WorldWideScience

Sample records for cdte sobre electrodo

  1. Comportamiento electroquímico del ion Ag (I) sobre electrodo de Pt en Cloruro de 1-Butil-3 Metil-Imidazolio (BMIMCl) entre 343-363 K

    OpenAIRE

    Sanz de Paz, Diego

    2015-01-01

    En este trabajo se investiga la reducción electroquímica sobre electrodo de Pt del ion Ag (I) disuelto en el líquido iónico Cloruro de 1-Butil-3-Metil-Imidazolio (BMIMCl), a temperaturas comprendidas entre 343 y 363 K, utilizando las técnicas de voltamperometría de onda cuadrada (SWV), voltamperometría cíclica (CV), voltamperometría convolutiva de potencial (CPSV), cronoamperometría (CA) y cronopotenciometría (CP). La reducción de Ag (I) a Ag (0) tiene lugar mediante un proceso reversible...

  2. Estudio de la reacción de reducción de oxígeno sobre electrodos mono cristalinos de platino modificados con películas delgadas de polianilina

    OpenAIRE

    Silva Olaya, Alex Ricardo

    2012-01-01

    Se sintetizaron películas de polianilina por voltamperometría cíclica y por cronopotenciometría sobre electrodos de platino de bajo índice de Miller. Las propiedades de estas películas se analizaron mediante voltamperometría cíclica, voltamperometría de onda cuadrada y cronoamperometría. Se observó que las propiedades de estas películas difieren dependiendo del electrodo cristalino de Pt que se use para su electro síntesis, lo que evidencia que la superficie funciona como una plantilla para l...

  3. Electrocristalización de nanopartículas de Au sobre electrodos de polipirrol y su empleo en el sensado

    OpenAIRE

    Gutiérrez Pineda, Eduar; Rodríguez Presa, María J.; Bolzán, Agustín E.; Gervasi, Claudio Alfredo

    2014-01-01

    La electrodeposición de metales es uno de los métodos más extendidos en la obtención de capas metálicas para muchas aplicaciones decorativas e ingenieriles, principalmente debido a su bajo coste y fácil control. Este proceso involucra la formación de una nueva fase sobre el sustrato, lo que implica la participación de una serie de etapas relacionadas con el transporte de materia, la transferencia de carga y la formación de nuevas estructuras cristalinas [1]. La deposición de nanopartículas de...

  4. Estudio de la reacción de reducción electroquímica de CO2 sobre electrodos sólidos modificados con Poli-(3,4-etilendioxitiofeno) (PEDOT) Poli-(3,4-etilendioxitiofeno) (PEDOT)

    OpenAIRE

    Molina Osorio, Andres Felipe

    2014-01-01

    En este trabajo se presentan los resultados del estudio de la reducción electroquímica de CO2 en medio acuoso, CH3CN y mezclas de CH3CN:H2O ricas en CH3CN, utilizando electrodos de Au y Au recubierto con poli-(3,4- etilendioxitiofeno) (PEDOT) y PEDOT-Óxido de Grafeno Reducido. Los estudios se llevaron a cabo por voltamperometría cíclica, electrólisis en condiciones galvanostáticas y potenciostáticas y técnicas cuantitativas como Cromatografía de Gases. Los resultados en el m...

  5. Influencia de los parámetros de corte con electrodo en las características de la zona de influencia térmica (ZIT). // Influence of cutting electrode parameters in the termic zone characteristics.

    OpenAIRE

    R. Batista Sánchez; R. Collazo Carceller; Fraga, E.; C. Figueroa Hernández

    2001-01-01

    El presente trabajo trata sobre las características microestructurales de la zona de influencia térmica con el uso del electrodoBISECOR, así como el régimen óptimo de trabajo.Palabras claves: Características microestructurales, zona de influencia térmica, electrodos , régimen detrabajo.__________________________________________________________________________________AbstractThe present paper deals with microestructural characteristics in the termic influence zone by means of the BISECORelectr...

  6. Alternativa de doble recubrimiento para electrodo destinado al proceso de relleno manual con arco eléctrico//Alternative of double coating for electrode dedicated to the manual metal arc filler process

    Directory of Open Access Journals (Sweden)

    Odonel González‐Cabrera

    2014-08-01

    Full Text Available El objetivo del presente trabajo fue establecer diferencias entre el comportamiento de electrodosobtenidos con recubrimiento monocapa y bicapa para el proceso de relleno manual. La relación entrelos materiales de los recubrimientos se estableció en 70 % de materiales no metálicos y 30 % decarga de aleación para cada tipo de electrodo. Para cumplimentar el objetivo fueron evaluados los procedimientos de fabricación por inmersión y extrusión, conjuntamente con la posición relativa delos constituyentes de los recubrimientos sobre el alma y su influencia en las propiedades eléctricas y operativas de los electrodos. Como resultado se obtuvo que el electrodo con recubrimiento bicapa consume un 4,8 % menos de potencia durante la soldadura que el electrodo de recubrimiento monocapa (más económico, pero con mayor cantidad, 27 %, de metal aportado por unidad detiempo (mayor rendimiento, depositando cordones ligeramente menos altos (19,9 %, pero más profundos (46,5 %.Palabras claves: electrodos con doble recubrimiento, electrodos doblemente revestidos, relleno superficial._______________________________________________________________________________AbstractThe object of the present paper was to establish differences among one and twin coating electrodes dedicated to the manual filler process. The resulting relationship among the coating materials are established in 70 % of non-metallic compound and 30 % of alloy for each electrode type. For execute the work objective, two conventional procedures (immersion and extrusion for manufacturingelectrodes, as well as the influence of coating placement on the electrodes operational properties was evaluated. As result of experiment was obtained a twin coated electrode whish consume a 4,8 % lessthan power during the welding that one layer electrode (more economic, but with bigger quantity (27 % of metal contributed by unit of time (bigger yield, less height of reinforcement (19,9 % and greater depth of

  7. Diseño Mc. Lean‐Anderson aplicado para obtener recubrimientos de electrodos aleados con carbono, cromo y titanio//Mc. Lean‐Anderson design applied for recovered electrodes obtaining with carbon, chrome and titanium alloys

    Directory of Open Access Journals (Sweden)

    Carlos René Gómez-Pérez

    2013-05-01

    Full Text Available En el trabajo se estudia el comportamiento de electrodos recubiertos destinados al relleno superficial con el proceso de soldadura manual (SMAW, Shielded Metal Arc Welding. Para el diseño experimental se aplican un procedimiento de cálculo para el revestimiento y un plan de mezclas del tipo Mc. Lean-Anderson. En el diseño se conjuga una matriz compuesta por Calcita (26,73 %, Ferrosilicio (19,02 %,Ferromanganeso (16,58 %, Rutilo (26,69 %, Silicato de Potasio (11,70 % y diferentes cargas de aleación conformadas por Grafito (2 ≤ X1 ≤ 10 %, Ferro Cromo (5 ≤ X2 ≤ 35 %, ferrotungsteno (5 ≤ X3 ≤ 10 % y matriz (60 ≤ X4 ≤ 80 %. En el trabajo se ofrecen criterios sobre la selección de los niveles límites a explorar durante el plan experimental, a partir de consideraciones sobre los materiales empleados, sus rangos y el procedimiento de fabricación de los electrodos.Palabras claves: electrodos recubiertos, recubrimientos de electrodos, smaw, diseño de experimentos, relleno superficial._______________________________________________________________________________AbstractIn the present work the behavior of recovered electrodes for superficial filler with Shielded Metal Arc Welding (SMAW process is study. For the experimental design a coating calculation procedure and a Mc. Lean- Anderson type experimental plan are used. On the experimental design a matrix, composed by Calcite (26,73 %, Ferrosilicio (19,02%, Ferromanganese (16,58%, Rutile (26,69%, Potassium Silicate (11,70 %, and a alloy, conformed by Graphite (2 ≤ X1 ≤ 10, Ferro Chromium (5 ≤ X2 ≤ 35 %, ferrotungsteno (5 ≤ X3 ≤ 10 % and matrix (60 ≤ X4 ≤ 80 % is conjugated. In the work some criteria on the selection of the levels limits to explore during the experimental plan are offer, starting from considerations on the materials employees, their ranges and the procedure of production of the electrodes.Key words: recovered electrodes, electrodes coating, smaw

  8. OXIDACIÓN ELECTROQUÍMICA DE LAMBDACIALOTRINA SOBRE ELECTRODOS DE PBO2-BI

    Directory of Open Access Journals (Sweden)

    Leonardo Cifuentes

    2015-09-01

    Full Text Available The electrochemical oxidation of lambdacyhalotrin in a triton X-100 water solution on a PbO2-Bi electrode has been studied. It was discovered that electrocatalytic degradation proceeded through the Langmuir-Hinshelwood (L-H mechanism. The Langmuir adsorption equilibrium constant of the organic compound on the PbO2-Bi surface (0.67 (±0.02 mg-1L and the L-H maximum reaction rate for lambdacyhalotrin oxidation (0.040 (±0.002 mg L-1 min-1 was also determined on the basis of kinetic data. Oxidation/mineralization was tested at electrode potential higher than 2.3 V vs. Ag/AgCl, in this conditions the higher degradation percent of 85 (±4 % has been obtained.

  9. Manejo de los electrodos de agujas en el laboratorio de EMG. Experiencia practica de enfermería.

    OpenAIRE

    Padilla Puentes, E.; Gómez Fernández, L.; Sánchez Curuneaux, A.; Morales Chacón, L.; Peña, M. A.

    2008-01-01

    En la práctica, el personal de enfermería participa en el cuidado de los electrodos de agujas para los estudios electrofisiológicos, en especial de su esterilización y almacenamiento adecuado. Se debe de respetar la atención especial a la manipulación de los electrodos, la realización del lavado de manos, y al uso del material en buen estado. Estas prácticas repercuten positivamente en la calidad del servicio y benefician directamente al paciente. El objetivo de nuestro trabaj...

  10. Soldabilidad de un acero de blindaje con electrodos de acero inoxidable austenitico

    OpenAIRE

    GIRALDO BARRADA, JORGE ENRIQUE

    2005-01-01

    Se evaluaron las propiedades mecánicas y la microestructura de las soldaduras obtenidas con diferentes electrodos para unir platinas de un acero, templado y revenido, de alta dureza y baja aleación producido bajo la especificación MIL A46100, el cual es usado en la fabricación de estructuras blindadas. Se determinó el efecto que tiene el material de aporte (aceros inoxidables austeníticos, E307 y E308Mo, y dúplex, E312 y Eutectic 680),aplicado con proceso de soldadura al arco con electr...

  11. Desarrollo y evaluación de electrodos y prototipos de baterías recargables

    OpenAIRE

    Humana, Rita Mariángeles

    2013-01-01

    En el presente trabajo de tesis se propone como objetivos generales: el diseño, preparación y caracterización de nuevos materiales de electrodo para baterías de níquel-hidruro metálico, a partir de aleaciones formadoras de hidruro. Se pretende aumentar la capacidad de absorción de hidrógeno durante la carga y la actividad catalítica superficial para alcanzar altas velocidades de descarga. Posteriormente se compara el comportamiento en celda electroquímica respecto al funcionamiento en prototi...

  12. Elaboración y prueba de un electrodo para la cuantificación de cloruro de potasio y bromuro de potasio

    Directory of Open Access Journals (Sweden)

    José de Jesús Pérez-Saavedra

    2014-09-01

    Full Text Available Con la idea de mejorar el método potenciométrico para cuantificar cloruro de potasio y bromuro de potasio, se diseñó un electrodo combinado de plata como indicador y cobre/nitrato de cobre como referencia, donde los electrolitos del electrodo no interfieren en la cuantificación y al mismo tiempo se pueden disminuir los volúmenes por valorar (Arnaiz, 2005; Rincón y Pérez 2003, además de eliminar el puente de agar. A los resultados de los volúmenes de punto de equivalencia, con el montaje convencional y el electrodo elaborado, se les aplica la prueba estadística de t de Student con un 95% de confianza (Harris, 1991, dando como resultado que no hay diferencia significativa, con ese nivel de confianza, entre ambos métodos.

  13. Aplicación de técnicas voltamperométricas con electrodos serigrafiados a la especiación de metales pesados en muestras naturales

    OpenAIRE

    Sosa Gómez, Velia Ruth

    2015-01-01

    El principal objetivo de esta Tesis es el estudio de la viabilidad analítica de nuevos dispositivos electródicos como son los electrodos serigrafiados modificados con bismuto o antimonio como materiales alternativos al mercurio en la determinación y especiación de metales pesados mediante técnicas voltamperométricas. La tecnología del serigrafiado permite la fabricación de dispositivos económicos y desechables de sistemas electródicos como alternativa a los electrodos clásicos que se pue...

  14. Selección de Electrodos Basada en k-means para la Clasificación de Actividad Motora en EEG

    OpenAIRE

    R. Lemuz-López; W. Gómez-López; I. Ayaquica-Martínez; C. Guillén-Galván

    2014-01-01

    Se presenta un algoritmo para la selección del grupo de electrodos relacionados con la imaginación de movimiento. El algoritmo utiliza la técnica de agrupamiento llamada kmeans para formar grupos de sensores y selecciona el grupo que corresponde a la actividad correlacionada más alta. Para evaluar la selección de electrodos, se calcula el indice de clasificación aplicando la descomposición proyectiva llamada patrones espaciales comunes y un discriminante lineal en una prueba de una sola época...

  15. Membranas poliméricas basadas en líquidos iónicos : aplicaciones en electrodos selectivos de iones y procesos de separación

    OpenAIRE

    Martínez Rubio, Aurora

    2015-01-01

    El objetivo global de esta Tesis Doctoral fue la evaluación del uso de membranas poliméricas basadas en líquidos iónicos en el desarrollo de electrodos selectivos de iones y en procesos de separación de metales (Zn2+, Fe3+, Cu2+ y Cd2+) y compuestos orgánicos (α-pineno e ibuprofeno). Para alcanzar dicho objetivo se estudió, en primer lugar, la respuesta potenciométrica de un número de electrodos selectivos de iones basados en membranas poliméricas construidas con policloruro de vinilo (PVC) y...

  16. Levantamiento del mapa de modo de transferencia para el electrodo ER100S1 aplicado con proceso de soldadura GMAW

    OpenAIRE

    Arias Rendón, María Isabel

    2013-01-01

    Resumen: Durante este trabajo se estableció una metodología para caracterizar los modos de transferencia para el par metal de aporte/gas en un proceso de soldadura GMAW y poder generar un cuadro de relación entre los parámetros eléctricos fundamentales: corriente y voltaje del arco. Este cuadro se denominó como mapa de modo de transferencia para un electrodo aplicado con proceso de soldadura por arco eléctrico con protección gaseosa (Gas Metal Arc Welding – GMAW). La metodología desarrollada ...

  17. Determinación de nitratos y amonio en muestras de suelo mediante el uso de electrodos selectivos

    OpenAIRE

    Pulgarín, Gloria Arango

    2011-01-01

    Con el objetivo de evaluar un método alternativo para la cuantificación de diferentes formas de nitrógeno, se determinó la concentración de nitratos (NO3-) y amonio (NH4+) por dos métodos: Colorimetría y Electrodo de Ión Selectivo (EIS), en muestras de suelos cultivados con flores o banano en el departamento de Antioquia, Colombia. Se realizaron análisis de regresión y correlación para las concentraciones obtenidas por los dos métodos, que mostraron una asociación altamente significativ...

  18. CdTe devices and method of manufacturing same

    Science.gov (United States)

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  19. Electrodo capacitivo de alta sensibilidad para la detección de biopotenciales eléctricos

    OpenAIRE

    J.L. Varela-Benítez; J.O. Rivera-Delgado; J.H. Espina-Hernández; J. M. de la Rosa-Vázquez

    2015-01-01

    En este trabajo se presenta el diseño e implementación de un electrodo capacitivo de no contacto para la detección de biopotenciales en el cuerpo humano. Se presentan los circuitos eléctricos, el criterio de selección del amplificador operacional en base al análisis de la resistencia óptima de ruido, se describe el montaje físico, se presentan las señales obtenidas con este y la evaluación de su desempeño en base a la relación señal a ruido S/N. Se muestra el desempeño de diversos amplificado...

  20. Quantized Nanocrystalline CdTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline CdTe thin films were prepared by asymmetric rectangular pulse electrodeposition in organic solution at 110°C. STM image shows a porous network morphology constructed by interconnected spherical CdTe crystallites with a mean diameter of 4.2 nm. A pronounced size quantization was indicated in the action and absorption spectra. Potentials dependence dual conductive behavior was revealed in the photocurrent-potential (I-V) curves.

  1. Chlorine diffusion in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Sadaiyandi, K.; Ramachandran, K. (School of Physics, Madurai Kamaraj Univ. (India))

    1991-06-01

    The experimental results of chlorine diffusion in CdTe reveal that the dominant mechanism for diffusion is through neutral defect pair such as (V{sub Cd}V{sub Te}){sup *}. Here, theoretical calculations are carried out for all the possible mechanisms such as single vacancy, single interstitial, neutral defect pair, and Frenkel defect pair. The results suggest that the most possible mechanism for Cl diffusion in CdTe is that through neutral defect pair, supporting the experiment. (orig.).

  2. Valoración del desempeño de un dispositivo de autoalimentación diseñado para la evaluación operativa de electrodos revestidos Self-feed device behaviour valuation designed for assessment of operability of covered electrodes

    Directory of Open Access Journals (Sweden)

    Alejandro García Rodríguez

    2009-03-01

    Full Text Available El presente trabajo tiene como objetivo valorar la efectividad de un dispositivo de autoalimentación para electrodos revestidos. El mismo es capaz de eliminar perturbaciones inherentes a operarios o sistemas de control automático, para el estudio del comportamiento de electrodos revestidos. La conjugación de diferentes métodos, tales como el análisis estadístico del tiempo de duración del cortocircuito, el análisis metalográfico ( penetración, zona afectada por el calor, coeficiente de forma y distancia promedio entre frentes de solidificación del cordón, junto al análisis del comportamiento de los parámetros eléctricos primarios del arco y los índices de consumo del electrodo, permiten obtener relaciones entre el comportamiento eléctrico del arco, el proceso de transferencia de masa y la apariencia del cordón. Esto permite extraer criterios sobre la estabilidad del proceso y el desempeño del dispositivo de alimentación empleado. Se obtiene una metodología estadística, apropiada para el procesamiento del parámetro "duración del cortocircuito", a partir de un adecuado ajuste de las distribuciones empíricas a un modelo Lognormal. El dispositivo de autoalimentación para electrodos revestidos, permite la ejecución repetible y reproducible de cordones de soldadura en posición plana, manteniendo la longitud del arco en función de las características físico-químicas del consumible evaluado en regímenes de trabajo de 125A, 140A y 160A.The objective of the present work is to evaluate the effectiveness of a self-feed device for covered electrodes. This device is able of eliminate disturbances from manual operation or the use of automatic control systems during the study of covered electrode behavior. The conjugation of different methods like short-circuit time statistical analysis, metallographic analysis (penetration, heat affected zone, shape and mean distance between successive solidification fronts together with the

  3. DETERMINACIÓN DE NITRATOS Y AMONIO EN MUESTRAS DE SUELO MEDIANTE EL USO DE ELECTRODOS SELECTIVOS NITRATE AND AMMONIUM DETERMINATION IN SOILS USING ION SELECTIVE ELECTRODES

    Directory of Open Access Journals (Sweden)

    Gloria Arango Pulgarín

    2005-06-01

    Full Text Available Con el objetivo de evaluar un método alternativo para la cuantificación de diferentes formas de nitrógeno, se determinó la concentración de nitratos (NO3- y amonio (NH4+ por dos métodos: Colorimetría y Electrodo de Ión Selectivo (EIS, en muestras de suelos cultivados con flores o banano en el departamento de Antioquia, Colombia. Se realizaron análisis de regresión y correlación para las concentraciones obtenidas por los dos métodos, que mostraron una asociación altamente significativa entre ellos. La determinación de NO3- mediante la formación de complejo coloreado con brucina ácida o mediante el uso de un electrodo selectivo para nitratos presentó un coeficiente de determinación altamente significativo (R² = 99,2. En forma similar, la determinación de NH4+ basada en la formación de complejo coloreado azul de indofenol ó utilizando el electrodo para amoniaco presentó un valor de R² = 98,4. El uso de electrodos presenta ventajas en comparación con las técnicas colorimétricas, que requieren mucho más tiempo y equipos mas costosos.In order to evaluate an alternative method for quantifying different forms of nitrogen, the concentrations of nitrates (NO3- and ammonium (NH4 were determined by two methods: Colorimetry and Ion Selective Electrode (ISE, in soil samples from soils cultivated with flowers or banana in the department of Antioquia,Colombia. Regression and correlation analyses on the concentrations obtained from the two methods showed highly significant relationships among them. The determination of NO3- by means of colored complexes with brucine acid or by means of the use of an electrode selective for nitrates exhibited a highly significant coefficient of determination (R² = 99.2. In a similar way, determination of NH4 based on the formation of blue colored complexes of indophenol or employing the electrode for ammoniac yielded a value of R² = 98.4. The use of electrodes has advantages over the colorimetric

  4. Fabricación de electrodos para control de transporte y alineamiento a micro y nanoescalas usando técnicas bottom-up y top-down

    Directory of Open Access Journals (Sweden)

    Darwin Rodríguez

    2014-12-01

    Full Text Available El continuo avance de aplicaciones en dispositivos de autoensamble, posicionamiento, sensores, actuadores, y que permitan controladamente la manipulación de micro y nanoestructuras, han generado amplio interés en el desarrollo de metodologías que permitan optimizar la fabricación de dispositivos para el control y manipulación a micro y nanoescalas. Este proyecto explora técnicas de fabricación de electrodos con el fin de encontrar una técnica óptima y reproducible. Se compara el rendimiento de cada técnica y se describen protocolos de limpieza y seguridad. Se diseñan e implementan tres geometrías para movilizar y posicionar micro y nanopartículas de hierro en una solución de aceite natural. Finalmente se generan campos eléctricos a partir de electroforesis, con el fin de encontrar la curva que describe el desplazamiento de las partículas con respecto al potencial aplicado. Estos resultados generan gran impacto en los actuales esfuerzos de fabricación bottom-up (controlando con campos la ubicación y la movilidad en dispositivos electrónicos. El hecho de fabricar geometría planar con electrodos genera la posibilidad de que se pueda integrar movimiento de partículas a los circuitos integrados que se fabrican en la actualidad.

  5. Photoinduced tellurium precipitation in CdTe

    Science.gov (United States)

    Sugai, Shunji

    1991-06-01

    Tellurium precipitation in CdTe is found to be induced by photoirradiation with energy higher than the energy gap at 240 W/sq cm. It is suggested that this photoinduced precipitation is related with the strong electron-phonon interactions, possibly self-trapped excitons. This irreducible tellurium precipitation may cause a serious problem for the life of semiconductor devices.

  6. Posicionamento ectópico de eletrodo de marcapasso Posicionamiento ectópico de electrodo de marcapaso Ectopic positioning of pacemaker electrode

    Directory of Open Access Journals (Sweden)

    Gildo Mota

    2010-05-01

    Full Text Available Apresentamos o caso de um paciente portador da forma cardíaca da doença de Chagas com disfunção ventricular esquerda e bloqueio atrioventricular de 2º grau Mobitz II, associados a vários episódios de síncope. Foi submetido a implante de marcapasso artificial definitivo dupla câmara. Após um ano do implante foi diagnosticado deslocamento de eletrodo atrial, sendo submetido a reimplante de eletrodo atrial. Após dois anos do primeiro procedimento cirúrgico, apresentava dispneia aos grandes esforços. Durante a avaliação, foi solicitado ecocardiograma, que detectou a presença de corpo estranho de características metálicas em câmaras cardíacas esquerdas, consistente com eletrodo de marcapasso ectópico.Referimos el caso de un paciente portador de la forma cardíaca de la enfermedad de Chagas con disfunción ventricular izquierda y bloqueo atrioventricular de 2° grado Mobitz II, asociados a varios episodios de síncope. Fue sometido a implante de marcapaso artificial definitivo doble cámara. Tras un año del implante se diagnosticó desplazamiento de electrodo atrial, con la sumisión del paciente a reimplante de electrodo atrial. Tras dos años del primer procedimiento quirúrgico, presentaba disnea a los grandes esfuerzos. Durante la evaluación, se solicitó ecocardiograma, que detectó presencia de cuerpo extraño de características metálicas en cámaras cardíacas izquierdas, de acuerdo con electrodo de marcapaso ectópico.The present case reports on a patient presenting the cardiac form of Chagas disease, with left ventricular dysfunction and second-degree atrioventricular block Mobitz type II, associated with several syncope episodes. The patient underwent a double-chamber definitive artificial pacemaker implant. One year after the implant, the displacement of the atrial electrode was diagnosed and the patient was submitted to re-implantation of the atrial electrode. Two years after the first surgical procedure, the

  7. Study for increasing the stabilization time of a catalytic dye to facilitate the fabrication of membrane electrode assemblies; Estudio para incrementar el tiempo de estabilizacion de una tinta catalitica para facilitar la fabricacion de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Martinez Vado, F. Isaias [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Cano Castillo, Ulises, Albarran Sanchez, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-09-15

    An infrastructure project has been underway for hydrogen technology and fuel cells at the Electrical Research Institute (IIE, Spanish acronym). Part of this project is an activity for the fabrication of membrane electrode assemblies (MEA). Currently, a fabrication process is well-established for the MEA using the spray technique. In addition, a catalytic dye base composition has been developed for use in the fabrication of high-quality MEA with a good degree of reproducibility. Nevertheless, the instability of the dye over time prevents continuous fabrication of MEA. This document presents the results obtained, to-date, of research conducted at the IIE aimed at increasing the stability of the catalytic dye by adding a surfactant with different concentrations and increasing the concentration of the Nafion® solution. It was found that the effect of adding the surfactant to the catalytic dye results in a qualitative decrease in the agglomerate sizes, while also decreasing the porosity of the dye once it has dried. In addition, it was found that increasing the amount of Nafion® in the catalytic die increases the porosity. [Spanish] En el Instituto de Investigaciones Electricas (IIE) se ha venido trabajando en un proyecto de infraestructura sobre la tecnologia de hidrogeno y celdas de combustible. Dentro de este proyecto se tiene una actividad orientada a la fabricacion de Ensambles Membrana-Electrodo (MEA's). Actualmente se tiene un proceso de fabricacion bien establecido para la elaboracion de MEA's utilizando la tecnica de rociado, asimismo, se tiene una composicion base de tinta catalitica con la cual se fabrican MEA's de buena calidad y con buen grado de reproducibilidad. Sin embargo, la inestabilidad de la tinta con respecto al tiempo impide tener una fabricacion continua de los MEA's. En este documento se presentan los resultados obtenidos hasta ahora de una investigacion que se realiza en el IIE orientada a incrementar la estabilidad de la

  8. CdTe Films Deposited by Closed-space Sublimation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CdTe films are prepared by closed-space sublimation technology. Dependence of film crystalline on substrate materials and substrate temperature is investigated. It is found that films exhibit higher crystallinity at substrate temperature higher than 400℃. And the CdTe films deposited on CdS films with higher crystallinity have bigger crystallite and higher uniformity. Treatment with CdCl2 methanol solution promotes the crystallite growth of CdTe films during annealing.

  9. Synthesis and Surface Modification of CdTe Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CdTe nanocrystals were prepared in aqueous solution via the reaction between Cd2+ and NaHTe in the presence of mercaptoacetic acid. Interactions between CdTe nanocrystals and phenylalanine were formed via electrostatic/coordinate self-assembly. The photoluminescence intensity of CdTe nanocrystals was improved obviously. The interaction mechanism was discussed and was considered to be surface passivation.

  10. Development of CdTe radiation detectors and their applications

    International Nuclear Information System (INIS)

    We have been developing radiation detectors using cadmium telluride (CdTe), which has the high radiation absorption characteristic. The image pickup tube using polycrystalline CdTe thin film has been developed at the first stage. Furthermore, the X-ray imaging line sensor with high scanning speed and the radiation spectrometer with thermo-electric Peltier cooler were developed by using CdTe single crystal, which has high electric charge collection characteristics. At present, the energy discriminating photon counting radiation line sensors are developing. In this presentation, the feature of the detector using CdTe and their applications are described examples of development until now. (author)

  11. Energía de ionización simple en la soldadura con electrodo revestido Simple ionization energy in coated electrode welding

    OpenAIRE

    Alejandro García Rodríguez

    2013-01-01

    El objetivo del presente trabajo es presentar, a la comunidad científica internacional, la concepción de un método de estimación de la energía de ionización simple, indispensable para el establecimiento del plasma térmico necesario para realizar el proceso de soldadura con electrodo revestido. A partir de la síntesis y el análisis de resultados teóricos y experimentales establecidos en la literatura especializada, fue deducido un método de estimación de la energía invertida en el proceso de i...

  12. Propuesta para la recuperación de los machetes Zuazaga de los centrales azucareros con electrodos de acero al cromo.

    OpenAIRE

    R. Collazo Carceller; H. López Salinas; A. Días Romero

    2009-01-01

    El trabajo resume el estudio y análisis desarrollado, para la presentación de una propuesta tecnológica de recuperación de los machetes Zuazaga, en nuestros centrales azucareros. Se determinó la influencia de los parámetros, energía introducida (Hi), número de capas (Nc) y ancho del depósito (Ad), en la morfología y el incremento de la resistencia al desgaste abrasivo, utilizando el electrodo de acero al cromo DUR 600. Se realizó una valoración económica de la propuesta tecnológicaThis work, ...

  13. Photovoltaic minimodule based on CdTe

    International Nuclear Information System (INIS)

    CdS/CdTe solar cells were fabricated without antireflection coatings by successive growth without intermediate processing from the close space sublimation of CdS and CdTe thin layers on conductive and transparent SnO2/glass substrates. At 300 K and 100 mW/cm2 the following best photoelectric parameters were obtained: Isc= (18-19)mA/cm2 and Voc=(0,80-0,82)V. The conversion efficiency is around 10%. The quantum efficiency (QE) in the 510 nm and 845 nm range of wavelengths is on the order of 80-85%. The minimodule fabricated on the basis of the CdTe cells shows power of 0.45 W, corresponding to a voltage of 3 V, and current of 150 mA. (authors)

  14. Recycling of CdTe photovoltaic waste

    Science.gov (United States)

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-01-01

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  15. Thin-film CdTe cells: Reducing the CdTe

    International Nuclear Information System (INIS)

    Polycrystalline thin-film CdTe is currently the dominant thin-film technology in world-wide PV manufacturing. With finite Te resources world-wide, it is appropriate to consider the limits to reducing the thickness of the CdTe layer in these devices. In our laboratory we have emphasized the use of magnetron sputtering for both CdS and CdTe achieving AM1.5 efficiency over 13% on 3 mm soda-lime glass with commercial TCO and 14% on 1 mm aluminosilicate glass. This deposition technique is well suited to good control of very thin layers and yields relatively small grain size which also facilitates high performance with ultra-thin layers. This paper describes our magnetron sputtering studies for fabrication of very thin CdTe cells. Our thinnest cells had CdTe thicknesses of 1 μm, 0.5 μm and 0.3 μm and yielded efficiencies of 12%, 9.7% and 6.8% respectively. With thinner cells Voc, FF and Jsc are reduced. Current-voltage (J-V), temperature dependent J-V (J-V-T) and apparent quantum efficiency (AQE) measurements provide valuable information for understanding and optimizing cell performance. We find that the stability under light soak appears not to depend on CdTe thickness from 2.5 to 0.5 μm. The use of semitransparent back contacts allows the study of bifacial response which is particularly useful in understanding carrier collection in the very thin devices.

  16. Growth of CdTe: Al films

    International Nuclear Information System (INIS)

    CdTe: AI films were grown by the close space vapor transport technique combined with free evaporation (CSVT-FE). The Aluminum (Al) evaporation was made by two kinds of sources: one made of graphite and the other of tantalum. The films were deposited on glass substrates. The Al source temperature was varied maintaining the CdTe source temperature fixed as well as the substrate temperature. The films were characterized by x-ray energy dispersive analysis (EDAX), x-ray diffraction and optical transmission. The results showed for the films grown with the graphite source for Al evaporation, the Al did not incorporate in the CdTe matrix, at least to the level of EDAX sensitivity; they maintained the same crystal structure and band gap. For the samples grown with the tantalum source, we were able to incorporate the Al. The x-ray diffraction patterns show that the films have a crystal structure that depends on Al concentration. They were cubic up to 2.16 at. % Al concentration; for 19.65 at. % we found a mixed phase; for Al concentration higher than 21 at. % the films were amorphous. For samples with cubic structure it was found that the lattice parameter decreases and the band gap increases with Al concentration. (Author)

  17. Electrooxidación de glifosato sobre electrodos de níquel y cobre Electrooxidation of glyphosate on niquel and copper electrodes

    Directory of Open Access Journals (Sweden)

    Edgar Virgilio Sierra

    2008-01-01

    Full Text Available The electrochemical oxidation of glyphosate on an electrode of nickel and on one of copper was studied. With both electrodes electrochemical signals related to the glyphosate concentration were observed. However, the behaviour of the copper electrode was much better than that of the nickel electrode. A calibration curve was obtained of the electrical signal of this electrode as a function of the glyphosate concentration. The detection limit was 30 µM. In the case of nickel, an increase in the oxidation signal, which is related to the glyphosate concentration, was obtained. However, the results were less reproducible and additional information is necessary to propose an interaction mechanism between glyphosate and the electrode.

  18. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  19. Carbon analysis in CdTe by nuclear activation

    Science.gov (United States)

    Chibani, H.; Stoquert, J. P.; Hage-Ali, M.; Koebel, J. M.; Abdesselam, M.; Siffert, P.

    1991-06-01

    We describe the capabilities of the nuclear reaction 12C(d, n) 13Nlimit→β +13C the measurement of absolute concentrations of C in CdTe by the charged particle activation (CPA) method. This technique is used to determine the segregation coefficient of C introduced as an impurity in CdTe.

  20. Temperature dependent electroreflectance study of CdTe solar cells

    International Nuclear Information System (INIS)

    Cadmium telluride is a promising material for large scale photovoltaic applications. In this paper we study CdS/CdTe heterojunction solar cells with electroreflectance spectroscopy. Both CdS and CdTe layers in solar cells were grown sequentially without intermediate processing by the close-space sublimation method. Electroreflectance measurements were performed in the temperature range of T = 100–300 K. Two solar cells were investigated with conversion efficiencies of 4.1% and 9.6%. The main focus in this work was to study the temperature dependent behavior of the broadening parameter and the bandgap energy of CdTe thin film in solar cells. Room temperature bandgap values of CdTe were Eg = 1.499 eV and Eg = 1.481 eV for higher and lower efficiency solar cells, respectively. Measured bandgap energies are lower than for single crystal CdTe. The formation of CdTe1−xSx solid solution layer on the surface of CdTe is proposed as a possible cause of lower bandgap energies. - Highlights: ► Temperature dependent electroreflectance measurements of CdS/CdTe solar cells ► Investigation of junction properties between CdS and CdTe ► Formation of CdTe1− xSx solid solution layer in the junction area

  1. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    International Nuclear Information System (INIS)

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs

  2. Electrodeposición y caracterización de láminas de Cu2C.Aplicación como electrodos de baterías de ión-litio

    OpenAIRE

    Bijani Chiquero, Shanti

    2007-01-01

    El trabajo que se expone en la presente tesis doctoral tiene por objetivo la electrodeposición y posterior caracterización de láminas de Cu2O puro para la obtención de electrodos negativos de baterías de ión-litio de 3 V y capacidades específicas superiores a 300 A·h·kg-1. Esta tesis optimiza electrodos para el diseño de baterías prototipo de ión-litiotipo botón, demostrando que éstas, que son de gran aplicabilidad comercial, pueden ser fabricadas utilizando métodos sencillos y e...

  3. CdTe ambulatory ventricular function monitor

    International Nuclear Information System (INIS)

    A prototype device consisting of two arrays of CdTe detectors, ECG amplifiers and gate, microprocessor, and tape recorder was devised to record simultaneous ECG and radionuclide blood pool data from the left ventricle for extended periods during normal activity. The device is intended to record information concerning both normal and abnormal physiology of the heart and to permit the evaluation of new pharmaceuticals under everyday conditions. Preliminary results indicate that the device is capable of recording and reading out data from both phantoms and patients

  4. Diseño, desarrollo y validación de un sotfware para la simulación del efecto del campo eléctrico sobre la activación neuronal

    OpenAIRE

    SOLANES GALBIS, CARMEN

    2016-01-01

    [ES] La neuroestimulación medular es una terapia ampliamente utilizada para el tratamiento del dolor neuropático. La neuroestimulación medular consiste en la estimulación eléctrica, a través de un electrodo multipolar, de las grandes fibras Aβ con el fin de disminuir el dolor en los dermatomas correspondientes a las áreas estimuladas. A pesar de su amplia utilización clínica, existe una carencia en el conocimiento sobre el efecto de diferentes factores en la eficiencia de la es...

  5. High efficiency pixellated CdTe detector

    International Nuclear Information System (INIS)

    Position sensitive detectors constructed from compound semiconductors (CdTe, CdZnTe, HgI2) are being developed for a variety of applications where high sensitivity and improved energy resolution are significant advantages over scintillator or gas based systems. We have investigated the possibility of using a CdTe detector array in a SPECT gamma camera that would require a high efficiency at 140 keV. The problem of worsening photopeak efficiencies in thick detectors (due to incomplete charge collection) makes it difficult to maintain a high efficiency which, ironically, is the primary reason for choosing a thicker detector. Recent research has shown that following a simple geometrical design criterion can greatly reduce this deleterious effect. This paper reports on the results from a small prototype pixellated array fabricated using this design. We verify the 'small pixel effect' for a detector thickness and pixel size significantly larger than those used in most other work. A 9-element detector (1 x 1 mm pixels, 4 mm thick) has been fabricated and characterized in terms of energy resolution, peak-to-valley ratio and detection efficiency. Testing of the detector in a fast pulse mode to obtain its high count rate response has also been performed. (orig.)

  6. Annealing conditions for intrinsic CdTe

    Science.gov (United States)

    Berding, M. A.

    1999-01-01

    Equilibrium native defect densities in CdTe are calculated from ab initio methods, and compared with experimental results. We find that CdTe is highly compensated p type under tellurium-saturated conditions, with the cadmium vacancy as the dominant acceptor and the tellurium antisite as the compensating donor. This finding is in agreement with recent experiments that find a much larger deviation from stoichiometry than would be predicted by the electrically active defects. Under cadmium-saturated conditions, cadmium interstitials are predicted to dominate and the material is found to be n type. Native defect concentrations and the corresponding carrier concentrations are predicted as a function of processing conditions, and can serve as a guide to postgrowth anneals to manipulate the conductivity of undoped material for applications in x- and γ-ray spectrometers. Furthermore, we show that by choosing appropriate annealing conditions and extrinsic dopants, one can increase the operating efficiency of nuclear spectrometers by reducing the density of specific native defects that produce midgap trapping states.

