse model to promote the functional study of hB1F. METHODS: Transgene fragments were microinjected into fertilized eggs of mice. The manipulated embryos were transferred into the oviducts of pseudopregnant female mice.The offsprings were identified by PCR and Southern blot analysis. Transgene expression was analyzed with RT-PCR and Western blot analysis. Transgenic founder mice were used to establish transgenic mouse lineages. The F1 and F2mice were identified by PCR analysis. RESULTS: Seven mice were identified as carrying copies of transgene. RT-PCR and Western blotting results showed that the transgene was expressed in heart, liver, lung, kidney and stomach in one of the transgenic mouse lineages.Genetic analysis of the transgenic mice demonstrated that the transgene was integrated into the chromosome at a single site, and was transmitted stably. CONCLUSION: In this study we established an hB1F transgenic mouse model, which will facilitate the investigation of the biological function of hB1F in vivo.

  17. Transgenic mice for MTCP1 develop T-cell prolymphocytic leukemia.

    Science.gov (United States)

    Gritti, C; Dastot, H; Soulier, J; Janin, A; Daniel, M T; Madani, A; Grimber, G; Briand, P; Sigaux, F; Stern, M H

    1998-07-15

    T-cell prolymphocytic leukemia (T-PLL) is a rare form of mature T-cell leukemia associated with chromosomal rearrangements implicating MTCP1 or TCL1 genes. These genes encode two homologous proteins, p13(MTCP1) and p14(TCL1), which share no similarity with other known protein. To determine the oncogenic role of MTCP1, mice transgenic for MTCP1 under the control of CD2 regulatory regions (CD2-p13 mice) were generated. No abnormality was detected during the first year after birth. A late effect of the transgene was searched for in a cohort of 48 CD2-p13 mice aged 15 to 20 months, issued from 3 independent founders. Lymphoid hemopathies, occurring in the three transgenic lines, were characterized by lymphoid cells with an irregular nucleus, a unique and prominent nucleolus, condensed chromatin, a basophilic cytoplasm devoid of granules, and an immunophenotype of mature T cells. The molecular characterization of Tcrb rearrangements demonstrated the monoclonal origin of these populations. Histopathological analysis of the cohort demonstrated early splenic and hepatic infiltrations, whereas lymphocytosis and medullar infiltrations were found infrequently. The engraftment of these proliferations in H2-matched animals demonstrated their malignant nature. Cumulative incidence of the disease at 20 months was 100%, 50%, and 21% in F3, F4, and F7 lines, respectively, and null in the control group. The level of expression of the transgene, as estimated by Western blotting in the transgenic lines correlated with the tumoral incidence, with the highest expression of p13(MTCP1) being found in F3 mice. CD2-p13 transgenic mice developed an hemopathy similar to human T-PLL. These data demonstrate that p13(MTCP1) is an oncoprotein and that CD2-p13 transgenic mice represent the first animal model for mature T-PLL.

  18. Transgenic knockout mice with exclusively human sickle hemoglobinand sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Paszty, C.; Brion, C.; Manci, E.; Witkowska, E.; Stevens, M.; Narla, M.; Rubin, E.

    1997-06-13

    To create mice expressing exclusively human sicklehemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, andbeta[S]-globin were generated and bred with knockout mice that haddeletions of the murine alpha- and beta-globin genes. These sickle cellmice have the major features (irreversibly sickled red cells, anemia,multiorgan pathology) found in humans with sickle cell disease and, assuch, represent a useful in vivo system to accelerate the development ofimproved therapies for this common genetic disease.

  19. Inhibitory effect of oxymatrine on serum hepatitis B virus DNA in HBV transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Lun-Gen Lu; Min-De Zeng; Yi-Min Mao; Jing-Yuan Fang; Yu-Lin Song; Zhao-Hui Shen; Ai-Ping Cao

    2004-01-01

    AIM: To study the inhibitory effect of oxymatrine on serum hepatitis B virus (HBV) DNA in HBV transgenic mice.METHODS: HBV transgenic mice model was established by microinjection, and identified by HBV DNA integration and replication. Transgenic mice with replicating HBV were divided into 3 groups, and injected with normal saline (group A, n=9), 50 mg/kg (group B, n=8) and 100 mg/kg (group C, n=9) oxymatrine intraperitoneally once a day for 30 d, respectively. Quantitation of serum HBV DNA in HBV transgenic mice was performed by competitive polymerase chain reaction (PCR) in combination with DNA hybridization quantitative detection technique before and after treatment.RESULTS: Compared with pre-treatment, the serum HBV DNA in group A (F=1.04, P=0.9612) and group B (F=1.13,P=0.8739) had no changes after treatment. However, in group C serum HBV DNA was significantly decreased (F=13.97,P=0.0012). The serum HBV DNA after treatment was lower in group C than in groups B and A (F=8.65, P=0.0068;F=12.35, P=0.0018; respectively). The serum HBV DNA after treatment was lower in group B than in group A, but there was no statistical significance (F=1.43, P=0.652).CONCLUSION: Oxymatrine has inhibitory effects on serum HBV DNA in HBV transgenic mice.

  20. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O;

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific tra...... of the transgene was observed in cell types other than beta-islet cells.......Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific......, and -168 allowed correct initiation of the transcripts and cell specificity of expression, while quantitative expression gradually decreased. Deletion to -58 completely abolished the expression of the gene. The amount of human product that in mice harboring the longest fragment contributes up to 50...

  1. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  2. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  3. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    International Nuclear Information System (INIS)

    Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. A new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques

  4. Production of recombinant human proinsulin in the milk of transgenic mice

    OpenAIRE

    Qian, Xi; Kraft, Jana; Ni, Yingdong; Zhao, Feng-Qi

    2014-01-01

    There is a steady increasing demand for insulin worldwide. Current insulin manufacturing capacities can barely meet this increasing demand. The purpose of this study was to test the feasibility of producing human proinsulin in the milk of transgenic animals. Four lines of transgenic mice harboring a human insulin cDNA with expression driven by the goat β-casein gene promoter were generated. The expression level of human proinsulin in milk was as high as 8.1 g/L. The expression of the transgen...

  5. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing; LIU Qing; WU ZhiFang; WANG ZongYi; GOU KeMian

    2009-01-01

    Fatty acid desaturase-2 (FAD2)introduces a double bond in position △12 in oleic acid (18:1)to form linoleic acid (18:2 n-6)in higher plants and microbes.A new transgenic expression cassette,containing CMV promoter/fad2 cDNA/SV40 polyA,was constructedto produce transgenic mice.Among 63 healthy offspring,10 founders (15.9%)integrated the cotton fad2 transgene into their genomes,as demonstrated by PCR and Southern blotting analysis.All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography.One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05)in transgenic muscles compared to their nontransgenic littermates.Moreover,it exhibited an 87% and a 9% increase (P<0.05)in arachidonic acid (20:4 n-6)in muscles and liver,compared to their nontransgenic littermates.The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  6. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fatty acid desaturase-2 (FAD2) introduces a double bond in position 12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter/fad2 cDNA/SV40 polyA, was constructedto produce transgenic mice. Among 63 healthy offspring, 10 founders (15.9%) integrated the cotton fad2 transgene into their genomes, as demonstrated by PCR and Southern blotting analysis. All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography. One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05) in transgenic muscles compared to their nontransgenic littermates. Moreover, it exhibited an 87% and a 9% increase (P<0.05) in arachidonic acid (20:4 n-6) in muscles and liver, compared to their nontransgenic littermates. The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  7. Tumor prevention in HPV8 transgenic mice by HPV8-E6 DNA vaccination.

    Science.gov (United States)

    Marcuzzi, Gian Paolo; Awerkiew, Sabine; Hufbauer, Martin; Schädlich, Lysann; Gissmann, Lutz; Eming, Sabine; Pfister, Herbert

    2014-06-01

    The genus beta human papillomavirus 8 (HPV8) is involved in the development of cutaneous squamous cell carcinomas (SCCs) in individuals with epidermodysplasia verruciformis. Immunosuppressed transplant recipients are prone to harbor particularly high betapapillomavirus DNA loads, which may contribute to their highly increased risk of SCC. Tumor induction in HPV8 transgenic mice correlates with increased expression of viral oncogenes E6 and E2. In an attempt to prevent skin tumor development, we evaluated an HPV8-E6-DNA vaccine, which was able to stimulate a detectable HPV8-E6-specific cell-mediated immune response in 8/15 immunized mice. When skin of HPV8 transgenic mice was grafted onto non-transgenic littermates, the grafted HPV8 transgenic tissue was not rejected and papillomas started to grow within 14 days all over the transplant of 9/9 non-vaccinated and 7/15 not successfully vaccinated mice. In contrast, no papillomas developed in 6/8 successfully vaccinated mice. In the other two of these eight mice, a large ulcerative lesion developed within the initial papilloma growth or papilloma development was highly delayed. As the vaccine completely or partially prevented papilloma development without rejecting the transplanted HPV8 positive skin, the immune system appears to attack only keratinocytes with increased levels of E6 protein, which would give rise to papillomas. PMID:24446083

  8. Global view of transcriptome in the brains of aged NR2B transgenic mice*****

    Institute of Scientific and Technical Information of China (English)

    Chunxia Li; Men Su; Huimin Wang; Yinghe Hu

    2013-01-01

    NR2B subunits are involved in regulating aging, in particular, age-related learning and memory deficits. We examined 19-month-old NR2B transgenic mice and their littermate controls. First, we detected expression of the NR2B subunit gene, Grin2b, in the neocortex of transgenic mice using real-time PCR. Next, we used microarrays to examine differences in neocortical gene expression. Pathway and signal-net analyses identified multiple pathways altered in the transgenic mice, in-cluding the P53, Jak-STAT, Wnt, and Notch pathways, as wel as regulation of the actin cytoskeleton and neuroactive ligand-receptor interactions. Further signal-net analysis highlighted the P53 and insulin-like growth factor pathways as key regulatory pathways. Our results provide new insight into understanding the molecular mechanisms of NR2B regulated age-related memory storage, normal organismal aging and age-related disease.

  9. Expression of SV40 T antigen under control of rabbit uteroglobin promoter in transgenic mice.

    Science.gov (United States)

    DeMayo, F J; Finegold, M J; Hansen, T N; Stanley, L A; Smith, B; Bullock, D W

    1991-08-01

    The rabbit uteroglobin gene is expressed in the lungs and reproductive tracts of male and female rabbits. To examine whether the promoter region of the uteroglobin gene could be used to target a heterologous gene to the lungs of transgenic mice, a fusion gene consisting of 3.3 kb of the 5'-flanking region of the rabbit uteroglobin gene and the large T antigen gene of the SV40 virus was constructed and microinjected into the pronuclei of one-cell mouse embryos. Eleven founder transgenic mice (5 female and 6 male) were generated. Seven of these mice developed bronchioalveolar neoplasms. Four of the founder males also developed primitive undifferentiated urogenital tract tumors. One founder female and one female offspring of a founder male developed glandular paraovarian tumors. Northern analysis revealed that the predominant site of expression of the transgene was the lung. Immunohistochemical staining showed T antigen predominantly in epithelial cells lining the bronchioles, the submucosal glands of the trachea, and the neoplasms. There appeared to be a high level of mosaicism for the transgene in the founder mice, with poor transmission of the transgene to subsequent generations. This suggests that, under the control of the uteroglobin promoter, the T antigen gene may be lethal to the fetus.

  10. Establishment and identification of OVA-HBsAg transgenic mice regulated by Cre recombinase

    Directory of Open Access Journals (Sweden)

    Xiu-mei LI

    2015-06-01

    Full Text Available Objective To breed OVA-HBsAg transgenic mice regulated by Cre recombinase in order to provide a better animal model for the study of HBV prevention and therapy. Methods The OVA-HBsAg transgenic mice were generated by microinjection of OVA-HBsAg gene with LoxP sites into the pronucleus of C57BL/6J×DBA zygotes. Pups of F1 OVA-HBsAg female mice cross-fertilized with Alb-Cre male mice were assayed for the expression of HBsAg induced by Cre recombinase. PCR, ELISA and immunohistochemical methods were used to detect the integration and expression of HBsAg gene and Cre gene in the transgenic mice. Results 491 fertilized eggs were injected and a total of 337 survived. The survival rate of injection was 68.6%. 29 F0 pups were produced with 4 PCR-positive mice, and the positive rate was 13.8%. Up to now, F4 pups were obtained. The positive rates from F1 to F4 were 27.5%, 32.0%, 22.9% and 25.0%, respectively. No HBsAg-positive mice were found among these pups. Furthermore, among 16 pups of F1 OVA-HBsAg female mice crossed with Alb-Cre male mice, 6 were positive for both HBsAg and Cre as detected by PCR. There were 2 pups showed positive HBsAg by ELISA assay. The expression rate of HBsAg after Cre recombinase induction was 33.3%. Conclusion OVA-HBsAg transgenic mice has been reproduced successfully, and it can be stably passaged. Cre recombinase can induce the expression of HBsAg in vivo. DOI: 10.11855/j.issn.0577-7402.2015.05.08

  11. Preparation and identification of 1.3 copies C-type HBV transgenic mice

    Directory of Open Access Journals (Sweden)

    Mei-juan CHEN

    2011-09-01

    Full Text Available Objective To prepare 1.3 copies C-type HBV transgenic mice for providing a better model for the prevention and treatment of hepatitis B.Methods The HBV transgenic mice were generated by microinjection of 1.3 copies C-type HBV genome into the pronucleus of FVB /N zygotes.PCR,ELISA,RT-PCR and immunohistochemistry were used to detect the integration,replication and expression of HBV gene in the transgenic mice.Results Tow thousand two hundred and eighty-two fertilized eggs were injected and a total of 2024 survived.The survival rate of injection was 88.7%.The injected eggs were transplanted into 72 pseudo pregnant female mice,among which 59 became pregnant.The pregnancy rate was 81.9%.One hundred and eighty-five F0 offsprings were produced with 19 positive mice as detected by PCR,and the positive rate was 10.3%.RT-PCR revealed that HBV DNA replication of 102-103 copies/ml existed in serum of 6 mice.Ninety-six F1 offsprings were produced,of which 33 were positive for HBV DNA replication as detected by PCR,the positive rate was 34.4%.RT-PCR showed that HBV DNA replication was observed in 10 mice with 102-103 copies/ml.Three mice were randomly chosen from each of F0 and F1 generations to detect the HBsAg expression in livers and kidneys by immunohistochemistry.The results showed that HBsAg expressed in both livers and kidneys,and it was stronger in kidneys than in livers.Conclusion The 1.3 copies C-type HBV gene can not only replicate and express in the transgenic mice produced,but it also can be transmitted to the next generation of these mice.

  12. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice.

    Science.gov (United States)

    Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H Henry

    2016-07-01

    Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. PMID:27226540

  13. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available BACKGROUND: Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models. OBJECTIVE: Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms. METHODOLOGY: We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls. CONCLUSIONS: LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  14. Inducible overexpression of porcine homeobox A10 in the endometrium of transgenic mice

    Institute of Scientific and Technical Information of China (English)

    LIN Rui-yi; WU Di; ZHAO Chang-zhi; CHEN Shang-shang; XIAO Qian; LI Xin-yun; ZHAO Shu-hong

    2016-01-01

    Homeobox A10 (HOXA10) is a wel-known transcription factor that plays an important role in directing endometrial differ-entiation and establishing the conditions required for implantation. Interestingly, the expression level ofHOXA10 may be associated with litter size. To study the effects of the porcineHOXA10 promoter fragment on the expression ofHOXA10 genein vivo, we generated a transgenic mouse model using pronuclear microinjection, and measured the expression of HOXA10 in the endometrium. There was no difference in the expression level ofHOXA10 between transgenic and wild-type mice in the absence of hormone stimulation. However, folowing treatment with progesterone and estradiol benzoate, the expression level ofHOXA10 was signiifcantly increased in transgenic mice compared with that of wild-type mice. Fur-thermore, the litter size of transgenic females was larger than that of wild-type females (7.02±1.73vs. 6.48±1.85;P=0.14). Moreover, the difference of litter size was greater in the later parities (7.33±1.62vs. 6.37±2.02; P=0.08) compared with the ifrst parity (6.76±1.81vs. 6.61±1.67;P=0.77) between transgenic and wild-type mice. Therefore, our transgenic mouse model provides exciting insights regarding the actions ofHOXA10 and its hormone-inducible promoterin vivo. The present study offers valuable proof of principle to develop transgenic pigs with a hormone-inducible promoter regulatingHOXA10 to alter litter size.

  15. Tiam1 transgenic mice display increased tumor invasive and metastatic potential of colorectal cancer after 1,2-dimethylhydrazine treatment.

    Directory of Open Access Journals (Sweden)

    Li-Na Yu

    Full Text Available BACKGROUND: T lymphoma invasion and metastasis 1 (Tiam1 is a potential modifier of tumor development and progression. Our previous study in vitro and in nude mice suggested a promotion role of Tiam1 on invasion and metastasis of colorectal cancer (CRC. In the present study, we generated Tiam1/C1199-CopGFP transgenic mice to investigate the tumorigenetic, invasive and metastatic alterations in the colon and rectum of wild-type and Tiam1 transgenic mice under 1,2-dimethylhydrazine (DMH treatment. METHODS: Transgenic mice were produced by the method of pronuclear microinlectlon. Whole-body fluorescence imaging (Lighttools, Edmonton, Alberta, Canada, PCR, and immunohistochemical techniques (IHC were applied sequentially to identify the transgenic mice. The carcinogen DMH (20 mg/kg was used to induce colorectal tumors though intraperitoneal (i.p. injections once a week for 24 weeks from the age of 4 weeks on Tiam1 transgenic or non-transgenic mice. RESULTS: We successfully generated Tiam1/C1199-CopGFP transgenic mice and induced primary tumors in the intestine of both wild type and Tiam1 transgenic mice by DMH treatment. In addition, Tiam1 transgenic mice developed larger and more aggressive neoplasm than wild-type mice. Moreover, immunohistochemical staining revealed that upregulation of Tiam1 was correlated with increased expression of β-Catenin and Vimentin, and downregulation of E-Cadherin in these mice. CONCLUSIONS: Our study has provided in vivo evidence supporting that Tiam1 promotes invasion and metastasis of CRC, most probably through activation of Wnt/β-catenin signaling pathway, in a Tiam1 transgenic mouse model.

  16. Use of the viral 2A peptide for bicistronic expression in transgenic mice

    Directory of Open Access Journals (Sweden)

    Trichas Georgios

    2008-09-01

    Full Text Available Abstract Background Transgenic animals are widely used in biomedical research and biotechnology. Multicistronic constructs, in which several proteins are encoded by a single messenger RNA, are commonly used in genetically engineered animals. This is currently done by using an internal ribosomal entry site to separate the different coding regions. 2A peptides result in the co-translational 'cleavage' of proteins and are an attractive alternative to the internal ribosomal entry site. They are more reliable than the internal ribosomal entry site and lead to expression of multiple cistrons at equimolar levels. They work in a wide variety of eukaryotic cells, but to date have not been demonstrated to function in transgenic mice in an inheritable manner. Results To test 2A function in transgenic mice and uncover any possible toxicity of widespread expression of the 2A peptide, we made a bicistronic reporter construct containing the coding sequence for a membrane localised red fluorescent protein (Myr-TdTomato and a nuclear localised green fluorescent protein (H2B-GFP, separated by a 2A sequence. When this reporter is transfected into HeLa cells, the two fluorescent proteins correctly localise to mutually exclusive cellular compartments, demonstrating that the bicistronic construct is a reliable readout of 2A function. The two fluorescent proteins also correctly localise when the reporter is electroporated into chick neural tube cells. We made two independent transgenic mouse lines that express the bicistronic reporter ubiquitously. For both lines, transgenic mice are born in Mendelian frequencies and are found to be healthy and fertile. Myr-TdTomato and H2B-GFP segregate to mutually exclusive cellular compartments in all tissues examined from a broad range of developmental stages, ranging from embryo to adult. One transgenic line shows X-linked inheritance of the transgene and mosaic expression in females but uniform expression in males, indicating

  17. Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice.

    Science.gov (United States)

    Yang, Mao-Wei; Wang, Tong-Hao; Yan, Pei-Pei; Chu, Li-Wei; Yu, Jiang; Gao, Zhi-Da; Li, Yuan-Zhou; Guo, Bao-Lei

    2011-01-15

    Alzheimer's disease and osteoporosis are often observed to co-occur in clinical practice. The present study aimed to evaluate the bone microarchitecture and bone mineral density (BMD) of the proximal tibia in APP/PS1 transgenic mice by micro-computed tomography (micro-CT), and to search for evidence that curcumin can be used to reduce bone mineral losses and treat osteoporosis after senile dementia in these transgenic mice. Three-month-old female mice were divided into the following groups (n=9 per group): wild-type mice (WT group); APP/PS1 transgenic mice (APP group); and APP/PS1 transgenic mice with curcumin treatment (APP+Cur group). Between 9 and 12 months of age, the APP+Cur group were administered curcumin orally (600ppm). CT scans of the proximal tibia were taken at 6, 9 and 12 months. At 6 months, there were little differences in the structural parameters. At 9 months, the APP groups displayed loss of bone volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and connectivity density (Conn.D) and increases in trabecular separation (Tb.Sp) and geometric degree of anisotropy (DA) (Pled to constant increases in the trabecular bone mass of the metaphysis and clearly improved the BMD. By the same time, we measured the TNF-α and IL-6 in the serum among the different groups at 6, 9 and 12 months by enzyme-linked immunoassay(ELISA). These results suggest that APP/PS1 transgenic mice are susceptible to osteoporosis, and that curcumin can prevent further deterioration of the bone structure and produce beneficial changes in bone turnover. The change of inflammation cytokine, including TNF-α and IL-6, may play an important role in the mechanisms of action of curcumin, but the detail mechanism remains unknown. PMID:20637579

  18. Immunoglobulin gene expression and regulation of rearrangement in kappa transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, K.A.

    1986-01-01

    Transgenic mice were produced by microinjection of the functionally rearranged immunoglobulin kappa gene from the myeloma MOPC-21 into the male pronucleus of fertilized mouse eggs, and implantation of the microinjected embryos into foster mothers. Mice that integrated the injected gene were detected by hybridizing tail DNA dots with radioactively labelled pBR322 plasmid DNA, which detects pBR322 sequences left as a tag on the microinjected DNA. Mice that integrated the injected gene (six males) were mated and the DNA, RNA and serum kappa chains of their offspring were analyzed. A rabbit anti-mouse kappa chain antiserum was also produced for use in detection of mouse kappa chains on protein blots. Hybridomas were produced from the spleen cells of these kappa transgenic mice to immortalize representative B cells and to investigate expression of the transgenic kappa gene, its effect on allelic exclusion, and its effect on the control of light chain gene rearrangement and expression. The results show that the microinjected DNA is integrated as concatamers in unique single or, rarely, two separate sites in the genome. The concatamers are composed of several copies (16 to 64) of injected DNA arranged in a head to tail fashion. The transgene is expressed into protein normally and in a tissue specific fashion. For the first time in these transgenic mice, all tissues contain a functionally rearranged and potentially expressible immunoglobulin gene. The transgene is expressed only in B cells and not in hepatocytes, for example. This indicates that rearrangement of immunoglobulin genes is necessary but not sufficient for the tissue specific expression of these genes by B cells.

  19. Transmission barriers for bovine ovine, and human prions in transgenic mice

    OpenAIRE

    Van Scott, Michael R.; Peretz, David; Nguyen, Hoang-Oanh B.; Stephen J DeArmond; Prusiner, Stanley B.

    2005-01-01

    Transgenic (Tg) mice expressing full-length bovine prion protein (BoPrP) serially propagate bovine spongiform encephalopathy (BSE) prions without posing a transmission barrier. These mice also posed no transmission barrier for Suffolk sheep scrapie prions, suggesting that cattle may be highly susceptible to some sheep scrapie strains. Tg(BoPrP) mice were also found to be susceptible to prions from humans with variant Creutzfeldt-Jakob disease (CJD); on second passage in Tg(BoPrP) mice, the in...

  20. Chronic Wasting Disease of Deer and Elk in Transgenic Mice: Oral Transmission and Pathobiology

    OpenAIRE

    Trifilo, Matthew J.; Ying, Ge; Teng, Chao; Oldstone, Michael B. A.

    2007-01-01

    To study the pathogenesis of chronic wasting disease (CWD) in deer and elk, transgenic (tg) mice were generated that expressed the prion protein (PrP) of deer containing a glycine at amino acid (aa) 96 and a serine at aa 225 under transcriptional control of the murine PrP promoter. This construct was introduced into murine PrP-deficient mice. As anticipated, neither non-tg mice nor PrP ko mice were susceptible when inoculated intracerebrally (i.c.) or orally with CWD brain material (scrapie p...

  1. Augmented Senile Plaque Load in Aged Female β-Amyloid Precursor Protein-Transgenic Mice

    OpenAIRE

    Callahan, Michael J.; Lipinski, William J.; Bian, Feng; Durham, Robert A.; Pack, Amy; Walker, Lary C.

    2001-01-01

    Transgenic mice (Tg2576) overexpressing human β-amyloid precursor protein with the Swedish mutation (APP695SWE) develop Alzheimer’s disease-like amyloid β protein (Aβ) deposits by 8 to 10 months of age. These mice show elevated levels of Aβ40 and Aβ42, as well as an age-related increase in diffuse and compact senile plaques in the brain. Senile plaque load was quantitated in the hippocampus and neocortex of 8- to 19-month-old male and female Tg2576 mice. In all mice, plaque burden increased m...

  2. The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice

    Science.gov (United States)

    Linkous, D.H.; Adlard, P.A.; Wanschura, P.B.; Conko, K.M.; Flinn, J.M.

    2009-01-01

    There is considerable evidence suggesting that metals play a central role in the pathogenesis of Alzheimer's disease. Reports suggest that elevated dietary metals may both precipitate and potentiate an Alzheimer's disease phenotype. Despite this, there remain few studies that have examined the behavioral consequences of elevated dietary metals in wild type and Alzheimer's disease animals. To further investigate this in the current study, two separate transgenic models of AD (Tg2576 and TgCRND8), together with wild type littermates were administered 10 ppm (0.153 mM) Zn. Tg2576 animals were maintained on a zinc-enriched diet both pre- and postnatally until 11 months of age, while TgCRND8 animals were treated for five months following weaning. Behavioral testing, consisting of "Atlantis" and "moving" platform versions of the Morris water maze, were conducted at the end of the study, and tissues were collected for immunohistochemical analysis of amyloid-β burden. Our data demonstrate that the provision of a zinc-enriched diet potentiated Alzheimer-like spatial memory impairments in the transgenic animals and was associated with reduced hippocampal amyloid-β plaque deposits. Zinc-related behavioral deficits were also demonstrated in wild type mice, which were sometimes as great as those present in the transgenic animals. However, zinc-related cognitive impairments in transgenic mice were greater than the summation of zinc effects in the wild type mice and the transgene effects.

  3. Increased Abscess Formation and Defective Chemokine Regulation in CREB Transgenic Mice

    OpenAIRE

    Andy Y Wen; Landaw, Elliot M.; Ochoa, Rachel; Cho, Michelle; Chao, Alex; Lawson, Gregory; Sakamoto, Kathleen M.

    2013-01-01

    Cyclic AMP-response element-binding protein (CREB) is a transcription factor implicated in growth factor-dependent cell proliferation and survival, glucose homeostasis, spermatogenesis, circadian rhythms, and synaptic plasticity associated with memory. To study the phenotype of CREB overexpression in vivo, we generated CREB transgenic (TG) mice in which a myeloid specific hMRP8 promoter drives CREB expression. CREB TG mice developed spontaneous skin abscesses more frequently than wild type (W...

  4. Search Strategies Used by "APP" Transgenic Mice during Navigation in the Morris Water Maze

    Science.gov (United States)

    Janus, Christopher

    2004-01-01

    TgCRND8 mice represent a transgenic mouse model of Alzheimer's disease, with onset of cognitive impairment and increasing amyloid-[beta] plaques in their brains at 12 weeks of age. In this study, the spatial memory in 25- to 30-week-old TgCRND8 mice was analyzed in two reference and one working memory Morris water maze (MWM) tests. In reference…

  5. An Antidepressant Decreases CSF Aβ Production in Healthy Individuals and in Transgenic AD Mice

    OpenAIRE

    Sheline, Yvette I.; West, Tim; Yarasheski, Kevin; Swarm, Robert; Jasielec, Mateusz S.; Fisher, Jonathan R.; Ficker, Whitney D.; Yan, Ping; Xiong, Chengjie; Frederiksen, Christine; Grzelak, Monica V.; Chott, Robert; Bateman, Randall J.; Morris, John C.; Mark A. Mintun

    2014-01-01

    Serotonin signaling suppresses generation of amyloid-β (Aβ) in vitro and in animal models of Alzheimer’s disease (AD). We show that in an aged transgenic AD mouse model (APP/PS1 plaque-bearing mice), the antidepressant citalopram, a selective serotonin reuptake inhibitor (SSRI), decreased Aβ in brain interstitial fluid (ISF) in a dose-dependent manner. Growth of individual amyloid plaques was assessed in plaque-bearing mice that were chronically administered citalopram. Citalopram arrested th...

  6. Production of transgenic mice carrying green fluorescence protein gene by a lentiviral vector-mediated approach

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingzhi; GUO Xinbing; XIE Shuyang; ZHU Yiwen; HUANG Ying; WANG Shu; REN Zhaorui

    2006-01-01

    A pseudo-lentivirus, which carries green fluorescence protein (GFP) expressing cassette, was injected into the perivitelline space of murine fertilized oocytes before transplanting into the oviducts of the foster mothers. The GFP transgenic pups were then obtained. By PCR amplification, fluorescent microscopy and flow assisted cytometry sorting analysis, we found that the integration rate of the transgene was estimated at above 40%. Real-time PCR analysis indicated that the copy number of the integrated GFP cassette was around 40. Fluorescent in situ hybridization analysis demonstrated that the integration pattern was random but inheritable. The transgenic mice with multi-integration sites and various expression levels possessed a great value in practice as well as research. The approach reported herein provides an efficient way to generate and screen the transgenic mouse strains.

  7. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin

    OpenAIRE

    Nicolas, Gaël; Bennoun, Myriam; Porteu, Arlette; Mativet, Sandrine; Beaumont, Carole; Grandchamp, Bernard; Sirito, Mario; Sawadogo, Michèle; Kahn, Axel; Vaulont, Sophie

    2002-01-01

    We recently reported the hemochromatosis-like phenotype observed in our Usf2 knockout mice. In these mice, as in murine models of hemochromatosis and patients with hereditary hemochromatosis, iron accumulates in parenchymal cells (in particular, liver and pancreas), whereas the reticuloendothelial system is spared from this iron loading. We suggested that this phenotypic trait could be attributed to the absence, in the Usf2 knockout mice, of a secreted liver-specific peptide, hepcidin. We con...

  8. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Directory of Open Access Journals (Sweden)

    Shih Ping Yao

    2002-04-01

    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  9. bcl-xl over-expression in transgenic mice reduces cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Furong Wang; Yongsheng Jiang; Yan Liu; Wenwu Xiao; Suming Zhang

    2008-01-01

    BACKGROUND: Basal cell lymphoma-extra large (bcl-xl) can inhibit neuronal apoptosis by stabilizing the mitochondrial membrane and suppressing cytochrome C release into the cytoplasm. OBJECTIVE: This study aimed to further investigate the cascade reaction pathway of cellular apoptosis. We established an ischemia/dreperfusion model by middle cerebral artery occlusion (MCAO) in transgenic and wild-type mice, and observed changes in the number and distribution of apoptotic neural cells, differences in cerebral infarct volume, in neurological function score, and in cytochrome C expression in the ischemic cerebral cortex, at different time points, DESIGN AND SETTING: The present gene engineering and cell biology experiment was performed at the Laboratory of Biology, Hubei Academy of Agricultural Sciences and at the Laboratory of Immunology, Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Male bcl-xl over-expression Kunming mice aged 8 weeks and age-matched male wild-type mice were used for this study. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) kits were purchased from Boliman, France. Cytochrome C antibody and Bcl-x immunohistochemical kit were purchased from PharMingen, USA and Santa Cruz Biotechnology, USA, respectively. METHODS: Following MCAO and reperfusion, apoptosis in the ischemic cerebral cortex was detected by the TUNEL assay. Prior to MCAO and 3 hours after reperfusion, the Bcl-xl protein level in the ischemic cerebral cortex was measured by immunohistochemistry. At 3, 6, 12 and 24 hours after reperfusion, the level of cytochrome C in the ischemic cerebral cortex was examined by western blot analysis. Subsequent to MCAO, cerebral infarct volume measurement and neurological examination were performed. MAIN OUTCOME MEASURES: Neural cell apoptosis and cytochrome C expression in the ischemic cerebral cortex; cerebral infarct volume and neurological function score. RESULTS: Twenty-four hours after

  10. Glucocorticoid receptor impairment enhances impulsive responding in transgenic mice performing on a simultaneous visual discrimination task.

    Science.gov (United States)

    Steckler, T; Sauvage, M; Holsboer, F

    2000-07-01

    Transgenic mice with impaired glucocorticoid receptor (GR) function were tested for their ability to learn and perform a series of simultaneous visual discriminations which allowed a dissociation between accuracy of discrimination from those of motivation and behavioural disinhibition. Animals were first trained on an operant five-choice simultaneous discrimination autoshaping procedure, followed by a continuous reinforcement schedule on that task. Subsequently, the number of choices was limited to two and data were analysed according to the mathematical methods of signal detection theory (SDT). The effects of GR-antisense expression on accuracy when different rates of responding were required were studied under different fixed ratio response requirements (FR1-FR10). Autoshaping was retarded in transgenic animals and accuracy was impaired in both the five-choice and the two-choice discrimination tasks, although transgenic mice showed clear evidence for learning. Under conditions of low response requirements, transgenic mice showed increased response and cognitive biases, but reduced perceptual bias, and a behavioural disinhibition, characterized by a reduction in errors of omission, decreased response latencies and increased number of responses during the inter-trial interval. Increasing the response requirement improved performance in transgenic animals as reflected by enhanced accuracy. Moreover, transgenics were less susceptible to the deleterious effects of higher response requirements, as indicated by relatively unaffected bias measures in this group, while bias increased in controls. These results indicate that altered performance in GR-antisense transgenic animals cannot simply be interpreted as a mnemonic deficit, but that altered motivation and enhanced impulsive responding may account for some of these impairments.

  11. The PHEX transgene corrects mineralization defects in 9-month-old hypophosphatemic mice.

    Science.gov (United States)

    Boskey, Adele; Frank, Aaron; Fujimoto, Yukiji; Spevak, Lyudmila; Verdelis, Kostas; Ellis, Bruce; Troiano, Nancy; Philbrick, William; Carpenter, Thomas

    2009-02-01

    Hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. While osteoblast-specific expression of the PHEX transgene has been reported to decrease the phosphate wasting associated with the disease in male hypophosphatemic (HYP) mice, there are reports that the mineralization defect is only partially corrected in young animals. To test the hypothesis that osteoblast-specific expression of the PHEX gene for a longer time would correct the mineralization defect, this study examined the bones of 9-month-old male and female HYP mice and their wild-type controls with or without expression of the transgene under a collagen type I promoter. Serum phosphate levels, alkaline phosphatase activity, and FGF23 levels were also measured. Mineral analyses based on wide-angle X-ray diffraction, Fourier transform-infrared (FT-IR) spectroscopy, and FT-IR imaging confirmed the decreased mineral content and increased mineral crystal size in male HYP humerii compared to wild-type males and females with or without the transgene and in female HYP mice with or without the transgene. There was a significant increase in mineral content and a decrease in crystallinity in the HYP males' bones with the transgene, compared to those without. Of interest, expression of the transgene in wild-type animals significantly increased the mineral content in both males and females without having a detectable effect on crystallinity or carbonate content. In contrast to the bones, based on micro-computed tomography and FT-IR imaging, at 9 months there were no significant differences between the HYP and the WT teeth, precluding analysis of the effect of the transgene.

  12. Impaired reproduction in transgenic mice overexpressing γ-aminobutyric acid transporter I (GAT1)

    Institute of Scientific and Technical Information of China (English)

    Jia Hua HU; Jin Fu ZHANG; Ying Hua MA; Jie JIANG; Na YANG; Xin Bo LI; Zhi Guang YU CHI; Jian FEI; Li He GUO

    2004-01-01

    It is well documented that γ-aminobutyric acid (GABA) system existed in reproductive organs. Recent researches showed that GABAA and GABAB receptors were present in testis and sperm,and might mediate the acrosome reaction induced by GABA and progesterone. GABA transporter I (GAT1) also existed in testis and sperm,but its physiological function was unknown. In the present study,we used GAT1 overexpressing mice to explore GAT1 function in male reproductive system. We found that the expression level of GAT1 continuously increased in wild-type mouse testis from 1 month to 2 months after birth. GAT1 overexpression in mouse affected testis development,which embodied reduced testis mass and slowed spermatogenesis in transgenic mice. Moreover,transgenic mice showed increase of the percentage of broken sperm. The further study revealed that the reproductive capacity was impaired in GAT1 overexpressing mice. In addition,testosterone level was significantly low in transgenic mice compared with that in wild-type mice. Our findings provided the first evidence that abnormal expression of GAT1 could result in dysgenesis,and indicated that GAT1 might be therapeutically targeted for contraception or dysgenesis treatment.

  13. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1β plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  14. Experimental study of treatment for radiation-damaged mice by transgenic VEGF

    International Nuclear Information System (INIS)

    Objective: To study the effect of VEGF gene expression in the treatment of radiation damage, and to explore its molecular mechanism by transferring eukaryotic expression plasmid containing VEGF gene into irradiated mice cells. Methods: Normally Kunming mice were divided randomly into three groups as control group, irradiated group and transferred VEGF gene group. The mice were administered with 8 Gy X-ray exposure after intramuscular injection of VEGF recombinant plasmid in the transgenic group. The animals were killed at different times after X-ray exposure. Their clinical manifestation, mortality rate, pathology of tissues and in situ apoptosis in thymus and splenic cells were observed. Results: VEGF165 gene fragments were amplified from pSP73/HVEGF165 plasmid by PCR method, and then linked with pcDNA3.1 vector after incision by double enzyme. The recombinant plasmid pcDNA3.1/VEGF165 was constructed. Electrophoresis and sequencing showed that the recombinant plasmid sequence was exactly the same with the data in GenBank. The mortality of irradiated group and transgenic group 14 d post-irradiation was 64% and 36%, respectively, with the statistical difference (t=3.92, P165 was successfully constructed. Transgenic treatment with recombinant plasmid can remarkably decrease the mortality and apoptosis rate of thymus and spleen cells in mice suffering from severe radiation damage, and improve the pathologic change of immune organs. VEGF transgenic technique is one of the effective methods for treating severe radiation injury. (authors)

  15. In vivo magnetic resonance imaging and spectroscopy of Alzheimer’s disease in transgenic mice

    NARCIS (Netherlands)

    Braakman, Niels

    2008-01-01

    The thesis describes the application of several different magnetic resonance (MR) techniques to study the effects of the progression of disease in a transgenic mouse model of Alzheimer's. Using MR imaging, the amyloid plaque deposition was visualized and the plaque load quantified in the same mice

  16. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.;

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...

  17. Akv murine leukemia virus enhances bone tumorigenesis in hMT-c-fos-LTR transgenic mice

    DEFF Research Database (Denmark)

    Schmidt, Jörg; Krump-Konvalinkova, Vera; Luz, Arne;

    1995-01-01

    hMt-c-fos-LTR transgenic mice (U. Rüther, D. Komitowski, F. R. Schubert, and E. F. Wagner. Oncogene 4, 861–865, 1989) developed bone sarcomas in 20% (3/15) of females at 448 ± 25 days and in 8% (1/12) of males at 523 days. After infection of newborns with Akv, an infectious retrovirus derived fro...

  18. Transgenic mice overexpressing renin exhibit glucose intolerance and diet-genotype interactions

    Directory of Open Access Journals (Sweden)

    Sarah J. Fletcher

    2013-01-01

    Full Text Available Numerous animal and clinical investigations have pointed to a potential role of the renin-angiotensin system (RAS in the development of insulin resistance and diabetes in conditions of expanded fat mass. However, the mechanisms underlying this association remain unclear. We used a transgenic mouse model overexpressing renin in the liver (RenTgMK to examine the effects of chronic activation of RAS on adiposity and insulin sensitivity. Hepatic overexpression of renin resulted in constitutively elevated plasma angiotensin II (4-6-fold increase vs. wild type. Surprisingly, RenTgMK mice developed glucose intolerance despite low levels of adiposity and insulinemia. The transgenics also had lower plasma triglyceride levels. Glucose intolerance in transgenic mice fed a low-fat diet was comparable to that observed in high fat-fed wild type mice. Glucose intolerance was exacerbated by high-fat feeding, only in female transgenic mice. These studies demonstrate that overexpression of renin and associated hyperangiotensinemia impair glucose tolerance in a diet-dependent manner and further support a consistent role of RAS in the pathogenesis of diabetes and insulin resistance, independent of changes in fat mass.

  19. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity

    Directory of Open Access Journals (Sweden)

    Moens Ugo

    2007-11-01

    Full Text Available Abstract Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.

  20. Reversal of startle gating deficits in transgenic mice overexpressing corticotropin-releasing factor by antipsychotic drugs.

    NARCIS (Netherlands)

    Dirks, A.; Groenink, L.; Westphal, K.G.; Olivier, J.D.A.; Verdouw, P.M.; Gugten, J. van der; Geyer, M.A.; Olivier, B.

    2003-01-01

    Chronically elevated levels of corticotropin-releasing factor (CRF) in transgenic mice overexpressing CRF in the brain (CRF-OE) appear to be associated with alterations commonly associated with major depressive disorder, as well as with sensorimotor gating deficits commonly associated with schizophr

  1. Reversal of startle gating deficits in transgenic mice overexpressing corticotropin-releasing factor by antipsychotic drugs

    NARCIS (Netherlands)

    Dirks, Anneloes; Groenink, Lucianne; Westphal, Koen G C; Olivier, Jocelien D A; Verdouw, P Monika; van der Gugten, Jan; Geyer, Mark A; Olivier, Berend

    2003-01-01

    Chronically elevated levels of corticotropin-releasing factor (CRF) in transgenic mice overexpressing CRF in the brain (CRF-OE) appear to be associated with alterations commonly associated with major depressive disorder, as well as with sensorimotor gating deficits commonly associated with schizophr

  2. Establishment of La-tPA/G-CSF dual transgenic mice and expression in their mammary gland

    Institute of Scientific and Technical Information of China (English)

    卢一凡; 田靫; 邓继先; 程萱; 黄培堂

    1999-01-01

    Expression vectors of human granulocyte colony stimulating factor (G-CSG) and long acting tissue plasminogen activator (La-tPA) in mammary gland were constructed using promoters of mouse whey acid protein gene (WAP) and sheep β-lactoglobulin gene (BLG) with sizes of 2.6 and 5 kb respectively. Two kinds of transgenic mice of G-CSF and La-tPA were produced with microinjection. The expression of G-CSF and La-tPA was achieved in mammary glands of transgenic mice, respectively. In order to establish dual transgenic mice of La-tPA/G-CSF, transgenic mice carrying G-CSF and La-tPA gene characterized with specific expression in mammary gland were mated. La-tPA/G-CSF dual transgenic mice were screened out from the hybrid offspring by Once-PCR. The co-expression of La-tPA and G-CSF in mammary gland of the dual transgenic mice was confirmed by the milk assayed and Northern blot analysis. Some parameters about the dual transgenic mice indicated that there were fewer litters than that of normal mice. The ratio of du

  3. Bovine growth hormone transgenic mice display alterations in locomotor activity and brain monoamine neurochemistry.

    Science.gov (United States)

    Söderpalm, B; Ericson, M; Bohlooly, M; Engel, J A; Törnell, J

    1999-12-01

    Recent clinical and experimental data indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. In the present study we have investigated whether bovine GH (bGH) transgenic mice and nontransgenic controls differ in spontaneous locomotor activity, a behavioral response related to brain dopamine (DA) and reward mechanisms, as well as in locomotor activity response to drugs of abuse known to interfere with brain DA systems. The animals were tested for locomotor activity once a week for 4 weeks. When first exposed to the test apparatus, bGH transgenic animals displayed significantly more locomotor activity than controls during the entire registration period (1 h). One week later, after acute pretreatment with saline, the two groups did not differ in locomotor activity, whereas at the third test occasion, bGH mice were significantly more stimulated by d-amphetamine (1 mg/kg, ip) than controls. At the fourth test, a tendency for a larger locomotor stimulatory effect of ethanol (2.5 g/kg, ip) was observed in bGH transgenic mice. bGH mice displayed increased tissue levels of serotonin and 5-hydroxyindoleacetic acid in several brain regions, decreased DA levels in the brain stem, and decreased levels of the DA metabolite 3,4-dihydroxyphenylacetic acid in the mesencephalon and diencephalon, compared with controls. In conclusion, bGH mice display more spontaneous locomotor activity than nontransgenic controls in a novel environment and possibly also a disturbed habituation process. The finding that bGH mice were also more sensitive to d-amphetamine-induced locomotor activity may suggest that the behavioral differences observed are related to differences in brain DA systems, indicating a hyperresponsiveness of these systems in bGH transgenic mice. These findings may constitute a neurochemical basis for the reported psychic effects of GH in humans. PMID:10579325

  4. Elevated PC responsive B cells and anti-PC antibody production in transgenic mice harboring anti-PC immunoglobulin genes.

    Science.gov (United States)

    Pinkert, C A; Manz, J; Linton, P J; Klinman, N R; Storb, U

    1989-12-01

    The rearrangement of heavy and light chain immunoglobulin genes is necessary for the production of functional antibody molecules. The myeloma MOPC 167 produces specific antibodies to the antigen phosphorylcholine (PC), which is present on bacterial surfaces, fungi and other environmental contaminants. Rearranged heavy and light chain immunoglobulin genes cloned from MOPC 167 were microinjected into mouse eggs. Within the resulting transgenic mice, expression of the transgenes were limited to lymphoid tissues. Transgenic mice produced elevated levels of anti-PC antibodies constitutively, at 16 days of age, when normal non-transgenic mice were not fully immunocompetent. A triggering antigenic stimulus was not necessary to evoke anti-PC immunoglobulin production. Additionally, the frequency of PC-responsive B cells in these transgenic mice was further increased upon specific immunization.

  5. Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice.

    Science.gov (United States)

    Hsu, Yung-Chien; Lei, Chen-Chou; Shih, Ya-Hsueh; Ho, Cheng; Lin, Chun-Liang

    2015-02-01

    Proteinuria is not only a sign of kidney damage but is also involved in the progression of renal disease as an independent pathologic factor. Although patients with mutated type 1 cannabinoid receptors (CB1) polymorphism are associated with renal microvascular damage, the biologic role of CB1 signaling in proteinuria remains uncharacterized till now. Herein, we investigate whether CB1 participates in glomerular proteinuria in CB1 transgenic mice and treatment with CB1 agonist WIN55212-2 rat, neither of which are diabetic models. The CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher kidney weight and urinary protein concentrations but not blood glucose levels compared with the wild-type group. A combination of laser-capture microsdissection, quantitative reverse transcription-polymerase chain reaction, immunoblotting and immunohistochemical validation revealed that CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher vascular endothelial growth factor (VEGF) expression in renal glomeruli than that of the wild-type group. Geneticorpharmacological activation of CB1 by transgenic CB1 mice or treatment with WIN55212-2 reduced nephrin expression in the renal glomeruli compared with that of the wild-type group in the glomerular mesanglium. Taken together, CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 induced proteinuria with upregulation of CB1 resulting in impaired nephrin expression, by inducing excess VEGF reaction in the renal glomeruli. Genetic and pharmacological manipulation of CB1 signaling revealed VEGF-dependent nephrin depression of glomerulopathy. Controlling CB1 activity can be used an alternative strategy for sustaining renal function in the presence of CB1 activation.

  6. Comparison of acetaminophen toxicity in primary hepatocytes isolated from transgenic mice with different appolipoprotein E alleles.

    Science.gov (United States)

    Mezera, V; Kucera, O; Moravcova, A; Peterova, E; Rousar, T; Rychtrmoc, D; Sobotka, O; Cervinkova, Z

    2015-12-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor, important for combating electrophilic and oxidative stress in the liver and other organs. This encompasses detoxification of hepatotoxic drugs, including acetaminophen (APAP). Recently, an association between apolipoprotein E (ApoE) genotype and Nrf2 expression was described. We compared the toxicity of APAP on primary culture hepatocytes isolated from transgenic mice carrying two different human ApoE alleles and wild-type controls. The cells were exposed to APAP in concentrations from 0.5 to 4 mM for up to 24 hours. APAP led to a dose-dependent hepatotoxicity from 1 mM after 16 h exposure in all mice tested. The toxicity was higher in hepatocytes isolated from both transgenic strains than in wild-type controls and most pronounced in ApoE3 mice. Concurrently, there was a decline in mitochondrial membrane potential, especially in ApoE3 hepatocytes. The formation of reactive oxygen species was increased after 24 hours with 2.5 mM APAP in hepatocytes of all strains tested, with the highest increase being in the ApoE3 genotype. The activity of caspases 3 and 7 did not differ among groups and was minimal after 24 hour incubation with 4 mM APAP. We observed higher lipid accumulation in hepatocytes isolated from both transgenic strains than in wild-type controls. The expression of Nrf2-dependent genes was higher in ApoE3 than in ApoE4 hepatocytes and some of these genes were induced by APAP treatment. In conclusion, transgenic mice with ApoE4 and ApoE3 alleles displayed higher susceptibility to acute APAP toxicity in vitro than wild-type mice. Of the two transgenic genotypes tested, ApoE3 allele carriers were more prone to injury.

  7. Bridging the species divide: transgenic mice humanized for type-I interferon response.

    Directory of Open Access Journals (Sweden)

    Daniel Harari

    Full Text Available We have generated transgenic mice that harbor humanized type I interferon receptors (IFNARs enabling the study of type I human interferons (Hu-IFN-Is in mice. These "HyBNAR" (Hybrid IFNAR mice encode transgenic variants of IFNAR1 and IFNAR2 with the human extracellular domains being fused to transmembrane and cytoplasmic segments of mouse sequence. B16F1 mouse melanoma cells harboring the HyBNAR construct specifically bound Hu-IFN-Is and were rendered sensitive to Hu-IFN-I stimulated anti-proliferation, STAT1 activation and activation of a prototypical IFN-I response gene (MX2. HyBNAR mice were crossed with a transgenic strain expressing the luciferase reporter gene under the control of the IFN-responsive MX2 promoter (MX2-Luciferase. Both the HyBNAR and HyBNAR/MX2-Luciferase mice were responsive to all Hu-IFN-Is tested, inclusive of IFNα2A, IFNβ, and a human superagonist termed YNSα8. The mice displayed dose-dependent pharmacodynamic responses to Hu-IFN-I injection, as assessed by measuring the expression of IFN-responsive genes. Our studies also demonstrated a weak activation of endogenous mouse interferon response, especially after high dose administration of Hu-IFNs. In sharp contrast to data published for humans, our pharmacodynamic readouts demonstrate a very short-lived IFN-I response in mice, which is not enhanced by sub-cutaneous (SC injections in comparison to other administration routes. With algometric differences between humans and mice taken into account, the HyBNAR mice provides a convenient non-primate pre-clinical model to advance the study of human IFN-Is.

  8. Relationship between expression of epidermal growth factor and simian virus 40 T antigen in a line of transgenic mice.

    Science.gov (United States)

    Lafond, R E; Giammalvo, J T; Norkin, L C

    1995-09-01

    The pattern of expression of the simian virus 40 (SV40) T antigen gene and resultant dysplasia were re-examined in a line of transgenic mice in which the T antigen gene was under the control of the SV40 early promoter. We found that T antigen expression in the kidney, and resulting dysplastic lesions, occurred exclusively in the distal convoluted tubules and the ascending limbs of Henle. Epidermal growth factor (EGF) expression in the kidney of normal mice was similarly immunolocalized. The correlation between high EGF immunoreactivity in normal mouse tissues and T antigen expression in the transgenic counterpart was also seen in the choroid plexus epithelium and in the submandibular glands of male mice. T antigen was not found in the submandibular gland of transgenic females. Similarly, EGF was only rarely detected in the normal female submandibular gland. In contrast to the correlation between T antigen expression in the transgenic mice and EGF expression in the corresponding tissues of the normal mice, within the dysplastic lesions of the transgenic mice EGF expression was severely diminished. Adenocarcinomas of the male submandibular gland from another line of transgenic mice that expresses the Int-1 transgene, showed similarly reduced levels of immunostaining for EGF. Thus, reduced expression of EGF might be a general feature of dysplasia and tumorigenesis in those tissues that normally express EGF.

  9. Regulation of human clotting factor IX cDNA expression in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    胡以平; 邱信芳; 薛京伦; 刘祖洞

    1995-01-01

    To study the expression of human dotting factor IX cDNA in transgenic mice,Which is an es-sential work on gene therapy for hemophilia B,3 recombinant constructions containing different lengths ofhuman dotting factor IX cDNA have been introduced into the cultured cells.All of the recombinant constructionswere found to he expressed well in vitro.They were then microinjected into the male pronudei of the fertilizedmouse eggs respectively for generating trahsgenic mice.Unfortunately,none of them was expressed in any transgenicmice.These results show that the expression of the human clotting factor IX cDNA in the transgenic mice canbe determined by cis regulatory element(s).As compared With the results from other related works,it is sug-gested that the cis regulatory element(s)is resided in the 5’-end non-coding region.

  10. Skeletal Phenotype of Transgenic Mice Expressing the Beta1 Integrin Cytoplasmic Tail In Osteoblasts

    Science.gov (United States)

    Globus, R. K.; vanderMeulen, M. C. H.; Damsky, D.; Kim, J.-B.; Amblard, D.; Amblard, D.; Nishimura, Y.; Almeida, E.; Iwaniec, U. T.; Wronski, T. J.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    To define the physiologic role of beta1 integrin in bone formation and mechanical loading, transgenic mice were generated by expressing the cytoplasmic tall and transmembrane domain of Beta1 integrin under the control of the osteocalcin promoter. In cultured cells, this truncated fragment of Beta1 can act as a dominant negative. Previously, the matrix of calvariae was shown to be abnormal in transgenic (TG) compared to wildtype (WT) mice. In this study, we analyzed appendicular bone in TG and WT, male and female mice at 14, 35, 63, 90 and 365 days old (n=8-12/gp). To assess beta1 integrin function in mechanical loading, a pilot study using hindlimb unloading by tail suspension was performed. 35d old TG and WT females were hindlimb unloaded for 4 wks (n=3-5). Body mass, bone mineral content, histomorphometric (distal femur) and biomechanical parameters were analyzed. Statistical significance (P less than.05) was defined by ANOVA using the Tukey-Kramer post-hoc test. We confirmed transgene expression by immunoprecipitating then immunoblotting bone lysates using an antibody against the beta1 tail. Body masses of TG mice at 63, 90 and 365d old were greater (16-25%) than WT. Some TG female mice at 365d appeared obese; mean abdominal fat mass was 415% greater in TG than WT mice. Tibiae were longer (5-7%) in TG than WT mice at 63 and 90d. Tibial mineral mass of 35d males was 7% lower in TG than WT mice, but at 63d was 21% higher. The % osteoblast surface in 35d TG mice was 20% higher than WT, and at 63d was 17% lower, while % osteoclast surface did not differ. In 365d mice, cancellous bone volume (125%) and endocortical mineral apposition rate (40%) were greater in TG than WT males but not females. In WT mice, hindlimb unloading caused a reduction in mineral mass of tibiae (-20%) and lumbar vertebrae (-22%) relative to normally loaded controls. Surprisingly, hindlimb unloading also caused a relative reduction (-13%) in humerus mass. The effects of hindlimb unloading on

  11. Aspects of achondroplasia in the skulls of dwarf transgenic mice: a cephalometric study.

    Science.gov (United States)

    Bloom, Melissa Wadler; Murakami, Shunichi; Cody, Dianna; Montufar-Solis, Dina; Duke, Pauline Jackie

    2006-03-01

    Achondroplasia, the most common short-limbed dwarfism in humans, results from a single nucleotide substitution in the gene for fibroblast growth factor receptor 3 (FGFR3). FGFR3 regulates bone growth in part via the mitogen-activated protein kinase pathway (MAPK). To examine the role of this pathway in chondrocyte differentiation, a transgenic mouse was generated that expresses a constitutively active mutant of MEK1 in chondrocytes and exhibits dwarfing characteristics typical of human achondroplasia, i.e., shortened axial and appendicular skeletons, mid-facial hypoplasia, and dome-shaped cranium. In this study, cephalometrics of the MEK1 mutant skulls were assessed to determine if the MEK1 mice are a good model of achondroplasia. Skull length, arc of the cranial vault, and area, maximum and minimum diameters of the brain case were measured on digitized radiographs of skulls of MEK1 and control mice. Cranial base and nasal bone length and foramen magnum diameter were measured on midsagittal micro-CT sections. Data were normalized by dividing by the cube root of each animal's weight. Transgenic mice exhibited a domed skull, deficient midface, and (relatively) prognathic mandible and had a shorter cranial base and nasal bone than the wild-type. Skull length was significantly less in transgenic mice, but cranial arc was significantly greater. The brain case was larger and more circular and minimum diameter of the brain case was significantly greater in transgenic mice. The foramen magnum was displaced anteriorly but not narrowed. MEK1 mouse cephalometrics confirm these mice as a model for achondroplasia, demonstrating that the MAP kinase signaling pathway is involved in FGF signaling in skeletal development. PMID:16463380

  12. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K;

    2001-01-01

    the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...... germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth...

  13. Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Maria Arantzazu Sanchez-Fernandez

    Full Text Available BACKGROUND: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. METHODOLOGY/PRINCIPAL FINDING: We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK, a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/-LacZ+/- adult mice show a Cre-dependent β-galactosidase activity after tamoxifen stimulation. CONCLUSIONS/SIGNIFICANCE: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.

  14. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  15. Apolipoprotein E*3-Leiden transgenic mice mode for hypolipidaemic drugs

    OpenAIRE

    Vlijmen, B.J.M. van; Pearce, N.J.; Bergö, M.; Staels, B.; Yates, J.W.; Gribble, A.D.; Bond, B.C.; Hofker, M H; Havekes, L. M.; Groot, P H E

    1998-01-01

    Apolipoprotein (APO) E*3-Leiden mice with impaired chylomicron and VLDL (very low density lipoprotein) remnant metabolism display hyperlipidaemia and atherosclerosis. In the present study, these mice were used for testing the hypolipidaemic effect of two marketed agents, lovastatin (CAS 75330-75-5) and gemfibrozil (CAS 25812-30-0) as well as a novel compound, SB 204990 (the 5- ring lactone of ±(3R*,5S*) 3-carboxy-11-(2,4-dichlorophenyl)-3,5- dihydroxyundecanoic acid, CAS 154566-12-8), a poten...

  16. Expression of human erythropoietin directed by mWAP promoter in mammary gland of transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The present work has generated transgenic mice with a hybrid gene construct consisting of genomic sequences encoding human erythropoietin (hEPO) and governed by regulatory sequences of mouse whey acidic protein (mWAP). The construct proved effective by transient expression in lactating animal. After introducing hybrid gene construct into single-cell embryo via pronuclear microinjection, surviving embryo are reimplanted into pseudopregnant foster mother mouse. 58 mice of 86 generation zero mice obtained were identified to be positive by PCR-Southern blot and genomic DNA Southern blot methods. The integration rate is 67%. hEPO was expressed in the milk of 16 mice of 39 mice measured by hEPO ELISA kit .The expression level gets over 15 m g/mL.

  17. Function of chymase in the heart angiotensin Ⅱ forma- tion in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The myosin light chain 2 promoter-human heart chymase (MLC2-hChymase) transgenic mice founded by our laboratory were used as the model to study the function of chymase in the heart angiotension Ⅱ (Ang Ⅱ) formation and heart remodeling. Tissue-specific expression of human heart chymase gene and transcriptional expression of typeⅠ and type Ⅲ collagens genes were analyzed by RT-PCR. Activities of chymase, ACE and the levels of AngⅡ in heart and plasma were determined with radioimmunoassay (RIA) kit. Activity of heart matrix metalloproteinase-9 (MMP-9) was detected using gelatin zymography. The cardiac hypertrophic phenotypes were also observed with the physiological and morphological methods. The results in the MLC2-hChymase transgenic mice indicated: (ⅰ) human heart chymase gene was expressed specially in the heart; (ⅱ) heart chymase activity increased markedly in the transgenic mice vs non-transgenic mice (control) (0.27±0.07 U/mg vs. 0.15±0.02 U/mg, P<0.05) with no significant difference in ACE activity (0.17±0.03 U/mg vs. 0.18±0.02 U/mg); (ⅲ) heart AngⅡ content increased 3-fold (1984±184 vs. 568±88 pg/g protein, P<0.05) but was unchanged in plasma (218±106 vs. 234±66 pg/mL); (ⅳ) both MMP-9 activity and collagen Ⅰ mRNA level increased significantly in the heart (P<0.05) but there was neither significant increase in colla-gen Ⅲ mRNA nor in the ratio of Ⅰ/ Ⅲ collagen mRNA levels; (ⅴ) the MLC2-hChymase transgenic mice showed no significant changes in blood pressure, heart-rate, ratio of heart/body weight and cardiomyocyte diameter compared to the control. This suggests that heart AngⅡ formation cata-lyzed through overexpression of human heart chymase gene in the heart of transgenic mice might activate MMP-9 to influence collagen metabolism in cardiac interstitial and to be involved in the process of heart remodeling.

  18. Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Crane Allison

    2001-01-01

    Full Text Available Abstract Background Germline mutations in the tumor suppressor PTEN predispose human beings to breast cancer, and genetic and epigenetic alterations of PTEN are also detected in sporadic human breast cancer. Germline Pten mutations in mice lead to the development of a variety of tumors, but mammary carcinomas are infrequently found, especially in mice under the age of six months. Results To better understand the role of PTEN in breast tumor development, we have crossed Pten heterozygous mice to MMTV-Wnt-1 transgenic mice that routinely develop ductal carcinomas in the mammary gland. Female Wnt-1 transgenics heterozygous for Pten developed mammary tumors earlier than Wnt-1 transgenics that were wild type for Pten. In most tumors arising in Pten heterozygotes, the Pten wild-type allele was lost, suggesting that cells lacking Pten function have a growth advantage over cells retaining a wild type allele. Tumors with LOH contained high levels of activated AKT/PKB, a downstream target of the PTEN/PI3K pathway. Conclusions An animal model has been developed in which the absence of Pten collaborates with Wnt-1 to induce ductal carcinoma in the mammary gland. This animal model may be useful for testing therapies specific for tumors deregulated in the PTEN/PI3K/AKT pathway.

  19. Chemopreventive effect of Curcuma longa Linn on liver pathology in HBx transgenic mice.

    Science.gov (United States)

    Kim, Jungsun; Ha, Hye-Lin; Moon, Hyung-Bae; Lee, Yeon-Weol; Cho, Chong-Kwan; Yoo, Hwa-Seung; Yu, Dae-Yeul

    2011-06-01

    Unlike other forms of hepatocellular carcinoma (HCC), HCC induced by hepatitis B virus (HBV) infection shows a poor prognosis after conventional therapies. HBV induces liver cirrhosis and HCC. Many researchers have made efforts to find new substances that suppress the activity of HBV. Curcuma longa Linn (CLL) has been used for traditional medicine and food in Asia, especially in India, and has shown chemopreventive effects in a HBV-related in vitro model. This in vivo study was designed to seek the chemopreventive effects of CLL and its mechanisms. CLL mixture concentrated with dextrose water by boiling was lyophilized. CLL extracts were administrated to HBV X protein (HBx) transgenic mice aged 4 weeks for 2 to 4 weeks and aged 6 months for 3 months. After administration, histological changes in the liver tissue and expression of HBx-related genes were investigated. CLL-treated mice showed less visceral fat, a smaller liver/body weight ratio and delayed liver pathogenesis. Proliferating cell nuclear antigen (PCNA) expression was also increased in CLL-treated HBx transgenic mice, indicating regeneration of damaged liver tissue. CLL treatment decreased expression of HBx and increased p21 and cyclin D1 in livers of HBx transgenic mice. In addition, p-p53 was increased after CLL treatment. These results suggest that CLL can have beneficial effects on the early and late stages of liver pathogenesis, preventing and delaying liver carcinogenesis. This drug should be considered as a potential chemopreventive agent for HBV-related hepatocarcinogenesis.

  20. Lymphoma induction by heterocyclic amines in Eu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, E.; Mortensen, Alicja;

    1997-01-01

    were fed standard diet Altromin 1314 supplemented either with 0.03% 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) for 7 months or with 0.03% 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) for 6 months. PhIP and IQ are heterocyclic amines formed during cooking of meat and fish and are mutagenic...... to bacteria and cultured mammalian cells. PhIP is a potent mouse lymphomagen, while IQ is a liver, lung and forestomach carcinogen in mice. We found that transgenic E mu-pim-1 mice are highly susceptible to PhIP induced lymphomagenesis but do not respond to IQ treatment. PhIP feeding of E mu-pim-1 mice...... not only increased the total number of T-cell lymphomas but also decreased the latency time compared to either transgenic or wild-type controls. The effect was most pronounced in the treated female E mu-pim-1 mice, which showed a higher incidence of PhIP induced T-cell lymphomas than transgenic males...

  1. Glucose homeostasis and insulin sensitivity in growth hormone-transgenic mice: a cross-sectional analysis.

    Science.gov (United States)

    Boparai, Ravneet K; Arum, Oge; Khardori, Romesh; Bartke, Andrzej

    2010-10-01

    In contrast to its stimulatory effects on musculature, bone, and organ development, and its lipolytic effects, growth hormone (GH) opposes insulin effects on glucose metabolism. Chronic GH overexposure is thought to result in insulin insensitivity and decreased blood glucose homeostatic control. Yet, despite the importance of this concept for basic biology, as well as human conditions of GH excess or deficiency, no systematic assessment of the impact of GH over- expression on glucose homeostasis and insulin sensitivity has been conducted. We report that male and female adult GH transgenic mice have enhanced glucose tolerance compared to littermate controls and this effect is not dependent on age or on the particular heterologous GH transgene used. Furthermore, increased glucose-stimulated insulin secretion, augmented insulin sensitivity, and muted gluconeogenesis were also observed in bovine GH overexpressing mice. These results show that markedly increased systemic GH concentration in GH-transgenic mice exerts unexpected beneficial effects on glucose homeostasis, presumably via a compensatory increase in insulin release. The counterintuitive nature of these results challenges previously held presumptions of the physiology of these mice and other states of GH overexpression or suppression. In addition, they pose intriguing queries about the relationships between GH, endocrine control of metabolism, and aging. PMID:20707609

  2. Attenuated RhoA/Rho-kinase Signaling in the Penis of Transgenic Sickle Cell Mice

    Science.gov (United States)

    Bivalacqua, Trinity J.; Ross, Ashley E.; Strong, Travis D.; Gebska, Milena A.; Musicki, Biljana; Champion, Hunter C.; Burnett, Arthur L.

    2013-01-01

    Objectives RhoA and its main downstream effector, Rho-kinase (ROCK) are important in maintaining the penis in the flaccid state. The pathophysiology of Sickle cell disease-associated priapism is not well defined. We hypothesize that RhoA/ROCK vasoconstrictive pathways may be involved in the development of priapism. Therefore, the objective of this study was to evaluate molecular changes in RhoA and ROCK in an established transgenic sickle cell mouse model of priapism. Methods Two groups of mice were utilized: 1) wild type (WT; C57BL/6), and 2) transgenic Sickle cell mice (Sickle). We evaluated RhoA GTPase and total ROCK activities as well as ROCK1 and ROCK2 protein expression in WT and Sickle mice penes. We also evaluated in vivo erectile responses to cavernous nerve stimulation (CNS) and the frequency and duration of spontaneous erections both pre- and post-CNS. Results Sickle mice demonstrated significantly (ppenes had a significant decline in RhoA GTPase (ppenes when compared to WT mice protein expression. No change in ROCK1 protein expression was observed in both cohort’s of mice penes. Conclusion These data suggest that Sickle cell disease associated-priapism may be contributed by a lack of RhoA/ROCK mediated vasoconstriction and highlight a novel molecular mechanism in the pathophysiology of priapism. PMID:20538321

  3. Production of transgenic mice by random recombination of targeted genes in female germline stem cells

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Ji Xiong; Jie Xiang; Ji Wu; Zhaojuan Yang; Yunze Yang; Shuzeng Wang; Lingjun Shi; Wenhai Xie; Kejing Sun; Kang Zou; Lei Wang

    2011-01-01

    Oocyte production in most mammalian species is believed to cease before birth. However, this idea has been challenged with the finding that postnatal mouse ovaries possess mitotically active germ cells. A recent study showed that female germline stem cells (FGSCs) from adult mice were isolated, cultured long term and produced oocytes and progeny after transplantation into infertile mice. Here, we demonstrate the successful generation of transgenic or gene knock-down mice using FGSCs. The FGSCs from ovaries of 5-day-old and adult mice were isolated and either infected with recombinant viruses carrying green fluorescent protein, Oocyte-G1 or the mouse dynein axonemal intermediate chain 2 gene, or transfected with the Oocyte-G1 specific shRNA expression vector (pRS shOocyte-G1 vector), and then transplanted into infertile mice. Transplanted cells in the ovaries underwent oogenesis and produced heterozygous offspring after mating with wild-type male mice. The offspring were genetically characterized and the biological functions of the transferred or knock-down genes were investigated. Efficiency of genetransfer or gene knock-down was 29%-37% and it took 2 months to produce transgenic offspring. Gene manipulation of FGSCs is a rapid and efficient method of animal transgenesis and may serve as a powerful tool for biomedical science and biotechnology.

  4. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sebastian R Schreglmann

    Full Text Available Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS under the murine Thy1 (mThy1 promoter, a model known to have a particularly high tg expression associated with impaired olfaction.Survival of newly generated neurons (NeuN-positive in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.

  5. Characterizing exons 11 and 1 promoters of the mu opioid receptor (Oprm gene in transgenic mice

    Directory of Open Access Journals (Sweden)

    Pan Ying-Xian

    2006-11-01

    Full Text Available Abstract Background The complexity of the mouse mu opioid receptor (Oprm gene was demonstrated by the identification of multiple alternatively spliced variants and promoters. Our previous studies have identified a novel promoter, exon 11 (E11 promoter, in the mouse Oprm gene. The E11 promoter is located ~10 kb upstream of the exon 1 (E1 promoter. The E11 promoter controls the expression of nine splice variants in the mouse Oprm gene. Distinguished from the TATA-less E1 promoter, the E11 promoter resembles a typical TATA-containing eukaryote class II promoter. The aim of this study is to further characterize the E11 and E1 promoters in vivo using a transgenic mouse model. Results We constructed a ~20 kb transgenic construct in which a 3.7 kb E11 promoter region and an 8.9 kb E1 promoter region controlled expression of tau/LacZ and tau/GFP reporters, respectively. The construct was used to establish a transgenic mouse line. The expression of the reporter mRNAs, determined by a RT-PCR approach, in the transgenic mice during embryonic development displayed a temporal pattern similar to that of the endogenous promoters. X-gal staining for tau/LacZ reporter and GFP imaging for tau/GFP reporter showed that the transgenic E11 and E1 promoters were widely expressed in various regions of the central nervous system (CNS. The distribution of tau/GFP reporter in the CNS was similar to that of MOR-1-like immunoreactivity using an exon 4-specific antibody. However, differential expression of both promoters was observed in some CNS regions such as the hippocampus and substantia nigra, suggesting that the E11 and E1 promoters were regulated differently in these regions. Conclusion We have generated a transgenic mouse line to study the E11 and E1 promoters in vivo using tau/LacZ and tau/GFP reporters. The reasonable relevance of the transgenic model was demonstrated by the temporal and spatial expression of the transgenes as compared to those of the endogenous

  6. Urinary Bladder Dysfunction in Transgenic Sickle Cell Disease Mice.

    Directory of Open Access Journals (Sweden)

    Mário Angelo Claudino

    Full Text Available Urological complications associated with sickle cell disease (SCD, include nocturia, enuresis, urinary infections and urinary incontinence. However, scientific evidence to ascertain the underlying cause of the lower urinary tract symptoms in SCD is lacking.Thus, the aim of this study was to evaluate urinary function, in vivo and ex vivo, in the Berkeley SCD murine model (SS.Urine output was measured in metabolic cage for both wild type and SS mice (25-30 g. Bladder strips and urethra rings were dissected free and mounted in organ baths. In isolated detrusor smooth muscle (DSM, relaxant response to mirabegron and isoproterenol (1nM-10μM and contractile response to (carbachol (CCh; 1 nM-100μM, KCl (1 mM-300mM, CaCl2 (1μM-100mM, α,β-methylene ATP (1, 3 and 10 μM and electrical field stimulation (EFS; 1-32 Hz were measured. Phenylephrine (Phe; 10nM-100μM was used to evaluate the contraction mechanism in the urethra rings. Cystometry and histomorphometry were also performed in the urinary bladder.SS mice present a reduced urine output and incapacity to produce typical bladder contractions and bladder emptying (ex vivo, compared to control animals. In DSM, relaxation in response to a selective β3-adrenergic agonist (mirabegron and to a non-selective β-adrenergic (isoproterenol agonist were lower in SS mice. Additionally, carbachol, α, β-methylene ATP, KCl, extracellular Ca2+ and electrical-field stimulation promoted smaller bladder contractions in SS group. Urethra contraction induced by phenylephrine was markedly reduced in SS mice. Histological analyses of SS mice bladder revealed severe structural abnormalities, such as reductions in detrusor thickness and bladder volume, and cell infiltration.Taken together, our data demonstrate, for the first time, that SS mice display features of urinary bladder dysfunction, leading to impairment in urinary continence, which may have an important role in the pathogenesis of the enuresis and infections

  7. An extensive phenotypic characterization of the hTNFα transgenic mice

    Directory of Open Access Journals (Sweden)

    Tugusheva Marina

    2007-12-01

    Full Text Available Abstract Background Tumor necrosis factor alpha (TNFα is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFα (hTNFα have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFα transgenic mouse line. Results In addition to arthritis, these hTNFα transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFα. Conclusion These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFα, a condition mimicking that observed in a number of human pathological conditions.

  8. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise;

    2006-01-01

    -extracellular matrix interactions in the growth plate. INTRODUCTION: The disintegrin and metalloprotease ADAM12 is expressed in both osteoblasts and osteoclasts, suggesting a regulatory role of ADAM12 in bone. However, thus far, no in vivo function of ADAM12 in the skeleton has been reported. MATERIALS AND METHODS......: Transgenic mice expressing the secreted form of human ADAM12, ADAM12-S, or a truncated metalloprotease-deficient form of ADAM12-S in the circulation were used to study the effects of ADAM12 on the skeleton. In addition, murine chondrocyte cultures were used to study the effect of ADAM12-S on cell...... in mice expressing higher levels of the transgene than in a lower-expressing line. Histological analysis revealed no alterations in the growth plate organization, but mean growth plate width was increased. Both the cellular incorporation of bromodeoxyuridine and the width of the collagen type X...

  9. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  10. Activity of peroxisomal enzymes, and levels of polyamines in LPA-transgenic mice on two different diets

    Directory of Open Access Journals (Sweden)

    Rønning Helle

    2005-10-01

    Full Text Available Abstract Background In man, elevated levels of plasma lipoprotein (a(Lp(a is a cardiovascular risk factor, and oxidized phospholipids are believed to play a role as modulators of inflammatory processes such as atherosclerosis. Polyamines are potent antioxidants and anti-inflammatory agents. It was therefore of interest to examine polyamines and their metabolism in LPA transgenic mice. Concentration of the polyamines putrescine, spermidine and spermine as well as the activity of peroxisomal polyamine oxidase and two other peroxisomal enzymes, acyl-CoA oxidase and catalase were measured. The mice were fed either a standard diet or a diet high in fat and cholesterol (HFHC. Some of the mice in each feeding group were in addition given aminoguanidine (AG, a specific inhibitor of diamine oxidase, which catalyses degradation of putrescine, and also inhibits non-enzymatic glycosylation of protein which is implicated in the aetiology of atherosclerosis in diabetic patients. Non-transgenic mice were used as controls. Results Intestinal peroxisomal polyamine oxidase activity was significantly higher in LPA transgenic mice than in the non-transgenic mice, while intestinal peroxisomal catalase activity was significantly lower. Hepatic β-oxidation increased in Lp(a transgenic mice fed the HFHC diet, but not in those on standard diet. Hepatic spermidine concentration was increased in all mice fed the HFHC diet compared to those fed a standard diet, while spermine concentration was decreased. With exception of the group fed only standard diet, transgenic mice showed a lower degree of hepatic steatosis than non-transgenic mice. AG had no significant effect on hepatic steatosis. Conclusion The present results indicate a connection between peroxisomal enzyme activity and the presence of the human LPA gene in the murine genome. The effect may be a result of changes in oxidative processes in lipid metabolism rather than resulting from a direct effect of the LPA

  11. Absence of cardiac lipid accumulation in transgenic mice with heart-specific HSL overexpression.

    Science.gov (United States)

    Suzuki, J; Shen, W J; Nelson, B D; Patel, S; Veerkamp, J H; Selwood, S P; Murphy, G M; Reaven, E; Kraemer, F B

    2001-10-01

    Hormone-sensitive lipase (HSL) hydrolyzes triglyceride (TG) in adipose tissue. HSL is also expressed in heart. To explore the actions of cardiac HSL, heart-specific, tetracycline (Tc)-controlled HSL-overexpressing mice were generated. Tc-responsive element-HSL transgenic (Tg) mice were generated and crossed with myosin heavy chain (MHC)alpha-tTA Tg mice, which express the Tc-responsive transactivator (tTA) in the heart. The double-Tg mice (MHC-HSL) were maintained with doxycycline (Dox) to suppress Tg HSL. Upon removal of Dox, cardiac HSL activity and protein increased 12- and 8-fold, respectively, and the expression was heart specific. Although cardiac TG content increased twofold in control mice after an overnight fast, it did not increase in HSL-induced mice. Electron microscopy showed numerous lipid droplets in the myocardium of fasted control mice, whereas fasted HSL-induced mice showed virtually no droplets. Microarray analysis showed altered expression of cardiac genes for fatty acid oxidation, transcription factors, signaling molecules, cytoskeletal proteins, and histocompatibility antigens in HSL-induced mice. Thus cardiac HSL plays a role in controlling accumulation of triglyceride droplets and can affect the expression of a number of cardiac genes.

  12. CHIP Enhances Angiogenesis and Restores Cardiac Function After Infarction in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Xu

    2013-02-01

    Full Text Available Background: Carboxyl terminus of Hsp70-interacting protein (CHIP is a chaperone/ubiquitin ligase that plays an important role in stress-induced apoptosis. However, the effect of CHIP on angiogenesis, cardiac function and survival 4 weeks after myocardial infarction (MI remain to be explored. Methods: Wild-type (WT and transgenic mice (TG with cardiac-specific overexpression of CHIP were used for coronary artery ligation. The cardiac function, cardiomyocyte apoptosis, inflammation and angiogenesis were examined by echocardiography, histological analysis, real-time PCR and Western blot analysis. Results: At 4 weeks of after coronary artery ligation, echocardiography demonstrated that cardiac remodeling and dysfunction were prevented in TG mice compared with WT mice. The infarct size, cardiomyocyte apoptosis and inflammation were significantly reduced in TG mice than in WT mice. The survival rate after MI in TG mice was higher than that of WT mice. Furthermore, the levels of p53 protein was markedly decreased, but the expression of HIF-1α and VEGF, and the formation of capillary and arteriole after MI were significantly enhanced in TG mice compared with WT mice. Conclusion: We report the first in vivo evidence that CHIP enhances angiogenesis, inhibits inflammation, restores cardiac function, and improves survival at 4 weeks after MI. The present study expands on previous results and defines a novel mechanism. Thus, increased CHIP level may provide a novel therapeutic approach for left ventricular dysfunction after MI.

  13. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  14. Bronchial hyperreactivity, increased endotoxin lethality and melanocytic tumorigenesis in transgenic mice overexpressing platelet-activating factor receptor.

    OpenAIRE

    Ishii, S.; Nagase, T; Tashiro, F; Ikuta, K. (Koichi); Sato, S.; Waga, I.; Kume, K.; Miyazaki, J; Shimizu, T

    1997-01-01

    Although platelet-activating factor (PAF) has been shown to exert pleiotropic effects on isolated cells or tissues, controversy still exists as to whether it plays significant pathophysiological roles in vivo. To answer this question, we established transgenic mice over-expressing a guinea-pig PAF receptor (PAFR). The transgenic mice showed a bronchial hyperreactivity to methacholine and an increased mortality when exposed to bacterial endotoxin. An aberrant melanogenesis and proliferative ab...

  15. Extravasation and transcytosis of liposomes in Kaposi's sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene.

    OpenAIRE

    Huang, S K; F. J. Martin; Jay, G; Vogel, J.; Papahadjopoulos, D; Friend, D S

    1993-01-01

    Transgenic mice bearing the HIV tat gene develop dermal lesions resembling a common malignant tumor in AIDS, Kaposi's sarcoma (KS). To evaluate the permeability characteristics of these lesions and the therapeutic potential of drug-carrying liposomes, we have studied the localization of sterically stabilized liposomes, which show long circulation time in blood and increased accumulation in tumors. Liposomes encapsulating colloidal gold were injected intravenously into transgenic mice bearing ...

  16. Combined Micro-PET/Micro-CT Imaging of Lung Tumours in SPC-raf and SPC-myc Transgenic Mice

    OpenAIRE

    Thomas Rodt; Matthias Luepke; Claudia Boehm; Katja Hueper; Roman Halter; Silke Glage; Ludwig Hoy; Frank Wacker; Juergen Borlak; Christian von Falck

    2012-01-01

    INTRODUCTION: SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. MATERIAL AND METHODS: 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transg...

  17. Atypical Scrapie Prions from Sheep and Lack of Disease in Transgenic Mice Overexpressing Human Prion Protein

    OpenAIRE

    Wadsworth, Jonathan D. F.; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Martin H Groschup; Hope, James; Brandner, Sebastian; Asante, Emmanuel A.; Collinge, John

    2013-01-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue...

  18. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice.

    OpenAIRE

    Selden, R F; Wagner, T E; Blethen, S; Yun, J S; Rowe, M E; Goodman, H M

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, we have expressed a mouse metallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itse...

  19. Postnatal lung function and morphology in transgenic mice expressing transforming growth factor-alpha.

    OpenAIRE

    Hardie, W. D.; Bruno, M D; Huelsman, K. M.; Iwamoto, H S; Carrigan, P. E.; Leikauf, G D; Whitsett, J A; Korfhagen, T R

    1997-01-01

    Developmental changes in lung morphology and physiology during postnatal alveolarization were assessed in transgenic mice expressing transforming growth factor-alpha (TGF-alpha) in pulmonary type II cells under control of the surfactant protein C gene promoter. TGF-alpha transcripts were identified in respiratory epithelial cells at 1 day of age to adulthood. Enlargement of alveolar airspaces and fibrosis were detected as early as 1 week of age, and the increased airspace progressed with adva...

  20. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  1. Conditional and targeted overexpression of vascular chymase causes hypertension in transgenic mice

    OpenAIRE

    Ju, Haisong; Gros, Robert; You, Xiaomang; Tsang, Sarah; Husain, Mansoor; Rabinovitch, Marlene

    2001-01-01

    We cloned a rat vascular chymase (RVCH) from smooth muscle cells (SMCs) that converts angiotensin I to II and is up-regulated in SMC from spontaneously hypertensive vs. normotensive rats. To determine whether increased activity of RVCH is sufficient to cause hypertension, transgenic mice were generated with targeted conditional expression of RVCH to SMC, with the use of the tetracycline-controlled transactivator (tTA). We confirmed conditional expression of RVCH by mRNA, protein, and chymase ...

  2. Characterization of Fam20C expression in odontogenesis and osteogenesis using transgenic mice

    OpenAIRE

    Du, Er-Xia; Wang, Xiao-fang; Yang, Wu-Chen; Kaback, Deborah; Yee, Siu-Pok; Qin, Chun-Lin; George, Anne; Hao, Jian-Jun

    2014-01-01

    Our previous studies have demonstrated that Fam20C promotes differentiation and mineralization of odontoblasts, ameloblasts, osteoblasts and osteocytes during tooth and bone development. Ablation of the Fam20C gene inhibits bone and tooth growth by increasing fibroblast growth factor 23 in serum and causing hypophosphatemia in conditional knockout mice. However, control and regulation of the expression of Fam20C are still unknown. In this study, we generated a transgenic reporter model which ...

  3. FHL1 Reduces Dystrophy in Transgenic Mice Overexpressing FSHD Muscular Dystrophy Region Gene 1 (FRG1)

    OpenAIRE

    Feeney, Sandra J.; McGrath, Meagan J.; Absorn Sriratana; Stefan M Gehrig; Gordon S Lynch; Colleen E D'Arcy; John T Price; McLean, Catriona A.; Rossella Tupler; Mitchell, Christina A.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phe...

  4. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  5. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  6. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor

    DEFF Research Database (Denmark)

    Stefaneanu, L; Kovacs, K; Horvath, E;

    1989-01-01

    The effect of protracted GH-releasing factor (GRF) stimulation on adenohypophysial morphology was investigated in six mice transgenic for human GRF (hGRF). All animals had significantly higher plasma levels of GH and GRF and greater body weights than controls. Eight-month-old mice were killed, and...... PRL, were demonstrated by light microscopy and ultrastructural immunocytochemistry. Electron microscopy revealed the presence of cells with characteristics of GH cells in three pituitaries and cells resembling human adenomatous mammosomatotrophs in the other three glands. All of these cells...

  7. Aβ42 gene vaccine prevents Aβ42 deposition in brain of double transgenic mice

    OpenAIRE

    Qu, Bao-Xi; Xiang, Qun; Li, Liping; Johnston, Stephen Albert; Hynan, Linda S.; Rosenberg, Roger N

    2007-01-01

    Aβ42 peptide aggregation and deposition is an important component of the neuropathology of Alzheimer’s disease (AD). Gene-gun mediated gene vaccination targeting Aβ42 is a potential method to prevent and treat AD. APPswe/PS1ΔE9 transgenic (Tg) mice were immunized with an Aβ42 gene construct delivered by the gene gun. The vaccinated mice developed Th2 antibodies (IgG1) against Aβ42. The Aβ42 levels in brain were decreased by 41% and increased in plasma 43% in the vaccinated compared with contr...

  8. Life without mitochondrial DNA : studies of transgenic mice

    OpenAIRE

    Wang, Jianming

    2000-01-01

    Mitochondrial DNA (mtDNA) is a closed circular DNA genome that resides in the mitochondrial network. Mutations of mtDNA cause spontaneous and hereditary disorders known as mitochondrial diseases. Mitochondrial transcription factor A (Tfam) is a key factor for transcription of mtDNA in vitro. We disrupted the mouse Tfam gene by using the cre-loxP recombination system to study the in vivo roles of Tfam. This thesis focuses on the analyses of germline knockout mice and the c...

  9. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice.

    Science.gov (United States)

    Kerr, D E; Plaut, K; Bramley, A J; Williamson, C M; Lax, A J; Moore, K; Wells, K D; Wall, R J

    2001-01-01

    Infection of the mammary gland, in addition to causing animal distress, is a major economic burden of the dairy industry. Staphylococcus aureus is the major contagious mastitis pathogen, accounting for approximately 15-30% of infections, and has proved difficult to control using standard management practices. As a first step toward enhancing mastitis resistance of dairy animals, we report the generation of transgenic mice that secrete a potent anti-staphylococcal protein into milk. The protein, lysostaphin, is a peptidoglycan hydrolase normally produced by Staphylococcus simulans. When the native form is secreted by transfected eukaryotic cells it becomes glycosylated and inactive. However, removal of two glycosylation motifs through engineering asparagine to glutamine codon substitutions enables secretion of Gln(125,232)-lysostaphin, a bioactive variant. Three lines of transgenic mice, in which the 5'-flanking region of the ovine beta-lactoglobulin gene directed the secretion of Gln(125,232)-lysostaphin into milk, exhibit substantial resistance to an intramammary challenge of 104 colony-forming units (c.f.u.) of S. aureus, with the highest expressing line being completely resistant. Milk protein content and profiles of transgenic and nontransgenic mice are similar. These results clearly demonstrate the potential of genetic engineering to combat the most prevalent disease of dairy cattle.

  10. Antiviral effects of Stichopus japonicus acid mucopolysaccharide on hepatitis B virus transgenic mice

    Science.gov (United States)

    Xin, Yongning; Li, Wei; Lu, Linlin; Zhou, Li; Victor, David W.; Xuan, Shiying

    2016-08-01

    Hepatitis B virus (HBV) is a significant global pathogen and efficient cure for HBV patients is still a challenging goal. We previously reported that acidic mucopolysaccharide from stichopus japonicus selenka (SJAMP) could inhibit HBsAg and HBeAg expression in vitro. However, the potential anti-HBV effects of SJAMP in vivo have not yet been explored. In this study, we show that SJAMP exhibits potent anti-HBV activity in HBV transgenic mice in a dose-dependent manner. Specifically, sixty HBV transgenic male BALB/c mice were randomly selected to receive the treatment of PBS, low dose SJAMP (30 mg kg-1), middle dose SJAMP (40 mg kg-1), high dose SJAMP (50 mg kg-1) and IFN (45 IU kg-1) for 30 d. SJAMP treatment suppressed serum HBV-DNA, and liver HBsAg and HBcAg levels in HBV-transgenic mice. The present study highlights the potential application of SJAMP in HBV therapy.

  11. Brain beta-amyloid accumulation in transgenic mice expressing mutant superoxide dismutase 1.

    Science.gov (United States)

    Turner, Bradley J; Li, Qiao-Xin; Laughton, Katrina M; Masters, Colin L; Lopes, Elizabeth C; Atkin, Julie D; Cheema, Surindar S

    2004-12-01

    Oxidative stress is implicated in both the deposition and pathogenesis of beta-amyloid (Abeta) protein in Alzheimer's disease (AD). Accordingly, overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) in neuronal cells and transgenic AD mice reduces Abeta toxicity and accumulation. In contrast, mutations in SOD1 associated with amyotrophic lateral sclerosis (ALS) confer enhanced pro-oxidative enzyme activities. We therefore examined whether ALS-linked mutant SOD1 overexpression in motor neuronal cells or transgenic ALS mice modulates Abeta toxicity or its accumulation in the brain. Aggregated, but not freshly solubilised, substrate-bound Abeta peptides induced degenerative morphology and cytotoxicity in motor neuron-like NSC-34 cells. Transfection of NSC-34 cells with human wild-type SOD1 attenuated Abeta-induced toxicity, however this neuroprotective effect was also observed for ALS-linked mutant SOD1. Analysis of the cerebral cortex, brainstem, cerebellum and olfactory bulb from transgenic SOD1G93A mice using enzyme-linked immunosorbent assay of acid-guanidine extracts revealed age-dependent elevations in Abeta levels, although not significantly different from wild-type mouse brain. In addition, brain amyloid protein precursor (APP) levels remained unaltered as a consequence of mutant SOD1 expression. We therefore conclude that mutant SOD1 overexpression promotes neither Abeta toxicity nor brain accumulation in these ALS models.

  12. Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice.

    Science.gov (United States)

    Wilkinson, Lorine; Gilbert, Thierry; Sipos, Arnold; Toma, Ildiko; Pennisi, David J; Peti-Peterdi, Janos; Little, Melissa H

    2009-12-01

    Crim1 is a cell-surface, transmembrane protein that binds to a variety of cystine knot-containing growth factors, including vascular endothelial growth factor A. In the developing renal glomerulus, Crim1 acts to tether vascular endothelial growth factor A to the podocyte cell surface, thus regulating its release to glomerular endothelial cells. The hypomorphic transgenic mouse (Crim1(KST264/KST264)) has glomerular cysts and severe glomerular vascular defects because of the lack of functional Crim1 in the glomerulus. Adult transgenic mice have a reduced glomerular filtration rate and glomerular capillary defects. We now show that, in these adult transgenic mice, renal vascular defects are not confined to the glomerulus but also extend to the peritubular microvasculature, as live imaging revealed leakiness of both glomerular and peritubular capillaries. An ultrastructural analysis of the microvasculature showed an abnormal endothelium and collagen deposition between the endothelium and the tubular basement membrane, present even in juvenile mice. Overt renal disease, including fibrosis and renin recruitment, was not evident until adulthood. Our study suggests that Crim1 is involved in endothelial maintenance and integrity and its loss contributes to a primary defect in the extraglomerular vasculature. PMID:19776720

  13. Degeneration of beta-amyloid-associated cholinergic structures in transgenic APP SW mice.

    Science.gov (United States)

    Lüth, Hans-Joachim; Apelt, Jenny; Ihunwo, Amadi O; Arendt, Thomas; Schliebs, Reinhard

    2003-07-01

    Cholinergic dysfunction is a consistent feature of Alzheimer's disease, and the interrelationship between beta-amyloid deposits, inflammation and early cholinergic cell loss is still not fully understood. To characterize the mechanisms by which beta-amyloid and pro-inflammatory cytokines may exert specific degenerating actions on cholinergic cells ultrastructural investigations by electron microscopy were performed in brain sections from transgenic Tg2576 mice that express the Swedish double mutation of the human amyloid precursor protein and progressively develop beta-amyloid plaques during aging. Both light and electron microscopical investigations of the cerebral cortex of 19-month-old transgenic mice revealed a number of pathological tissue responses in close proximity of beta-amyloid plaques, such as activated microglia, astroglial proliferation, increased number of fibrous astrocytes, brain edema, degeneration of nerve cells, dendrites and axon terminals. Ultrastructural detection of choline acetyl transferase (ChAT)-immunostaining in cerebral cortical sections of transgenic mice clearly demonstrated degeneration of ChAT-immunoreactive fibres in the environment of beta-amyloid plaques and activated glial cells suggesting a role of beta-amyloid and/or inflammation in specific degeneration of cholinergic synaptic structures. PMID:12788508

  14. Cardiac Characteristics of Transgenic Mice Overexpressing Refsum Disease Gene-Associated Protein within the Heart.

    Science.gov (United States)

    Koh, J T; Choi, H H; Ahn, K Y; Kim, J U; Kim, J H; Chun, J Y; Baik, Y H; Kim, K K

    2001-09-01

    Arrhythmia is a common cardiac symptom of Refsum disease. Recently, we identified a novel neuron-specific PAHX-associated protein (PAHX-AP1), which binds to the Refsum disease gene (PAHX). In this report, we developed heart-targeted transgenic (TG) mice under the control of alpha-myosin heavy chain promoter to determine whether cardiac overexpression of PAHX-AP1 provokes cardiac involvement symptoms. Northern and in situ hybridization analyses revealed PAHX-AP1 transcript was overexpressed in TG atrium, especially in the sinoatrial node. TG mice showed tachycardia, and tachyarrhythmia was observed in 20% of TG mice. Isolated TG atria showed higher frequency beating and were more sensitive to aconitine-induced tachyarrhythmia than the wild-type, and 40% of the TG atria showed irregular beating. Action potential duration in TG atrial fiber was shortened much more than the wild-type. Systemic administration of arrhythmogenic agents induced arrhythmia in TG mice, while no arrhythmia with the same dose in nonTG mice. Our results indicate that the chronic atrial tachycardia by overexpressed neuron-specific PAHX-AP1 transgene in atrium may be responsible for the increased susceptibility to arrhythmia.