  7. Cu Migration in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Da [Arizona State University; Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Vasileska, Dragica [Arizona State University; Ringhofer, Christian [Arizona State University

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  8. Counting efficiency of a CdTe detector

    International Nuclear Information System (INIS)

    The purpose of this work is to obtain some data about the energy dependence of the sensitivity of a CdTe detector in order to use it for a miniature dose rate meter. The intrinsic efficiencies of the CdTe detector were measured for several photon energies between 22 and 835 keV. The results showed the great dependence of the efficiency of the CdTe detector on photon energy, for example, the intrinsic efficiencies for the photons of 122 keV and 835 keV were 71% and 8.7% respectively. Some further problems were also presented and discussed. (author)

  9. Auger relative sensitivivity factors for CdTe oxide

    OpenAIRE

    Bartolo-Pérez, P.; Peña, J. L.; M.H. Farías

    1999-01-01

    The Auger lineshape of Te MNN in measurements of Auger spectra of CdTe oxide films with various degrees of oxidation was analyzed. By using standards from stoichiometric compounds, Auger relative sensitivity factors (RSF´s) of Cd, Te and O for CdTe oxide thin films were obtained. The value of the RFS of oxygen is about constant, 0.27-0.28, for the standard compound, CdO, TeO2 and CdTeO3 (considering the RSF of Cd as 1). However, the obtained RSF of Te changes from 0.69 in CdTe up to 0.87 in C...

  10. Process Development for High Voc CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  11. Spin dynamics in bulk CdTe at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nahalkova, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Nemec, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)]. E-mail: nemec@karlov.mff.cuni.cz; Sprinzl, D. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Belas, E. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Horodysky, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Franc, J. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Hlidek, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Maly, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)

    2006-01-25

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature.

  12. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  13. Sobre la impedancia faradaica de la disolución electroquímica del níquel

    Directory of Open Access Journals (Sweden)

    Agrisuelas, J.

    2005-12-01

    Full Text Available Consecutive impedance spectra for nickel electrodes in acid medium have been obtained. The first recorded spectrum is fitted to an equivalent circuit with three time constants, if one consider a partially or completely passivated electrode. The second registered spectrum is characteristic to a corrosion kinetic controlled by the transport across a finite layer thickness. The microscopic images show an increase in the irregularity of the electrode surface after the second spectrum is registered. Also, the double layer capacity is considerably increased.

    Se han obtenido espectros de impedancia consecutivos sobre electrodos de níquel en medio ácido. El primer espectro registrado se ajusta a un circuito equivalente con tres constantes de tiempo, considerando un electrodo parcialmente pasivado o completamente pasivado. El segundo espectro registrado es característico de una cinética de corrosión controlada por el transporte a través de una capa de espesor finito. Tras registrar el segundo espectro, las imágenes microscópicas muestran un aumento de la irregularidad en la superficie electródica. Al mismo tiempo la capacidad de doble capa aumenta considerablemente.

  14. Preparation and properties of evaporated CdTe films compared with single crystal CdTe

    Science.gov (United States)

    Bube, R. H.

    The hot wall vacuum deposition system is discussed and is is good temperature tracking between the furnace core and the CdTe source itself are indicated. Homojunction cells prepared by HWVE deposition of n-CdTe on p-CdTe substrates show no significant change in dark or light properties after open circuit storage for the next 9 months. CdTe single crystal boules were grown with P, As and Cs impurity. For P impurity it appears that the segregation coefficient is close to unity, that the value of hole density is controlled by the P, and that growth with excess Cd gives slightly higher values of hole density than growth with excess Te. CdTe:As crystals appear similar to CdTe:P crystals.

  15. Propuesta para la recuperación de los machetes Zuazaga de los centrales azucareros con electrodos de acero al cromo.

    Directory of Open Access Journals (Sweden)

    R. Collazo Carceller

    2009-09-01

    Full Text Available El trabajo resume el estudio y análisis desarrollado, para la presentación de una propuesta tecnológica de recuperación de los machetes Zuazaga, en nuestros centrales azucareros. Se determinó la influencia de los parámetros, energía introducida (Hi, número de capas (Nc y ancho del depósito (Ad, en la morfología y el incremento de la resistencia al desgaste abrasivo, utilizando el electrodo de acero al cromo DUR 600. Se realizó una valoración económica de la propuesta tecnológicaThis work, sumarises the study and the analisys developed, to prupose the Zuazaga cut cane thecnology recuperation, in aur sugar mills. The parameters influency was determinated, Heat input (Hi, Number of layers (Nc and the Cord whith (Ad, in the mofology and the abrasive wear resistance increase, using the cromiun steel UTP DUR - 600. The economical calculation of the thecnology was done.

  16. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  17. CdTe Solar Cells: The Role of Copper

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Da [Arizona State University; Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-06

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  18. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  19. Temperature dependence of photoluminescence of CdTe

    International Nuclear Information System (INIS)

    Temperature dependences of photoluminescence (PL) spectra of CdTe quantum dots (QDs) in a polymer matrix have been studied. The CdTe QDs in a polymer matrix were prepared by transferring them from an aqueous colloid solution. A long storage of specimens was found to result in a bimodal distribution of CdTe QDs by their size in the polymer matrix. The activation energies of the temperature quenching of photoluminescence bands of CdTe QDs in the polymer matrix that correspond to PL bands produced by QDs with different sizes have been determined. The photoluminescence of investigated specimens was found to have the exciton mechanism, which is confirmed by the temperature dependence of the PL peak position and the dependence of the integral PL intensity on the optical excitation intensity.

  20. Radiative and interfacial recombination in CdTe heterostructures

    International Nuclear Information System (INIS)

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 1010 cm−2 and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10−10 cm3s−1. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate

  1. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  2. Bifacial configurations for CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, A. [Scientific and Technological Department, University of Verona, Ca' Vignal 2, Strada Delle Grazie 15, 37134 Verona (Italy); Khrypunov, G. [National Technical University, 61002 Kharkov (Ukraine); Galassini, S. [Medicine and Public Health Department, University of Verona, Ca' Vignal 2, Strada Delle Grazie, 37134 Verona (Italy); Zogg, H. [Thin Film Physics Group, Laboratory for Solid State Physics, ETH, Swiss Federal Institute of Technology, Zuerich, Technoparkstrasse 1, 8005 Zurich (Switzerland); Tiwari, A.N. [Thin Film Physics Group, Laboratory for Solid State Physics, ETH, Swiss Federal Institute of Technology, Zuerich, Technoparkstrasse 1, 8005 Zurich (Switzerland); Department of Electronic and Electrical Engineering, Centre for Renewable Energy Systems and Technology (CREST), Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2007-09-22

    We present a different back contact for CdTe solar cell by the application of only a transparent conducting oxide (TCO), typically ITO, as a back electrical contact on all-PVD CdTe/CdS photovoltaic devices that acts as a free-Cu stable back contact and at the same time allows to realize bifacial CdTe solar cells, which can be illuminated from either or both sides. Also devices with thin CdTe layers (from {proportional_to}2 {mu}m down to 1 {mu}m) have been prepared to improve the conversion efficiency on the back side illumination, which is limited by the collection of carriers far away from the junction and to reduce the amount of material in the CdTe device. Reproducible solar cells exceeding 10% efficiency on the front side illumination and exceeding 3% on the back side illumination are reported. (author)

  3. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State Univeristy; Brinkman, Daniel [Arizona State Univeristy; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Dragica, Vasileska [Arizona State Univeristy; Ringhofer, Christian [Arizona State University

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  4. Studies of key technologies for CdTe solar modules

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, CdS thin films, which act as the window layer and n-type partner to the p-type CdTe layer, were prepared by chemical bath deposition (CBD). CdTe thin films were deposited by the close-spaced sublimation (CSS) method. To obtain high-quality back contacts, a Te-rich layer was created with chemical etching and back contact materials were applied after CdTe annealing. The results indicate that the ZnTe/ZnTe:Cu complex layers show superior performance over other back contacts. Finally, by using laser scribing and mechanical scribing, the CdTe mini-modules were fabricated, in which a glass/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni solar module with a PWQC-confirmed total-area efficiency of 7.03% (54 cm2) was achieved.

  5. CdTe Photovoltaics for Sustainable Electricity Generation

    Science.gov (United States)

    Munshi, Amit; Sampath, Walajabad

    2016-09-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  6. CdTe Photovoltaics for Sustainable Electricity Generation

    Science.gov (United States)

    Munshi, Amit; Sampath, Walajabad

    2016-04-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1-x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  7. Strategies for recycling CdTe photovoltaic modules

    Science.gov (United States)

    Eberspacher, Chris; Gay, Charles F.; Moskowitz, Paul D.

    1994-12-01

    Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

  8. Electrical properties of single CdTe nanowires

    OpenAIRE

    Elena Matei; Camelia Florica; Andreea Costas; María Eugenia Toimil-Molares; Ionut Enculescu

    2015-01-01

    Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were p...

  9. High-quality CdTe films from nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.L.; Pehnt, M.; Urgiles, E. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  10. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    Science.gov (United States)

    Tang, H. P.; Feng, J. Y.; Fan, Y. D.; Li, H. D.

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480°C, while CdTe growth inboth (100) and (111) orientations occured when the substrate preheating temperature was above 550°C. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec.

  11. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P.; Feng, J.Y.; Fan, Y.D.; Li, H.D. (Dept. of Materials Science and Engineering, Tsinghua Univ., Beijing (China))

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480degC, while CdTe growth in both (100) and (111) orientations occurred when the substrate preheating temperature was above 550degC. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec. (orig.).

  12. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  13. Materiales híbridos basados en nanocarbones y polioxometalatos para aplicación como electrodos en supercondensadores con mecanismo dual de almacenamiento de energía

    OpenAIRE

    Suárez Guevara, Jullieth Gabriela

    2015-01-01

    Baterías y supercondensadores son dos tipos de dispositivos de almacenamiento de energía con mecanismos y prestaciones complementarios. Las baterías, con mecanismos de reacciones redox faradaicas presentan alta densidad de energía y baja densidad de potencia mientras que el mecanismo electrostático de los supercondensadores (doble capa eléctrica) les confiere una alta densidad de potencia con densidad de energía limitada. El diseño de materiales y electrodos híbridos que combin...

  14. Materiales híbridos moleculares orgánicos-inorgánicos: síntesis y aplicación como electrodos en baterías recargables de litio

    OpenAIRE

    Torres-Gómez, G.; Lira-Cantú, Monica; Gómez-Romero, P.

    2000-01-01

    [ES] Se describe la síntesis y aplicación como electrodos para el almacenamiento o conversión de energía de materiales híbridos basados en la dispersión de especies inorgánicas electroactivas en el seno de polímeros orgánicos conductores. Polianilina y polipirrol son dopados con polioxometalatos electroactivos ([PMo12O40]3-) o aniones ferricianuro ([(FeCN)6]3-) como únicas especies dopantes. La elevada carga y tamaño de estos aniones evitan, en la mayoría de los casos, su desintercal...

  15. Diseño Mc. Lean‐Anderson aplicado para obtener recubrimientos de electrodos aleados con carbono, cromo y titanio//Mc. Lean‐Anderson design applied for recovered electrodes obtaining with carbon, chrome and titanium alloys

    OpenAIRE

    Carlos René Gómez-Pérez; Ana Paula Perotti; Alejandro García-Rodríguez; José Antônio Esmerio-Mazzaferro; Arnaldo Rubén-Gonzalez; Ivan Guerra-Machado

    2013-01-01

    En el trabajo se estudia el comportamiento de electrodos recubiertos destinados al relleno superficial con el proceso de soldadura manual (SMAW, Shielded Metal Arc Welding). Para el diseño experimental se aplican un procedimiento de cálculo para el revestimiento y un plan de mezclas del tipo Mc. Lean-Anderson. En el diseño se conjuga una matriz compuesta por Calcita (26,73 %), Ferrosilicio (19,02 %),Ferromanganeso (16,58 %), Rutilo (26,69 %), Silicato de Potasio (11,70 %) y diferentes cargas ...

  16. Evaluación de diferentes tipos de barnices en la protección de electrodos para la soldadura subacuática//Evaluation of different types of varnishs to protect underwater welding electrodes

    Directory of Open Access Journals (Sweden)

    Manuel Rodríguez-Pérez

    2012-05-01

    Full Text Available El artículo tiene como objetivo evaluar  las posibilidades de empleo de diferentes tipos de barnices como impermeabilizantes para los electrodos del tipo AWS E 6013, cuando se realiza la soldadura  en condiciones subacuática mojada. Los barnices evaluados son el Vinílico, Marítimo, base Poliuretano y una nueva variante base Isopor. Los métodos de evaluación incluye el comportamiento de la resistencia mecánica que le confiere al revestimiento a cada uno de los barnices, el agua adsorbida y el tipo de estructura en el cordón, utilizando microscopía óptica convencional. En este aspecto, la estructura en todos los cordones realizados con el electrodo E 6013, independientemente del impermeabilizante utilizado es similar, caracterizada por ferrita primaria o de contorno de grano y del tipo Widmanstätten, sin embargo, se determinó, que el impermeabilizante base Isopor, garantiza una mejor protección del electrodo en cuanto a la cantidad de agua adsorbida y adherencia del revestimiento.Palabras claves: soldadura subacuática, impermeabilizante, electrodos._______________________________________________________________________________The article aims to assess the potential use of different types of paints and waterproofing materials for the electrodes of type AWS E 6013, when performing underwater welding in wet conditions. The coatings evaluated are Vinyl, Maritime, polyurethane base and a new variant Isopor base. Evaluation methods include the behavior of the mechanical strength to the coating gives each of the varnishes, the adsorbed water and the type of structure in the welds, using conventional microscopy. In this sense, the structure in all the welds made with the electrode E 6013, regardless of waterproofed used is similar, characterized by primary or ferrite grain boundary and Widmanstätten type, however, it was determined that the base waterproofing Isopor, guarantees better protection of the electrode in terms of the amount of

  17. Evaluación de diferentes tipos de barnices en la protección de electrodos para la soldadura subacuática//Evaluation of different types of varnishs to protect underwater welding electrodes

    OpenAIRE

    Manuel Rodríguez-Pérez; Alexandre Queiroz-Bracarense; Lorenzo Perdomo-González; Rafael Quintana- Puchol; Alejandro Duffus-Scott

    2012-01-01

    El artículo tiene como objetivo evaluar  las posibilidades de empleo de diferentes tipos de barnices como impermeabilizantes para los electrodos del tipo AWS E 6013, cuando se realiza la soldadura  en condiciones subacuática mojada. Los barnices evaluados son el Vinílico, Marítimo, base Poliuretano y una nueva variante base Isopor. Los métodos de evaluación incluye el comportamiento de la resistencia mecánica que le confiere al revestimiento a cada uno de los barnices, el agua adsorbida y el ...

  18. Una plataforma MEMS para la medición in-situ y en tiempo real de la tensión/esfuerzo inducido electroquímicamente en el electrodo de una bateria de litio-ion

    OpenAIRE

    Barón, Sergio D.

    2015-01-01

    En este trabajo se reporta la primera demostración exitosa de las capacidades de sensado de una plataforma MEMS para la caracterización in-situ de los procesos de expansión/contracción reversible inducida electroquímicamente en electrodos de baterías de litio-ion (LIB). La plataforma consiste en un arreglo de membranas flexibles que cambian su forma dinámicamente debido al intercalado/expansión y extracción/contracción de litio. El cambio de curvatura de la membrana se mide por el principio d...

  19. Propuesta para la recuperación de los machetes Zuazaga de los centrales azucareros con electrodos de acero al cromo. // Proposal for Recuperation of Sugar Mill Cut Cane by Using Chromium Steel Electrodes.

    OpenAIRE

    R. Collazo-Carceller; H López-Salinas; A. Días-Romero.

    2009-01-01

    El trabajo resume el estudio y análisis desarrollado, para la presentación de una propuestatecnológica de recuperación de los machetes Zuazaga, en nuestros centrales azucareros. Sedeterminó la influencia de los parámetros, energía introducida (Hi), número de capas (Nc) y anchodel depósito (Ad), en la morfología y el incremento de la resistencia al desgaste abrasivo, utilizandoel electrodo de acero al cromo DUR 600. Se realizó una valoración económica de la propuestatecnológica.Palabras claves...

  20. Recent developments in evaporated CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Khrypunov, G. [Kharkov State Polytechnic University, UA-310002 Kharkov (Ukraine); Romeo, A. [Faculty of Science, University of Verona, Ca' Vignal 2, Strada Delle Grazie, 37134 Verona (Italy); Kurdesau, F. [National Academy of Sciences Belarus, Logoysky Tract 22, Minsk 220090 (Belarus); Baetzner, D.L. [The Australian National University, ACTON, ACT 0200 (Australia); Zogg, H.; Tiwari, A.N. [Thin Film Physics Group, Laboratory for Solid State Physics, ETH (Swiss Federal Institute of Technology) Zuerich, Technoparkstrasse 1, 8005 Zurich (Switzerland)

    2006-04-14

    Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed. High-efficiency solar cells of efficiencies up to 12.5% have been developed on soda-lime glass substrates with a low-temperature (<450{sup o}C) process. This simple process is suitable for in-line production of large-area solar modules on glass as well as on flexible polymer films with a roll-to-roll deposition process. Flexible and lightweight CdTe solar cells with a record efficiency of 11.4% have been developed in a superstrate configuration, and 3.5% efficiency mini-modules have been realised in a preliminary development. Deposition of high-temperature stable ITO front contact layer on polyimide is important for high-efficiency cells, as the layer should withstand processing steps maintaining its high electrical conductivity and optical transparency. Another development is an application of a transparent conducting oxide (TCO) ITO as a back electrical contact on CdTe leading to first bifacial CdTe solar cells, which can be illuminated from either or both sides. Accelerated long-term stability tests show that light soaking improves the efficiency of CdTe solar cells with ITO back contacts and performance does not degrade. Stability of CdTe solar cells has been measured after irradiation with high-energy protons and electrons of different fluences. These solar cells exhibit superior radiation tolerance compared to conventional Si and GaAs solar cells for space applications. Because of extreme stability, and high specific power (kW/kg) of flexible solar cells, CdTe has a promising potential for space applications. (author)

  1. Comportamiento electroquímico de (CdCl4)2‐ y (HoCl6)3‐ sobre cátodo de wolframio en el eutéctico LiCl‐KCl entre 673 y 773K.

    OpenAIRE

    Alonso Diez, Ricardo

    2015-01-01

    El presente trabajo estudia el comportamiento electroquímico de los iones Cd(II) y Ho(III) en la mezcla eutéctica LiCl‐KCl sobre electrodo inerte de Wolframio, mediante voltamperometría cíclica (CV), voltamperometría convolutiva de potencial (CPSV) voltamperometría de onda cuadrada (SWV), cronopotenciometría (CP) y cronoamperometría (CA), en el rango de temperaturas 673‐723K. Las electrodeposiciones de Cd y de Ho ocurren en una única etapa, mediante el intercambio de dos ele...

  2. Electrochemical performance in the hydrogen evolution reaction of Ni-TR (TR= La, Ce) materials synthesized using the solid state reaction method; Desempeno electroquimico en la reaccion de evolucion de hidrogeno de materiales de electrodo Ni-TR (TR = La, Ce) sintetizados por el metodo de reaccion de estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A. M.; Dominguez-Crespo, M. A.; Ramirez-Meneses, E.; Yanez-Zamora, C. [CICATA, IPN, Altamira, Tamaulipas (Mexico); Avila-Garcia, I. [IPN, ESIQIE, UPALM, Mexico, D.F. (Mexico)]. E-mail: mdominguezc@ipn.mx; adcrespo2000@yahoo.com.mx

    2009-09-15

    At the industrial level, the use of fuel cell technology is still limited because of the high costs of its parts and costs related to its operations. Although the electrode material with greater electroactivity is Pt, because of its high cost, alternative electrocatalysts have been sought that balance cost and activity. One of the materials that have been most widely used is nickel, along with some of its alloys. This material has shown good performance using low overpotentials in traditional reactions such as hydrogen (HER) and oxygen (OER) evolution, as well as high resistance to corrosion and low costs. In particular, binary and ternary alloys have shown significant increases in HER activity when compared to materials in the pure or massive state. Therefore, in the search for new alternatives with acceptable efficiency and low-cost, this work obtained Ni-TR (TR = La, Ce) using solid-state reaction with metallic acetylacetonates and metallic powder. These materials were synthesized for 3 h at different temperatures (795 or 920, 1000 and 1200 degrees Celsius) in order to evaluate the effect on the electrochemical performance of the electrocatalysts. The structural and morphological characterization of materials was performed with XRD and SEM techniques, respectively. In addition, the electrochemical performance of electrode materials was evaluated with HER using cyclic voltametry (CV) and potentiodynamic curves. The results obtained show that a combination of oxides was obtained (NiO, CeO{sub 2} and LaNiO{sub 3}) at low temperatures; nonetheless, as the synthesis temperatures increase, NiO-CeO{sub 2} and NiO-LaNiO{sub 3} alloys are formed, respectively. A clear dependence was also observed between electrocatalytic activity and the source for obtaining these materials(Ni-TR). [Spanish] A nivel industrial, el uso de la tecnologia de celdas de combustible esta todavia limitada debido sobre todo a los altos costos de las partes que la constituyen y los costos

  3. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    Directory of Open Access Journals (Sweden)

    Wagner Anacleto Pinheiro

    2006-03-01

    Full Text Available Unlike other thin film deposition techniques, close spaced sublimation (CSS requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate and a sintered CdTe powder. In this work, CdTe thin films were deposited by CSS technique from different CdTe sources: particles, powder, compact powder, a paste made of CdTe and propylene glycol and source-plates (CdTe/Mo and CdTe/glass. The largest deposition rate was achieved when a paste made of CdTe and propylene glycol was used as the source. CdTe source-plates led to lower rates, probably due to the poor heat transmission, caused by the introduction of the plate substrate. The results also showed that compacting the powder the deposition rate increases due to the better thermal contact between powder particles.

  4. CdTe photovoltaics: Life cycle environmental profile and comparisons

    International Nuclear Information System (INIS)

    We discuss the emissions of cadmium throughout all the life stages of CdTe PV modules, from extracting, refining, and purifying the raw materials to producing, using, and disposing or recycling of the modules. Then, we compare these emissions with those in the life cycle of three different types of crystalline Si PV modules. The energy requirement and energy pay back times (EPBT) of CdTe PV modules are considerably shorter than that of crystalline Si modules, although the latter exhibit higher efficiencies. This difference is primarily due to the energy used to process silicon, a fraction of which is derived from fossil fuels, inevitably producing Cd and many other heavy-metal emissions. The lower energy requirement of CdTe PV results in lower emissions of all pollutants, including cadmium

  5. Study of Back Contacts for CdTe Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    ZnTe/ZnTe∶Cu layer is used as a complex back contact. The parameters of CdTe solar cells with and without the complex back contacts are compared. The effects of un-doped layer thickness, doped concentration and post-deposition annealing temperature of the complex layer on solar cells performance are investigated.The results show that ZnTe/ZnTe∶Cu layer can improve back contacts and largely increase the conversion efficiency of CdTe solar cells. Un-doped layer and post-deposition annealing of high temperature can increase open voltage. Using the complex back contact, a small CdTe cell with fill factor of 73.14% and conversion efficiency of 12.93% is obtained.

  6. Design of a thin film CdTe solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P.V.

    1988-01-15

    Cadmium telluride was originally considered for thin film solar cells because of its optimum band gap, high optical absorption coefficient and ability to be doped. Furthermore, it is a stable compound which can be produced by a wide variety of methods from stable raw materials. As thin film photovoltaics mature, however, it is clear that several more subtle attributes have a significant impact on the viability of commercialization. We discuss the observations which have provided insight and direction to Ametek's CdTe solar cell program. Rather than try to modify the inherent material properties of CdTe, advances have been made by designing a solar cell that exploits existing properties. Specifically, the tendency to self-compensate, which makes low resistance contacting difficult, is turned into an advantage in the n-i-p configuration; the CdTe provides an intrinsic layer with good carrier collection efficiency.

  7. Resetting the Defect Chemistry in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Wyatt K.; Burst, James; Albin, David; Colegrove, Eric; Moseley, John; Duenow, Joel; Farrell, Stuart; Moutinho, Helio; Reese, Matt; Johnston, Steve; Barnes, Teresa; Perkins, Craig; Guthrey, Harvey; Al-Jassim, Mowafak

    2015-06-14

    CdTe cell efficiencies have increased from 17% to 21% in the past three years and now rival polycrystalline Si [1]. Research is now targeting 25% to displace Si, attain costs less than 40 cents/W, and reach grid parity. Recent efficiency gains have come largely from greater photocurrent. There is still headroom to lower costs and improve performance by increasing open-circuit voltage (Voc) and fill factor. Record-efficiency CdTe cells have been limited to Voc <; 880 mV, whereas GaAs can attain Voc of 1.10 V with a slightly smaller bandgap [2,3]. To overcome this barrier, we seek to understand and increase lifetime and carrier concentration in CdTe. In polycrystalline structures, lifetime can be limited by interface and grain-boundary recombination, and attaining high carrier concentration is complicated by morphology.

  8. Influencia de la cantidad de O2 adicionado al CO2 en el gas de protección sobre la microestructura del metal depositado en uniones soldadas de bordes rectos en aceros de bajo contenido de carbono con el proceso GMAW Influence of O2 content, added to CO2 in the shielding gas, on the microstructure of deposited metal in butt welded joint with straight edges, in low carbon steels using GMAW process

    OpenAIRE

    Eduardo Díaz-Cedré; Amado Cruz-Crespo; Félix Ramos Morales; Mauricio Tello Rico; Joel Chaparro Gonzáles; Manuel Rodríguez Pérez; Juan A. Pozo Morejón; Nancy M. Pérez Pino

    2010-01-01

    La presencia de ferrita acicular (FA) en la microestructura del cordón de soldadura, dentro de determinado rango de valores, eleva considerablemente la tenacidad de las uniones soldadas. Es por ello, que el presente trabajo trata sobre un estudio que relaciona la cantidad de ferrita acicular en el cordón en función del contenido de oxígeno presente en la mezcla activa CO2+O2, durante la realización de uniones soldadas de bordes rectos en aceros de bajo carbono con el proceso con electrodo fus...

  9. Calorimetric investigation on the Cd-Te binary alloys

    International Nuclear Information System (INIS)

    The enthalpy of formation of the Cd-Te solid and liquid alloys was measured by direct reaction calorimetry (DRC) (drop method) at 737 and 1259 K with the help of a Tian-Calvet high temperature calorimeter. The DRC procedure used was very simple at 737 K but more sophisticated at 1259 K due to the high vapor pressures of both components. This allowed us to determine the enthalpy of formation of the CdTe solid compound in agreement with the data of the literature and the enthalpy of formation of the melts in the whole range of concentration. (orig.)

  10. Electrical properties of single CdTe nanowires

    Directory of Open Access Journals (Sweden)

    Elena Matei

    2015-02-01

    Full Text Available Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport properties.

  11. Coal mining applications of CdTe gamma ray sensors

    Energy Technology Data Exchange (ETDEWEB)

    Entine, G.; Tiernan, T.; Waer, P.; Hazlett, T. (Radiation Monitoring Devices, Inc., Watertown, MA (USA))

    1990-01-01

    Cadmium telluride (CdTe) solid-state radiation detectors have been used in the development of instrumentation that improves the efficiency of coal-mining operations by helping to locate coal seams and preventing the mining of high-sulfur coal near the edges of the seam. CdTe detectors were selected for these applications because while they are small and durable, they offer good stopping power, deliver adequate spectral response and operate at low voltage. These CdTe-based instruments have passed the mine-safety standards and are now in operation in the mine. (author).

  12. Advances in CdTe n-i-p photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P.V. (Ametek Applied Materials Lab., Harleysville, PA (USA))

    1989-10-15

    Development of the CdTe n-i-p solar cell has enabled researchers to produce 11% efficient solar cells while eliminating stability problems associated with a low-resistance back contact. Furthermore, loss analysis indicates that significant increases in efficiency can still be realized through reduction of absorption and reflection and by passivation of recombination centers at the interfaces. Simplifications in the interconnection procedures make the CdTe n-i-p solar module more ''manufacturable''. A submodule with four interconnected cells has been produced. It has an aperture area efficiency over 8% with an area ratio of 0.91. (orig.).

  13. RELAXATION LONGUE DUREE DE LA PHOTOCONDUCTIVITE DANS CdTe

    OpenAIRE

    Zozime, A.; Schröter, W.

    1983-01-01

    Différents aspects des mesures de photoconductivité faites sur des monocristaux de CdTe sont présentés. Les signaux montrent l'existence d'un processus de relaxation de longue durée. Les spectres suivent une loi de variation du type loi d'Urbach. Enfin, le seuil d'énergie correspondant à la limite de détection des signaux mesurés dans CdTe de type n correspond à un niveau profond dans la bande interdite, associé aux dislocations.

  14. Coal mining applications of CdTe gamma ray sensors

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) solid-state radiation detectors have been used in the development of instrumentation that improves the efficiency of coal-mining operations by helping to locate coal seams and preventing the mining of high-sulfur coal near the edges of the seam. CdTe detectors were selected for these applications because while they are small and durable, they offer good stopping power, deliver adequate spectral response and operate at low voltage. These CdTe-based instruments have passed the mine-safety standards and are now in operation in the mine. (author)

  15. Electron-hole dynamics in CdTe tetrapods.

    Science.gov (United States)

    Malkmus, Stephan; Kudera, Stefan; Manna, Liberato; Parak, Wolfgang J; Braun, Markus

    2006-09-01

    We present transient absorption studies with femtosecond time resolution on the electron-hole dynamics in CdTe tetrapod nanostructures. Electron-hole pairs are generated by optical excitation in the visible spectral range, and an immediate bleach and induced absorption signal are observed. The relaxation dynamics to the lowest excitonic state is completed in about 6 ps. Experiments with polarized excitation pulses give information about the localization of the excited-state wave functions. The influence of the nanocrystal shape on the optical properties of CdTe nanoparticles is discussed. PMID:16942067

  16. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    OpenAIRE

    Wagner Anacleto Pinheiro; Vivienne Denise Falcão; Leila Rosa de Oliveira Cruz; Carlos Luiz Ferreira

    2006-01-01

    Unlike other thin film deposition techniques, close spaced sublimation (CSS) requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate) and a sintered C...

  17. Electrodos austeníticos inoxidables semisintéticos para la soldadura manual por arco eléctrico: Una variante económica para las pequeñas y medianas empresas (PIME. // Semi-synthetic austenitics stainless steel electrodes for shielded metal arc welding: A

    Directory of Open Access Journals (Sweden)

    A. Paz Iglesias

    2002-09-01

    Full Text Available En el presente trabajo se brinda una valoración económica para la producción de electrodos austeníticos inoxidables tiposE308L, E309, E312 y E316L en las pequeñas y medianas empresas (PIME. Lo significativo de la presente valoración esque se brindan los resultados obtenidos al fabricar los electrodos de forma semisintética; es decir, utilizando un solo tipo dealambre inoxidable (308L y añadiendo las ferroaleaciones necesarias en el revestimiento. Los resultados que se muestranestán basados en las experiencias de investigación, producción y comercialización de una planta con capacidad para 200toneladas al año, a la cual le es muy difícil insertarse en el mercado utilizando los mismos procedimientos tecnológicos yfinancieros de una gran empresa con grandes capitales y recursos.Palabras claves: Electrodos austeníticos inoxidables, electrodos sintéticos, ferroaleaciones, electrodossemisintéticos, electrodos convencionales, metal depositado.___________________________________________________________________Abstract.This paper offers an economic valuation for the production of stainless electrodes type E308L, E309, E312 and E316L,for small and middle companies (PIME. The significant part of the present valuation gives the results obtained in theproduction of semi-synthetic electrodes; using just one type of stainless wire (308L and adding the ferroalloys neededin the coat. The results shown are based on investigation experiences, production and trading of companies with acapacity for 200 T/year, so it is very difficult to enter in the market using the same technological procedures of a bigcompany with higher capital and financial resources.Key words: Nonrusting austenistic electrodes, sintetic electrodes, semisintetic electrodes, iron alloy,conventional electrodes, metal deposition.

  18. Radiative and interfacial recombination in CdTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, C. H., E-mail: craig.swartz@txstate.edu; Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H. [Materials Science, Engineering, and Commercialization Program, Texas State University, 601 University Dr., San Marcos, Texas 78666 (United States); Zaunbrecher, K. N. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Mississippi RSF200, Golden, Colorado 80401 (United States)

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  19. Electron transient transport in CdTe polycrystalline films

    Science.gov (United States)

    Ramírez-Bon, R.; Sánchez-Sinencio, F.; González de la Cruz, G.; Zelaya, O.

    1991-11-01

    Electron transient currents between coplanar electrodes have been measured in intrinsic polycrystalline films of CdTe, by means of the time of flight technique. The experimental results: electron transient current vs time, transit time vs voltage and the temperature dependence of the electron drift mobility, show features characteristics of dispersive electrical transport similar to that observed in disordered solids.

  20. EBIC INVESTIGATIONS OF EXTENDED DEFECTS IN CdTe

    OpenAIRE

    Panin, G.; Yakimov, E.

    1991-01-01

    The EBIC and remote contact EBIC (REBIC) techniques have been used to reveal grain boundaries and precipitates in CdTe crystals and to study their recombination contrast as a function of the electron beam parameters and temperature. The results obtained are discussed taking into account the defect charge state and the recombination properties of their environment.

  1. CdTe nano-structures for photovoltaic devices

    Science.gov (United States)

    Corregidor, V.; Alves, L. C.; Franco, N.; Barreiros, M. A.; Sochinskii, N. V.; Alves, E.

    2013-07-01

    CdTe nano-structures with diameter of ∼100 nm and variable length (200-600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al2O3 + Ta2O5) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orientation and thickness of CdTe nano-structured layers is investigated by means of IBA techniques, SEM and X-ray diffraction. It was shown that the formed CdTe nano-layers have a cubic structure, mainly oriented towards the [1 1 1] crystallographic direction, except for those grown on ZAO layer where the X-ray diffraction signal is very weak to be associated to any crystallographic form. The RBS spectra recorded on different areas of each sample type showed an almost constant thickness and SEM images revealed an homogeneous and dense distribution of the structures. It was also possible to study the first stage of the nano-structures grown on the Bi2Te3 seeds.

  2. CdTe nano-structures for photovoltaic devices

    International Nuclear Information System (INIS)

    CdTe nano-structures with diameter of ∼100 nm and variable length (200–600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al2O3 + Ta2O5) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orientation and thickness of CdTe nano-structured layers is investigated by means of IBA techniques, SEM and X-ray diffraction. It was shown that the formed CdTe nano-layers have a cubic structure, mainly oriented towards the [1 1 1] crystallographic direction, except for those grown on ZAO layer where the X-ray diffraction signal is very weak to be associated to any crystallographic form. The RBS spectra recorded on different areas of each sample type showed an almost constant thickness and SEM images revealed an homogeneous and dense distribution of the structures. It was also possible to study the first stage of the nano-structures grown on the Bi2Te3 seeds

  3. CdTe nano-structures for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Corregidor, V., E-mail: vicky.corregidor@itn.pt [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); CFNUL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Alves, L.C. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); CFNUL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Franco, N. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Barreiros, M.A. [LNEG, Estrada Estrada do Paço do Lumiar 22, 1649-038 Lisboa (Portugal); Sochinskii, N.V. [Consorzio CREO, SS 17 Località Boschetto, 67100 L’Aquila (Italy); Alves, E. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); CFNUL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2013-07-01

    CdTe nano-structures with diameter of ∼100 nm and variable length (200–600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al{sub 2}O{sub 3} + Ta{sub 2}O{sub 5}) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orientation and thickness of CdTe nano-structured layers is investigated by means of IBA techniques, SEM and X-ray diffraction. It was shown that the formed CdTe nano-layers have a cubic structure, mainly oriented towards the [1 1 1] crystallographic direction, except for those grown on ZAO layer where the X-ray diffraction signal is very weak to be associated to any crystallographic form. The RBS spectra recorded on different areas of each sample type showed an almost constant thickness and SEM images revealed an homogeneous and dense distribution of the structures. It was also possible to study the first stage of the nano-structures grown on the Bi{sub 2}Te{sub 3} seeds.

  4. Radiation induced polarization in CdTe detectors

    Science.gov (United States)

    Vartsky, D.; Goldberg, M.; Eisen, Y.; Shamai, Y.; Dukhan, R.; Siffert, P.; Koebel, J. M.; Regal, R.; Gerber, J.

    1988-01-01

    Polarization induced by irradiation with intense gamma ray sources has been studied in chlorine-compensated CdTe detectors. The influence of several parameters, such as applied field strength, temperature and incident photon flux, on the polarization effect have been investigated. A relationship was found between the degree of polarization, detector efficiency and detector leakage current.

  5. Radiation induced polarization in CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D.; Goldberg, M.; Eisen, Y.; Shamai, Y.; Dukhan, R.; Siffert, P.; Koebel, J.M.; Regal, R.; Gerber, J.

    1988-01-15

    Polarization induced by irradiation with intense gamma ray sources has been studied in chlorine-compensated CdTe detectors. The influence of several parameters, such as applied field strength, temperature and incident photon flux, on the polarization effect have been investigated. A relationship was found between the degree of polarization, detector efficiency and detector leakage current.

  6. Simulation of charge transport in pixelated CdTe

    International Nuclear Information System (INIS)

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points

  7. Applications of CdTe to nuclear medicine. Final report

    International Nuclear Information System (INIS)

    Uses of cadmium telluride (CdTe) nuclear detectors in medicine are briefly described. They include surgical probes and a system for measuring cerebral blood flow in the intensive care unit. Other uses include nuclear dentistry, x-ray exposure control, cardiology, diabetes, and the testing of new pharmaceuticals

  8. Band structure of CdTe under high pressure

    International Nuclear Information System (INIS)

    The band structures and density of states of cadmium telluride (CdTe) under various pressures ranging from normal to 4.5 Mbar are obtained. The electronic band structure at normal pressure of CdTe (ZnS structure) is analyzed and the direct band gap value is found to be 1.654 eV. CdTe becomes metal and superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The equilibrium lattice constant, bulk modulus and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(EF)) gets enhanced after metallization, which leads to the superconductivity in CdTe. In our calculation, the metallization pressure (PM = 1.935 Mbar) and the corresponding reduced volume ((V/V0)M = 0.458) are estimated. Metallization occurs via direct closing of band gap at Γ point. (author)

  9. Hydrothermal synthesis for high-quality CdTe nanocrystals

    International Nuclear Information System (INIS)

    Synthesis of water-soluble CdTe nanocrystals with high photoluminescence quantum yield and narrow fluorescence emission spectra is developed under the conditions of low precursor concentration and moderate temperature of hydrothermal growth. The relatively high temperature accelerates the particle growth rate and enhances the photoluminescence quantum yield. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. Intracavity CdTe modulators for CO2 lasers.

    Science.gov (United States)

    Kiefer, J. E.; Nussmeier, T. A.; Goodwin, F. E.

    1972-01-01

    The use of cadmium telluride as an electrooptic material for intracavity modulation of CO2 lasers is described. Included are the predicted and measured effects of CdTe intracavity modulators on laser performance. Coupling and frequency modulation are discussed and experimental results compared with theoretically predicted performance for both techniques. Limitations on the frequency response of the two types of modulation are determined.

  11. Catalytic growth of CdTe nanowires by closed space sublimation method

    International Nuclear Information System (INIS)

    CdTe nano-/micro-structures with various morphologies were grown by using the closed space sublimation (CSS) method on a sapphire substrate by Au-catalyzed vapor–liquid–solid (VLS) mechanism. Length, diameter, and morphology of the CdTe nano-/micro-structures depended on the growth time and temperature gradient between the substrate and powdered CdTe source. Scanning electron microscopy images showed that an Au catalyst droplet existed at the tips of CdTe nanowires, which confirms that CdTe nanowires were grown by an Au-catalyzed VLS mechanism. Also, we observed that the two-dimensional CdTe film layer initially formed before the growth of the CdTe nano-/micro-wires. The optical and structural properties of CdTe nano-/micro-structures were characterized by X-ray diffraction technique and micro-Raman spectroscopy. Our study demonstrates that diverse CdTe nano-/micro-structures can be fabricated by using Au-catalyzed VLS growth process in a simple CSS chamber by controlling the temperature gradient and growth time. - Highlights: • We demonstrated CdTe nanowires using closed space sublimation method. • Au-catalyst droplets at the tips confirmed vapor–liquid–solid mechanism. • Diameters and lengths increased with increasing temperature gradient and time

  12. Bifunctional electrodes with ir and Ru oxide mixtures and pt for unified regenerative cells; Electrodos bifuncionales basados en mezclas de oxidos de Ir y Ru con Pt para celdas regenerativas unificadas

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Escalante-Garcia, I.L. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico); Cruz, J. C.; Arriaga-Hurtado; L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: duronsm@prodigy.net.mx

    2009-09-15

    reaccion de evolucion de oxigeno (OER) en el PEMWE son las etapas limitantes de las URFC segun sea el modo de operacion. La obtencion de electrocatalizadores bifuncionales que se desempenen de manera satisfactoria en ambas reacciones del oxigeno y que soporten las diferentes condiciones de trabajo encontradas en una celda de combustible y un electrolizador, es el enfoque principal de las investigaciones relacionadas con las URFC. El presente trabajo es una contribucion a la investigacion de electrocatalizadores bifuncionales y muestra algunos resultados preliminares del estudio electroquimico de diferentes mezclas de Pt gcc, IrO{sub 2} y RuO{sub 2} soportadas en Ebonex® como electrodos de oxigeno. La caracterizacion electroquimica por voltamperometria ciclica (CV), Voltamperometria lineal (LV) y Espectroscopia de Impedancia electroquimica (EIS) en H{sub 2}SO{sub 4} 0.5 M, en ausencia y presencia de oxigeno revela que los electrodos bifuncionales IrO{sub 2}-Pt y RuO{sub 2}-Pt soportados en Ebonex® presentan propiedades electrocataliticas razonables para las reacciones de evolucion y reduccion de oxigeno y presentan posibilidad para su uso en una URFC. Los electrodos basados en el oxido de Ir muestran una mayor estabilidad que los correspondientes electrodos basados en oxido de rutenio.

  13. Characterization of M-π-n CdTe pixel detectors coupled to HEXITEC readout chip

    Science.gov (United States)

    Veale, M. C.; Kalliopuska, J.; Pohjonen, H.; Andersson, H.; Nenonen, S.; Seller, P.; Wilson, M. D.

    2012-01-01

    Segmentation of the anode-side of an M-π-n CdTe diode, where the pn-junction is diffused into the detector bulk, produces large improvements in the spatial and energy resolution of CdTe pixel detectors. It has been shown that this fabrication technique produces very high inter-pixel resistance and low leakage currents are obtained by physical isolation of the pixels of M-π-n CdTe detectors. In this paper the results from M-π-n CdTe detectors stud bonded to a spectroscopic readout ASIC are reported. The CdTe pixel detectors have 250 μm pitch and an area of 5 × 5 mm2 with thicknesses of 1 and 2 mm. The polarization and energy resolution dependence of the M-π-n CdTe detectors as a function of detector thickness are discussed.

  14. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    International Nuclear Information System (INIS)

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations

  15. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Park, Ji-Sang; Metzger, Wyatt [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Yin, Wan-Jian [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); College of Physics, Optoelectronics and Energy and Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Wei, Su-Huai, E-mail: suhuaiwei@csrc.ac.cn [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Beijing Computational Science Research Center, Beijing 100094 (China)

    2016-01-28

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  16. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    Science.gov (United States)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Metzger, Wyatt; Wei, Su-Huai

    2016-01-01

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  17. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2012-05-01

    Full Text Available CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111 orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  18. Implantación transarterial de un electrodo de marcapaso permanente en ventrículo izquierdo, como complicación rara de esta cirugía

    Directory of Open Access Journals (Sweden)

    Yirleydis Desdin Hernández

    2015-11-01

    Full Text Available Se  presenta el caso de una mujer de 48 años de edad, que recibió hace más de cuatro  años un implante de marcapaso permanente (MPP por bloqueo AV de 3er grado, y que desde los inicios de esta  cirugía ha estado muy sintomática, con cuadros de mareos recurrentes y un accidente cerebro vascular tromboembólico. En el EKG de 12 derivaciones se encontró un hallazgo que llamó la atención, se trataba de complejos electro estimulados con morfología de bloqueo de rama derecha (BRD, esto hizo sospechar de que al no tener una gran dilatación del ventrículo derecho se trataba entonces de una implantación inadecuada del electrodo en el ventrículo izquierdo. Una radiografía  de tórax PA a distancia tele y lateral izquierda, así como un estudio de ecocardiografía bidimensional, confirmó la implantación del electrodo en el VI vía arteria subclavia derecha. La paciente se trató con anticoagulación, dada su negativa de retirarlo quirúrgicamente,  y desde entonces ha estado asintomática por alrededor de un año y con una función del MPP normal. Este hecho refleja la necesidad de realizar EKG de 12 derivaciones posoperatorio a todos los casos de implante de MPP, dado lo fácil que resulta resolver esta complicación en esta etapa, convirtiéndose después de los seis meses en un serio problema de solución quirúrgica, generalmente.

  19. Hardening mechanism of twin boundaries during nanoindentation of soft-brittle CdTe crystals

    International Nuclear Information System (INIS)

    Deformations of cadmium telluride (CdTe) under nanoindentation were simulated by molecular dynamics. CdTe slides along the {1 1 1} planes under nanoindentation through edge dislocations. During loading, the sliding of CdTe was limited at twin boundaries, inducing the pile-up phenomenon. When dislocations transferred across the twin boundary, a sessile dislocation and steps formed. The coherence effect of both twin boundaries locked the dislocations at the twin boundary effectively, indicating a better hardening effect

  20. CdTe polycrystalline films on Ni foil substrates by screen printing and their photoelectric performance

    International Nuclear Information System (INIS)

    Highlights: • The sintered CdTe polycrystalline films by a simple screen printing. • The flexible Ni foil was chose as substrates to reduce the weight of the electrode. • The compact CdTe film was obtained at 550 °C sintering temperature. • The photoelectric activity of the CdTe polycrystalline films was excellent. - Abstract: CdTe polycrystalline films were prepared on flexible Ni foil substrates by sequential screen printing and sintering in a nitrogen atmosphere for the first time. The effect of temperature on the quality of the screen-printed film was investigated in our work. The high-quality CdTe films were obtained after sintering at 550 °C for 2 h. The properties of the sintered CdTe films were characterized by scanning electron microscopy, X-ray diffraction pattern and UV–visible spectroscopy. The high-quality CdTe films have the photocurrent was 2.04 mA/cm2, which is higher than that of samples prepared at other temperatures. Furthermore, CdCl2 treatment reduced the band gap of the CdTe film due to the larger grain size. The photocurrent of photoelectrode based on high crystalline CdTe polycrystalline films after CdCl2 treatment improved to 2.97 mA/cm2, indicating a potential application in photovoltaic devices

  1. Aluminum doping of CdTe polycrystalline films starting from the heterostructure CdTe/Al

    OpenAIRE

    Becerril, M.; O. Vigil-Galán; G. Contreras-Puente; O. Zelaya-Angel

    2011-01-01

    Aluminum doped CdTe polycrystalline films were obtained from the heterostructure CdTe/Al/Corning glass. The aluminum was deposited by thermal vacuum evaporation and the CdTe by sputtering of a CdTe target. The aluminum was introduced into the lattice of the CdTe from a thermal annealed to the CdTe/Al/Corning glas heterostructure. The electrical, structural, nd optical properties were analyzed as a function of the Al concentrations. It found that when Al is incorporated, the electrical resisti...

  2. Photoluminescence and Electroluminescence Properties of CdTe Nanoparticles in Conjugated Polymer Hosts

    Institute of Scientific and Technical Information of China (English)

    GUO, Fengqi; XIE, Puhui

    2009-01-01

    The photoinduced energy transfer process from conjugated polymer (PPE4+) to CdTe nanocrystals was found both in solutions and in thin films by a fluorescence spectroscopic technique. Films of PPE4+ blended with CdTe-2 nanocrystals were formed by an electrostatic layer-by-layer assembly technique. Light emitting diodes were fabricated using CdTe-2 as an emitter in PPE4+ host. PPE4+ works as a molecular wire in the energy transfer process from the polymer to the CdTe-2 nanocrystals.

  3. Digital pulse-shape processing for CdTe detectors

    International Nuclear Information System (INIS)

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency

  4. Digital pulse-shape processing for CdTe detectors

    CERN Document Server

    Bargholtz, C; Maartensson, L; Wachtmeister, S

    2001-01-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  5. Phosphorus Doping of Polycrystalline CdTe by Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Colegrove, Eric; Albin, David S.; Guthrey, Harvey; Harvey, Steve; Burst, James; Moutinho, Helio; Farrell, Stuart; Al-Jassim, Mowafak; Metzger, Wyatt K.

    2015-06-14

    Phosphorus diffusion in single crystal and polycrystalline CdTe material is explored using various methods. Dynamic secondary ion mass spectroscopy (SIMS) is used to determine 1D P diffusion profiles. A 2D diffusion model is used to determine the expected cross-sectional distribution of P in CdTe after diffusion anneals. Time of flight SIMS and cross-sectional cathodoluminescence corroborates expected P distributions. Devices fabricated with diffused P exhibit hole concentrations up to low 1015 cm-3, however a subsequent activation anneal enabled hole concentrations greater than 1016 cm-3. CdCl2 treatments and Cu based contacts were also explored in conjunction with the P doping process.

  6. First principles modeling of grain boundaries in CdTe

    Science.gov (United States)

    Chan, Maria K. Y.; Sen, Fatih; Buurma, Christopher; Paulauskas, Tadas; Sun, Ce; Kim, Moon; Klie, Robert

    The role of extended defects is of significant interest for semiconductors, especially photovoltaics since energy conversion efficiencies are often affected by such defects. In particular, grain boundaries in CdTe photovoltaics are enigmatic since the achievable efficiencies of CdTe photovoltaics are higher in polycrystalline devices as compared to single crystalline devices. Yet, despite recent advances, the efficiency of poly-CdTe devices are still substantially below the theoretical maximum. We carry out an atomistic-level study using Scanning Transmission Electron Microscopy (STEM), together with first principles density functional theory (DFT) modeling, in order to understand the properties of specific bicrystals, i.e. artificial grain boundaries, constructed using wafer bonding. We discuss examples of bicrystals, including some involving large scale DFT calculations, and trends in defect and electronic properties. This work was funded by DOE SunShot BRIDGE program.

  7. Digital pulse-shape processing for CdTe detectors

    Science.gov (United States)

    Bargholtz, Chr.; Fumero, E.; Mårtensson, L.; Wachtmeister, S.

    2001-09-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  8. Digital pulse-shape processing for CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bargholtz, Chr.; Fumero, E.; Maartensson, L. E-mail: martensson@physto.se; Wachtmeister, S

    2001-09-21

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  9. Dependence of CdTe response of bias history

    Energy Technology Data Exchange (ETDEWEB)

    Sites, J.R.; Sasala, R.A.; Eisgruber, I.L. [Colorado State Univ., Boulder, CO (United States)

    1995-11-01

    Several time-dependent effect have been observed in CdTe cells and modules in recent years. Some appear to be related to degradation at the back contact, some to changes in temperature at the thin-film junction, and some to the bias history of the cell or module. Back-contact difficulties only occur in some cases, and the other two effects are reversible. Nevertheless, confusion in data interpretation can arise when these effects are not characterized. This confusion can be particularly acute when more than one time-dependent effect occurs during the same measurement cycle. The purpose of this presentation is to help categorize time-dependent effects in CdTe and other thin-film cells to elucidate those related to bias history, and to note differences between cell and module analysis.

  10. Poly CdTe thin films solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Marfaing, Y.

    1982-01-01

    CdTe is potentially one of the most interesting materials for the photovoltaic conversion of solar energy. The width of its forbidden band of 1.5 eV puts it to the maximum of the theoretical yield curve (24%). Its high coefficient of optical absorption in the main band allows the use of thin films (2 to 3 microns). It is appropriate for production of thin polycristalline films with good optical and photoelectrical properties, which is probably due to its ionic character. The goal of the research performed as part of this contract is to determine the optimum conditions for the use of CdTe as photovoltaic converter. The authors think that the virtual efficiency of this material calls for confirmation and evidence provided by a systematic and profound investigation.

  11. Simulation of charge transport in pixelated CdTe

    OpenAIRE

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-01-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have op...

  12. Highly luminescent water-soluble CdTe quantum dots

    OpenAIRE

    Wuister, SF; Swart, A.N.; van Driel, F; Hickey, SG; Donega, CD; Swart, Ingmar

    2003-01-01

    Colloidal CdTe quantum dots prepared in TOP/DDA (trioctylphosphine/dodecylamine) are transferred into water by the use of aminoethanethiol.HCl (AET) or mercaptopropionic acid (MPA). This results in an increase in the photoluminescence quantum efficiency and a longer exciton lifetime. For the first time, water-soluble semiconductor nanocrystals presenting simultaneously high band-edge photoluminescence quantum efficiencies (as high as 60% at room temperature), monoexponential exciton decays, a...

  13. Determining energy production of CdTe photovoltaic system

    OpenAIRE

    Virtič, Peter; Šlamberger, Jan

    2015-01-01

    This paper presents a method for determining energy production of Cadmium-Telluride photovoltaic system, which has a different working performance than the most used Silicon photovoltaic systems. The main difference is sensitivity to the temperature and the solar irradiance. The CdTe cells are less sensitive to the temperature and in contrast to the Si Cells they have a higher efficiency at lower irradiance.

  14. CdTe Nanowires studied by Transient Absorption Microscopy

    Directory of Open Access Journals (Sweden)

    Kuno M.

    2013-03-01

    Full Text Available Transient absorption measurements were performed on single CdTe nanowires. The traces show fast decays that were assigned to charge carrier trapping at surface states. The observed power dependence suggests the existence of a trap-filling mechanism. Acoustic phonon modes were also observed, which were assigned to breathing modes of the nanowires. Both the fundamental breathing mode and the first overtone were observed, and the dephasing times provide information about how the nanowires interact with their environment.

  15. Optical modeling of graphene contacted CdTe solar cells

    Science.gov (United States)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  16. Challenges in p-type Doping of CdTe

    Science.gov (United States)

    McCoy, Jedidiah; Swain, Santosh; Lynn, Kelvin

    We have made progress in defect identification of arsenic and phosphorous doped CdTe to understand the self-compensation mechanism which will help improve minority bulk carrier lifetime and net acceptor density. Combining previous measurements of un-doped CdTe, we performed a systematic comparison of defects between different types of crystals and confirmed the defects impacting the doping efficiency. CdTe bulk crystals have been grown via vertical Bridgman based melt growth technique with varying arsenic and phosphorous dopant schemes to attain p-type material. Furnace temperature profiles were varied to influence dopant solubility. Large carrier densities have been reproducibly obtained from these boules indicating successful incorporation of dopants into the lattice. However, these values are orders of magnitude lower than theoretical solubility values. Infrared Microscopy has revealed a plethora of geometrically abnormal second phase defects and X-ray Fluorescence has been used to identify the elemental composition of these defects. We believe that dopants become incorporated into these second phase defects as Cd compounds which act to inhibit dopant solubility in the lattice.

  17. Studium vlastností CdTe senzorů

    OpenAIRE

    Vašíček, Martin

    2011-01-01

    Tato bakalářská práce se zabývá studiem vlastností CdTe detektorů. Popisuje analýzu transportních a šumových charakteristik vzorků CdTe při různých teplotách. Vyhodnocení získaných výsledků dokazuje, že se rozhraní CdTe chová jako dvojice antisériově zapojených diod. Průběhy VA charakteristik se vyznačují lineárním nebo lehce exponenciálním růstem. Při vzrůstající teplotě roste i vodivost vzorků. Měření prokázala rozdíl vodivosti testovaných vzorků při stejné teplotě. Dále je zřejmé, že v roz...

  18. Single-Crystal CdTe Homojunction Structures for Solar Cell Applications

    Science.gov (United States)

    Su, Peng-Yu; Dahal, Rajendra; Wang, Gwo-Ching; Zhang, Shengbai; Lu, Toh-Ming; Bhat, Ishwara B.

    2015-09-01

    We report two different CdTe homojunction solar cell structures. Single-crystal CdTe homojunction solar cells were grown on GaAs single-crystal substrates by metalorganic chemical vapor deposition. Arsenic and iodine were used as dopants for p-type and n-type CdTe, respectively. Another homojunction solar cell structure was fabricated by growing n-type CdTe directly on bulk p-type CdTe single-crystal substrates. The electrical properties of the different layers were characterized by Hall measurements. When arsine was used as arsenic source, the highest hole concentration was ~6 × 1016 cm-3 and the activation efficiency was ~3%. Very abrupt arsenic doping profiles were observed by secondary ion mass spectrometry. For n-type CdTe with a growth temperature of 250°C and a high Cd/Te ratio the electron concentration was ~4.5 × 1016 cm-3. Because of the 300 nm thick n-type CdTe layer, the short circuit current of the solar cell grown on the bulk CdTe substrate was less than 10 mA/cm2. The open circuit voltage of the device was 0.86 V. According to a prediction based on measurement of short circuit current density ( J sc) as a function of open circuit voltage ( V oc), an open circuit voltage of 0.92 V could be achieved by growing CdTe solar cells on bulk CdTe substrates.

  19. Temperature-dependent photoluminescence of highly luminescent water-soluble CdTe quantum dots

    Institute of Scientific and Technical Information of China (English)

    Ji Wei Liu; Yu Zhang; Cun Wang Ge; Yong Long Jin; Sun Ling Hu; Ning Gu

    2009-01-01

    Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.

  20. Characterisation of vapour phase grown CdTe and (Cd,Zn)Te for detector applications

    CERN Document Server

    Fiederle, M; Rogalla, M; Meinhardt, J; Ludwig, J; Runge, K; Benz, W

    1999-01-01

    The growth of CdTe from the vapour phase offers several improvements in crystal quality and homogeneity. CdTe and (Cd, Zn)Te were grown by the modified Markov technique. The transport properties and the detector performance are given and compared to melt grown material. (author)

  1. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong, E-mail: dayongw@seu.edu.cn

    2015-02-11

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd{sup 2+}. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  2. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd2+. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals

  3. The interaction of laser generated methyl radicals with Cd, Te, and CdTe surfaces

    International Nuclear Information System (INIS)

    The mechanism of the interaction of methyl radicals with Cd, Te, and CdTe surfaces has been studied in ultrahigh vacuum by Auger electron spectroscopy and thermal desorption mass spectrometry. Methyl radicals generated by the laser photodissociation of acetone at 193 nm efficiently etch both Te and Te-rich CdTe surfaces. However, there is no evidence for reaction of methyl radicals with Cd or stoichiometric CdTe. A temperature dependence in the rate of methyl radical etching of Te-rich CdTe is related to a competition between acetone scavenging of radicals on the surface and reaction of radicals to form volatile metalorganics. Acetone itself has a small but finite reaction probability with Te and Te-rich CdTe surfaces

  4. Vapor phase epitaxy of CdTe on sapphire and GaAs

    Science.gov (United States)

    Kasuga, Masanobu; Futami, Hiroyuki; Iba, Yoshihiro

    1991-12-01

    CdTe films were deposited on three kinds of sapphire substrate and two kinds of GaAs substrate by open tube vapor transport. X-ray Laue diffraction study showed that CdTe(111) film grew on every kind of sapphire substrate used, i.e. on the (0001) basal plane, the (11 overline20)A plane and the (1 overline102)R plane, and that there exist a few degrees of tilt angel between CdTe(111) and the lattice plane of each substrate. The process of making the tilt angle may be explained by the atomistic mismatch model of the Cd and Al arrangement which is projected on the film-substrate interface. On GaAs(100), either CdTe(111) or CdTe(100) was obtained, whereas only a twin crystalline film was obtained on GaAs(111). These results are also consistent with the mismatch model of Cd and Ga atoms.

  5. Homo-epitaxial growth of CdTe by sublimation under low pressure

    Science.gov (United States)

    Yoshioka, Yasushi; Yoda, Hiroki; Kasuga, Masanobu

    1991-12-01

    A new method to obtain a twin-free single crystal of CdTe on a CdTe substrate by sublimation is described. When CdTe(111)A substrates were employed for the homo-epitaxial growth of CdTe, twin crystals were frequently obtained. The substrate of CdTe(211)A and (211)B, however, gave no twins resulting in single crystals of high quality. The difference may come from the existence of many steps, sufficient to suppress two-dimensional nucleation and to promote step flow mechanism. To obtain twin-free films, therefore, a fairly large tilt angle of the substrate from a singular plane and a fairly low supersaturation are essential.

  6. NREL Collaboration Breaks 1-Volt Barrier in CdTe Solar Technology

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    NREL scientists have worked with Washington State University and the University of Tennessee to improve the maximum voltage available from CdTe solar cells. Changes in dopants, stoichiometry, interface design, and defect chemistry improved the CdTe conductivity and carrier lifetime by orders of magnitude, thus enabling CdTe solar cells with open-circuit voltages exceeding 1 volt for the first time. Values of current density and fill factor for CdTe solar cells are already at high levels, but sub-par voltages has been a barrier to improved efficiencies. With voltages pushed beyond 1 volt, CdTe cells have a path to produce electricity at costs less than fossil fuels.

  7. Growth of CdTe thin films on graphene by close-spaced sublimation method

    International Nuclear Information System (INIS)

    CdTe thin films grown on bi-layer graphene were demonstrated by using the close-spaced sublimation method, where CdTe was selectively grown on the graphene. The density of the CdTe domains was increased with increasing the number of the defective sites in the graphene, which was controlled by the duration of UV exposure. The CdTe growth rate on the bi-layer graphene electrodes was 400 nm/min with a bandgap energy of 1.45–1.49 eV. Scanning electron microscopy, micro-Raman spectroscopy, micro-photoluminescence, and X-ray diffraction technique were used to confirm the high quality of the CdTe thin films grown on the graphene electrodes

  8. Development of a CdTe thermal neutron detector for neutron imaging

    International Nuclear Information System (INIS)

    A thin CdTe thermal neutron detector has been developed and its suitability for neutron imaging has been investigated. Simulations of the interaction of neutrons with a 0.5 mm-thick CdTe detector demonstrate the advantages of using 96 keV prompt gamma rays produced by neutron capture in 113Cd as a neutron event. Specifically, they provide a high spatial resolution and approximately the same detection efficiency as 558 keV prompt gamma rays, which are commonly used for detecting thermal neutrons in CdTe detectors. We fabricated a thin CdTe detector. Measurements using a 133Ba gamma-ray source revealed that the detector has a gamma-ray energy resolution of 3 keV at 80 keV, while measurements using a 252Cf neutron source demonstrated that the CdTe detector has good neutron/gamma ray discrimination.

  9. Influence of EDTA2− on the hydrothermal synthesis of CdTe nanocrystallites

    International Nuclear Information System (INIS)

    Transformation from Te nanorods to CdTe nanoparticles was achieved with the assistance of EDTA as a ligand under hydrothermal conditions. Experimental results showed that at the beginning of reaction Te nucleated and grew into nanorods. With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Finally, nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were obtained. The effects of EDTA on the morphology and formation of CdTe nanoparticles were discussed in consideration of the strong ligand-effect of EDTA, which greatly decreased the concentration of Cd2+. Furthermore, the possible formation process of CdTe nanoparticles from Te nanorods was further proposed. The crystal structure and morphology of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). - Graphical Abstract: Firstly, Te nucleated and grew into nanorods in the presence of EDTA2−. Then CdTe nucleus began to emerge on Te nanorods and finally monodispersed CdTe nanoparticles were obtained. Highlights: ► EDTA serves as a strong ligand with Cd2+. ► The existence of EDTA constrains the nucleation of CdTe and promotes the formation of Te nanorods. ► With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. ► Nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were finally obtained.

  10. Modification of porosity in the catalyst layer of membrane electrode assemblies using pore-forming agents; Modificacion de la porosidad en la capa catalitica de ensambles membrana-electrodo empleando agentes formadores de poros

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Reyes, Brenda [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Barbosa P., Romeli [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)

    2009-09-15

    Membrane electrode assemblies (MEA) are the most important part of PEM fuel cells since their interface results in the electrochemical reactions that make the generation of electricity possible. The MEA is composed of a proton exchange membrane, both sides of which are impregnated with a catalyst layer, normally of carbon-supported platinum. Depending on the technique used for its fabrication (atomization, serigraphy, brush methods, chemical reduction, etc.), the properties of the MEA can be different in terms of porosity, distribution of the catalyst, thickness and structure of the catalyst layer, and the quality of the union between the catalyst layer and the membrane, etc. Currently, the porosity of the electrodes is generated by isopropanol evaporation (solvent used in the dye) during the fabrication process conducted in the Instituto de Investigaciones Electricas (IIE). This document presents the results obtained from adding a porous agent to the catalytic dye base composition used in the fabrication of MEA at the IIE. [Spanish] Los Ensambles Membrana-Electrodo (MEA's) son la parte mas importante en las celdas de combustibles tipo PEM, ya que en su interfaz se llevan a cabo las reacciones electroquimicas que hacen posible la generacion de electricidad. El MEA esta compuesto de una membrana de intercambio protonico a la cual se le impregna en ambos lados una capa catalitica normalmente de platino soportado en carbon. Dependiendo de la tecnica empleada en su fabricacion (atomizado, serigrafia, brocha, reduccion quimica, etc.), las propiedades del MEA pueden ser diferentes en cuanto a porosidad, distribucion del catalizador, grosor y estructura de la capa catalitica, asi como la calidad de la union entre la capa catalizadora y la membrana, etc. Actualmente, la porosidad de los electrodos es generada por la evaporacion del isopropanol (solvente utilizado en la tinta) durante el proceso de fabricacion que se realiza en el Instituto de Investigaciones

  11. Dewetted growth of CdTe in microgravity (STS-95)

    International Nuclear Information System (INIS)

    Two CdTe crystals had been grown in microgravity during the STS-95 mission. The growth configuration was dedicated to obtain dewetting of the crystals and to achieve high quality material. Background for the performed experiments was based on the theory of the dewetting and previous experience. The after flight characterization of the crystals has demonstrated existence of the dewetting areas of the crystals and their improved quality regarding the earth grown reference sample. The samples had been characterized by EDAX, Synchrotron X-ray topography, Photoluminescence and Optical and IR microscopy. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Dewetted growth of CdTe in microgravity (STS-95)

    Energy Technology Data Exchange (ETDEWEB)

    Fiederle, M.; Babentsov, V.; Benz, K.W. [Freiburger Materialforschungszentrum, D-79104 Freiburg (Germany); Duffar, T. [EPM, ENSHMG BP95 F-38402 Saint Martin d' Heres (France); Dusserre, P. [DTEN, Commissariat a l' Energie Atomique, 17, rue des Martyrs, F-38054 Grenoble (France); Corregidor, V.; Dieguez, E. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, E-28034 Madrid (Spain); Delaye, P.; Roosen, G. [Laboratoire Charles Fabry, Institut d' Optique Theorique et Appliquee, 91403 Orsay Cedex (France); Chevrier, V.; Launay, J.C. [Institut de Chimie de la Matiere Condensee de Bordeaux, ICMCB-CNRS-UPR 9048, 87 avenue du Docteur A. Schweitzer, 33608 Pessac Cedex (France)

    2004-06-01

    Two CdTe crystals had been grown in microgravity during the STS-95 mission. The growth configuration was dedicated to obtain dewetting of the crystals and to achieve high quality material. Background for the performed experiments was based on the theory of the dewetting and previous experience. The after flight characterization of the crystals has demonstrated existence of the dewetting areas of the crystals and their improved quality regarding the earth grown reference sample. The samples had been characterized by EDAX, Synchrotron X-ray topography, Photoluminescence and Optical and IR microscopy. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Study of fluorination of CdTe surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Koichi; Mori, Koichi; Miyake, Hideto (Dept. of Electrical Engineering, Mie Univ., Tsu-shi (Japan))

    1991-03-20

    In this paper we deal with fluorination of CdTe(100) single crystals in a 2% fluorine-98% nitrogen atmosphere for different temperatures and times. The fluorination process has been investigated by the use of microscopy, X-ray diffraction, energy-dispersive X-ray microanalysis, X-ray photoelectron spectroscopy and Auger electron spectroscopy measurements. Three temperature regions are found to be distinguished for the fluorination process. The fluorinated layer is mainly composed of CdF{sub 2} crystals, but an intermediate layer is shown to exist beneath the fluoride layer except for fluorination at low temperature. The formation mechanisms of the fluoride and intermediate layers are discussed. (orig.).

  14. INCORPORATION DU PHOSPHORE DANS CdTe PAR RECUIT LASER

    OpenAIRE

    Uzan, C.; Legros, R.; Marfaing, Y.

    1983-01-01

    La méthode du recuit laser a été utilisée pour incorporer du phosphore dans CdTe à partir d'une couche de Cd3P2 déposée en surface. La caractérisation par photoluminescence et mesure de profil à l'analyseur ionique montre le caractère actif du phosphore introduit et permet d'évaluer à 1018cm-3 la concentration atteinte à 1 µm de profondeur.

  15. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  16. COBRA - Double beta decay searches using CdTe detectors

    OpenAIRE

    Zuber, K.

    2001-01-01

    A new approach (called COBRA) for investigating double beta decay using CdTe (CdZnTe) semiconductor detectors is proposed. It follows the idea that source and detector are identical. This will allow simultaneous measurements of 5 $\\beta^-\\beta^-$ - and 4 $\\beta^+\\beta^+$ - emitters at once. Half-life limits for neutrinoless double beta decay of Cd-116 and Te-130 can be improved by more than one order of magnitude with respect to current limits and sensitivities on the effective Majorana neutr...

  17. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    International Nuclear Information System (INIS)

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  18. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2014-10-25

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  19. Propuesta para la recuperación de los machetes Zuazaga de los centrales azucareros con electrodos de acero al cromo. // Proposal for Recuperation of Sugar Mill Cut Cane by Using Chromium Steel Electrodes.

    Directory of Open Access Journals (Sweden)

    R. Collazo-Carceller

    2009-09-01

    Full Text Available El trabajo resume el estudio y análisis desarrollado, para la presentación de una propuestatecnológica de recuperación de los machetes Zuazaga, en nuestros centrales azucareros. Sedeterminó la influencia de los parámetros, energía introducida (Hi, número de capas (Nc y anchodel depósito (Ad, en la morfología y el incremento de la resistencia al desgaste abrasivo, utilizandoel electrodo de acero al cromo DUR 600. Se realizó una valoración económica de la propuestatecnológica.Palabras claves: morfología, desgaste abrasivo, parámetro de soldadura, dendrites._____________________________________________________________________________AbstractThis work, sumarises the study and the analisys developed, to prupose the Zuazaga cut canethecnology recuperation, in aur sugar mills. The parameters influency was determinated, Heatinput (Hi, Number of layers (Nc and the Cord whith (Ad, in the mofology and the abrasive wearresistance increase, using the cromiun steel UTP DUR - 600. The economical calculation of thethecnology was done.Key words: morphology abrasive wear, welding parameters. dendrites, modeling

  20. APPROACHING CRYOGENIC GE PERFORMANCE WITH PELTIER COOLED CDTE

    Energy Technology Data Exchange (ETDEWEB)

    Khusainov, A. K. (A. Kh.); Iwanczyk, J. S. (Jan S.); Patt, B. E. (Bradley E.); Prirogov, A. M. (Alexandre M.); Vo, Duc T.

    2001-01-01

    A new class of hand-held, portable spectrometers based on large area (lcm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM, Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

  1. Patterning thick diffused junctions on CdTe

    CERN Document Server

    Kalliopuska, Juha; Sipilä, Heikki; Andersson, Hans; Vähänen, Sami; Eränen, Simo; Tlustos, Lukas

    2009-01-01

    Dividing the detector crystal into discrete pixels enables making an imaging detector, in which the charge collected by each pixel can be read separately. Even if the detector is not meant for imaging, patterns on the crystal surface may be used as guard structures that control and limit the flow of charges in the crystal. This has been exceedingly hard for the detector crystals having thick diffused layers. The paper reports a patterning method of the thick diffused junctions on CdTe. The patterning method of In-diffused pn-junction on CdTe chip is demonstrated by using a diamond blade. The patterning is done by removing material from the pn-junction side of the chip, so that the trenches penetrate the diffused layer. As the trenches extend deeper into the bulk than the junction, the regions separated by the trench are electrically isolated. Electrical characterization results are reported for the strips separated by trenches with various depths. The strip isolation is clearly seen in both measured leakage c...

  2. Research on single-crystal CdTe solar cells

    Science.gov (United States)

    Borrego, J. M.; Ghandhi, S. K.

    1987-10-01

    This report outlines two years of work on the growth and characterization of single-crystal CdTe layers, to explore their potential for high-efficiency solar cells. It was demonstrated that high-quality layers can be grown by organometallic vapor phase epitaxy (OMVPE), whose photoluminescence peak has a FWHM of 5.8 MeV, the lowest value for them yet achieved. CdTe layers were extrinsically doped both n- and p-type with indium and arsenic, respectively. The doping level achieved for p-type is the highest yet reported in the literature, achieved for the first time in an OMVPE system. A hole lifetime of 2.0 microns was measured. In the n-type material, five deep levels were isolated; their capture cross section, energy level, and concentration were determined. A thermodynamic analysis was made to identify their defect character. Both Schottky and p-n junction devices were produced on these layers. The diode characteristics were superior to those of GaAs so this is a potentially superior material for solar cells.

  3. El Mecanismo de la Oxidación de Omeprazol Sobre el Electrodo de Carbono Vitroso, Modificado por Polializarina, y Su Descripción Matemática

    OpenAIRE

    Volodymyr Valentynovych Tkach; Bahaddurghatta Kumara Swamy; Reza Ojani; Montserrat Blanes; Petro Yagodynets´

    2015-01-01

    For the electroanalytical work of glassy carbon electrode, modified by polyalizarine, a mechanism, confirmed by experimental observations, has been proposed. This mechanism is also mathematically studied by means of linear stability theory and bifurcation analysis. The stable steady-state conditions, like also the causes for the oscillatory and monotonic instabilities, have been obtained on the base of the analysis of the model.DOI: http://dx.doi.org/10.17807/orbital.v7i1.599

  4. El Mecanismo de la Oxidación de Omeprazol Sobre el Electrodo de Carbono Vitroso, Modificado por Polializarina, y Su Descripción Matemática

    Directory of Open Access Journals (Sweden)

    Volodymyr Valentynovych Tkach

    2015-04-01

    Full Text Available For the electroanalytical work of glassy carbon electrode, modified by polyalizarine, a mechanism, confirmed by experimental observations, has been proposed. This mechanism is also mathematically studied by means of linear stability theory and bifurcation analysis. The stable steady-state conditions, like also the causes for the oscillatory and monotonic instabilities, have been obtained on the base of the analysis of the model.DOI: http://dx.doi.org/10.17807/orbital.v7i1.599

  5. PC/FRAM plutonium isotopic analysis of CdTe gamma-ray spectra

    CERN Document Server

    Vo, D T

    2002-01-01

    This paper reports the results of isotopics measurements of plutonium with the new CdTe gamma-ray spectrometer. These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than germanium spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. The complete experimental hardware included the new, commercial, portable CdTe detector and two commercial portable multichannel analyzers. Version 4 of FRAM is the software that performed the isotopics analysis.

  6. PC/FRAM plutonium isotopic analysis of CdTe gamma-ray spectra

    Science.gov (United States)

    Vo, D. T.; Russo, P. A.

    2002-07-01

    This paper reports the results of isotopics measurements of plutonium with the new CdTe gamma-ray spectrometer. These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than germanium spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. The complete experimental hardware included the new, commercial, portable CdTe detector and two commercial portable multichannel analyzers. Version 4 of FRAM is the software that performed the isotopics analysis.

  7. Enhanced Specificity of Multiplex Polymerase Chain Reaction via CdTe Quantum Dots

    OpenAIRE

    Liang Gaofeng; Ma Chao; Zhu Yanliang; Li Shuchun; Shao Youhua; Wang Yong; Xiao Zhongdang

    2010-01-01

    Abstract Nanoparticles were recently reported to be able to improve both efficiency and specificity in polymerase chain reaction (PCR). Here, CdTe QDs were introduced into multi-PCR systems. It was found that an appropriate concentration of CdTe QDs could enhance the performance of multi-PCR by reducing the formation of nonspecific products in the complex system, but an excessive amount of CdTe QDs could suppress the PCR. The effects of QDs on PCR can be reversed by increasing the polymerase ...

  8. Aqueous Synthesis of CdTe Quantum Dot Using Dithiol-Functionalized Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Suk Young Choi

    2012-01-01

    Full Text Available We report on an aqueous synthesis of cadmium telluride (CdTe nanocrystals by using dithiol-functionalized ionic liquids (dTFILs. The dTFILs were designed to have dithiol and vinylimidazolium functional groups and used as a ligand molecule of CdTe quantum dot (QD to utilize the bidendate chelate interaction afforded by the dithiol groups of dTFILs. The photoluminescence quantum yield of dTFIL-capped CdTe QDs reached up to ~40%, and their luminescent property was maintained for 8 weeks, suggesting an improved stability in water phase. This approach will provide a new synthetic route to the water soluble QDs.