  15. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  16. In vivo bioluminescent monitoring of chemical toxicity using heme oxygenase-luciferase transgenic mice

    International Nuclear Information System (INIS)

    Transgenic mice expressing the luciferase (luc) gene under the control of the heme oxygenase-1 promoter (Ho1) were used to measure the induction of heme oxygenase in response to known toxicants. Transgenic Ho1-luc expression was visualized in vivo using a low-light imaging system (IVIS). Ho1-luc activation was compared to Ho1-luc expression, HO1 protein levels, standard markers of toxicity, and histology. Male and female Ho1-luc transgenic mice were exposed to acute doses of cadmium chloride (CdCl2, 3.7 mg/kg), doxorubicin (15 mg/kg), and thioacetamide (300 mg/kg). These agents induced the expression of Ho1-luc in the liver and other tissues to varying degrees. The greatest increase in Ho1-luc activity was observed in the liver in response to CdCl2; intermediate responses were observed for doxorubicin and thioacetamide. Induction of the Ho1-luc transgene by these agents was similar to endogenous protein levels of heme oxygenase as assessed by Western blotting, and generally correlated with plasma levels of circulating enzymes reflecting hepatic or general tissue damage. Histopathology confirmed the toxic effects of CdCl2 on liver and kidney; doxorubicin on kidney, liver, and intestine; and thioacetamide on the liver. Tissue damage was much more pronounced than the luciferase expression following thioacetamide treatment when compared with tissue damage and bioluminescence of the other toxicants. Nevertheless, the induction of Ho1-luc expression following exposure to these agents suggests that the Ho1-luc transgenic mouse may prove useful as a model for in vivo screening of compounds that induce luciferase expression as a marker of toxicity

  17. Immune responses of IL-5 transgenic mice to parasites and aeroallergens

    Directory of Open Access Journals (Sweden)

    LA Dent

    1997-12-01

    Full Text Available Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionally competent for a number of parameters considered to be important in inflammation, untreated animals are overtly normal and free of disease. In addition, the responses of these animals when exposed to aeroallergens and helminths present a number of apparent paradoxes. Eosinophil accumulation in tissues adjacent to major airways is rapid and extensive in transgenics exposed to the aeroallergen, but even after treatment with antigen over many months these mice show no evidence of respiratory distress or pathology. Helminth-infected IL-5 transgenics and their non-transgenic littermates develop similar inflammatory responses at mucosal sites and are comparable for a number of T cell and antibody responses, but they differ considerably in their ability to clear some parasite species. The life-cycle of Nippostrongylus brasiliensis is significantly inhibited in IL-5 transgenics, but that of Toxocara canis is not. Our results also suggest that eosinophilia and/or over-expression of IL-5 may actually impair host resistance to Schistosoma mansoni and Trichinella spiralis. The pathogenesis of diseases in which eosinophils are involved may therefore be more complex than previously thought.

  18. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus

    DEFF Research Database (Denmark)

    Ghiasi, Seyed Mojtaba; Salmanian, A H; Chinikar, S;

    2011-01-01

    glycoprotein when expressed in the root and leaf of transgenic plants via hairy roots and stable transformation of tobacco plants, respectively. After confirmatory analyses of transgenic plant lines and quantification of the expressed glycoprotein, mice were either fed with the transgenic leaves or roots, fed...... the transgenic plant material and injected subcutaneously with the plant-made CCHFV glycoprotein (fed/boosted), vaccinated with an attenuated CCHF vaccine (positive control), or received no treatment (negative control). All immunized groups had a consistent rise in anti-glycoprotein IgG and IgA antibodies...... in their serum and feces, respectively. The mice in the fed/boosted group showed a significant rise in specific IgG antibodies after a single boost. Our results imply that oral immunization of animals with edible materials from transgenic plants is feasible, and further assessments are under way. In addition...

  19. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development

    OpenAIRE

    1995-01-01

    The ability of SV40 T antigen to cause abnormalities in cartilage development in transgenic mice and chimeras has been tested. The cis- regulatory elements of the COL2A1 gene were used to target expression of SV40 T antigen to differentiating chondrocytes in transgenic mice and chimeras derived from embryonal stem (ES) cells bearing the same transgene. The major phenotypic consequences of transgenic (pAL21) expression are malformed skeleton, disproportionate dwarfism, and perinatal/neonatal d...

  20. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  1. Ultrastructural morphometry of capillary basement membrane thickness in normal and transgenic diabetic mice.

    Science.gov (United States)

    Carlson, Edward C; Audette, Janice L; Veitenheimer, Nicole J; Risan, Jessica A; Laturnus, Donna I; Epstein, Paul N

    2003-04-01

    Capillary basement membrane (CBM) thickening is an ultrastructural hallmark in diabetic patients and in animal models of diabetes. However, the wide variety of tissues sampled and diverse methods employed have made the interpretation of thickness data difficult. We showed previously that acellular glomerular BMs in OVE26 transgenic diabetic mice were thickened beyond normal age-related thickening, and in the current study we hypothesized that other microvascular BMs likewise would show increased widths relative to age-matched controls. Accordingly, a series of tissues, including skeletal and cardiac muscle, ocular retina and choriod, peripheral nerve, lung, pancreas, and renal glomerulus was collected from 300-350-day-old normal and transgenic mice. Transmission electron micrographs of cross sections through capillary walls were prepared, and CBM thickness (CBMT) was determined by the "orthogonal intercept" method. Morphometric analyses showed highly variable transgene-related BMT increases in the sampled tissues, with glomerular BM showing by far the greatest increase (+87%). Significant thickness increases were also seen in the retina, pulmonary alveolus, and thoracoabdominal diaphragm. BMT increases were not universal; however, most were modestly widened, and those that were thickest in controls generally showed the greatest increase. Although the pathogenesis of diabetes-related increases in CBM is poorly understood, data in the current study showed that in OVE26 transgenic mice increased BMT was a frequent concomitant of hyperglycemia. Accordingly, it seems likely that hyperglycemia-induced microvascular damage may be a contributing factor in diabetic BM disease, and that microvessel cellular and extracellular heterogeneity may limit the extent of CBM thickening in diverse tissues. PMID:12629676

  2. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    Science.gov (United States)

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity.

  3. Adipose tissues differentiated by adipose-derived stemcells harvested from transgenic mice

    Institute of Scientific and Technical Information of China (English)

    LU Feng; GAO Jian-hua; Rei Ogawa; Hiroshi Mizuro; Hiki Hykusoku

    2006-01-01

    Objective: To induce adipocyte differentiation in vitro by adipose-derived stromal cells (ASCs) harvested from transgenic mice with green fluorescent protein (GFP)and assess the possibility of constructing adipose tissues via attachment of ASCs to type Ⅰ collagen scaffolds.Methods: Inguinal fat pads from GFP transgenic mice were digested by enzymes for isolation of ASCs (primary culture). After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks, and the adipocyte differentiation by ASCs in vitro was assessed by morphological observation and Oil Red O staining. Then they were attached to collagen scaffolds and co-cultured for 12 hours, followed by hypodermic implantation to the dorsal skin of nude mice for 2 months. The newly-formed tissues were detected by HE staining.Results: The cultured primary stem cells were fibroblast-like and showed active proliferation. After being incubated in an adipocyte differentiation medium, the lipid droplets in the cytoplasm accumulated gradually and finally developed into mature adipocytes, which showed positive in Oil Red O staining. A 0.5-cm3 new tissue clot was found under the dorsal skin of the nude mice and it was confirmed as mature adipose tissues by fluorescent observation and HE staining.Conclusions: ASCs can successfully differentiate adipose tissues into mature adipocytes, which exhibit an adipocyte-like morphology and express as intracytoplasmic lipid droplets. It is an efficient model of adipose tissues engineered with ASCs and type Ⅰ collagen scaffolds.

  4. Utilization of myoblasts from transgenic mice to evaluate the efficacy of myoblast transplantation.

    Science.gov (United States)

    Kinoshita, I; Huard, J; Tremblay, J P

    1994-09-01

    A possible treatment for Duchenne muscular dystrophy is the injection of normal myoblasts into dystrophic muscles to induce the formation of new, healthy, and dystrophin-positive muscle fibers. To develop this therapy, it is important to identify the muscle fibers formed by the injected myoblasts in the host muscles. In this study, we used myoblasts from transgenic mice which have a gene expressing beta-galactosidase under the control of the promoter of quail fast skeletal muscle troponin I. This transgene is expressed in myotubes and muscle fibers, but not in myoblasts. Twenty-eight days after myoblast transplantation in nude and in mdx mice, muscle fibers containing of beta-galactosidase were identified by x-gal staining. In mdx mice, most of the beta-galactosidase-positive muscle fibers resulting from the myoblast transplantation were also dystrophin positive. This technique could make it possible to follow the success of myoblast transplantation even in mice that are not depleted of dystrophin. PMID:8065399

  5. Protective Effects of Overexpression of bcl-xl Gene on Local Cerebral Infarction in Transgenic Mice Undergoing Permanent Occlusion of Middle Cerebral Artery

    Institute of Scientific and Technical Information of China (English)

    Furong WANG; Yongsheng JIANG; Suming ZHANG; Wenwu XIAO; Suiqiang ZHU

    2008-01-01

    In order to investigate the protective effects of the overexpression of bcl-xl gene on local cerebral infarction in the transgenic mice subject to permanent occlusion of middle cerebral artery, the models of bcl-xl transgenic mice were established and subjected to cerebral infarction by intralu- minal occlusion of the middle cerebral artery. The infarct volume and the neurological scores were observed and comparison between the wild type mice and the transgenic mice was made. It was found that the infarct volume and the neurological scores in the transgenic mice were significantly decreased as compared with those in the wild type mice. It was suggested that the overexpression of bcl-xl gene in transgenic mice could reduce the infarct volume and improve the neurological function of the mice.

  6. Regulation of an Autoimmune Model for Multiple Sclerosis in Th2-Biased GATA3 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Viromi Fernando

    2014-01-01

    Full Text Available T helper (Th2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS. This is mainly based on “loss-of-function” studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE, using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses (“gain-of-function” approach could alter EAE, the approach of novel GATA binding protein 3 (GATA3-transgenic (tg mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG35−55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS.

  7. Lens specific RLIP76 transgenic mice show a phenotype similar to microphthalmia.

    Science.gov (United States)

    Sahu, Mukesh; Sharma, Rajendra; Yadav, Sushma; Wakamiya, Maki; Chaudhary, Pankaj; Awasthi, Sanjay; Awasthi, Yogesh C

    2014-01-01

    RALBP1/RLIP76 is a ubiquitously expressed protein, involved in promotion and regulation of functions initiated by Ral and R-Ras small GTPases. Presence of multiple domains in its structure enables RLIP76 to be involved in a number of physiological processes such as endocytosis, exocytosis, mitochondrial fission, actin cytoskeleton remodeling, and transport of exogenous and endogenous toxicants. Previously, we have established that RLIP76 provides protection to ocular tissues against oxidative stress by transporting the glutathione-conjugates of the toxic, electrophilic products of lipid peroxidation generated during oxidative stress. Therefore, we developed lens specific RLIP76 transgenic mice (lensRLIP76 Tg) to elucidate the role of RLIP76 in protection against oxidative stress, but these transgenic mice showed impaired lens development and a phenotype with small eyes similar to that observed in microphthalmia. These findings prompted us to investigate the mechanisms via which RLIP76 affects lens and eye development. In the present study, we report engineering of lensRLIP76 Tg mice, characterization of the associated phenotype, and the possible molecular mechanisms that lead to the impaired development of eye and lens in these mice. The results of microarray array analysis indicate that the genes involved in pathways for G-Protein signaling, actin cytoskeleton reorganization, endocytosis, and apoptosis are affected in these transgenic mice. The expression of transcription factors, Pax6, Hsf1, and Hsf4b known to be involved in lens development is down regulated in the lens of these Tg mice. However, the expression of heat shock proteins (Hsps), the downstream targets of Hsfs, is differentially affected in the lens showing down regulation of Hsp27, Hsp40, up regulation of Hsp60, and no effect on Hsp70 and Hsp90 expression. The disruption in the organization of actin cytoskeleton of these Tg mice was associated with the inhibition of the activation of Cdc42 and

  8. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  9. Cosmetics-triggered percutaneous remote control of transgene expression in mice.

    Science.gov (United States)

    Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin

    2015-08-18

    Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies.

  10. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J. (CH-PA); (UPENN); (Danforth)

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  11. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site.

    Science.gov (United States)

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M; Bennett, Michael J; Stanley, Charles A; Smith, Thomas J

    2011-09-30

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic β-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  12. Transmissibility of H-Type Bovine Spongiform Encephalopathy to Hamster PrP Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Okada

    Full Text Available Two distinct forms of atypical bovine spongiform encephalopathies (H-BSE and L-BSE can be distinguished from classical (C- BSE found in cattle based on biochemical signatures of disease-associated prion protein (PrPSc. H-BSE is transmissible to wild-type mice-with infected mice showing a long survival period that is close to their normal lifespan-but not to hamsters. Therefore, rodent-adapted H-BSE with a short survival period would be useful for analyzing H-BSE characteristics. In this study, we investigated the transmissibility of H-BSE to hamster prion protein transgenic (TgHaNSE mice with long survival periods. Although none of the TgHaNSE mice manifested the disease during their lifespan, PrPSc accumulation was observed in some areas of the brain after the first passage. With subsequent passages, TgHaNSE mice developed the disease with a mean survival period of 220 days. The molecular characteristics of proteinase K-resistant PrPSc (PrPres in the brain were identical to those observed in first-passage mice. The distribution of immunolabeled PrPSc in the brains of TgHaNSE mice differed between those infected with H-BSE as compared to C-BSE or L-BSE, and the molecular properties of PrPres in TgHaNSE mice infected with H-BSE differed from those of the original isolate. The strain-specific electromobility, glycoform profiles, and proteolytic cleavage sites of H-BSE in TgHaNSE mice were indistinguishable from those of C-BSE, in which the diglycosylated form was predominant. These findings indicate that strain-specific pathogenic characteristics and molecular features of PrPres in the brain are altered during cross-species transmission. Typical H-BSE features were restored after back passage from TgHaNSE to bovinized transgenic mice, indicating that the H-BSE strain was propagated in TgHaNSE mice. This could result from the overexpression of the hamster prion protein.

  13. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  14. Effects of Blueberry Extract on Antioxidant Capacity in APP/PS1 Transgenic Mice

    Institute of Scientific and Technical Information of China (English)

    Long TAN; Hai-qiang LI; Hong-peng YANG; Wei PANG; Wei LIU; Shou-dan SUN; Yu-gang JIANG

    2014-01-01

    ObjectiveTo investigate the effects of blueberry extract on antioxidant capacity in mice with Alzheimer’s disease (AD). Methods APP/PS1 double transgenic mice were adopted as the AD model and groups AD, AD+BB and control (CT) were set with ten mice in each group. The mice were given blueberry extract(BB) or saline for 16 weeks. The body weight gain and the food consumption were recorded weekly. The morphological changes in cortex were detected, and the activities of SOD, GSH-Px and the levels of GSH and MDA in the brain, liver, kidney and serum were determined.Results The food consumption did not show any significant difference among the three groups, and the AD mice treated with BB obtained a remarkable body weight gain during the experimental period. The morphological examination showed that an obvious neuronal loss appeared in the cortex of AD mice and improvement was noted in mice treated with BB. The biochemical detection showed that the activities of SOD and GSH-Px, and levels of GSH in the brain, liver and serum were significantly declined while the levels of MDA in these tissues and serum were increased in AD mice. After BB administration, the activity of SOD in brain was elevated significantly and the activities of GSH-Px and the levels of GSH in liver and serum were also recovered to some extent. Meanwhile, the levels of MDA in the brain, liver and serum were decreased obviously. However, the activities of antioxidant enzymes and the level of MDA did not show significant change in kidney. Conclusion Brain is susceptive to oxidative stress in AD mice. Blueberry extract is effective in alleviating the oxidative damage in AD mice.

  15. Generation and characterization of transgenic mice expressing tamoxifen-inducible cre-fusion protein specifically in mouse liver

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhang Zhu; Jian-Quan Chen; Guo-Xiang Cheng; Jing-Lun Xue

    2003-01-01

    AIM: To establish transgenic mice expressing tamoxifeninducible Cre-ERt recombinase specifically in the liver and to provide an efficient animal model for studying gene function in the liver and creating various mouse models mimicking human diseases.METHODS: Alb-Cre-ERt transgenic mice were produced by microinjecting the construct with Cre-ERt fusion gene of DNA fragments into fertilized eggs derived from inbred C57BL/6strain. Transgenic mice were identified by using PCR and Southern blotting. Expression of Cre-ERt fusion gene was analyzed in the liver, kidney, brain and lung from F1generation transgenic mice at 8 weeks of age by reverse transcription (RT)-PCR.RESULTS: Four hundred and fourteen fertilized eggs of C57 BL/6 mice were microinjected with recombinant AlbCre-ERt DNA fragments, and 312 survival eggs injected were transferred to the oviducts of 12 pseudopregnant recipient mice, 6 of 12 recipient mice became pregnant and gave birth to 44 offsprings. Of the 44 offsprings, two males and one female carried the hybrid Cre-ERt fusion gene. Three mice were determined as founders, and were back crossed to set up F1 generations with other inbred C57BL/6 mice.Transmission of Cre-ERt fusion gene in F1 offspring followed Mendelian rules. The expression of Cre-ERt mRNA was detected only in the liver of F1 offspring from two of three founder mice.CONCLUSION: Transgenic mice expressing tamoxifeninducible Cre-ERt recombinase under control of the liverspecific promoter are preliminary established.

  16. Metallothionein-1+2 deficiency increases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin 6

    DEFF Research Database (Denmark)

    Giralt, Mercedes; Penkowa, Milena; Hernández, Joaquín;

    2002-01-01

    Transgenic expression of IL-6 under the control of the GFAP gene promoter (GFAP-IL6 mice) in the CNS causes significant damage and alters the expression of many genes, including the metallothionein (MT) family, especially in the cerebellum. The crossing of GFAP-IL6 mice with MT-1+2 knock out (MTK...

  17. Reduced p75NTRexpression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Küst, B.M.; Brouwer, N.; Mantingh, I.J.; Boddeke, H.W.G.M.; Copray, J.C.V.M.

    2003-01-01

    hSOD1 (G93A) transgenic mice develop pathological changes similar to those in patients with familial amyotrophic lateral sclerosis (FALS). In particular, the progressive degeneration of motoneurons is charactered in this mouse model. One feature of stressed motoneurons in ALS and the hSOD1 mice is t

  18. Animal models of human disease. Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes.

    OpenAIRE

    Pattengale, P K; Stewart, T A; Leder, A; Sinn, E; Muller, W.; Tepler, I; Schmidt, E.; Leder, P

    1989-01-01

    This present review focuses on spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes. The historical development of transgenic mice as in vivo disease models is briefly traced, followed by a brief description of the actual technology in such systems. Additional emphasis is placed on the concept of targeting activated cellular oncogenes to specific tissues in transgenic mice. Cumulative experience with activated (Vmyc, ras, and neu (erb-B2] onc...

  19. Novel behavioural characteristics of female APPSwe/PS1ΔE9 double transgenic mice.

    Science.gov (United States)

    Cheng, David; Low, Jac Kee; Logge, Warren; Garner, Brett; Karl, Tim

    2014-03-01

    Murine models are commonly used to evaluate progression of Alzheimer's disease. APPSwe/PS1ΔE9 (APPxPS1) mice have previously been reported to demonstrate impaired learning and memory in the Morris water maze test. However, this paradigm introduces a variety of behaviours that may confound performance of the mice, thus an alternative was sought. A battery of behavioural tests (light-dark test, elevated plus maze, novel object recognition task, social recognition test, cheeseboard task and prepulse inhibition) was used to investigate various behavioural and cognitive domains with relevance to Alzheimer's disease. We found 9-month old female APPxPS1 mice exhibited impaired spatial memory in the reversal cheeseboard task. In addition, task-dependent hyperlocomotion and anxiolytic-like behaviours were observed in the light-dark test. Female APPxPS1 demonstrated intact object recognition memory and sensorimotor gating was not significantly decreased compared to control mice except for one particular interstimulus interval. The social recognition test failed to detect preference for social novelty in control females. In conclusion, this is the first study to describe a memory deficit in female APPxPS1 mice in the hidden cheeseboard task. Transgenic females also exhibited task-dependent reduction in anxiety behaviours and hyperlocomotion. These novel findings enhance our understanding of the behavioural phenotype of APPxPS1 females and present the cheeseboard as a valid alternative to other established spatial memory tests. Furthermore, the task-dependency of some of our findings suggests that behavioural profiling of APPxPS1 transgenic mice should be assessed using a variety of behavioural paradigms.

  20. Transgenic mice overexpressing insulin-like growth factor-II in β cells develop type 2 diabetes

    OpenAIRE

    Devedjian, Jean-Christophe; George, Monica; Casellas, Alba; Pujol, Anna; Visa, Joana; Pelegrín, Mireia; Gros, Laurent; Bosch, Fatima

    2000-01-01

    During embryonic development, insulin-like growth factor-II (IGF-II) participates in the regulation of islet growth and differentiation. We generated transgenic mice (C57BL6/SJL) expressing IGF-II in β cells under control of the rat Insulin I promoter in order to study the role of islet hyperplasia and hyperinsulinemia in the development of type 2 diabetes. In contrast to islets from control mice, islets from transgenic mice displayed high levels of IGF-II mRNA and protein. Pancreases from tr...

  1. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    Directory of Open Access Journals (Sweden)

    Natalia V. Permyakova

    2015-01-01

    Full Text Available Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L. genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  2. Effects of chronic stress on the onset and progression of Huntington's disease in transgenic mice.

    Science.gov (United States)

    Mo, Christina; Renoir, Thibault; Hannan, Anthony J

    2014-11-01

    Huntington's disease (HD) is a neurodegenerative disease caused by a tandem repeat mutation encoding an expanded polyglutamine tract. Our previous work showed that memory deficits in HD transgenic mice could be accelerated by increased levels of stress hormone, while memory in WT mice remained unaffected. HD patients experience higher levels of stress compared to the general population and symptoms of HD also include motor, cognitive, psychiatric, sexual and olfactory abnormalities, and an associated decline in activities of daily living. Therefore we investigated the impact of a robust stressor (i.e. restraint) on the onset and progression of a range of behavioral phenotypes in R6/1 transgenic HD mice. Restraint was administered for 1h daily from 6weeks of age and continued until R6/1 mice were clearly motor symptomatic at 14weeks of age. Serum corticosterone levels in both R6/1 and WT littermates were elevated immediately after the last restraint session and weight gain was suppressed in restrained animals throughout the treatment period. Motor coordination and locomotor activity were enhanced by chronic restraint in males, regardless of genotype. However, there was no effect of restraint on motor performances in female animals. At 8weeks of age, olfactory sensitivity was impaired by restraint in R6/1 HD female mice, but not in WT mice. In male R6/1 mice, the olfactory deficit was exacerbated by restraint and olfaction was also impaired in male WT mice. The development of deficits in saccharin preference, Y-maze memory, nest-building and sexually-motivated vocalizations was unaffected by chronic restraint in R6/1 and had little impact on such behavioral performances in WT animals. We provide evidence that chronic stress can negatively modulate specific endophenotypes in HD mice, while the same functions were affected to a lesser extent in WT mice. This vulnerability in HD animals seems to be sex-specific depending on the stress paradigm used. It is hoped that our

  3. Imaging cyclic AMP changes in pancreatic islets of transgenic reporter mice.

    Directory of Open Access Journals (Sweden)

    Joung Woul Kim

    Full Text Available Cyclic AMP (cAMP and Ca(2+ are two ubiquitous second messengers in transduction pathways downstream of receptors for hormones, neurotransmitters and local signals. The availability of fluorescent Ca(2+ reporter dyes that are easily introduced into cells and tissues has facilitated analysis of the dynamics and spatial patterns for Ca(2+ signaling pathways. A similar dissection of the role of cAMP has lagged because indicator dyes do not exist. Genetically encoded reporters for cAMP are available but they must be introduced by transient transfection in cell culture, which limits their utility. We report here that we have produced a strain of transgenic mice in which an enhanced cAMP reporter is integrated in the genome and can be expressed in any targeted tissue and with tetracycline induction. We have expressed the cAMP reporter in beta-cells of pancreatic islets and conducted an analysis of intracellular cAMP levels in relation to glucose stimulation, Ca(2+ levels, and membrane depolarization. Pancreatic function in transgenic mice was normal. In induced transgenic islets, glucose evoked an increase in cAMP in beta-cells in a dose-dependent manner. The cAMP response is independent of (in fact, precedes the Ca(2+ influx that results from glucose stimulation of islets. Glucose-evoked cAMP responses are synchronous in cells throughout the islet and occur in 2 phases suggestive of the time course of insulin secretion. Insofar as cAMP in islets is known to potentiate insulin secretion, the novel transgenic mouse model will for the first time permit detailed analyses of cAMP signals in beta-cells within islets, i.e. in their native physiological context. Reporter expression in other tissues (such as the heart where cAMP plays a critical regulatory role, will permit novel biomedical approaches.

  4. GFAP expression and social deficits in transgenic mice overexpressing human sAPPα

    Science.gov (United States)

    Bailey, Antoinette R; Hou, Huayan; Song, Min; Obregon, Demian F; Portis, Samantha; Barger, Steven; Shytle, Doug; Stock, Saundra; Mori, Takashi; Sanberg, Paul G; Murphy, Tanya; Tan, Jun

    2013-01-01

    Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPPα), the product of α-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism-like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL-6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild-type mice treated with sAPPα, displayed suppressed β-tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment. PMID:23840007

  5. GFAP expression and social deficits in transgenic mice overexpressing human sAPPα.

    Science.gov (United States)

    Bailey, Antoinette R; Hou, Huayan; Song, Min; Obregon, Demian F; Portis, Samantha; Barger, Steven; Shytle, Doug; Stock, Saundra; Mori, Takashi; Sanberg, Paul G; Murphy, Tanya; Tan, Jun

    2013-09-01

    Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPPα), the product of α-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism-like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL-6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild-type mice treated with sAPPα, displayed suppressed β-tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment. PMID:23840007

  6. Effects of transgene expression level per cell in mice livers on induction of transgene-specific immune responses after hydrodynamic gene transfer.

    Science.gov (United States)

    Yin, Y; Takahashi, Y; Hamana, A; Nishikawa, M; Takakura, Y

    2016-07-01

    We previously showed that high and sustained transgene expression of antigenic proteins induced transgene-specific immune responses. In the present study, a detailed relationship between the level of transgene expression per cell and immune response after hydrodynamic gene transfer was investigated. Cypridina luciferase (cLuc), a secretory antigenic reporter protein, was selected as a model antigen, and pROSA-cLuc, a plasmid expressing cLuc, was constructed. A fixed dose (30 μg) of pROSA-cLuc was delivered to mice by a single hydrodynamic injection or three injections at 24-h intervals because the number of cells transfected with plasmids is dependent on the number of hydrodynamic injections. Serum cLuc activity, an indicator of the total amount of cLuc transgene expression, was almost equal between these two groups. In contrast, the high-dose single injection induced higher levels of cLuc-specific humoral and cellular immune responses than the three low-dose injections. Moreover, the serum cLuc activity of the high-dose single injection group began to decline ~10 days after injection, whereas the activity remained constant in the three low-dose injection group. These results indicate that it is preferable to reduce the level of transgene expression per cell to avoid induction of the transgene-specific immune response after hydrodynamic gene transfer. PMID:26966861

  7. Chronic wasting disease of deer and elk in transgenic mice: oral transmission and pathobiology.

    Science.gov (United States)

    Trifilo, Matthew J; Ying, Ge; Teng, Chao; Oldstone, Michael B A

    2007-08-15

    To study the pathogenesis of chronic wasting disease (CWD) in deer and elk, transgenic (tg) mice were generated that expressed the prion protein (PrP) of deer containing a glycine at amino acid (aa) 96 and a serine at aa 225 under transcriptional control of the murine PrP promoter. This construct was introduced into murine PrP-deficient mice. As anticipated, neither non-tg mice nor PrP ko mice were susceptible when inoculated intracerebrally (i.c.) or orally with CWD brain material (scrapie pool from six mule deer) and followed for 600+ days (dpi). Deer PrP tg mice were not susceptible to i.c. inoculation with murine scrapie. In contrast, a fatal neurologic disease occurred accompanied by conversion of deer PrPsen to PrPres by western blot and immunohistochemistry after either i.c. inoculation with CWD brain into two lines of tg mice studied (312+32 dpi [mean+2 standard errors] for the heterozygous tg line 33, 275+46 dpi for the heterozygous tg line 39 and 210 dpi for the homozygous tg line 33) or after oral inoculation (381+55 dpi for the homozygous tg line 33 and 370+26 dpi for the homozygous tg line 39). Kinetically, following oral inoculation of CWD brain, PrPres was observed by day 200 when mice were clinically healthy in the posterior surface of the dorsum of the tongue primarily in serous and mucous glands, in the intestines, in large cells at the splenic marginal zone that anatomically resembled follicular dendritic cells and macrophages and in the olfactory bulb and brain stem but did not occur in the cerebellum, cerebral cortex or hippocampus or in hearts, lungs and livers of infected mice. After 350 days when mice become clinically ill the cerebellum, cerebral cortex and hippocampus became positive for PrPres and displayed massive spongiosis, neuronal drop out, gliosis and florid plaques. PMID:17451773

  8. Stable expression of calpain 3 from a muscle transgene in vivo: Immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation

    OpenAIRE

    Spencer, M.J.; Guyon, J. R.; Sorimachi, H.; Potts, A; Richard, I.; Herasse, M; Chamberlain, J.; Dalkilic, I.; Kunkel, L. M.; Beckmann, J S

    2002-01-01

    Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of ful...

  9. Sex dimorphisms of crossbridge cycling kinetics in transgenic hypertrophic cardiomyopathy mice.

    Science.gov (United States)

    Birch, Camille L; Behunin, Samantha M; Lopez-Pier, Marissa A; Danilo, Christiane; Lipovka, Yulia; Saripalli, Chandra; Granzier, Henk; Konhilas, John P

    2016-07-01

    Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level.

  10. Sex dimorphisms of crossbridge cycling kinetics in transgenic hypertrophic cardiomyopathy mice.

    Science.gov (United States)

    Birch, Camille L; Behunin, Samantha M; Lopez-Pier, Marissa A; Danilo, Christiane; Lipovka, Yulia; Saripalli, Chandra; Granzier, Henk; Konhilas, John P

    2016-07-01

    Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level. PMID:27199124

  11. Characterization of Fam20C expression in odontogenesis and osteogenesis using transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Er-Xia Du; Xiao-Fang Wang; Wu-Chen Yang; Deborah Kaback; Siu-Pok Yee; Chun-Lin Qin; Anne George; Jian-Jun Hao

    2015-01-01

    Our previous studies have demonstrated that Fam20C promotes differentiation and mineralization of odontoblasts, ameloblasts, osteoblasts and osteocytes during tooth and bone development. Ablation of the Fam20C gene inhibits bone and tooth growth by increasing fibroblast growth factor 23 in serum and causing hypophosphatemia in conditional knockout mice. However, control and regulation of the expression of Fam20C are still unknown. In this study, we generated a transgenic reporter model which expresses green fluorescence protein (GFP) driven by the Fam20C promoter. Recombineering was used to insert a 16 kb fragment of the mouse Fam20C gene (containing the 15 kb promoter and 1.1 kb of exon 1) into a pBluescript SK vector with the topaz variant of GFP and a bovine growth hormone polyadenylation sequence. GFP expression was subsequently evaluated by histomorphometry on cryosections from E14 to adult mice. Fluorescence was evident in the bone and teeth as early as E17.5. The GFP signal was maintained stably in odontoblasts and osteoblasts until 4 weeks after birth. The expression of GFP was significantly reduced in teeth, alveolar bone and muscle by 8 weeks of age. We also observed colocalization of the GFP signal with the Fam20C antibody in postnatal 1-and 7-day-old animals. Successful generation of Fam20C-GFP transgenic mice will provide a unique model for studying Fam20C gene expression and the biological function of this gene during odontogenesis and osteogenesis.

  12. Therapeutic effect of the anti-Fas antibody on arthritis in HTLV-1 tax transgenic mice.

    Science.gov (United States)

    Fujisawa, K; Asahara, H; Okamoto, K; Aono, H; Hasunuma, T; Kobata, T; Iwakura, Y; Yonehara, S; Sumida, T; Nishioka, K

    1996-07-15

    We have recently demonstrated Fas-mediated apoptosis in the synovium, of patients with rheumatoid arthritis (RA) and suggested that it may be one factor responsible for the regression of RA. To examine whether the induction of apoptosis caused by anti-Fas mAb may play a potential role as a new therapeutic strategy for RA, we investigated the effect of anti-Fas mAb (RK-8) on synovitis in an animal model of RA, the human T cell leukemia virus type I (HTLV-1) tax transgenic mice. We report here that administration of anti-Fas mAb into mice intra-articularly improved the paw swelling and arthritis within 48 h. Immunohistochemical study and in vitro culture studies showed that 35% of synovial fibroblasts, 75% of mononuclear cells, and some of polymorphonuclear leukocytes infiltrating in synovium underwent apoptosis by anti-Fas mAb. In situ nick end labeling analysis and electron microscope analysis clearly showed that many cells in synovium were induced apoptosis by anti-Fas mAb administration. However, local administration of anti-Fas mAb did not produce systemic side effects. Results demonstrated that administration of anti-Fas mAb in arthritic joints of the HTLV-1 tax transgenic mice produced improvement of arthritis. These findings suggest that local administration of anti-Fas mAb may represent a useful therapeutic strategy for proliferative synovitis such as RA.

  13. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Nishijima, Ken-ichi, E-mail: nishijma@nubio.nagoya-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Usui, Tatsufumi, E-mail: usutatsu@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Yamamoto, Sayo, E-mail: ysayo@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Suyama, Haruka, E-mail: sharuka@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ozaki, Kinuyo, E-mail: k-ozaki@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ito, Toshihiro, E-mail: toshiito@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); and others

    2014-07-18

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.

  14. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    International Nuclear Information System (INIS)

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation

  15. Induction of epithelial mesenchimal transition and vasculogenesis in the lenses of Dbl oncogene transgenic mice.

    Directory of Open Access Journals (Sweden)

    Paolo Fardin

    Full Text Available BACKGROUND: The Dbl family of proteins represents a large group of proto-oncogenes involved in cell growth regulation. The numerous domains that are present in many Dbl family proteins suggest that they act to integrate multiple inputs in complicated signaling networks involving the Rho GTPases. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders and neoplastic transformation. We generated transgenic mice introducing the cDNA of Dbl oncogene linked to the metallothionein promoter into the germ line of FVB mice and found that onco-Dbl expression in mouse lenses affected proliferation, migration and differentiation of lens epithelial cells. RESULTS: We used high density oligonucleotide microarray to define the transcriptional profile induced by Dbl in the lenses of 2 days, 2 weeks, and 6 weeks old transgenic mice. We observed modulation of genes encoding proteins promoting epithelial-mesenchymal transition (EMT, such as down-regulation of epithelial cell markers and up-regulation of fibroblast markers. Genes encoding proteins involved in the positive regulation of apoptosis were markedly down regulated while anti-apoptotic genes were strongly up-regulated. Finally, several genes encoding proteins involved in the process of angiogenesis were up-regulated. These observations were validated by histological and immunohistochemical examination of the transgenic lenses where vascularization can be readily observed. CONCLUSION: Onco-Dbl expression in mouse lens correlated with modulation of genes involved in the regulation of EMT, apoptosis and vasculogenesis leading to disruption of the lens architecture, epithelial cell proliferation, and aberrant angiogenesis. We conclude that onco-Dbl has a potentially important, previously unreported, capacity to dramatically alter epithelial cell migration, replication, polarization and differentiation and to induce vascularization of an epithelial

  16. Effects of (-epicatechin on the pathology of APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Yueqin eZeng

    2014-05-01

    Full Text Available Background: Alzheimer’s disease is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The clearance of Aβ from the brain and anti-inflammation are potential important strategies to prevent and treat disease. In a previous study, we demonstrated the grape seed extract (GSE could reduce brain Aβ burden and microglia activation,but which polyphenol plays a major role in these events is not known. Here we tested pharmacological effects of (-epicatechin, one principle polyphenol compound in GSE, on transgenic AD mice.Methods: APP/PS1 transgenic mice were fed with (-epicatechin diet(40mg/kg/d and curcumin diet (47mg/kg/d at 3 months of age for 9 months, the function of liver, Aβ levels in the brain and serum, AD-type neuropathology, plasma levels of inflammatory cytokines were measured.Results: Towards the end of the experiment we found long-term feeding of (- epicatechin diet was well tolerated without fatality, changes in food consumption, body weight or liver function. (-Epicatechin significantly reduced total Aβ in brain and serum by 39% and 40%, respectively, compared with control diet. Microgliosis and astrocytosis in the brain of Alzheimer’s mice were also reduced by 38% and 35%, respectively. The (-epicatechin diet did not alter learning and memory behaviors in AD mice.Conclusions: This study has provided evidence on the beneficial role of (-epicatechin in ameliorating amyloid-induced AD-like pathology in AD mice, but the impact of (-epicatechin on tau pathology is not clear, also the mechanism needs further research.

  17. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans;

    1988-01-01

    . The cells produce both proinsulin I and II and efficiently process each into mature insulin, in a manner comparable to normal beta cells in isolated islets. Electron microscopy reveals typical beta-cell type secretory granules, in which insulin is stored. Insulin secretion is inducible up to 30-fold...... by glucose, although with a lower threshold for maximal stimulation than that for normal beta cells. beta TC lines can be repeatedly derived from primary beta-cell tumors that heritably arise in the transgenic mice. Thus, targeted expression of an oncogene with a cell-specific regulatory element can be used...

  18. Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase beta subunit.

    OpenAIRE

    Lem, J.; Flannery, J. G.; Li, T; Applebury, M L; Farber, D B; Simon, M. I.

    1992-01-01

    The beta subunit of the cGMP phosphodiesterase (PDE) gene has been identified as the candidate gene for retinal degeneration in the rd mouse. To study the molecular mechanisms underlying degeneration and the potential for gene repair, we have expressed a functional bovine cGMP PDE beta subunit in transgenic rd mice. One transgenic mouse line showed complete photoreceptor rescue across the entire span of the retina. A second independently derived line showed partial rescue in which photorecept...

  19. Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase ß subunit

    OpenAIRE

    Lem, Janis; Flannery, John G.; Li, Tiansen; Applebury, Meredithe L.; Farber, Debora B.; Simon, Melvin I.

    1992-01-01

    The ß subunit of the cGMP phosphodiesterase (PDE) gene has been identified as the candidate gene for retinal degeneration in the rd mouse. To study the molecular mechanisms underlying degeneration and the potential for gene repair, we have expressed a functional bovine cGMP PDE ß subunit in transgenic rd mice. One transgenic mouse line showed complete photoreceptor rescue across the entire span of the retina. A second independently derived line showed partial rescue in which photoreceptors in...

  20. An Efficient and Versatile System for Visualization and Genetic Modification of Dopaminergic Neurons in Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Karsten Tillack

    Full Text Available The brain dopaminergic (DA system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson's disease (PD and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification.Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA or the reverse tetracycline-regulated transactivator (rtTA under control of the tyrosine hydroxylase (TH promoter, TH-tTA (tet-OFF and TH-rtTA (tet-ON mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time.These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases.

  1. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Fenger, Christina; Nielsen, Helle H;

    2004-01-01

    larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed......The inflammatory cytokine tumour necrosis factor (TNF) can both induce oligodendrocyte and myelin pathology and promote proliferation of oligodendrocyte progenitor cells and remyelination. We have compared the response of the oligodendrocyte lineage to anterograde axonal (Wallerian) and terminal...

  2. Cerebroprotective effect of Huanglian Jiedu decoction on amyloid protein precursor/presenilin-1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Xin Qiu; Guohua Chen; Gui Mei; Yuegu Wang; Kaixin Wang; Tao Wang; Pei Feng

    2011-01-01

    Huanglian Jiedu decoction (HLJDD) has been shown to improve cerebral blood flow, and reduce lipid peroxidation damage to the brain and its energy metabolism. The present study was designed to observe the cerebroprotective effect of HLJDD on an Alzheimer's disease rodent model,presenilin-1/amyloid protein precursor double transgenic mice. HLJDD reduced serum interleukin-6 and interleukin-1β levels, decreased β-amyloid precursor protein gene and senile plaque expression, resisted oxidation, and reduced free radical-induced injury, thereby improving the learning and memory of these mice. Moreover, HLJDD at 433 mg/kg per day exhibited better effects compared with that at 865 or 216 mg/kg per day, and donepezil hydrochloride at 30 mg/kg per day.Thus, these results suggest that HLJDD may have protective effects against Alzheimer's disease.

  3. Nucleus-targeted Dmp1 transgene fails to rescue dental defects in Dmp1 null mice

    Institute of Scientific and Technical Information of China (English)

    Shu-Xian Lin; Qi Zhang; Hua Zhang; Kevin Yan; Leanne Ward; Yong-Bo Lu; Jian-Quan Feng

    2014-01-01

    Dentin matrix protein 1 (DMP1) is essential to odontogenesis. Its mutations in human subjects lead to dental problems such as dental deformities, hypomineralization and periodontal impairment. Primarily, DMP1 is considered as an extracellular matrix protein that promotes hydroxyapatite formation and activates intracellular signaling pathway via interacting with avb3 integrin. Recent in vitro studies suggested that DMP1 might also act as a transcription factor. In this study, we examined whether full-length DMP1 could function as a transcription factor in the nucleus and regulate odontogenesis in vivo. We first demonstrated that a patient with the DMP1 M1V mutation, which presumably causes a loss of the secretory DMP1 but does not affect the nuclear translocation of DMP1, shows a typical rachitic tooth defect. Furthermore, we generated transgenic mice expressing NLSDMP1, in which the endoplasmic reticulum (ER) entry signal sequence of DMP1 was replaced by a nuclear localization signal (NLS) sequence, under the control of a 3.6 kb rat type I collagen promoter plus a 1.6 kb intron 1. We then crossbred the NLSDMP1 transgenic mice with Dmp1 null mice to express the NLSDMP1 in Dmp1-deficient genetic background. Although immunohistochemistry demonstrated that NLSDMP1 was localized in the nuclei of the preodontoblasts and odontoblasts, the histological, morphological and biochemical analyses showed that it failed to rescue the dental and periodontal defects as well as the delayed tooth eruption in Dmp1 null mice. These data suggest that the full-length DMP1 plays no apparent role in the nucleus during odontogenesis.

  4. INFLUENCE OF CHEMOTHERAPEUTANTS AND CYTOKINES ON GROWTH AND TRANSGENE EXPRESSION OF BONE MARROW CELLS FROM MT/P210bcr-ab1 TRANSGENIC MICE

    Institute of Scientific and Technical Information of China (English)

    CHEN Hanchun; Andrew Pierce; Tony Whetton

    1999-01-01

    Objective: To investigate the influence of chemotherapeutic agents and cytokines on growth of bone marrow cells from MT/p210 bcr-ab1 transgenic mice.Methods: The bone marrow cells of transgenic chronic myelogenous leukemia (CML) model mice carrying metallothionein (MT) promoter/enhancer, bcr-abl (p210)cDNA and SV40 splicing/poly (A) signal sequences were cultured in liquid and soft agar with hydroxyurea (Hu),5-fluorouracil (5-Fu), mouse stem cell factor (mSCF)and mouse interleukin-3 (mIL-3) independently or collectively. The cells and colonies were counted. The levels of transgene expression were detected by reverse transcriptase-polymerase chain reaction (RT-PCR).Results: The cell proliferation, colony formation and transgene expression of the bone marrow cells were stimulated with mSCF and mIL-3, but there was little growth without any growth factors, or when mSCF,mIL-3 and Hu or 5-Fu were added. Conclusion: The combined utilization of chemotherapeutants and cytokines is a potentially effective strategy of clinical treatment for CML.

  5. Growth hormone (GH) binding and effects of GH analogs in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Bartke, A.; Steger, R.W. [Southern Illinois Univ., Carbondale, IL (United States); Turyn, D. [UBA-CONICET, Buenos Aires (Argentina)] [and others

    1994-12-31

    Overexpression of human (h) or bovine (b) growth hormone (GH) in transgenic mice is associated with marked (2- to 12-fold) and significant increase in hepatic binding of GH and prolactin (PRL). This is due to an increase in the number of GH and PRL receptors (GHR, PRLR) per mg of microsomal protein without changes in binding affinity. Comparison of results obtained in transgenic animals expressing bGH with a mouse metallothionein (MT) or a rat phosphoenolpyruvate carboxykinase (PEPCK) promoter suggests that effects of bGH on hepatic GHR and PRLR do not require GH overexpression during fetal life and, within the dose range tested, the effects on PRLR are not dose dependent. The increase in hepatic GHR was accompanied by significant increases in plasma GH-binding protein (GHBP) and in mean residence time of injected GH. Thus life-long elevation of peripheral GH levels alters the availability of both free GH and GHR. Site-directed in vitro mutagenesis was used to produce hGH and bGH analogs mutated within one of the sites involved in binding to GHR and PRLR. Mutating hGH to produce amino acid identity with bGH at Position 11, 18 (within Helix 1), 57, or 60 (within the loop between Helix 1 and 2) did not affect binding to GHR in vitro, or somatotropic activity in transgenic mice in vivo but reduced lactogenic activity in Nb{sub 2} cells by 22%-45%. Mutations of bGH designed to produce amino acid identity with hGH at one to four of the corresponding positions in the bGH molecule did not interfere with binding to GHR or somatotropic activity in vivo, and failed to produce significant binding to PRLR but resulted in alterations in the effects on the hypothalamic and anterior pituitary function in transgenic mice. Apparently region(s) outside the domains examined are essential for lactogenic activity of hGH, and different portions of the GH molecule are responsible for its diverse actions in vivo. 35 refs.

  6. Increased abscess formation and defective chemokine regulation in CREB transgenic mice.

    Directory of Open Access Journals (Sweden)

    Andy Y Wen

    Full Text Available Cyclic AMP-response element-binding protein (CREB is a transcription factor implicated in growth factor-dependent cell proliferation and survival, glucose homeostasis, spermatogenesis, circadian rhythms, and synaptic plasticity associated with memory. To study the phenotype of CREB overexpression in vivo, we generated CREB transgenic (TG mice in which a myeloid specific hMRP8 promoter drives CREB expression. CREB TG mice developed spontaneous skin abscesses more frequently than wild type (WT mice. To understand the role of CREB in myeloid function and innate immunity, chemokine expression in bone marrow derived macrophages (BMDMs from CREB TG mice were compared with BMDMs from WT mice. Our results demonstrated decreased Keratinocyte-derived cytokine (KC in CREB TG BMDMs but not TNFα protein production in response to lipid A (LPA. In addition, mRNA expression of KC and IL-1β (Interleukin-1β was decreased in CREB TG BMDMs; however, there was no difference in the mRNA expression of TNFα, MCP-1, IL-6 and IL-12p40. The mRNA expression of IL-1RA and IL-10 was decreased in response to LPA. Nuclear factor kappa B (NFκB expression and a subset of its target genes were upregulated in CREB TG mouse BMDMs. Although neutrophil migration was the same in both CREB TG and WT mice, Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was significantly increased in neutrophils from CREB TG mice. Taken together, CREB overexpression in myeloid cells results in increased abscess formation in vivo and aberrant cytokine and chemokine response, and neutrophil function in vitro.

  7. Morpholino treatment improves muscle function and pathology of Pitx1 transgenic mice.

    Science.gov (United States)

    Pandey, Sachchida Nand; Lee, Yi-Chien; Yokota, Toshifumi; Chen, Yi-Wen

    2014-02-01

    Paired-like homeodomain transcription factor 1 (PITX1) was proposed to be part of the disease mechanisms of facioscapulohumeral muscular dystrophy (FSHD). We generated a tet-repressible muscle-specific Pitx1 transgenic mouse model which develops phenotypes of muscular dystrophy after the PITX1 expression is induced. In this study, we attempted to block the translation of PITX1 protein using morpholinos. Three groups of the transgenic mice received intravenous injections of phosphorodiamidate morpholino oligomers (PMO) (100 mg/kg), octaguanidinium dendrimer-conjugated morpholino (vivo-morpholino) (10 mg/kg), or phosphate-buffered saline (PBS) after the PITX1 expression was induced. Immunoblotting data showed that PITX1 expression in the triceps and quadriceps was significantly reduced 70% and 63% by the vivo-morpholino treatment, respectively. Muscle pathology of the mice treated with the vivo-morpholino was improved by showing 44% fewer angular-shaped atrophic myofibers. Muscle function determined by grip strength was significantly improved by the vivo-morpholino treatment. The study showed that systemic delivery of the vivo-morpholino reduced the PITX1 expression and improved the muscle phenotypes. Aberrant expression of DUX4 from the last unit of the D4Z4 array has been proposed to be the cause of FSHD. The findings of this study suggest that the same principle may be applied to suppress the aberrantly expressed DUX4 in FSHD. PMID:24232919

  8. Gene modulation associated with inhibition of liver regeneration in hepatitis B virus X transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Malgorzata Sidorkiewicz; Jean-Philippe Jais; Guilherme Tralhao; Serban Morosan; Carlo Giannini; Nicolas Brezillon; Patrick Soussan; Oona Delpuech; Dina Kremsdorf

    2008-01-01

    AIM: To analyze the modulation of gene expression profile associated with inhibition of liver regeneration in hepatitis B X (HBx)-expressing transgenic mice.METHODS: Microarray technology was performed on liver tissue obtained from 4 control (LacZ) and 4 transgenic mice (HBx-LacZ), 48 h after partial hepatectomy. The significance of the normalized log-ratios was assessed for each gene, using robust Mests under an empirical Bayes approach. Microarray hybridization data was verified on selected genes by quantitative PCR.RESULTS: The comparison of gene expression patterns showed a consistent modulation of the expression of 26 genes, most of which are implicated in liver regeneration. Up-regulated genes included DNA repair proteins (Rad-52, MSH6) and transmembrane proteins (syndecan 4, tetraspanin), while down-regulated genes were connected to the regulation of transcription (histone deacetylase, Zfp90, MyoDl) and were involved in the cholesterol metabolic pathway and isoprenoidbiosynthesis (farnesyl diphosphate synthase, Cyp7b1, geranylgeranyl diphosphate synthase, SAA3).CONCLUSION: Our results provide a novel insight into the biological activities of HBx, implicated in the inhibition of liver regeneration.