  9. Preparation of CdTe nanocrystal-polymer composite microspheres in aqueous solution by dispersing method

    Institute of Scientific and Technical Information of China (English)

    LI Minjie; WANG Chunlei; HAN Kun; YANG Bai

    2005-01-01

    Highly fluorescent CdTe nanocrystals were synthesized in aqueous solution, and then processible CdTe nanocrystal-polymer composites were fabricated by coating the aqueous nanocrystals with copolymers of styrene and octadecyl-p-vinyl-benzyldimethylammonium chloride (SOV- DAC) directly. A dichloromethane solution of CdTe nano- crystal-polymer composites was dispersed in the aqueous solution of poly (vinyl alcohol) (PVA) generating highly fluorescent microspheres. Experimental parameters such as the concentration of nanocrystal-polymer composites, the concentration of PVA, and stirring speed which had important effect on the preparation of the microspheres were investigated in detail with fluorescent microscope characterization.

  10. Structural and optical characterization of CdTe quantum dots thin films

    International Nuclear Information System (INIS)

    Highlights: • CdTe QDs are prepared by hot injection method. • Thermally evaporated CdTeQDs thin films were prepared. • Structural characterization and analysis were done. • Optical parameters were studied. - Abstract: Cadmium telluride quantum dots (CdTe QDs) have been synthesized using hot-injection chemical technique. The CdTe QDs thin films were deposited onto optical flat fused quartz substrates using thermal evaporation technique. The CdTe QDs powder and the as deposited films were characterized using X-ray diffraction and high resolution transmission electron microscope (HRTEM). The X-ray analysis shows that both CdTe QDs powder and the as deposited films crystallize in cubic zinc-blende type structure with lattice parameter 6.46 Å and 6.45 Å, respectively. The X-ray calculation shows that the average crystallite size of the as deposited CdTe QDs films varied from 1.1 nm for the powder to 2.3 nm for the thin film. The HRTEM examination of the as deposited films shows that the average particle size vary from 2.5 nm for the powder to 2.7 nm for the thin film. For the as deposited films, the dependence of (αhν)2 on the incident photon energy indicates that the optical transitions within the film are allowed direct with energies observed at Eg1≅2eV and Eg2≅2.3eV which attributed to quantum confinement effect. The optical band gap increases from 1.5 eV for microstructure CdTe to 2 eV for nanostructure quantum dots which corresponding to wavelength(620 nm) so it is a great benefit to use CdTe quantum dots as solar harvesting devices application in solar spectrum region (400–800 nm). Urbach energy is calculated and found to be 360 meV which is higher than microstructure CdTe. The refractive index and refractive index dispersion of the as deposited CdTe QDs film has been calculated from transmission and reflection spectra. It has been found that the refractive index is reduced from (2.66) for microstructure CdTe to be (1.7) for CdTe quantum dots

  11. Selective growth of CdTe on patterned CdTe/Si(211)

    OpenAIRE

    Seldrum, T.; Bommena, R.; Samain, Louise; Sivananthan, S.; Sporken, R.; Dumont, J.

    2008-01-01

    The authors have studied selective growth of cadmium telluride on Si(211) by molecular beam epitaxy (MBE). Patterned substrates were produced by optical lithography of MBE-grown CdTe/As/Si(211). Photoemission microscopy was used as the main tool to study selective growth. This is very powerful because Si or SiO2 can be very easily distinguished from areas covered with even small amounts of CdTe due to contrast from work function differences. It was found that CdTe grows on CdTe without sticki...

  12. Ultra low density of CdTe quantum dots grown by MBE

    OpenAIRE

    Kobak, J.; Rousset, J. -G.; Rudniewski, R.; Janik, E.; S\\lupiński; Kossacki, P.; Golnik, A.; Pacuski, W.

    2012-01-01

    This work presents methods of controlling the density of self-assembled CdTe quantum dots (QDs) grown by molecular beam epitaxy. Two approaches are discussed: increasing the deposition temperature of CdTe and the reduction of CdTe layer thickness. Photoluminescence (PL) measurements at low temperature confirms that both methods can be used for significant reduction of QDs density from 1010QD/cm2 to 107-108QD/cm2. For very low QDs density, identification of all QDs lines observed in the spectr...

  13. Shape Control of CdTe Nanocrystals: Influence of the Solvent Composition and Ligand Effects

    OpenAIRE

    Xiaoping Jin; Jürgen Parisi; Joanna Kolny-Olesiak

    2013-01-01

    CdTe nanocrystals were synthesized by the hot-injection method with a mixture of oleylamine and octadecene as a solvent. The influence of the composition of the solvent and of the injection solution on the shape of CdTe nanoparticles was investigated. Various shapes of CdTe nanocrystals, such as nanodots, nanorods, multipods, and nanowires, could be obtained by changing the reaction conditions. Tuning the reactivity of both the cadmium and the tellurium precursors at the same time was found t...

  14. Electronic structure of the quantum spin Hall parent compound CdTe and related topological issues

    Science.gov (United States)

    Ren, Jie; Bian, Guang; Fu, Li; Liu, Chang; Wang, Tao; Zha, Gangqiang; Jie, Wanqi; Neupane, Madhab; Miller, T.; Hasan, M. Z.; Chiang, T.-C.

    2014-11-01

    Cadmium telluride (CdTe), a compound widely used in devices, is a key base material for the experimental realization of the quantum spin Hall phase. We report herein a study of the electronic structure of CdTe by angle-resolved photoemission spectroscopy from well-ordered (110) surfaces. The results are compared with first-principles calculations to illustrate the topological distinction between CdTe and a closely related compound HgTe. Through a theoretical simulation a topological phase transition as well as the Dirac-Kane semimetal phase at the critical point was demonstrated in the mixed compound H gxC d1 -xTe .

  15. Study of trapping density in electrical characteristics of CdTe thin films

    International Nuclear Information System (INIS)

    CdTe thin films were deposited on glass at various substrate temperatures using vacuum evaporated technique. The X-ray diffraction analysis of vacuum evaporated cadmium telluride (CdTe) films reveals was polycrystalline in nature for the samples prepared at higher temperatures. Micro structural feature associated with the as deposited CdTe thin films were studied by Transmission Electron Microscopy (TEM). A high density of trapping centers, responsible for grain boundary space-charge potential barriers, which oppose the passage of carriers from a grain to the neighbouring ones, was explained from this analysis. (author)

  16. Narrowing the size distribution of CdTe nanocrystals using digestive ripening

    Indian Academy of Sciences (India)

    Mona Mittal; Sameer Sapra

    2015-06-01

    Digestive ripening of polydispersed colloidal CdTe nanocrystals is performed which results in monodispersed nanocrystals (NCs) as studied by optical spectroscopy. Optimization of ligand and refluxing time is carried out. Monodispersed NCs are obtained using mercaptopropionic acid (MPA) as a digestive ripening agent at a refluxing time of 1–2 h. Digestive ripening of CdTe NCs, which are less polydispersed, is also executed and it leads to more monodispersed NCs. In all the cases, there is a shift of maximum emission wavelength of CdTe NCs after digestive ripening that may be due to Ostwald ripening along with digestive ripening.

  17. Orientational domains in metalorganic chemical vapor deposited CdTe(111) film on cube-textured Ni

    International Nuclear Information System (INIS)

    CdTe thin film was grown by metal organic chemical vapor deposition on cube-textured Ni substrate. The microstructures of the CdTe film and Ni substrate were studied using transmission electron microscopy (TEM) lattice imaging in cross sectional. The orientational relationships of multiple hetereoepitaxial domains in the CdTe film were examined by TEM diffraction. The observed epitaxy is [111]CdTe//[001]Ni. The adjacent domains in CdTe film have a 30° rotation with respect to each other as inferred by the observed different diffraction patterns obtained from different zone axes. The high resolution lattice imaging shows that lamellar twins dominate within each domain. Our results are compared with CdTe(111) film epitaxially grown on Si(001) substrate by molecular beam epitaxy reported in the literature. - Highlights: ► Epitaxial CdTe film grew on textured Ni at 350 °C despite of a large lattice mismatch. ► Epitaxial relationship is CdTe(111) parallel to Ni(001). ► 30° CdTe orientation domains inferred from transmission electron microscopy patterns ► Local inclined angle between CdTe and Ni at the interface is due to vertical mismatch. ► Single crystal-like epitaxial semiconductors can be grown on low cost metal sheet

  18. Applications of CdTe to nuclear medicine. Annual report, February 1, 1977--January 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Entine, G.

    1978-01-01

    The development of CdTe has now progressed to the point where a wide variety of prototype medical applications are being explored. It appears that as the more dramatic applications such as the camera became widely known, expanded interest will be developed for the more mundane but medically still useful areas of medicine such as probes and small arrays. The basic limitation to the increased use of CdTe in medicine remains an economic one as all applications must bear a heavy cost of fundatmental CdTe crystal and device research. A second problem is the fact that the existence of CdTe detectors is not known to most medical researches. This latter problem is being successfully addressed by this contract.

  19. Effects of high-temperature annealing on ultra-thin CdTe solar cells

    International Nuclear Information System (INIS)

    High-temperature annealing (HTA), a process step prior to vapor cadmium chloride (VCC) treatment, has been found to be useful for improving the crystallinity of CdTe films and the efficiency of ultra-thin CdTe solar cells. Scanning electron microscopy, optical absorption, photoluminescence measurements and analyses on photoluminescence results using spectral deconvolution reveal that the additional HTA step produces substantial grain growth and reduces grain boundary defects. It also reduces excessive sulfur diffusion across the junction that can occur during the VCC treatment. The HTA step helps to produce pinhole-free CdTe films and reduce electrical shorts in ultra-thin CdTe solar cells. An efficiency of about 11.6% has been demonstrated for ultra-thin CdS/CdTe solar cells processed with HTA step.

  20. Enhanced Specificity of Multiplex Polymerase Chain Reaction via CdTe Quantum Dots

    Directory of Open Access Journals (Sweden)

    Liang Gaofeng

    2011-01-01

    Full Text Available Abstract Nanoparticles were recently reported to be able to improve both efficiency and specificity in polymerase chain reaction (PCR. Here, CdTe QDs were introduced into multi-PCR systems. It was found that an appropriate concentration of CdTe QDs could enhance the performance of multi-PCR by reducing the formation of nonspecific products in the complex system, but an excessive amount of CdTe QDs could suppress the PCR. The effects of QDs on PCR can be reversed by increasing the polymerase concentration or by adding bovine serum albumin (BSA. The mechanisms underlying these effects were also discussed. The results indicated that CdTe QDs could be used to optimize the amplification products of the PCR, especially in the multi-PCR system with different primers annealing temperatures, which is of great significance for molecular diagnosis.

  1. Shape Control of CdTe Nanocrystals: Influence of the Solvent Composition and Ligand Effects

    Directory of Open Access Journals (Sweden)

    Xiaoping Jin

    2013-01-01

    Full Text Available CdTe nanocrystals were synthesized by the hot-injection method with a mixture of oleylamine and octadecene as a solvent. The influence of the composition of the solvent and of the injection solution on the shape of CdTe nanoparticles was investigated. Various shapes of CdTe nanocrystals, such as nanodots, nanorods, multipods, and nanowires, could be obtained by changing the reaction conditions. Tuning the reactivity of both the cadmium and the tellurium precursors at the same time was found to be the main reason for the shape control of CdTe nanocrystals in this reaction system. The reactivity of the Cd precursor was controlled by the composition of the solvent, while the activity of the Te precursor could be influenced by using trioctylphosphine and tributylphosphine in the injection solution.

  2. Position-sensitive CdTe detector using improved crystal growth method

    Science.gov (United States)

    1988-09-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  3. Synthesis of CdTe Quantum Dots with Tunable Photoluminescence Using Tellurium Dioxide as Tellurium Source

    Institute of Scientific and Technical Information of China (English)

    刘声燕; 王益林; 杨昆; 周立亚

    2012-01-01

    A simple and convenient method has been developed for synthesis of water-soluble CdTe quantum dots (QDs) under ambient atmospheric conditions. In contrast to the traditional aqueous synthesis, green to red emitting CdTe QDs were prepared by using TeO2 to replace Te or AIzTe3 as tellurium source in this method. The influences of ex- perimental variables, including pH value, 3-mercaptopropionic acid (MPA)/Cd and Te/Cd molar ratios, on the emis- sion peak and photoluminescence (PL) quantum yield (QY) of the obtained CdTe QDs have been systematically investigated. Experimental results indicate that green to red emitting CdTe QDs with a maximum photolumines- cence quantum yield of 35.4% can be prepared at pH 11.3 and rt(Cd) : n(Te) : n(MPA)= 1 : 0.1 : 1.7.

  4. Shell-isolated nanoparticle-enhanced fluorescence (SHINEF) of CdTe quantum dots

    International Nuclear Information System (INIS)

    We report shell-isolated nanoparticle-enhanced fluorescence (SHINEF) of CdTe quantum dots. Enhanced spectra are obtained after Ag SHINs were spread onto homogenous CdTe quantum dot/polyelectrolyte layer-by-layer (LbL) films on quartz. The thin silica shell of the SHINs effectively isolates the Ag cores, preventing short-range quenching to the metal and enabling plasmon enhancement of the quantum dot fluorescence (ca. 35 fold). - Highlights: • Shell-Isolated Nanoparticles-Enhanced Fluorescence (SHINEF). • Synthesis of CdTe quantum dot. • Layer-by-Layer technique for thin films preparation. • Different size of CdTe quantum dots. • Size effect of quantum dots in enhanced factor

  5. Properties of CdTe nanocrystalline thin films grown on different substrates by low temperature sputtering

    Institute of Scientific and Technical Information of China (English)

    Chen Huimin; Guo Fuqiang; Zhang Baohua

    2009-01-01

    CdTe nanocrystalline thin films have been prepared on glass, Si and Al2O3 substrates by radio-frequency magnetron sputtering at liquid nitrogen temperature. The crystal structure and morphology of the films were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The XRD examinations revealed that CdTe films on glass and Si had a better crystal quality and higher preferential orientation along the (111) plane than the Al2O3. FESEM observations revealed a continuous and dense morphology of CdTe films on glass and Si substrates. Optical properties of nanocrystalline CdTe films deposited on glass substrates for different deposited times were studied.

  6. Shell-isolated nanoparticle-enhanced fluorescence (SHINEF) of CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Maureira, Monica; Vargas, Víctor C [Facultad de Ciencias, Universidad de Chile, Santiago, 7800003 (Chile); Riveros, Ana [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 7803287 (Chile); Goulet, Paul J.G. [Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810 (United States); Osorio-Román, Igor O., E-mail: iosorior@uwindsor.ca [Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, 7820436 (Chile)

    2015-02-01

    We report shell-isolated nanoparticle-enhanced fluorescence (SHINEF) of CdTe quantum dots. Enhanced spectra are obtained after Ag SHINs were spread onto homogenous CdTe quantum dot/polyelectrolyte layer-by-layer (LbL) films on quartz. The thin silica shell of the SHINs effectively isolates the Ag cores, preventing short-range quenching to the metal and enabling plasmon enhancement of the quantum dot fluorescence (ca. 35 fold). - Highlights: • Shell-Isolated Nanoparticles-Enhanced Fluorescence (SHINEF). • Synthesis of CdTe quantum dot. • Layer-by-Layer technique for thin films preparation. • Different size of CdTe quantum dots. • Size effect of quantum dots in enhanced factor.

  7. Tumoral response factors after radiofrequency ablation of hepatocellular carcinoma in cirrhotic liver Factores de respuesta tumoral tras ablación mediante radiofrecuencia del carcinoma hepatocelular sobre cirrosis

    Directory of Open Access Journals (Sweden)

    J. Calleja Kempin

    2005-10-01

    Full Text Available Objective: hepatocellular carcinoma (HCC ablation by radiofrequency (RFA is a novel technique with a great variety of methods whose efficacy and predictive factors have not been completely studied. Some of the main predictive factors in this type of treatment are analyzed in the present study. Patients and methods: ninety-three patients with hepatocellular carcinoma over cirrhosis, and with no indication for surgical resection were treated by RFA. Two different types of electrodes were used for RFA (refrigerated-"Cool-Tip" and perfusion with saline solution, the approach was percutaneous, by laparoscopy or laparotomy. Results: overall survival at 1, 2 and 3 years was 88, 81, and 76%, with a free-disease survival (FDS of 66, 31 and 17%, respectively. For tumors less than 3 cm, FDS at 1,2 and 3 years was 74, 44 and 30%, while for more than 3 cm in size FDS was 55, 12 and 0% (p = 0.02. FDS for HCC with one nodule was 70, 36 and 22%, and for more than one nodule it decreased to 50, 17 and 0% at 1, 2 and 3 years, respectively (p = 0.07. Surprisingly, the method employed for RFA has a main influence in FDS, with 0% at 3 years for perfusion electrodes and 26% for cool-tip electrodes at the same period. Conclusions: in this series, overall survival at three years was relatively high; however, tumoral size, number of nodules and RFS method were independent variables associated with disease-free survival.Objetivo: la ablación por radiofrecuencia del hepatocarcinoma (ARF es una técnica de reciente adquisición, cuya eficacia y factores predictivos no han sido suficientemente evaluados. El presente estudio fue diseñado para este análisis. Pacientes y métodos: se han tratado 93 pacientes con hepatocarcinoma sobre hígado cirrótico sin criterios de resección ni de trasplante hepático. El tratamiento se realizó mediante abordaje percutáneo, laparoscópico o mediante laparotomía con dos tipos de electrodos de radiofrecuencia, electrodo refrigerado y

  8. Gamma spectrometric characterization of various CdTe and CdZnTe detectors

    CERN Document Server

    Arlt, R; Sumah, P

    1999-01-01

    CdZnTe and CdTe detectors are now used by the Department of Safeguards of the International Atomic Energy Agency in significant numbers. To prepare, plan and support various verification methods, their properties must be well characterized and understood. In this paper we present some of the results which were obtained with large volume hemispheric CdZnTe detectors and high-resolution CdTe detectors.

  9. Fluorescence Quenching of CdTe Nanocrystals by Bound Gold Nanoparticles in Aqueous Solution

    OpenAIRE

    Jian ZHANG; Badugu, Ramachandram; Lakowicz, Joseph R.

    2008-01-01

    Water-soluble gold nanoparticles with an average diameter of 5 nm were prepared with carboxylic acid terminated thiol ligands. These ligands contain zero to eight methylene moieties. CdTe nanocrystals with an average diameter of 5 nm were synthesized with aminoethanethiol capping. These nanocrystals displayed characteristic absorption and emission spectra of quantum dots. The amine terminated CdTe nanocrystals and carboxylic-acid-terminated gold nanoparticles were conjugated in aqueous soluti...

  10. Preparation and biological investigation of luminescent water soluble CdTe nanoparticles

    OpenAIRE

    Byrne, S.J.; O'Driscoll, C.M.; Corr, S.A.; Gun'ko, Y. K.; Mitchell, S.; Volkov, Y.

    2005-01-01

    In this study CdTe quantum dots have been successfully prepared in aqueous medium using several different thiol stabilizers. The resulting nanocrystals were purified and the photoluminescence efficiency was subsequently enhanced through post preparative procedures such as photochemical etching and ageing. An optical study was carried out on the resulting CdTe nanocrystals as proof as their improvement. Preliminary tests of the thiol stabilised QDs as potential biolabels have been performed. I...

  11. Untersuchung von CdTe als Sensormaterial für die spektroskopische Röntgenbildgebung

    OpenAIRE

    Guni, Ewald

    2012-01-01

    Detektorkonzepte mit photonenzählender Ausleseelektronik gewinnen zunehmend an Bedeutung in der medizinischen Bildgebung. Materialien mit hohem Absorptionsvermögen, wie CdTe, sind dabei die bevorzugten Sensormaterialien. Ziel dieser Arbeit war es, CdTe als Sensormaterial in Verbindung mit dem photonenzählenden Auslesechip Medipix2-MXR, im Hinblick auf die Eignung zur spektroskopischen Röntgenbildgebung, zu untersuchen. Das Augenmerk richtete sich dabei auf den Nachweis von Kontrastmitteln in ...

  12. Deposition of Cl-doped CdTe polycrystalline films by close-spaced sublimation

    International Nuclear Information System (INIS)

    The effects of Cl-doping on the CdTe layers by the close-spaced sublimation (CSS) deposition were investigated. Cl-doped CdTe polycrystalline films were deposited on graphite substrates by CSS method using a mixture of CdTe and CdCl2 powder as a source. In X-ray diffraction (XRD) patterns of the obtained films with various deposition times, many diffraction peaks other than CdTe peaks were observed in the deposition times lower than 10 min. These diffraction peaks were probably due to the formation of chlorides of Cd, Te and C, such as CdCl2, TeCl4, Te3Cl2 and C10Cl8. X-ray fluorescence (XRF) and secondary ion mass spectrometry (SIMS) analyses revealed that a large amount of chlorine was contained in the films with the deposition times lower than 10 min, and that Cl concentration decreased with increasing the deposition time above 3 min. These results indicate that the films containing the chlorides of Cd, Te and C in addition to CdTe are formed in the initial stage of the CSS deposition using a mixture of CdTe and CdCl2 powder as a source. Cross-sectional images revealed that the grain size was decreased by the effect of Cl-doping. Furthermore, current-voltage (I -V) characteristics of the CdTe/graphite structures were measured, and it was found that the resistivity of the Cl-doped CdTe layer was much higher than that of the undoped CdTe layer. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. PENINGKATAN KUALITAS FILM TIPIS CdTe SEBAGAI ABSORBER SEL SURYA DENGAN MENGGUNAKAN DOPING TEMBAGA (Cu)

    OpenAIRE

    P. Marwoto; N.M. Darmaputra; Sugianto -; Othaman, Z.; E. Wibowo; S.Y. Astuti

    2012-01-01

    Film tipis CdTe dengan doping tembaga (Cu) berkonsenterasi 2% telah berhasil ditumbuhkan di atas substrat Indium Tin Oxide (ITO) dengan metode dc magnetron sputtering. Penelitian ini dilakukan untuk mengetahui pengaruh doping Cu(2%) terhadap struktur morfologi, struktur kristal, fotoluminisensi dan resistivitas listrik film CdTe. Citra morfologi Scanning Electron Microscopy (SEM) dan hasil analisis struktur dengan X-Ray Diffraction (XRD) menunjukkan bahwa film CdTe:Cu(2%) mempunyai citra perm...

  14. CdTe and HgI2 crystals and detectors: present state and future

    International Nuclear Information System (INIS)

    After recalling the main properties of CdTe and HgI2 crystals from which the characteristics of these detectors will arise, the fabrication cycle is analysed at its various stages. The results at present achieved on CdTe and HgI2 detectors are analysed with a number of concrete applications in view such as medium power (0-200 keV) X and γ spectrometry, localisation of γ photons and solid ionisation chambers

  15. Transferring CdTe Nanoparticles from Liquid Phase to Polyvinylpyrrolidone Nanofibers by Electrospinning and Detecting Its Photoluminescence Property

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-gang; YANG Qing-biao; BAI Jie; SONG Yan; ZHANG Chao-qun; LI Yao-xian

    2008-01-01

    The major aim of this work was to synthesize thio-stabilized CdTe nanoparticles(NPs) in an aqueous solution,which was then enwrapped with cetyltrimethylammonium bromide(CTAB),and finally transferred to the polyvinylpyrrolidone(PVP) matrix by electrospinning,The PVP nanofibers containing CdTe NPs were characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM),to observe the morphology of the nanofibers and the distribution of CdTe NPs,The selective area electronic diffraction(SAED) pattern verified that CdTe NPs were cubic lattice,The photoluminescence(PL) spectrum indicated that CdTe NPs existed in an optical style in PVP nanofibers,Moreover,X-ray photoelectron spectra(XPS) revealed that thiol-stabilized CdTe NPs were enwrapped by CTAB,and PVP acted as a dispersant in the process of electrospinning.

  16. Formation and Properties of Polycrystalline p-Type High-Conductivity CdTe Films by Coevaporation of CdTe and Te

    Science.gov (United States)

    Hayashi, Toshiya; Hayashi, Hiroaki; Fukaya, Mitsuru; Ema, Yoshinori

    1991-10-01

    Polycrystalline p-type high-dark-conductivity CdTe films have been prepared by coevaporation of CdTe and Te. The structural and electrical properties were investigated. The dark conductivity of the films at 300 K ranged from 6.32× 10-8 to 3.41 S cm-1. The film structure was of the zincblende type with a preferential orientation of the (111) planes parallel to the substrate. The crystallinity was rather good. From the measurements of the carrier concentration versus ambient temperature characteristics, it was found that the high-conductivity p-type conduction of the films was due to the formation of Cd vacancies, acceptors resulting from the coevaporation of CdTe and Te. It is shown that the high-conductivity films obtained are suitable for p-CdTe/n-CdS solar cells.

  17. Studies on interaction between CdTe quantum dots and -chymotrypsin by molecular spectroscopy

    Indian Academy of Sciences (India)

    Jianniao tian; Shengzhi Wei; Yanchun Zhao; Rongjun Liu; Shulin Zhao

    2010-05-01

    In this article, the interaction between -Chymotrypsin and CdTe QDs was investigated by fluorescence, synchronous fluorescence, and circular dichroism (CD) spectroscopic methods at pH 7.20 and pH 9.05. The intrinsic fluorescence of -Chy is quenched by CdTe QDs. Under different pH conditions, the level of binding constants is determined to be 103 from fluorescence data. The hydrogen bond or van der Waals force is involved in the binding process when pH is 9.05, while the hydrophobic and electrostatic interactions play main role in the binding process when pH is 7.20. The red-shift of synchronous fluorescence spectral peak of protein after the addition of CdTe QDs reveals that the microenvironments around tryptophan residues are disturbed by CdTe QDs. The secondary structure of -Chy undergoes slight changes as similar by far-UV CD data. The activity and stability of -Chy in the presence of CdTe QDs were also studied. -Chy can maintain its high activity and stability under different pH conditions for 24 h in the presence of CdTe QDs.

  18. Cu{sub 2}S as ohmic back contact for CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Türck, Johannes; Siol, Sebastian; Mayer, Thomas; Klein, Andreas; Jaegermann, Wolfram, E-mail: jaegermann@surface.tu-darmstadt.de

    2015-05-01

    We prepared a back contact for CdTe solar cells with Cu{sub 2}S as primary contact. Cu{sub 2}S was evaporated on CdCl{sub 2} treated CdTe solar cells in superstrate configuration. The CdTe and CdS layers were deposited by Closed Space Sublimation. Direct interface studies with X-ray photoelectron spectroscopy have revealed a strongly reactive interface between CdTe and Cu{sub 2}S. A valence band offset of 0.4-0.6 eV has been determined. The performance of solar cells with Cu{sub 2}S back contacts was studied in comparison to cells with an Au contact that deposited onto a CdCl{sub 2}-treated CdTe surface that was chemically etched using a nitric-phosphoric etch. The solar cells were analyzed by current-voltage curves and external quantum efficiency measurements. After several post deposition annealing steps, 13% efficiency was reached with the Cu{sub 2}S back contact, which was significantly higher than the ones obtained for the NP-etched back contacts. - Highlights: • A new back contact for CdTe solar out of Cu{sub 2}S has been tested. • With a direct interface experiment the valence band offset was determined. • Post deposition heat treatment has been carried out for the solar cells. • 13% efficiency has been reached with the Cu{sub 2}S back contact.

  19. On the doping problem of CdTe films: The bismuth case

    International Nuclear Information System (INIS)

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 1013 cm-3, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 1015 cm-3. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented

  20. Synthesis of Aqueous CdTe Nanocrystals with High Efficient Blue-Green Emission of Exciton

    Institute of Scientific and Technical Information of China (English)

    邵海宝; 王春雷; 李荣青; 徐淑宏; 张海升; 崔一平

    2012-01-01

    As one of the most popular nanocrystals (NCs), aqueous CdTe NCs have very weak green emission under con- ventional synthesis conditions. In this work, we report the first example of blue-emitting CdTe NCs directly synthe- sized in aqueous solution by slowing down the growth rate after nucleation. The key for the synthesis is the optimi- zation of NC growth conditions, namely pH range of 7.5 to 8.5, TGA/Cd ratio of 3.6, Cd/Te ratio of 10, and Te concentration of 2 × 10-5 mol/L, to get a slow growth rate after nucleation. The as-prepared blue-emitting CdTe NCs have small size (as small as 1.9 nm) and bright emission [with 4% photoluminescence quantum yield (PL QY) at 486 nm and 17% PLQY at 500 nm]. Transmission electron microscopy (TEM) images of the as-prepared CdTe show monodispersed NCs which exhibit cubic zinc blend structure. Moreover, time-resolved PL decay and X-ray photoelectron spectroscopy (XPS) results show the as-prepared NCs have better surface modification by ligand, which makes these luminescent small CdTe NCs have higher photoluminescence quantum yield, compared with NCs synthesized under conventional conditions.

  1. On the doping problem of CdTe films: The bismuth case

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Brown, M. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Ruiz, C.M. [Depto. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Vidal-Borbolla, M.A. [Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Lomas 4a. Secc., 78210 San Luis Potosi, SLP (Mexico); Ramirez-Bon, R. [CINVESTAV-IPN, U. Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)], E-mail: mtufinovel@yahoo.com.mx; Calixto, M. Estela [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Compaan, A.D. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)

    2008-08-30

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10{sup 13} cm{sup -3}, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10{sup 15} cm{sup -3}. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented.

  2. Orientation of CdTe epitaxial films on GaAs(100) grown by vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Houng Mauphon; Fu Shenli; Jenq Fenqlin (Dept. of Electrical Engineering, National Cheng-Kung Univ., Tainan (Taiwan)); Chen Jiannruey (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1991-08-15

    The growth of (100)- and (111)-oriented CdTe epitaxial layers on (100)-oriented GaAs substrates were investigated. Ar{sup +} plasma bombardment was used to remove the surface oxide layer, while preheating the substrate before evaporation was performed to deplete arsenic on the GaAs substrate surface. Results indicate that the CdTe(100) will grow on GaAs(100) with an oxide layer remaining on the surface. For the GaAs(100) substrate with the oxide layer removed by plasma bombardment, CdTe(100) will grow on the arsenic-depleted GaAs substrate, while CdTe(111) will grow on the GaAs substrate without arsenic depletion. A model is proposed that a tellurium-rich surface is formed on the arsenic-depleted GaAs surface through Ga-Te bonding on which the CdTe(100) will grow, whereas CdTe(111) will grow on a tellurium-poor surface. The photoluminescence investigation conforms to our proposed model. (orig.).

  3. Phosphorus Diffusion Mechanisms and Deep Incorporation in Polycrystalline and Single-Crystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji-Hui; Burst, James M.; Albin, David S.; Wei, Su-Huai; Metzger, Wyatt K.

    2016-05-01

    A key challenge in cadmium telluride (CdTe) semiconductors is obtaining stable and high hole density. Group I elements substituting Cd can form ideal acceptors but easily self-compensate and diffuse quickly. For example, CdTe photovoltaics have relied on copper as a dopant, but copper creates stability problems and hole density that has not exceeded 1015 cm-3. If hole density can be increased beyond 10^16 cm-3, CdTe solar technology can exceed multicrystalline silicon and provide levelized costs of electricity below conventional energy sources. Group V elements substituting Te offer a solution, but are very difficult to incorporate. Using time-of-flight secondary-ion mass spectrometry, we examine bulk and grain boundary (GB) diffusion of phosphorous (P) in CdTe in Cd-rich conditions. We find that in addition to slow bulk diffusion and fast GB diffusion, there is a fast bulk diffusion component that enables deep P incorporation in CdTe. Detailed first-principles calculations indicate the slow bulk diffusion component is caused by substitutional P diffusion through the Te sublattice, whereas the fast bulk diffusion component is caused by P diffusing through interstitial lattice sites following the combination of a kick-out step and two rotation steps. The latter is limited in magnitude by high formation energy, but is sufficient to manipulate P incorporation. In addition to an increased physical understanding, this result opens up new experimental possibilities for Group V doping in CdTe materials.

  4. Electrodeposited CdTe and HgCdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Basol, B.M.

    1988-01-15

    The processing steps necessary for producing high efficiency electrodeposited CdTe and HgCdTe solar cells are described. The key step in obtaining solar cell grade p-type CdTe and HgCdTe is the 'type conversion-junction formation' (TCJF) process. The TCJF process involves the heat treatment of the as-deposited n-type CdTe and HgCdTe layers at around 400 /sup 0/C. This procedure converts these n-type films into high resistivity p type and forms a rectifying junction between them and the underlying n-type window layers. Possible effects of oxygen on the TCJF process are discussed. The results of studies made on the structural, electrical and optical properties of the electrodeposited CdS, CdTe and HgCdTe films are presented. The resistivity of the electrodeposited HgCdTe can be made lower than that of CdTe. Consequently, solar cells made using the HgCdTe films have, on the average, better fill factors than those made using the CdTe layers, HgCdTe is also attractive for tandem-cell applications because of its variable band gap which can be easily tuned to the desired value. CdS/CdTe and CdS/HgCdTe heterojunction solar cells with 10.3% and 10.6% efficiency have been demonstrated using electrodeposition techniques and the TCJF process.

  5. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    Science.gov (United States)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  6. Scanning Kelvin probe measurements on As-doped CdTe solar cells

    International Nuclear Information System (INIS)

    Scanning Kelvin probe microscopy (SKPM) has been used to study the Fermi level shift in arsenic (As) doped cadmium telluride (CdTe) photovoltaic devices. The contact potential difference (CPD) between probe tip and sample surface revealed that increasing As concentrations in CdTe led to a decrease in CPD. This highlighted a downward shift in the CdTe Fermi level and an increase in the CdTe work function. Using a highly oriented pyrolytic graphite sample in ambient conditions as a reference, the absolute work functions of the CdTe samples were estimated to vary from 3.88 to 4.09 eV. High-resolution SKPM measurements revealed localized shifts in CPD at CdTe grain boundaries. This was directly correlated to As doping concentrations, and indicated the segregation of As to grain boundaries. A mechanism is proposed where localized band bending at grain boundaries channels minority carriers away from the grain boundary, leading to reduced carrier recombination. (paper)

  7. Physical vapor deposition of CdTe thin films at low temperature for solar cell applications

    International Nuclear Information System (INIS)

    Cadmium telluride is successfully utilized as an absorber material for thin film solar cells. Industrial production makes use of high substrate temperatures for the deposition of CdTe absorber layers. However, in order to exploit flexible substrates and to simplify the manufacturing process, lower deposition temperatures are beneficial. Based on the phase diagram of CdTe, predictions on the stoichiometry of CdTe thin films grown at low substrate temperatures are made in this work. These predictions were verified experimentally using additional sources of Cd and Te during the deposition of the CdTe thin films at different substrate temperatures. The deposited layers were analyzed with energy-dispersive X-ray spectroscopy. In case of CdTe layers which were deposited at substrate temperatures lower than 200 C without usage of additional sources we found a non-stoichiometric growth of the CdTe layers. The application of the additional sources leads to a stoichiometric growth for substrate temperatures down to 100 C which is a significant reduction of the substrate temperature during deposition.

  8. A new structure to increase the photostability of CdTe quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    In this paper a new cell structure is introduced to reduce the rate of CdTe corrosion in quantum dot sensitized solar cells (QDSSCs) using I-/I3- electrolyte. In this cell, one electrode is a titania nanorod that was sensitized with CdTe quantum dots as the working electrode. A thin gold layer is sputtered on the electrode to act as a protective layer against the I-/I3- corrosive electrolyte and to passivate the CdTe surface traps which are the main recombination centres in a QDSSC. In addition, a Schottky barrier formed at the interface of Au and CdTe prevents direct electron recombination from the CdTe conduction band with I3- ions. The mechanism of charge transfer and quantum dot regeneration in the presence of gold layer is discussed and our results show that the solar cells made of TiO2/CdTe/Au photoanode have more photostability and a higher fill factor relative to the TiO2/CdTe photoanodes.

  9. Oxygen Incorporation During Fabrication of Substrate CdTe Photovoltaic Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duenow, J. N.; Dhere, R. G.; Kuciauskas, D.; Li, J. V.; Pankow, J. W.; DeHart, C. M.; Gessert, T. A.

    2012-06-01

    Recently, CdTe photovoltaic (PV) devices fabricated in the nonstandard substrate configuration have attracted increasing interest because of their potential compatibility with flexible substrates such as metal foils and polymer films. This compatibility could lead to the suitability of CdTe for roll-to-roll processing and building-integrated PV. Currently, however, the efficiencies of substrate CdTe devices reported in the literature are significantly lower ({approx}6%-8%) than those of high-performance superstrate devices ({approx}17%) because of significantly lower open-circuit voltage (Voc) and fill factor (FF). In our recent device development efforts, we have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. Here, we investigate how oxygen incorporation in the CdTe deposition, CdCl2 heat treatment, CdS deposition, and post-deposition heat treatment affect device characteristics through their effects on the junction. By adjusting whether oxygen is incorporated during these processing steps, we have achieved Voc values greater than 860 mV and efficiencies greater than 10%.

  10. Cu2S as ohmic back contact for CdTe solar cells

    International Nuclear Information System (INIS)

    We prepared a back contact for CdTe solar cells with Cu2S as primary contact. Cu2S was evaporated on CdCl2 treated CdTe solar cells in superstrate configuration. The CdTe and CdS layers were deposited by Closed Space Sublimation. Direct interface studies with X-ray photoelectron spectroscopy have revealed a strongly reactive interface between CdTe and Cu2S. A valence band offset of 0.4-0.6 eV has been determined. The performance of solar cells with Cu2S back contacts was studied in comparison to cells with an Au contact that deposited onto a CdCl2-treated CdTe surface that was chemically etched using a nitric-phosphoric etch. The solar cells were analyzed by current-voltage curves and external quantum efficiency measurements. After several post deposition annealing steps, 13% efficiency was reached with the Cu2S back contact, which was significantly higher than the ones obtained for the NP-etched back contacts. - Highlights: • A new back contact for CdTe solar out of Cu2S has been tested. • With a direct interface experiment the valence band offset was determined. • Post deposition heat treatment has been carried out for the solar cells. • 13% efficiency has been reached with the Cu2S back contact

  11. First principles study of Bi dopen CdTe thin film solar cells: electronic and optical properties

    OpenAIRE

    Seminóvski Pérez, Yohanna; Palacios Clemente, Pablo; Wahnón Benarroch, Perla

    2011-01-01

    Nowadays, efficiency improvement of solar cells is one of the most important issues in photovoltaic systems and CdTe is one of the most promising thin film photovoltaic materials we can found. CdTe reported efficiencies in solar energy conversion have been as good as that found in polycrystalline Si thin film cell [1], besides CdTe can be easily produced at industrial scale.

  12. Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly

    OpenAIRE

    Shen, Mao; Jia, Wenping; You, Yujing; Hu, Yan; Li, Fang; Tian, Shidong; Li, Jian; Jin, Yanxian; Han, Deman

    2013-01-01

    A facile one-step synthesis of CdTe quantum dots (QDs) in aqueous solution by atmospheric microwave reactor has been developed using 3-mercaptopropionic acid reduction of TeO2 directly. The obtained CdTe QDs were characterized by ultraviolet–visible spectroscopy, fluorescent spectroscopy, X-ray powder diffraction, multifunctional imaging electron spectrometer (XPS), and high-resolution transmission electron microscopy. Green- to red-emitting CdTe QDs with a maximum photoluminescence quantum y...

  13. Miniature hybrid preamplifier for CdTe detectors

    International Nuclear Information System (INIS)

    Aeronutronic Ford has developed a rugged, miniature, room temperature operable, gamma ray detector package containing a CdTe photon detector, a charge amplifier and a pulse shaper circuit. Photon detection efficiencies between 10 percent and 40 percent are achieved for various photon energies between 100 keV and 1000 keV in a detector area of .032 square inches. The resulting package weighs approximately 8 grams and occupies approximately 0.1 cubic inch. Prototypes have been tested for aging and temperature effects on gamma detection efficiency. The intended application of the device is calibrated gamma ray counting in a warm environment while subjected to high intensity acoustic and vibration stresses as well as very large linear accelerations

  14. Flexible CdTe solar cells on polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A.N.; Romeo, A.; Baetzner, D.; Zogg, H. [ETH Swiss Federal Inst. of Technology, Thin Film Physics Group, Zurich (Switzerland)

    2001-07-01

    Lightweight and flexible CdTe/CdS solar cells on polyimide films have been developed in a 'superstrate configuration' where the light is absorbed in CdTe after passing through the polyimide substrate. The average optical transmission of the approximately 10-{mu}m-thin spin-coated polyimide substrate layer is more than {approx}75% for wavelengths above 550 nm. RF magnetron sputtering was used to grow transparent conducting ZnO:Al layers on polyimide films. CdTe/CdS layers were grown by evaporation of compounds, and a CdCl{sub 2} annealing treatment was applied for the recrystallisation and junction activation. Solar cells of 8.6% efficiency with V{sub oc} = 763 mV, I{sub sc} = 20.3 mA/cm{sup 2} and FF = 55.7% were obtained. (Author)

  15. Ion-assisted doping of CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Fahrenbruch, A.L.; Chien, K.F.; Kim, D.; Lopez-Otero, A.; Sharps, P.; Bube, R.H. (Dept. of Materials Science and Engineering, Stanford Univ., CA (USA))

    1989-10-15

    The possibility of using ion-assisted doping during growth of p-CdTe films for solar cells has been investigated, to obtain higher doping densities than previously obtained with conventional film deposition processes. For the first time, controlled doping has been demonstrated with low-energy phosphorus ions to obtain hole densities of up to 2 x 10{sup 17} cm{sup -3} in homoepitaxial films deposited by vacuum evaporation on single-crystal CdTe. Solar cells made with these films suggest that ion damage reduces the diffusion length in the most highly doped films and that the active region of such cells must be made with considerably lower doping densities. For polycrystalline films on alumina, preliminary results indicate that the hole densities obtained are not sufficient to overcome grain boundary barrier limited conductivity. (orig.).

  16. Ultra-thin bifacial CdTe solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Marsillac, S.; Parikh, V.Y.; Compaan, A.D. [PVIC, Department of Physics and Astronomy, University of Toledo, Mail Stop 111, Toledo, OH 43606 (United States)

    2007-09-22

    Developing a high-quality transparent back contact, while maintaining efficient light transmission through the top absorber layer, are key components for achieving high-efficiency II-VI polycrystalline thin-film tandem solar cells. Combining these two elements, we fabricated ultra-thin bifacial CdTe solar cells (0.68 {mu}m) with ZnTe:N/ITO transparent back contact and achieved efficiencies of 5.7% and 5.0% with illumination from the glass and the contact side, respectively. Device analysis, using (J-V) and QE measurements, show that the loss in efficiency is due to higher R{sub S} and J{sub 0} as well as lower, side-dependent, photons absorption. (author)

  17. Luminescence quantum yield of CdTe quantum dots

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Ivona; Lišková, Marcela; Táborský, P.; Klepárník, Karel; Foret, František

    Brno : Ústav analytické chemie AV ČR, v. v. i, 2010 - (Foret, F.). s. 141 ISBN 978-80-254-6631-5. [International Symposium on Microscale BioSeparations /25./. 21.03.2010-25.03.2010, Praha] R&D Projects: GA AV ČR KAN400310651; GA AV ČR KJB400310709; GA ČR GA203/08/1680; GA ČR GA301/07/0490; GA MŠk LC06023; GA MŠk MEB060821 Institutional research plan: CEZ:AV0Z40310501 Keywords : quantum yield * CdTe quantum dots Subject RIV: CB - Analytical Chemistry, Separation

  18. Theoretical study of intrinsic defects in CdTe

    Science.gov (United States)

    Menéndez-Proupin, E.; Orellana, W.

    2016-05-01

    The quantum states and thermodynamical properties of the Cd and Te vacancies in CdTe are studied by first principles calculations. It is shown that the band structure of a cubic 64-atoms supercell with a Te vacancy is dramatically different from the band structure of the perfect crystal, suggesting that it cannot be used as model to calculate isolated defects. This flaw is solved modeling the Te vacancy within a cubic 216-atoms supercell. However, even with this large supercell, the 2— charge state relaxes to an incorrect distorted structure. This distortion is driven by partial filling of the conduction band induced by the k-point sampling. The correct structures and formation energies are obtained by relaxation with restriction of system symmetry, followed by band-filling correction to the energy, or by using a larger supercell that allows sampling the Brillouin zone with a single k-point.

  19. Spatial correlations of donor charges in MBE CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Suski, T.; Wisniewski, P.; Litwin-Staszewska, E. [Unipress, Polish Academy of Sciences, Warsaw (Poland); Wasik, D.; Przybytek, J.; Baj, M. [Institute of Experimental Physics, Warsaw University, Warsaw (Poland); Karczewski, G.; Wojtowicz, T.; Zakrzewski, A.; Kossut, J. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    1995-12-31

    We present experimental evidence that at high pressures indium donors in CdTe localize electrons in spatially correlated manner. We have studied Hall mobility,{mu}{sub H}, as a function of electron concentration, n{sub H}, at T = 77 K. Changes of n{sub H} have been achieved by two methods. High pressure freeze-out of electrons onto localized states of In-donors leads to the mobility enhancement with respect to the situation when n{sub H} has been modified by means of a subsequent annealing of the sample. As a result, depending on the degree of spatial correlations in the impurity charges arrangement, different values of {mu}{sub H} correspond to the same value of n{sub H}. The variation of mobility with electron concentration suggests that the localized state of In-donor represents likely negatively charged DX state. (author). 5 refs, 1 fig.

  20. Emitter/absorber interface of CdTe solar cells

    Science.gov (United States)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.

  1. The CdTe detector module and its imaging performance

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Issei; Takayama, Takuzo; Motomura, Nobutoku [Toshiba Corp. Medical Systems Co., Otawara, Tochigi (Japan). Medical Systems R and D Center

    2001-12-01

    In recent years investigations into the application of semiconductor detector technology in gamma cameras have become active world-wide. The reason for this burst of activity is the expectation that the semiconductor-based gamma camera would outperform the conventional Anger-type gamma camera with a large scintillator and photomultipliers. Nevertheless, to date, it cannot be said that this expectation has been met. While most of the studies have used CZT (Cadmium Zinc Telluride) as the semiconductor material, we designed and fabricated an experimental detector module of CdTe (Cadmium Telluride). The module consists of 512 elements and its pixel pitch is 1.6 mm. We have evaluated its energy resolution, planar image performance, single photon emission computed tomography (SPECT) image performance and time resolution for coincidence detection. The average energy resolution was 5.5% FWHM at 140 keV. The intrinsic spatial resolution was 1.6 mm. The quality of the phantom images, both planar and SPECT, was visually superior to that of the Anger-type gamma camera. The quantitative assessment of SPECT images showed accuracy far better than that of the Anger-type camera. The coincidence time resolution was 8.6 ns. All measurement were done at room temperature, and the polarization effect that had been the biggest concern for CdTe was not significant. The results indicated that the semiconductor-based gamma camera is superior in performance to the Anger-type and has the possibility of being used as a positron emission computed tomography (PET) scanner. (author)

  2. The CdTe detector module and its imaging performance

    International Nuclear Information System (INIS)

    In recent years investigations into the application of semiconductor detector technology in gamma cameras have become active world-wide. The reason for this burst of activity is the expectation that the semiconductor-based gamma camera would outperform the conventional Anger-type gamma camera with a large scintillator and photomultipliers. Nevertheless, to date, it cannot be said that this expectation has been met. While most of the studies have used CZT (Cadmium Zinc Telluride) as the semiconductor material, we designed and fabricated an experimental detector module of CdTe (Cadmium Telluride). The module consists of 512 elements and its pixel pitch is 1.6 mm. We have evaluated its energy resolution, planar image performance, single photon emission computed tomography (SPECT) image performance and time resolution for coincidence detection. The average energy resolution was 5.5% FWHM at 140 keV. The intrinsic spatial resolution was 1.6 mm. The quality of the phantom images, both planar and SPECT, was visually superior to that of the Anger-type gamma camera. The quantitative assessment of SPECT images showed accuracy far better than that of the Anger-type camera. The coincidence time resolution was 8.6 ns. All measurement were done at room temperature, and the polarization effect that had been the biggest concern for CdTe was not significant. The results indicated that the semiconductor-based gamma camera is superior in performance to the Anger-type and has the possibility of being used as a positron emission computed tomography (PET) scanner. (author)

  3. Eletrodo de marca-passo mal posicionado no ventrículo esquerdo Electrodo de marcapasos mal posicionado en el ventrículo izquierdo Pacemaker electrode misplaced in the left ventricle

    Directory of Open Access Journals (Sweden)

    André Luiz Cerqueira de Almeida

    2010-09-01

    Full Text Available Relatamos caso de implantação anômala de eletrodo de marca-passo VVI no ventrículo esquerdo (VE, diagnosticada durante avaliação de rotina, dois anos pós-implante. Trata-se de mulher de 65 anos e soropositiva para doença de Chagas. O eletrocardiograma (ECG apresentava padrão de bloqueio do ramo direito. A radiografia de tórax em perfil mostrou trajeto com curvatura posterior do eletrodo. No ecocardiograma transtorácico, o diagnóstico final mostrou cateter que penetrava o átrio direito, atravessava o septo interatrial e descia pelo átrio esquerdo e orifício valvar mitral para se implantar na parede lateral do VE. Abordam-se os seguintes aspectos relacionados: possíveis trajetos de implantação, quadro clínico, radiológico, eletrocardiográfico, ecocardiográfico, complicações e opções terapêuticas.Relatamos caso de implantación anómala de electrodo de marcapasos VVI en el ventrículo izquierdo (VI, diagnosticada durante evaluación de rutina, dos años post implante. Se trata de mujer de 65 años y seropositiva para enfermedad de Chagas. El electrocardiograma (ECG presentaba estándar de bloqueo de rama derecha. La radiografía de tórax de perfil mostró trayecto con curvatura posterior del electrodo. En el ecocardiograma transtorácico, el diagnóstico final mostró catéter que penetraba el atrio derecho, atravesaba el septo interatrial y descendía por el atrio izquierdo y orificio valvar mitral para implantarse en la pared lateral del VI. Se abordan los siguientes aspectos relacionados: posibles trayectos de implantación, cuadro clínico, radiológico, electrocardiográfico, ecocardiográfico, complicaciones y opciones terapéuticas.This study reports the case of an anomalous implantation of VVI pacemaker electrode in the left ventricle (LV diagnosed during routine evaluation, two years after implantation. The patient is a 65-year-old woman with Chagas disease. Electrocardiogram (ECG revealed a pattern of right

  4. Nanowire and core-shell-structures on flexible Mo Foil for CdTe solar cell applications

    OpenAIRE

    Williams, Ben; Durose, Ken; Kartopu, Giray; Barrioz, Vincent; Lamb, Daniel; Irvine, Stuart; Zoppi, Guillaume; Forbes, Ian

    2011-01-01

    CdTe films, nanowires, film-nanowire combinations and CdS-CdTe core-shell structures have been fabricated in a preliminary survey of growth methods that will generate structures for PV applications. Selectivity between film, nanowire and film plus nanowire growth was achieved by varying the pressure of N2 gas present during Au-catalysed VLS growth of CdTe, on either Mo or Si substrates. Metamorphic growth of CdTe nanowires on sputtered CdTe films, deposited on glass substrates, was demonstrat...

  5. Resultados de ensayos de soldadura a tope y por solape, con electrodo, de barras de aceros estirados en frío

    Directory of Open Access Journals (Sweden)

    Calavera Ruiz, José

    1969-03-01

    Full Text Available The authors report on a series of tests carried out in the welding of reinforced concrete bars. The tested bars were cold drawn, with elastic limits of 4,200 and 5,000 kg/cm2. The tests included butt and overlap welding, involving excentric and axial overlaps, with joint reinforcements. Results of these experiments show that if the indicated method is adopted, including an average standard of workmanship, the weld attains 100 % of the bar strength.Los autores dan cuenta de una serie de ensayos realizados sobre soldadura de barras para hormigón armado. Las barras ensayadas son de acero estirado en frío con límites elásticos de 4.200 y 5.000 kp/cm2. Los ensayos abarcaron la soldadura a tope y la soldadura por solape, con sus variantes de solape excéntrico y solape centrado con cubrejuntas. Los resultados de los ensayos demuestran que siguiendo la técnica indicada, y con una calidad normal de ejecución, la soldadura presenta el 100 % de la resistencia de la barra.

  6. An in vitro study of vascular endothelial toxicity of CdTe quantum dots

    International Nuclear Information System (INIS)

    Quantum dots (QDs), as novel bioimaging and drug delivery agents, are generally introduced into vascular system by injection, and thus directly exposed to vascular endothelial cells (ECs). However, the adverse effects of QDs on ECs are poorly understood. In this study, employing human umbilical vein ECs (HUVECs), we investigated the potential vascular endothelial toxicity of mercaptosuccinic acid (MSA)-capped CdTe QDs in vitro. In the experiment, water-soluble and pH stable CdTe QDs were synthesized; and the cell viability assays showed that CdTe QDs (0.1-100 μg/mL) dose-dependently decreased the cell viability of HUVECs, indicating CdTe QDs induced significant endothelial toxicity. The flow cytometric and immunofluorescence results revealed that 10 μg/mL CdTe QDs elicited significant oxidative stress, mitochondrial network fragmentation as well as disruption of mitochondrial membrane potential (Δψm); whereas ROS scavenger could protect HUVECs from QDs-induced mitochondrial dysfunction. Moreover, upon 24 h exposure to 10 μg/mL CdTe QDs, the apoptotic HUVECs dramatically increased by 402.01%, accompanied with alternative expression of apoptosis proteins, which were upregulation of Bax, downregulation of Bcl-2, release of mitochondrial cytochrome c and cleavage of caspase-9/caspase-3. These results suggested that CdTe QDs could not only impair mitochondria but also exert endothelial toxicity through activation of mitochondrial death pathway and induction of endothelial apoptosis. Our results provide strong evidences of the direct toxic effects of QDs on human vascular ECs, and reveal that exposure to QDs is a significant risk for the development of cardiovascular diseases. These results also provide helpful guidance on the future safe use and manipulation of QDs to make them more suitable tools in nanomedicine.

  7. Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Due to its high scalability and low production cost, CdTe solar cells have shown a very strong potential for large scale energy production. Although the number of modules produced could be limited by tellurium scarcity, it has been reported that reducing CdTe thickness down to 1.5 μm would solve this issue. There are, however, issues to be considered when reducing thickness, such as formation of pinholes, lower crystallization, and different possible effects on material diffusion within the interfaces. In this work, we present the study of CdTe solar cells fabricated by vacuum evaporation with different CdTe thicknesses. Several cells with a CdTe thickness ranging from 0.7 to 6 μm have been fabricated. The deposition process has been optimized accordingly and their physical and electrical properties have been studied. Thin cells show a different electrical behavior in terms of open circuit voltage and fill factor. Efficiencies range from 7% for thin CdTe cells to 13.5% for the standard thickness. - Highlights: ► Ultra thin CdTe absorbers have been prepared and studied. ► Grain size is depending on the CdTe thickness but spread in the grains increases. ► Lattice parameter is reduced only for ultra thin CdTe. ► The band gap reveals an intermixed CdTe absorber. ► The reason for lower efficiency of ultra thin CdTe is explained

  8. Digital signage sobre IP

    OpenAIRE

    Casademont Filella, Albert

    2012-01-01

    Projecte que versa sobre el disseny i la implementació d'un sistema de Digital Signage (Cartelleria Digital) sobre IP, creant un gestor que permeti controlar de forma remota tot un conjunt de petits dispositius connectats a pantalles que emeten continguts multimèdia com vídeos, imatges, feeds rss...

  9. PENINGKATAN KUALITAS FILM TIPIS CdTe SEBAGAI ABSORBER SEL SURYA DENGAN MENGGUNAKAN DOPING TEMBAGA (Cu

    Directory of Open Access Journals (Sweden)

    P. Marwoto

    2012-12-01

    Full Text Available Film tipis CdTe dengan doping tembaga (Cu berkonsenterasi 2% telah berhasil ditumbuhkan di atas substrat Indium Tin Oxide (ITO dengan metode dc magnetron sputtering. Penelitian ini dilakukan untuk mengetahui pengaruh doping Cu(2% terhadap struktur morfologi, struktur kristal, fotoluminisensi dan resistivitas listrik film CdTe. Citra morfologi Scanning Electron Microscopy (SEM dan hasil analisis struktur dengan X-Ray Diffraction (XRD menunjukkan bahwa film CdTe:Cu(2% mempunyai citra permukaan dan struktur kristal yang lebih sempurna dibandingkan film CdTe tanpa doping. Hasil analisis spektrometer fotoluminisensi menunjukkan bahwa film CdTe dan CdTe(2% mempunyai puncak fotoluminisensi pada tiga panjang gelombang yang identik yaitu 685 nm (1,81 eV, 725 nm (1,71 eV dan 740 nm (1,67 eV. Film CdTe dengan doping Cu(2% memiliki intensitas puncak fotoluminisensi yang lebih tajam pada pita energi 1,81 eV dibandingkan dengan film CdTe tanpa doping. Pengukuran arus dan tegangan (I-V menunjukkan bahwa pemberian doping Cu(2% dapat menurunkan resistivitas film dari 8,40x109 Ωcm menjadi 6,92x105 Ωcm. Sebagai absorber sel surya, kualitas film tipis CdTe telah berhasil ditingkatkan dengan pemberian doping Cu(2%.CdTe:Cu(2% thin film has been successfully grown on Indium Tin Oxide (ITO substrates by using dc magnetron sputtering. This study was carried out in order to investigate the effect of Cu(2% doping on the morphologycal structure, crystal structure, photoluminesence, and resistivity of CdTe thin film. Scanning Electron Microscopy (SEM  images and X-Ray Diffraction (XRD results showed that CdTe:Cu(2% thin film has morphologycal and crystal structures more perfect than undoped CdTe film. Photoluminesence spectroscopy results showed that CdTe and CdTe:Cu(2% thin films have luminesence peak at three identical wevelength regions i.e. 685 nm (1.81 eV, 725 nm (1.71 eV and 740 nm (1.67 eV however CdTe:Cu(2% film shows sharper photoluminescence peak at band

  10. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA; Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA

    2016-06-17

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted

  11. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

    Directory of Open Access Journals (Sweden)

    M. M. Aliyu

    2012-01-01

    Full Text Available This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears the most favorable candidate, while close spaced sublimation (CSS, electrodeposition (ED, magnetic sputtering (MS, and high vacuum thermal evaporation (HVE have been found to be most common deposition technologies used for CdTe on metal foils. The advantages of these techniques include large grain size (CSS, ease of constituent control (ED, high material incorporation (MS, and low temperature process (MS, HVE, ED. These invert-structured thin film CdTe solar cells, like their superstrate counterparts, suffer from problems of poor ohmic contact at the back electrode. Thus similar strategies are applied to minimize this problem. Despite the challenges faced by flexible structures, efficiencies of up to 13.8% and 7.8% have been achieved in superstrate and substrate cell, respectively. Based on these analyses, new strategies have been proposed for obtaining cheaper, more efficient, and viable flexible CdTe solar cells of the future.

  12. Improvement of the sensitivity of CdTe semiconductor detector in the high energy region

    International Nuclear Information System (INIS)

    Cadmium Telluride, CdTe, semiconductor detectors have sufficient band gap energy (1.47 eV) to use at room temperature, and their atomic number are so large (48 and 52) that their photon detection efficiency is more excellent than that of Si or Ge. Recently CdTe crystals have become easily available because of improvements in the crystal growth method. It is a useful X-ray detector, because it has good energy resolution and high efficiency at the full energy peak at less than a few hundred keV of incident photon energy. However, if the incident photon energy become higher, the efficiency of the full energy peak become worse, and it is very difficult to distinguish the full energy peak above 1 MeV, because the mobility of charge carriers in the CdTe crystal is much smaller than in Si and Ge and it is difficult to produce a larger volume element. In order to analyze the energy of several radioisotopes, it is necessary to improve the sensitivity of CdTe detectors in high energy regions. We have previously suggested a multilayered structure of CdTe elements. This paper describes a simulation and experiment to improve the efficiency of the full energy peak in the high energy region above 1 MeV. (author)

  13. A Simple Sb2Te3 Back-Contact Process for CdTe Solar Cells

    Science.gov (United States)

    Siepchen, B.; Späth, B.; Drost, C.; Krishnakumar, V.; Kraft, C.; Winkler, M.; König, J.; Bartholomé, K.; Peng, S.

    2015-10-01

    CdTe solar technology has proved to be a cost-efficient solution for energy production. Formation of the back contact is an important and critical step in preparing high-efficiency, stable CdTe solar cells. In this paper we report a simple CdTe solar cell (Sb2Te3) back contact-formation process. The CdS and CdTe layers were deposited by close-space sublimation. After CdCl2 annealing treatment, the CdTe surface was etched by use of a mixture of nitric and phosphoric acids to obtain a Te-rich surface. Elemental Sb was sputtered on the etched surface and successive post-annealing treatment induced Sb2Te3 alloy formation. Structural characterization by x-ray diffraction analysis confirmed formation of the Sb2Te3 phase. The performance of solar cells with nanoalloyed Sb2Te3 back contacts was comparable with that of reference solar cells prepared with sputtered Sb2Te3 back contact from a compound sputter target.

  14. Luminescent behavior of CdTe quantum dots: Neodymium(III) complex-capped nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Margarida S. [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Algarra, Manuel, E-mail: magonzal@fc.up.pt [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Jimenez-Jimenez, Jose; Rodriguez-Castellon, Enrique [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos s/n 29071, Malaga (Spain); Campos, Bruno B.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal)

    2013-02-15

    A water soluble complex of neodymium(III) with CdTe quantum dots nanoparticles was synthesized. The obtained homogeneous solutions were characterized by fluorescence, X-ray photoelectron and energy dispersive X-ray spectroscopies. The effect of the refluxing time of the reaction on the fluorescence intensity and emission wavelength has been studied. It was found that the emission wavelength of the solutions of neodymium(III) complex capped CdTe QDs nanoparticles shifted from about 540 to 735 nm. For an emission wavelength of 668 nm, the most reproducible nanoparticles obtained, the pH effect over the fluorescence emission and its intensity were studied. The purified and lyophilized solid obtained was morphologically characterized by transmission electron microscopy (TEM). The quantitative composition was determined by fluorescence X-ray spectroscopy (EDAX) and the X-ray photoelectron analysis (XPS) confirmed the presence of neodymium(III) at the surface of the CdTe nanoparticles forming a complex with the carboxylate groups from 3-mercaptopropanoic acid of the CdTe QDs. Due to the optical behavior of this complex, it could be of potential interest as a light source in optical devices. - Highlights: Black-Right-Pointing-Pointer CdTe quantum dots nanoparticles. Black-Right-Pointing-Pointer Neodymium(III) complexed quantum dots. Black-Right-Pointing-Pointer Strong red fluorescent emission nanomaterial soluble in water.

  15. The growth of high quality CdTe on GaAs by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Reno, J.L.; Carr, M.J.; Gourley, P.L. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (US))

    1990-03-01

    We have grown CdTe (111) on oriented and misoriented GaAs (100) and have characterized the layers by photoluminescence microscopy (PLM) and transmission electron microscopy (TEM). Photoluminescence microscopy showed a totally different type of defect structure for the oriented substrate than for the misoriented substrates. The CdTe grown on the misoriented substrates exhibited only threading dislocations. The CdTe grown on oriented GaAs showed fewer threading dislocations but exhibited a random structure of loops. The loop structure observed by PLM has been identified by TEM as the boundary between twinned crystallites which extend from the CdTe/GaAs interface to the CdTe surface. When viewed along the growth axis, these boundaries between the columnar twins appear as loops and segments. Surface roughness of the GaAs substrate contributes to the initial growth of twinned material. This leads to competitive growth between the twins and the creation of the observed columnar twins. We present for the first time the growth of CdTe on patterned GaAs substrates. By growing on oriented GaAs(100) substrates that had been patterned prior to growth with 12 {mu}m mesas, it is possible to grow material on the mesa top that is twin free and has a low dislocation density.

  16. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cecilia Stahl Vieira

    2011-03-01

    Full Text Available Semiconductor nanoparticles, such as quantum dots (QDs, were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 μM cadmium telluride (CdTe QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 μM CdTe QDs for up to 72 h (propidium iodide cells, giving no evidence of classical necrosis. Parasites incubated with 2 μM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 μM is optimal for bioimaging, whereas a high concentration (200 μM CdTe could be toxic to cells. Taken together, our data indicate that 2 μM QD can be used for the successful long-term study of the parasite-vector interaction in real time.

  17. Preparation and characterization of thin films of electrodeposited CdTe semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, M.; Elgamal, M. [Alexandria University (Egypt). Institute of Graduate Studies and Research; Kashyout, A.B. [Mubarak City for Scientific Research and Technological Applications, Alexandria (Egypt); Shabana, M. [Alexandria University (Egypt). Faculty of Engineering

    2001-07-01

    Thin films of CdTe semiconductors were prepared by electrodeposition technique in aqueous solutions. The deposition mechanism was investigated by cyclic voltammetry. The potential regions for the formation of the n-CdTe and p-CdTe films were determined. The structure, composition and morphology characteristics of as-deposited thin films of CdTe grown on SnO{sub 2}/glass and CdS/SnO{sub 2}/glass were investigated by XRD, EDAX and SEM techniques. The optical properties were measured to determine the absorption coefficient and band gap values. The as-deposited CdTe films grown on SnO{sub 2}/glass contained free Te while those grown on CdS/SnO{sub 2}/glass did not contain this phase. The CdTe has the cubic structure with strong (111) orientation. The EDAX analysis showed a nearly stoichiometric Cd:Te ratio. The band gap has a value of 1.48 eV, which is in a good accordance with those reported in the literature. The effect of annealing at 350 and 400{sup o}C after, CdCI{sub 2} treatment on the structure and morphology was also examined. (author)

  18. Native Defect Control of CdTe Thin Film Solar Cells by Close-Spaced Sublimation

    Science.gov (United States)

    Okamoto, Tamotsu; Kitamoto, Shinji; Yamada, Akira; Konagai, Makoto

    2001-05-01

    The control of native defects in the CdTe thin film solar cells was investigated using a novel source for close-spaced sublimation (CSS) process which was prepared by vacuum evaporation with elemental Cd and Te (evaporated source). The evaporated sources were prepared on glass substrates at room temperature, and the Cd/Te ratio was controlled by varying the Cd and Te beam equivalent pressures. In the cells using the Te-rich source, the conversion efficiency was less than 0.2% because of the extremely low shunt resistance. On the other hand, a conversion efficiency above 15% was obtained by using the Cd-rich source. Capacitance-voltage (C-V) characteristics revealed that the acceptor concentration in the CdTe layer increased with increasing Cd/Te ratio of the evaporated source. Furthermore, photoluminescence spectra implied that the formation of the Cd vacancies in the CdTe layer was suppressed using the Cd-rich source.

  19. Performance of a new Schottky CdTe detector for hard x-ray spectroscopy

    Science.gov (United States)

    Takahashi, Tadayuki; Hirose, K.; Matsumoto, Chiho; Takizawa, Kyoko; Ohno, Ryouichi; Ozaki, Tsutomu; Mori, Kunishiro; Tomita, Yasuhiro

    1998-07-01

    We report a significant improvement of the spectral properties of a cadmium telluride (CdTe) detector. With the use of a high quality CdTe crystal, we formed a high Schottky barrier for the holes on a CdTe surface using a low work-function metal, indium. For a 2 X 2 mm(superscript 2) detector with a thickness of 0.5 mm the leakage current was measured to be 0.7 nA at room temperature (20 degree(s)C) and 10 pA at -20 degree(s)C for a 400 V bias voltage. The low-leakage current of the detector allows us to operate the detector at a higher bias voltage than previous CdTe detectors. The improved charge collection efficiency and the low-leakage current leads to an energy resolution of 1.1 - 2.5 keV FWHM in the energy range 2 keV to 150 keV at 20 degree(s)C without charge loss correction electronics. We confirmed that once a high electric field of several kV/cm is applied, the Schottky CdTe has a very good energy resolution as well as sufficient stability to be used for practical applications.

  20. Fabrication of pixelated CdTe and CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) are compound semiconductor characterized by wide semiconducting band gap and high photon stopping power due to its high atomic number and density. The mobility-life time product (μ t product) for holes in the materials is smaller than that for electrons. Hence, the effect of trapping losses is more pronounced on holes than on electrons. The trapping losses for holes limit achievable energy resolutions for planar detectors. In this study, pixelated CdTe detectors and pixelated CdZnTe detectors were fabricated and tested by 662 KeV gamma-rays of 137Cs at room temperature. Electrodes were formed on both sides of CdTe crystals and CdZnTe crystals by vacuum evaporation of gold. For purpose of comparison, a planar CdTe detector and a planar CdZnTe detector were evaluated. Since the pixelated CdTe detectors and the pixelated CdZnTe detectors operated as a single-polarity charge sensing device, the obtained energy resolutions were significantly higher than those for the planar detectors. Further improvement of energy resolutions of the detectors will be achieved by optimizing electrode structures. (M. Suetake)

  1. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes.

    Science.gov (United States)

    Jin, Dongri; Seo, Min-Ho; Huy, Bui The; Pham, Quoc-Thai; Conte, Maxwell L; Thangadurai, Daniel; Lee, Yong-Ill

    2016-03-15

    A convenient enzymatic optical method for uric acid detection was developed based on the fluorescence quenching of ligand-capped CdTe nanoparticles by H2O2 which was generated from the enzymatic reaction of uric acid. The interactions between the CdTe nanoparticles capped with different ligands (glutathione, 3-mercaptopropionic acid, and thioglycerol) and H2O2 were investigated. The fluorescence quenching studies of GSH-capped CdTe nanoparticles demonstrated an excellent sensitivity to H2O2. The effects of uric acid, uricase and H2O2 on the fluorescence intensity of CdTe nanoparticles were also explored. The detection conditions, reaction time, pH value, incubation period and the concentration of uricase and uric acid were optimized. The detection limit of uric acid was found to be 0.10 µM and the linear range was 0.22-6 µM under the optimized experimental conditions. These results typify that CdTe nanoparticles could be used as a fluorescent probe for uric acid detection. PMID:26433069

  2. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Shamara [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Vatavu, Sergiu, E-mail: svatavu@usm.md [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Evani, Vamsi; Khan, Md; Bakhshi, Sara; Palekis, Vasilios [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Rotaru, Corneliu [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Ferekides, Chris [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States)

    2015-05-01

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios.

  3. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    International Nuclear Information System (INIS)

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios

  4. The Role of Dopant Concentration on Conductivity and Mobility of CdTe Thin Films

    Directory of Open Access Journals (Sweden)

    Ala J. Al-Douri

    2011-01-01

    Full Text Available Films of CdTe pure and doped with various atomic percentages of Al and Sb (0.5, 1.5 & 2.5 were prepared, and their electrical properties were investigated. The films were prepared by thermal evaporation on glass substrates at two substrate temperatures (Ts=RT & 423 K. The results showed that the conduction phenomena of all the investigated CdTe thin films on glass substrates are caused by two distinct mechanisms. Room temperature DC conductivity increases by a factor of four for undoped CdTe thin films as Ts increases and by 1-2 orders of magnitude with increasing dopant percentage of Al and Sb. In general, films doped with Sb are more efficient than Al-doped films. The activation energy (Ea2 decreases with increasing Ts and dopant percentage for both Al and Sb. Undoped CdTe films deposited at RT are p-type convert to n-type with increasing Ts and upon doping with Al at more than 0.5%. The carrier concentration decreases as Ts increases while it increases with increasing dopant percentage. Hall mobility decreases more than three times as Al increases whereas it increases about one order of magnitude with increasing Sb percentage in CdTe thin films deposited at 423 K and RT, respectively.

  5. Synthesis of CdTe thin films on flexible metal foil by electrodeposition

    Science.gov (United States)

    Luo, H.; Ma, L. G.; Xie, W. M.; Wei, Z. L.; Gao, K. G.; Zhang, F. M.; Wu, X. S.

    2016-04-01

    CdTe thin films have been deposited onto the Mo foil from aqueous acidic bath via electrodeposition method with water-soluble Na2TeO3 instead of the usually used TeO2. X-ray diffraction studies indicate that the CdTe thin films are crystallized in zinc-blende symmetry. The effect of tellurite concentration on the morphology of the deposited thin film is investigated. In such case, the Cd:Te molar ratios in the films are both stoichiometric at different tellurite concentrations. In addition, the reduction in tellurite concentration leads to the porous thin film and weakens the crystallinity of thin film. The island growth model is used to interpret the growth mechanism of CdTe. The bandgap of the CdTe thin films is assigned to be 1.49 eV from the UV-Vis spectroscopy measurement, which is considered to serve as a promising candidate for the heterojunction solar cells.

  6. A simple fluorescence quenching method for roxithromycin determination using CdTe quantum dots as probes

    Energy Technology Data Exchange (ETDEWEB)

    Peng Jinyun, E-mail: pengjinyun@yeah.ne [Department of Chemistry and Biological Science, Guangxi Normal University of Nationalities, Chongzuo 532200 (China); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Hu Xiaoya, E-mail: xyhu@yzu.edu.c [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China)

    2011-05-15

    A new method for the determination of roxithromycin based on the fluorescence quenching of 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) was developed. In ethanol medium, the fluorescence of CdTe quantum dots at 552 nm was quenched in the presence of roxithromycin. Based on this a simple, sensitive, and selective method for rapid determination of roxithromycin was described. Reaction time, interfering substances on the fluorescence quenching, and mechanism of the interaction of CdTe QDs with roxithromycin were investigated. After optimization, the proposed method allows the determination of roxithromycin over the range 25.0-350.0 {mu}g ml{sup -1}. The detection limit is 4.6 {mu}g ml{sup -1}. The proposed method was successfully applied to commercial capsules and tablets with satisfactory results. The recovery of the method was in the range of 96.8-102.5%. - Research highlights: {yields} CdTe quantum dots as a probe of fluorescence quenching method to determine roxithromycin at nanogram levels was developed. {yields} Reaction time, interfering substances on the fluorescence quenching, and mechanism of the interaction of CdTe QDs with roxithromycin were investigated. {yields} This method was applied for analysis of roxithromycin in capsules and tablets. {yields} Comparison with other reported methods, this method is not only sensitive, simple, but also reliable and suitable for application.

  7. Photoluminescence of CdTe nanocrystals grown by pulsed laser ablation on a template of Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guillen-Cervantes, A.; Silva-Lopez, H.; Becerril-Silva, M.; Arias-Ceron, J.S.; Campos-Gonzalez, E.; Zelaya-Angel, O. [CINVESTAV-IPN, Physics Department, Apdo. Postal 14-740, Mexico (Mexico); Medina-Torres, A.C. [Escuela Superior de Fisica y Matematicas del IPN, Mexico (Mexico)

    2014-11-12

    CdTe nanocrystals were grown on eroded Si (111) substrates at room temperature by pulsed laser ablation. Before growth, Si substrates were subjected to different erosion time in order to investigate the effect on the CdTe samples. The erosion process consists of exposition to a pulsed high-voltage electric arc. The surface consequence of the erosion process consists of Si nanoparticles which acted as a template for the growth of CdTe nanocrystals. CdTe samples were studied by X-ray diffraction (XRD), room temperature photoluminescence (RT PL) and high-resolution transmission electron microscopy (HRTEM). CdTe nanocrystals grew in the stable cubic phase, according to XRD spectra. A strong visible emission was detected in photoluminescence (PL) experiments. The PL signal was centered at 540 nm (∝2.34 eV). With the effective mass approximation, the size of the CdTe crystals was estimated around 3.5 nm. HRTEM images corroborated the physical characteristics of CdTe nanocrystals. These results could be useful for the development of CdTe optoelectronic devices. (orig.)

  8. Photoluminescence of CdTe nanocrystals grown by pulsed laser ablation on a template of Si nanoparticles

    International Nuclear Information System (INIS)

    CdTe nanocrystals were grown on eroded Si (111) substrates at room temperature by pulsed laser ablation. Before growth, Si substrates were subjected to different erosion time in order to investigate the effect on the CdTe samples. The erosion process consists of exposition to a pulsed high-voltage electric arc. The surface consequence of the erosion process consists of Si nanoparticles which acted as a template for the growth of CdTe nanocrystals. CdTe samples were studied by X-ray diffraction (XRD), room temperature photoluminescence (RT PL) and high-resolution transmission electron microscopy (HRTEM). CdTe nanocrystals grew in the stable cubic phase, according to XRD spectra. A strong visible emission was detected in photoluminescence (PL) experiments. The PL signal was centered at 540 nm (∝2.34 eV). With the effective mass approximation, the size of the CdTe crystals was estimated around 3.5 nm. HRTEM images corroborated the physical characteristics of CdTe nanocrystals. These results could be useful for the development of CdTe optoelectronic devices. (orig.)

  9. Stable Water-dispersed CdTe Nanocrystals Dependent on Stoichiometric Ratio of Cd to Te Precursor

    Institute of Scientific and Technical Information of China (English)

    张旭瑞; 王李欣; 郭佳; 杨武利

    2012-01-01

    The improved properties of CdTe nanocrystals (NCs) synthesized by hydrothermal method were introduced. The experimental results indicated that the NCs properties could be dramatically influenced by means of changing Cd-to-Te molar ratio (the molar ratio of CdC12 and NaHTe in the precursor) of the MPA-capped CdTe NCs. With the increase of the ratio from 2 : 1 to 10 : 1, the formation time of near-infrared-emitting CdTe NCs was shortened. In particular, high Cd-to-Te molar ratio brought about MPA-capped CdTe NCs of superior radical oxidation-resis- tance and photostability. As a result, the optimum ratio was found to be 8 : 1 or 10 : 1 in the study in order to efficiently attain stable, water-dispersed CdTe NCs.