  9. Transgenic Tobacco Expressing a Modified VP6 Gene Protects Mice Against Rotavirus Infection

    Institute of Scientific and Technical Information of China (English)

    Jiang-Li DONG; Bo ZHOU; Gang SHENG; Tao WANG

    2005-01-01

    Elevated expression of the rotavirus VP6 antigen in transgenic plants is a critical factor in the development of a safe and effective rotavirus vaccine. Using codon optimization, a gene that encodes the inner capsid protein VP6 of the human group A rotavirus was synthesized (sVP6). The VP6 and sVp6genes were transformed into tobacco (Nicotiana tabacum L.) plants using Agrobacterium tumefaciens. The expression level of the sVP6 gene in transgenic plants was 3.8-34-fold higher than that of controls containing the non-modified VP6 gene, accounting for up to 0.34% of the total soluble protein (TSP). Then, BALB/c female mice that had been gavaged weekly with 10 mg TSP containing 34 μg VP6 protein, in which VP6-specific serum IgG and mucosal IgA antibodies were investigated. The severity and duration of diarrhea caused by simian rotavirus SA-11 challenge were reduced significantly in passively immunized pups, which indicates that anti-VP6 antibodies generated in orally immunized female mice can be passed onto pups and provide heterotypic protection. An edible vaccine based on the VP6 of human rotavirus group A could provide a means to protect children and young animals from severe acute diarrhea.

  10. Gene expression analysis of pancreatic cystic neoplasm in SV40Tag transgenic mice model

    Institute of Scientific and Technical Information of China (English)

    Jie Feng; Qiang Sun; Cheng Gao; Juan Dong; Xiao-Luan Wei; Hua Xing; Hou-Da Li

    2007-01-01

    AIM: To study the gene expression changes in pancreatic cystic neoplasm in SV40Tag transgenic mice model and to provide information about the prevention,clinical diagnosis and therapy of pancreatic cancer.METHODS: Using the pBC-SV40Tag transgenic mice model of pancreatic cystic neoplasm, we studied the gene expression changes by applying high-density microarrays. Validation of part gene expression profiling data was performed using real-time PCR.RESULTS: By using high-density oligonucleotide microarray, of 14113 genes, 453 were increased and 760 decreased in pancreatic cystic neoplasm, including oncogenes, cell-cycle-related genes, signal transduction-related genes, skeleton-related genes and metabolism-related genes. Among these, we confirmed the changes in Igf, Shh and Wnt signal pathways with real-time PCR.The results of real-time PCR showed similar expression changes in gene chip.CONCLUSION: all the altered expression genes are associated with cell cycle, DNA damage and repair, signal pathway, and metabolism. SV40Tag may cooperate with several proteins in promoting tumorigenesis.

  11. Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits

    OpenAIRE

    Tong, XiaoYong; Porter, Lisa M.; Liu, GongXin; Dhar-Chowdhury, Piyali; Srivastava, Shekhar; Pountney, David J.; Yoshida, Hidetada; Artman, Michael; Fishman, Glenn I.; Yu, Cindy; Iyer, Ramesh; Morley, Gregory E.; Gutstein, David E.; Coetzee, William A.

    2006-01-01

    Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol 291: H543–H551, 2006. First published February 24, 2006; doi:10.1152/ajpheart.00051.2006.—Cardiac ATP-sensitive K+ (KATP) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression ...

  12. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice.

    Science.gov (United States)

    Sabogal-Guáqueta, Angélica Maria; Osorio, Edison; Cardona-Gómez, Gloria Patricia

    2016-03-01

    Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder. Several types of treatments have been tested to block or delay the onset of the disease, but none have been completely successful. Diet, lifestyle and natural products are currently the main scientific focuses. Here, we evaluate the effects of oral administration of the monoterpene linalool (25 mg/kg), every 48 h for 3 months, on aged (21-24 months old) mice with a triple transgenic model of AD (3xTg-AD) mice. Linalool-treated 3xTg-AD mice showed improved learning and spatial memory and greater risk assessment behavior during the elevated plus maze. Hippocampi and amygdalae from linalool-treated 3xTg-AD mice exhibited a significant reduction in extracellular β-amyloidosis, tauopathy, astrogliosis and microgliosis as well as a significant reduction in the levels of the pro-inflammatory markers p38 MAPK, NOS2, COX2 and IL-1β. Together, our findings suggest that linalool reverses the histopathological hallmarks of AD and restores cognitive and emotional functions via an anti-inflammatory effect. Thus, linalool may be an AD prevention candidate for preclinical studies.

  13. Extraneural manifestations of prion infection in GPI-anchorless transgenic mice

    International Nuclear Information System (INIS)

    Earlier studies indicated that transgenic (tg) mice engineered to express prion protein (PrP) lacking the glycophosphatidylinositol (GPI-/-) membrane anchor formed abnormal proteinase-resistant prion (PrPsc) amyloid deposits in their brains and hearts when infected with the RML strain of murine scrapie. In contrast, RML scrapie infection of normal mice with a GPI-anchored PrP did not deposit amyloid with PrPsc in the brain or the heart. Here we report that scrapie-infected GPI-/- PrP tg mice also deposit PrP and transmissible infectious material in the gut, kidneys, and islets of Langerhans. Similar to previously reported amyloid deposits in the brain and heart, amyloid deposits were found in the gut; however, no amyloid deposited in the islets. By high-resolution electron microscopy, we show PrP is located primarily in α cells and also β cells. Islets contain abundant insulin and there is no abnormality in glucose metabolism in infected GPI-/- PrP tg mice.

  14. Organ-targeted mutagenicity of nitrofurantoin in Big Blue transgenic mice.

    Science.gov (United States)

    Quillardet, Philippe; Arrault, Xavier; Michel, Valérie; Touati, Eliette

    2006-09-01

    Nitrofurans are widely used in human medicine, as nitrofurantoin and nifuroxazide, still prescribed for long-term antimicrobial prophylaxis of urinary tract and gastrointestinal infection in humans respectively. Recent experiments in mammals, as well as reports mentioning toxic effects in humans associated with a long-term use, specially in the case of nitrofurantoin, raised the need for reevaluating their genotoxicity. The objective of this study was to determine whether these two compounds induce a mutagenic effect in the Big Blue transgenic mouse mutation assay. Mice were orally treated either with nitrofurantoin or nifuroxazide for five consecutive days and sacrificed 3 weeks later. In order to optimize the genotoxic response, the doses used for each compound were 25-fold higher as the posology in humans. They corresponded to 50% of the highest doses tolerated by mice. The mutant frequency was determined from kidney, lung, bladder, caecum, colon, small intestine, spleen and stomach. A weak mutagenic response of nitrofurantoin-treated mice specifically in the kidney was observed. As in the case of other nitrofuran compounds, the mutation spectra determined from treated samples exhibited slightly more GC-->TA transversions as compared with untreated conditions. These data are relevant to the targeted action of nitrofurantoin as a urinary antimicrobial agent. No significant increase of mutants was detected in the case of nifuroxazide-treated mice whatever the organs analysed. PMID:16895946

  15. C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD.

    Science.gov (United States)

    O'Rourke, Jacqueline G; Bogdanik, Laurent; Muhammad, A K M G; Gendron, Tania F; Kim, Kevin J; Austin, Andrew; Cady, Janet; Liu, Elaine Y; Zarrow, Jonah; Grant, Sharday; Ho, Ritchie; Bell, Shaughn; Carmona, Sharon; Simpkinson, Megan; Lall, Deepti; Wu, Kathryn; Daughrity, Lillian; Dickson, Dennis W; Harms, Matthew B; Petrucelli, Leonard; Lee, Edward B; Lutz, Cathleen M; Baloh, Robert H

    2015-12-01

    Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients. PMID:26637796

  16. A deregulated immune response to gliadin causes a decreased villus height in DQ8 transgenic mice.

    Science.gov (United States)

    D'Arienzo, Rossana; Stefanile, Rosita; Maurano, Francesco; Luongo, Diomira; Bergamo, Paolo; Mazzarella, Giuseppe; Troncone, Riccardo; Auricchio, Salvatore; David, Chella; Rossi, Mauro

    2009-12-01

    Celiac disease (CD) is an enteropathy triggered by gluten and mediated by CD4+ T cells. A complete understanding of CD immunopathogenesis has been hindered due to the lack of adequate in vivo models. Here, we explored the effect of the inhibition of COX by indomethacin in wheat gliadin-sensitized transgenic mice expressing the HLA-DQ8 heterodimer, a molecule associated with CD. Treated mice showed a gliadin-specific immune response with a significant reduction of villus height, not linked to crypt hyperplasia and to expansion of intraepithelial T cells. Notably, treated mice showed increased numbers of CD25+ and apoptotic cells in the lamina propria, whereas high basal levels of IFN-gamma secretion, along with a reduced gliadin-specific IL-2 expression were detected in MLN. Biochemical assessment of the lesion revealed increased mRNA of Lamb3 and Adamts2, encoding for ECM proteins, and enhanced activities of metalloproteinases MMP1, 2 and 7. We conclude that an intestinal sensitivity to gliadin, in connection with COX inhibition, caused a decreased villus height in DQ8 tg mice. The lesion was induced by a deregulated mucosal cell immunity to gliadin, thus triggering activation of a specific ECM protein pathway responsible for lamina propria remodeling. PMID:19795413

  17. Safflower yellow ameliorates cognition deficits and reduces tau phosphorylation in APP/PS1 transgenic mice.

    Science.gov (United States)

    Ruan, Ying-Ying; Zhai, Wei; Shi, Xiao-Meng; Zhang, Lu; Hu, Yan-Li

    2016-10-01

    Alzheimer's disease (AD), the most common cause of dementia worldwide, is mainly characterized by the aggregated β-amyloid (Aβ) and hyperphosphorylated tau. Safflower yellow (SY) is a novel water extract of natural safflower and has been suggested to ameliorate memory deficits in several animal models of dementia. In this study, we aimed to investigate the effect and mechanism of SY on deficits of learning and memory and hyperphosphorylation of tau in APP/PS1 double transgenic mice. APP/PS1 mice were administered with SY (10, 30, 100 mg/kg) by oral gavage for three months at the age of six months. The ability of learning and memory was investigated using the step-down test and Morris water maze test, and protein level in the brain was evaluated using western blot. Here, we found that SY treatment can improve spatial learning and memory ability, and reduce tau hyperphosphorylation at Ser199, Thr205, Ser396, Ser404 sites in APP/PS1 mice. In addition, the activity the of cyclin-dependent kinase 5 (CDK-5) and glycogen synthase kinase 3β (GSK-3β), major kinases involved in tau phosphorylation, was siginificantly decreased in APP/PS1 mice by SY treatment. These results support SY can serve as a promising multitarget neuronal therapeutic agent for the treatment of AD.

  18. Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm.

    Science.gov (United States)

    Brzózka, M M; Rossner, M J; de Hoz, L

    2016-09-01

    Schizophrenia (SZ) is a severe mental disorder affecting about 1 % of the human population. Patients show severe deficits in cognitive processing often characterized by an improper filtering of environmental stimuli. Independent genome-wide association studies confirmed a number of risk variants for SZ including several associated with the gene encoding the transcription factor 4 (TCF4). TCF4 is widely expressed in the central nervous system of mice and humans and seems to be important for brain development. Transgenic mice overexpressing murine Tcf4 (Tcf4tg) in the adult brain display cognitive impairments and sensorimotor gating disturbances. To address the question of whether increased Tcf4 gene dosage may affect cognitive flexibility in an auditory associative task, we tested latent inhibition (LI) in female Tcf4tg mice. LI is a widely accepted translational endophenotype of SZ and results from a maladaptive delay in switching a response to a previously unconditioned stimulus when this becomes conditioned. Using an Audiobox, we pre-exposed Tcf4tg mice and their wild-type littermates to either a 3- or a 12-kHz tone before conditioning them to a 12-kHz tone. Tcf4tg animals pre-exposed to a 12-kHz tone showed significantly delayed conditioning when the previously unconditioned tone became associated with an air puff. These results support findings that associate TCF4 dysfunction with cognitive inflexibility and improper filtering of sensory stimuli observed in SZ patients. PMID:26404636

  19. Increased IKKα expression in the basal layer of the epidermis of transgenic mice enhances the malignant potential of skin tumors.

    Directory of Open Access Journals (Sweden)

    Josefa P Alameda

    Full Text Available Non-melanoma skin cancer is the most frequent type of cancer in humans. In this study we demonstrate that elevated IKKα expression in murine epidermis increases the malignancy potential of skin tumors. We describe the generation of transgenic mice overexpressing IKKα in the basal, proliferative layer of the epidermis and in the outer root sheath of hair follicles. The epidermis of K5-IKKα transgenic animals shows several alterations such as hyperproliferation, mislocalized expression of integrin-α6 and downregulation of the tumor suppressor maspin. Treatment of the back skin of mice with the mitogenic agent 12-O-tetradecanoylphorbol-13-acetate causes in transgenic mice the appearance of different preneoplastic changes such as epidermal atypia with loss of cell polarity and altered epidermal tissue architecture, while in wild type littermates this treatment only leads to the development of benign epidermal hyperplasia. Moreover, in skin carcinogenesis assays, transgenic mice carrying active Ha-ras (K5-IKKα-Tg.AC mice develop invasive tumors, instead of the benign papillomas arising in wild type-Tg-AC mice also bearing an active Ha-ras. Therefore we provide evidence for a tumor promoter role of IKKα in skin cancer, similarly to what occurs in other neoplasias, including hepatocarcinomas and breast, prostate and colorectal cancer. The altered expression of cyclin D1, maspin and integrin-α6 in skin of transgenic mice provides, at least in part, the molecular bases for the increased malignant potential found in the K5-IKKα skin tumors.

  20. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  1. Expression of complement system components during aging and amyloid deposition in APP transgenic mice

    Directory of Open Access Journals (Sweden)

    Wiederhold Karl-Heinz

    2009-11-01

    Full Text Available Abstract Background A causal role of the complement system in Alzheimer's disease pathogenesis has been postulated based on the identification of different activated components up to the membrane attack complex at amyloid plaques in brain. However, histological studies of amyloid plaque bearing APP transgenic mice provided only evidence for an activation of the early parts of the complement cascade. To better understand the contribution of normal aging and amyloid deposition to the increase in complement activation we performed a detailed characterization of the expression of the major mouse complement components. Methods APP23 mice expressing human APP751 with the Swedish double mutation as well as C57BL/6 mice were used at different ages. mRNA was quantified by Realtime PCR and the age- as well as amyloid induced changes determined. The protein levels of complement C1q and C3 were analysed by Western blotting. Histology was done to test for amyloid plaque association and activation of the complement cascade. Results High mRNA levels were detected for C1q and some inhibitory complement components. The expression of most activating components starting at C3 was low. Expression of C1q, C3, C4, C5 and factor B mRNA increased with age in control C57BL/6 mice. C1q and C3 mRNA showed a substantial additional elevation during amyloid formation in APP23 mice. This increase was confirmed on the protein level using Western blotting, whereas immunohistology indicated a recruitment of complement to amyloid plaques up to the C3 convertase. Conclusion Early but not late components of the mouse complement system show an age-dependent increase in expression. The response to amyloid deposition is comparatively smaller. The low expression of C3 and C5 and failure to upregulate C5 and downstream components differs from human AD brain and likely contributes to the lack of full complement activation in APP transgenic mice.

  2. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  3. Chemoprevention of HBV-related hepatocellular carcinoma by the combined product of resveratrol and silymarin in transgenic mice

    Directory of Open Access Journals (Sweden)

    Wen-Chuan Hsieh

    2013-09-01

    Full Text Available ABSTRACTBackground: Patients with chronic hepatitis B virus (HBV infection are at a high risk to develop hepatocellular carcinoma (HCC. Recently, metabolic syndrome has been found to carry a risk for HCC development. Considering the limitation of chemotherapeutic drugs for HCCs, the development of chemopreventive agents for high risk chronic HBV carriers is urgently demanded. In this study, we used combined silymarin and resveratrol extract which have been shown to exhibit biologic effects on activating peroxisome proliferator activated receptors (PPAR and inhibiting mTOR signaling in a transgenic mice model harboring HBV viral oncoproteins.Methods: The transgenic mice model harboring HBx and pre-S2 mutant constructs which develop HCC was adopted. First, we in vitro tested the ideal combination dosages of the silymarin and resveratrol product, and then we fed the natural product to the transgenic mice.The chemopreventive effects on preventing the development of HCC were evaluated.Results: MTT assay showed an enhanced effect of the combined silymarin and resveratrol product on the reduction of cell proliferation in two hepatoma cell lines, Huh-7 and Hep G2. In vitro reporter assay and Western blot analyses revealed that the combined product couldactivate PPAR/PGC-1 signaling and inhibit mTOR expression. In vivo, the combined products could significantly ameliorate fatty liver and reduce HCCs in transgenic miceharboring HBV oncoproteins.Conclusions: The combined silymarin and resveratrol product exhibits a synergistic effect on the reduction of HCC development in transgenic mice model and may represent a potential agent for the prevention of HCC in high risk chronic HBV carriers.Key words: HBV, HCC, Transgenic mice, Chemoprevention

  4. Studies on the correlation with olfactory dysfunction in a transgenic mice model of Alzheimer's disease

    Science.gov (United States)

    Rasheed, Ameer; Lee, Ji Hye; Suh, Yoo-Hun; Moon, Cheil

    2013-05-01

    Alzheimer's disease (AD) is a progressively debilitating neurodegenerative disorder characterized by the presence of proteinaceous deposits in the brain. AD often results in olfactory dysfunction and impaired olfactory perceptual acuity may be a potential biomarker for early diagnosis of AD. Until recently, there is no Alzheimer's nanoscope or any other high-end microscope developed to be capable of seeing buried feature of AD clearly. Modern neuroimaging techniques are more effective only after the occurrence of cognitive impairment. Therefore, early detection of Alzheimer's disease is critical in developing effective treatment of AD. H and E (Haematoxyline and Eosin) staining is performed for examining gross morphological changes, while TUNEL (transferase (TdT)-mediated dUTP nick end labeling) staining for monitoring neuronal death in the olfactory epithelium (OE). Furthermore, immunohistochemistry and western blot are performed to examine β-amyloid protein expression. AD model animals were Tg2576 (transgenic mice that overexpress a mutated form of the Aβ precursor protein), and 6 month (before onset of AD symptoms) and 14 month (after onset of AD symptoms) old WT (wild type) and transgenic mice were compared in their olfactory system. We found that in OE of Tg2576 mice, thickness and total number of cells were decreased, while the numbers of TUNEL-positive neurons, caspase-3 activation were significantly increased compared with age-matched WT. Our results demonstrate that the olfactory system may get deteriorated before onset of AD symptoms. Our findings imply that an olfactory biopsy could be served as an early and relatively simple diagnostic tool for potential AD patients.

  5. Tumorigenic potential of pituitary tumor transforming gene (PTTG in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/− transgenic mice

    Directory of Open Access Journals (Sweden)

    Fong Miranda Y

    2012-11-01

    Full Text Available Abstract Background Pituitary tumor-transforming gene (PTTG is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Methods Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. Results PTTG transgenic offspring (TgPTTG were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells

  6. Tumorigenic potential of pituitary tumor transforming gene (PTTG) in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/−) transgenic mice

    International Nuclear Information System (INIS)

    Pituitary tumor-transforming gene (PTTG) is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. PTTG transgenic offspring (TgPTTG) were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells. Tumorigenesis is a multi-step process, often requiring

  7. Assay of serum CEACAM1 as a potential biomarker for breast cancer%乳腺癌患者血清癌胚抗原相关的细胞黏附分子1作为肿瘤标志物的有效性研究

    Institute of Scientific and Technical Information of China (English)

    高燕飞

    2016-01-01

    目的:检测乳腺癌患者血清癌胚抗原相关的细胞黏附分子1(CEACAM1)含量,探讨其能否作为乳腺癌检测的生物标志物。方法采集33例乳腺癌患者、30例乳腺良性肿瘤患者、34例健康人的静脉血,采用夹心酶联免疫吸附方法检测其中 CEACAM1含量。结果乳腺癌组患者血清 CEACAM1含量为532 ng/ ml,高于良性肿瘤组(423 ng/ ml)和健康组(386 ng/ ml),差异有统计学意义(P ﹤0.001)。线性回归分析结果表明血清 CEACAM1可用于鉴别诊断乳腺癌、良性肿瘤和健康人群。血清 CEACAM1 ROC 曲线值为0.925(95%置信区间:0.866~0.984),优化后的鉴别乳腺癌和健康人群的血清 CEACAM1浓度阻断值为475.82 ng/ ml。结论血清 CEACAM1可以作为乳腺癌检测的可靠肿瘤标志物。%Objective To investigate the serum concentrations of CEACAM1 in patients with breast cancer and determine the potential of serum CEACAM1 as a breast cancer biomarker. Methods Serum specimens were obtained from 33 patients with breast cancer,30 patients with benign breast diseases and 34 healthy donors. The serum CEACAM1 concentrations were examined by enzyme-linked immunosorbent assay(ELISA). Results The serum CEACAM1 concentrations in the malignant group(532 ng / ml)were significantly higher than those of the benign group(423 ng / ml)and healthy control group( 386 ng / ml)( both P ﹤ 0. 001 ). Based on univariable logistic regression,serum CEACAM1 concentrations significantly predicted breast cancer versus normal controls or benign breast dis-eases. Area under receiver operating characteristic curve( ROC) for serum CEACAM1 was 0. 925 (95% CI:0. 866- 0. 984). The optimal cut-off concentration of CEACAM1 was 475. 82 ng / ml for dis-criminating breast cancer from normal controls. Conclusions Serum concentrations of CEACAM1 may serve as a useful indicator for the presence of breast cancer.

  8. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS).

    Science.gov (United States)

    Tavella, Sara; Ruggiu, Alessandra; Giuliani, Alessandra; Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.

  9. N-acetyl Cysteine Treatment Rescues Cognitive Deficits Induced by Mitochondrial Dysfunction in G72/G30 Transgenic Mice

    OpenAIRE

    Otte, David Marian; Sommersberg, Britta; Kudin, Alexei; Guerrero, Catalina; Albeiram, Önder; Filiou, Michaela; Frisch, Pamela; Yilmaz, Öznur; Drews, Eva; Turck, C W; Bilkei-Gorzo, Andras; Kunz, Wolfram; Beck, Heinz; Zimmer, Andreas

    2011-01-01

    Abstract Genetic studies have implicated the evolutionary novel, anthropoid primate-specific gene locus G72/G30 in psychiatric diseases. This gene encodes the protein LG72 that has been discussed to function as a putative activator of the peroxisomal enzyme D-amino-acid-oxidase (DAO) and as a mitochondrial protein. We recently generated "humanized" BAC transgenic mice (G72Tg) expressing G72 transcripts in cells throughout the brain. These mice exhibit several behavioral phenotypes ...

  10. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice.

    OpenAIRE

    Guo, L.; Yu, Q C; E. Fuchs

    1993-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. Synthesized by cells of the dermal component of skin, KGF's potent mitogenic activity is on the epidermal component, which harbors the receptors for this factor. To explore the possible role of KGF in mesenchymal-epithelial interactions in skin, we used a human keratin 14 promoter to target expression of human KGF cDNA to the stratified squamous epithelia of transgenic mice. Mice expressing KGF in their...

  11. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  12. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takako Niikura

    Full Text Available Humanin (HN, a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD-related cytotoxicities, including exposure to amyloid beta (Abeta, in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe, tau(P310L, and PS-1(M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

  13. Parkinson-like phenotype in insulin-resistant PED/PEA-15 transgenic mice

    Science.gov (United States)

    Perruolo, Giuseppe; Viggiano, Davide; Fiory, Francesca; Cassese, Angela; Nigro, Cecilia; Liotti, Antonietta; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2016-01-01

    Neurological abnormalities, such as Parkinson-like disorders (PlD), are often co-morbidities of Type 2 Diabetic (T2D) patients, although the epidemiological link between these two disorders remains controversial. The PED/PEA-15 protein represents a possible candidate linking T2D and PD, because it is increased in subjects with T2D and is highly expressed in the brain. To test this hypothesis, we have analyzed the neurological and neurochemical phenotype of transgenic mice overexpressing PED/PEA-15 (tgPED). These mice develop impaired glucose tolerance and insulin resistance, accompanied by neurological features resembling PlD: feet clasping, slow and delayed locomotor movements in different behavioral tests in absence of clear cognitive deficits, ataxia or anxiety. Morphological analysis of the brains showed selective modifications of metabolic activity in the striatal region. In the same region, we have observed 26% decrease of dopamine fibers, confirmed by immunohistochemistry and Western Blot for tyrosine hydroxylase. Moreover, they also showed 48% reduction of dopamine levels in the striatum. Thus the tgPED mice may represent a genetic animal model of neurological disease linked to T2D. PMID:27426254

  14. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    Science.gov (United States)

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S

    1998-06-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subunit AChR gene. In addition to expression in muscle cells, thymic expression was observed in both mouse lines (mainly in myoid cells in Tg1 and myoid cells and epithelial cells in Tg2). After challenge with beta-gal, Tg1 mice produced Th2-dependent anti-beta-gal antibodies, while Tg2 mice were almost unresponsive. By contrast, in a proliferation assay both Tg lines were unresponsive to beta-gal. Cells from Tg1 mice produce Th2-dependent cytokine whereas cells from Tg2 mice were nonproducing in response to beta-gal. These data indicate that the level of expression in Tg1 mice could be sufficient to induce tolerance of Th1 cells but not of Th2 cells, while both populations are tolerated in Tg2 mice. These findings are compatible with the hypothesis that AChR expression is not sufficiently abundant in MG thymus to induce a full tolerance. PMID:9616205

  15. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    DEFF Research Database (Denmark)

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín;

    2003-01-01

    Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) causes significant damage and alters the expression of many genes, including a dramatic upregulation of metallothionein-I (MT-I). The findings in ...

  16. IGF-II transgenic mice display increased aberrant colon crypt multiplicity and tumor volume after 1,2-dimethylhydrazine treatment

    Directory of Open Access Journals (Sweden)

    Oesterle Doris

    2006-01-01

    Full Text Available Abstract In colorectal cancer insulin-like growth factor II (IGF-II is frequently overexpressed. To evaluate, whether IGF-II affects different stages of tumorigenesis, we induced neoplastic alterations in the colon of wild-type and IGF-II transgenic mice using 1,2-dimethylhydrazine (DMH. Aberrant crypt foci (ACF served as markers of early lesions in the colonic mucosa, whereas adenomas and carcinomas characterized the endpoints of tumor development. DMH-treatment led initially to significantly more ACF in IGF-II transgenic than in wild-type mice. This increase in ACF was especially prominent for those consisting of ≥three aberrant crypts (AC. Nevertheless, adenomas and adenocarcinomas of the colon, present after 34 weeks in both genetic groups, were not found at different frequency. Tumor volumes, however, were significantly higher in IGF-II transgenic mice and correlated with serum IGF-II levels. Immunohistochemical staining for markers of proliferation and apoptosis revealed increased cell proliferation rates in tumors of IGF-II transgenic mice without significant affection of apoptosis. Increased proliferation was accompanied by elevated localization of β-catenin in the cytosol and cell nuclei and reduced appearance at the inner plasma membrane. In conclusion, we provide evidence that IGF-II, via activation of the β-catenin signaling cascade, promotes growth of ACF and tumors without affecting tumor numbers.

  17. Calcium imaging of vomeronasal organ response using slice preparations from transgenic mice expressing G-CaMP2

    OpenAIRE

    Yu, C. Ron

    2013-01-01

    The vomeronasal organ (VNO) in vertebrate animals detects pheromones and interspecies chemical signals. We describe in this chapter a Ca2+ imaging approach using transgenic mice that express the genetically encoded Ca2+ sensor G-CaMP2 in VNO tissue. This approach allows us to analyze the complex patterns of the vomeronasal neuron response to large numbers of chemosensory stimuli.

  18. Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS

    DEFF Research Database (Denmark)

    Agger, Karl; Santoni-Rugiu, Eric; Holmberg, Christian;

    2005-01-01

    E2F1 is a crucial downstream effector of the retinoblastoma protein (pRB) pathway. To address the consequences of short-term increase in E2F1 activity in adult tissues, we generated transgenic mice expressing the human E2F1 protein fused to the oestrogen receptor (ER) ligand-binding domain...

  19. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein

    NARCIS (Netherlands)

    Meade-White, K.; Race, B.; Trifilo, M.; Bossers, A.; Favara, C.; Lacasse, R.; Miller, M.; Williams, E.; Oldstone, M.; Race, R.; Chesebro, B.

    2007-01-01

    Prion protein (PrP) is a required factor for susceptibility to transmissible spongiform encephalopathy or prion diseases. In transgenic mice, expression of prion protein (PrP) from another species often confers susceptibility to prion disease from that donor species. For example, expression of deer

  20. Transgenic mice expressing yellow fluorescent protein under control of the human tyrosine hydroxylase promoter.

    Science.gov (United States)

    Choi, Eun Yang; Yang, Jae Won; Park, Myung Sun; Sun, Woong; Kim, Hyun; Kim, Seung U; Lee, Myung Ae

    2012-10-01

    Pathogenesis of Parkinson's disease and related catecholaminergic neurological disorders is closely associated with changes in the levels of tyrosine hydroxylase (TH). Therefore, investigation of the regulation of the TH gene system should assist in understanding the pathomechanisms involved in these neurological disorders. To identify regulatory domains that direct human TH expression in the central nervous system (CNS), we generated two transgenic mouse lines in which enhanced yellow fluorescent protein (EYFP) is expressed under the control of either 3.2-kb (hTHP-EYFP construct) human TH promoter or 3.2-kb promoter with 2-kb 3'-flanking regions (hTHP-ex3-EYFP construct) of the TH gene. In the adult transgenic mouse brain, the hTHP-EYFP construct directs neuron-specific EYFP expression in various CNS areas, such as olfactory bulb, striatum, interpeduncular nucleus, cerebral cortex, hippocampus, and particularly dentate gyrus. Although these EYFP-positive cells were identified as mature neurons, few EYFP-positive cells were TH-positive neurons. On the other hand, we could detect the EYFP mRNA expression in a subset of neurons in the olfactory bulb, midbrain, and cerebellum, in which expression of endogenous TH is enriched, with hTHP-ex3-EYFP transgenic mice. These results indicate that the 3.2-kb sequence upstream of the TH gene is not sufficient for proper expression and that the 2-kb sequence from the translation start site to exon 3 is necessary for expression of EYFP in a subset of catecholaminergic neurons. PMID:22714400

  1. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Palm Kaia

    2009-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression. Results In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP. The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA. Conclusion Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.

  2. Generation of NSE-MerCreMer transgenic mice with tamoxifen inducible Cre activity in neurons.

    Directory of Open Access Journals (Sweden)

    Mandy Ka Man Kam

    Full Text Available To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer, which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult.

  3. Pathogenesis of dilated cardiomyopathy: molecular, structural, and population analyses in tropomodulin-overexpressing transgenic mice.

    Science.gov (United States)

    Sussman, M A; Welch, S; Gude, N; Khoury, P R; Daniels, S R; Kirkpatrick, D; Walsh, R A; Price, R L; Lim, H W; Molkentin, J D

    1999-12-01

    Dilated cardiomyopathy is characterized by decreased contractile function and loss of myofibril organization. Previously unexplored structural and molecular events that precede and initiate dilation can now be studied in tropomodulin-overexpressing transgenic (TOT) mice exhibiting progressive dilated cardiomyopathy. Onset of dilation did not correspond to a change in transgene expression levels, which were more than threefold above normal at birth and remained elevated throughout postnatal life. Similarly, mitogen-activated protein kinase activation (p38, ERK1/ERK2, JNK1/JNK2) was not associated with dilation. In contrast, calcineurin was activated before dilation, presumably due to doubling of intracellular diastolic calcium levels in TOT cardiomyocytes. Amplitude of systolic calcium transients was greatly increased as well, demonstrating the novel and unique calcium handling profile of TOT cardiomyocytes. Loss of myofibril organization was not apparent by confocal microscopy until over 1 week after birth, although neonatal sarcomeric abnormalities were revealed by ultrastructural analysis. Rapid postnatal increases in heart:body weight ratio at 1.5 weeks were followed by two waves of mortality between 2 and 3 weeks after birth coincident with maturational stress. Ultimately, TOT pathogenesis is a compensatory response to altered sarcomeric structure driven by calcineurin activation within days after birth, making TOTs an excellent paradigm for studying the role of calcium overload in dilated cardiomyopathy. PMID:10595939

  4. Diverse hematological malignancies including hodgkin-like lymphomas develop in chimeric MHC class II transgenic mice.

    Directory of Open Access Journals (Sweden)

    Silke H Raffegerst

    Full Text Available A chimeric HLA-DR4-H2-E (DR4 homozygous transgenic mouse line spontaneously develops diverse hematological malignancies with high frequency (70%. The majority of malignancies were distributed equally between T and B cell neoplasms and included lymphoblastic T cell lymphoma (LTCL, lymphoblastic B cell lymphoma (LBCL, diffuse large B cell lymphoma (DLBCL, the histiocyte/T cell rich variant of DLBCL (DLBCL-HA/T cell rich DLBCL, splenic marginal zone lymphoma (SMZL, follicular B cell lymphoma (FBL and plasmacytoma (PCT. Most of these neoplasms were highly similar to human diseases. Also, some non-lymphoid malignancies such as acute myeloid leukemia (AML and histiocytic sarcoma were found. Interestingly, composite lymphomas, including Hodgkin-like lymphomas, were also detected that had CD30(+ Hodgkin/Reed-Sternberg (H/RS-like cells, representing a tumor type not previously described in mice. Analysis of microdissected H/RS-like cells revealed their origin as germinal center B cells bearing somatic hypermutations and, in some instances, crippled mutations, as described for human Hodgkin lymphoma (HL. Transgene integration in an oncogene was excluded as an exclusive driving force of tumorigenesis and age-related lymphoma development suggests a multi-step process. Thus, this DR4 line is a useful model to investigate common molecular mechanisms that may contribute to important neoplastic diseases in man.

  5. TRANSGENIC STRATEGY FOR IDENTIFYING SYNAPTIC CONNECTIONS IN MICE BY FLUORESCENCE COMPLEMENTATION (GRASP

    Directory of Open Access Journals (Sweden)

    Masahito eYamagata

    2012-02-01

    Full Text Available In the "GFP reconstitution across synaptic partners" (GRASP method, non-fluorescent fragments of GFP are expressed in two different neurons; the fragments self-assemble at synapses between the two to form a fluorophore. GRASP has proven useful for light microscopic identification of synapses in two invertebrate species, Caenorhabditis elegans and Drosophila melanogaster, but has not yet been applied to vertebrates. Here, we describe GRASP constructs that function in mammalian cells and implement a transgenic strategy in which a Cre-dependent gene switch leads to expression of the two fragments in mutually exclusive neuronal subsets in mice. Using a transgenic line that expresses Cre selectively in rod photoreceptors, we demonstrate labeling of synapses in the outer plexiform layer of the retina. Labeling is specific, in that synapses made by rods remain labeled for at least 6 months whereas nearby synapses made by intercalated cone photoreceptors on many of the same interneurons remain unlabeled. We also generated antisera that label reconstituted GFP but neither fragment in order to amplify the GRASP signal and thereby increase the sensitivity of the method.

  6. Methyl bromide causes DNA methylation in rats and mice but fails to induce somatic mutations in λlacZ transgenic mice

    NARCIS (Netherlands)

    Pletsa, V.; Steenwinkel, M.-J.S.T.; Delft, J.H.M. van; Baan, R.A.; Kyrtopoulos, S.A.

    1998-01-01

    Following single or multiple oral treatments of rats or λlacZ transgenic mice with methyl bromide, methylated DNA adducts (N7- and/or O6-methylguanine) were found at comparable levels in various tissues, including among others the glandular stomach, the forestomach and the liver. Multiple rat treatm

  7. Expression of plant sweet protein brazzein in the milk of transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sen Yan

    Full Text Available Sugar, the most popular sweetener, is essential in daily food. However, excessive sugar intake has been associated with several lifestyle-related diseases. Finding healthier and more economical alternatives to sugars and artificial sweeteners has received increasing attention to fulfill the growing demand. Brazzein, which comes from the pulp of the edible fruit of the African plant Pentadiplandra brazzeana Baill, is a protein that is 2,000 times sweeter than sucrose by weight. Here we report the production of transgenic mice that carry the optimized brazzein gene driven by the goat Beta-casein promoter, which specifically directs gene expression in the mammary glands. Using western blot analysis and immunohistochemistry, we confirmed that brazzein could be efficiently expressed in mammalian milk, while retaining its sweetness. This study presents the possibility of producing plant protein-sweetened milk from large animals such as cattle and goats.

  8. Transgenic mice designed to express human α-1,2-fucosyltransferase in combination of human DAF and CD59 to avoid xenograft rejection

    Institute of Scientific and Technical Information of China (English)

    LIU BingQian; CHENG ChuanYu; WU YuDong; WEI JinXing; LI GuangSan; MA TengXiang

    2008-01-01

    The expression of human α-1,2-fucosyltransferase (HT) or complement regulatory proteins has been proved as an strategy to overcome hypercute rejection in discordant xenogeneic organ transplantation.In this study, we examined whether peripheral blood mononuclear cells (PBMCs) from polytransgenic mice expressing the human HT, and complement regulatory proteins (DAF and CD59), can provide more effective protection against xenograft rejection. Transgenic mice were produced by co-injection of gene constructs for human HT, DAF and/or CD59. Flow Cytometry (FCM) was used to screen the positive transgenic mice. PBMCs from transgenic mice were incubated with 15% human serum to evaluate natural antibody binding, complement activation and expression of adhesion molecules.Three transgenes were strongly expressed in PBMCs of transgenic mice, and HT expression significantly reduced expression of the major xenoepitope galactose-α-1,3-galactose (α-Gal). Functional studies with PBMCs showed that co-expression of HT and DAF or CD59 markedly increased their resistance to human serum-mediated cytolysis when compared with single transgenic PBMCs. Moreover,the combined expression of triple transgenes in PBMCs led to the greatest protection against human serum-mediated cytolyais, avoided hyperacute rejection and reduced expression of adhesion molecules. Strong co-expression of triple transgenes was completely protected from xenograft hyperacute rejection and partially inhibited acute vascular rejection. The studies suggest that engineering mice to express triple molecules represents an critical step toward prolonging xenograft survival and might be more suitable for xenotransplantation.

  9. Transgenic mice designed to express human α-1,2-fucosyltransferase in combination of human DAF and CD59 to avoid xenograft rejection

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The expression of human α-1,2-fucosyltransferase (HT) or complement regulatory proteins has been proved as an strategy to overcome hypercute rejection in discordant xenogeneic organ transplantation. In this study, we examined whether peripheral blood mononuclear cells (PBMCs) from polytransgenic mice expressing the human HT, and complement regulatory proteins (DAF and CD59), can provide more effective protection against xenograft rejection. Transgenic mice were produced by co-injection of gene constructs for human HT, DAF and/or CD59. Flow Cytometry (FCM) was used to screen the positive transgenic mice. PBMCs from transgenic mice were incubated with 15% human serum to evaluate natural antibody binding, complement activation and expression of adhesion molecules. Three transgenes were strongly expressed in PBMCs of transgenic mice, and HT expression signifi- cantly reduced expression of the major xenoepitope galactose-α-1,3-galactose (α-Gal). Functional studies with PBMCs showed that co-expression of HT and DAF or CD59 markedly increased their re- sistance to human serum-mediated cytolysis when compared with single transgenic PBMCs. Moreover, the combined expression of triple transgenes in PBMCs led to the greatest protection against human serum-mediated cytolysis, avoided hyperacute rejection and reduced expression of adhesion mole- cules. Strong co-expression of triple transgenes was completely protected from xenograft hyperacute rejection and partially inhibited acute vascular rejection. The studies suggest that engineering mice to express triple molecules represents an critical step toward prolonging xenograft survival and might be more suitable for xenotransplantation.

  10. Targeting surface nucleolin with a multivalent pseudopeptide delays development of spontaneous melanoma in RET transgenic mice

    Directory of Open Access Journals (Sweden)

    Briand Jean-Paul

    2010-06-01

    Full Text Available Abstract Background The importance of cell-surface nucleolin in cancer biology was recently highlighted by studies showing that ligands of nucleolin play critical role in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, we recently reported that HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in the athymic nude mice without apparent toxicity. Methods The in vivo antitumoral action of HB-19 treatment was assessed on the spontaneous development of melanoma in the RET transgenic mouse model. Ten days old RET mice were treated with HB-19 in a prophylactic setting that extended 300 days. In parallel, the molecular basis for the action of HB-19 was investigated on a melanoma cell line (called TIII derived from a cutaneous nodule of a RET mouse. Results HB-19 treatment of RET mice caused a significant delay in the onset of cutaneous tumors, several-months delay in the incidence of large tumors, a lower frequency of cutaneous nodules, and a reduction of visceral metastatic nodules while displaying no toxicity to normal tissue. Moreover, microvessel density was significantly reduced in tumors recovered from HB-19 treated mice compared to corresponding controls. Studies on the melanoma-derived tumor cells demonstrated that HB-19 treatment of TIII cells could restore contact inhibition, impair anchorage-independent growth, and reduce their tumorigenic potential in mice. Moreover, HB-19 treatment caused selective down regulation of transcripts coding matrix metalloproteinase 2 and 9, and tumor necrosis factor-α in the TIII cells and in melanoma tumors of RET mice. Conclusions Although HB-19 treatment failed to prevent the development of spontaneous melanoma in the RET mice, it delayed for several months the onset and frequency of cutaneous tumors, and exerted a significant inhibitory effect on visceral metastasis

  11. Regulation of pulmonary and systemic bacterial lipopolysaccharide responses in transgenic mice expressing human elafin.

    Science.gov (United States)

    Sallenave, J-M; Cunningham, G A; James, R M; McLachlan, G; Haslett, C

    2003-07-01

    The control of lung inflammation is of paramount importance in a variety of acute pathologies, such as pneumonia, the acute respiratory distress syndrome, and sepsis. It is becoming increasingly apparent that local innate immune responses in the lung are negatively influenced by systemic inflammation. This is thought to be due to a local deficit in cytokine responses by alveolar macrophages and neutrophils following systemic bacterial infection and the development of a septic response. Recently, using an adenovirus-based strategy which overexpresses the human elastase inhibitor elafin locally in the lung, we showed that elafin is able to prime lung innate immune responses. In this study, we generated a novel transgenic mouse strain expressing human elafin and studied its response to bacterial lipopolysaccharide (LPS) when the LPS was administered locally in the lungs and systemically. When LPS was delivered to the lungs, we found that mice expressing elafin had lower serum-to-bronchoalveolar lavage ratios of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), macrophage inflammatory protein 2, and monocyte chemoattractant protein 1, than wild-type mice. There was a concomitant increase in inflammatory cell influx, showing that there was potential priming of innate responses in the lungs. When LPS was given systemically, the mice expressing elafin had reduced levels of serum TNF-alpha compared to the levels in wild-type mice. These results indicate that elafin may have a dual function, promoting up-regulation of local lung innate immunity while simultaneously down-regulating potentially unwanted systemic inflammatory responses in the circulation. PMID:12819058

  12. Effect of dipterinyl calcium pentahydrate on hepatitis B virus replication in transgenic mice

    Directory of Open Access Journals (Sweden)

    Fuchs Dietmar

    2010-03-01

    Full Text Available Abstract Background Dipterinyl calcium pentahydrate (DCP has previously been shown to inhibit MDA-MB-231 human breast cancer xenographs in nude mice in a manner correlated with increases in plasma IL-12 and IL-4 concentrations, and decreases in plasma IL-6 levels. DCP also inhibits indoleamine 2,3-dioxygenase (IDO, an immuno-inhibitory enzyme, in human PBMCs (Peripheral Blood Mononuclear Cells. Methods In the present study, DCP was administered per os, once daily for 14 days to hepatitis B virus (HBV transgenic mice at 23, 7.3, and 2.3 mg/(kg d. Multivariate stepwise regression and MANOVA analyses, by gender and treatment, of liver HBV DNA and RNA measures, liver core and serum HBe antigen assays, serum cytokine/chemokine profiles, and IDO metabolite measurements were performed. Results DCP caused a significant dose-response reduction of log liver HBV DNA as measured by PCR in the female HBV mice. The gender dependence of the anti-HBV DNA activity was explained by the DCP Effects Model (DCP-EM (p = .001 which includes three serum biomarker changes caused by DCP: 1 decreased MCP-1; 2 decreased Kyn/Trp (an estimation of IDO activity; and 3 increased GM-CSF. Conclusions Immunomodulation via IDO or TDO (tryptophan 2,3-dioxygenase pathways, along with serum MCP-1 and GM-CSF are proposed to play roles in the anti-HBV mechanism of DCP based upon their coordinated modulation in the reduction of viral DNA replication in HBV mice.

  13. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    Science.gov (United States)

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  14. Lymphatic dysfunction in transgenic mice expressing KSHV k-cyclin under the control of the VEGFR-3 promoter.

    Science.gov (United States)

    Sugaya, Makoto; Watanabe, Takahiro; Yang, Aparche; Starost, Matthew F; Kobayashi, Hisataka; Atkins, April M; Borris, Debra L; Hanan, Elisabeth A; Schimel, Daniel; Bryant, Mark A; Roberts, Nicole; Skobe, Mihaela; Staskus, Katherine A; Kaldis, Philipp; Blauvelt, Andrew

    2005-03-15

    Kaposi sarcoma-associated herpesvirus (KSHV) infects endothelial cells within KS tumors, and these cells express the KSHV latent-cycle gene k-cyclin (kCYC) as well as vascular endothelial growth factor receptor 3 (VEGFR-3), a marker for lymphatic endothelium. To further understand KSHV-mediated pathogenesis, we generated transgenic mice expressing kCYC under the control of the VEGFR-3 promoter. kCYC mRNA and functional protein expression within tissue correlated with VEGFR-3 expression and were most abundantly detected within lung tissue. Clinically, most transgenic mice died within 6 months of age secondary to progressive accumulation of chylous pleural fluid. In skin, edema was detected by magnetic resonance imaging and mice demonstrated persistent erythema of the ears following trauma. Histologically, erythematous skin showed extravasation of erythrocytes and accumulation of erythrocytes within lymphatic lumens. In addition, lymphatic drainage of injected contrast dyes was markedly impaired in transgenic mice. Karyomegaly, a feature observed in kCYC-expressing cells in vitro, was detected in many tissues, and selectively occurred within lymphatic endothelial cells expressing kCYC mRNA by in situ hybridization. In summary, kCYC expression within VEGFR-3+ cells of mice causes marked impairment of lymphatic function. kCYC may contribute to the development of certain clinical and histologic features of KS, including localized edema and retention of extravasated erythrocytes within KS tumors.

  15. Combined Micro-PET/Micro-CT Imaging of Lung Tumours in SPC-raf and SPC-myc Transgenic Mice

    Science.gov (United States)

    Rodt, Thomas; Luepke, Matthias; Boehm, Claudia; Hueper, Katja; Halter, Roman; Glage, Silke; Hoy, Ludwig; Wacker, Frank; Borlak, Juergen; von Falck, Christian

    2012-01-01

    Introduction SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. Material and Methods 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic) were examined using micro-CT and 18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. Results Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. Conclusions Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours. PMID:23028537

  16. Combined micro-PET/micro-CT imaging of lung tumours in SPC-raf and SPC-myc transgenic mice.

    Directory of Open Access Journals (Sweden)

    Thomas Rodt

    Full Text Available INTRODUCTION: SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. MATERIAL AND METHODS: 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic were examined using micro-CT and (18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. RESULTS: Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. CONCLUSIONS: Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours.

  17. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype.

    Science.gov (United States)

    Keough, R; Powell, B; Rogers, G

    1995-03-01

    Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy.

  18. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype.