  10. Time-Resolved Photoluminescence Spectroscopy Evaluation of CdTe and CdTe/CdS Quantum Dots

    OpenAIRE

    Yuan, Zhimin; Yang, Ping; Cao, Yongqiang

    2012-01-01

    CdTe and CdTe/CdS quantum dots (QDs) were prepared in aqueous solutions using thioglycolic acid as a stabilizing agent. The photoluminescence (PL) wavelength of the QDs depended strongly on the size of CdTe cores and the thickness of CdS shells. Being kept at room temperature for 130 days, the PL wavelength of CdTe and CdTe/CdS QDs was red-shifted. However the red-shifted degree of CdTe QDs is larger than that of CdTe/CdS QDs. The size of CdTe QDs and the thickness of CdS play important roles...

  11. Developments of gamma-ray imagers using CdTe semiconductors based on the analog ASIC technology

    International Nuclear Information System (INIS)

    Cadmium Telluride (CdTe) is one of the most promising semiconductor materials for hard X-ray and gamma-ray detection because of the high detection efficiency, and of the good energy resolution. Moreover, CdTe detectors with Schottky junction work as diode detectors, and show superior energy resolution. Based on the CdTe diode devices, we have developed CdTe pixel/strip imagers, and also realized a Si/CdTe Compton camera. These devices will be used for the Hard X-ray Imager (HXI) and the Soft Gamma-ray Detector (SGD) onboard ASTRO-H X-ray satellite to be launched in 2015. These developments are briefly reported in this article. We also describe our recent development of low-noise analog readout ASICs to be used for future development of CdTe gamma-ray imagers. (author)

  12. Wide-range plutonium isotopic analysis with CDTE detector

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc T.; Russo, P. A. (Phyllis A.)

    2001-01-01

    Nondestructive analysis (NDA) techniques applied to bulk nuclear materials (NM) are important for nuclear safeguards and material control because of timeliness, cost-effectiveness and containment integrity. The common NDA techniques, calorimetry and neutron coincidence counting, require knowledge of the isotopic composition of the material quantitative interpretation of these measurements. Gamma-ray spectroscopy with high-resolution detectors is a well-developed NDA technique for isotopics. The use of intrinsic germanium detectors cooled to cryogenic temperatures for isotopic measurements is sometimes difficult or even impossible because of severe access limitations with the sensitive, heavy detectors. Highly portable isotopics measurements are needed for in-situ verification of bulk NM quantities or, in many cases, for measurements of holdup quantities. This paper summarizes the gamma-ray measurements with a new, portable CdTe detector. It also presents the detailed results of the wide-range isotopic analysis of plutonium with FRAM v4, the first results of this kind for a non-cryogenic detector.

  13. TEM studies of Er sup + - implanted CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Morawiec, J.; Golacki, Z. (Inst. of Physics, Polish Academy of Sciences, Warsaw (Poland))

    1991-01-01

    The structure and the depth distribution of radiation damage caused by erbium implantation (E{sub i}=100 keV, D=5x10{sup 15} cm{sup -2}, T{sub i}=LNT) in <111> cadmium telluride have been investigated by means of planar-view and cross-sectional TEM techniques. It is found that the implantation disturbes the CdTe target up to the depth well-beyond the calculated projected range (that is > or approx.x5R{sub p}). The resulting damage structure consists of well-defined defects: precipitates, stacking faults, dislocation loops, and dislocation networks, which appear to be segregated with depth forming a sequence of homogeneously faulted zones. This characteristical and deep damage is suggested to be formed on dynamic annealing in response to internal stresses (caused by lattice parameter mismatch) which are high enough to produce plastic relaxation with dislocation generation and slip. This study is aimed at describing the ion-implantation-induced damage in single crystal cadmium telluride caused by Er{sup +} ions by means of transmission electron microscopy. (orig.).

  14. CdTe reflection anisotropy line shape fitting

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Contreras, J.R., E-mail: rmolina@correo.ita.mx [Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1801 Ote. Fracc. Bona Gens, Aguascalientes, Ags, 20256 (Mexico)

    2010-10-25

    In this paper, an empirical novel plane-wave time dependent ensemble is introduced to fit the RA, the reflectance (R) and the imaginary part of the dielectric function oscillation measured around the E{sub 1} and E{sub 1} + {Delta}{sub 1} transition region in II-VI semiconductors. By applying the new plane-wave time dependent ensemble to the measured spectrum for a (0 0 1) oriented CdTe undoped commercial wafer, crystallized in a zinc-blende structure, a very good agreement was found between the measured spectrum and the fitting. In addition to this, the reliability of the plane-wave time dependent ensemble was probed, by comparing the results with the calculated fitting in terms of a Fourier series and in terms of a six-order polynomial fit. Our analysis suggests, that the experimental oscillation in the line shape of the RA cannot be fitted with a Fourier series using harmonics multiples of the number which dominates the measured RA spectra in the argument of the plane-wave ensemble.

  15. CdTe detector based PIXE mapping of geological samples

    International Nuclear Information System (INIS)

    A sample collected from a borehole drilled approximately 10 km ESE of Bragança, Trás-os-Montes, was analysed by standard and high energy PIXE at both CTN (previous ITN) PIXE setups. The sample is a fine-grained metapyroxenite grading to coarse-grained in the base with disseminated sulphides and fine veinlets of pyrrhotite and pyrite. Matrix composition was obtained at the standard PIXE setup using a 1.25 MeV H+ beam at three different spots. Medium and high Z elemental concentrations were then determined using the DT2fit and DT2simul codes (Reis et al., 2008, 2013 [1,2]), on the spectra obtained in the High Resolution and High Energy (HRHE)-PIXE setup (Chaves et al., 2013 [3]) by irradiation of the sample with a 3.8 MeV proton beam provided by the CTN 3 MV Tandetron accelerator. In this paper we present results, discuss detection limits of the method and the added value of the use of the CdTe detector in this context

  16. Structural and AC conductivity study of CdTe nanomaterials

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  17. Medipix2 based CdTe microprobe for dental imaging

    International Nuclear Information System (INIS)

    Medical imaging devices and techniques are demanded to provide high resolution and low dose images of samples or patients. Hybrid semiconductor single photon counting devices together with suitable sensor materials and advanced techniques of image reconstruction fulfil these requirements. In particular cases such as the direct observation of dental implants also the size of the imaging device itself plays a critical role. This work presents the comparison of 2D radiographs of tooth provided by a standard commercial dental imaging system (Gendex 765DC X-ray tube with VisualiX scintillation detector) and two Medipix2 USB Lite detectors one equipped with a Si sensor (300 μm thick) and one with a CdTe sensor (1 mm thick). Single photon counting capability of the Medipix2 device allows virtually unlimited dynamic range of the images and thus increases the contrast significantly. The dimensions of the whole USB Lite device are only 15 mm × 60 mm of which 25% consists of the sensitive area. Detector of this compact size can be used directly inside the patients' mouth.

  18. CdTe detector based PIXE mapping of geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, P.C., E-mail: cchaves@ctn.ist.utl.pt [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal); Taborda, A. [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal); Oliveira, D.P.S. de [Laboratório Nacional de Energia e Geologia (LNEG), Apartado 7586, 2611-901 Alfragide (Portugal); Reis, M.A. [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal)

    2014-01-01

    A sample collected from a borehole drilled approximately 10 km ESE of Bragança, Trás-os-Montes, was analysed by standard and high energy PIXE at both CTN (previous ITN) PIXE setups. The sample is a fine-grained metapyroxenite grading to coarse-grained in the base with disseminated sulphides and fine veinlets of pyrrhotite and pyrite. Matrix composition was obtained at the standard PIXE setup using a 1.25 MeV H{sup +} beam at three different spots. Medium and high Z elemental concentrations were then determined using the DT2fit and DT2simul codes (Reis et al., 2008, 2013 [1,2]), on the spectra obtained in the High Resolution and High Energy (HRHE)-PIXE setup (Chaves et al., 2013 [3]) by irradiation of the sample with a 3.8 MeV proton beam provided by the CTN 3 MV Tandetron accelerator. In this paper we present results, discuss detection limits of the method and the added value of the use of the CdTe detector in this context.

  19. Sobre el Paisaje Cultural

    OpenAIRE

    Hernández León, Juan Miguel

    2008-01-01

    El 4º Congreso Europeo sobre Investigación Arquitectónica y Urbana EURAU’08, organizado por la Escuela Técnica Superior de Arquitectura de la Universidad Politécnica de Madrid y dedicado a reflexionar sobre el “Paisaje cultural”, continúa la tarea de intercambio de conocimientos científicos y experiencias docentes entre las escuelas y facultades europeas de Arquitectura emprendida en las ediciones anteriores de Marsella, acerca de “La cuestión doctoral”, de Lille, sobre “El espacio considerad...

  20. Ultrafiltros sobre ω.

    OpenAIRE

    Mancilla Hernández, Salvador

    2012-01-01

    El objetivo del presente trabajo estudiar los ideales y filtros sobre conjuntos numerables, los que comúnmente conocemos como filtros sobre ω o ideales sobre ω. Dentro de estos, nos enfocaremos en la clase de I-ultrafiltros los cuales fueron estudiados por James Baumgartner en [11]. Y dentro de esta clase de ultrafiltros, nos concentraremos cuando I es {A ⊆ ω : n∈A g(n) < ∞}, también conocido como ideal sumable con respecto a g, donde g es una sucesión de números reales no negativ...

  1. Microscale adaptation of the potentiometric method with ion-selective electrode for the quantification of fluoride; Adaptacion a microescala del metodo potenciometrico con electrodo ion selectivo para la cuantificacion de fluoruro

    Energy Technology Data Exchange (ETDEWEB)

    Guevara Ruiz, Paulina; Ortiz Perez, Maria Deogracias [Laboratorio de Bioquimica, Facultad de de Medicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, San Luis Potosi, (Mexico)]. E-mail: mdortiz@uaslp.mx

    2009-05-15

    muestra necesarios, disminuya costo y substancias de desecho. Se valido el metodo potenciometrico establecido en la NMX-AA-077-SCFI-2001, asi como el metodo a microescala propuesto en este trabajo; posteriormente, se compararon ambos metodos mediante graficos y calculos estadisticos. Ademas se analizaron por ambos metodos 125 muestras de agua embotellada de venta en la ciudad de San Luis Potosi. Los datos de la validacion del metodo fueron optimos para su desempeno. Los resultados de la determinacion en las muestras de agua embotellada por ambos metodos, indican que la modificacion a microescala es estadisticamente comparable al metodo potenciometrico con electrodo ion selectivo. El metodo propuesto a microescala es apropiado para su utilizacion, con una reduccion de 95 % en costo y desechos generados.

  2. Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly(amidoamine)s and their application in bio-imaging

    OpenAIRE

    Shi, Yunfeng; Liu, Lin; Pang, Huan; Zhou, Hongli; Zhang, Guanqing; Ou, Yangyan; Zhang, Xiaoyin; Du, Jimin; Xiao, Wangchuan

    2014-01-01

    A new strategy for facile preparation of highly luminescent CdTe quantum dots (QDs) within amine-terminated hyperbranched poly(amidoamine)s (HPAMAM) was proposed in this paper. CdTe precursors were first prepared by adding NaHTe to aqueous Cd2+ chelated by 3-mercaptopropionic sodium (MPA-Na), and then HPAMAM was introduced to stabilize the CdTe precursors. After microwave irradiation, highly fluorescent and stable CdTe QDs stabilized by MPA-Na and HPAMAM were obtained. The CdTe QDs showed a h...

  3. Intrinsic defect complexes in CdTe and ZnTe

    International Nuclear Information System (INIS)

    Radiation defects in CdTe and ZnTe are modeled from first principles. The most important intrinsic defects resulting from cation evaporation or displacement are cation vacancies and tellurium anti-sites, electrically active defects characterized by a low formation energy. The reactions between those two defects are investigated. Since cation vacancy clusters of less than four vacancies are not stable, it is argued that cation vacancy aggregation is not a dominant process in near-equilibrium conditions. In-grown or radiation-induced clusters of four cation vacancies may serve as a nucleation center for tellurium precipitation. The formation energy of these small voids is lower in ZnTe than in CdTe. Additionally, cation-anion divacancies are stable in ZnTe and in p-type CdTe.

  4. A novel silica-coated multiwall carbon nanotube with CdTe quantum dots nanocomposite

    Science.gov (United States)

    Fei, Qiang; Xiao, Dehai; Zhang, Zhiquan; Huan, Yanfu; Feng, Guodong

    2009-10-01

    A novel silica-coated multiwall carbon nanotube (MWNTs) with CdTe quantum dots nanocomposite was synthesized in this paper. Here, we show the in situ growth of crystalline CdTe quantum dots on the surfaces of oxidized MWNTs. The approach proposed herein differs from previous attempts to synthesize nanotube assemblies in that we mix the oxidized MWNTs into CdCl 2 solution of CdTe nanocrystals synthesized in aqueous solution. Reinforced the QD-MWNTs heterostructures with silica coating, this method is not invasive and does not introduce defects to the structure of carbon nanotubes (CNTs), and it ensures high stability in a range of organic solvents. Furthermore, a narrow SiO 2 layer on the MWNT-CdTe heterostructures can eliminate the biological toxicity of quantum dots and carbon nanotubes. This is not only a breakthrough in the synthesis of one-dimensional nanostructures, but also taking new elements into bio-nanotechnology.

  5. Testing the plutonium isotopic analysis code FRAM with various CdTe detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc T.; Russo, P. A. (Phyllis A.)

    2002-01-01

    The isotopic analysis code Fixed-energy Response-function Analysis with Multiple efficiency (FRAM)1,2 has been proven to successfully analyze plutonium spectra taken with a portable CdTe detector with Peltier cooling, the first results of this kind for a noncryogenic detector.3 These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than Ge spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. This paper describes further testing of FRAM with two CdTe detectors of different sizes and resolutions using different analog and digital, portable multichannel analyzers (MCAs).

  6. Time walk correction of CdTe detectors using depth sensing technique

    International Nuclear Information System (INIS)

    A digital timing method aiming to minimize the time walk caused by the depth-dependent pulse shape variations in CdTe detectors has been developed. Detector pulses are digitized at the preamplifier stage and a full digital process is carried out to deduce and correct the time walk according to the interaction depth. A time resolution of 6.52 ns FWHM at an energy threshold of 150 keV with a CdTe detector (10x10x1 mm3) is achieved, which is close to the intrinsic resolution of the detector. The method improves the time resolution with no loss of detection efficiency and it is easy to implement. It is confirmed that the slow mobility and the short lifetime of the holes are major obstacles for further improvement in the timing performance of the CdTe detectors. The method is applicable to any semiconductor detector.

  7. Recent Progress on Solution-Processed CdTe Nanocrystals Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Xue

    2016-07-01

    Full Text Available Solution-processed CdTe nanocrystals (NCs photovoltaic devices have many advantages, both in commercial manufacture and daily operation, due to the low-cost fabrication process, which becomes a competitive candidate for next-generation solar cells. All solution-processed CdTe NCs solar cells were first reported in 2005. In recent years, they have increased over four-fold in power conversion efficiency. The latest devices achieve AM 1.5 G power conversion efficiency up to 12.0%, values comparable to those of commercial thin film CdTe/CdS solar cells fabricated by the close-space sublimation (CSS method. Here we review the progress and prospects in this field, focusing on new insights into CdTe NCs synthesized, device fabrication, NC solar cell operation, and how these findings give guidance on optimizing solar cell performance.

  8. Simulation of active-edge pixelated CdTe radiation detectors

    Science.gov (United States)

    Duarte, D. D.; Lipp, J. D.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  9. Modifying the Fluorescence of CdTe Quantum Dots by Silica-coated Gold Nanorods

    Directory of Open Access Journals (Sweden)

    Ning Zhou

    2016-03-01

    Full Text Available The influence of Au nanorods coated with a silica layer on the photoluminescence (PL of CdTe quantum dots (QDs was investigated. The Au nanorods were prepared using a seed-mediated method. They were coated with a silica layer on the surface and CdTe QDs were connected to the surface of the silica layers. The PL spectra suggested that the quenching effect of the Au nanorods was decreased by the isolation of the silica layer. Through the time-resolved PL measurement, it was found that the PL decay of QDs became faster. The Au@SiO2-CdTe complex could poten‐ tially be used in biological sensing and thermal therapy.

  10. High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies

    International Nuclear Information System (INIS)

    In this paper, we focus on the high resistivity of intentionally undoped CdTe, where the most prevalent defects are Cd vacancies and Te antisites. Our calculated formation energies lead to the conclusion that the Fermi energy of undoped CdTe is at midgap due to carrier compensation of Te antisites and Cd vacancies, which explains the experimentally observed high resistivity. We use density functional theory with the hybrid functional of Heyd, Scuseria and Ernzerhof (HSE06) and show that the proper description of the native defects in general fails using the local density approximation (LDA) instead of HSE06. We conclude that LDA is insufficient to understand the high resistivity of undoped CdTe. We calculate the neutral and double acceptor state of the Te antisite to be intrinsic DX-centers. (paper)

  11. Role of polycrystallinity in CdTe and CuInSe sub 2 photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, J.R. (Colorado State Univ., Fort Collins, CO (United States))

    1991-01-01

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  12. Defect equilibria in In- and Ga-doped CdTe

    International Nuclear Information System (INIS)

    One carried out high temperature (T ∼ 700-1300 K) measurements of the Hall effect in the atmosphere of Cd vapors for CdTe four specimens and for CdTe two specimens. One calculated the constant for In implantation in CdTe lattice from precipitates. On the basis of the system of the Kreger quasi-chemical equations one plotted models for dependence of concentration of point defects on temperature, as well as, on impurity activity that were in good conformity with the experimentally determined content of charge carriers. Occurrence of the maximums of electron concentration at temperature increase is explained by growth of concentration of donor defects due to more considerable solubility of impurity and their subsequent compensation by both intrinsic and impurity associated acceptors

  13. Large-scale synthesis of CdTe quantum dots in aqueous phase

    International Nuclear Information System (INIS)

    In this paper, we present the systematically experimental results on the influence of pH of the reaction medium, molar ratio of the precursors on the synthesis in aqueous phase of CdTe quantum dots (QDs) and CdTe/CdS QDs with core/shell structure. Under optimal synthesis conditions, water-soluble CdTe and CdTe/CdS QDs has been prepared that exhibit very strong photoluminescence peaking in the spectral range between 520 nm and 650 nm with narrow full width at half maximum (∼ 32 nm in the short-wavelength emission case); depending on the emission range, most samples however exhibit the high luminescence quantum yields (∼ 40%). Moreover, the synthesis in aqueous phase shows some additional advantages: it is possible to prepare high quality CdTe QDs in large-scale (up to gram/reaction) with low cost, less toxic and short production time. (author)

  14. New CdTe photoconductor array detector for x-ray applications

    International Nuclear Information System (INIS)

    A CdTe photoconductor array x-ray detector was grown using molecular beam epitaxy (MBE) on a Si(100) substrate. The temporal response of the photoconductor arrays is as fast as 21 ps rise time and 38 ps full width half-maximum (FWHM). The spatial resolution of the photoconductor was good enough to provide 75 μm FWHM using a 50 μm synchrotron x-ray beam. A substantial number of x-ray photons are absorbed effectively within the MBE CdTe layer as observed from the linear response up to 15 keV. These results demonstrate that MBE grown CdTe is a suitable choice of the detector materials to meet the requirements for x-ray detectors

  15. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    Directory of Open Access Journals (Sweden)

    Ghasem Rezanejade Bardajee

    2013-01-01

    Full Text Available This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs by using poly(acrylic acid grafted onto salep (salep-g-PAA as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR spectrum, thermogravimetric (TG analysis, and transmission electron microscopy (TEM. The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical properties of CdTe QDs. The results showed that the optical properties of CdTe QDs were significantly enhanced by using salep-g-PAA-based biopolymer.

  16. Effect of shells on photoluminescence of aqueous CdTe quantum dots

    International Nuclear Information System (INIS)

    Graphical abstract: Size-tunable CdTe coated with several shells using an aqueous solution synthesis. CdTe/CdS/ZnS quantum dots exhibited high PL efficiency up to 80% which implies the promising applications for biomedical labeling. - Highlights: • CdTe quantum dots were fabricated using an aqueous synthesis. • CdS, ZnS, and CdS/ZnS shells were subsequently deposited on CdTe cores. • Outer ZnS shells provide an efficient confinement of electron and hole inside the QDs. • Inside CdS shells can reduce the strain on the QDs. • Aqueous CdTe/CdS/ZnS QDs exhibited high stability and photoluminescence efficiency of 80%. - Abstract: CdTe cores with various sizes were fabricated in aqueous solutions. Inorganic shells including CdS, ZnS, and CdS/ZnS were subsequently deposited on the cores through a similar aqueous procedure to investigate the effect of shells on the photoluminescence properties of the cores. In the case of CdTe/CdS/ZnS quantum dots, the outer ZnS shell provides an efficient confinement of electron and hole wavefunctions inside the quantum dots, while the middle CdS shell sandwiched between the CdTe core and ZnS shell can be introduced to obviously reduce the strain on the quantum dots because the lattice parameters of CdS is situated at the intermediate-level between those of CdTe and ZnS. In comparison with CdTe/ZnS core–shell quantum dots, the as-prepared water-soluble CdTe/CdS/ZnS quantum dots in our case can exhibit high photochemical stability and photoluminescence efficiency up to 80% in an aqueous solution, which implies the promising applications in the field of biomedical labeling

  17. CdTe detector use for PIXE characterization of TbCoFe thin films

    International Nuclear Information System (INIS)

    Peltier cooled CdTe detectors have good efficiency beyond the range of energies normally covered by Si(Li) detectors, the most common detectors in PIXE applications. An important advantage of CdTe detectors is the possibility of studying K X-rays lines instead the L X-rays lines in various cases since CdTe detectors present an energy efficiency plateau reaching 70 keV or more. The ITN CdTe useful energy range starts at K-Kα (3.312 keV) and goes up to 120 keV, just above the energy of the lowest γ-ray of the 19F(p, p'γ)19F reaction. In the new ITN HRHE-PIXE line, a CdTe detector is associated to a POLARIS microcalorimeter X-ray detector built by Vericold Technologies GmbH (an Oxford Instruments Group Company). The ITN POLARIS has a resolution of 15 eV at 1.486 keV (Al-Kα) and 24 eV at 10.550 keV (Pb-Lα1). In the present work, a TbCoFe thin film deposited on a Si substrate was analysed at the HRHE-PIXE system. The good efficiency of the CdTe detector at 45 keV (Tb-Kα), and the excellent resolution of POLARIS microcalorimeter at 6.403 keV (Fe-Kα), are presented and the new possibilities open to the IBA analysis of systems with traditionally overlapping X-rays and near mass elements are discussed.

  18. Facile method to prepare CdS nanostructure based on the CdTe films

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • CdS nanostructure is directly fabricated on CdTe film only by heating treatment under H2S/N2 mixed atmosphere at a relatively low temperature (450 °C) with gold layer as the intermediate. • Nanostructure of CdS layer, varying from nanowires to nanosheets, may be controlled by the thickness of gold film. • The change of morphology adjusts its luminescence properties. - Abstract: Nanostructured cadmium sulfide (CdS) plays critical roles in electronics and optoelectronics. In this paper, we report a method to fabricate CdS nanostructure directly on CdTe film, via a thermal annealing method in H2S/N2 mixed gas flow at a relatively low temperature (450 °C). The microstructure and optical properties of CdS nanostructure are investigated by X-ray diffraction, transmission electron microscopy, Raman, and photoluminescence. The morphology of CdS nanostructure, evolving from nanowires to nanosheets, can be controlled by the thickness of Au film deposited on the CdTe film. And CdS nanostructures are single crystalline with the hexagonal wurtzite structure. Raman spectroscopy under varying the excitation wavelengths confirm that synthesized CdS-CdTe films contain two layers, i.e., CdS nanostructure (top) and CdTe layer (bottom). The change of morphology modifies its luminescence properties. Obviously, through simply thermal annealing in H2S/N2 mixed gas, fabricating CdS nanostructure on CdTe film can open up the new possibility for obtaining high efficient CdTe solar cell

  19. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    International Nuclear Information System (INIS)

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2θ = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (ΔE) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, λ. The value of n and k increases with the increase of substrate temperature

  20. Synthesis of Mn-modified CdTe nanoparticles and their application as fluorescence probe

    International Nuclear Information System (INIS)

    Mn-modified CdTe nanoparticles (NPs) were synthesized via a novel, facile method at low temperature. The modified NPs were directly synthesized in aqueous solution by mixing CdCl2·2.5H2O, fresh NaHTe solution, thioglycolic acid (TGA) and MnCl2·4H2O under suitable conditions. Mn-modified CdTe NPs were evaluated as fluorescence probe for bovine serum albumin (BSA) in aqueous solution. Experiment results showed that the fluorescence emission of Mn-modified CdTe NPs was enhanced significantly by BSA, while other substances exhibited no significant effect on NPs. Under the optimal conditions, the response was linearly proportional to the concentration of BSA ranging from 5.0×10−9 to 7.0×10−7 mol/L with detection limit 5.26×10−10 mol/L. Based on the distinct optical properties of Mn-modified CdTe NPs with BSA, Mn-modified CdTe NPs can be developed as a potential identified fluorescence probe for BSA in aqueous solution. -- Highlights: • Mn-modified CdTe nanoparticles were synthesized via a facile method at low temperature. • The fluorescence properties and morphology of Mn-CdTe nanoparticles were studied clearly. • Mn-CdTe nanoparticles show superior response to the bovine serum albumin molecular on the fluorescence emission. • This detection method was sensitive and provides a wide range of bovine serum albumin concentrations

  1. Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films

    International Nuclear Information System (INIS)

    A new simple route was presented for the preparation of stable fluorescent CdTe/polymethylmethacrylate (CdTe/PMMA) composite films by using hydrophilic thioglycolic acid capped CdTe quantum dots (TGA-CdTe QDs) and polymethylmethacrylate (PMMA) as raw materials. The TGA-CdTe QDs were firstly exchanged with n-dodecanethiol (DDT) to become hydrophobic DDT-CdTe QDs via a ligand exchange strategy, and then incorporated into PMMA matrix to obtain fluorescent CdTe/PMMA composite films. The structure and optical properties of DDT-CdTe QDs and CdTe/PMMA composite films were investigated by XRD, IR, UV and PL techniques. The results indicated that the obtained DDT-CdTe QDs well preserved the intrinsic structure and the maximum emission wavelength of the initial water-soluble QDs and the resulting 6.10 wt% CdTe/PMMA composite film exhibited significantly enhanced PL intensity. Furthermore, the multicolored composite films with green, yellow-green, yellow and orange light emissions were well tuned by incorporating the CdTe QDs of various maximum emission wavelengths. The TEM image demonstrated that the CdTe QDs were well-dispersed in the PMMA matrix without aggregation. Superior photostability of QDs in the composite film was confirmed by fluorescence lifetime measurement. Thermo-gravimetric analysis of CdTe/PMMA composite films showed no obvious enhancement of thermal stability compared with pure PMMA. - Highlights: • Ligand-exchange strategy was used to render CdTe QDs oil-soluble. • CdTe QDs were incorporated into PMMA matrix to fabricate fluorescent films. • The resulting 6.10 wt% CdTe/PMMA film exhibited significantly enhanced PL intensity. • Fluorescent colors of films were tuned by varying the λem of incorporated CdTe QDs

  2. Development of Substrate Structure CdTe Photovoltaic Devices with Performance Exceeding 10%: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, R. G.; Duenow, J. N.; DeHart, C. M.; Li, J. V.; Kuciauskas, D.; Gessert, T. A.

    2012-08-01

    Most work on CdTe-based solar cells has focused on devices with a superstrate structure. This focus is due to the early success of the superstrate structure in producing high-efficiency cells, problems of suitable ohmic contacts for lightly doped CdTe, and the simplicity of the structure for manufacturing. The development of the CdCl2 heat treatment boosted CdTe technology and perpetuated the use of the superstrate structure. However, despite the beneficial attributes of the superstrate structure, devices with a substrate structure are attractive both commercially and scientifically. The substrate structure eliminates the need for transparent superstrates and thus allows the use of flexible metal and possibly plastic substrates. From a scientific perspective, it allows better control in forming the junction and direct access to the junction for detailed analysis. Research on such devices has been limited. The efficiency of these devices has been limited to around 8% due to low open-circuit voltage (Voc) and fill factor. In this paper, we present our recent device development efforts at NREL on substrate-structure CdTe devices. We have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. We have worked on a variety of contact materials including Cu-doped ZnTe and CuxTe. We will present a comparative analysis of the performance of these contacts. In addition, we have studied the influence of fabrication parameters on junction properties. We will present an overview of our development work, which has led to CdTe devices with Voc values of more than 860 mV and NREL-confirmed efficiencies approaching 11%.

  3. Facile method to prepare CdS nanostructure based on the CdTe films

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ligang; Chen, Yuehui; Wei, Zelu; Cai, Hongling; Zhang, Fengming; Wu, Xiaoshan, E-mail: xswu@nju.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • CdS nanostructure is directly fabricated on CdTe film only by heating treatment under H{sub 2}S/N{sub 2} mixed atmosphere at a relatively low temperature (450 °C) with gold layer as the intermediate. • Nanostructure of CdS layer, varying from nanowires to nanosheets, may be controlled by the thickness of gold film. • The change of morphology adjusts its luminescence properties. - Abstract: Nanostructured cadmium sulfide (CdS) plays critical roles in electronics and optoelectronics. In this paper, we report a method to fabricate CdS nanostructure directly on CdTe film, via a thermal annealing method in H{sub 2}S/N{sub 2} mixed gas flow at a relatively low temperature (450 °C). The microstructure and optical properties of CdS nanostructure are investigated by X-ray diffraction, transmission electron microscopy, Raman, and photoluminescence. The morphology of CdS nanostructure, evolving from nanowires to nanosheets, can be controlled by the thickness of Au film deposited on the CdTe film. And CdS nanostructures are single crystalline with the hexagonal wurtzite structure. Raman spectroscopy under varying the excitation wavelengths confirm that synthesized CdS-CdTe films contain two layers, i.e., CdS nanostructure (top) and CdTe layer (bottom). The change of morphology modifies its luminescence properties. Obviously, through simply thermal annealing in H{sub 2}S/N{sub 2} mixed gas, fabricating CdS nanostructure on CdTe film can open up the new possibility for obtaining high efficient CdTe solar cell.

  4. Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanni; Liu, Jianjun, E-mail: jjliu717@aliyun.com; Yu, Yingchun; Zuo, Shengli

    2015-10-25

    A new simple route was presented for the preparation of stable fluorescent CdTe/polymethylmethacrylate (CdTe/PMMA) composite films by using hydrophilic thioglycolic acid capped CdTe quantum dots (TGA-CdTe QDs) and polymethylmethacrylate (PMMA) as raw materials. The TGA-CdTe QDs were firstly exchanged with n-dodecanethiol (DDT) to become hydrophobic DDT-CdTe QDs via a ligand exchange strategy, and then incorporated into PMMA matrix to obtain fluorescent CdTe/PMMA composite films. The structure and optical properties of DDT-CdTe QDs and CdTe/PMMA composite films were investigated by XRD, IR, UV and PL techniques. The results indicated that the obtained DDT-CdTe QDs well preserved the intrinsic structure and the maximum emission wavelength of the initial water-soluble QDs and the resulting 6.10 wt% CdTe/PMMA composite film exhibited significantly enhanced PL intensity. Furthermore, the multicolored composite films with green, yellow-green, yellow and orange light emissions were well tuned by incorporating the CdTe QDs of various maximum emission wavelengths. The TEM image demonstrated that the CdTe QDs were well-dispersed in the PMMA matrix without aggregation. Superior photostability of QDs in the composite film was confirmed by fluorescence lifetime measurement. Thermo-gravimetric analysis of CdTe/PMMA composite films showed no obvious enhancement of thermal stability compared with pure PMMA. - Highlights: • Ligand-exchange strategy was used to render CdTe QDs oil-soluble. • CdTe QDs were incorporated into PMMA matrix to fabricate fluorescent films. • The resulting 6.10 wt% CdTe/PMMA film exhibited significantly enhanced PL intensity. • Fluorescent colors of films were tuned by varying the λ{sub em} of incorporated CdTe QDs.

  5. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2013-01-01

    Full Text Available This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures. A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF to reduce minority carrier recombination loss at the back contact in ultra-thin CdTe cells. In this analysis the highest conversion efficiency of CdTe based PV cell without BSF has been found to be around 17% using CdTe absorber thickness of 5 μm. However, the proposed structures with different BSF have shown acceptable efficiencies with an ultra-thin CdTe absorber of only 0.6 μm. The proposed structure with As2Te3 BSF showed the highest conversion efficiency of 20.8% ( V,  mA/cm2, and . Moreover, the proposed structures have shown improved stability in most extents, as it was found that the cells have relatively lower negative temperature coefficient. However, the cell with ZnTe BSF has shown better overall stability than other proposed cells with temperature coefficient (TC of −0.3%/°C.

  6. Phosphorus Diffusion Mechanisms and Deep Incorporation in Polycrystalline and Single-Crystalline CdTe

    Science.gov (United States)

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji-Hui; Burst, James M.; Albin, David S.; Wei, Su-Huai; Metzger, Wyatt K.

    2016-05-01

    A key challenge in cadmium-telluride (CdTe) semiconductors is obtaining stable and high hole density. Group-I elements substituting Cd can form acceptors but easily self-compensate and diffuse quickly. For example, CdTe photovoltaics have relied on copper as a dopant, but this creates stability problems and hole density that has not exceeded 1015 cm-3 . If hole density can be increased beyond 1016 cm-3 , CdTe solar technology can exceed multicrystalline silicon performance and provide levelized costs of electricity below conventional energy sources. Group-V elements substituting Te offer a solution, but they are very difficult to incorporate. Using time-of-flight secondary-ion mass spectrometry, we examine bulk and grain-boundary diffusion of phosphorus (P) in CdTe in Cd-rich conditions. We find that in addition to slow bulk diffusion and fast grain-boundary diffusion, there is a critical fast bulk-diffusion component that enables deep P incorporation in CdTe. Detailed first-principle calculations indicate the slow bulk-diffusion component is caused by substitutional P diffusion through the Te sublattice, whereas the fast bulk-diffusion component is caused by P diffusing through interstitial lattice sites following the combination of a kick-out step and two rotation steps. The latter is limited in magnitude by high formation energy, but is sufficient to manipulate P incorporation. In addition to an increased physical understanding, these results open up experimental possibilities for group-V doping in CdTe applications.

  7. Simulation of active-edge pixelated CdTe radiation detectors

    OpenAIRE

    Duarte, DD; Lipp, JD; Schneider, A.; Seller, P; Veale, MC; Wilson, MD; Baker, MA; Sellin, PJ

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper sh...

  8. Time walk correction of CdTe detectors using depth sensing technique

    OpenAIRE

    Nakhostin, M; Walker, PM; Sellin, PJ

    2010-01-01

    A digital timing method aiming to minimize the time walk caused by the depth-dependent pulse shape variations in CdTe detectors has been developed. Detector pulses are digitized at the preamplifier stage and a full digital process is carried out to deduce and correct the time walk according to the interaction depth. A time resolution of 6.52 ns FWHM at an energy threshold of 150 keV with a CdTe detector (10×10×1 mm3) is achieved, which is close to the intrinsic resolution of the detector. The...

  9. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  10. Improvement of the energy resolution of CdTe detectors by pulse height correction from waveform

    OpenAIRE

    Kikawa, T.; Ichikawa, A. K.; Hiraki, T.; Nakaya, T.(Kyoto University, Department of Physics, Kyoto, Japan)

    2011-01-01

    Semiconductor detectors made of CdTe crystal have high gamma-ray detection efficiency and are usable at room temperature. However, the energy resolution of CdTe detectors for MeV gamma-rays is rather poor because of the significant hole trapping effect. We have developed a method to improve the energy resolution by correcting the pulse height using the waveform of the signal and achieved 2.0% (FWHM) energy resolution for 662keV gamma-rays. Best energy resolution was achieved at temperatures b...

  11. Edge effects in a small pixel CdTe for X-ray imaging

    OpenAIRE

    Duarte, DD; Bell, SJ; Lipp, J; Schneider, A.; Seller, P; Veale, MC; Wilson, MD; Baker, MA; Sellin, PJ; Kachkanov, V.; Sawhney, KJS

    2013-01-01

    Large area detectors capable of operating with high detection efficiency at energies above 30 keV are required in many contemporary X-ray imaging applications. The properties of high Z compound semiconductors, such as CdTe, make them ideally suitable to these applications. The STFC Rutherford Appleton Laboratory has developed a small pixel CdTe detector with 80×80 pixels on a 250 µm pitch. Historically, these detectors have included a 200 µm wide guard band around the pixelated anode to reduc...

  12. Electrochemical deposition and characterization of CdTe polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, S.; Dalchiele, E.A. (Inst. de Fisica, Facultad de Ingenieria, Montevideo (Uruguay))

    1991-10-10

    CdTe thin films have been prepared by potentiostatic electrodeposition from acidic solutions containing CdSO{sub 4} and TeO{sub 2}, or CdCl{sub 2} and TeO{sub 2}. The films were characterized by X-ray diffraction and scanning electron microscopy. The influence of the deposition potential and bath temperature on the presence of tellurium and crystallite size was studied. The effect of annealing treatment on the increase in grain size of the electrochemically deposited CdTe films has been investigated. (orig.).

  13. Transient spectral dependence of photoinduced magneto-optical Faraday effect in CdTe quantum dots

    Directory of Open Access Journals (Sweden)

    Hong Ma

    2012-03-01

    Full Text Available The time-resolved photo-induced magneto-optical response of water soluble cadmium telluride (CdTe colloidal quantum dots (QDs is studied in the spectral range across the first exciton (1S3/21Se transition at room temperature without external magnetic field. Spectral dependence of the Faraday ellipticity reaches an extremum near the first exciton transition energy, while the Faraday rotation shows a sign reversal, which indicates that the spectral dependence of photo-induced Faraday effect evolves from a diamagnetic to a paramagnetic behavior during the exciton spin relaxation process in CdTe QDs.