    Science.gov (United States)

    Keough, R; Powell, B; Rogers, G

    1995-03-01

    Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy. PMID:7542671

  19. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Directory of Open Access Journals (Sweden)

    Koo Edward H

    2007-07-01

    in Tg2576 mice. Given its ability to selectively target Aβ42 production and improve cognitive impairments in transgenic APP mice, as well as promising data from a phase 2 human clinical trial, future studies are needed to investigate the utility of R-flurbiprofen as an AD therapeutic and its possible mechanisms of action.

  20. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Science.gov (United States)

    Kukar, Thomas; Prescott, Sonya; Eriksen, Jason L; Holloway, Vallie; Murphy, M Paul; Koo, Edward H; Golde, Todd E; Nicolle, Michelle M

    2007-01-01

    ability to selectively target Aβ42 production and improve cognitive impairments in transgenic APP mice, as well as promising data from a phase 2 human clinical trial, future studies are needed to investigate the utility of R-flurbiprofen as an AD therapeutic and its possible mechanisms of action. PMID:17650315

  1. Abbreviated incubation times for human prions in mice expressing a chimeric mouse–human prion protein transgene

    OpenAIRE

    Korth, Carsten; Kaneko, Kiyotoshi; Groth, Darlene; Heye, Norbert; Telling, Glenn; Mastrianni, James; Parchi, Piero; Gambetti, Pierluigi; Will, Robert; Ironside, James; Heinrich, Cornelia; Tremblay, Patrick; Stephen J DeArmond; Prusiner, Stanley B.

    2003-01-01

    Transgenic (Tg) mouse lines that express chimeric mouse–human prion protein (PrP), designated MHu2M, are susceptible to prions from patients with sporadic Creutzfeldt–Jakob disease (sCJD). With the aim of decreasing the incubation time to fewer than 200 days, we constructed transgenes in which one or more of the nine human residues in MHu2M were changed to mouse. The construct with murine residues at positions 165 and 167 was expressed in Tg(MHu2M,M165V,E167Q) mice and resulted in shortening ...

  2. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies

    OpenAIRE

    1995-01-01

    Human class I major histocompatibility complex allele HLA-B27 is associated with a group of human diseases called "spondyloarthropathies." Studies on transgenic rats expressing HLA-B27 and human beta 2-microglobulin have confirmed the role of HLA-B27 in disease pathogenesis. Here we report spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin (B27+ beta 2m-/- ). In the absence of beta 2-microglobulin, B27+ beta 2m-/- animals do not express the HLA-B27 tran...

  3. Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance to intestinal damage.

    OpenAIRE

    Playford, R J; Marchbank, T; Goodlad, R A; Chinery, R A; Poulsom, R.; Hanby, A M

    1996-01-01

    pS2 is a member of the trefoil peptide family, all of which are overexpressed at sites of gastrointestinal injury. We hypothesized that they are important in stimulating mucosal repair. To test this idea, we have produced a transgenic mice strain that expresses human pS2 (hpS2) specifically within the jejunum and examined the effect of this overexpression on proliferation and susceptibility to indomethacin-induced damage. A transgenic mouse was produced by microinjecting fertilized oocytes wi...

  4. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    International Nuclear Information System (INIS)

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH3-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acute gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity

  5. LMNA E82K mutation activates FAS and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice.

    Directory of Open Access Journals (Sweden)

    Dan Lu

    Full Text Available The lamin A/C (LMNA, nuclear intermediate filament proteins, is a basic component of the nuclear lamina. Mutations in LMNA are associated with a broad range of laminopathies, congenital diseases affecting tissue regeneration and homeostasis. Heart tissue specific transgenic mice of human LMNA E82K, a mutation causing dilated cardiomyopathy, were generated. Lmna(E82K transgenic mouse lines exhibited thin-walled, dilated left and right ventricles, a progressive decrease of contractile function assessed by echocardiography. Abnormalities of the conduction system, myocytes disarray, collagen accumulation and increased levels of B-type natriuretic peptide (BNP, procollagen type III α1 (Col3α1 and skeletal muscle actin α1 (Actα1 were detected in the hearts of Lmna(E82K transgenic mice. The LMNA E82K mutation caused mislocation of LMNA in the nucleus and swollen mitochondria with loss of critae, together with the loss of nuclear envelope integrity. Most interestingly, we found that the level of apoptosis was 8.5-fold higher in the Lmna(E82K transgenic mice than that of non-transgenic (NTG mice. In the presence of the LMNA E82K, both of FAS and mitochondrial pathways of apoptosis were activated consistent with the increase of FAS expression, the release of cytochrome c from mitochondria to cytosol and activation of caspase-8, -9 and -3. Our results suggested that the apoptosis, at least for the LMNA E82K or the mutations in the rod region of Lamin A/C, might be an important mechanism causing continuous loss of myocytes and lead to myocardial dysfunction. It could be a potential therapeutic means to suppress and/or prevent inappropriate cardiac cell death in patients carrying LMNA mutation.

  6. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice.

    Directory of Open Access Journals (Sweden)

    Karina Fontana

    Full Text Available In an attempt to shorten recovery time and improve performance, strength and endurance athletes occasionally turn to the illicit use of anabolic-androgenic steroids (AAS. This study evaluated the effects of AAS treatment on the muscle mass and phenotypic characteristics of transgenic mice subjected to a high-intensity, aerobic training program (5d/wk for 6 weeks. The transgenic mice (CETP(+/-LDLr(-/+ were engineered to exhibit a lipid profile closer to humans. Animals were divided into groups of sedentary (Sed and/or training (Ex mice (each treated orally with AAS or gum arabic/vehicle: Sed-C, Sed-M, ex-C, ex-M. The effects of AAS (mesterolone: M on specific phenotypic adaptations (muscle wet weight, cross-sectional area, and fiber type composition in three hindlimb muscles (soleus:SOL, tibialis anterior:TA and gastrocnemius:GAS were assessed. In order to detect subtle changes in fiber type profile, the entire range of fiber types (I, IC, IIAC, IIA, IIAD, IID, IIDB, IIB was delineated using mATPase histochemistry. Body weight gain occurred throughout the study for all groups. However, the body weight gain was significantly minimized with exercise. This effect was blunted with mesterolone treatment. Both AAS treatment (Sed-M and high-intensity, aerobic training (ex-C increased the wet weights of all three muscles and induced differential hypertrophy of pure and hybrid fibers. Combination of AAS and training (ex-M resulted in enhanced hypertrophy. In the SOL, mesterolone treatment (Sed-M and ex-M caused dramatic increases in the percentages of fiber types IC, IIAC, IIAD, IID, with concomitant decrease in IIA, but had minimal impact on fiber type percentages in the predominantly fast muscles. Overall, the AAS-induced differential adaptive changes amounted to significant fiber type transformations in the fast-to-slow direction in SOL. AAS treatment had a significant effect on muscle weights and fiber type composition in SOL, TA and GAS which was

  7. Msx2 -/- transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis.

    Science.gov (United States)

    Aïoub, M; Lézot, F; Molla, M; Castaneda, B; Robert, B; Goubin, G; Néfussi, J R; Berdal, A

    2007-11-01

    The physiological function of the transcription factor Msx2 in tooth and alveolar bone was analysed using a knock-in transgenic mouse line. In this mouse line, the beta-galactosidase gene was used to disrupt Msx2: thus, beta-galactosidase expression was driven by the Msx2 promoter, but Msx2 was not produced. This allowed to monitor Msx2 expression using a beta-galactosidase assay. Msx2 transgenic mice ubiquitously and continuously expressed the mutated Msx2-nlacZ gene in cells of the complex formed by tooth and alveolar bone. Msx2 -/- homozygous mice displayed a wide spectrum of alterations in tooth eruption and morphology as well as dental and periodontal defects from the first post-natal weeks up to 6 months. These defects culminated with the formation of an odontogenic tumour at the mandibular third molar site. This study suggests that bone resorption is a functional target of Msx2 in the alveolar compartment, since Msx2 was expressed in osteoclasts, with the highest expression levels found in the active sites of bone modelling associated with tooth eruption and root elongation. The RANK osteoclast differentiation pathway was affected in microdissected Msx2 -/- mouse alveolar bone (as inferred by RANK ligand mRNA levels) compared to basal bone and wild-type controls. Decreased alveolar osteoclast activity was observed in Msx2 -/- mice, similar to that seen in osteopetrosis, another condition in which osteoclast activity is impaired and odontogenic tumours form. These data suggest a pleiotropic role for Msx2 in oral bone growth from birth until adult homeostasis. RANK pathway appeared to be modulated by Msx2, in addition to the previously reported modulations of BMP4 and laminin5alpha3 in early tooth development. Non-overlapping Msx1 and Msx2 expression patterns suggested that these two homeogenes play non-redundant roles in skeletal growth, with Msx1 targeting basal bone and Msx2 targeting alveolar bone. This study provides a detailed analysis of the phenotype

  8. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    OpenAIRE

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S.

    1998-01-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subu...

  9. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data

  10. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis.

    Science.gov (United States)

    Lucas, Stéphanie; Tavernier, Geneviève; Tiraby, Claire; Mairal, Aline; Langin, Dominique

    2003-01-01

    Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis. PMID:12518034

  11. Decreased glial and synaptic glutamate uptake in the striatum of HIV-1 gp120 transgenic mice.

    Science.gov (United States)

    Melendez, Roberto I; Roman, Cristina; Capo-Velez, Coral M; Lasalde-Dominicci, Jose A

    2016-06-01

    The mechanisms leading to the neurocognitive deficits in humans with immunodeficiency virus type 1 (HIV-1) are not well resolved. A number of cell culture models have demonstrated that the HIV-envelope glycoprotein 120 (gp120) decreases the reuptake of glutamate, which is necessary for learning, memory, and synaptic plasticity. However, the impact of brain HIV-1 gp120 on glutamate uptake systems in vivo remains unknown. Notably, alterations in brain glutamate uptake systems are implicated in a number of neurodegenerative and neurocognitive disorders. We characterized the kinetic properties of system XAG (sodium-dependent) and systems xc- (sodium-independent) [3H]-L-glutamate uptake in the striatum and hippocampus of HIV-1 gp120 transgenic mice, an established model of HIV neuropathology. We determined the kinetic constant Vmax (maximal velocity) and Km (affinity) of both systems XAG and xc- using subcellular preparations derived from neurons and glial cells. We show significant (30-35 %) reductions in the Vmax of systems XAG and xc- in both neuronal and glial preparations derived from the striatum, but not from the hippocampus of gp120 mice relative to wild-type (WT) controls. Moreover, immunoblot analysis showed that the protein expression of glutamate transporter subtype-1 (GLT-1), the predominant brain glutamate transporter, was significantly reduced in the striatum but not in the hippocampus of gp120 mice. These extensive and region-specific deficits of glutamate uptake likely contribute to the development and/or severity of HIV-associated neurocognitive disorders. Understanding the role of striatal glutamate uptake systems in HIV-1 gp120 may advance the development of new therapeutic strategies to prevent neuronal damage and improve cognitive function in HIV patients. PMID:26567011

  12. Expression of HLA-B27 in transgenic mice is dependent on the mouse H-2D genes

    OpenAIRE

    1990-01-01

    HLA-B27 transgenic mice in the context of various H-2 haplotypes were produced. A high expression of the HLA-B27 antigen was observed in mice homozygous for H-2b, H-2f, H-2s, H-2p, H-2r, and H-2k haplotypes. Mice of the H-2v haplotype expressed HLA-B27 at an intermediate level. Expression of HLA-B27 was minimal in mice of the H-2q and H-2d haplotypes. This was observed both on the B10 background and in DBA/2 or BALB/c mice. Only minimal expression of HLA-B27 could be detected in B10.PL (KuDd)...

  13. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  14. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur

    Energy Technology Data Exchange (ETDEWEB)

    Klebig, M.L.; Woychik, R.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Wilkinson, J.E. [Univ. of Tennessee, Knoxville, TN (United States); Geisler, J.G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States)

    1995-05-23

    Mice that carry the lethal yellow (A{sup y}) or viable yellow (A{sup vy}) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant {open_quotes}obese yellow{close_quotes} a-locus mutations suggested that ectopic expression of the normal agouti protein gives rise to this complex pleiotropic phenotype. We have now tested this hypothesis directly by generating transgenic mice that ectopically express an agouti cDNA clone encoding the normal agouti protein in all tissues examined. Transgenic mice of both sexes have yellow fur, become obese, and develop hyperinsulinemia. In addition, male transgenic mice develop hyperglycemia by 12-20 weeks of age. These results demonstrate conclusively that the ectopic agouti expression is responsible for most, if not all, of the phenotypic traits of the dominant, obese yellow mutants. 42 refs., 5 figs.

  15. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice

    Science.gov (United States)

    Rhein, Virginie; Song, Xiaomin; Wiesner, Andreas; Ittner, Lars M.; Baysang, Ginette; Meier, Fides; Ozmen, Laurence; Bluethmann, Horst; Dröse, Stefan; Brandt, Ulrich; Savaskan, Egemen; Czech, Christian; Götz, Jürgen; Eckert, Anne

    2009-01-01

    Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ)-containing plaques, neurofibrillary tangles, and neuron and synapse loss. Tangle formation has been reproduced in P301L tau transgenic pR5 mice, whereas APPswPS2N141I double-transgenic APP152 mice develop Aβ plaques. Cross-breeding generates triple transgenic (tripleAD) mice that combine both pathologies in one model. To determine functional consequences of the combined Aβ and tau pathologies, we performed a proteomic analysis followed by functional validation. Specifically, we obtained vesicular preparations from tripleAD mice, the parental strains, and nontransgenic mice, followed by the quantitative mass-tag labeling proteomic technique iTRAQ and mass spectrometry. Within 1,275 quantified proteins, we found a massive deregulation of 24 proteins, of which one-third were mitochondrial proteins mainly related to complexes I and IV of the oxidative phosphorylation system (OXPHOS). Notably, deregulation of complex I was tau dependent, whereas deregulation of complex IV was Aβ dependent, both at the protein and activity levels. Synergistic effects of Aβ and tau were evident in 8-month-old tripleAD mice as only they showed a reduction of the mitochondrial membrane potential at this early age. At the age of 12 months, the strongest defects on OXPHOS, synthesis of ATP, and reactive oxygen species were exhibited in the tripleAD mice, again emphasizing synergistic, age-associated effects of Aβ and tau in perishing mitochondria. Our study establishes a molecular link between Aβ and tau protein in AD pathology in vivo, illustrating the potential of quantitative proteomics. PMID:19897719

  16. Motor deficits associated with Huntington's disease occur in the absence of striatal degeneration in BACHD transgenic mice.

    Science.gov (United States)

    Mantovani, Susanna; Gordon, Richard; Li, Rui; Christie, Daniel C; Kumar, Vinod; Woodruff, Trent M

    2016-05-01

    Huntington's disease (HD) is an incurable neurodegenerative condition characterized by progressive motor and cognitive dysfunction, and depletion of neurons in the striatum. Recently, BACHD transgenic mice expressing the full-length human huntingtin gene have been generated, which recapitulate some of the motor and cognitive deficits seen in HD. In this study, we carried out a series of extensive behavioural and neuropathological tests on BACHD mice, to validate this mouse for preclinical research. Transgenic C57BL/6J BACHD and litter-matched wild-type mice were examined in a battery of motor and cognitive function tests at regular intervals up to 12 months of age. Brains from these mice were also analysed for signs of neurodegeneration and striatal and cortical volume sizes compared using anatomic 16.4T magnetic resonance imaging (MRI) brain scans. BACHD mice showed progressive motor impairments on rotarod and balance beam tests starting from 3 months of age, were hypoactive in the open field tests starting from 6 months of age, however, showed no alterations in gait and grip strength at any age. Surprisingly, despite these distinct motor deficits, no signs of neuronal loss, gliosis or blood-brain barrier degeneration were observed in the striatum of 12-month-old mice. MRI brain scans confirmed no reduction in striatal or cortical volumes at 12 months of age, and BACHD mice had a normal lifespan. These results demonstrate that classical Huntington's-like motor impairments seen in this transgenic model, do not occur due to degeneration of the striatum, and thus caution against the use of this model for preclinical studies into HD. PMID:26908618

  17. Transgenic expression of an expanded (GCG)13 repeat PABPN1 leads to weakness and coordination defects in mice.

    Science.gov (United States)

    Dion, Patrick; Shanmugam, Vijayalakshmi; Gaspar, Claudia; Messaed, Christiane; Meijer, Inge; Toulouse, André; Laganiere, Janet; Roussel, Julie; Rochefort, Daniel; Laganiere, Simon; Allen, Carol; Karpati, George; Bouchard, Jean-Pierre; Brais, Bernard; Rouleau, Guy A

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder caused by a (GCG)n trinucleotide repeat expansion in the poly(A) binding protein nuclear-1 (PABPN1) gene, which in turn leads to an expanded polyalanine tract in the protein. We generated transgenic mice expressing either the wild type or the expanded form of human PABPN1, and transgenic animals with the expanded form showed clear signs of abnormal limb clasping, muscle weakness, coordination deficits, and peripheral nerves alterations. Analysis of mitotic and postmitotic tissues in those transgenic animals revealed ubiquitinated PABPN1-positive intranuclear inclusions (INIs) in neuronal cells. This latter observation led us to test and confirm the presence of similar INIs in postmortem brain sections from an OPMD patient. Our results indicate that expanded PABPN1, presumably via the toxic effects of its polyalanine tract, can lead to inclusion formation and neurodegeneration in both the mouse and the human. PMID:15755680

  18. Transgenic expression of an expanded (GCG)13 repeat PABPN1 leads to weakness and coordination defects in mice.

    Science.gov (United States)

    Dion, Patrick; Shanmugam, Vijayalakshmi; Gaspar, Claudia; Messaed, Christiane; Meijer, Inge; Toulouse, André; Laganiere, Janet; Roussel, Julie; Rochefort, Daniel; Laganiere, Simon; Allen, Carol; Karpati, George; Bouchard, Jean-Pierre; Brais, Bernard; Rouleau, Guy A

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder caused by a (GCG)n trinucleotide repeat expansion in the poly(A) binding protein nuclear-1 (PABPN1) gene, which in turn leads to an expanded polyalanine tract in the protein. We generated transgenic mice expressing either the wild type or the expanded form of human PABPN1, and transgenic animals with the expanded form showed clear signs of abnormal limb clasping, muscle weakness, coordination deficits, and peripheral nerves alterations. Analysis of mitotic and postmitotic tissues in those transgenic animals revealed ubiquitinated PABPN1-positive intranuclear inclusions (INIs) in neuronal cells. This latter observation led us to test and confirm the presence of similar INIs in postmortem brain sections from an OPMD patient. Our results indicate that expanded PABPN1, presumably via the toxic effects of its polyalanine tract, can lead to inclusion formation and neurodegeneration in both the mouse and the human.

  19. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    OpenAIRE

    Shih Ping Yao; Ho Pei-Yu; Huang Hsiao-I; Bolen James; Brown Lucy; Hsiao Chin-Ton; Lo Hsin-Lung; Lai Chao-Kuen; Chen Chi-Dar; Wu Ming-Che; Liu Yi-Hsin; Jiang MeiSheng; Qian Jin; Chang Keejong; Yao Chen-Wen

    2002-01-01

    Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT) that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal ...

  20. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  1. Study on Alzheimer's disease in transgenic mice%阿尔茨海默病转基因鼠模型的建立

    Institute of Scientific and Technical Information of China (English)

    廖峥嵘; 雷宇华; 赵娟; 吕雨虹; 王忠海; 张凤云; 赵俊霞

    2011-01-01

    目的 建立阿尔茨海默病(AD)双转基因鼠,为进一步研究AD发病机制提供较为理想的实验动物.方法 将人载脂蛋白E4转基因鼠和突变APP转基因鼠杂交.结果 经PCR初筛,对阳性小鼠基因组DNA作进一步的Southern杂交鉴定,获得2只双转基因小鼠,之后传代建系.结论 为进一步研究多个基因对AD的致病作用提供较为理想的实验动物.%Objective To establish animal model of Alzheimer' s disease (AD) in transgenic mice and investigate the mechanism of AD.Methods To establish AD bi-transgenic mice by ApoE4 and APP transgenic mice intercrossing.The PCR and Southern blot hybridization techniques were used for identification of transgenic mice.Results Two ApoE4/APP transgenic mice were bom and young mice were bred.Conclusions ApoE4 and APP transgenic mice is a good AD animal model.

  2. Osteoprotegerin-deficient male mice as a model for severe alveolar bone loss: comparison with RANKL-overexpressing transgenic male mice.

    Science.gov (United States)

    Koide, Masanori; Kobayashi, Yasuhiro; Ninomiya, Tadashi; Nakamura, Midori; Yasuda, Hisataka; Arai, Yoshinori; Okahashi, Nobuo; Yoshinari, Nobuo; Takahashi, Naoyuki; Udagawa, Nobuyuki

    2013-02-01

    Periodontitis, an inflammatory disease of periodontal tissues, is characterized by excessive alveolar bone resorption. An increase in the receptor activator of nuclear factor-κB ligand (RANKL) to osteoprotegerin (OPG) ratio is thought to reflect the severity of periodontitis. Here, we examined alveolar bone loss in OPG-deficient (OPG(-/-)) mice and RANKL-overexpressing transgenic (RANKL-Tg) mice. Alveolar bone loss in OPG(-/-) mice at 12 weeks was significantly higher than that in RANKL-Tg mice. OPG(-/-) but not RANKL-Tg mice exhibited severe bone resorption especially in cortical areas of the alveolar bone. An increased number of osteoclasts was observed in the cortical areas in OPG(-/-) but not in RANKL-Tg mice. Immunohistochemical analyses showed many OPG-positive signals in osteocytes but not osteoblasts. OPG-positive osteocytes in the cortical area of alveolar bones and long bones were abundant in both wild-type and RANKL-Tg mice. This suggests the resorption in cortical bone areas to be prevented by OPG produced locally. To test the usefulness of OPG(-/-) mice as an animal model for screening drugs to prevent alveolar bone loss, we administered an antimouse RANKL antibody or risedronate, a bisphosphonate, to OPG(-/-) mice. They suppressed alveolar bone resorption effectively. OPG(-/-) mice are useful for screening therapeutic agents against alveolar bone loss.

  3. Synaptophysin expression in motor neurons of transgenic mice with amyotrophic lateral sclerosis

    Institute of Scientific and Technical Information of China (English)

    Juan Liu; Dawei Zang; Surindar Cheema

    2006-01-01

    BACKGROUND: Affected signal convection of synaptophysin on motor neurons may Cause injury of motor neurons and then induce neurodegeneration and cell death in the end.OBJECTTVE: To investigate the number and density of synaptophysin on motor neurons in the anterior horn of lumbar spinal cord and sensorimotor cortex of the transgenic mouse model of amyotrophic lateral sclerosis(ALS).DESIGN: Randomized controlled animal study.SETTTNG: Brain Injury and Repair Group, HFI Institute of Melbourne University.MATERIALS: Transgenic mice expressing a mutated human superoxide dismutase 1 (SOD-1) were taken as ALS group (n =36), while those dedved from the B6SJL-TgN gene line were taken as control group (n =36),according to the difference of gender and three postnatal time points (postnatal 60, 90 and 120 days), twelve mice of either gender were allocated in each subgroup.METHODS: The experiment was carried out in Brain Injury and Repair Group, HFI Institute of Melbourne University from November 2003 to June 2004. ① Fluorogold labeling was used for the motor neurons in the lumbar and sensorimotor cortex. ② Immunofluorescence was applied for the labeling of synaptophysin; positive control sections were represented by adding the synaptophysin antibody and the staining, showing a positive result. For negative controls, the synaptophysin antibody was omitted. ③ Stereological counting system was adopted in the statistical analysis.MAIN OUTCOME MEASURES: ① Fluorogold labeling of motor neurons; ② number of synaptophysin on the motor neurons.RESULTS: ① Fluorogold labeling of motor neurons: The motor neurons in the lumbar and sensorimotor cortex were clearly labeled by fluorogold under the detection of fluorescent microscope. ② The number of synaptophysin on the motor neurons: The number statistically decreased at the mid stage (postnatal 90 days)and late stage (postnatal 120 days) [motor neuron somas at lumbar spinal cord: (0.75±0.06), (0.59±0.09)/μm;motor neuron

  4. Effect of catalpol on senile plaques and spatial learning and memory ability in amyloid-β protein precursor/presenilin 1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)

    宋冲

    2013-01-01

    Objective To investigate whether catalpol affects senile plaque formation and spatial learning and memory ability in the amyloid-βprotein precursor/presenilin 1(APP/PS1)double transgenic mice.Methods

  5. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice

    Directory of Open Access Journals (Sweden)

    Pichon A

    2016-04-01

    Full Text Available Aurélien Pichon,1–3 Florine Jeton,1,2 Raja El Hasnaoui-Saadani,4 Luciana Hagström,5 Thierry Launay,6 Michèle Beaudry,1 Dominique Marchant,1 Patricia Quidu,1 Jose-Luis Macarlupu,7 Fabrice Favret,8 Jean-Paul Richalet,1,2 Nicolas Voituron1,2 1Laboratory “Hypoxia and Lung” EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex, 2Laboratory of Excellence GR-Ex, Paris, 3Laboratory MOVE EA 6314, FSS, Poitiers University, Poitiers, France; 4Research Unit, College of Medicine, Princess Noura University, Riyadh, Saudi Arabia; 5Laboratório Interdisciplinar de Biociências, Universidade de Brasília, Brasília, Brazil; 6Unité de Biologie Intégrative des Adaptations à l'Exercice, University Paris Saclay and Genopole®, University Sorbonne-Paris-Cité, Paris, France; 7High Altitude Unit, Laboratories for Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru; 8Laboratory “Mitochondrie, Stress Oxydant et Protection Musculaire” EA 3072, University of Strasbourg, Strasbourg, France Abstract: Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to

  6. Brain-Derived Neurotrophic Factor Transgenic Mice Exhibit Passive Avoidance Deficits, Increased Seizure Severity and In Vitro Hyperexcitability in the Hippocampus and Entorhinal Cortex

    OpenAIRE

    Croll, S. D.; Suri, C; Compton, D. L.; Simmons, M. V.; Yancopoulos, G D; Lindsay, R M; Wiegand, S. J.; RUDGE, J. S.; Scharfman, H. E.

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the β-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a si...

  7. Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin

    OpenAIRE

    Ubhi, Kiren; Rockenstein, Edward; Doppler, Edith; Mante, Michael; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Crews, Leslie; Paulino, Amy; Moessler, Herbert; Masliah, Eliezer

    2009-01-01

    Alzheimer’s disease (AD) continues to be the most common cause of cognitive and motor alterations in the aging population. Accumulation of amyloid β (Aβ)-protein oligomers and the microtubule associated protein-TAU might be responsible for the neurological damage. We have previously shown that Cerebrolysin (CBL) reduces the synaptic and behavioral deficits in amyloid precursor protein (APP) transgenic (tg) mice by decreasing APP phosphorylation via modulation of glycogen synthase kinase-3β (G...

  8. Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT1) receptors

    OpenAIRE

    Lazartigues, Eric; Sinnayah, Puspha; Augoyard, Ginette; Gharib, Claude; Johnson, Alan Kim; Davisson, Robin L.

    2008-01-01

    To address the relative contribution of central and peripheral angiotensin II (ANG II) type 1A receptors (AT1A) to blood pressure and volume homeostasis, we generated a transgenic mouse model [neuron-specific enolase (NSE)-AT1A] with brain-restricted overexpression of AT1A receptors. These mice are normotensive at baseline but have dramatically enhanced pressor and bradycardic responses to intracerebroventricular ANG II or activation of endogenous ANG II production. Here our goal was to exami...

  9. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice.

    OpenAIRE

    Semenza, G L; Koury, S. T.; Nejfelt, M K; Gearhart, J D; Antonarakis, S E

    1991-01-01

    Synthesis of erythropoietin, the primary humoral regulator of erythropoiesis, in liver and kidney is inducible by anemia or hypoxia. Analysis of human erythropoietin gene expression in transgenic mice revealed that sequences located 6-14 kilobases 5' to the gene direct expression to the kidney, whereas sequences within the immediate 3'-flanking region control hepatocyte-specific expression. Human erythropoietin transcription initiation sites were differentially utilized in liver and kidney. I...

  10. Unusual cerebral vascular prion protein amyloid distribution in scrapie-infected transgenic mice expressing anchorless prion protein

    OpenAIRE

    Rangel, Alejandra; Race, Brent; Klingeborn, Mikael; Striebel, James; Chesebro, Bruce

    2013-01-01

    Background In some prion diseases, misfolded aggregated protease-resistant prion protein (PrPres) is found in brain as amyloid, which can cause cerebral amyloid angiopathy. Small diffusible precursors of PrPres amyloid might flow with brain interstitial fluid (ISF), possibly accounting for the perivascular and intravascular distribution of PrPres amyloid. We previously reported that PrPres amyloid in scrapie-infected transgenic mice appeared to delay clearance of microinjected brain ISF trace...

  11. Induction of somatic mutations but not methylated DNA adducts in λlacZ transgenic mice by dichlorvos

    NARCIS (Netherlands)

    Pletsa, V.; Steenwinkel, M.-J.S.T.; Delft, J.H.M. van; Baan, R.A.; Kyrtopoulos, S.A.

    1999-01-01

    In order to examine the in vivo genotoxic activity of dichlorvos, λlacZ transgenic mice (Muta(TM)Mouse) were treated i.p. with single (4.4 or 11 mg/kg) or multiple (5x11 mg/kg) doses of this agent and sacrificed 4 h or 14 days post-treatment for DNA adduct measurement or mutant frequency analysis, r

  12. DNA adducts, mutant frequencies and mutation spectra in λlacZ transgenic mice treated with N-nitrosodimethylamine

    NARCIS (Netherlands)

    Souliotis, V.L.; Delft, J.H.M. van; Steenwinkel, M.-J.S.T.; Baan, R.A.; Kyrtopoulos, S.A.

    1998-01-01

    Groups of λlacZ transgenic mice were treated i.p. with N-nitrosodimethylamine (NDMA) as single doses of 5 mg/kg or 10 mg/kg or as 10 daily doses of 1 mg/kg and changes in DNA N7- or O6-methylguanine or the repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT) were followed for up to 14 days in va

  13. Incubation and application of transgenic green fluorescent nude mice in visualization studies on glioma tissue remodeling

    Institute of Scientific and Technical Information of China (English)

    DONG Jun; LAN Qing; HUANG Qiang; DAI Xing-liang; LU Zhao-hui; FEI Xi-feng; CHEN Hua; ZHANG Quan-bin; ZHAO Yao-dong; WANG Zhi-min; WANG Ai-dong

    2012-01-01

    Background The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells.However,these tumor cells are hard to be visualized directly in histopathological preparations,or in experimental glioma models.Therefore,we developed an experimental human dual-color in vivo glioma model,which made tracking solitary invasive glioma cells possible,for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells.This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling.Methods Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice.Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive.Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene,and a rat C6 glioma cell line was stained directly with CM-Dil,to establish three glioma cell lines emitting red fluorescence (SU3-RFP,U87-RFP,and C6-CM-Dil).Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice.Tumor-bearing mice were sacrificed when their clinical symptoms appeared,and the whole brain was harvested and snap frozen for further analysis.Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells.Results Almost all the essential tissues of the established EGFP athymic Balb/c nude mice,except hair and erythrocytes,fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm,approximately 50% of the offsprings were nu/nu EGFP+.SU3-RFP,U87-RFP,and C6-CM-Dil almost 100% expressed red fluorescence under the fluorescence

  14. Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas

    Directory of Open Access Journals (Sweden)

    Refaeli Yosef

    2008-05-01

    Full Text Available Abstract Background We have used a mouse model based on overexpression of c-Myc in B cells genetically engineered to be self-reactive to test the hypothesis that farnesyl transferase inhibitors (FTIs can effectively treat mature B cell lymphomas. FTIs are undergoing clinical trials to treat both lymphoid and non-lymphoid malignancies and we wished to obtain evidence to support the inclusion of B cell lymphomas in future trials. Results We report that two FTIs, L-744,832 and SCH66336, blocked the growth of mature B cell lymphoma cells in vitro and in vivo. The FTI treatment affected the proliferation and survival of the transformed B cells to a greater extent than naïve B cells stimulated with antigen. In syngeneic mice transplanted with the transgenic lymphoma cells, L-744,832 treatment prevented the growth of the tumor cells and the morbidity associated with the resulting lymphoma progression. Tumors that arose from transplantation of the lymphoma cells regressed with as little as three days of treatment with L-744,832 or SCH66336. Treatment of these established lymphomas with L-744,832 for seven days led to long-term remission of the disease in approximately 25% of animals. Conclusion FTI treatment can block the proliferation and survival of self-reactive transformed B cells that overexpress Myc. In mice transplanted with mature B cell lymphomas, we found that FTI treatment led to regression of disease. FTIs warrant further consideration as therapeutic agents for mature B cell lymphomas and other lymphoid tumors.

  15. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans

    OpenAIRE

    Hikida, Takatoshi; Jaaro-Peled, Hanna; Seshadri, Saurav; Oishi, Kenichi; Hookway, Caroline; Kong, Stephanie; Wu, Di; Xue, Rong; Andradé, Manuella; Tankou, Stephanie; Mori, Susumu; Gallagher, Michela; Ishizuka, Koko; Pletnikov, Mikhail; Kida, Satoshi

    2007-01-01

    Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the as...

  16. Overexpression of human low density lipoprotein receptors leads to accelerated catabolism of Lp(a) lipoprotein in transgenic mice.

    OpenAIRE

    Hofmann, S L; Eaton, D L; Brown, M. S.; McConathy, W J; Goldstein, J L; Hammer, R. E.

    1990-01-01

    Lp(a) lipoprotein purified from human plasma bound with high affinity to isolated bovine LDL receptors on nitrocellulose blots and in a solid-phase assay. Lp(a) also competed with 125I-LDL for binding to human LDL receptors in intact fibroblasts. Binding led to cellular uptake of Lp(a) with subsequent stimulation of cholesterol esterification. After intravenous injection, human Lp(a) was cleared slowly from the plasma of normal mice. The clearance was markedly accelerated in transgenic mice t...

  17. Transgenic mice overexpressing arginase 1 in monocytic cell lineage are affected by lympho-myeloproliferative disorders and disseminated intravascular coagulation.

    Science.gov (United States)

    Astigiano, Simonetta; Morini, Monica; Damonte, Patrizia; Fraternali Orcioni, Giulio; Cassanello, Michela; Puglisi, Andrea; Noonan, Douglas M; Bronte, Vincenzo; Barbieri, Ottavia

    2015-11-01

    Arginase (ARG) is a metabolic enzyme present in two isoforms that hydrolyze l-arginine to urea and ornithine. In humans, ARG isoform 1 is also expressed in cells of the myeloid lineage. ARG activity promotes tumour growth and inhibits T lymphocyte activation. However, the two ARG transgenic mouse lines produced so far failed to show such effects. We have generated, in two different genetic backgrounds, transgenic mice constitutively expressing ARG1 under the control of the CD68 promoter in macrophages and monocytes. Both heterozygous and homozygous transgenic mice showed a relevant increase in mortality at early age, compared with wild-type siblings (67/267 and 48/181 versus 8/149, respectively, both P < 0.005). This increase was due to high incidence of haematologic malignancies, in particular myeloid leukaemia, myeloid dysplasia, lymphomas and disseminated intravascular coagulation (DIC), diseases that were absent in wild-type mice. Atrophy of lymphoid organs due to reduction in T-cell compartment was also detected. Our results indicate that ARG activity may participate in the pathogenesis of lymphoproliferative and myeloproliferative disorders, suggest the involvement of alterations of L-arginine metabolism in the onset of DIC and confirm a role for the enzyme in regulating T-cell homeostasis.

  18. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice.

    Science.gov (United States)

    Nelson, R K; Gould, K A

    2016-02-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell-specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB × NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4(+) and CD8(+) T cells, the proportion of activated CD4(+) T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cell apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system.

  19. The MRI marker gene MagA attenuates the oxidative damage induced by iron overload in transgenic mice.

    Science.gov (United States)

    Guan, Xiaoying; Jiang, Xinhua; Yang, Chuan; Tian, Xiumei; Li, Li

    2016-06-01

    We aimed to create transgenic (Tg) mice engineered for magnetic resonance imaging (MRI). To ascertain if MagA expression contributes to oxidative stress and iron metabolism, we report the generation of Tg mice in which ubiquitous expression of MagA can be detected by MRI in vivo. Expression of MagA in diverse tissues of Tg mice was assessed, and iron accumulation and deposition of nanoparticles in tissues were analyzed. Levels of antioxidant enzymes, lipid peroxidation and cytokine production were determined, and iron metabolism-related proteins were also detected. MagA Tg showed no apparent pathologic symptoms and no histologic changes compared with wild-type (WT) mice. Overexpression of MagA resulted in specific alterations of the transverse relaxation rate (R2) of water. Transgene-dependent changes in R2 were detectable by MRI in iron-overloaded mice. We also evaluated antioxidant abilities between WT and Tg groups or two iron-overloaded groups. Together with the data of cytokines and iron metabolism-related proteins, we inferred that MagA could regulate nanoparticle production and thus attenuate the oxidative damage induced by iron overload. The novel MagA Tg mouse, which expresses an MRI reporter in many tissues, would be a valuable model of MagA molecular imaging in which to study diseases related to iron metabolism. PMID:26488480

  20. Gata3 Hypomorphic Mutant Mice Rescued with a Yeast Artificial Chromosome Transgene Suffer a Glomerular Mesangial Cell Defect.

    Science.gov (United States)

    Moriguchi, Takashi; Yu, Lei; Otsuki, Akihito; Ainoya, Keiko; Lim, Kim-Chew; Yamamoto, Masayuki; Engel, James Douglas

    2016-09-01

    GATA3 is a zinc finger transcription factor that plays a crucial role in embryonic kidney development, while its precise functions in the adult kidney remain largely unexplored. Here, we demonstrate that GATA3 is specifically expressed in glomerular mesangial cells and plays a critical role in the maintenance of renal glomerular function. Newly generated Gata3 hypomorphic mutant mice exhibited neonatal lethality associated with severe renal hypoplasia. Normal kidney size was restored by breeding the hypomorphic mutant with a rescuing transgenic mouse line bearing a 662-kb Gata3 yeast artificial chromosome (YAC), and these animals (termed G3YR mice) survived to adulthood. However, most of the G3YR mice showed degenerative changes in glomerular mesangial cells, which deteriorated progressively during postnatal development. Consequently, the G3YR adult mice suffered severe renal failure. We found that the 662-kb Gata3 YAC transgene recapitulated Gata3 expression in the renal tubules but failed to direct sufficient GATA3 activity to mesangial cells. Renal glomeruli of the G3YR mice had significantly reduced amounts of platelet-derived growth factor receptor (PDGFR), which is known to participate in the development and maintenance of glomerular mesangial cells. These results demonstrate a critical role for GATA3 in the maintenance of mesangial cells and its absolute requirement for prevention of glomerular disease. PMID:27296697

  1. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Simone Thomas

    2015-07-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease.

  2. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Kristie Lee

    Full Text Available Congenital hydrocephalus (CH is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF, a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner.

  3. Impaired electro-genesis in skeletal muscle fibers of transgenic Alzheimer mice.

    Science.gov (United States)

    Mukhamedyarov, Marat Alexandrovich; Volkov, Evgeniy Mikhailovich; Khaliullina, Dilyara Fanisovna; Grigoryev, Pavel Nikolaevich; Zefirov, Andrey Lvovich; Palotás, András

    2014-01-01

    Alzheimer's disease (AD) is characterized by memory decline, but is often associated with non-cognitive symptoms, including muscular dysfunction. In the majority of cases these motor disturbances are seen when other neuro-degenerative disorders such as Parkinson's disease overlap dementia, however these can also be directly related to AD itself. Although the patho-mechanism remains largely unclear, β-amyloid peptide (βAP) is thought to be a key role-player in both the brain and periphery. Here we studied the electro-genesis of skeletal muscle fibers in a mouse transgenic AD model. Membrane potential was recorded by standard electro-physiological techniques. Compared to wild-type rodents, AD mice show severe disturbances in skeletal muscle electro-genesis manifested by significant depolarization of myo-fibers. These changes are not affected by short-term βAP treatment, the mark of a chronic degenerative process in the periphery directly related to AD whereby ion pumps on muscle membranes exhibit reduced activity. This phenomenon may explain ionic imbalance and cellular dysfunction both in the neuro-muscular system and in the brain. The observed motor disturbances might play a key role in impaired activities of daily living, and addressing the muscular patho-physiology could improve quality of life in AD.

  4. Modulating dopamine release by optogenetics in transgenic mice reveals terminal dopaminergic dynamics.

    Science.gov (United States)

    Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V

    2015-07-01

    Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context.

  5. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice

    Directory of Open Access Journals (Sweden)

    Dezun Ma

    2015-08-01

    Full Text Available Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y. This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS, C313Y, and wild-type porcine myostatin propeptide (ppMS, respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  6. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  7. Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates

    International Nuclear Information System (INIS)

    Alcohol consumption increases reactive oxygen species formation and lipid peroxidation, whose products can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. A possible role of manganese superoxide dismutase (MnSOD) on these effects has not been investigated. To test whether MnSOD overexpression modulates alcohol-induced mitochondrial alterations, we added ethanol to the drinking water of transgenic MnSOD-overexpressing (TgMnSOD) mice and their wild type (WT) littermates for 7 weeks. In TgMnSOD mice, alcohol administration further increased the activity of MnSOD, but decreased cytosolic glutathione as well as cytosolic glutathione peroxidase activity and peroxisomal catalase activity. Whereas ethanol increased cytochrome P-450 2E1 and mitochondrial ROS generation in both WT and TgMnSOD mice, hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls were only increased in ethanol-treated TgMnSOD mice but not in WT mice. In ethanol-fed TgMnSOD mice, but not ethanol-fed WT mice, mtDNA was depleted, and mtDNA lesions blocked the progress of polymerases. The iron chelator, DFO prevented hepatic iron accumulation, lipid peroxidation, protein carbonyl formation and mtDNA depletion in alcohol-treated TgMnSOD mice. Alcohol markedly decreased the activities of complexes I, IV and V of the respiratory chain in TgMnSOD, with absent or lesser effects in WT mice. There was no inflammation, apoptosis or necrosis, and steatosis was similar in ethanol-treated WT and TgMnSOD mice. In conclusion, prolonged alcohol administration selectively triggers iron accumulation, lipid peroxidation, respiratory complex I protein carbonylation, mtDNA lesions blocking the progress of polymerases, mtDNA depletion and respiratory complex dysfunction in TgMnSOD mice but not in WT mice

  8. Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet.

    OpenAIRE

    Purcell-Huynh, D A; Farese, R V; Johnson, D F; Flynn, L M; Pierotti, V; Newland, D. L.; Linton, M F; Sanan, D A; Young, S G

    1995-01-01

    We previously generated transgenic mice expressing human apolipoprotein (apo-) B and demonstrated that the plasma of chow-fed transgenic animals contained markedly increased amounts of LDL (Linton, M. F., R. V. Farese, Jr., G. Chiesa, D. S. Grass, P. Chin, R. E. Hammer, H. H. Hobbs, and S. G. Young 1992. J. Clin. Invest. 92:3029-3037). In this study, we fed groups of transgenic and nontransgenic mice either a chow diet or a diet high in fat (16%) and cholesterol (1.25%). Lipid and lipoprotein...

  9. Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression In mammalian cells and mice

    Directory of Open Access Journals (Sweden)

    Fussenegger Martin

    2007-11-01

    Full Text Available Abstract Background Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features. Results We designed recombinant adeno-associated virus (rAAV vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7. Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression. Conclusion Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as

  10. Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice

    Directory of Open Access Journals (Sweden)

    Dickson Dennis W

    2011-10-01

    Full Text Available Abstract Background Abnormal distribution, modification and aggregation of transactivation response DNA-binding protein 43 (TDP-43 are the hallmarks of multiple neurodegenerative diseases, especially frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U and amyotrophic lateral sclerosis (ALS. Researchers have identified 44 mutations in the TARDBP gene that encode TDP-43 as causative for cases of sporadic and familial ALS http://www.molgen.ua.ac.be/FTDMutations/. Certain mutant forms of TDP-43, such as M337V, are associated with increased low molecular weight (LMW fragments compared to wild-type (WT TDP-43 and cause neuronal apoptosis and developmental delay in chick embryos. Such findings support a direct link between altered TDP-43 function and neurodegeneration. Results To explore the pathogenic properties of the M337V mutation, we generated and characterized two mouse lines expressing human TDP-43 (hTDP-43M337V carrying this mutation. hTDP-43M337V was expressed primarily in the nuclei of neurons in the brain and spinal cord, and intranuclear and cytoplasmic phosphorylated TDP-43 aggregates were frequently detected. The levels of TDP-43 LMW products of ~25 kDa and ~35 kDa species were also increased in the transgenic mice. Moreover, overexpression of hTDP-43M337V dramatically down regulated the levels of mouse TDP-43 (mTDP-43 protein and RNA, indicating TDP-43 levels are tightly controlled in mammalian systems. TDP-43M337V mice displayed reactive gliosis, widespread ubiquitination, chromatolysis, gait abnormalities, and early lethality. Abnormal cytoplasmic mitochondrial aggregates and abnormal phosphorylated tau were also detected in the mice. Conclusion Our novel TDP-43M337V mouse model indicates that overexpression of hTDP-43M337V alone is toxic in vivo. Because overexpression of hTDP-43 in wild-type TDP-43 and TDP-43M337V mouse models produces similar phenotypes, the mechanisms causing pathogenesis in the mutant

  11. Histological examination on osteoblastic activities in the alveolar bone of transgenic mice with induced ablation of osteocytes.

    Science.gov (United States)

    Li, Minqi; Hasegawa, Tomoka; Hogo, Hiromi; Tatsumi, Sawako; Liu, Zhusheng; Guo, Ying; Sasaki, Muneteru; Tabata, Chihiro; Yamamoto, Tsuneyuki; Ikeda, Kyoji; Amizuka, Norio

    2013-03-01

    The purpose of this study was to examine histological alterations on osteoblasts from the alveolar bone of transgenic mice with targeted ablation of osteoctyes. Eighteen weeks-old transgenic mice based on the diphtheria toxin (DT) receptor-mediated cell knockout (TRECK) system were used in these experiments. Mice were injected intraperitoneally with 50 µg/kg of DT in PBS, or only PBS as control. Two weeks after injections, mice were subjected to transcardiac perfusion with 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4), and the available alveolar bone was removed for histochemical analyses. Approximately 75% of osteocytes from alveolar bones became apoptotic after DT administration, and most osteocytic lacunae became empty. Osteoblastic numbers and alkaline phosphatase (ALP) activity were markedly reduced at the endosteum of alveolar bone after DT administration compared with the control. Osteoblastic ALP activity in the periodontal ligament region, on the other hand, hardly showed any differences between the two groups even though numbers were reduced in the experiment group. Silver impregnation showed a difference in the distribution of bone canaliculi between the portions near the endosteum and the periodontal ligament: the former appeared regularly arranged in contrast to the latter's irregular distribution. Under transmission electron microscopy (TEM), the osteoblasts in the periodontal ligament showed direct contact with the Sharpey's fibers. Thus, osteoblastic activity was affected by osteocyte ablation in general, but osteoblasts in contact with the periodontal ligament were less affected than endosteal osteoblasts.

  12. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    Directory of Open Access Journals (Sweden)

    Yuichiro Ohshima

    Full Text Available Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf and Gdnf receptor alpha 1 (Gfra1 transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1 were higher than those in primary cultured normal human epithelial melanocytes (NHEM, while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  13. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice.

    Directory of Open Access Journals (Sweden)

    Mian Bi

    Full Text Available In Alzheimer's disease (AD brains, the microtubule-associated protein tau and amyloid-β (Aβ deposit as intracellular neurofibrillary tangles (NFTs and extracellular plaques, respectively. Tau deposits are furthermore found in a significant number of frontotemporal dementia cases. These diseases are characterized by progressive neurodegeneration, the loss of intellectual capabilities and behavioral changes. Unfortunately, the currently available therapies are limited to symptomatic relief. While active immunization against Aβ has shown efficacy in both various AD mouse models and patients with AD, immunization against pathogenic tau has only recently been shown to prevent pathology in young tau transgenic mice. However, if translated to humans, diagnosis and treatment would be routinely done when symptoms are overt, meaning that the histopathological changes have already progressed. Therefore, we used active immunization to target pathogenic tau in 4, 8, and 18 months-old P301L tau transgenic pR5 mice that have an onset of NFT pathology at 6 months of age. In all age groups, NFT pathology was significantly reduced in treated compared to control pR5 mice. Similarly, phosphorylation of tau at pathological sites was reduced. In addition, increased astrocytosis was found in the oldest treated group. Taken together, our data suggests that tau-targeted immunization slows the progression of NFT pathology in mice, with practical implications for human patients.

  14. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    Science.gov (United States)

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.

  15. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    Science.gov (United States)

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation. PMID:17914196

  16. Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice.

    Science.gov (United States)

    Nuber, Silke; Franck, Thomas; Wolburg, Hartwig; Schumann, Ulrike; Casadei, Nicolas; Fischer, Kristina; Calaminus, Carsten; Pichler, Bernd J; Chanarat, Sittinan; Teismann, Peter; Schulz, Jörg B; Luft, Andreas R; Tomiuk, Jürgen; Wilbertz, Johannes; Bornemann, Antje; Krüger, Rejko; Riess, Olaf

    2010-02-01

    Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also been shown to be an intrinsic component of Lewy bodies in sporadic PD. In order to elucidate the role of synphilin-1 in the pathogenesis of PD, we generated transgenic mice overexpressing wild-type and mutant (R621C) synphilin-1 driven by a mouse prion protein promoter. Transgenic expression of both wild-type and the R621C variant synphilin-1 resulted in increased dopamine levels of the nigrostriatal system in 3-month-old mice. Furthermore, we found pathological ubiquitin-positive inclusions in cerebellar sections and dark-cell degeneration of Purkinje cells. Both transgenic mouse lines showed significant reduction of motor skill learning and motor performance. These findings suggest a pathological role of overexpressed synphilin-1 in vivo and will help to further elucidate the mechanisms of protein aggregation and neuronal cell death. PMID:19760259

  17. Testis hormone-sensitive lipase expression in spermatids is governed by a short promoter in transgenic mice.

    Science.gov (United States)

    Blaise, R; Guillaudeux, T; Tavernier, G; Daegelen, D; Evrard, B; Mairal, A; Holm, C; Jégou, B; Langin, D

    2001-02-16

    A testicular form of hormone-sensitive lipase (HSL(tes)), a triacylglycerol lipase, and cholesterol esterase, is expressed in male germ cells. Northern blot analysis showed HSL(tes) mRNA expression in early spermatids. Immunolocalization of the protein in human and rodent seminiferous tubules indicated that the highest level of expression occurred in elongated spermatids. We have previously shown that 0.5 kilobase pairs of the human HSL(tes) promoter directs testis-specific expression of a chloramphenicol acetyltransferase reporter gene in transgenic mice and determined regions binding nuclear proteins expressed in testis but not in liver (Blaise, R., Grober, J., Rouet, P., Tavernier, G., Daegelen, D., and Langin, D. (1999) J. Biol. Chem. 274, 9327-9334). Mutation of a SRY/Sox-binding site in one of the regions did not impair in vivo testis-specific expression of the reporter gene. Further transgenic analyses established that 95 base pairs upstream of the transcription start site were sufficient for correct testis expression. In gel retardation assays using early spermatid nuclear extracts, a germ cell-specific DNA-protein interaction was mapped between -46 and -29 base pairs. The DNA binding nuclear protein showed properties of zinc finger transcription factors. Mutation of the region abolished reporter gene activity in transgenic mice, showing that it is necessary for testis expression of HSL(tes). PMID:11076952

  18. Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1

    DEFF Research Database (Denmark)

    Zhao, Liang; Svingen, Terje; Ting Ng, Ee;

    2015-01-01

    for primary sex determination and instead maintains Sertoli cell phenotype in postnatal testes. Here, we report that enforced expression of Dmrt1 in XX mouse fetal gonads using a Wt1-BAC transgene system is sufficient to drive testicular differentiation and male secondary sex development. XX transgenic fetal...

  19. Behavioral phenotype and BDNF differences related to apoE isoforms and sex in young transgenic mice

    DEFF Research Database (Denmark)

    Reverte, Ingrid; Klein, Anders Bue; Ratner, Cecilia;

    2012-01-01

    , very little information is available on apoE2 genotype. In the present study, we have characterized behavioral and learning phenotypes in young transgenic mice apoE2, apoE3 and apoE4 of both sexes. We have also determined the levels of brain-derived neurotrophic factor (BDNF) and its receptor Trk...... in the exploration of an open-field, which is compatible with a hyperactive behavior, was found in apoE2 females, while a decreased activity was observed in apoE4 mice. Increased BDNF levels in the frontal cortex were observed in apoE2 mice compared to apoE3. These results underscore behavioral differences between...

  20. Differential susceptibity of transgenic mice lacking one or both apolipoprotein alleles to folate and vitamin E deprivation.

    Science.gov (United States)

    Shea, Thomas B; Ortiz, Daniela; Rogers, Eugene

    2004-06-01

    The E4 allele of apolipoprotein E (ApoE) is associated with neurodegeneration in part due to increased oxidative stress. Transgenic mice lacking ApoE (-/-) represent a model for the consequences of deficiencies in ApoE function. Dietary deficiency in folate and vitamin E has previously been shown to potentiate the impact of ApoE deficiency; ApoE-/- mice deprived of folate and vitamin E for 1 month demonstrated increased oxidative damage in brain tissue and impaired cognitive performance as compared to ApoE+/+ mice. Since individuals homozygous for E4 can demonstrate more increased risk for neurodegeneration and an earlier age of onset than individuals heterozygous for E4, we tested the impact of folate and vitamin E deprivation on ApoE+/- mice. Thiobarbituric acid-reactive substances in brain tissue of ApoE+/- were significantly increased compared to ApoE+/+ mice, but this increase was less than that observed in ApoE-/- mice. By contrast, livers of ApoE+/- and -/- mice displayed an identical increase over that of +/+ mice. ApoE-/- mice, but not +/- or +/+ mice, exhibited impaired cognitive performance in maze trials when deprived of folate and vitamin E. These findings support the notion that homozygous deficiency of ApoE function can be more severe than heterozygous deficiency. They further suggest that the impact of partial deficiency in ApoE function may present a latent risk that may manifest only when compounded by other factors such as dietary deficiency. PMID:15201481

  1. Nicorandil prevents Gαq-induced progressive heart failure and ventricular arrhythmias in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Masamichi Hirose

    Full Text Available BACKGROUND: Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gα(q -coupled receptor (GPCR signaling still remains unknown. We investigated these inhibitory effects of nicorandil in transgenic mice with transient cardiac expression of activated Gα(q (Gα(q-TG. METHODOLOGY/PRINCIPAL FINDINGS: Nicorandil (6 mg/kg/day or vehicle was chronically administered to Gα(q-TG from 8 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic nicorandil administration prevented the severe reduction of left ventricular fractional shortening and inhibited ventricular interstitial fibrosis in Gα(q-TG. SUR-2B and SERCA2 gene expression was decreased in vehicle-treated Gα(q-TG but not in nicorandil-treated Gα(q-TG. eNOS gene expression was also increased in nicorandil-treated Gα(q-TG compared with vehicle-treated Gα(q-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC was frequently (more than 20 beats/min observed in 7 of 10 vehicle-treated Gα(q-TG but in none of 10 nicorandil-treated Gα(q-TG. The QT interval was significantly shorter in nicorandil-treated Gα(q-TG than vehicle-treated Gα(q-TG. Acute nicorandil administration shortened ventricular monophasic action potential duration and reduced the number of PVCs in Langendorff-perfused Gα(q-TG mouse hearts. Moreover, HMR1098, a blocker of cardiac sarcolemmal K(ATP channels, significantly attenuated the shortening of MAP duration induced by nicorandil in the Gα(q-TG heart. CONCLUSIONS/SIGNIFICANCE: These findings suggest that nicorandil can prevent the development of HF and ventricular arrhythmia caused by the activation of GPCR signaling through the shortening of the QT interval, action potential duration, the normalization

  2. Reduced p75(NTR) expression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Kust, BM; Brouwer, N; Mantingh, IJ; Boddeke, HWGM; Copray, JCVM

    2003-01-01

    hSOD1 (G93A) transgenic mice develop pathological changes similar to those in patients with familial amyotrophic lateral sclerosis (FALS). In particular, the progressive degeneration of motoneurons is charactered in this mouse model. One feature of stressed motoneurons in ALS and the hSOD1 mice is t

  3. Transgenic Knockdown of Cardiac Sodium/Glucose Cotransporter 1 (SGLT1) Attenuates PRKAG2 Cardiomyopathy, Whereas Transgenic Overexpression of Cardiac SGLT1 Causes Pathologic Hypertrophy and Dysfunction in Mice

    OpenAIRE

    Ramratnam, Mohun; Sharma, Ravi K.; D'Auria, Stephen; Lee, So Jung; Wang, David; Huang, Xue Yin N.; Ahmad, Ferhaan

    2014-01-01

    Background The expression of a novel cardiac glucose transporter, SGLT1, is increased in glycogen storage cardiomyopathy secondary to mutations in PRKAG2. We sought to determine the role of SGLT1 in the pathogenesis of PRKAG2 cardiomyopathy and its role in cardiac structure and function. Methods and Results Transgenic mice with cardiomyocyte‐specific overexpression of human T400N mutant PRKAG2 cDNA (TGT400N) and transgenic mice with cardiomyocyte‐specific RNA interference knockdown of SGLT1 (...

  4. Differential susceptibility of transgenic mice expressing human surfactant protein B genetic variants to Pseudomonas aeruginosa induced pneumonia.

    Science.gov (United States)

    Ge, Lin; Liu, Xinyu; Chen, Rimei; Xu, Yongan; Zuo, Yi Y; Cooney, Robert N; Wang, Guirong

    2016-01-01

    Surfactant protein B (SP-B) is essential for lung function. Previous studies have indicated that a SP-B 1580C/T polymorphism (SNP rs1130866) was associated with lung diseases including pneumonia. The SNP causes an altered N-linked glycosylation modification at Asn129 of proSP-B, e.g. the C allele with this glycosylation site but not in the T allele. This study aimed to generate humanized SP-B transgenic mice carrying either SP-B C or T allele without a mouse SP-B background and then examine functional susceptibility to bacterial pneumonia in vivo. A total of 18 transgenic mouse founders were generated by the DNA microinjection method. These founders were back-crossed with SP-B KO mice to eliminate mouse SP-B background. Four founder lines expressing similar SP-B levels to human lung were chosen for further investigation. After intratracheal infection with 50 μl of Pseudomonas aeruginosa solution (1 × 10(6) CFU/mouse) or saline in SP-B-C, SP-B-T mice the mice were sacrificed 24 h post-infection and tissues were harvested. Analysis of surfactant activity revealed differential susceptibility between SP-B-C and SP-B-T mice to bacterial infection, e.g. higher minimum surface tension in infected SP-B-C versus infected SP-B-T mice. These results demonstrate for the first time that human SP-B C allele is more susceptible to bacterial pneumonia than SP-B T allele in vivo. PMID:26620227

  5. Generation of an ABCG2GFPn-puro transgenic line - A tool to study ABCG2 expression in mice

    International Nuclear Information System (INIS)

    The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences. We show that ABCG2 is expressed in neural progenitors of the developing forebrain and spinal cord and in embryonic and adult endothelial cells of the brain. Using the neurosphere assay, we isolated tripotent ABCG2-expressing neural stem cells from embryonic mouse brain. This transgenic line is a powerful tool for studying the expression of ABCG2 in many tissues and for performing functional studies in different experimental settings.

  6. In Vivo Determination of Vitamin D Function Using Transgenic Mice Carrying a Human Osteocalcin Luciferase Reporter Gene

    Directory of Open Access Journals (Sweden)

    Tomoko Nakanishi

    2013-01-01

    Full Text Available Vitamin D is an essential factor for ossification, and its deficiency causes rickets. Osteocalcin, which is a noncollagenous protein found in bone matrix and involved in mineralization and calcium ion homeostasis, is one of the major bone morphogenetic markers and is used in the evaluation of osteoblast maturation and osteogenic activation. We established transgenic mouse line expressing luciferase under the control of a 10-kb osteocalcin enhancer/promoter sequence. Using these transgenic mice, we evaluated the active forms of vitamins D2 and D3 for their bone morphogenetic function by in vivo bioluminescence. As the result, strong activity for ossification was observed with 1α,25-hydroxyvitamin D3. Our mouse system can offer a feasible detection method for assessment of osteogenic activity in the development of functional foods and medicines by noninvasive screening.

  7. Expression of Autoactivated Stromelysin-1 in Mammary Glands of Transgenic Mice Leads to a Reactive Stroma During Early Development

    Energy Technology Data Exchange (ETDEWEB)

    Thomasset, N.; Lochter, A.; Sympson, C.J.; Lund, L.R.; Williams, D.R.; Behrendtsen, O.; Werb, Z.; Bissell, M.J.

    1998-04-24

    Extracellular matrix and extracellular matrix-degrading matrix metalloproteinases play a key role in interactions between the epithelium and the mesenchyme during mammary gland development and disease. In patients with breast cancer, the mammary mesenchyme undergoes a stromal reaction, the etiology of which is unknown. We previously showed that targeting of an autoactivating mutant of the matrix metalloproteinase stromelysin-1 to mammary epithelia of transgenic mice resulted in reduced mammary function during pregnancy and development of preneoplastic and neoplastic lesions. Here we examine the cascade of alterations before breast tumor formation in the mammary gland stroma once the expression of the stromelysin-1 transgene commences. Beginning in postpubertal virgin animals, low levels of transgene expression in mammary epithelia led to increased expression of endogenous stromelysin-1 in stromal fibroblasts and up-regulation of other matrix metalloproteinases, without basement membrane disruption. These changes were accompanied by the progressive development of a compensatory reactive stroma, characterized by increased collagen content and vascularization in glands from virgin mice. This remodeling of the gland affected epithelial-mesenchymal communication as indicated by inappropriate expression of tenascin-C starting by day 6 of pregnancy. This, together with increased transgene expression, led to basement membrane disruption starting by day 15 of pregnancy. We propose that the highly reactive stroma provides a prelude to breast epithelial tumors observed in these animals. Epithelial development depends on an exquisite series of inductive and instructive interactions between the differentiating epithelium and the mesenchymal (stromal) compartment. The epithelium, which consists of luminal and myoepithelial cells, is separated from the stroma by a basement membrane (BM), which plays a central role in mammary gland homeostasis and gene expression. In vivo, stromal

  8. Cyclin D2 Overexpression in Transgenic Mice Induces Thymic and Epidermal Hyperplasia whereas Cyclin D3 Expression Results Only in Epidermal Hyperplasia

    Science.gov (United States)

    Rodriguez-Puebla, Marcelo L.; LaCava, Margaret; Miliani de Marval, Paula L.; Jorcano, Jose L.; Richie, Ellen R.; Conti, Claudio J.

    2000-01-01

    In a previous report, we described the effects of cyclin D1 expression in epithelial tissues of transgenic mice. To study the involvement of D-type cyclins (D1, D2, and D3) in epithelial growth and differentiation and their putative role as oncogenes in skin, transgenic mice were developed which carry cyclin D2 or D3 genes driven by a keratin 5 promoter. As expected, both transgenic lines showed expression of these proteins in most of the squamous tissues analyzed. Epidermal proliferation increased in transgenic animals and basal cell hyperplasia was observed. All of the animals also had a minor thickening of the epidermis. The pattern of expression of keratin 1 and keratin 5 indicated that epidermal differentiation was not affected. Transgenic K5D2 mice developed mild thymic hyperplasia that reversed at 4 months of age. On the other hand, high expression of cyclin D3 in the thymus did not produce hyperplasia. This model provides in vivo evidence of the action of cyclin D2 and cyclin D3 as mediators of proliferation in squamous epithelial cells. A direct comparison among the three D-type cyclin transgenic mice suggests that cyclin D1 and cyclin D2 have similar roles in epithelial thymus cells. However, overexpression of each D-type cyclin produces a distinct phenotype in thymic epithelial cells. PMID:10980142

  9. Running Exercise Reduces Myelinated Fiber Loss in the Dentate Gyrus of the Hippocampus in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Chao, Fenglei; Zhang, Lei; Luo, Yanmin; Xiao, Qian; Lv, Fulin; He, Qi; Zhou, Chunni; Zhang, Yi; Jiang, Lin; Jiang, Rong; Gu, Hengwei; Tang, Yong

    2015-01-01

    To investigate the effect of running exercise on myelinated fibers in the dentate gyrus (DG) of the hippocampus during Alzheimer's disease (AD), 6-month-old male APP/PS1 transgenic mice were randomly assigned to control or running groups. The running group mice were subjected to a running protocol for four months. The behaviors of the mice from both group mice were then assessed using the Morris water maze, and the total volume of the DG and the related quantitative parameters with characteristics of the myelinated nerve fiber and the myelin sheath in the DG were investigated using unbiased stereological techniques and electron microscopy. Learning and spatial memory performances were both significantly increased in the running group compared with the control group. There was no significant difference in the gratio of the myelinated axons between the two groups. However, the DG volume, the myelinated fiber length and volume in the DG, and the myelin sheath volume and thickness in the DG were all significantly increased in the running group mice compared with the control group mice. These results indicated that running exercise was able to prevent DG atrophy and delay the progression of the myelinated fiber loss and the demyelination of the myelin sheaths in the DG in an AD mouse model, which may underlie the running-induced improvement in learning and spatial memory. Taken together, these results demonstrated that running exercise could delay the progression of AD. PMID:25817255

  10. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  11. Phenotypic Characterization of MIP-CreERT1Lphi Mice With Transgene-Driven Islet Expression of Human Growth Hormone.

    Science.gov (United States)

    Oropeza, Daniel; Jouvet, Nathalie; Budry, Lionel; Campbell, Jonathan E; Bouyakdan, Khalil; Lacombe, Julie; Perron, Gabrielle; Bergeron, Valerie; Neuman, Joshua C; Brar, Harpreet K; Fenske, Rachel J; Meunier, Clemence; Sczelecki, Sarah; Kimple, Michelle E; Drucker, Daniel J; Screaton, Robert A; Poitout, Vincent; Ferron, Mathieu; Alquier, Thierry; Estall, Jennifer L

    2015-11-01

    There is growing concern over confounding artifacts associated with β-cell-specific Cre-recombinase transgenic models, raising questions about their general usefulness in research. The inducible β-cell-specific transgenic (MIP-CreERT(1Lphi)) mouse was designed to circumvent many of these issues, and we investigated whether this tool effectively addressed concerns of ectopic expression and disruption of glucose metabolism. Recombinase activity was absent from the central nervous system using a reporter line and high-resolution microscopy. Despite increased pancreatic insulin content, MIP-CreERT mice on a chow diet exhibited normal ambient glycemia, glucose tolerance and insulin sensitivity, and appropriate insulin secretion in response to glucose in vivo and in vitro. However, MIP-CreERT mice on different genetic backgrounds were protected from high-fat/ streptozotocin (STZ)-induced hyperglycemia that was accompanied by increased insulin content and islet density. Ectopic human growth hormone (hGH) was highly expressed in MIP-CreERT islets independent of tamoxifen administration. Circulating insulin levels remained similar to wild-type controls, whereas STZ-associated increases in α-cell number and serum glucagon were significantly blunted in MIP-CreERT(1Lphi) mice, possibly due to paracrine effects of hGH-induced serotonin expression. These studies reveal important new insight into the strengths and limitations of the MIP-CreERT mouse line for β-cell research. PMID:26153246

  12. Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii

    Science.gov (United States)

    El Bissati, Kamal; Chentoufi, Aziz A.; Krishack, Paulette A.; Zhou, Ying; Woods, Stuart; Dubey, Jitender P.; Vang, Lo; Lykins, Joseph; Broderick, Kate E.; Mui, Ernest; Suzuki, Yasuhiro; Sa, Qila; Bi, Stephanie; Cardona, Nestor; Verma, Shiv K.; Frazeck, Laura; Reardon, Catherine A.; Sidney, John; Alexander, Jeff; Sette, Alessandro; Vedvick, Tom; Fox, Chris; Guderian, Jeffrey A.; Reed, Steven; Roberts, Craig W.

    2016-01-01

    We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8+ T cell–eliciting epitopes, a universal CD4+ helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8+ T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8+ T cell–eliciting epitopes in a vaccine that prevents toxoplasmosis.

  13. Distinct temporal and anatomical distributions of amyloid-β and tau abnormalities following controlled cortical impact in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Hien T Tran

    Full Text Available Traumatic brain injury (TBI is a major environmental risk factor for Alzheimer's disease. Intracellular accumulations of amyloid-β and tau proteins have been observed within hours following severe TBI in humans. Similar abnormalities have been recapitulated in young 3xTg-AD mice subjected to the controlled cortical impact model (CCI of TBI and sacrificed at 24 h and 7 days post injury. This study investigated the temporal and anatomical distributions of amyloid-β and tau abnormalities from 1 h to 24 h post injury in the same model. Intra-axonal amyloid-β accumulation in the fimbria was detected as early as 1 hour and increased monotonically over 24 hours following injury. Tau immunoreactivity in the fimbria and amygdala had a biphasic time course with peaks at 1 hour and 24 hours, while tau immunoreactivity in the contralateral CA1 rose in a delayed fashion starting at 12 hours after injury. Furthermore, rapid intra-axonal amyloid-β accumulation was similarly observed post controlled cortical injury in APP/PS1 mice, another transgenic Alzheimer's disease mouse model. Acute increases in total and phospho-tau immunoreactivity were also evident in single transgenic Tau(P301L mice subjected to controlled cortical injury. These data provide further evidence for the causal effects of moderately severe contusional TBI on acceleration of acute Alzheimer-related abnormalities and the independent relationship between amyloid-β and tau in this setting.

  14. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    OpenAIRE

    Wahnschaffe U; Bitsch A; Kielhorn J; Mangelsdorf I

    2005-01-01

    Abstract As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse system...

  15. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Anson, E-mail: piercea2@uthscsa.edu [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); The Department of Veteran' s Affairs, South Texas Veterans Health Care System, San Antonio, Texas, 78284 (United States); Wei, Rochelle; Halade, Dipti [Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Yoo, Si-Eun [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Ran, Qitao; Richardson, Arlan [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); The Department of Veteran' s Affairs, South Texas Veterans Health Care System, San Antonio, Texas, 78284 (United States)

    2010-11-05

    Research highlights: {yields} Development of mouse overexpressing native human HSF1 in all tissues including CNS. {yields} HSF1 overexpression enhances heat shock response at whole-animal and cellular level. {yields} HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. {yields} HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1{sup +/0}) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1{sup +/0} mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1{sup +/0} cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1{sup +/0} cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  16. Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice

    Directory of Open Access Journals (Sweden)

    Mosinger Bedrich

    2008-10-01

    Full Text Available Abstract Background Anatomical tracing of neural circuits originating from specific subsets of taste receptor cells may shed light on interactions between taste cells within the taste bud and taste cell-to nerve interactions. It is unclear for example, if activation of type II cells leads to direct activation of the gustatory nerves, or whether the information is relayed through type III cells. To determine how WGA produced in T1r3-expressing taste cells is transported into gustatory neurons, transgenic mice expressing WGA-IRES-GFP driven by the T1r3 promoter were generated. Results Immunohistochemistry showed co-expression of WGA, GFP and endogenous T1r3 in the taste bud cells of transgenic mice: the only taste cells immunoreactive for WGA were the T1r3-expressing cells. The WGA antibody also stained intragemmal nerves. WGA, but not GFP immunoreactivity was found in the geniculate and petrosal ganglia of transgenic mice, indicating that WGA was transported across synapses. WGA immunoreactivity was also found in the trigeminal ganglion, suggesting that T1r3-expressing cells make synapses with trigeminal neurons. In the medulla, WGA was detected in the nucleus of the solitary tract but also in the nucleus ambiguus, the vestibular nucleus, the trigeminal nucleus and in the gigantocellular reticular nucleus. WGA was not detected in the parabrachial nucleus, or the gustatory cortex. Conclusion These results show the usefulness of genetically encoded WGA as a tracer for the first and second order neurons that innervate a subset of taste cells, but not for higher order neurons, and demonstrate that the main route of output from type II taste cells is the gustatory neuron, not the type III cells.

  17. Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice

    Directory of Open Access Journals (Sweden)

    Bowers William J

    2008-08-01

    Full Text Available Abstract Background Several transgenic animal models genetically predisposed to develop Alzheimer's disease (AD-like pathology have been engineered to facilitate the study of disease pathophysiology and the vetting of potential disease-modifying therapeutics. The triple transgenic mouse model of AD (3xTg-AD harbors three AD-related genetic loci: human PS1M146V, human APPswe, and human tauP301L. These mice develop both amyloid plaques and neurofibrillary tangle-like pathology in a progressive and age-dependent manner, while these pathological hallmarks are predominantly restricted to the hippocampus, amygdala, and the cerebral cortex the main foci of AD neuropathology in humans. This model represents, at present, one of the most advanced preclinical tools available and is being employed ever increasingly in the study of mechanisms underlying AD, yet a detailed regional and temporal assessment of the subtleties of disease-related pathologies has not been reported. Methods and results In this study, we immunohistochemically documented the evolution of AD-related transgene expression, amyloid deposition, tau phosphorylation, astrogliosis, and microglial activation throughout the hippocampus, entorhinal cortex, primary motor cortex, and amygdala over a 26-month period in male 3xTg-AD mice. Intracellular amyloid-beta accumulation is detectable the earliest of AD-related pathologies, followed temporally by phospho-tau, extracellular amyloid-beta, and finally paired helical filament pathology. Pathology appears to be most severe in medial and caudal hippocampus. While astrocytic staining remains relatively constant at all ages and regions assessed, microglial activation appears to progressively increase temporally, especially within the hippocampal formation. Conclusion These data fulfill an unmet need in the ever-widening community of investigators studying 3xTg-AD mice and provide a foundation upon which to design future experiments that seek to

  18. Protection of Cardiomyocytes from Ischemic/Hypoxic Cell Death via Drbp1 and pMe2GlyDH in Cardio-specific ARC Transgenic Mice*

    Science.gov (United States)

    Pyo, Jong-Ok; Nah, Jihoon; Kim, Hyo-Jin; Chang, Jae-Woong; Song, Young-Wha; Yang, Dong-Kwon; Jo, Dong-Gyu; Kim, Hyung-Ryong; Chae, Han-Jung; Chae, Soo-Wan; Hwang, Seung-Yong; Kim, Seung-Jun; Kim, Hyo-Joon; Cho, Chunghee; Oh, Chang-Gyu; Park, Woo Jin; Jung, Yong-Keun

    2008-01-01

    The ischemic death of cardiomyocytes is associated in heart disease and heart failure. However, the molecular mechanism underlying ischemic cell death is not well defined. To examine the function of apoptosis repressor with a caspase recruitment domain (ARC) in the ischemic/hypoxic damage of cardiomyocytes, we generated cardio-specific ARC transgenic mice using a mouse α-myosin heavy chain promoter. Compared with the control, the hearts of ARC transgenic mice showed a 3-fold overexpression of ARC. Langendoff preparation showed that the hearts isolated from ARC transgenic mice exhibited improved recovery of contractile performance during reperfusion. The cardiomyocytes cultured from neonatal ARC transgenic mice were significantly resistant to hypoxic cell death. Furthermore, the ARC C-terminal calcium-binding domain was as potent to protect cardiomyocytes from hypoxic cell death as ARC. Genome-wide RNA expression profiling uncovered a list of genes whose expression was changed (>2-fold) in ARC transgenic mice. Among them, expressional regulation of developmentally regulated RNA-binding protein 1 (Drbp1) or the dimethylglycine dehydrogenase precursor (pMe2GlyDH) affected hypoxic death of cardiomyocytes. These results suggest that ARC may protect cardiomyocytes from hypoxic cell death by regulating its downstream, Drbp1 and pMe2GlyDH, shedding new insights into the protection of heart from hypoxic damages. PMID:18782777

  19. Gender differences of peripheral plasma and liver metabolic profiling in APP/PS1 transgenic AD mice.

    Science.gov (United States)

    Wu, Junfang; Fu, Bin; Lei, Hehua; Tang, Huiru; Wang, Yulan

    2016-09-22

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment. Currently, there is less knowledge of the involvement of the peripheral biofluid/organ in AD, compared with the central nervous system. In addition, with reported high morbidity in women in particular, it has become very important to explore whether gender difference in the peripheral metabolome is associated with AD. Here, we investigated metabolic responses of both plasma and liver tissues using an APP/PS1 double mutant transgenic mouse model with NMR spectroscopy, as well as analysis from serum biochemistry and histological staining. Fatty acid composition from plasma and liver extracts was analyzed using GC-FID/MS. We found clear gender differences in AD transgenic mice when compared with their wild-type counterparts. Female AD mice displayed more intensive responses, which were highlighted by higher levels of lipids, 3-hydroxybutyrate and nucleotide-related metabolites, together with lower levels of glucose. These observations indicate that AD induces oxidative stress and impairs cellular energy metabolism in peripheral organs. Disturbances in AD male mice were milder with depletion of monounsaturated fatty acids. We also observed a higher activity of delta-6-desaturate and suppressed activity of delta-5-desaturate in female mice, whereas inhibited stearoyl-CoA-desaturase in male mice suggested that AD induced by the double mutant genes results in different fatty acids catabolism depending on gender. Our results provide metabolic clues into the peripheral biofluid/organs involved in AD, and we propose that a gender-specific scheme for AD treatment in men and women may be required. PMID:27393253

  20. Breast tumors in PyMT transgenic mice expressing mitochondrial catalase have decreased labeling for macrophages and endothelial cells

    Directory of Open Access Journals (Sweden)

    Sy Fatemie

    2012-05-01

    Full Text Available We show by immunohistochemical labeling that prominent cell types in the tumor microenvironment of PyMT transgenic mice are tumor-associated macrophages (TAMs and endothelial cells, and that both populations are decreased in the presence of mitochondrial targeted catalase (mCAT. This observation suggests that mitochondrial ROS can drive tumor invasiveness in conjunction with the presence of TAMs and increased angiogenesis. Since primary PyMT tumor cells expressing mCAT undergo increased apoptosis, mitochondrial antioxidants might be attractive anti-tumor agents.

  1. Bridging Mice to Men: Using HLA Transgenic Mice to Enhance the Future Prediction and Prevention of Autoimmune Type 1 Diabetes in Humans.

    Science.gov (United States)

    Serreze, David V; Niens, Marijke; Kulik, John; DiLorenzo, Teresa P

    2016-01-01

    Similar to the vast majority of cases in humans, the development of type 1 diabetes (T1D) in the NOD mouse model is due to T-cell mediated autoimmune destruction of insulin producing pancreatic β cells. Particular major histocompatibility complex (MHC) haplotypes (designated HLA in humans; and H2 in mice) provide the primary genetic risk factor for T1D development. It has long been appreciated that within the MHC, particular unusual class II genes contribute to the development of T1D in both humans and NOD mice by allowing for the development and functional activation of β cell autoreactive CD4 T cells. However, studies in NOD mice have revealed that through interactions with other background susceptibility genes, the quite common class I variants (K(d), D(b)) characterizing this strain's H2 (g7) MHC haplotype aberrantly acquire an ability to support the development of β cell autoreactive CD8 T cell responses also essential to T1D development. Similarly, recent studies indicate that in the proper genetic context some quite common HLA class I variants also aberrantly contribute to T1D development in humans. This review focuses on how "humanized" HLA transgenic NOD mice can be created and used to identify class I dependent β cell autoreactive CD8 T cell populations of clinical relevance to T1D development. There is also discussion on how HLA transgenic NOD mice can be used to develop protocols that may ultimately be useful for the prevention of T1D in humans by attenuating autoreactive CD8 T cell responses against pancreatic β cells. PMID:27150089

  2. The Experimental Study on Treating Transgenic HBV Mice with Recombined IL-2-PreS DNA Vaccine

    Institute of Scientific and Technical Information of China (English)

    李建远; 王海燕; 沈肖方; 王学波; 靳绍华; 刘芙君; 刘运祥

    2004-01-01

    The aim of this study is to investigate the feasibility and mechanism of hIL-2-preS DNA vaccine as prevention and therapeutic approach against Hepatitis B. Eukaryon expression vector involving hIL-2 and preS gene was constructed with recombinant technique and transferred into normal BALB/c mice and HBV transgenic mice (Tg-Mice) respectively. Tnen a series of detection were performed: detection of anti-preS2, HBs antibody and HBsAg in BALB/c mice and Tg-mice with ELISA, quantification of HBV DNA copies in HBV Tg-mice serum with real-time PCR, determination of hepatitis degree with immunopathological HE staining and detection of liver function. Anti-preS1 can be detected at 4th , 6th and 10th week in inoculated BALB/c mice. Injection with gene gun gained an advantage over muscular and subcutaneous injection since it acquired just 1/10 inoculation quantity (10μg/mouse). Highest expression of IgG2a at 4th week suggested Thl-mediated immune response, which facilitated HBV cleaning. Of all inoculated HBV Tg-mice, 80% of them showed anfi-preS2, HBs antibody positive and HBV DNA decreased, and 20% showed negative for HBsAg. HE staining to hepatic tissue showed obvious infiltration of inflammatory cells, swelling and granular degeneration of hepatocytes. In our study, IL-2-preS DNA vaccine which can provoke the humoral and cellular immune response and break the immune tolerance supports the designation and construction of new vaccine against HBV and specific immune remedy for HBV continuous infection.

  3. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    Directory of Open Access Journals (Sweden)

    Wahnschaffe U

    2005-01-01

    Full Text Available Abstract As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse, were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects.

  4. A Vesicular Stomatitis Virus-Based Therapeutic Vaccine Generates a Functional CD8 T Cell Response to Hepatitis B Virus in Transgenic Mice

    OpenAIRE

    Cobleigh, Melissa A.; Wei, Xin; Robek, Michael D.

    2013-01-01

    Recombinant vesicular stomatitis virus (VSV) is a promising therapeutic vaccine platform. Using a transgenic mouse model of chronic hepatitis B virus (HBV) infection, we evaluated the therapeutic potential of a VSV vector expressing the HBV middle surface envelope glycoprotein (MS). VSV-MS immunization generated HBV-specific CD8 T cell and antibody responses in transgenic mice that express low HBV antigen levels. These findings support the further development of VSV as a therapeutic vaccine v...

  5. Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice

    Science.gov (United States)

    Di Scala, Marianna; Otano, Itziar; Gil-Fariña, Irene; Vanrell, Lucia; Hommel, Mirja; Olagüe, Cristina; Vales, Africa; Galarraga, Miguel; Guembe, Laura; Ortiz de Solorzano, Carlos; Ghosh, Indrajit; Maini, Mala K.; Prieto, Jesús

    2016-01-01

    ABSTRACT In chronic hepatitis B (CHB), failure to control hepatitis B virus (HBV) is associated with T cell dysfunction. HBV transgenic mice mirror many features of the human disease, including T cell unresponsiveness, and thus represent an appropriate model in which to test novel therapeutic strategies. To date, the tolerant state of CD8+ T cells in these animals could be altered only by strong immunogens or by immunization with HBV antigen-pulsed dendritic cells; however, the effectors induced were unable to suppress viral gene expression or replication. Because of the known stimulatory properties of alpha interferon (IFN-α) and interleukin-15 (IL-15), this study explored the therapeutic potential of liver-directed gene transfer of these cytokines in a murine model of CHB using adeno-associated virus (AAV) delivery. This combination not only resulted in a reduction in the viral load in the liver and the induction of an antibody response but also gave rise to functional and specific CD8+ immunity. Furthermore, when splenic and intrahepatic lymphocytes from IFN-α- and IL-15-treated animals were transferred to new HBV carriers, partial antiviral immunity was achieved. In contrast to previous observations made using either cytokine alone, markedly attenuated PD-L1 induction in hepatic tissue was observed upon coadministration. An initial study with CHB patient samples also gave promising results. Hence, we demonstrated synergy between two stimulating cytokines, IL-15 and IFN-α, which, given together, constitute a potent approach to significantly enhance the CD8+ T cell response in a state of immune hyporesponsiveness. Such an approach may be useful for treating chronic viral infections and neoplastic conditions. IMPORTANCE With 350 million people affected worldwide and 600,000 annual deaths due to HBV-induced liver cirrhosis and/or hepatocellular carcinoma, chronic hepatitis B (CHB) is a major health problem. However, current treatment options are costly and not

  6. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  7. Reduction of VLDL secretion decreases cholesterol excretion in niemann-pick C1-like 1 hepatic transgenic mice.

    Directory of Open Access Journals (Sweden)

    Stephanie M Marshall

    Full Text Available An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL support TICE, antisense oligonucleotides (ASO were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP, which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg mice, which predominantly excrete cholesterol via TICE, and wild type (WT littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.

  8. Reduction of VLDL secretion decreases cholesterol excretion in niemann-pick C1-like 1 hepatic transgenic mice.

    Science.gov (United States)

    Marshall, Stephanie M; Kelley, Kathryn L; Davis, Matthew A; Wilson, Martha D; McDaniel, Allison L; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Rudel, Lawrence L; Brown, J Mark; Temel, Ryan E

    2014-01-01

    An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE) is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL) support TICE, antisense oligonucleotides (ASO) were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP), which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg) mice, which predominantly excrete cholesterol via TICE, and wild type (WT) littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG) and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.

  9. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice.

    Science.gov (United States)

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  10. 癌胚抗原相关细胞黏附分子和人胸肾表达趋化因子在婴幼儿血管瘤组织中的表达%The expression of CEACAM-1 and CXCL-14 in infantile hemangioma

    Institute of Scientific and Technical Information of China (English)

    徐广琪; 吕仁荣; 霍然; 郭璇

    2010-01-01

    Objective To examine the expression of CEACAM-1 and CXCL-14 in the different stages of infantile hemangioma and to explore the role of CEACAM-1 and CXCL-14 in the occurrence and development of infantile hemangioma. Methods The expression of CEACAM-1 and CXCL-14 was detected by immunohistochemical technique and Western Blot in cases of proliferating hemangiomas, involuting hemangiomas, involuted hemangiomas. The mean optical density was measured by image analysis system. Results The expression of CEACAM-1 in early stage of proliferating hemangiomas was weak or negative, while it was strong in involuting hemangiomas and positive in the involuted stage. The differences between different stages had a statistically significance (P <0. 05). The expression of CXCL-14 was weak or negative in stage of proliferating hemangiomas, positive in involuting hemangiomas and strong in the involuted stage. The differences between different stages had a statistically significance (P <0. 05). Conclusions CEACAM-1 and CXCL-14 are involved in the occurrence and development of infantile hemangioma.%目的 检测癌胚抗原相关细胞黏附分子(CEACAM-1)和人胸肾表达趋化因子(CXCL-14)在不同时期婴幼儿血管瘤组织中的表达,并探讨其在血管瘤发生发展过程中的作用和意义.方法 应用免疫组化法和Western免疫印迹检测CEACAM-1和CXCL-14在增生期、消退期和消退完成期婴幼儿血管瘤组织中的表达,利用计算机图像分析技术测量平均吸光度.结果 CEACAM-1在增生期血管瘤组织中不表达或低表达,消退期呈强阳性表达,消退完成期呈阳性表达;各期之间CEACAM-1的表达差异有统计学意义(P<0.05);CXCL-14在增生早期血管瘤组织中不表达或低表达,消退期呈阳性表达,消退完成期呈强阳性表达,各期之间CXCL-14表达差异有统计学意义(P<0.05).结论 CEACAM-1和CXCL-14可能参与了婴幼儿血管瘤病理变化过程,在该病发生发展过程中起一定的作用.

  11. Cell-autonomous alteration of dopaminergic transmission by wild type and mutant (DeltaE) TorsinA in transgenic mice.

    Science.gov (United States)

    Page, Michelle E; Bao, Li; Andre, Pierrette; Pelta-Heller, Joshua; Sluzas, Emily; Gonzalez-Alegre, Pedro; Bogush, Alexey; Khan, Loren E; Iacovitti, Lorraine; Rice, Margaret E; Ehrlich, Michelle E

    2010-09-01

    Early onset torsion dystonia is an autosomal dominant movement disorder of variable penetrance caused by a glutamic acid, i.e. DeltaE, deletion in DYT1, encoding the protein TorsinA. Genetic and structural data implicate basal ganglia dysfunction in dystonia. TorsinA, however, is diffusely expressed, and therefore the primary source of dysfunction may be obscured in pan-neuronal transgenic mouse models. We utilized the tyrosine hydroxylase (TH) promoter to direct transgene expression specifically to dopaminergic neurons of the midbrain to identify cell-autonomous abnormalities. Expression of both the human wild type (hTorsinA) and mutant (DeltaE-hTorsinA) protein resulted in alterations of dopamine release as detected by microdialysis and fast cycle voltammetry. Motor abnormalities detected in these mice mimicked those noted in transgenic mice with pan-neuronal transgene expression. The locomotor response to cocaine in both TH-hTorsinA and TH-DeltaE-hTorsinA, in the face of abnormal extracellular DA levels relative to non-transgenic mice, suggests compensatory, post-synaptic alterations in striatal DA transmission. This is the first cell-subtype-specific DYT1 transgenic mouse that can serve to differentiate between primary and secondary changes in dystonia, thereby helping to target disease therapies. PMID:20460154

  12. Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kuklin, Alexander [ORNL; Mynatt, Randall [ORNL; Klebig, Mitch [ORNL; Kiefer, Laura [Glaxo Wellcome, Research Triangle Park, NC; Wilkison, William O [Glaxo Wellcome, Research Triangle Park, NC; Woychik, Richard P [Jackson Laboratory, The, Bar Harbor, ME; Michaud III, Edward J [ORNL

    2004-01-01

    Background: The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r) on melanocytes. Lethal yellow (Ay) and viable yellow (Avy) are dominant regulatory mutations in the mouse agouti gene that cause the wild- ype protein to be produced at abnormally high levels throughout the body. Mice harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia, hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver. The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed by its ability to inhibit binding of the -melanocyte stimulating hormone ( MSH) to the Mc1r. Body weight, plasma insulin and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a single intraperitoneal injection (10 mg/kg) of the hepatocellular carcinogen, diethylnitrosamine (DEN), at 15 days of age. Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights were recorded. Results: The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin, but responded to chemical initiation of the liver with an increased number

  13. Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes

    Directory of Open Access Journals (Sweden)

    Kiefer Laura L

    2004-06-01

    Full Text Available Abstract Background The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r on melanocytes. Lethal yellow (Ay and viable yellow (Avy are dominant regulatory mutations in the mouse agouti gene that cause the wild-type protein to be produced at abnormally high levels throughout the body. Mice harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia, hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver. The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed by its ability to inhibit binding of the α-melanocyte stimulating hormone (αMSH to the Mc1r. Body weight, plasma insulin and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a single intraperitoneal injection (10 mg/kg of the hepatocellular carcinogen, diethylnitrosamine (DEN, at 15 days of age. Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights were recorded. Results The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin, but responded to chemical initiation of the liver

  14. Imaging the microenvironment of pancreatic cancer patient-derived orthotopic xenografts (PDOX) growing in transgenic nude mice expressing GFP, RFP, or CFP.

    Science.gov (United States)

    Hoffman, Robert M; Bouvet, Michael

    2016-09-28

    We have developed a multi-color, imageable, orthotopic mouse model for individual patients with pancreatic cancer. The tumors are labeled by first passaging them orthotopically through transgenic nude mice expressing green fluorescent protein (GFP), red fluorescent protein (RFP), or cyan fluorescent protein (CFP). Passage of the tumors in these colored transgenic mice labels the stromal cells of the tumor. The cancer cells in the PDOX are labeled in situ with GFP by telomerase-dependent adenovirus OBP-401. The models are termed imageable patient-derived orthotopic xenografts (iPDOX). The tumors acquired brightly-fluorescent stromal cells from the transgenic host mice, which were stably associated with the tumors through multiple passages. The colored fluorescent protein-expressing stromal cells included cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). This model enables powerful color-coded imaging of the interaction of cancer and stromal cells during tumor progression and treatment. PMID:26742463

  15. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB+/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  16. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  17. Receptor-associated protein (RAP plays a central role in modulating Abeta deposition in APP/PS1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Guilian Xu

    Full Text Available BACKGROUND: Receptor associated protein (RAP functions in the endoplasmic reticulum (ER to assist in the maturation of several membrane receptor proteins, including low density lipoprotein receptor-related protein (LRP and lipoprotein receptor 11 (SorLA/LR11. Previous studies in cell and mouse model systems have demonstrated that these proteins play roles in the metabolism of the amyloid precursor protein (APP, including processes involved in the generation, catabolism and deposition of beta-amyloid (Abeta peptides. METHODOLOGY/PRINCIPAL FINDINGS: Mice transgenic for mutant APPswe and mutant presenilin 1 (PS1dE9 were mated to mice with homozygous deletion of RAP. Unexpectedly, mice that were homozygous null for RAP and transgenic for APPswe/PS1dE9 showed high post-natal mortality, necessitating a shift in focus to examine the levels of amyloid deposition in APPswe/PS1dE9 that were hemizygous null for RAP. Immunoblot analysis confirmed 50% reductions in the levels of RAP with modest reductions in the levels of proteins dependent upon RAP for maturation [LRP trend towards a 20% reduction ; SorLA/LR11 statistically significant 15% reduction (p<0.05]. Changes in the levels of these proteins in the brains of [APPswe/PS1dE9](+/-/RAP(+/- mice correlated with 30-40% increases in amyloid deposition by 9 months of age. CONCLUSIONS/SIGNIFICANCE: Partial reductions in the ER chaperone RAP enhance amyloid deposition in the APPswe/PS1dE9 model of Alzheimer amyloidosis. Partial reductions in RAP also affect the maturation of LRP and SorLA/LR11, which are each involved in several different aspects of APP processing and Abeta catabolism. Together, these findings suggest a central role for RAP in Alzheimer amyloidogenesis.

  18. Increased atherosclerosis and vascular smooth muscle cell activation in AIF-1 transgenic mice fed a high-fat diet.

    Science.gov (United States)

    Sommerville, Laura J; Kelemen, Sheri E; Ellison, Stephen P; England, Ross N; Autieri, Michael V

    2012-01-01

    Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, scaffold signal transduction protein constitutively expressed in inflammatory cells, but inducible in vascular smooth muscle cells (VSMCs) in response to injury or inflammatory stimuli. Although several basic science and population studies have reported increased AIF-1 expression in human and experimental atherosclerosis, a direct causal effect of AIF-1 expression on development of atherosclerosis has not been reported. The purpose of this study is to establish a direct relationship between AIF-1 expression and development of atherosclerosis. AIF-1 expression is detected VSMC in atherosclerotic lesions from ApoE(-/-) mice, but not normal arteries from wild-type mice. AIF-1 expression can be induced in cultured VSMC by stimulation with oxidized LDL (ox-LDL). Transgenic mice in which AIF-1 expression is driven by the G/C modified SM22 alpha promoter to restrict AIF-1 expression to VSMC develop significantly increased atherosclerosis compared with wild-type control mice when fed a high-fat diet (P=0.022). Cultured VSMC isolated from Tg mice demonstrated significantly increased migration in response to ox-LDL compared with matched controls (P<0.001). VSMC isolated from Tg mice and cultured human VSMC which over express AIF-1 demonstrated increased expression of MMP-2 and MMP-9 mRNA and protein and increased NF-κB activation in response to ox-LDL as compared with wild-type control mice. VSMC which over express AIF-1 have significantly increased uptake of ox-LDL, and increased CD36 expression. Together, these data suggest a strong association between AIF-1 expression, NF-κB activation, and development of experimental atherosclerosis.

  19. Impact of Increased Astrocyte Expression of IL-6, CCL2 or CXCL10 in Transgenic Mice on Hippocampal Synaptic Function

    Science.gov (United States)

    Gruol, Donna L.

    2016-01-01

    An important aspect of CNS disease and injury is the elevated expression of neuroimmune factors. These factors are thought to contribute to processes ranging from recovery and repair to pathology. The complexity of the CNS and the multitude of neuroimmune factors that are expressed in the CNS during disease and injury is a challenge to an understanding of the consequences of the elevated expression relative to CNS function. One approach to address this issue is the use of transgenic mice that express elevated levels of a specific neuroimmune factor in the CNS by a cell type that normally produces it. This approach can provide basic information about the actions of specific neuroimmune factors and can contribute to an understanding of more complex conditions when multiple neuroimmune factors are expressed. This review summarizes studies using transgenic mice that express elevated levels of IL-6, CCL2 or CXCL10 through increased astrocyte expression. The studies focus on the effects of these neuroimmune factors on synaptic function at the Schaffer collateral to CA1 pyramidal neuron synapse of the hippocampus, a brain region that plays a key role in cognitive function. PMID:27322336

  20. Immunization with adenovirus LIGHT-engineered dendritic cells induces potent T cell responses and therapeutic immunity in HBV transgenic mice.