  14. Investigation of swift heavy ion irradiation effects in CdTe crystals

    International Nuclear Information System (INIS)

    CdTe crystals grown by the Bridgman technique were irradiated by swift heavy ions (SHIs), 100 MeV Ag7+ ions, with fluences varying from 1011 to 1014 ions cm-2 and the damage is investigated by atomic force microscopy, x-ray diffraction, hall effect measurements and photoluminence. It is found that the behaviour of CdTe crystals under a SHI irradiation induces structural disorder, generation of optically active defects, decrease in the electron mobility but an increase in the carrier concentration compared with as-grown samples. The observed effects are mainly due to the intense electronic excitation created by SHIs

  15. Improved spectrometric performance of CdTe radiation detectors in a p-i -n design

    OpenAIRE

    Niraula, Madan; Mochizuki, Daisuke; Aoki, Toru; Hatanaka, Yoshinori; Tomita, Yasuhiro; Nihashi, Tokuaki; ニラウラ, マダン

    1999-01-01

    CdTe radiation detectors were fabricated using a p-i-n design and a significant improvement in the spectral properties was obtained during room temperature operation. An iodine doped n-CdTe layer was grown on the Te faces of the (111) oriented high resistivity CdTe crystals at the low substrate temperature of 150°C. An aluminum electrode was evaporated on the n-CdTe side for the n-type contact, while a gold electrode on the opposite side acted as the p-type contact. Very low leakage currents,...

  16. Electrical properties of Schottky diodes based on high-resistance CdTe crystals

    International Nuclear Information System (INIS)

    Measurement of the Schottky barrier height on the CdTe monocrystals alloyed with the Cl, Br, J during the growth process is carried out through the method of chemical transport reactions. Verification of the efficiency of the proposed F(V) function modification with the purpose of determining the Me(In, Sn)-p-CdTe diodes parameters is accomplished. The Schottky barriers with the current transmission diffusion mechanism perspective for developing high-efficiency semiconducting detectors of nuclear radiation are created on the basis of the method for the gas-phase growth of the semiinsulating CdTe monocrystals

  17. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    OpenAIRE

    Zulkarnain Zainal; Mohd Norizam Md Daud; Azmi Zakaria; Mohd Sabri Mohd Ghazali; Atefeh Jafari; Wan Rafizah Wan Abdullah

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the ...

  18. Obtaining an intermediate band photovoltaic material through the Bi insertion in CdTe

    OpenAIRE

    Seminóvski Pérez, Yohanna; Palacios Clemente, Pablo; Wahnón Benarroch, Perla

    2013-01-01

    Defect interaction can take place in CdTe under Te and Bi rich conditions. We demonstrate in this work through first principles calculations, that this phenomenon allows a Jahn Teller distortion to form an isolated half-filled intermediate band in the host semiconductor band-gap. This delocalized energy band supports the experimental deep level reported in the host band-gap of CdTe at a low bismuth concentration. Furthermore, the calculated optical absorption of CdTe:Bi in this work shows a s...

  19. The impact of Cu on recombination in high voltage CdTe solar cells

    Science.gov (United States)

    Kuciauskas, Darius; Dippo, Pat; Kanevce, Ana; Zhao, Zhibo; Cheng, Long; Los, Andrei; Gloeckler, Markus; Metzger, Wyatt K.

    2015-12-01

    Using photoluminescence spectroscopy, we construct a recombination model for state-of-the-art CdTe solar cells doped with Cu. We observe that Cu on Cd sites form a dominant acceptor state about 150 meV from the valence band. Although it is intuitive that this state can increase hole density, we also find that this relatively shallow dopant can also limit lifetime. Consequently, CdTe solar cells doped with Cu could have a lifetime limitation inversely proportional to the hole concentration.

  20. Synthesis of CdTe QDs by hydrothermal method, with tunable emission fluorescence

    Science.gov (United States)

    Liu, Fujun; Laurent, Sophie; Vander Elst, Luce; Muller, Robert N.

    2015-09-01

    Cadmium telluride (CdTe) quantum dots (QDs) were prepared via a hydrothermal method, using 3-mercaptopropionic acid (3-MPA) as the stabilizing agent. With the help of absorption and emission spectra, it was found that prolonging the reaction time and raising the reaction temperature can increase the size of the QDs obtained, and hence induce a red shift of fluorescence emission. Rhodamine 6G was used as the reference to calculate the quantum yield (QY), and this showed that the use of extra Cd ions will distinctly increase the QY of CdTe.

  1. Characterization of point defects in CdTe by positron annihilation spectroscopy

    Science.gov (United States)

    Elsharkawy, M. R. M.; Kanda, G. S.; Abdel-Hady, E. E.; Keeble, D. J.

    2016-06-01

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  2. Improvement of the energy resolution of CdTe detectors by pulse height correction from waveform

    CERN Document Server

    Kikawa, T; Hiraki, T; Nakaya, T

    2011-01-01

    Semiconductor detectors made of CdTe crystal have high gamma-ray detection efficiency and are usable at room temperature. However, the energy resolution of CdTe detectors for MeV gamma-rays is rather poor because of the significant hole trapping effect. We have developed a method to improve the energy resolution by correcting the pulse height using the waveform of the signal and achieved 2.0% (FWHM) energy resolution for 662keV gamma-rays. Best energy resolution was achieved at temperatures between -10 degrees C and 0 degrees C.

  3. Determination of dispersion parameters of thermally deposited CdTe thin film

    Science.gov (United States)

    Dhimmar, J. M.; Desai, H. N.; Modi, B. P.

    2016-05-01

    Cadmium Telluride (CdTe) thin film was deposited onto glass substrates under a vacuum of 5 × 10-6 torr by using thermal evaporation technique. The prepared film was characterized for dispersion analysis from reflectance spectra within the wavelength range of 300 nm - 1100 nm which was recorded by using UV-Visible spectrophotometer. The dispersion parameters (oscillator strength, oscillator wavelength, high frequency dielectric constant, long wavelength refractive index, lattice dielectric constant and plasma resonance frequency) of CdTe thin film were investigated using single sellimeir oscillator model.

  4. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells

    Science.gov (United States)

    Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel

    2015-12-01

    Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.

  5. Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene

    Indian Academy of Sciences (India)

    Shugang Wang; Yaoxian Li; Jie Bai; Qingbiao Yang; Yan Song; Chaoqun Zhang

    2009-10-01

    The major objective of this work was to detect the change of photoluminescence (PL) intensity of CdTe nanoparticles (NPs) before and after transfer from liquid phase to polystyrene (PS) matrix by electrospinning technique. Thio-stabilized CdTe NPs were first synthesized in aqueous, then enwrapped by cetyltrimethylammonium bromide (CTAB), and finally, transferred into PS matrix to form CdTe/PS nanofibres by electrospinning. Then, CdTe/PS nanofibres were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM) to observe their morphology and distribution, respectively. The selective area electronic diffraction (SAED) pattern proved that the CdTe NPs were cubic lattice. The PL spectrum indicated that CdTe NPs have been transferred into PS nanofibres, and the PL intensity of CdTe NPs in the nanofibres was even higher than that before CdTe NPs were introduced into PS nanofibres. Moreover, X-ray photoelectron spectra (XPS) revealed that thiol-stabilized CdTe NPs were enwrapped by CTAB, and PS acted as a dispersant in the process of electrospinning.

  6. Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation

    Science.gov (United States)

    Okamoto, T.; Yamada, A.; Konagai, M.

    2000-06-01

    The effects of the Cu diffusion on the optical and electrical properties of CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage ( C- V) measurement and low-temperature photoluminescence (PL) measurement. C- V measurement revealed that the net acceptor concentration in the CdTe layer was independent of the heat treatment after screen printing of the Cu-doped graphite electrode for Cu diffusion into the CdTe layer, although it greatly affected the solar cell performance. Furthermore, the depth profile of PL spectrum of CdTe layer implies that the heat treatment for Cu diffusion facilitates the formation of low-resistance contact to CdTe through the formation of a heavily doped (p +) region in the CdTe adjacent to the back electrode, but Cu atoms do not act as effective acceptors in the CdTe layer except the region near the back electrode.

  7. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    International Nuclear Information System (INIS)

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl2 to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl2 treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. MBE-Grown CdTe Layers on GaAs with In-assisted Thermal Deoxidation

    Science.gov (United States)

    Arı, Ozan; Bilgilisoy, Elif; Ozceri, Elif; Selamet, Yusuf

    2016-03-01

    Molecular beam epitaxy (MBE) growth of thin (˜2 μm) CdTe layers characterized by high crystal quality and low defect density on lattice mismatched substrates, such as GaAs and Si, has thus far been difficult to achieve. In this work, we report the effects of in situ thermal deoxidation under In and As4 overpressure prior to the CdTe growth on epiready GaAs(211)B wafers, aiming to enhance CdTe crystal quality. Thermally deoxidized GaAs samples were analyzed using in situ reflection high energy electron diffraction, along with ex situ x-ray photo-electron spectroscopy (XPS) and atomic force microscopy. MBE-grown CdTe layers were characterized using x-ray diffraction (XRD) and Everson-type wet chemical defect decoration etching. We found that In-assisted desorption allowed for easier surface preparation and resulted in a smoother surface compared to As-assisted surface preparation. By applying In-assisted thermal deoxidation to GaAs substrates prior to the CdTe growth, we have obtained single crystal CdTe films with a CdTe(422) XRD rocking curve with a full-width half-maximum value of 130.8 arc-s and etch pit density of 4 × 106 cm-2 for 2.54 μm thickness. We confirmed, by XPS analysis, no In contamination on the thermally deoxidized surface.

  9. Incertidumbre de la medición de masa en la determinación de los parámetros de consumo de electrodos de recargue Measurement uncertainty of mass in the determination of the consumption parameters of hardfacing electrodes

    Directory of Open Access Journals (Sweden)

    Rosenda Valdés Arencibia

    2013-06-01

    Full Text Available Este trabajo presenta la evaluación de la incertidumbre de las mediciones realizadas para la determinación de los parámetros de consumo de electrodos de recargue, dando énfasis a la medición de masa. Para ello fueron realizados tres depósitos a tres niveles de corriente (120 A, 145 A y 160 A, respectivamente, registrándose el tiempo de soldadura, la longitud del cordón, así como la masa inicial y final de las probetas y de los electrodos. A partir de los datos anteriores fueron determinados los parámetros de consumo. Fue calculada la incertidumbre asociada a la masa de las probetas, a la masa consumida del electrodo, a la masa depositada y a los parámetros de consumo. Al finalizar el trabajo se comprobó que el rendimiento del depósito muestra un comportamiento decreciente con la corriente, siendo el mejor resultado de (74,12 % para una corriente de soldadura de 120 A. Los valores de incertidumbre expandida para el rendimiento varían entre 1,47 % y 2,41 %, para la tasa de consumo fueron obtenidos valores entre 0,4 g/min y 0,6 g/min, mientras que para la tasa de deposición la incertidumbre varía de 0,6 g/min a 0,7 g/min.This work presents the evaluation of the uncertainty of the measurements to determine the consumption parameters of hardfacing electrode, emphasizing the mass measurement. The experimentation was carried out obtaining deposits at three levels of current (120 A, 145 A y 160 A and measuring the time spent in welding, the length of the welds the test plate and electrode mass (initial and final. Based on these results, the consumption parameters were also determined. The uncertainty related to the measurements the mass of the samples, the mass consumption of the electrode, the deposited mass and consumption parameters was determined. The results showed that the deposition efficiency increase as a function of the current, turning the best result (74.12 % at 120 A. The expanded measurement uncertainty associated to

  10. Prospects of Thickness Reduction of the CdTe Layer in Highly Efficient CdTe Solar Cells Towards 1 µm

    Science.gov (United States)

    Amin, Nowshad; Isaka, Takayuki; Okamoto, Tamotsu; Yamada, Akira; Konagai, Makoto

    1999-08-01

    This study focuses on the technique for the stable growth of CdTe (1.44 eV) with thickness near its absorption length, 1 µm, by close spaced sublimation (hereafter CSS) process, in order to achieve high conversion efficiency. X-ray diffraction (XRD) spectroscopy was carried out to examine the microstructure of the films. Current-voltage (I V) characteristics, spectral response and other features of the solar cells using these CdTe films were investigated to elucidate the optimum conditions for achieving the best performance in such thin (1 µm) CdTe solar cells. Thickness was found to be reduced by controlling the temperature profile used during CSS growth. The temperature profile was found to be an important factor in growing high-quality thin films. By controlling the growth parameters and optimizing the annealing temperature at different fabrication steps, we have succeeded, to date, in achieving cell efficiencies of 14.3% (open-circuit voltage (Voc): 0.82 V, short-circuit current (Jsc): 25.2 mA/cm2, fill factor (F.F.): 0.695, area: 1 cm2) with 5 µm, 11.4% (Voc: 0.77 V, Jsc: 23.7 mA/cm2, F.F.: 0.63, area: 1 cm2) with 1.5 µm and 11.2% (Voc: 0.77 V, Jsc: 23.1 mA/cm2, F.F.: 0.63, area: 1 cm2) with only 1 µm of CdTe layer thickness at an air mass of 1.5 without antireflection coatings. This is important for establishing a strong foundation before developing a new structure (e.g., glass/ITO/CdS/CdTe/ZnTe/Ag configuration) with a back surface field of wide-bandgap material (e.g., ZnTe).

  11. Superior stability of ultra thin CdTe solar cells with simple Cu/Au back contact

    International Nuclear Information System (INIS)

    Due to its high scalability and low production cost, CdTe has shown a significant potential for high mass production, resulting to be one of the cheapest photovoltaic technologies available. Efficiencies exceeding 20% have been obtained by the application of high temperature CdTe deposition. However tellurium scarcity is a limitation for mass production and one of the possibilities to overcome this is the reduction of absorber thickness. We have already demonstrated efficiencies above 11% for devices with 1.5 μm thick CdTe. Nowadays we have fabricated ultra-thin absorber devices performing more than 13% efficiencies. But what is most interesting is that we have observed a different electrical operation and stability, connected to the fact that the depletion region takes a very large part of the device. In this work many CdTe solar cells with a standard Cu/Au back contact, made with different absorber thicknesses, were prepared, stored in dark and tested at different aging times, showing different reactions to the aging and in particular a remarkable stability as CdTe thickness reduces. - Highlights: • CdTe/CdS devices with 0.7, 1 and 1.8 μm thick absorbers have been prepared. • Superior stability in dark aging of ultra thin CdTe devices has been registered. • Electrical analysis shows different behaviors and nature of defects for thin CdTe samples. • For 6 μm CdTe samples degradation is driven mainly by defect compensation. • For ultra thin CdTe samples, degradation is dominated by impurities from the front contact

  12. Superior stability of ultra thin CdTe solar cells with simple Cu/Au back contact

    Energy Technology Data Exchange (ETDEWEB)

    Rimmaudo, Ivan; Salavei, Andrei; Xu, Bing Lei; Di Mare, Simone; Romeo, Alessandro, E-mail: alessandro.romeo@univr.it

    2015-05-01

    Due to its high scalability and low production cost, CdTe has shown a significant potential for high mass production, resulting to be one of the cheapest photovoltaic technologies available. Efficiencies exceeding 20% have been obtained by the application of high temperature CdTe deposition. However tellurium scarcity is a limitation for mass production and one of the possibilities to overcome this is the reduction of absorber thickness. We have already demonstrated efficiencies above 11% for devices with 1.5 μm thick CdTe. Nowadays we have fabricated ultra-thin absorber devices performing more than 13% efficiencies. But what is most interesting is that we have observed a different electrical operation and stability, connected to the fact that the depletion region takes a very large part of the device. In this work many CdTe solar cells with a standard Cu/Au back contact, made with different absorber thicknesses, were prepared, stored in dark and tested at different aging times, showing different reactions to the aging and in particular a remarkable stability as CdTe thickness reduces. - Highlights: • CdTe/CdS devices with 0.7, 1 and 1.8 μm thick absorbers have been prepared. • Superior stability in dark aging of ultra thin CdTe devices has been registered. • Electrical analysis shows different behaviors and nature of defects for thin CdTe samples. • For 6 μm CdTe samples degradation is driven mainly by defect compensation. • For ultra thin CdTe samples, degradation is dominated by impurities from the front contact.

  13. Band diagrams and performance of CdTe solar cells with a Sb2Te3 back contact buffer layer

    OpenAIRE

    Songbai Hu; Zhe Zhu; Wei Li; Lianghuan Feng; Lili Wu; Jingquan Zhang; Jingjing Gao

    2011-01-01

    Sb2Te3 thin films were prepared by vacuum co-evaporation and the crystallinity of the films was greatly improved after annealing at 573 K in N2 ambient. Then they were deposited on the CdTe thick films. Band diagrams of the as-deposited and annealed CdTe/Sb2Te3 interfaces were constructed. Consequently, Sb2Te3 was used as a back contact layer for CdTe thin film solar cells and the cell performance was investigated. It was found that the Sb impurities accumulated in the CdTe grain boundaries d...

  14. Evaluation of Polarization Effects of e(-) Collection Schottky CdTe Medipix3RX Hybrid Pixel Detector

    OpenAIRE

    Astromskas, V.; Gimenez, EN; Lohstroh, A; Tartoni, N

    2016-01-01

    This paper focuses on the evaluation of operational conditions such as temperature, exposure time and flux on the polarization of a Schottky electron collection CdTe detector. A Schottky e- collection CdTe Medipix3RX hybrid pixel detector was developed as a part of the CALIPSO-HIZPAD2 EU project. The 128 ×128 pixel matrix and 0.75 mm thick CdTe sensor bump-bonded to Medipix3RX readout chips enabled the study of the polarization effects. Single and quad module Medipix3RX chips were used which ...

  15. Structural analysis of an epitaxial layer of CdTe on GaAs by the multidirectional channeling technique

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. (CSIRO Div. of Applied Physics, Lucas Heights Research Labs., Menai, NSW (Australia)); Kwietniak, M.S.; Pain, G.N. (Telecom Australia Research Labs., Clayton, Victoria (Australia)); Rossouw, C.J. (CSIRO Div. of Materials Science and Tech., Clayton, Victoria (Australia))

    1990-01-01

    Multidirectional RBS channeling analysis is used to identify the crystal orientation of a MOCVD-grown CdTe layer on a (100) GaAs substrate. Results show that the CdTe has a (111) orientation. However, from channeling in different axial directions and a rotational angular scan around the <111> axis, it is deduced that the CdTe layer is multiply twinned about this axis. Cross-sectional electron microscopy has revealed the twins to be 180deg rotational twins. (orig.).

  16. Temperature and illumination intensity dependence of photoconductivity in sputter-deposited heteroepitaxial (100)CdTe layers

    Science.gov (United States)

    Das, S. R.; Cook, J. G.; Mukherjee, G.

    1991-06-01

    The photoconductivity behavior and the Hall-effect of sputter-deposited heteroepitaxial (100)CdTe layers grown at temperatures between 300 and 325 C were investigated. The (100)CdTe epilayers were found to be highly photoconductive and exhibited photoconductivity/dark conductivity ratios as high as 1 x 10 to the 6th at around 200 K. Photoconductivity showed a sublinear dependence on the illumination intensity and was higher at higher temperatures. It is shown that the model of Simmons and Taylor (1974) developed to explain photoconductivity in amorphous semiconductors is also applicable to the (100)CdTe epitaxial layers.

  17. Synthesis and Bio-Imaging Application of Highly Luminescent Mercaptosuccinic Acid-Coated CdTe Nanocrystals

    OpenAIRE

    Erbo Ying; Dan Li; Shaojun Guo; Shaojun Dong; Jin Wang

    2008-01-01

    Here we present a facile one-pot method to prepare high-quality CdTe nanocrystals in aqueous phase. In contrast to the use of oxygen-sensitive NaHTe or H(2)Te as Te source in the current synthetic methods, we employ more stable sodium tellurite as the Te source for preparing highly luminescent CdTe nanocrystals in aqueous solution. By selecting mercaptosuccinic acid (MSA) as capping agent and providing the borate-citrate acid buffering solution, CdTe nanocrystals with high quantum yield (QY >...

  18. Structural, optical, photoluminescence, dielectric and electrical studies of vacuum-evaporated CdTe thin films

    Indian Academy of Sciences (India)

    Ziaul Raza Khan; M Zulfequar; Mohd Shahid Khan

    2012-04-01

    Highly-oriented CdTe thin films were fabricated on quartz and glass substrates by thermal evaporation technique in the vacuum of about 2 × 10-5 torr. The CdTe thin films were characterized by X-ray diffraction (XRD), UV–VIS–NIR, photoluminescence spectroscopy and scanning electron microscopy (SEM). X-ray diffraction results showed that the films were polycrystalline with cubic structure and had preferred growth of grains along the (111) crystallographic direction. Scanning electron micrographs showed that the growth of crystallites of comparable size on both the substrates. At the room temperature, photoluminescence spectra of the films on both the substrates showed sharp peaks with a maximum at 805 nm. This band showed significant narrowing suggesting that it originates from the transitions involving grain boundary defects. The refractive index of CdTe thin films was calculated using interference pattern of transmission spectra. The optical band gap of thin films was found to allow direct transition with energy gap of 1.47–1.50 eV. a.c. conductivity of CdTe thin films was found to increase with the increase in frequency whereas dielectric constant was observed to decrease with the increase in frequency.

  19. Thin film CdTe solar cells by close spaced sublimation: Recent results from pilot line

    International Nuclear Information System (INIS)

    CdTe is an attractive material to produce high efficient and low cost thin film solar cells. The semiconducting layers of this kind of solar cell can be deposited by the Close Spaced Sublimation (CSS) process. The advantages of this technique are high deposition rates and an excellent utilization of the raw material, leading to low production costs and competitive module prices. CTF Solar GmbH is offering equipment and process knowhow for the production of CdTe solar modules. For further improvement of the technology, research is done at a pilot line, which covers all relevant process steps for manufacture of CdTe solar cells. Herein, we present the latest results from the process development and our research activities on single functional layers as well as for complete solar cell devices. Efficiencies above 13% have already been obtained with Cu-free back contacts. An additional focus is set on different transparent conducting oxide materials for the front contact and a Sb2Te3 based back contact. - Highlights: ► Laboratory established on industrial level for CdTe solar cell research ► 13.0% cell efficiency with our standard front contact and Cu-free back contact ► Research on ZnO-based transparent conducting oxide and Sb2Te3 back contacts ► High resolution scanning electron microscopy analysis of ion polished cross section

  20. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates

    International Nuclear Information System (INIS)

    Flexible glass enables high-temperature, roll-to-roll processing of superstrate devices with higher photocurrents than flexible polymer foils because of its higher optical transmission. Using flexible glass in our high-temperature CdTe process, we achieved a certified record conversion efficiency of 14.05% for a flexible CdTe solar cell. Little has been reported on the flexibility of CdTe devices, so we investigated the effects of three different static bending conditions on device performance. We observed a consistent trend of increased short-circuit current and fill factor, whereas the open-circuit voltage consistently dropped. The quantum efficiency under the same static bend condition showed no change in the response. After storage in a flexed state for 24 h, there was very little change in device efficiency relative to its unflexed state. This indicates that flexible glass is a suitable replacement for rigid glass substrates, and that CdTe solar cells can tolerate bending without a decrease in device performance

  1. Nanoscale Imaging of Band Gap and Defects in Polycrystalline CdTe Photovoltaic Devices

    Science.gov (United States)

    Zhitenev, Nikolai; Yoon, Yohan; Chae, Jungseok; Katzenmeyer, Aaron; Yoon, Heayoung; An, Sangmin; Shumacher, Joshua; Centrone, Andrea

    To further increase the power efficiency of polycrystalline thin film photovoltaic (PV) technology, a detailed understanding of microstructural properties of the devices is required. In this work, we investigate the microstructure of CdTe PV devices using two optical spectroscopies. Sub-micron thickness lamella samples were cut out from a PV device, either in cross-section or in-plane, by focused ion beam. The first technique is the photothermal induced resonance (PTIR) used to obtain absorption spectra over a broad range of wavelengths. In PTIR, a wavelength tunable pulsed laser is combined with an atomic force microscope to detect the local thermal expansion of lamella CdTe sample induced by light absorption. The second technique based on a near-field scanning optical microscope maps the local absorption at fixed near-IR wavelengths with energies at or below CdTe band-gap energy. The variation of the band gap throughout the CdTe absorber determined from PTIR spectra is ~ 20 meV. Both techniques detect strong spatial variation of shallow defects over different grains. The spatial distribution of mid-gap defects appears to be more uniform. The resolution, the sensitivity and the applicability of these two approaches are compared.

  2. CdTe quantum dots for an application in the life sciences

    International Nuclear Information System (INIS)

    This report highlights the results of the preparation of semiconductor CdTe quantum dots (QDs) in the aqueous phase. The small size of a few nm and a very high luminescence quantum yield exceeding 60% of these materials make them promisingly applicable to bio-medicine labeling. Their strong, two-photon excitation luminescence is also a good characteristic for biolabeling without interference with the cell fluorescence. The primary results for the pH-sensitive CdTe QDs are presented in that fluorescence of CdTe QDs was used as a proton sensor to detect proton flux driven by adenosine triphosphate (ATP) synthesis in chromatophores. In other words, these QDs could work as pH-sensitive detectors. Therefore, the system of CdTe QDs on chromatophores prepared from the cells of Rhodospirillum rubrum and the antibodies against the beta-subunit of F0F1–ATPase could be a sensitive detector for the avian influenza virus subtype A/H5N1

  3. X-ray characterization of the microstructure in a CdTe epitaxial layer

    Energy Technology Data Exchange (ETDEWEB)

    Gao Dachao; Stevenson, A.W.; Wilkins, S.W. (CSIRO Div. of Materials Science and Tech., Clayton, Victoria (Australia)); Pain, G.N. (Telecon Australia Research Labs., Clayton, Victoria (Australia))

    1991-12-10

    High-resolution X-ray diffraction studies of a twinned (anti 1anti 1anti 1) CdTe epilayer on (0001) sapphire substrate were carried out. The structural properties and uniformity of the CdTe epilayer were established from analyses of Lang topographs, double-crystal rocking-curve maps and twin-content maps. Maps of the full width at half-maximum (FWHM) of the rocking curve were taken for two twin species (1 and 2), which relate to each other by a rotation of 180deg about the (anti 1anti 1anti 1) axis. The value of the FWHM varied over the sample from 108 to over 1000 arcs. The twin-content maps were determined over the whole layer, and showed significant variations. Lang topographs were taken using the asymmetric anti 4anti 2anti 2 Bragg reflection for both twins and the results were consistent with the rocking curves. The topographs showed that clusters of dislocations exist in the layer and many of them lie along the (anti 1anti 12) direction parallel to the (anti 1anti 1anti 1) CdTe layer surface with the Burgers vector in the (1anti 10) direction. Evidence of double-positioning twins was found in the CdTe epilayer. It is shown that combinations of rocking-curve maps and topographs give a much more informative characterization than a single-point measurement of the rocking curve. (orig.).

  4. Photorefractive nonlinearities caused by the Dember space-charge field in undoped CdTe.

    Science.gov (United States)

    Schroeder, W A; Stark, T S; Boggess, T F; Smirl, A L; Valley, G C

    1991-06-01

    The photorefractive nonlinearity associated with the Dember space-charge field between electrons and holes produced by two-photon absorption is unambiguously isolated and studied in undoped CdTe by using a nondegenerate, forward-probing, polarization-sensitive, transient-grating technique with a temporal resolution of <5 ps. PMID:19776789

  5. Polarity determination of epitaxial structures of CdTe on GaAs by channeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. (CSIRO Div. of Applied Physics, Lucas Heights Research Labs., Menai, NSW (Australia)); Kwietniak, M.S.; Pain, G.N. (Telecom Australia Research Labs., Clayton, Victoria (Australia)); Rossouw, C.J. (CSIRO Div. of Materials Science and Tech., Clayton, Victoria (Australia))

    1990-01-01

    RBS spectra analysis near the (111) planar channeling direction is used for polarity determination of MOCVD-grown epitaxial layers of (111) and (100) CdTe on sapphire and GaAs substrates. Extensive multiple twinning limits the application of RBS channeling analysis for polarity determination. Comparison is made with polarity determination by X-ray diffraction and two electron diffraction techniques. (orig.).

  6. Molecular-beam epitaxy of CdTe on large area Si(100)

    Science.gov (United States)

    Sporken, R.; Lange, M. D.; Faurie, J. P.; Petruzzello, J.

    1991-10-01

    We have grown CdTe directly on 2- and 5-in. diam Si(100) by molecular-beam epitaxy and characterized the layers by in situ reflection high-energy electron diffraction, double crystal x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and low-temperature photoluminescence. The films are up to 10-μm thick and mirror-like over their entire surface. Even on 5-in. diam wafers, the structural and thickness uniformity is excellent. Two domains, oriented 90° apart, are observed in the CdTe films on oriented Si(100) substrates, whereas single-domain films are grown on Si(100) titled 6° or 8° toward [011]. The layers on misoriented substrates have better morphology than those on oriented Si(100), and the substrate tilt also eliminates twinning in the CdTe layers. First attempts to grow HgCdTe on Si(100 with a CdTe buffer layer have produced up to 10-μm thick layers with cutoff wavelengths between 5 and 10-μm and with an average full width at half-maximum of the double-crystal x-ray diffraction peaks of 200 arc s.

  7. Charge carrier transport properties in CdTe measured with time of flight technique

    International Nuclear Information System (INIS)

    The experimental results of charge carrier transport properties obtained in high resistivity CdTe with time of flight technique is reviewed. The data for electrons and holes measured Cl and In doped material are presented. The effect of ionized scattering centers are also analyzed. A comparison between theory and experiment is made

  8. Investigation of deep level defects in CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, H.; Castaldini, A. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Dieguez, E.; Rubio, S. [Crystal Growth Lab, Department of Materials Physics, Faculty of Science, University Autonoma of Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid (Spain); Dauksta, E.; Medvid, A. [Institute of Technical Physics, Riga Technical University, 14 Azenes Str, Riga, Latvia, Department of Materials (Latvia); Cavallini, A. [Department of Physics and Astronomy,University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2014-02-21

    In the past few years, a large body of work has been dedicated to CdTe thin film semiconductors, as the electronic and optical properties of CdTe nanostructures make them desirable for photovoltaic applications. The performance of semiconductor devices is greatly influenced by the deep levels. Knowledge of parameters of deep levels present in as-grown materials and the identification of their origin is the key factor in the development of photovoltaic device performance. Photo Induced Current Transient Spectroscopy technique (PICTS) has proven to be a very powerful method for the study of deep levels enabling us to identify the type of traps, their activation energy and apparent capture cross section. In the present work, we report the effect of growth parameters and LASER irradiation intensity on the photo-electric and transport properties of CdTe thin films prepared by Close-Space Sublimation method using SiC electrical heating element. CdTe thin films were grown at three different source temperatures (630, 650 and 700 °C). The grown films were irradiated with Nd:YAG LASER and characterized by Photo-Induced Current Transient Spectroscopy, Photocurrent measurementand Current Voltage measurements. The defect levels are found to be significantly influenced by the growth temperature.

  9. Long Carrier Lifetimes in Large-Grain Polycrystalline CdTe Without CdCl2

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Soren A.; Burst, James M.; Duenow, Joel N.; Guthrey, Harvey L.; Moseley, John; Moutinho, Helio R.; Johnston, Steve W.; Kanevce, Ana; Al-Jassim, Mowafak M.; Metzger, Wyatt K.

    2016-06-27

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  10. Second Harmonic Generation in CdTe Plate by Free Electron Laser

    Science.gov (United States)

    Yamauchi, Toshihiko; Kikuzawa, Nobuhiro; Minehara, Eisuke; Nagai, Ryoji; Nishimori, Nobuyuki; Sawamura, Masaru; Hajima, Ryoichi; Shizuma, Toshiyuki; Hayakawa, Takehito

    2000-10-01

    The second harmonic generation (SHG) signal converted from the 22 μm input wavelength of free electron laser (FEL) is observed using a non-birefringent CdTe crystal. The conversion efficiency of SHG is experimentally obtained to be ˜3× 10-5%/(MWcm-2).

  11. Characterization of Highly Efficient CdTe Thin Film Solar Cells by Low-Temperature Photoluminescence

    Science.gov (United States)

    Okamoto, Tamotsu; Matsuzaki, Yuichi; Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    1998-07-01

    Highly efficient CdTe thin film solar cells prepared by close-spaced sublimation (CSS) method with a glass/ITO/CdS/CdTe/Cu-doped carbon/Ag structure were characterized by low-temperature photoluminescence (PL) measurement. A broad 1.42 eV band probably due to VCd Cl defect complexes appeared as a result of CdCl2 treatment. CdS/CdTe junction PL revealed that a CdSxTe1-x mixed crystal layer was formed at the CdS/CdTe interface region during the deposition of CdTe by CSS and that CdCl2 treatment promoted the formation of the mixed crystal layer. Furthermore, in the PL spectra of the heat-treated CdTe after screen printing of the Cu-doped carbon electrode, a neutral-acceptor bound exciton (ACu0, X) line at 1.590 eV was observed, suggesting that Cu atoms were incorporated into CdTe as effective acceptors after the heat treatment.

  12. Second harmonic generation in CdTe plate by free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Toshihiko; Kikuzawa, Nobuhiro; Minehara, Eisuke; Nagai, Ryoji; Nishimori, Nobuyuki; Sawamura, Masaru; Hajima, Ryoichi; Shizuma, Toshiyuki; Hayakawa, Takehito [Division of Advanced Photon Research, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-10-01

    The second harmonic generation (SHG) signal converted from the 22 {mu}m input wavelength of free electron laser (FEL) is observed using a non-birefringent CdTe crystal. The conversion efficiency of SHG is experimentally obtained to be {approx}3 x 10{sup -5}% (MWcm{sup -2}). (author)

  13. Vapor transport deposition of large-area polycrystalline CdTe for radiation image sensor application

    International Nuclear Information System (INIS)

    Vapor transport deposition (VTD) process delivers saturated vapor to substrate, resulting in high-throughput and scalable process. In addition, VTD can maintain lower substrate temperature than close-spaced sublimation (CSS). The motivation of this work is to adopt several advantages of VTD for radiation image sensor application. Polycrystalline CdTe films were obtained on 300 mm x 300 mm indium tin oxide (ITO) coated glass. The polycrystalline CdTe film has columnar structure with average grain size of 3 μm ∝ 9 μm, which can be controlled by changing the substrate temperature. In order to analyze electrical and X-ray characteristics, ITO-CdTe-Al sandwich structured device was fabricated. Effective resistivity of the polycrystalline CdTe film was ∝1.4 x 109Ωcm. The device was operated under hole-collection mode. The responsivity and the μτ product estimated to be 6.8 μC/cm2R and 5.5 x 10-7 cm2/V. The VTD can be a process of choice for monolithic integration of CdTe thick film for radiation image sensor and CMOS/TFT circuitry. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires.

    Science.gov (United States)

    Neretina, S; Hughes, R A; Devenyi, G A; Sochinskii, N V; Preston, J S; Mascher, P

    2008-05-01

    Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires. PMID:21825689

  15. Analysis of electroluminescence images in small-area circular CdTe solar cells

    Science.gov (United States)

    Bokalič, Matevž; Raguse, John; Sites, James R.; Topič, Marko

    2013-09-01

    The electroluminescence (EL) imaging process of small area solar cells is investigated in detail to expose optical and electrical effects that influence image acquisition and corrupt the acquired image. An approach to correct the measured EL images and to extract the exact EL radiation as emitted from the photovoltaic device is presented. EL images of circular cadmium telluride (CdTe) solar cells are obtained under different conditions. The power-law relationship between forward injection current and EL emission and a negative temperature coefficient of EL radiation are observed. The distributed Simulation Program with Integrated Circuit Emphasis (SPICE®) model of the circular CdTe solar cell is used to simulate the dark J-V curve and current distribution under the conditions used during EL measurements. Simulation results are presented as circularly averaged EL intensity profiles, which clearly show that the ratio between resistive parameters determines the current distribution in thin-film solar cells. The exact resistance values for front and back contact layers and for CdTe bulk layer are determined at different temperatures, and a negative temperature coefficient for the CdTe bulk resistance is observed.

  16. The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires

    International Nuclear Information System (INIS)

    Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires

  17. Preparation of vanadium diselenide thin films and their application in CdTe solar cells

    International Nuclear Information System (INIS)

    Vanadium diselenide thin films were prepared by electron beam evaporation. The properties of vanadium diselenide thin films were investigated using X-ray diffraction, scanning electron microscope, transmission spectra, electrical and Hall measurements. To further investigate the application of vanadium diselenide thin films, device performance in CdTe solar cells with a vanadium diselenide layer was also studied. The results indicate that vanadium diselenide thin films had a stable hexagonal structure after annealing. The thin films were p-type semiconductor materials with the high work function and high carrier concentration. Vanadium diselenide thin films could form a good ohmic contact to CdTe solar cells. Thus, cell performance was greatly improved when introduced a vanadium diselenide buffer layer. - Highlights: • VSe2 was prepared by electron beam evaporation. • VSe2 was a p-type material with the high work function and high carrier concentration. • VSe2 was used as a Cu-free buffer layer in CdTe solar cells. • Performance of CdTe solar cells was improved

  18. A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots.

    Science.gov (United States)

    Rezaei, B; Shahshahanipour, M; Ensafi, Ali A

    2016-06-01

    A rapid, simple and sensitive label-free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water-soluble glutathione-capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X-ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione-capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0-200.0 ng mL(-1) with a low limit of detection, 2.0 ng mL(-1) . The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26542329

  19. Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2

    Science.gov (United States)

    Jensen, S. A.; Burst, J. M.; Duenow, J. N.; Guthrey, H. L.; Moseley, J.; Moutinho, H. R.; Johnston, S. W.; Kanevce, A.; Al-Jassim, M. M.; Metzger, W. K.