    Science.gov (United States)

    Jiang, Wenzheng; Chen, Ran; Kong, Xiaobo; Long, Fengying; Shi, Yaru

    2014-07-31

    LIGHT, a TNF superfamily member (TNFSF14), is a type II transmembrane protein expressed on activated T cells and immature dendritic cells (DCs). However, the expression of LIGHT on mature DCs is down-regulated. Recent studies demonstrated that LIGHT provides potent costimulatory activity for T cells, enhancing proliferation and the production of Th1 cytokines independently of the B7-CD28 pathway. Here, we evaluated the effectiveness of peptide-pulsed DC-mediated antiviral immunity in HBV transgenic mice and the immunoadjuvant effect of LIGHT. The bone marrow-derived DCs were modified in vitro with an adenovirus (Ad) vector expressing mouse LIGHT (Ad-LIGHT), the expression of costimulatory molecules was up-regulated and the secretion of cytokines IL-12 and IFN-γ increased. LIGHT-modified DCs enhanced allostimulation for T cells in mixed lymphocyte reaction (MLR). HBV peptide-pulsed DCs elicited HBV specific CD8+ T cell response and reduced the level of HBsAg and HBV DNA in sera of HBV transgenic mice. Importantly, LIGHT-modified DCs could induce stronger antiviral immunity. These results support the concept that genetic modification of DCs with a recombinant LIGHT adenovirus vector may be a useful strategy for antiviral immunotherapy. PMID:24951859

  1. Use of the disulfiram/copper complex for breast cancer chemoprevention in MMTV-erbB2 transgenic mice.

    Science.gov (United States)

    Yang, Yanhui; Deng, Qian; Feng, Xiaoshan; Sun, Junjun

    2015-07-01

    The disulfiram/copper complex (DS/Cu) has been demonstrated to exert potent anti-tumor effects in various types of cancer. At present, whether DS/Cu has chemopreventive effects on breast cancer development remains to be fully elucidated. In the present study, using MMTV-erbB2 transgenic mice, it was identified for the first time that DS/Cu treatment was able to inhibit cell growth in breast cancer cells while sparing normal cells in vitro, in addition to delaying the development of mammary tumor development in MMTV-erbB2 transgenic mice in vivo. Morphological examination demonstrated that DS/Cu treatment resulted in cell proliferation inhibition and apoptosis activation in vitro and in vivo. Furthermore, the present study observed that DS/Cu may inhibit proliferation via inhibition of AKT and cyclin D1 signaling and promote apoptosis via c-Jun N-terminal kinase activation and suppression of nuclear factor κB signaling. These results suggested that DS/Cu treatment may be a promising therapy for the prevention of erbB2-positive breast cancer.

  2. Extravasation and transcytosis of liposomes in Kaposi's sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene.

    Science.gov (United States)

    Huang, S K; Martin, F J; Jay, G; Vogel, J; Papahadjopoulos, D; Friend, D S

    1993-07-01

    Transgenic mice bearing the HIV tat gene develop dermal lesions resembling a common malignant tumor in AIDS, Kaposi's sarcoma (KS). To evaluate the permeability characteristics of these lesions and the therapeutic potential of drug-carrying liposomes, we have studied the localization of sterically stabilized liposomes, which show long circulation time in blood and increased accumulation in tumors. Liposomes encapsulating colloidal gold were injected intravenously into transgenic mice bearing KS lesions, and tissues were processed 24 hours later for both electron microscopy and for light microscopy with silver enhancement. Liposomes and silver marker were detected predominantly in the dermis surrounding the early and mature KS lesions, which were characterized by a proliferation of fibroblast-like spindle cells and abnormal blood vessels close to the epidermis. The silver-enhanced gold marker often surrounded vascular channels and scattered erythrocytes. As determined by electron microscopy, some spindle cells and macrophages had ingested intact liposomes. Transendothelial transport of liposomes was observed both through open channels between endothelial cells and also through endothelial cells lining intact vessels. Both extravasation and transcytosis of liposomes through irregular endothelium were much higher in KS lesions than in the adjacent normal skin. The high accumulation of sterically stabilized liposomes in KS lesions and their intracellular uptake by some spindle cells enhances their potential as carriers of chemotherapeutic agents against this neoplasm. PMID:8317543

  3. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region.

    Science.gov (United States)

    Liu, Wei; Zhou, Hui; Liu, Lei; Zhao, Chuntao; Deng, Yaqi; Chen, Lina; Wu, Laiman; Mandrycky, Nicole; McNabb, Christopher T; Peng, Yuanbo; Fuchs, Perry N; Lu, Jie; Sheen, Volney; Qiu, Mengsheng; Mao, Meng; Lu, Q Richard

    2015-05-01

    The basic helix-loop-helix (bHLH) transcription factor Olig2 is crucial for mammalian central nervous system development. Human ortholog OLIG2 is located in the Down syndrome critical region in trisomy 21. To investigate the effect of Olig2 misexpression on brain development, we generated a developmentally regulated Olig2-overexpressing transgenic line with a Cre/loxP system. The transgenic mice with Olig2 misexpression in cortical neural stem/progenitor cells exhibited microcephaly, cortical dyslamination, hippocampus malformation, and profound motor deficits. Ectopic misexpression of Olig2 impaired cortical progenitor proliferation and caused precocious cell cycle exit. Massive neuronal cell death was detected in the developing cortex of Olig2-misexpressing mice. In addition, Olig2 misexpression led to a significant downregulation of neuronal specification factors including Ngn1, Ngn2 and Pax6, and a defect in cortical neurogenesis. Chromatin-immunoprecipitation and sequencing (ChIP-Seq) analysis indicates that Olig2 directly targets the promoter and/or enhancer regions of Nfatc4, Dscr1/Rcan1 and Dyrk1a, the critical neurogenic genes that contribute to Down syndrome phenotypes, and inhibits their expression. Together, our study suggests that Olig2 misexpression in neural stem cells elicits neurogenesis defects and neuronal cell death, which may contribute to developmental disorders including Down syndrome, where OLIG2 is triplicated on chromosomal 21. PMID:25747816

  4. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  5. Temporal and spatial patterns of transgene expression in aging adult mice provide insights about the origins, organization, and differentiation of the intestinal epithelium.

    OpenAIRE

    Cohn, S. M.; Roth, K A; Birkenmeier, E H; Gordon, J I

    1991-01-01

    We have used liver fatty acid-binding protein/human growth hormone (L-FABP/hGH) fusion genes to explore the temporal and spatial differentiation of intestinal epithelial cells in 1- to 12-month-old transgenic mice. The intact, endogenous L-FABP gene (Fabpl) was not expressed in the colon at any time. Young adult transgenic mice containing nucleotides -596 to +21 of the rat L-FABP gene linked to the hGH gene (minus its 5' nontranscribed domain) demonstrated inappropriate expression of hGH in e...

  6. Transmission of Atypical Bovine Prions to Mice Transgenic for Human Prion Protein

    OpenAIRE

    Béringue, Vincent; Herzog, Laëtitia; Reine, Fabienne; Le Dur, Annick; Casalone, Cristina; Vilotte, Jean-Luc; Laude, Hubert

    2008-01-01

    To assess risk for cattle-to-human transmission of prions that cause uncommon forms of bovine spongiform encephalopathy (BSE), we inoculated mice expressing human PrP Met129 with field isolates. Unlike classical BSE agent, L-type prions appeared to propagate in these mice with no obvious transmission barrier. H-type prions failed to infect the mice.

  7. Expression of the G72/G30 gene in transgenic mice induces behavioral changes

    OpenAIRE

    Cheng, Lijun; Hattori, Eiji; Nakajima, Akira; Woehrle, Nancy S.; Mark D Opal; Zhang, Chunling; Grennan, Kay; Dulawa, Stephanie C.; Tang, Ya-Ping; Gershon, Elliot S.; Liu, Chunyu

    2013-01-01

    The G72/G30 gene complex is a candidate gene for schizophrenia and bipolar disorder. However, G72 and G30 mRNAs are expressed at very low levels in human brain, with only rare splicing forms observed. We report here G72/G30 expression profiles and behavioral changes in a G72/G30 transgenic mouse model. A human BAC clone containing the G72/G30 genomic region was used to establish the transgenic mouse model, on which gene expression studies, Western blot and behavioral tests were performed. Rel...

  8. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism.

    Science.gov (United States)

    Du, Mei; Otalora, Laura; Martin, Ashley A; Moiseyev, Gennadiy; Vanlandingham, Phillip; Wang, Qilong; Farjo, Rafal; Yeganeh, Alexander; Quiambao, Alexander; Farjo, Krysten M

    2015-08-01

    Serum retinol-binding protein 4 (RBP4) is the sole specific transport protein for retinol in the blood, but it is also an adipokine with retinol-independent, proinflammatory activity associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Moreover, two separate studies reported that patients with proliferative diabetic retinopathy have increased serum RBP4 levels compared to patients with mild or no retinopathy, yet the effect of increased levels of RBP4 on the retina has not been studied. Here we show that transgenic mice overexpressing RBP4 (RBP4-Tg mice) develop progressive retinal degeneration, characterized by photoreceptor ribbon synapse deficiency and subsequent bipolar cell loss. Ocular retinoid and bisretinoid levels are normal in RBP4-Tg mice, demonstrating that a retinoid-independent mechanism underlies retinal degeneration. Increased expression of pro-interleukin-18 (pro-IL-18) mRNA and activated IL-18 protein and early-onset microglia activation in the retina suggest that retinal degeneration is driven by a proinflammatory mechanism. Neither chronic systemic metabolic disease nor other retinal insults are required for RBP4 elevation to promote retinal neurodegeneration, since RBP4-Tg mice do not have coincident retinal vascular pathology, obesity, dyslipidemia, or hyperglycemia. These findings suggest that elevation of serum RBP4 levels could be a risk factor for retinal damage and vision loss in nondiabetic as well as diabetic patients. PMID:26055327

  9. Mamu-A*01/Kb transgenic and MHC Class I knockout mice as a tool for HIV vaccine development

    International Nuclear Information System (INIS)

    We have developed a murine model expressing the rhesus macaque (RM) Mamu-A*01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (α1 and α2 Mamu-A*01 domains) and murine (α3, transmembrane, and cytoplasmic H-2Kb domains) MHC Class I molecules were derived by transgenesis of the H-2KbDb double MHC Class I knockout strain. After immunization of Mamu-A*01/Kb Tg mice with rVV-SIVGag-Pol, the mice generated CD8+ T-cell IFN-γ responses to several known Mamu-A*01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A*01/Kb Tg mice provide a model system to study the Mamu-A*01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.

  10. Multifunctional Effects of Mangosteen Pericarp on Cognition in C57BL/6J and Triple Transgenic Alzheimer’s Mice

    Directory of Open Access Journals (Sweden)

    Hei-Jen Huang

    2014-01-01

    Full Text Available Mangosteen- (Garcinia mangostana- based nutraceutical compounds have long been reported to possess multiple health-promoting properties. The current study investigated whether mangosteen pericarp (MP could attenuate cognitive dysfunction. First, we found that treatment with MP significantly reduced the cell death and increased the brain-derived neurotrophic factor (BDNF level in an organotypic hippocampal slice culture (OHSC. We then investigated the effects of age and MP diet on the cognitive function of male C57BL/6J (B6 mice. After 8-month dietary supplementation, the MP diet (5000 ppm significantly attenuated the cognitive impairment associated with anti-inflammation, increasing BDNF level and decreasing p-tau (phospho-tau S202 in older B6 mice. We further applied MP dietary supplementation to triple transgenic Alzheimer’s disease (3×Tg-AD mice from 5 to 13 months old. The MP diet exerted neuroprotective, antioxidative, and anti-inflammatory effects and reduced the Aβ deposition and p-tau (S202/S262 levels in the hippocampus of 3×Tg-AD mice, which might further attenuate the deficit in spatial memory retrieval. Thus, these results revealed that the multifunctional properties of MP might offer a promising supplementary diet to attenuate cognitive dysfunction in AD.

  11. Sequence analysis of laci mutations obtained from lung cells of radon-exposed big blue{trademark} transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Layton, A.D.; Cross, F.T.; Steigler, G.L.; Stillwell, L.S.; Jostes, R.F. [Pacific Northwest Laboratory, Richland, WA (United States); Lutze, L.H. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    We have exposed Big Blue{trademark} transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80{degrees}C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of the mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure.

  12. Sequence analysis of laci mutations obtained from lung cells of radon-exposed big blue trademark transgenic mice

    International Nuclear Information System (INIS)

    We have exposed Big Blue trademark transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80 degrees C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of the mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure

  13. Importance of ornithine transcarbamylase (OTC) deficiency in small intestine for urinary orotic acid excretion: analysis of OTC-deficient spf-ash mice with OTC transgene.

    Science.gov (United States)

    Saheki, T; Mori, K; Kobayashi, K; Horiuchi, M; Shige, T; Obara, T; Suzuki, S; Mori, M; Yamamura, K

    1995-01-25

    We report the effect of the ornithine transcarbamylase (OTC) transgene composed of 1.3 kb of the 5' flanking region of the rat OTC gene fused to rat OTC cDNA on urinary orotic acid excretion in OTC-deficient spf-ash (sparse-fur with abnormal skin and hair) mice during overnight-starvation and nitrogen loading. During starvation, spf-ash mice with about 6% and 2% of control levels of OTC activity in the liver and small intestine excreted a large amount of orotic acid in the urine. Transgenic spf-ash mice with about 10% and 30% of the control OTC activities in the liver and small intestine did not excrete more than the normal level of orotic acid. Accidental parasitization of transgenic spf-ash mice with ticks (Myocoptes musculinus) resulted in decrease of the OTC activities in the liver and small intestine to the levels in spf-ash mice, and increased excretion of orotic acid. During extermination of the ticks, the mice showed varied levels of OTC activity and orotic acid excretion. On nitrogen loading, transgenic spf-ash mice as well as spf-ash mice excreted larger amounts of orotic acid, while control mice showed no increase in its excretion. The levels of urinary orotic acid were inversely correlated to the logarithms of the OTC activities in the liver and small intestine, the correlation being significantly higher with intestinal OTC than with hepatic OTC activity. These results suggest that the level of OTC activity in the small intestine is important for production of orotic acid.

  14. Overcoming antigen masking of anti-amyloidbeta antibodies reveals breaking of B cell tolerance by virus-like particles in amyloidbeta immunized amyloid precursor protein transgenic mice

    Directory of Open Access Journals (Sweden)

    Ugen Kenneth E

    2004-06-01

    Full Text Available Abstract Background In prior work we detected reduced anti-Aβ antibody titers in Aβ-vaccinated transgenic mice expressing the human amyloid precursor protein (APP compared to nontransgenic littermates. We investigated this observation further by vaccinating APP and nontransgenic mice with either the wild-type human Aβ peptide, an Aβ peptide containing the "Dutch Mutation", E22Q, or a wild-type Aβ peptide conjugated to papillomavirus virus-like particles (VLPs. Results Anti-Aβ antibody titers were lower in vaccinated APP than nontransgenic mice even when vaccinated with the highly immunogenic Aβ E22Q. One concern was that human Aβ derived from the APP transgene might mask anti-Aβ antibodies in APP mice. To test this possibility, we dissociated antigen-antibody complexes by incubation at low pH. The low pH incubation increased the anti-Aβ antibody titers 20–40 fold in APP mice but had no effect in sera from nontransgenic mice. However, even after dissociation, the anti-Aβ titers were still lower in transgenic mice vaccinated with wild-type Aβ or E22Q Aβ relative to non-transgenic mice. Importantly, the dissociated anti-Aβ titers were equivalent in nontransgenic and APP mice after VLP-based vaccination. Control experiments demonstrated that after acid-dissociation, the increased antibody titer did not cross react with bovine serum albumin nor alpha-synuclein, and addition of Aβ back to the dissociated serum blocked the increase in antibody titers. Conclusions Circulating human Aβ can interfere with ELISA assay measurements of anti-Aβ titers. The E22Q Aβ peptide vaccine is more immunogenic than the wild-type peptide. Unlike peptide vaccines, VLP-based vaccines against Aβ abrogate the effects of Aβ self-tolerance.

  15. Generation and characterization of transgenic mice expressing mitochondrial targeted red fluorescent protein selectively in neurons: modeling mitochondriopathy in excitotoxicity and amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2011-11-01

    Full Text Available Abstract Background Mitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson's disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, disease-modifying therapeutics for treating these disorders effectively. A deeper understanding of neural tissue mitochondria pathobiologies as definitive mediators of neural injury, disease, and cell death merits further study, and the development of additional tools to study neural mitochondria will help achieve this unmet need. Results We created transgenic mice that express the coral (Discosoma sp. red fluorescent protein DsRed2 specifically in mitochondria of neurons using a construct engineered with a Thy1 promoter, specific for neuron expression, to drive expression of a fusion protein of DsRed2 with a mitochondrial targeting sequence. The biochemical and histological characterization of these mice shows the expression of mitochondrial-targeted DsRed2 to be specific for mitochondria and concentrated in distinct CNS regions, including cerebral cortex, hippocampus, thalamus, brainstem, and spinal cord. Red fluorescent mitochondria were visualized in cerebral cortical and hippocampal pyramidal neurons, ventrobasal thalamic neurons, subthalamic neurons, and spinal motor neurons. For the purpose of proof of principle application, these mice were used in excitotoxicity paradigms and double transgenic mice were generated by crossing Thy1-mitoDsRed2 mice with transgenic mice expressing enhanced-GFP (eGFP under the control of the Hlxb9 promoter that drives eGFP expression specifically in motor neurons and by crossing Thy1-mitoDsRed2 mice to amyotrophic lateral sclerosis (ALS mice expressing human mutant superoxide dismutase-1. Conclusions These novel transgenic mice will be a useful tool for better understanding

  16. Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice.

    Science.gov (United States)

    Liao, Dezhong Joshua; Wang, Yong; Wu, Jiusheng; Adsay, Nazmi Volkan; Grignon, David; Khanani, Fayyaz; Sarkar, Fazlul H

    2006-07-05

    In order to identify good animal models for investigating therapeutic and preventive strategies for pancreatic cancer, we analyzed pancreatic lesions from several transgenic models and made a series of novel findings. Female MT-tgf alpha mice of the MT100 line developed pancreatic proliferation, acinar-ductal metaplasia, multilocular cystic neoplasms, ductal adenocarcinomas and prominent fibrosis, while the lesions in males were less severe. MT-tgf alpha-ES transgenic lines of both sexes developed slowly progressing lesions that were similar to what was seen in MT100 males. In both MT100 and MT-tgf alpha-ES lines, TGF alpha transgene was expressed mainly in proliferating ductal cells. Ela-myc transgenic mice with a mixed C57BL/6, SJL and FVB genetic background developed pancreatic tumors at 2-7 months of age, and half of the tumors were ductal adenocarcinomas, similar to what was reported originally by Sandgren et al 1. However, in 20% of the mice, the tumors metastasized to the liver. MT100/Ela-myc and MT-tgf alpha-ES/Ela-myc double transgenic mice developed not only acinar carcinomas and mixed carcinomas as previously reported but also various ductal-originated lesions, including multilocular cystic neoplasms and ductal adenocarcinomas. The double transgenic tumors were more malignant and metastasized to the liver at a higher frequency (33%) compared with the Ela-myc tumors. Sequencing of the coding region of p16ink4, k-ras and Rb cDNA in small numbers of pancreatic tumors did not identify mutations. The short latency for tumor development, the variety of tumor morphology and the liver metastases seen in Ela-myc and MT-tgf alpha/Ela-myc mice make these animals good models for investigating new therapeutic and preventive strategies for pancreatic cancer.

  17. Pathogenesis of axonal dystrophy and demyelination in alphaA-crystallin-expressing transgenic mice.

    NARCIS (Netherlands)

    Rijk, A. van; Sweers, M.A.; Merkx, G.F.M.; Lammens, M.M.Y.; Bloemendal, H.

    2003-01-01

    We recently described a transgenic mouse strain overexpressing hamster alphaA-crystallin, a small heat shock protein, under direction of the hamster vimentin promoter. As a result myelin was degraded and axonal dystrophy in both central nervous system (especially spinal cord) and peripheral nervous

  18. Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test

    Directory of Open Access Journals (Sweden)

    Wahnschaffe Ulrich

    2005-01-01

    Full Text Available Abstract The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484. It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing of over twenty chemicals using the mouse spot test and compares them with results from the two transgenic mouse models with the best data base available, the lacI model (commercially available as the Big Blue® mouse, and the lacZ model (commercially available as the Muta™ Mouse. There was agreement in the results from the majority of substances. No differences were found in the predictability of the transgenic animal assays and the mouse spot test for carcinogenicity. However, from the limited data available, it seems that the transgenic mouse assay has several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo.

  19. A T Cell Epitope-Based Vaccine Protects Against Chlamydial Infection in HLA-DR4 Transgenic Mice

    Science.gov (United States)

    Li, Weidang; Murthy, Ashlesh K.; Lanka, Gopala Krishna; Chetty, Senthilnath L; Yu, Jieh-Juen; Chambers, James P.; Zhong, Guangming; Forsthuber, Thomas G.; Guentzel, M. Neal; Arulanandam, Bernard P.

    2013-01-01

    Vaccination with recombinant chlamydial protease-like activity factor (rCPAF) has been shown to provide robust protection against genital Chlamydia infection. Adoptive transfer of IFN-γ competent CPAF-specific CD4+ T cells was sufficient to induce early resolution of chlamydial infection and reduction of subsequent pathology in recipient IFN-γ-deficient mice indicating the importance of IFN-γ secreting CD4+ T cells in host defense against Chlamydia. In this study, we identify CD4+ T cell reactive CPAF epitopes and characterize the activation of epitope-specific CD4+ T cells following antigen immunization or Chlamydia challenge. Using the HLA-DR4 (HLA-DRB1*0401) transgenic mouse for screening overlapping peptides that induced T cell IFN-γ production, we identified at least 5 CPAF T cell epitopes presented by the HLA-DR4 complex. Immunization of HLA-DR4 transgenic mice with a rCPAFep fusion protein containing these 5 epitopes induced a robust cell-mediated immune response and significantly accelerated the resolution of genital and pulmonary Chlamydia infection. rCPAFep vaccination induced CPAF-specific CD4+ T cells in the spleen were detected using HLA-DR4/CPAF-epitope tetramers. Additionally, CPAF-specific CD4+ clones could be detected in the mouse spleen following C. muridarum and a human C. trachomatis strain challenge using these novel tetramers. These results provide the first direct evidence that a novel CPAF epitope vaccine can provide protection and that HLA-DR4/CPAF-epitope tetramers can detect CPAF epitope-specific CD4+ T cells in HLA-DR4 mice following C. muridarum or C. trachomatis infection. Such tetramers could be a useful tool for monitoring CD4+ T cells in immunity to Chlamydia infection and in developing epitope-based human vaccines using the murine model. PMID:24096029

  20. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sébastien Flajollet

    Full Text Available In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.

  1. Maternal behavior in transgenic mice with reduced fibroblast growth factor receptor function in gonadotropin-releasing hormone neurons

    Directory of Open Access Journals (Sweden)

    Brooks Leah R

    2012-09-01

    Full Text Available Abstract Background Fibroblast growth factors (FGFs and their receptors (FGFRs are necessary for the proper development of gonadotropin-releasing hormone (GnRH neurons, which are key activators of the hypothalamo-pituitary-gonadal axis. Transgenic mice that have the targeted expression of a dominant negative FGFR (dnFGFR in GnRH neurons (dnFGFR mice have a 30% decrease of GnRH neurons. Additionally, only 30–40% of the pups born to the transgenic dams survive to weaning age. These data raised the possibility that FGFR defects in GnRH neurons could adversely affect maternal behavior via novel mechanisms. Methods We first determined if defective maternal behavior in dnFGFR mothers may contribute to poor pup survival by measuring pup retrieval and a battery of maternal behaviors in primiparous control (n = 10–12 and dnFGFR (n = 13–14 mothers. Other endocrine correlates of maternal behaviors, including plasma estradiol levels and hypothalamic pro-oxyphysin and GnRH transcript levels were also determined using enzyme-linked immunoassay and quantitative reverse transcription polymerase chain reaction, respectively. Results Maternal behaviors (% time crouching with pups, time off pups but not feeding, time feeding, and total number of nesting bouts were not significantly different in dnFGFR mice. However, dnFGFR dams were more likely to leave their pups scattered and took significantly longer to retrieve each pup compared to control dams. Further, dnFGFR mothers had significantly lower GnRH transcripts and circulating E2, but normal pro-oxyphysin transcript levels. Conclusions Overall, this study suggests a complex scenario in which a GnRH system compromised by reduced FGF signaling leads to not only suboptimal reproductive physiology, but also suboptimal maternal behavior.

  2. Efficient production of transgenic mice by intracytoplasmic injection of streptolysin-O-treated spermatozoa.

    Science.gov (United States)

    Sim, Bo-Woong; Cha, Jae-Jin; Song, Bong-Seok; Kim, Ji-Su; Yoon, Seung-Bin; Choi, Seon-A; Jeong, Kang-Jin; Kim, Young-Hyun; Huh, Jae-Won; Lee, Sang-Rae; Kim, Sang-Hyun; Lee, Chul-Sang; Kim, Sun-Uk; Chang, Kyu-Tae

    2013-03-01

    Many methods for efficient production of transgenic animals for biomedical research have been developed. Despite great improvements in transgenesis rates resulting from the use of intracytoplasmic sperm injection (ICSI), the ICSI-based sperm-mediated gene-transfer (iSMGT) technique is still not optimal in terms of sperm permeabilization efficiency and subsequent development. Here, we demonstrate that streptolysin-O (SLO) can efficiently permeabilize mouse spermatozoa, leading to improved developmental competence and high transgenesis rates in iSMGT embryos and pups. In particular, the most efficient production of iSMGT-transgenic embryos resulted from pretreatment with 5 U/ml SLO for 30 min and co-incubation with 1.0 ng/µl of an EGFP expression vector. By incubating spermatozoa with Cy-3-labelled DNA, we found that fluorescence intensity was prominently detected in the head region of SLO-treated spermatozoa. In addition, blastocyst development rate and blastomere survival were greatly improved by iSMGT using SLO-treated spermatozoa (iSMGT-SLO) as compared to freeze-thawed spermatozoa. Consistent with this, a high proportion of transgenic offspring was obtained by iSMGT-SLO after transfer into foster mothers, reaching 10.6% of the number of oocytes used (42.3% among pups). Together with successful germline transmission of transgenes in all founders analyzed, our data strongly suggest that SLO makes spermatozoa amenable to exogenous DNA uptake, and that the iSMGT-SLO technique is an efficient method for production of transgenic animals for biomedical research. PMID:23359330

  3. Enhanced tumor formation in cyclin D1 x transforming growth factor beta1 double transgenic mice with characterization by magnetic resonance imaging.

    Science.gov (United States)

    Deane, Natasha G; Lee, Haakil; Hamaamen, Jalal; Ruley, Anna; Washington, M Kay; LaFleur, Bonnie; Thorgeirsson, Snorri S; Price, Ronald; Beauchamp, R Daniel

    2004-02-15

    Transgenic mice that overexpress cyclin D1 protein in the liver develop liver carcinomas with high penetrance. Transforming growth factor beta (TGF-beta) serves as either an epithelial cell growth inhibitor or a tumor promoter, depending on the cellular context. We interbred LFABP-cyclin D1 and Alb-TGF-beta1 transgenic mice to produce cyclin D1/TGF-beta1 double transgenic mice and followed the development of liver tumors over time, characterizing cellular and molecular changes, tumor incidence, tumor burden, and tumor physiology noninvasively by magnetic resonance imaging. Compared with age-matched LFABP-cyclin D1 single transgenic littermates, cyclin D1/TGF-beta1 mice exhibited a significant increase in tumor incidence. Tumor multiplicity, tumor burden, and tumor heterogeneity were higher in cyclin D1/TGF-beta1 mice compared with single transgenic littermates. Characteristics of cyclin D1/TGF-beta1 livers correlated with a marked induction of the peripheral periductal oval cell/stem cell compartment of the liver. A number of cancerous lesions from cyclin D1/TGF-beta1 mice exhibited unique features such as ductal plate malformations and hemorrhagic nodules. Some lesions were contiguous with the severely diseased background liver and, in some cases, replaced the normal architecture of the entire organ. Cyclin D1/TGF-beta1 lesions, in particular, were associated with malignant features such as areas of vascular invasion by hepatocytes and heterogeneous hyperintensity of signal on T2-weighted magnetic resonance imaging. These findings demonstrate that TGF-beta1 promotes stem cell activation and tumor progression in the context of cyclin D1 overexpression in the liver. PMID:14973059

  4. The flavonoid luteolin worsens chemical-induced colitis in NF-kappaB(EGFP transgenic mice through blockade of NF-kappaB-dependent protective molecules.

    Directory of Open Access Journals (Sweden)

    Thomas Karrasch

    Full Text Available BACKGROUND: The flavonoid luteolin has anti-inflammatory properties both in vivo and in vitro. However, the impact of luteolin on experimental models of colitis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: To address the therapeutic impact of luteolin, NF-kappaB(EGFP transgenic mice were fed a chow diet containing 2% luteolin- or isoflavone-free control chow (AIN-76, and acute colitis was induced using 3% dextran sodium sulfate (DSS. Additionally, development of spontaneous colitis was evaluated in IL-10(-/-;NF-kappaB(EGFP transgenic mice fed 2% luteolin chow diet or control chow diet. Interestingly, NF-kappaB(EGFP transgenic mice exposed to luteolin showed worse DSS-induced colitis (weight loss, histological scores compared to control-fed mice, whereas spontaneous colitis in IL-10(-/-;NF-kappaB(EGFP mice was significantly attenuated. Macroscopic imaging of live resected colon showed enhanced EGFP expression (NF-kappaB activity in luteolin-fed mice as compared to control-fed animals after DSS exposure, while cecal EGFP expression was attenuated in luteolin-fed IL-10(-/- mice. Interestingly, confocal microscopy showed that EGFP positive cells were mostly located in the lamina propria and not in the epithelium. Caspase 3 activation was significantly enhanced whereas COX-2 gene expression was reduced in luteolin-fed, DSS-exposed NF-kappaB(EGFP transgenic mice as assessed by Western blot and immunohistochemical analysis. In vitro, luteolin sensitized colonic epithelial HT29 cells to TNFalpha-induced apoptosis, caspase 3 activation, DNA fragmentation and reduced TNFalpha-induced C-IAP1, C-IAP2 and COX-2 gene expression. CONCLUSIONS/SIGNIFICANCE: We conclude that while luteolin shows beneficial effects on spontaneous colitis, it aggravates DSS-induced experimental colitis by blocking NF-kappaB-dependent protective molecules in enterocytes.

  5. HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Amy Belton

    Full Text Available BACKGROUND: Although metastatic colon cancer is a leading cause of cancer death worldwide, the molecular mechanisms that enable colon cancer cells to metastasize remain unclear. Emerging evidence suggests that metastatic cells develop by usurping transcriptional networks from embryonic stem (ES cells to facilitate an epithelial-mesenchymal transition (EMT, invasion, and metastatic progression. Previous studies identified HMGA1 as a key transcription factor enriched in ES cells, colon cancer, and other aggressive tumors, although its role in these settings is poorly understood. METHODS/PRINCIPAL FINDINGS: To determine how HMGA1 functions in metastatic colon cancer, we manipulated HMGA1 expression in transgenic mice and colon cancer cells. We discovered that HMGA1 drives proliferative changes, aberrant crypt formation, and intestinal polyposis in transgenic mice. In colon cancer cell lines from poorly differentiated, metastatic tumors, knock-down of HMGA1 blocks anchorage-independent cell growth, migration, invasion, xenograft tumorigenesis and three-dimensional colonosphere formation. Inhibiting HMGA1 expression blocks tumorigenesis at limiting dilutions, consistent with depletion of tumor-initiator cells in the knock-down cells. Knock-down of HMGA1 also inhibits metastatic progression to the liver in vivo. In metastatic colon cancer cells, HMGA1 induces expression of Twist1, a gene involved in embryogenesis, EMT, and tumor progression, while HMGA1 represses E-cadherin, a gene that is down-regulated during EMT and metastatic progression. In addition, HMGA1 is among the most enriched genes in colon cancer compared to normal mucosa. CONCLUSIONS: Our findings demonstrate for the first time that HMGA1 drives proliferative changes and polyp formation in the intestines of transgenic mice and induces metastatic progression and stem-like properties in colon cancer cells. These findings indicate that HMGA1 is a key regulator, both in metastatic

  6. Construction of transgenic mice producing CAT to milk by co-injection of two overlapping fragments of bovine αs1-casein-CAT gene

    Institute of Scientific and Technical Information of China (English)

    劳为德; 刘伟; 成国祥; 徐少甫; 成勇

    1996-01-01

    Two αs1-casein/chloramphenicol acetyltransferase (CAT) gene constructs overlapping by 3.0kb were constructed and co-injected into murine zygotes. In 9 of 10 lines of transgenic mice obtained, based on analysis of structure and expression of the transgene, accurate extrachromosomal homologous recombination (ECR) between the two overlapping DNA fragments was found. Different levels of CAT activity were detected in milk from these lines. The highest CAT activity was about 25-50μg/mL milk. In some mice. CAT activity was found in salvia gland, thymus and spleen extracts. The high frequency and accuracy of ECR reported here will be applicable in the experimental manipulation for generation of relatively large transgene.

  7. A protective lipidomic biosignature associated with a balanced omega-6/omega-3 ratio in fat-1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Giuseppe Astarita

    Full Text Available A balanced omega-6/omega-3 polyunsaturated fatty acid (PUFA ratio has been linked to health benefits and the prevention of many chronic diseases. Current dietary intervention studies with different sources of omega-3 fatty acids (omega-3 lack appropriate control diets and carry many other confounding factors derived from genetic and environmental variability. In our study, we used the fat-1 transgenic mouse model as a proxy for long-term omega-3 supplementation to determine, in a well-controlled manner, the molecular phenotype associated with a balanced omega-6/omega-3 ratio. The fat-1 mouse can convert omega-6 to omega-3 PUFAs, which protect against a wide variety of diseases including chronic inflammatory diseases and cancer. Both wild-type (WT and fat-1 mice were subjected to an identical diet containing 10% corn oil, which has a high omega-6 content similar to that of the Western diet, for a six-month duration. We used a multi-platform lipidomic approach to compare the plasma lipidome between fat-1 and WT mice. In fat-1 mice, an unbiased profiling showed a significant increase in the levels of unesterified eicosapentaenoic acid (EPA, EPA-containing cholesteryl ester, and omega-3 lysophosphospholipids. The increase in omega-3 lipids is accompanied by a significant reduction in omega-6 unesterified docosapentaenoic acid (omega-6 DPA and DPA-containing cholesteryl ester as well as omega-6 phospholipids and triacylglycerides. Targeted lipidomics profiling highlighted a remarkable increase in EPA-derived diols and epoxides formed via the cytochrome P450 (CYP450 pathway in the plasma of fat-1 mice compared with WT mice. Integration of the results of untargeted and targeted analyses has identified a lipidomic biosignature that may underlie the healthful phenotype associated with a balanced omega-6/omega-3 ratio, and can potentially be used as a circulating biomarker for monitoring the health status and the efficacy of omega-3 intervention in humans.

  8. The Establishment of Double-Transgenic Mice that Co-Express the appA and MxA Genes Mediated by Type A Spermatogonia In vivo

    Institute of Scientific and Technical Information of China (English)

    BAI Li-jing; JU Hui-ming; MU Yu-lian; YANG Shu-lin; REN Hong-yan; AO Hong; WANG Chu-duan; LI Kui

    2014-01-01

    Type A spermatogonial stem cells are the only immortal diploid cells in the postnatal animal that undergo self-renewal through the lifetime of an animal and transmit genes to subsequent generations. In this paper, the generation and characterization of double-transgenic mice co-expressing the Escherichia coli appA gene and human MxA gene generated via the in vivo transfection of type A spermatogonial cells were reported for the ifrst time. The dicistronic expression vector pcDNA-appA-MxA(AMP) and ExGen500 transfection reagent were injected into the testicular tissue of 7-d-old male ICR mice. The mice that underwent testis-mediated gene transfer were mated with wild-type female mice, and the integration and expression of the foreign genes in the offspring were evaluated. Transgenic mice that co-expressed appA and MxA showed a gene integration rate of 8.89%(16/180). The transgenic mice were environmentally friendly, as the amount of phosphorous remaining in the manure was reduced by as much as 11.1%by the appA gene (P<0.05);these animals also exhibited a strong anti-viral phenotype.

  9. Pharmacological profile of MEDI-551, a novel anti-CD19 antibody, in human CD19 transgenic mice.

    Science.gov (United States)

    Gallagher, Sandra; Turman, Sean; Yusuf, Isharat; Akhgar, Ahmad; Wu, Yuling; Roskos, Lorin K; Herbst, Ronald; Wang, Yue

    2016-07-01

    B cell depletion therapy is beneficial for patients with B cell malignancies and autoimmune diseases. CD19, a transmembrane protein, is expressed on a vast majority of normal and neoplastic B cells, making it a suitable target for monoclonal antibody (MAb) mediated immunotherapy. We have developed MEDI-551, an affinity optimized and afucosylated IgG1 MAb targeting human CD19 for B cell depletion. MEDI-551 is currently under investigation in multiple clinical trials. Because MEDI-551 does not cross react with rodent and non-human primate CD19, the pharmacological characteristics of the MAb were evaluated in human CD19 transgenic mice (hCD19 Tg). Here we show that MEDI-551 potently depletes tissue and circulating B cells in hCD19 Tg mice and is more efficacious than the anti-CD19 MAb with intact fucose. The length of B cell depletion depends on MEDI-551 dose; and, B cell recovery in the circulation follows stepwise phenotypic maturation. Furthermore, intravenous (IV) and subcutaneous (SC) administration of MEDI-551 results in comparable efficacy. Lastly, the combination of MEDI-551 with the anti-CD20 MAb, rituximab, further prolongs the duration of B cell depletion. In summary, the pharmacological profile of MEDI-551 presented in hCD19 Tg mice supports further testing of MEDI-551 in clinical trials involving B cell malignancies and autoimmune diseases. PMID:27163209

  10. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.

    Science.gov (United States)

    Nobusue, Hiroyuki; Endo, Tsuyoshi; Kano, Koichiro

    2008-06-01

    We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. PMID:18386066

  11. Doubly Phosphorylated Peptide Vaccines to Protect Transgenic P301S Mice against Alzheimer’s Disease Like Tau Aggregation

    Directory of Open Access Journals (Sweden)

    Monique Richter

    2014-07-01

    Full Text Available Intracellular neurofibrillary tangles and extracellular senile plaques are potential targets for active and passive immunotherapies. In this study we used the transgenic mouse model P301S for active immunizations with peptide vaccines composed of a double phosphorylated tau neoepitope (pSer202/pThr205, pThr212/pSer214, pThr231/pSer235 and an immunomodulatory T cell epitope from the tetanus toxin or tuberculosis antigen Ag85B. Importantly, the designed vaccine combining Alzheimer’s disease (AD specific B cell epitopes with foreign (bacterial T cell epitopes induced fast immune responses with high IgG1 titers after prophylactic immunization that subsequently decreased over the observation period. The effectiveness of the immunization was surveyed by evaluating the animal behavior, as well as the pathology in the brain by biochemical and histochemical techniques. Immunized mice clearly lived longer with reduced paralysis than placebo-treated mice. Additionally, they performed significantly better in rotarod and beam walk tests at the age of 20 weeks, indicating that the disease development was slowed down. Forty-eight weeks old vaccinated mice passed the beam walk test significantly better than control animals, which together with the increased survival rates undoubtedly prove the treatment effect. In conclusion, the data provide strong evidence that active immune therapies can reduce toxic effects of deposits formed in AD.

  12. Transgenic Mice Expressing a Truncated Form of CREB-Binding Protein (CBP) Exhibit Deficits in Hippocampal Synaptic Plasticity and Memory Storage

    Science.gov (United States)

    Wood, Marcelo A.; Kaplan, Michael P.; Park, Alice; Blanchard, Edward J.; Oliveira, Ana M. M.; Lombardi, Thomas L.; Abel, Ted

    2005-01-01

    Deletions, translocations, or point mutations in the CREB-binding protein (CBP) gene have been associated with Rubinstein-Taybi Syndrome; a human developmental disorder characterized by retarded growth and reduced mental function. To examine the role of CBP in memory, transgenic mice were generated in which the CaMKII[alpha] promoter drives…

  13. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine and cervid prion protein

    Science.gov (United States)

    Identifying transmissible spongiform encephalopathy (TSE) reservoirs that could lead to disease re-emergence is imperative to U.S. scrapie eradication efforts. Transgenic mice expressing the cervid (TgElk) or ovine (Tg338) prion protein have aided characterization of chronic wasting disease (CWD) an...

  14. High-level, erythroid specific, expression of the human α-globin gene in transgenic mice and the production of human haemoglobin in murine erythrocytes.

    NARCIS (Netherlands)

    O. Hanscombe; M. Vidal; J. Kaeda; L. Luzzatto; D.R. Greaves; F.G. Grosveld (Frank)

    1989-01-01

    textabstractUsing the dominant control region (DCR) sequences that flank the beta-globin gene locus, we have been able to achieve high-level expression of the human alpha-globin gene in transgenic mice. Expression in fetal liver and blood is copy number dependent and at levels comparable to that of

  15. Mutant frequencies and spectra depend on growth state and passage number in cells cultured from transgenic lacZ-plasmid reporter mice.

    NARCIS (Netherlands)

    Busuttil, Rita A; Rubio, Miguel; Dollé, Martijn E T; Campisi, Judith; Vijg, Jan

    2006-01-01

    Transgenic mice harboring the lacZ gene within a plasmid that can be recovered and amplified in Escherichia coli, to establish mutant frequencies and spectra, have provided crucial insights into the relationships between mutations, cancer and aging in vivo. Here, we use embryonic fibroblasts from tr

  16. Influence of nucleotide excision repair on N-hydroxy-2-acetylaminofluorene-induced mutagenesis studied in λlacZ-transgenic mice

    NARCIS (Netherlands)

    Frijhoff, A.F.W.; Krul, C.A.M.; Vries, A. de; Kelders, M.C.J.M.; Weeda, G.; Steeg, H. van; Baan, R.A.

    1998-01-01

    To study the influence of nucleotide excision repair (NER) on mutagenesis in vivo, ERCC1+/-, XPA-/-, and wild-type (ERCC1+/+ and XPA+/+, respectively) λlacZ-transgenic mice were treated i.p. with N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and lacZ mutant frequencies were determined in liver. No sign

  17. Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test

    OpenAIRE

    Wahnschaffe Ulrich; Bitsch Annette; Kielhorn Janet; Mangelsdorf Inge

    2005-01-01

    Abstract The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484). It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing o...

  18. Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice.

    Directory of Open Access Journals (Sweden)

    Lukas E Dow

    Full Text Available Tetracycline or doxycycline (dox-regulated control of genetic elements allows inducible, reversible and tissue specific regulation of gene expression in mice. This approach provides a means to investigate protein function in specific cell lineages and at defined periods of development and disease. Efficient and stable regulation of cDNAs or non-coding elements (e.g. shRNAs downstream of the tetracycline-regulated element (TRE requires the robust expression of a tet-transactivator protein, commonly the reverse tet-transactivator, rtTA. Most rtTA strains rely on tissue specific promoters that often do not provide sufficient rtTA levels for optimal inducible expression. Here we describe the generation of two mouse strains that enable Cre-dependent, robust expression of rtTA3, providing tissue-restricted and consistent induction of TRE-controlled transgenes. We show that these transgenic strains can be effectively combined with established mouse models of disease, including both Cre/LoxP-based approaches and non Cre-dependent disease models. The integration of these new tools with established mouse models promises the development of more flexible genetic systems to uncover the mechanisms of development and disease pathogenesis.

  19. Topological and evolutional relationships between HCV core protein and hepatic lipid vesicles: Studies in vitro and in conditionally transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Ming-Ling Chang; Jeng-Chang Chen; Chau-Ting Yeh; I-Shyan Sheen; Dar-In Tai; Ming-Yu Chang; Cheng-Tang Chiu; Deng-Yn Lin; D Montgomery Bissell

    2007-01-01

    AIM: To investigate a specific association between hepatic steatosis and hepatitis C virus (HCV) core.METHODS: HeLa cells and primary mouse hepatocytes were transfected with HCV core plasmid, and conditional transgenics in which hepatic over-expression of HCV core is regulated by the tetracycline-off system, were developed. The expression of the HCV core was assessed over one to six months after withdrawal of doxycycline (dox) by immunohistochemistry (IHC)and Western blotting and by sequential liver biopsy.Hepatic steatosis was evaluated using oil red stain.8-hydroxydeoxyguanosine (8-OHdG) stains and caspase levels were conducted to clarify hepatic oxidative stress and apoptosis rate. Serum aminotransferase was checked.RESULTS: The transfected hepatocytes had globular cores under the lipid vesicles. In transgenic mice on control diet, core expression was robust, localized to the cytoplasmic vesicle membrane and strongly associated with microvesicular steatosis, which was gradually replaced by macrovesicular steatosis. However, both steatosis and core positive hepatocytes diminished with time. Increases in aminotransferase, caspase and 8-OHdG were associated with peak core expression.CONCLUSION: The core protein was readily detected and morphologically associated with steatosis in individual hepatocytes both in vitro and in vivo. In vivo,oxidative stress caused by the core potentially reduced the number of core positive hepatocytes and in parallel the level of steatosis. To our knowledge, this is the first animal model that directly shows topological relationship between HCV core and hepatic lipid vesicles.

  20. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2010-08-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1–40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50–70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5–14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10–2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  1. Probing amyloid-β pathology in transgenic Alzheimer's disease (tgArcSwe) mice using MALDI imaging mass spectrometry.

    Science.gov (United States)

    Carlred, Louise; Michno, Wojciech; Kaya, Ibrahim; Sjövall, Peter; Syvänen, Stina; Hanrieder, Jörg

    2016-08-01

    The pathological mechanisms underlying Alzheimer's disease (AD) are still not understood. The disease pathology is characterized by the accumulation and aggregation of amyloid-β (Aβ) peptides into extracellular plaques, however the factors that promote neurotoxic Aβ aggregation remain elusive. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides and proteins in biological tissues. In the present study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS)-based imaging was used to study Aβ deposition in transgenic mouse brain tissue and to elucidate the plaque-associated chemical microenvironment. The imaging experiments were performed in brain sections of transgenic Alzheimer's disease mice carrying the Arctic and Swedish mutation of amyloid-beta precursor protein (tgArcSwe). Multivariate image analysis was used to interrogate the IMS data for identifying pathologically relevant, anatomical features based on their chemical identity. This include cortical and hippocampal Aβ deposits, whose amyloid peptide content was further verified using immunohistochemistry and laser microdissection followed by MALDI MS analysis. Subsequent statistical analysis on spectral data of regions of interest revealed brain region-specific differences in Aβ peptide aggregation. Moreover, other plaque-associated protein species were identified including macrophage migration inhibitory factor suggesting neuroinflammatory processes and glial cell reactivity to be involved in AD pathology. The presented data further highlight the potential of IMS as a powerful approach in neuropathology. Hanrieder et al. described an imaging mass spectrometry based study on comprehensive spatial profiling of C-terminally truncated Aβ species within individual plaques in tgArcSwe mice. Here, brain region-dependent differences in Aβ truncation and other plaque-associated proteins, such as

  2. Overexpression of synphilin-1 promotes clearance of soluble and misfolded alpha-synuclein without restoring the motor phenotype in aged A30P transgenic mice.

    Science.gov (United States)

    Casadei, Nicolas; Pöhler, Anne-Maria; Tomás-Zapico, Cristina; Torres-Peraza, Jesús; Schwedhelm, Ivo; Witz, Annemarie; Zamolo, Irina; De Heer, Raymond; Spruijt, Berry; Noldus, Lucas P J J; Klucken, Jochen; Lucas, José J; Kahle, Philipp J; Krüger, Rejko; Riess, Olaf; Nuber, Silke

    2014-02-01

    Lewy bodies and neurites are the pathological hallmark of Parkinson's disease. These structures are composed of fibrillized and ubiquitinated alpha-synuclein suggesting that impaired protein clearance is an important event in aggregate formation. The A30P mutation is known for its fast oligomerization, but slow fibrillization rate. Despite its toxicity to neurons, mechanisms involved in either clearance or conversion of A30P alpha-synuclein from its soluble state into insoluble fibrils and their effects in vivo are poorly understood. Synphilin-1 is present in Lewy bodies, interacting with alpha-synuclein in vivo and in vitro and promotes its sequestration into aggresomes, which are thought to act as cytoprotective agents facilitating protein degradation. We therefore crossed animals overexpressing A30P alpha-synuclein with synphilin-1 transgenic mice to analyze its impact on aggregation, protein clearance and phenotype progression. We observed that co-expression of synphilin-1 mildly delayed the motor phenotype caused by A30P alpha-synuclein. Additionally, the presence of N- and C-terminal truncated alpha-synuclein species and fibrils were strongly reduced in double-transgenic mice when compared with single-transgenic A30P mice. Insolubility of mutant A30P and formation of aggresomes was still detectable in aged double-transgenic mice, paralleled by an increase of ubiquitinated proteins and high autophagic activity. Hence, this study supports the notion that co-expression of synphilin-1 promotes formation of autophagic-susceptible aggresomes and consecutively the degradation of human A30P alpha-synuclein. Notably, although synphilin-1 overexpression significantly reduced formation of fibrils and astrogliosis in aged animals, a similar phenotype is present in single- and double-transgenic mice suggesting additional neurotoxic processes in disease progression. PMID:24064336

  3. Oral Self-Administration Of EtOH In Transgenic Mice Lacking Beta-Endorphin

    Directory of Open Access Journals (Sweden)

    Stephani Allen

    2007-01-01

    Full Text Available EtOH modifies the production and/or release of endogenous opioid peptides, including -endorphin (Gianoulakis, 2004; Przewlocka et al., 1994; Schulz et al., 1980. Opioids subsequently influence the reinforcing properties of EtOH and the development of alcoholism (Terenius, 1996; Van Ree, 1996. In this study, beta-endorphin deficient mutant mice were used to examine the effects of a specific opioid peptide on EtOH consumption. Mice were obtained from The Jackson Laboratory, Bar Harbor, ME, USA. Male and female, adult naïve mice were single housed in Plexiglas cages with corn cob bedding and ad lib access to food (mouse chow and water. A two-bottle free choice EtOH oral self-administration paradigm was administered to homozygous mutant mice (void of all beta-endorphin, heterozygous mice (50% beta-endorphin expression, and sibling wildtype mice (C57BL/6J. Subjects received increasing concentrations of EtOH (0%, 3%, 6%, 12%, and 15% each given over an eight day span, and were evaluated for preference and consumption each day. Bottles were switched every other day to avoid the development of a side preference. Overall, females drank more than males. Homozygous mutant mice (KO showed decreased preference for EtOH at all concentrations, and self-administered significantly less than heterozygous mice (HT and wildtype mice (C57. The HTs had a tendency to drink the most followed by the C57s, and the KOs drank the least. These data support the hypothesis that beta-endorphin influences the reinforcing effects of EtOH.

  4. Beneficial effects of the β-secretase inhibitor GRL-8234 in 5XFAD Alzheimer's transgenic mice lessen during disease progression.

    Science.gov (United States)

    Devi, Latha; Tang, Jordan; Ohno, Masuo

    2015-01-01

    The β-secretase enzyme BACE1, which initiates the cleavage of amyloid precursor protein (APP) into the amyloid-β (Aβ) peptide, is a prime therapeutic target for Alzheimer's disease (AD). However, recent investigations using genetic animal models raise concern that therapeutic BACE1 inhibition may encounter the dramatic reduction of efficacy in ameliorating AD-like pathology and memory deficits during disease progression. Here, we compared the effects of the potent and selective small-molecule BACE1 inhibitor GRL-8234 in different pathological stages of AD mouse model. Specifically, we administered GRL-8234 (33.4 mg/kg, i.p.) once daily for 2 months to 5XFAD transgenic mice, which showed modest (4 months) and massive (10 months of age) Aβ plaque deposition at starting points. Chronic treatments with GRL-8234 reversed memory impairments, as tested by the spontaneous alternation Y-maze task, in the younger 5XFAD group concomitant with significant reductions in cerebral Aβ42 levels. In contrast, only marginal reductions of Aβ42 were observed in 12-month-old 5XFAD mice treated with GRL-8234 and their memory function remained impaired. We found that not only BACE1 but also full-length APP expression was significantly elevated with progressive Aβ accumulation in 5XFAD mice, while GRL-8234 failed to affect these detrimental mechanisms that further accelerate plaque growth in brains of older 5XFAD mice. Therefore, our results provide important insights into the mechanisms by which Aβ accumulation and related memory impairments become less responsive to rescue by BACE1 inhibition during the course of AD development.

  5. Selective knockdown of mutant SOD1 in Schwann cells ameliorates disease in G85R mutant SOD1 transgenic mice.

    Science.gov (United States)

    Wang, Lijun; Pytel, Peter; Feltri, M Laura; Wrabetz, Lawrence; Roos, Raymond P

    2012-10-01

    Mutants of superoxide dismutase type 1 (mtSOD1) that have full dismutase activity (e.g., G37R) as well as none (e.g., G85R) cause familial amyotrophic lateral sclerosis (FALS), indicating that mtSOD1-induced FALS results from a toxicity rather than loss in SOD1 enzymatic activity. Still, it has remained unclear whether mtSOD1 dismutase activity can influence disease. A previous study demonstrated that Cre-mediated knockdown of G37R expression in Schwann cells (SCs) of G37R transgenic mice shortened the late phase of disease and survival. These results suggested that the neuroprotective effect of G37R expressed in SCs was greater than its toxicity, presumably because its dismutase activity counteracted reactive oxygen species (ROS). In order to further investigate this, we knocked down G85R in SCs by crossing G85R(flox) mice with myelin-protein-zero (P(0)):Cre mice, which express Cre recombinase in SCs. Knockdown of G85R in SCs of G85R mice delayed disease onset and extended survival indicating that G85R expression in SCs is neurotoxic. These results demonstrate differences in the effect on disease of dismutase active vs. inactive mtSOD1 suggesting that both a loss as well as gain in function of mtSOD1 influence FALS pathogenesis. The results suggest that mtSOD1-induced FALS treatment may have to be adjusted depending on the cell type targeted and particular mtSOD1 involved.

  6. Transgenic overexpression of γ-cytoplasmic actin protects against eccentric contraction-induced force loss in mdx mice

    Directory of Open Access Journals (Sweden)

    Baltgalvis Kristen A

    2011-10-01

    Full Text Available Abstract Background γ-cytoplasmic (γ-cyto actin levels are elevated in dystrophin-deficient mdx mouse skeletal muscle. The purpose of this study was to determine whether further elevation of γ-cyto actin levels improve or exacerbate the dystrophic phenotype of mdx mice. Methods We transgenically overexpressed γ-cyto actin, specifically in skeletal muscle of mdx mice (mdx-TG, and compared skeletal muscle pathology and force-generating capacity between mdx and mdx-TG mice at different ages. We investigated the mechanism by which γ-cyto actin provides protection from force loss by studying the role of calcium channels and stretch-activated channels in isolated skeletal muscles and muscle fibers. Analysis of variance or independent t-tests were used to detect statistical differences between groups. Results Levels of γ-cyto actin in mdx-TG skeletal muscle were elevated 200-fold compared to mdx skeletal muscle and incorporated into thin filaments. Overexpression of γ-cyto actin had little effect on most parameters of mdx muscle pathology. However, γ-cyto actin provided statistically significant protection against force loss during eccentric contractions. Store-operated calcium entry across the sarcolemma did not differ between mdx fibers compared to wild-type fibers. Additionally, the omission of extracellular calcium or the addition of streptomycin to block stretch-activated channels did not improve the force-generating capacity of isolated extensor digitorum longus muscles from mdx mice during eccentric contractions. Conclusions The data presented in this study indicate that upregulation of γ-cyto actin in dystrophic skeletal muscle can attenuate force loss during eccentric contractions and that the mechanism is independent of activation of stretch-activated channels and the accumulation of extracellular calcium.

  7. Overexpression of γ-aminobutyric acid transporter subtype I leads to susceptibility to kainic acid-induced seizure in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter,and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters.With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1),the present study explored the pathophysiological role of GAT1 in epileptogenesis.Though displaying no spontaneous seizure activity,these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid.In addition,the GABAA receptor and glutamate transporters are up-regulated in transgenic mice,which perhaps reflects a compensatory or corrective change to the elevated level of GAT1.These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission,and seizure susceptibility can be altered by neurotransmitter transporters.

  8. Breaking tolerance in hepatitis B surface antigen (HBsAg) transgenic mice by vaccination with cross-reactive, natural HBsAg variants

    DEFF Research Database (Denmark)

    Schirmbeck, Reinhold; Dikopoulos, Nektarios; Kwissa, Marcin;

    2003-01-01

    Processing exogenous hepatitis B surface antigen (HBsAg) of the hepatitis B virus (HBV) generates the K(b)-binding S(208-215) epitope 1; processing endogenous HBsAg generates the K(b)-binding S(190-197) epitope 2. Cross-reactive CD8(+) T cell responses were primed to epitope 1 but not epitope 2......-tg mice by HBsAg(adw2); these specific CD8(+) T cells cross-reacted with epitope 1 processed from the transgene-encoded HBsAg(ayw). The liver of vaccinated HBsAg(ayw) transgenic mice showed severe histopathology and contained functional (IFNgamma-producing), cross-reactive CD8(+) T cells, and vaccinated...... HBs-tg mice showed reduced antigenemia. Hence, vaccination with natural HBsAg variants from different HBV sero/genotypes can prime cross-reactive, specific CD8(+) T cell immunity that breaks tolerance to HBsAg....

  9. Expression of Human CAR Splicing Variants in BAC-Transgenic Mice

    OpenAIRE

    Zhang, Yu-Kun Jennifer; Lu, Hong; Klaassen, Curtis D.

    2012-01-01

    The nuclear receptor constitutive androstane receptor (CAR) is a key regulator for drug metabolism in liver. Human CAR (hCAR) transcripts are subjected to alternative splicing. Some hCAR splicing variants (SVs) have been shown to encode functional proteins by reporter assays. However, in vivo research on the activity of these hCAR SVs has been impeded by the absence of a valid model. This study engineered an hCAR-BAC-transgenic (hCAR-TG) mouse model by integrating the 8.5-kbp hCAR gene as wel...

  10. Altered telomere homeostasis and resistance to skin carcinogenesis in Suv39h1 transgenic mice

    OpenAIRE

    Petti, Eleonora; Jordi, Fabian; Buemi, Valentina; Dinami, Roberto; Benetti, Roberta; Blasco, Maria A.; Schoeftner, Stefan

    2015-01-01

    The Suv39h1 and Suv39h2 H3K9 histone methyltransferases (HMTs) have a conserved role in the formation of constitutive heterochromatin and gene silencing. Using a transgenic mouse model system we demonstrate that elevated expression of Suv39h1 increases global H3K9me3 levels in vivo. More specifically, Suv39h1 overexpression enhances the imposition of H3K9me3 levels at constitutive heterochromatin at telomeric and major satellite repeats in primary mouse embryonic fibroblasts. Chromatin compac...

  11. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice.

    Science.gov (United States)

    He, Dandan; Wu, Hui; Wei, Yue; Liu, Wei; Huang, Fei; Shi, Hailian; Zhang, Beibei; Wu, Xiaojun; Wang, Changhong

    2015-12-01

    Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency. PMID:26526348

  12. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice.

    Science.gov (United States)

    He, Dandan; Wu, Hui; Wei, Yue; Liu, Wei; Huang, Fei; Shi, Hailian; Zhang, Beibei; Wu, Xiaojun; Wang, Changhong

    2015-12-01

    Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency.

  13. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Ravneet K. Boparai

    2015-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.

  14. Use of transgenic mice to infer the biological properties of small intestinal stem cells and to examine the lineage relationships of their descendants.

    OpenAIRE

    Roth, K A; Hermiston, M L; Gordon, J I

    1991-01-01

    Transgenes, composed of elements of the 5' nontranscribed region of the liver fatty acid-binding protein (L-FABP) gene linked to various reporters, have previously been used to explore the cellular, regional, and temporal differentiation of the mouse intestinal epithelium. In this report, we have analyzed a pedigree of L-FABP/human growth hormone (hGH) transgenic mice that display a stable, heritable, mosaic pattern of reporter expression: wholly hGH-positive or hGH-negative populations of di...

  15. HDLs in apoA-I transgenic Abca1 knockout mice are remodelednormally in plasma but are hypercatabolized by the kidney.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young; Timmins, Jenelle M.; Mulya, Anny; Smith, ThomasL.; Zhu, Yiwen; Rubin, Edward M.; Chisholm, Jeffrey W.; Colvin, Perry L.; Parks, John S.

    2005-07-05

    Patients homozygous for Tangier disease have a near absence of plasma HDL as a result of mutations in ABCA1 and hypercatabolize normal HDL particles. To determine the relationship between ABCA1 expression and HDL catabolism, we investigated intravascular remodeling, plasma clearance, and organ-specific uptake of HDL in mice expressing the human apolipoprotein A-I (apoA-I) transgene in the Abca1 knockout background. Small HDL particles (7.5 nm), radiolabeled with 125I-tyramine cellobiose, were injected into recipient mice to quantify plasma turnover and the organ uptake of tracer. Small HDL tracer was remodeled to 8.2 nm diameter particles within 5 min in human apolipoprotein A-I transgenic (hA-ITg) mice (control) and knockout mice. Decay of tracer from plasma was 1.6-fold more rapid in knockout mice (P<0.05) and kidney uptake was twice that of controls, with no difference in liver uptake. We also observed 2-fold greater hepatic expression of ABCA1 protein in hA-ITg mice compared with nontransgenic mice, suggesting that overexpression of human apoA-I stabilized hepatic ABCA1 protein in vivo.

  16. Impaired skin regeneration and remodeling after cutaneous injury and chemically induced hyperplasia in taps-transgenic mice.

    Science.gov (United States)

    Hildenbrand, Maike; Rhiemeier, Verena; Hartenstein, Bettina; Lahrmann, Bernd; Grabe, Niels; Angel, Peter; Hess, Jochen

    2010-07-01

    Recently, we identified an AP-1-dependent target gene in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated mouse back skin, which encodes a retroviral-like aspartic proteinase (Taps/Asprv1). Taps expression was detected almost exclusively in stratified epithelia of mouse embryos and adult tissues, and enhanced protein levels were present in several non-neoplastic human skin disorders, implicating a crucial role for differentiation and homeostasis of multilayered epithelia. Here, we generated a mouse model in which Taps transgene expression is under the control of the human ubiquitin C promoter (UBC-Taps). Although no obvious phenotype was observed in normal skin development and homeostasis, these mice showed a significant delay in cutaneous wound closure compared with control animals. Shortly after re-epithelialization, we found an increase in keratinocytes in the stratum granulosum, which express Filaggrin, a late differentiation marker. A hypergranulosum-like phenotype with increased numbers of Filaggrin-positive keratinocytes was also observed in UBC-Taps mice after administration of TPA. In summary, these data show that aberrant Taps expression causes impaired skin regeneration and skin remodeling after cutaneous injury and chemically induced hyperplasia. PMID:20237492

  17. Temporal separation of aggregation and ubiquitination during early inclusion formation in transgenic mice carrying the Huntington's disease mutation.

    Directory of Open Access Journals (Sweden)

    Belvin Gong

    Full Text Available Abnormal insoluble ubiqitinated protein aggregates are found in the brains of Huntington's disease (HD patients and in mice transgenic for the HTT mutation. Here, we describe the earliest stages of visible NII formation in brains of R6/2 mice killed between 2 and 6 weeks of age. We found that huntingtin-positive aggregates formed rapidly (within 24-48 hours in a spatiotemporal manner similar to that we described previously for ubiquitinated inclusions. However, in most neurons, aggregates are not ubiquitinated when they first form. It has always been assumed that mutant huntingtin is recognised as 'foreign' and consequently ubiquitinated and targeted for degradation by the ubiquitin-proteasome system pathway. Our data, however, suggest that aggregation and ubiquitination are separate processes, and that mutant huntingtin fragment is not recognized as 'abnormal' by the ubiquitin-proteasome system before aggregation. Rather, mutant Htt appears to aggregate before it is ubiquitinated, and then either aggregated huntingtin is ubiquitinated or ubiquitinated proteins are recruited into aggregates. Our findings have significant implications for the role of the ubiquitin-proteasome system in the formation of aggregates, as they suggest that this system is not involved until after the first aggregates form.

  18. Staging of Alzheimer's Pathology in Triple Transgenic Mice: A Light and Electron Microscopic Analysis

    Directory of Open Access Journals (Sweden)

    Kwang-Jin Oh

    2010-01-01

    , and TauP301L gene mutations, remains unclear. At 3 weeks of age, AT180, Alz50, MC1, AT8, and PHF-1 intraneuronal immunoreactivity appeared in the amygdala and hippocampus and at later ages in the cortex of 3xTg-AD mice. AT8 and PHF-1 staining was fixation dependent in young mutant mice. 6E10 staining was seen at all ages. Fluorescent immunomicroscopy revealed CA1 neurons dual stained for 6E10 and Alz50 and single Alz50 immunoreactive neurons in the subiculum at 3 weeks and continuing to 20 months. Although electron microscopy confirmed intraneuronal cytoplasmic Alz50, AT8, and 6E10 reaction product in younger 3xTg-AD mice, straight filaments appeared at 23 months of age in female mice. The present data suggest that other age-related biochemical mechanisms in addition to early intraneuronal accumulation of 6E10 and tau underlie the formation of tau filaments in 3xTg-AD mice.

  19. The latent stem cell population is retained in the hippocampus of transgenic Huntington's disease mice but not wild-type mice.

    Directory of Open Access Journals (Sweden)

    Tara L Walker

    Full Text Available The demonstration of the brain's ability to initiate repair in response to disease or injury has sparked considerable interest in therapeutic strategies to stimulate adult neurogenesis. In this study we examined the effect of a progressive neurodegenerative condition on neural precursor activity in the subventricular zone (SVZ and hippocampus of the R6/1 transgenic mouse model of Huntington's disease (HD. Our results revealed an age-related decline in SVZ precursor numbers in both wild-type (WT and HD mice. Interestingly, hippocampal precursor numbers declined with age in WT mice, although we observed maintenance in hippocampal precursor number in the HD animals in response to advancement of the disease. This maintenance was consistent with activation of a recently identified latent hippocampal precursor population. We found that the small latent stem cell population was also maintained in the HD hippocampus at 33 weeks, whereas it was not present in the WT. Our findings demonstrate that, despite a loss of neurogenesis in the HD hippocampus in vivo, there is a unique maintenance of the precursor and stem cells, which may potentially be activated to ameliorate disease symptoms.

  20. Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice

    OpenAIRE

    Tobias Bittner; Martin Fuhrmann; Steffen Burgold; Ochs, Simon M.; Nadine Hoffmann; Gerda Mitteregger; Hans Kretzschmar; LaFerla, Frank M.; Jochen Herms

    2010-01-01

    The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines ar...

  1. Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression

    DEFF Research Database (Denmark)

    Penkowa, Milena; Camats, Jordi; Giralt, Mercedes;

    2003-01-01

    injury, such as a cryolesion, demonstrate a neuroprotective role of IL-6. Thus, the GFAP-IL-6 mice showed faster tissue repair and decreased oxidative stress and apoptosis compared with control litter-mate mice. The neuroprotective factors metallothionein-I+II (MT-I+II) were upregulated by the cryolesion...... the inflammatory response, decreased oxidative stress and apoptosis significantly, and increased brain tissue repair in comparison with either GFAP-IL-6 or control litter-mate mice. Overall, the results demonstrate that brain MT-I+II proteins are fundamental neuroprotective factors.......Transgenic expression of IL-6 in the CNS under the control of the GFAP gene promoter, glial fibrillary acidic protein-interleukin-6 (GFAP-IL-6) mice, raises an inflammatory response and causes significant brain damage. However, the results obtained in the GFAP-IL-6 mice after a traumatic brain...

  2. Duration and level of transgene expression after gene electrotransfer to skin in mice

    DEFF Research Database (Denmark)

    Gothelf, A; Eriksen, Jens Ole; Hojman, P;

    2010-01-01

    In development of novel vaccines, attention is drawn to DNA vaccinations. They are heat stable and can be easily produced. Gene electrotransfer is a simple and nonviral means of transferring DNA to cells and tissues and is attracting increasing interest. One very interesting perspective with gene...... is a suitable time frame for vaccinations and is applicable, for example, in gene therapy for wound healing or treatment of cancer.......In development of novel vaccines, attention is drawn to DNA vaccinations. They are heat stable and can be easily produced. Gene electrotransfer is a simple and nonviral means of transferring DNA to cells and tissues and is attracting increasing interest. One very interesting perspective with gene...... electrotransfer is that choice of tissue can determine the duration of transgene expression. With gene electrotransfer to muscle, long-term expression, that is beyond 1 year, can be obtained, whereas gene electrotransfer to skin gives short-term expression, which is desirable in, for example, DNA vaccinations...

  3. Duration and level of transgene expression after gene electrotransfer to skin in mice

    DEFF Research Database (Denmark)

    Gothelf, A; Eriksen, Jens Ole; Hojman, P;

    2010-01-01

    In development of novel vaccines, attention is drawn to DNA vaccinations. They are heat stable and can be easily produced. Gene electrotransfer is a simple and nonviral means of transferring DNA to cells and tissues and is attracting increasing interest. One very interesting perspective with gene...... suitable time frame for vaccinations and is applicable, for example, in gene therapy for wound healing or treatment of cancer.......In development of novel vaccines, attention is drawn to DNA vaccinations. They are heat stable and can be easily produced. Gene electrotransfer is a simple and nonviral means of transferring DNA to cells and tissues and is attracting increasing interest. One very interesting perspective with gene...... electrotransfer is that choice of tissue can determine the duration of transgene expression. With gene electrotransfer to muscle, long-term expression, that is beyond 1 year, can be obtained, whereas gene electrotransfer to skin gives short-term expression, which is desirable in, for example, DNA vaccinations...

  4. Germ-cell deficient (gcd), an insertional mutation manifested as infertility in transgenic mice.

    Science.gov (United States)

    Pellas, T C; Ramachandran, B; Duncan, M; Pan, S S; Marone, M; Chada, K

    1991-10-01

    A genetic analysis is necessary to gain a greater understanding of the complex developmental processes in mammals. Toward this end, an insertional transgenic mouse mutant has been isolated that results in abnormal germ-cell development. This recessive mutation manifests as infertility in both males and females and is specific for the reproductive organs, since all other tissues examined were histologically normal. A developmental analysis of the gonadal tissues demonstrated that the germ cells were specifically depleted as early as day 11.5 of embryonic development, while the various somatic cells were apparently unaffected. Therefore, the mutated locus must play a critical role in the migration/proliferation of primordial germ cells to the genital ridges of developing embryos. In addition, females homozygous for the mutation could potentially be a valuable animal model of a human syndrome, premature ovarian failure. This mutation has been named germ-cell deficient, gcd.

  5. Protective efficacy of VP1-specific neutralizing antibody associated with a reduction of viral load and pro-inflammatory cytokines in human SCARB2-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Hsuen-Wen Chang

    Full Text Available Hand-foot-mouth diseases (HFMD caused by enterovirus 71 (EV71 and coxsackievirus 16 (CVA16 in children have now become a severe public health issue in the Asian-Pacific region. Recently we have successfully developed transgenic mice expressing human scavenger receptor class B member 2 (hSCARB2, a receptor of EV71 and CVA16 as an animal model for evaluating the pathogenesis of enterovirus infections. In this study, hSCARB2-transgenic mice were used to investigate the efficacy conferred by a previously described EV71 neutralizing antibody, N3. A single injection of N3 effectively inhibited the HFMD-like skin scurfs in mice pre-infected with clinical isolate of EV71 E59 (B4 genotype or prevented severe limb paralysis and death in mice pre-inoculated with 5746 (C2 genotype. This protection was correlated with remarkable reduction of viral loads in the brain, spinal cord and limb muscles. Accumulated viral loads and the associated pro-inflammatory cytokines were all reduced. The protective efficacy of N3 was not observed in animals challenged with CVA16. This could be due to dissimilarity sequences of the neutralizing epitope found in CVA16. These results indicate N3 could be useful in treating severe EV71 infections and the hSCARB2-transgenic mouse could be used to evaluate the protective efficacy of potential anti-enterovirus agent candidates.

  6. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M;

    2007-01-01

    mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired...

  7. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  8. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level

  9. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  10. Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction.

    Science.gov (United States)

    Okamoto, Y; Chaves, A; Chen, J; Kelley, R; Jones, K; Weed, H G; Gardner, K L; Gangi, L; Yamaguchi, M; Klomkleaw, W; Nakayama, T; Hamlin, R L; Carnes, C; Altschuld, R; Bauer, J; Hai, T

    2001-08-01

    Activating transcription factor 3 (ATF3) is a member of the CREB/ATF family of transcription factors. Previously, we demonstrated that the expression of the ATF3 gene is induced by many stress signals. In this report, we demonstrate that expression of ATF3 is induced by cardiac ischemia coupled with reperfusion (ischemia-reperfusion) in both cultured cells and an animal model. Transgenic mice expressing ATF3 under the control of the alpha-myosin heavy chain promoter have atrial enlargement, and atrial and ventricular hypertrophy. Microscopic examination showed myocyte degeneration and fibrosis. Functionally, the transgenic heart has reduced contractility and aberrant conduction. Interestingly, expression of sorcin, a gene whose product inhibits the release of calcium from sarcoplasmic reticulum, is increased in these transgenic hearts. Taken together, our results indicate that expression of ATF3, a stress-inducible gene, in the heart leads to altered gene expression and impaired cardiac function. PMID:11485922

  11. A distal region of the human TGM1 promoter is required for expression in transgenic mice and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    Lu Ying

    2004-04-01

    transcriptional activity. Conclusions A distal region of the TGM1 gene promoter, containing AP1 and Sp1 binding sites, is evolutionarily conserved and responsible for high level expression in transgenic mice and in transfected keratinocyte cultures.

  12. Breaking tolerance in transgenic mice expressing the human TSH receptor A-subunit: thyroiditis, epitope spreading and adjuvant as a 'double edged sword'.

    Directory of Open Access Journals (Sweden)

    Sandra M McLachlan

    Full Text Available Transgenic mice with the human thyrotropin-receptor (TSHR A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors, regulatory T cell (Treg depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens

  13. Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine.

    Science.gov (United States)

    Marutle, Amelia; Ohmitsu, Masao; Nilbratt, Mats; Greig, Nigel H; Nordberg, Agneta; Sugaya, Kiminobu

    2007-07-24

    In a previous study, we found that human neural stem cells (HNSCs) exposed to high concentrations of secreted amyloid-precursor protein (sAPP) in vitro differentiated into mainly astrocytes, suggesting that pathological alterations in APP processing during neurodegenerative conditions such as Alzheimer's disease (AD) may prevent neuronal differentiation of HNSCs. Thus, successful neuroplacement therapy for AD may require regulating APP expression to favorable levels to enhance neuronal differentiation of HNSCs. Phenserine, a recently developed cholinesterase inhibitor (ChEI), has been reported to reduce APP levels in vitro and in vivo. In this study, we found reductions of APP and glial fibrillary acidic protein (GFAP) levels in the hippocampus of APP23 mice after 14 days treatment with (+)-phenserine (25 mg/kg) lacking ChEI activity. No significant change in APP gene expression was detected, suggesting that (+)-phenserine decreases APP levels and reactive astrocytes by posttranscription regulation. HNSCs transplanted into (+)-phenserine-treated APP23 mice followed by an additional 7 days of treatment with (+)-phenserine migrated and differentiated into neurons in the hippocampus and cortex after 6 weeks. Moreover, (+)-phenserine significantly increased neuronal differentiation of implanted HNSCs in hippocampal and cortical regions of APP23 mice and in the CA1 region of control mice. These results indicate that (+)-phenserine reduces APP protein in vivo and increases neuronal differentiation of HNSCs. Combination use of HNSC transplantation and treatment with drugs such as (+)-phenserine that modulate APP levels in the brain may be a useful tool for understanding mechanisms regulating stem cell migration and differentiation during neurodegenerative conditions in AD.

  14. Transgenic Overexpression of ADAM12 Suppresses Muscle Regeneration and Aggravates Dystrophy in Aged mdx Mice

    OpenAIRE

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M.; Schrøder, Henrik Daa

    2007-01-01

    Muscular dystrophies are characterized by insufficient restoration and gradual replacement of the skeletal muscle by fat and connective tissue. ADAM12 has previously been shown to alleviate the pathology of young dystrophin-deficient mdx mice, a model for Duchenne muscular dystrophy. The observed effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, α7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also imp...

  15. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice

    Science.gov (United States)

    Karaman, Sinem; Hollmén, Maija; Yoon, Sun-Young; Alkan, H. Furkan; Alitalo, Kari; Wolfrum, Christian; Detmar, Michael

    2016-01-01

    Obesity comprises great risks for human health, contributing to the development of other diseases such as metabolic syndrome, type 2 diabetes and cardiovascular disease. Previously, obese patients were found to have elevated serum levels of VEGF-C, which correlated with worsening of lipid parameters. We recently identified that neutralization of VEGF-C and -D in the subcutaneous adipose tissue during the development of obesity improves metabolic parameters and insulin sensitivity in mice. To test the hypothesis that VEGF-C plays a role in the promotion of the metabolic disease, we used K14-VEGF-C mice that overexpress human VEGF-C under control of the keratin-14 promoter in the skin and monitored metabolic parameters over time. K14-VEGF-C mice had high levels of VEGF-C in the subcutaneous adipose tissue and gained more weight than wildtype littermates, became insulin resistant and had increased ectopic lipid accumulation at 20 weeks of age on regular mouse chow. The metabolic differences persisted under high-fat diet induced obesity. These results indicate that elevated VEGF-C levels contribute to metabolic deterioration and the development of insulin resistance, and that blockade of VEGF-C in obesity represents a suitable approach to alleviate the development of insulin resistance. PMID:27511834

  16. Cytoplasmic injection of murine zygotes with Sleeping Beauty transposon plasmids and minicircles results in the efficient generation of germline transgenic mice.

    Science.gov (United States)

    Garrels, Wiebke; Talluri, Thirumala R; Ziegler, Maren; Most, Ilka; Forcato, Diego O; Schmeer, Marco; Schleef, Martin; Ivics, Zoltán; Kues, Wilfried A

    2016-01-01

    Transgenesis in the mouse is an essential tool for the understanding of gene function and genome organization. Here, we describe a simplified microinjection protocol for efficient germline transgenesis and sustained transgene expression in the mouse model employing binary Sleeping Beauty transposon constructs of different topology. The protocol is based on co-injection of supercoiled plasmids or minicircles, encoding the Sleeping Beauty transposase and a transposon construct, into the cytoplasm of murine zygotes. Importantly, this simplified injection avoids the mechanical penetration of the vulnerable pronuclear membrane, resulting in higher survival rates of treated embryos and a more rapid pace of injections. Upon translation of the transposase, transposase-catalyzed transposition into the genome results in stable transgenic animals carrying monomeric transgenes. In summary, cytoplasmic injection of binary transposon constructs is a feasible, plasmid-based, and simplified microinjection method to generate genetically modified mice. The modular design of the components allows the multiplexing of different transposons, and the generation of multi-transposon transgenic mice in a single step.

  17. Cytoplasmic injection of murine zygotes with Sleeping Beauty transposon plasmids and minicircles results in the efficient generation of germline transgenic mice.

    Science.gov (United States)

    Garrels, Wiebke; Talluri, Thirumala R; Ziegler, Maren; Most, Ilka; Forcato, Diego O; Schmeer, Marco; Schleef, Martin; Ivics, Zoltán; Kues, Wilfried A

    2016-01-01

    Transgenesis in the mouse is an essential tool for the understanding of gene function and genome organization. Here, we describe a simplified microinjection protocol for efficient germline transgenesis and sustained transgene expression in the mouse model employing binary Sleeping Beauty transposon constructs of different topology. The protocol is based on co-injection of supercoiled plasmids or minicircles, encoding the Sleeping Beauty transposase and a transposon construct, into the cytoplasm of murine zygotes. Importantly, this simplified injection avoids the mechanical penetration of the vulnerable pronuclear membrane, resulting in higher survival rates of treated embryos and a more rapid pace of injections. Upon translation of the transposase, transposase-catalyzed transposition into the genome results in stable transgenic animals carrying monomeric transgenes. In summary, cytoplasmic injection of binary transposon constructs is a feasible, plasmid-based, and simplified microinjection method to generate genetically modified mice. The modular design of the components allows the multiplexing of different transposons, and the generation of multi-transposon transgenic mice in a single step. PMID:26470758

  18. Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice.

    Science.gov (United States)

    Waddington, S N; Mitrophanous, K A; Ellard, F M; Buckley, S M K; Nivsarkar, M; Lawrence, L; Cook, H T; Al-Allaf, F; Bigger, B; Kingsman, S M; Coutelle, C; Themis, M

    2003-08-01

    Inefficient gene transfer, inaccessibility of stem cell compartments, transient gene expression, and adverse immune and inflammatory reactions to vector and transgenic protein are major barriers to successful in vivo application of gene therapy for most genetic diseases. Prenatal gene therapy with integrating vectors may overcome these problems and prevent early irreparable organ damage. To this end, high-dose attenuated VSV-G pseudotyped equine infectious anaemia virus (EIAV) encoding beta-galactosidase under the CMV promoter was injected into the fetal circulation of immuno-competent MF1 mice. We saw prolonged, extensive gene expression in the liver, heart, brain and muscle, and to a lesser extent in the kidney and lung of postnatal mice. Progressive clustered hepatocyte staining suggests clonal expansion of cells stably transduced. We thus provide proof of principle for efficient gene delivery and persistent transgene expression after prenatal application of the EIAV vector and its potential for permanent correction of genetic diseases. PMID:12858188

  19. Induced Pluripotent Stem Cells Generated from P0-Cre;Z/EG Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ogawa

    Full Text Available Neural crest (NC cells are a migratory, multipotent cell population that arises at the neural plate border, and migrate from the dorsal neural tube to their target tissues, where they differentiate into various cell types. Abnormal development of NC cells can result in severe congenital birth defects. Because only a limited number of cells can be obtained from an embryo, mechanistic studies are difficult to perform with directly isolated NC cells. Protein zero (P0 is expressed by migrating NC cells during the early embryonic period. In the P0-Cre;Z/EG transgenic mouse, transient activation of the P0 promoter induces Cre-mediated recombination, indelibly tagging NC-derived cells with enhanced green fluorescent protein (EGFP. Induced pluripotent stem cell (iPSC technology offers new opportunities for both mechanistic studies and development of stem cell-based therapies. Here, we report the generation of iPSCs from the P0-Cre;Z/EG mouse. P0-Cre;Z/EG mouse-derived iPSCs (P/G-iPSCs exhibited pluripotent stem cell properties. In lineage-directed differentiation studies, P/G-iPSCs were efficiently differentiated along the neural lineage while expressing EGFP. These results suggest that P/G-iPSCs are useful to study NC development and NC-associated diseases.

  20. Dominant Lethal Pathologies in Male Mice Engineered to Contain an X-Linked DUX4 Transgene

    Directory of Open Access Journals (Sweden)

    Abhijit Dandapat

    2014-09-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an enigmatic disease associated with epigenetic alterations in the subtelomeric heterochromatin of the D4Z4 macrosatellite repeat. Each repeat unit encodes DUX4, a gene that is normally silent in most tissues. Besides muscular loss, most patients suffer retinal vascular telangiectasias. To generate an animal model, we introduced a doxycycline-inducible transgene encoding DUX4 and 3′ genomic DNA into a euchromatic region of the mouse X chromosome. Without induction, DUX4 RNA was expressed at low levels in many tissues and animals displayed a variety of unexpected dominant leaky phenotypes, including male-specific lethality. Remarkably, rare live-born males expressed DUX4 RNA in the retina and presented a retinal vascular telangiectasia. By using doxycycline to induce DUX4 expression in satellite cells, we observed impaired myogenesis in vitro and in vivo. This mouse model, which shows pathologies due to FSHD-related D4Z4 sequences, is likely to be useful for testing anti-DUX4 therapies in FSHD.

  1. The t10,c12 isomer of conjugated linoleic acid stimulates mammary tumorigenesis in transgenic mice overexpressing erbB2 in the mammary epithelium

    OpenAIRE

    Ip, Margot M.; McGee, Sibel O.; Masso-Welch, Patricia A.; IP, CLEMENT; Meng, Xiaojing; Ou, Lihui; Shoemaker, Suzanne

    2007-01-01

    Conjugated linoleic acid (CLA), a family of isomers of octadecadienoic acid, inhibits rat mammary carcinogenesis, angiogenesis, and lung metastasis from a transplantable mammary tumor. c9,t11-CLA, the predominant isomer in dairy products, and t10,c12-CLA, a component of CLA supplements, are equally effective. The objective of the current studies was to test the efficacy of these two CLA isomers in a clinically relevant breast cancer model. Transgenic mice overexpressing erbB2 in the mammary e...

  2. Characterization of allergic response induced by repeated dermal exposure of IL-4/Luc/CNS-1 transgenic mice to low dose formaldehyde

    OpenAIRE

    Kwak, Moon-Hwa; Kim, Ji-Eun; Go, Jun; Koh, Eun-Kyoung; Song, Sung-Hwa; Sung, Ji-Eun; Yang, Seung-Yun; An, Beum-Soo; Jung, Young-Jin; Lee, Jae-Ho; Lim, Yong; Hwang, Dae-Youn

    2014-01-01

    Although formaldehyde (FA) is known to be a major allergen responsible for allergic contact dermatitis, there are conflicting reports regarding correlation between FA exposure and interleukin (IL-4) expression. To investigate whether allergic responses including IL-4 expression were induced by repeated dermal exposure to low dose FA, alterations in the luciferase signal and allergic phenotypes were measured in IL-4/Luc/CNS-1 transgenic (Tg) mice containing luciferase cDNA under control of the...

  3. Effect of treadmill exercise on PI3K/AKT/mTOR, autophagy, and Tau hyperphosphorylation in the cerebral cortex of NSE/htau23 transgenic mice

    OpenAIRE

    Kang, Eun-Bum; Cho, Joon-Yong

    2015-01-01

    Purpose Neurofibrillary tangles, one of pathological features of Alzheimer’s disease, are produced by the hyperphosphorylation and aggregation of tau protein. This study aimed to investigate the effects of treadmill exercise on PI3K/AKT/mTOR signal transmission, autophagy, and cognitive ability that are involved in the hyperphosphorylation and aggregation of tau protein. Methods Experimental animals (NSE/htau23 mice) were divided into non-transgenic control group (Non-Tg-Control; CON; n = 7),...

  4. Regulation of COL1A1 expression in type I collagen producing tissues: identification of a 49 base pair region which is required for transgene expression in bone of transgenic mice

    Science.gov (United States)

    Bedalov, A.; Salvatori, R.; Dodig, M.; Kronenberg, M. S.; Kapural, B.; Bogdanovic, Z.; Kream, B. E.; Woody, C. O.; Clark, S. H.; Mack, K.; Rowe, D. W. (Principal Investigator)

    1995-01-01

    Previous deletion studies using a series of COL1A1-CAT fusion genes have indicated that the 625 bp region of the COL1A1 upstream promoter between -2295 and -1670 bp is required for high levels of expression in bone, tendon, and skin of transgenic mice. To further define the important sequences within this region, a new series of deletion constructs extending to -1997, -1794, -1763, and -1719 bp has been analyzed in transgenic mice. Transgene activity, determined by measuring CAT activity in tissue extracts of 6- to 8-day-old transgenic mouse calvariae, remains high for all the new deletion constructs and drops to undetectable levels in calvariae containing the -1670 bp construct. These results indicate that the 49 bp region of the COL1A1 promoter between -1719 and -1670 bp is required for high COL1A1 expression in bone. Although deletion of the same region caused a substantial reduction of promoter activity in tail tendon, the construct extending to -1670 bp is still expressed in this tissue. However, further deletion of the promoter to -944 bp abolished activity in tendon. Gel mobility shift studies identified a protein in calvarial nuclear extracts that is not found in tendon nuclear extracts, which binds within this 49 bp region. Our study has delineated sequences in the COL1A1 promoter required for expression of the COL1A1 gene in high type I collagen-producing tissues, and suggests that different cis elements control expression of the COL1A1 gene in bone and tendon.

  5. Different susceptibility to neurodegeneration of dorsal and ventral hippocampal dentate gyrus: a study with transgenic mice overexpressing GSK3β.

    Directory of Open Access Journals (Sweden)

    Almudena Fuster-Matanzo

    Full Text Available Dorsal hippocampal regions are involved in memory and learning processes, while ventral areas are related to emotional and anxiety processes. Hippocampal dependent memory and behaviour alterations do not always come out in neurodegenerative diseases at the same time. In this study we have tested the hypothesis that dorsal and ventral dentate gyrus (DG regions respond in a different manner to increased glycogen synthase kinase-3β (GSK3β levels in GSK3β transgenic mice, a genetic model of neurodegeneration. Reactive astrocytosis indicate tissue stress in dorsal DG, while ventral area does not show that marker. These changes occurred with a significant reduction of total cell number and with a significantly higher level of cell death in dorsal area than in ventral one as measured by fractin-positive cells. Biochemistry analysis showed higher levels of phosphorylated GSK3β in those residues that inactivate the enzyme in hippocampal ventral areas compared with dorsal area suggesting that the observed susceptibility is in part due to different GSK3 regulation. Previous studies carried out with this animal model had demonstrated impairment in Morris Water Maze and Object recognition tests point out to dorsal hippocampal atrophy. Here, we show that two tests used to evaluate emotional status, the light-dark box and the novelty suppressed feeding test, suggest that GSK3β mice do not show any anxiety-related disorder. Thus, our results demonstrate that in vivo overexpression of GSK3β results in dorsal but not ventral hippocampal DG neurodegeneration and suggest that both areas do not behave in a similar manner in neurodegenerative processes.

  6. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner.

    Directory of Open Access Journals (Sweden)

    Jorming Goh

    Full Text Available Epidemiological research suggests that regular physical activity confers beneficial effects that mediate an anti-tumor response and may reduce cancer recurrence. It is unclear what amount of physical activity is necessary to exert such a protective effect and what mechanisms are involved. We investigated the effects of voluntary wheel running on tumor progression and cytokine gene expression in the transgenic polyoma middle T oncoprotein (PyMT mouse model of invasive breast cancer. Runners showed significantly reduced tumor sizes compared with non-runners after 3 weeks of running (p ≤ 0.01, and the greater the running distance the smaller the tumor size (Pearson's r = -0.61, p ≤ 0.04, R(2 = 0.38. Mice running greater than 150 km per week had a significantly attenuated tumor size compared with non-runners (p ≤ 0.05. Adipose tissue mass was inversely correlated with tumor size in runners (Pearson's r = -0.77, p = 0.014 but not non-runners. Gene expression of CCL22, a cytokine associated with recruitment of immunosuppressive T regulatory cells, was decreased in tumors of runners compared to non-runners (p ≤ 0.005. No differences in tumor burden or metastatic burden were observed between runners and non-runners after ten weeks of running when the study was completed. We conclude that voluntary wheel running in PyMT mice correlates with an attenuation in tumor progression early during the course of invasive breast cancer. This effect is absent in the later stages of overwhelming tumor burden even though cytokine signaling for immunosuppressive regulatory T cells was down regulated. These observations suggest that the initiation of moderate exercise training for adjunctive therapeutic benefit early in the course of invasive breast cancer should be considered for further investigation.

  7. Definition of key variables for the induction of optimal NY-ESO-1-specific T cells in HLA transgene mice.

    Science.gov (United States)

    Johannsen, Alexandre; Genolet, Raphaël; Legler, Daniel F; Luther, Sanjiv A; Luescher, Immanuel F

    2010-09-15

    An attractive treatment of cancer consists in inducing tumor-eradicating CD8(+) CTL specific for tumor-associated Ags, such as NY-ESO-1 (ESO), a strongly immunogenic cancer germ line gene-encoded tumor-associated Ag, widely expressed on diverse tumors. To establish optimal priming of ESO-specific CTL and to define critical vaccine variables and mechanisms, we used HLA-A2/DR1 H-2(-/-) transgenic mice and sequential immunization with immunodominant DR1- and A2-restricted ESO peptides. Immunization of mice first with the DR1-restricted ESO(123-137) peptide and subsequently with mature dendritic cells (DCs) presenting this and the A2-restriced ESO(157-165) epitope generated abundant, circulating, high-avidity primary and memory CD8(+) T cells that efficiently killed A2/ESO(157-165)(+) tumor cells. This prime boost regimen was superior to other vaccine regimes and required strong Th1 cell responses, copresentation of MHC class I and MHC class II peptides by the same DC, and resulted in upregulation of sphingosine 1-phosphate receptor 1, and thus egress of freshly primed CD8(+) T cells from the draining lymph nodes into circulation. This well-defined system allowed detailed mechanistic analysis, which revealed that 1) the Th1 cytokines IFN-gamma and IL-2 played key roles in CTL priming, namely by upregulating on naive CD8(+) T cells the chemokine receptor CCR5; 2) the inflammatory chemokines CCL4 (MIP-1beta) and CCL3 (MIP-1alpha) chemoattracted primed CD4(+) T cells to mature DCs and activated, naive CD8(+) T cells to DC-CD4 conjugates, respectively; and 3) blockade of these chemokines or their common receptor CCR5 ablated priming of CD8(+) T cells and upregulation of sphingosine 1-phosphate receptor 1. These findings provide new opportunities for improving T cell cancer vaccines.

  8. Human Herpesvirus 6A Infection in CD46 Transgenic Mice: Viral Persistence in the Brain and Increased Production of Proinflammatory Chemokines via Toll-Like Receptor 9

    OpenAIRE

    Reynaud, Joséphine M.; Jégou, Jean-François; Welsch, Jérémy C.; Horvat, Branka

    2014-01-01

    Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B...

  9. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA.

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-04-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P Ia, as compared with normal littermates, at 8 months following vector administration (P Ia.

  10. Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease

    OpenAIRE

    Becker, Lore; Hartenstein, Bettina; Schenkel, Johannes; Kuhse, Jochen; Betz, Heinrich; Weiher, Hans

    2000-01-01

    Startle disease or hereditary hyperekplexia has been shown to result from mutations in the α1-subunit gene of the inhibitory glycine receptor (GlyR). In hyperekplexia patients, neuromotor symptoms generally become apparent at birth, improve with age, and often disappear in adulthood. Loss-of-function mutations of GlyR α or β-subunits in mice show rather severe neuromotor phenotypes. Here, we generated mutant mice with a transient neuromotor deficiency by introducing a GlyR β transgene into th...

  11. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system

    DEFF Research Database (Denmark)

    Taupin, V; Renno, T; Bourbonnière, L;

    1997-01-01

    are a target of immune attack. TNF-alpha also regulates macrophage activity which could contribute to autoimmune inflammation. We have expressed TNF-alpha at disease-equivalent levels in the central nervous system of transgenic mice, using a myelin basic protein (MBP) promoter. These mice were normal....../microglial reactivity was evident in demyelinating lesions in spinal cord, but T cells were not detected during chronic disease. The participation of TNF-alpha in the demyelinating process is thus more probably due to the perpetuation of macrophage/microglial activation than to direct cytotoxicity of myelin...

  12. Cardiac-Specific Overexpression of SCN5A Gene Leads to Shorter P Wave Duration and PR Interval in Transgenic Mice

    OpenAIRE

    Zhang, Teng; Yong, Sandro L.; Tian, Xiao-Li; Wang, Qing K.

    2007-01-01

    SCN5A plays a critical role in cardiac electrophysiology and its mutations, either gain- or loss-of-functions, are associated with lethal arrhythmias. In this study we investigated the effect of overexpression of SCN5A on the cardiac phenotype in a transgenic mouse model (TG-WT L10). Compared to NTG mice, heart rate, QRS duration and QT intervals remained unchanged in TG-WT mice. Moreover, no spontaneous ventricular arrhythmias were detected in TG-WT hearts. Despite these results, a mild, irr...

  13. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K. (National Institutes of Health, Bethesda, MD (USA))

    1988-08-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation.

  14. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene

    Directory of Open Access Journals (Sweden)

    Louis de Repentigny

    2015-06-01

    Full Text Available IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC. Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.

  15. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    International Nuclear Information System (INIS)

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation

  16. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels.

    Science.gov (United States)

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-Il; Moon, Minho

    2016-08-31

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  17. Differentiation of Apical Bud Cells in a Newly Developed Apical Bud Transplantation Model Using GFP Transgenic Mice as Donor

    Science.gov (United States)

    Sakagami,