    2016-06-01

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  20. Effects of heat treatment on diffusion of Cu atoms into CdTe single crystals

    International Nuclear Information System (INIS)

    Angular dependence of x-ray fluorescence and x-ray absorption fine structure techniques have been used to study the diffusion of Cu atoms into the photovoltaic material CdTe. Depth profile, effective valency, and local structure of Cu atoms in a Cu-doped single crystal of CdTe were investigated before and after a second heat treatment. Enhanced Cu diffusion into the CdTe single crystal was observed as a result of heating at a moderate temperature around 200 degree sign C, resulting in a redistribution of the Cu impurities through a broader depth profile. Some of the Cu atoms are believed either to form small complexes with Te or occupy interstitial sites in the host but accompanied by a large local lattice distortion while others substitute for Cd on the cation sites. The results thus demonstrate that these nondestructive x-ray characterization methods are useful for probing microstructural changes in CdTe photovoltaic materials/devices in which some Cu-containing compounds are used as back contacts. (c) 2000 American Institute of Physics

  1. Novel synthesis of β-cyclodextrin functionalized CdTe quantum dots as luminescent probes

    International Nuclear Information System (INIS)

    Graphical abstract: A novel, inexpensive procedure for the preparation of highly fluorescent and water-soluble CdTe quantum dots (QDs) using β-cyclodextrin (β-CD) as surface-coating agents was fabricated through the substitution reaction at the C-6 position of mono-6-deoxy-6-(p-tolylsulfonyl)-cyclodextrin (6-TsO-β-CD) by the -NH2 of (3-aminopropyl)triethoxysilane-coated CdTe QDs (APTES/CdTe QDs) under mild conditions. The results revealed that β-CD/APTES/CdTe QDs simultaneously possessed unique optical properties of QDs and excellent molecules recognition ability of β-CD through combining their individual distinct advantages. Highlights: ► A novel preparation of β-cyclodextrin (β-CD) functionalized CdTe quantum dots has been constructed. ► The chemicals and reagents used are inexpensive and straightforward. ► This nanomaterial shows highly fluorescence and the molecular recognition properties. - Abstract: A novel, inexpensive procedure for the preparation of highly fluorescent and water-soluble CdTe quantum dots (QDs) using β-cyclodextrin (β-CD) as surface-coating agents was fabricated through the substitution reaction at the C-6 position of mono-6-deoxy-6-(p-tolylsulfonyl)-cyclodextrin (6-TsO-β-CD) by the -NH2 of (3-aminopropyl)triethoxysilane-coated CdTe QDs (APTES/CdTe QDs) under mild conditions. X-ray powder diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), ultraviolet and visible (UV–vis) spectrophotometer, and fluorescence (FL) spectrophotometer were used to characterize the obtained nanoparticles, which proved that the CdTe QDs have been effectively modified by β-CD. The quantum yields (QYs) of CdTe QDs, APTES/CdTe QDs and β-CD/APTES/CdTe QDs in water comparative to Rhodamine 6G were about 17%, 12%, and 9%, respectively. A pair of isomer o,p′-DDT and p,p′-DDT was chosen as the template molecules to evaluate the molecular recognition properties of

  2. Novel synthesis of {beta}-cyclodextrin functionalized CdTe quantum dots as luminescent probes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaofeng; Zhou Min; Chang Yanping [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Ren Cuiling [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Chen Hongli, E-mail: hlchen@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Chen Xingguo [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China)

    2012-12-15

    Graphical abstract: A novel, inexpensive procedure for the preparation of highly fluorescent and water-soluble CdTe quantum dots (QDs) using {beta}-cyclodextrin ({beta}-CD) as surface-coating agents was fabricated through the substitution reaction at the C-6 position of mono-6-deoxy-6-(p-tolylsulfonyl)-cyclodextrin (6-TsO-{beta}-CD) by the -NH{sub 2} of (3-aminopropyl)triethoxysilane-coated CdTe QDs (APTES/CdTe QDs) under mild conditions. The results revealed that {beta}-CD/APTES/CdTe QDs simultaneously possessed unique optical properties of QDs and excellent molecules recognition ability of {beta}-CD through combining their individual distinct advantages. Highlights: Black-Right-Pointing-Pointer A novel preparation of {beta}-cyclodextrin ({beta}-CD) functionalized CdTe quantum dots has been constructed. Black-Right-Pointing-Pointer The chemicals and reagents used are inexpensive and straightforward. Black-Right-Pointing-Pointer This nanomaterial shows highly fluorescence and the molecular recognition properties. - Abstract: A novel, inexpensive procedure for the preparation of highly fluorescent and water-soluble CdTe quantum dots (QDs) using {beta}-cyclodextrin ({beta}-CD) as surface-coating agents was fabricated through the substitution reaction at the C-6 position of mono-6-deoxy-6-(p-tolylsulfonyl)-cyclodextrin (6-TsO-{beta}-CD) by the -NH{sub 2} of (3-aminopropyl)triethoxysilane-coated CdTe QDs (APTES/CdTe QDs) under mild conditions. X-ray powder diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), ultraviolet and visible (UV-vis) spectrophotometer, and fluorescence (FL) spectrophotometer were used to characterize the obtained nanoparticles, which proved that the CdTe QDs have been effectively modified by {beta}-CD. The quantum yields (QYs) of CdTe QDs, APTES/CdTe QDs and {beta}-CD/APTES/CdTe QDs in water comparative to Rhodamine 6G were about 17%, 12%, and 9%, respectively. A pair

  3. Improvement of the charge-carrier transport property of polycrystalline CdTe for digital fluoroscopy

    International Nuclear Information System (INIS)

    Minimizing the radiation impact to the patient is currently an important issue in medical imaging. Particularly, in case of X-ray fluoroscopy, the patient is exposed to high X-ray dose because a large number of images is required in fluoroscopic procedures. In this regard, a direct-conversion X-ray sensor offers the advantages of high quantum efficiency, X-ray sensitivity, and high spatial resolution. In particular, an X-ray sensor in fluoroscopy operates at high frame rate, in the range from 30 to 60 image frames per second. Therefore, charge-carrier transport properties and signal lag are important factors for the development of X-ray sensors in fluoroscopy. In this study, in order to improve the characteristics of polycrystalline cadmium telluride (CdTe), CdTe films were prepared by thermal evaporation and RF sputtering. The deposition was conducted to form a CdTeO3 layer on top of a CdTe film. The role of CdTeO3 is not only to improve the charge-carrier transport by increasing the life-time but also to reduce the leakage current of CdTe films by acting as a passivation layer. In this paper, to establish the effect of a thin oxide layer on top of a CdTe film, the morphological and electrical properties including charge-carrier transport and signal lag were investigated by means of X-ray diffraction, X-ray photoemission spectroscopy, and resistivity measurements

  4. Improvement of the charge-carrier transport property of polycrystalline CdTe for digital fluoroscopy

    Science.gov (United States)

    Oh, K. M.; Heo, Y. J.; Kim, D. K.; Kim, J. S.; Shin, J. W.; Lee, G. H.; Nam, S. H.

    2014-05-01

    Minimizing the radiation impact to the patient is currently an important issue in medical imaging. Particularly, in case of X-ray fluoroscopy, the patient is exposed to high X-ray dose because a large number of images is required in fluoroscopic procedures. In this regard, a direct-conversion X-ray sensor offers the advantages of high quantum efficiency, X-ray sensitivity, and high spatial resolution. In particular, an X-ray sensor in fluoroscopy operates at high frame rate, in the range from 30 to 60 image frames per second. Therefore, charge-carrier transport properties and signal lag are important factors for the development of X-ray sensors in fluoroscopy. In this study, in order to improve the characteristics of polycrystalline cadmium telluride (CdTe), CdTe films were prepared by thermal evaporation and RF sputtering. The deposition was conducted to form a CdTeO3 layer on top of a CdTe film. The role of CdTeO3 is not only to improve the charge-carrier transport by increasing the life-time but also to reduce the leakage current of CdTe films by acting as a passivation layer. In this paper, to establish the effect of a thin oxide layer on top of a CdTe film, the morphological and electrical properties including charge-carrier transport and signal lag were investigated by means of X-ray diffraction, X-ray photoemission spectroscopy, and resistivity measurements.

  5. Mitos sobre agroecologia.

    OpenAIRE

    Canuto, João Carlos

    2011-01-01

    O presente ensaio vem a discutir alguns aspectos do discurso sobre a Agroecologia, procurando evidenciar contradições do senso comum, advindas seja de parte da comunidade leiga, dos meios de comunicação ou da comunidade científica. Coloca em debate alguns mitos sobre os sistemas agroecológicos, tais como: que sejam tecnologicamente retrógrados, de baixa produtividade, exigentes em mão-de-obra, economicamente inviáveis e “puramente ideológicos”.

  6. Inferencias sobre Grafos

    OpenAIRE

    Sira M. Allende; Carlos N. Bouza

    2002-01-01

    El estudio de un juego puede ser modelado asumiendo que solo algunas partidas son observadas. Entonces el árbol del juego debe ser estimado utilizando información muestral. Similarmente ocurre al obtener información sobre el comportamiento de las decisiones tomadas por individuos muestreados sobre un árbol de decisión teórico. Al considerar una medida de probabilidad que caracterice el comportamiento de redes aleatorias se puede obtener un estimado del árbol asociado. Este problema es el anal...

  7. Materiales híbridos moleculares orgánicos-inorgánicos: síntesis y aplicación como electrodos en baterías recargables de litio

    Directory of Open Access Journals (Sweden)

    Torres-Gómez, G.

    2000-06-01

    Full Text Available A novel family of molecular hybrid materials based on electroactive inorganic species dispersed in conducting organic polymers is reported as electrodes for energy storage or conversion. Polyaniline and polypyrrole are effectively doped with electroactive polyoxometalates ([PMo12O40]3- or ferricyanide ([(FeCN6]3- anions as the only doping species. The high charge and size of these anions prevents their deintercalation during reduction in most cases. The synthesis of these hybrids can be made by chemical (bulk powders and electrochemical (films methods. For [PMo12O40]3-, nine aniline/pyrrole rings by anion are found in each case and the anion stays in the polymer matrix even after reduction at -0.4V (vs Ag/AgCl, 2.6V vs Li. In the case of Polypyrrole-FeCN6 hybrid the pyrrole-ring/Fe(CN6 ratio was around 10-12 depending on the temperature of synthesis. Temperature also affects the electrical conductivity, with the best values around 60Scm-1 (sample prepared at 0ºC. Fe(CN6 stays in the polymer matrix when the hybrid material is reduced in organic media. PMo12 hybrids intercalate up to 5.3 h+ during discharge (52 Ah/Kg whereas the hybrid with Fe(CN6 intercalates 2.7 lithium ions per formula unit (69Ah/Kg.

    Se describe la síntesis y aplicación como electrodos para el almacenamiento o conversión de energía de materiales híbridos basados en la dispersión de especies inorgánicas electroactivas en el seno de polímeros orgánicos conductores. Polianilina y polipirrol son dopados con polioxometalatos electroactivos ([PMo12O40]3- o aniones ferricianuro ([(FeCN6]3- como únicas especies dopantes. La elevada carga y tamaño de estos aniones evitan, en la mayoría de los casos, su desintercalación durante la reducción. Estos híbridos se han sintetizado por métodos químicos y electroquímicos, siendo la relación anillos de anilina o de pirrol por anión de [PMo12O40]3- de nueve, de manera que el anión permanece en el interior de la matriz

  8. One-Dimensional Reaction-Diffusion Simulation of Cu Migration in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Da [Arizona State University; Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-13

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  9. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    Science.gov (United States)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  10. Characteristics of CdTe films and CdTe/CdS solar cells fabricated by photostimulated sublimation

    International Nuclear Information System (INIS)

    Full text : The effect of illumination during the close-spaced sublimation (CSS) growth on composition, structural, electrical, optical and photovoltaic properties of CdTe films and CdTe/CdS solar cells was investigated. Data on comparative study by using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), absorption spectra and conductivity-temperature measurements of CdTe films prepared by CSS method in a dark (CSSD) and under illumination (CSSI) were presented. It is shown that the growth rate of CdTe films under illumination is higher than that for films prepared without illumination. Moreover, the polycrystalline CdTe films of the cubic structure grown by CSSI technology were characterized with larger the grain size as compared to that for films prepared by CSSD

  11. Coexistence of optically active radial and axial CdTe insertions in single ZnTe nanowire.

    Science.gov (United States)

    Wojnar, P; Płachta, J; Zaleszczyk, W; Kret, S; Sanchez, Ana M; Rudniewski, R; Raczkowska, K; Szymura, M; Karczewski, G; Baczewski, L T; Pietruczik, A; Wojtowicz, T; Kossut, J

    2016-03-14

    We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis. PMID:26903109

  12. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    International Nuclear Information System (INIS)

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals

  13. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan [Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130023 (China); Shen Qihui; Shi Weiguang; Li Jixue; Liu Xiaoyang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yu Dongdong [1st Hopstail affiliated to Jilin University, Jilin University, Changchun 130023 (China); Zhou Jianguang [Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310058 (China)], E-mail: liuxy@jlu.edu.cn, E-mail: jgzhou70@126.com

    2008-06-18

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  14. The second hyperpolarizability of CdTe nanocrystals using polarization-resolved degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Polarization-resolved forward degenerate four-wave mixing (DFWM) in a nonresonant region revealed the effective third-order nonlinear susceptibility of colloidal CdTe nanocrystals (NCs) with the size near the Bohr radius and various concentrations. The second hyperpolarizabilities, xxxxh> and xyyxh>, of the CdTe NCs were ∼1.15x10-41m5/V2 and ∼3.01x10-42m5/V2 from the measurement of the concentration-dependent third-order nonlinear susceptibility of CdTe NCs, respectively. The ratio (xyyxh>/xxxxh>) of the hyperpolarizabilities was ∼0.26, which indicated a large contribution of an electronic polarization process to the third-order nonlinearity of CdTe NCs

  15. Mechanism of charge transport in ligand-capped crystalline CdTe nanoparticles according to surface photovoltaic and photoacoustic results

    International Nuclear Information System (INIS)

    By combining surface photovoltaic and photoacoustic techniques, we probed the photogenerated charge transport channels of 3-mercaptopropionic acid (MPA)- and 2-mercaptoethylamine (MA)-capped crystalline CdTe nanoparticles on illumination with UV-near IR light. The results experimentally confirmed the presence of a CdS shell outside the CdTe core that formed through the self-assembly and decomposition of mercapto ligands during CdTe preparation. The data revealed that the CdS layer was partly responsible for the deexcitation behavior of the photogenerated carriers, which is related to the quantum tunnel effect. Experiments demonstrated that two quantum wells were located at wavelengths of 440 and 500 nm in buried interfacial space-charge regions, whereas the formation of a ligand layer obstructed charge transfer transitions of the core CdTe nanoparticles to a certain extent.

  16. Hydrothermal synthesis of CdTe QDs: Their luminescence quenching in the presence of bio-molecules and observation of bistable memory effect in CdTe QD/PEDOT:PSS heterostructure

    International Nuclear Information System (INIS)

    Highlights: · CdTe QD has been prepared by modified hydrothermal method in room ambient. · Luminescence quenching of CdTe QDs in the presence of bio-molecules demonstrated. · The CdTe QDs shows memory effect (electrical bistability). - Abstract: We report one-pot hydrothermal synthesis of nearly mono-disperse 3-mercaptopropionic acid capped water-soluble cadmium telluride (CdTe) quantum dots (QDs) using an air stable Te source. The optical and electrical characteristics were also studied here. It was shown that the hydrothermal synthesis could be tuned to synthesize nano structures of uniform size close to nanometers. The emissions of the CdTe QDs thus synthesized were in the range of 500-700 nm by varying the duration of synthesis. The full width at half maximum (FWHM) of the emission peaks is relatively narrow (40-90 nm), which indicates a nearly uniform distribution of QD size. The structural and optical properties of the QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and Ultraviolet-visible (UV-Vis) spectroscopy. The photoluminescence quenching of CdTe QDs in the presence of L-cysteine and DNA confirms its biocompatibility and its utility for biosensing applications. The room temperature current-voltage characteristics of QD film on ITO coated glass substrate show an electrically induced switching between states with high and low conductivities. The phenomenon is explained on the basis of charge confinement in quantum dots.

  17. High-resolution Schottky CdTe diode for hard X-ray and gamma-ray astronomy

    International Nuclear Information System (INIS)

    We report a significant improvement of the spectral properties of cadmium telluride (CdTe) detectors, fabricated in the form of a Schottky CdTe diode. With the use of high quality CdTe wafer, we formed a Schottky junction by evaporating indium on the Te-face and operated the detector as a diode. This allows us to apply much higher bias voltage than was possible with the previous CdTe detectors. A 2 mmx2 mm detector of thickness 0.5 mm, when operated at a temperature of 5 deg. C, shows leakage current of only 0.2 and 0.4 nA for an operating voltage of 400 and 800 V, respectively. We found that, at a high-electric field of several kV cm-1, the Schottky CdTe diode has very good energy resolution and stability, suitable for astronomical applications. The broad low-energy tail, often observed in CdTe detectors due to the low mobility and short lifetime of holes, was significantly reduced by the application of a higher bias voltage which improves the charge collection efficiency. We achieved very good FWHM energy resolution of 1.1% and 0.8% at energies 122 and 511 keV, respectively, without any rise time discrimination or pulse height correction electronics. For the detection of hard X-rays and gamma-rays above 100 keV, we have improved the detection efficiency by stacking a number of thin CdTe diodes. Using individual readout electronics for each layer, we obtained high detection efficiency without sacrificing the energy resolution. In this paper, we report the performance of the new CdTe diode and discuss its proposed applications in future hard X-ray and gamma-ray astronomy missions

  18. High-resolution Schottky CdTe diode for hard X-ray and gamma-ray astronomy

    Science.gov (United States)

    Takahashi, T.; Paul, B.; Hirose, K.; Matsumoto, C.; Ohno, R.; Ozaki, T.; Mori, K.; Tomita, Y.

    1999-10-01

    We report a significant improvement of the spectral properties of cadmium telluride (CdTe) detectors, fabricated in the form of a Schottky CdTe diode. With the use of high quality CdTe wafer, we formed a Schottky junction by evaporating indium on the Te-face and operated the detector as a diode. This allows us to apply much higher bias voltage than was possible with the previous CdTe detectors. A /2 mm/×2 mm detector of thickness 0.5 mm, when operated at a temperature of /5°C, shows leakage current of only 0.2 and 0.4 nA for an operating voltage of 400 and 800 V, respectively. We found that, at a high-electric field of several kV cm-1, the Schottky CdTe diode has very good energy resolution and stability, suitable for astronomical applications. The broad low-energy tail, often observed in CdTe detectors due to the low mobility and short lifetime of holes, was significantly reduced by the application of a higher bias voltage which improves the charge collection efficiency. We achieved very good FWHM energy resolution of /1.1% and /0.8% at energies 122 and 511 keV, respectively, without any rise time discrimination or pulse height correction electronics. For the detection of hard X-rays and gamma-rays above 100 keV, we have improved the detection efficiency by stacking a number of thin CdTe diodes. Using individual readout electronics for each layer, we obtained high detection efficiency without sacrificing the energy resolution. In this paper, we report the performance of the new CdTe diode and discuss its proposed applications in future hard X-ray and gamma-ray astronomy missions.

  19. Simultane Untersuchung der Diffusion von intrinsischen und extrinsischen Defekten in CdTe mittels ortsaufgelöster Photolumineszenzspektroskopie

    OpenAIRE

    Gerten, Robert Florian

    2013-01-01

    Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von Diffusionsphänomenen in CdTe. Radiotracerexperimente, bei denen mit Gruppe-I-Elementen dotiertes CdTe unter Cd-Dampfdruck getempert wurde, ergaben Konzentrationsprofile, welche die Diffusion der Fremdatome gegen ihren Konzentrationsgradienten voraussetzen (Uphill-Diffusion). In früheren Arbeiten wurde ein Modell entwickelt, das diese Konzentrationsprofile quantitativ mit der Diffusion der intrinsischen Defekte des Cd-Untergitter...

  20. Band offsets for mismatched interfaces: The special case of ZnO on CdTe (001)

    International Nuclear Information System (INIS)

    High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications. Although CdTe is zinc blende with cubic lattice constant a = 6.482 Å while ZnO is hexagonal wurtzite with a = 3.253 Å and c = 5.213 Å, (001)-oriented cubic zinc blende ZnO films could be stabilized epitaxially on a CdTe (001) surface in an √2 × √2 R45° configuration with a lattice mismatch of <0.5%. Modeling such a configuration allows density-functional total-energy electronic-structure calculations to be performed on several interface arrangements (varying terminations and in-plane fractional translations) to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe(001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a Type II alignment as needed, for example, in solar cells. To corroborate some of these predictions, thin layers of ZnO were deposited on CdTe(001) by pulsed laser deposition, and the band alignments of the resulting heterojunctions were determined from x-ray photoelectron spectroscopy measurements. Although zinc blende ZnO could not be confirmed, the measured valence band offset (2.0–2.2 eV) matched well with the predicted value

  1. Correlations of Capacitance-Voltage Hysteresis with Thin-Film CdTe Solar Cell Performance During Accelerated Lifetime Testing

    Energy Technology Data Exchange (ETDEWEB)

    Albin, D.; del Cueto, J.

    2011-03-01

    In this paper we present the correlation of CdTe solar cell performance with capacitance-voltage hysteresis, defined presently as the difference in capacitance measured at zero-volt bias when collecting such data with different pre-measurement bias conditions. These correlations were obtained on CdTe cells stressed under conditions of 1-sun illumination, open-circuit bias, and an acceleration temperature of approximately 100 degrees C.

  2. Process Development for High Voc CdTe Solar Cells: Phase I, Annual Technical Report, October 2005 - September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C. S.; Morel, D. L.

    2007-04-01

    The focus of this project is the open-circuit voltage of the CdTe thin-film solar cell. CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, but the efficiency of the CdTe solar cell has been stagnant for the last few years. At the manufacturing front, the CdTe technology is fast paced and moving forward with U.S.-based First Solar LLC leading the world in CdTe module production. To support the industry efforts and continue the advancement of this technology, it will be necessary to continue improvements in solar cell efficiency. A closer look at the state-of-the-art performance levels puts the three solar cell efficiency parameters of short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) in the 24-26 mA/cm2, 844?850 mV, and 74%-76% ranges respectively. During the late 1090s, efforts to improve cell efficiency were primarily concerned with increasing JSC, simply by using thinner CdS window layers to enhance the blue response (<510 nm) of the CdTe cell. These efforts led to underscoring the important role 'buffers' (or high-resistivity transparent films) play in CdTe cells. The use of transparent bi-layers (low-p/high-p) as the front contact is becoming a 'standard' feature of the CdTe cell.

  3. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice.

    Science.gov (United States)

    Li, Xiaohui; Yang, Xiangrong; Yuwen, Lihui; Yang, Wenjing; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui

    2016-07-01

    Fluorescent quantum dots (QDs) are highly promising nanomaterials for various biological and biomedical applications because of their unique optical properties, such as robust photostability, strong photoluminescence, and size-tunable fluorescence. Several studies have reported the in vivo toxicity of QDs, but their effects on the male reproduction system have not been examined. In this study, we investigated the reproductive toxicity of cadmium telluride (CdTe) QDs at a high dose of 2.0 nmol per mouse and a low dose of 0.2 nmol per mouse. Body weight measurements demonstrated there was no overt toxicity for both dose at day 90 after exposure, but the high dose CdTe affected body weight up to 15 days after exposure. CdTe QDs accumulated in the testes and damaged the tissue structure for both doses on day 90. Meanwhile, either of two CdTe QDs treatments did not significantly affect the quantity of sperm, but the high dose CdTe significantly decreased the quality of sperm on day 60. The serum levels of three major sex hormones were also perturbed by CdTe QDs treatment. However, the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those mated with untreated male mice. These results suggest that CdTe QDs can cause testes toxicity in a dose-dependent manner. The low dose of CdTe QDs is relatively safe for the reproductive system of male mice. Our preliminary result enables better understanding of the reproductive toxicity induced by cadmium-containing QDs and provides insight into the safe use of these nanoparticles in biological and environmental systems. PMID:27135714

  4. Solution-Processed, Ultrathin Solar Cells from CdCl3(-)-Capped CdTe Nanocrystals: The Multiple Roles of CdCl3(-) Ligands.

    Science.gov (United States)

    Zhang, Hao; Kurley, J Matthew; Russell, Jake C; Jang, Jaeyoung; Talapin, Dmitri V

    2016-06-22

    Solution-processed CdTe solar cells using CdTe nanocrystal (NC) ink may offer an economically viable route for large-scale manufacturing. Here we design a new CdCl3(-)-capped CdTe NC ink by taking advantage of novel surface chemistry. In this ink, CdCl3(-) ligands act as surface ligands, sintering promoters, and dopants. Our solution chemistry allows obtaining very thin continuous layers of high-quality CdTe which is challenging for traditional vapor transport methods. Using benign solvents, in air, and without additional CdCl2 treatment, we obtain a well-sintered CdTe absorber layer from the new ink and demonstrate thin-film solar cells with power conversion efficiency over 10%, a record efficiency for sub-400 nm thick CdTe absorber layer. PMID:27269672

  5. Band diagrams and performance of CdTe solar cells with a Sb2Te3 back contact buffer layer

    Directory of Open Access Journals (Sweden)

    Songbai Hu

    2011-12-01

    Full Text Available Sb2Te3 thin films were prepared by vacuum co-evaporation and the crystallinity of the films was greatly improved after annealing at 573 K in N2 ambient. Then they were deposited on the CdTe thick films. Band diagrams of the as-deposited and annealed CdTe/Sb2Te3 interfaces were constructed. Consequently, Sb2Te3 was used as a back contact layer for CdTe thin film solar cells and the cell performance was investigated. It was found that the Sb impurities accumulated in the CdTe grain boundaries diffuse deeply in the CdTe layer, and more photogenerated electrons and holes are separated by the segregated SbCd+ donors into the GBs. What is more, the doping concentration in the vicinity of the CdTe/CdS heterojunction increases for the formation of substitutional SbTe- acceptors under the Cd-rich conditions. For the introduction of the p-type Sb2Te3 layers as the back contact to the CdTe thin film solar cells, the performance of CdTe thin film solar cells has been greatly improved and an efficiency of 13.1% (FF=62.3%, Jsc=25.8 mA/cm2, Voc= 815.8 mV obtained.

  6. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs Due to Oxidative Stress in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2015-09-01

    Full Text Available With the applications of quantum dots (QDs expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12. CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2 deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes.

  7. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    Science.gov (United States)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-04-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  8. High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices

    CERN Document Server

    Watanabe, Shin; Aono, Hiroyuki; Takeda, Shin'ichiro; Odaka, Hirokazu; Kokubun, Motohide; Takahashi, Tadayuki; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Onishi, Mitsunobu; Kuroda, Yoshikatsu

    2008-01-01

    We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was ob...

  9. CdTe solar cells with open-circuit voltage breaking the 1 V barrier

    Science.gov (United States)

    Burst, J. M.; Duenow, J. N.; Albin, D. S.; Colegrove, E.; Reese, M. O.; Aguiar, J. A.; Jiang, C.-S.; Patel, M. K.; Al-Jassim, M. M.; Kuciauskas, D.; Swain, S.; Ablekim, T.; Lynn, K. G.; Metzger, W. K.

    2016-03-01

    CdTe solar cells have the potential to undercut the costs of electricity generated by other technologies, if the open-circuit voltage can be increased beyond 1 V without significant decreases in current. However, in the past decades, the open-circuit voltage has stagnated at around 800-900 mV. This is lower than in GaAs solar cells, even though GaAs has a smaller bandgap; this is because it is more difficult to achieve simultaneously high hole density and lifetime in II-VI materials than in III-V materials. Here, by doping the CdTe with a Group V element, we report lifetimes in single-crystal CdTe that are nearly radiatively limited and comparable to those in GaAs over a hole density range relevant for solar applications. Furthermore, the deposition on CdTe of nanocrystalline CdS layers that form non-ideal heterointerfaces with 10% lattice mismatch impart no damage to the CdTe surface and show excellent junction transport properties. These results enable the fabrication of CdTe solar cells with open-circuit voltage greater than 1 V.

  10. Effect of Cadion 1B on the Spectrum of Mercaptoacetic Acid-stabilized CdTe Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WEN Li-Qun; ZHOU Xing-Wang; L(U) Jian-Quan

    2008-01-01

    The effect of cadion 1B (4-nitro-benzene-diazo-amino-azobenzene) on the fluorescent and absorption spectros- copy of mercaptoacetic acid-stabilized CdTe quantum dots (CdTe QD) in aqueous media was studied. Surfactant, medium, dosages of the cadion 1B, pH and thermodynamics parameters were also examined. The experimental re-sults showed that when cadion 1B was added into the CdTe QD solution, a new absorption peak was observed, and the fluorescence of CdTe QD was quenched to some extent, suggesting that there exist an interaction between cadion 1B and CdTe QD. The apparent equilibrium constant at room temperature was calculated to be 1.095×106 L·mol-1, and the coverage ratio of cadion IB on the surface of CdTe QD was estimated as 45%. Thermodynamic calculations revealed that the interaction was a spontaneous process in which electrostatic interactions play a major role.

  11. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    Science.gov (United States)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  12. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Juan P Monrás

    Full Text Available The vast application of fluorescent semiconductor nanoparticles (NPs or quantum dots (QDs has prompted the development of new, cheap and safer methods that allow generating QDs with improved biocompatibility. In this context, green or biological QDs production represents a still unexplored area. This work reports the intracellular CdTe QDs biosynthesis in bacteria. Escherichia coli overexpressing the gshA gene, involved in glutathione (GSH biosynthesis, was used to produce CdTe QDs. Cells exhibited higher reduced thiols, GSH and Cd/Te contents that allow generating fluorescent intracellular NP-like structures when exposed to CdCl(2 and K(2TeO(3. Fluorescence microscopy revealed that QDs-producing cells accumulate defined structures of various colors, suggesting the production of differently-sized NPs. Purified fluorescent NPs exhibited structural and spectroscopic properties characteristic of CdTe QDs, as size and absorption/emission spectra. Elemental analysis confirmed that biosynthesized QDs were formed by Cd and Te with Cd/Te ratios expected for CdTe QDs. Finally, fluorescent properties of QDs-producing cells, such as color and intensity, were improved by temperature control and the use of reducing buffers.

  13. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Shi Lixin

    2011-01-01

    Full Text Available Abstract Cadmium telluride quantum dots (Cdte QDs have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

  14. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation

    Science.gov (United States)

    Zhang, Gen; Shi, Lixin; Selke, Matthias; Wang, Xuemei

    2011-06-01

    Cadmium telluride quantum dots (Cdte QDs) have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR) on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

  15. Inferencias sobre Grafos

    Directory of Open Access Journals (Sweden)

    Sira M. Allende

    2002-05-01

    Full Text Available El estudio de un juego puede ser modelado asumiendo que solo algunas partidas son observadas. Entonces el árbol del juego debe ser estimado utilizando información muestral. Similarmente ocurre al obtener información sobre el comportamiento de las decisiones tomadas por individuos muestreados sobre un árbol de decisión teórico. Al considerar una medida de probabilidad que caracterice el comportamiento de redes aleatorias se puede obtener un estimado del árbol asociado. Este problema es el analizado en este trabajo. Algunos resultados experimentales obtenidos usando Recocido Simulado ilustran el procedimiento. Su papel en el estudio de modelos económicos y de mercadeo es discutido.

  16. Escrito sobre el cuerpo

    Directory of Open Access Journals (Sweden)

    Antonio Malalana Ureña

    2013-09-01

    Full Text Available El catálogo, en una edición bilingüe español-inglés, es una pequeña guía de la exposición Shirin Neshat. Escrito sobre el cuerpo, muestra que se integra dentro de los actos de PHOTOESPAÑA13, el festival internacional de fotografía y artes visuales. El esquema del libro es sencillo y los textos son extremadamente divulgativos. El primero de ellos, Escrito sobre el cuerpo (pp. 10-15, cuyo autor es Octavio Zaya, comisario de la exposición, resume la trayectoria de esta intelectual, que "interactúa" con la fotografía y los formatos audiovisuales, y nos presenta la argumentación narrativa de los documentos expuestos, contextualizando la obra recopilada.

  17. Estudios sobre Borges

    OpenAIRE

    Facultad de Humanidades y Ciencias de la Educación

    1991-01-01

    Contenidos de la obra: De Barthes a Pierre Menard | José Luis De Diego Pierre Menard, autor del Quijote: De la poligrafía al fraude | Andrea Cucatto Homenaje a Roberto Arlt: La otra cara de la moneda | Fabio Espósito Emma a través del espejo: Una lectura de Emma Zunz | Graciela Beatriz Goldchluk Sobre el concepto de verdad en Borges | Sergio Pastormerlo

  18. Sobre genes y electrones

    OpenAIRE

    Martín Pereda, José Antonio

    1992-01-01

    El autor reflexiona sobre un artículo publicado en una revista, en el que se pronosticaba un declive para los científicos dedicados a la física y la ciencia armamentística, debido al fin de la guerra fría, y un ascenso al poder de los biólogos y de todos aquellos relacionados con las ciencias y las tecnologías de la vida.

  19. Admittance spectroscopy characterize graphite paste for back contact of CdTe thin film solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    CdTe thin film solar cells with a doped-graphite paste back contact layer were studied using admittance spectroscopy technology.The positions and the capture cross sections of energy level in the forbidden band were calculated,which are the important parameters to affect solar cell performance.The results showed that there were three defects in the CdTe thin films solar cells with the doped-graphite paste back contact layer,whose positions in the forbidden band were close to 0.34,0.46 and 0.51 eV,respectively above the valence band,and capture cross sections were 2.23×10-16,2.41×10-14,4.38×10-13 cm2,respectively.

  20. Diffusion-Reaction Modeling of Cu Migration in CdTe Solar Devices

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Da [Arizona State Univ., Tempe, AZ (United States); Brinkman, Daniel [Arizona State Univ., Tempe, AZ (United States); Fang, Tian [First Solar Inc.; Akis, Richard [Arizona State Univ., Tempe, AZ (United States); Sankin, Igor [First Solar Inc.; Vasileska, Dragica [Arizona State Univ., Tempe, AZ (United States); Ringhofer, Christian [Arizona State Univ., Tempe, AZ (United States)

    2015-09-04

    In this work, we report on development of one-dimensional (1D) finite-difference and two-dimensional (2D) finite-element diffusion-reaction simulators to investigate mechanisms behind Cu-related metastabilities observed in CdTe solar cells [1]. The evolution of CdTe solar cells performance has been studied as a function of stress time in response to the evolution of associated acceptor and donor states. To achieve such capability, the simu-lators solve reaction-diffusion equations for the defect states in time-space domain self-consistently with the free carrier transport. Re-sults of 1-D and 2-D simulations have been compared to verify the accuracy of solutions.

  1. CdTe quantum dot as a fluorescence probe for vitamin B12 in dosage form

    Science.gov (United States)

    Vaishnavi, E.; Renganathan, R.

    2013-11-01

    We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14 μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15 μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%.

  2. Grain-boundary-enhanced carrier collection in CdTe solar cells.

    Science.gov (United States)

    Li, Chen; Wu, Yelong; Poplawsky, Jonathan; Pennycook, Timothy J; Paudel, Naba; Yin, Wanjian; Haigh, Sarah J; Oxley, Mark P; Lupini, Andrew R; Al-Jassim, Mowafak; Pennycook, Stephen J; Yan, Yanfa

    2014-04-18

    When CdTe solar cells are doped with Cl, the grain boundaries no longer act as recombination centers but actively contribute to carrier collection efficiency. The physical origin of this remarkable effect has been determined through a combination of aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles theory. Cl substitutes for a large proportion of the Te atoms within a few unit cells of the grain boundaries. Density functional calculations reveal the mechanism, and further indicate the grain boundaries are inverted to n type, establishing local p-n junctions which assist electron-hole pair separation. The mechanism is electrostatic, and hence independent of the geometry of the boundary, thereby explaining the universally high collection efficiency of Cl-doped CdTe solar cells. PMID:24785058

  3. Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Steve; Allende Motz, Alyssa; Reese, Matthew O.; Burst, James M.; Metzger, Wyatt K.

    2015-06-14

    In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 um x 190 um. PL images of large-grain (5 to 50 um) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.

  4. Effects of Stoichiometry in Undoped CdTe Heteroepilayers on Si

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, Timothy A.; Colegrove, Eric; Stafford, Brian; Gao, Wei; Sivananthan, Siva; Kuciauskas, Darius; Moutinho, Helio; Farrell, Stuart; Barnes, Teresa

    2015-06-14

    Crystalline CdTe layers have been grown heteroepitaxially onto crystalline Si substrates to establish material parameters needed for advanced photovoltaic (PV) device development and related simulation. These studies suggest that additional availability of the intrinsic anion (i.e., Te) during molecular beam epitaxy deposition can improve structural and optoelectronic quality of the epilayer and the interface between Si substrate and the epilayer. This is seen most notably for thin CdTe epitaxial films (<; ~10 micrometers). Although these observations are foundationally important, they are also relevant to envisioned high-performance multijunction II-VI alloy PV devices-where thin layers will be required to achieve production costs aligned with market constraints.

  5. High performance p-i-n CdTe and CdZnTe detectors

    CERN Document Server

    Khusainov, A K; Ilves, A G; Morozov, V F; Pustovoit, A K; Arlt, R D

    1999-01-01

    A breakthrough in the performance of p-i-n CdTe and CdZnTe detectors is reported. The detector stability has been significantly improved, allowing their use in precise gamma and XRF applications. Detectors with energy resolution close to Si and Ge were produced operating with only -30--35 deg. C cooling (by a Peltier cooler of 15x15x10 mm size and a consumed power less than 5 W). Presently detectors with volume of up to 300 mm sup 3 are available. In terms of photoelectric effect efficiency it corresponds to HPGe detectors with volumes of about 1.5 cm sup 3. The possibilities of further improvement of CdTe and CdZnTe detector characteristics are discussed in this paper.

  6. Improvement of the sensitivity of CdTe detectors in the high energy regions

    International Nuclear Information System (INIS)

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of 137Cs (662keV) and 60Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  7. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    OpenAIRE

    M. A. Matin; Tomal, M. U.; Robin, A. M.; Amin, N.

    2013-01-01

    This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF) using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures). A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF ...

  8. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces.

    Science.gov (United States)

    Panthani, Matthew G; Kurley, J Matthew; Crisp, Ryan W; Dietz, Travis C; Ezzyat, Taha; Luther, Joseph M; Talapin, Dmitri V

    2014-02-12

    Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface. PMID:24364381

  9. Characterization of CdTe0.9Se0.1:Cl strip detectors

    International Nuclear Information System (INIS)

    CdTe0.9Se0.1:Cl is a detector grade material for gamma and X-rays. Its high resistivity and the high mobility lifetime product yield a high charge collection efficiency of 90 percent. CdTe0.9Se0.1:Cl was used for the first time to built up a strip detector. The detector performance was investigated by a 57Co source. The signal behaviour, charge collection efficiency and coupling effects were analyzed for different strips. The comparison between the signal amplitude of all strips showed a good homogeneous response for the device. For a single strip a charge collection efficiency of more than 40 percent was obtained. (orig.)

  10. CdTe detector efficiency calibration using thick targets of pure and stable compounds

    International Nuclear Information System (INIS)

    Quantitative PIXE measurements require perfectly calibrated set-ups. Cooled CdTe detectors have good efficiency for energies above those covered by Si(Li) detectors and turn on the possibility of studying K X-rays lines instead of L X-rays lines for medium and eventually heavy elements, which is an important advantage in various cases, if only limited resolution systems are available in the low energy range. In this work we present and discuss spectra from a CdTe semiconductor detector covering the energy region from Cu (Kα1 = 8.047 keV) to U (Kα1 = 98.439 keV). Pure thick samples were irradiated with proton beams at the ITN 3.0 MV Tandetron accelerator in the High Resolution High Energy PIXE set-up. Results and the application to the study of a Portuguese Ossa Morena region Dark Stone sample are presented in this work.

  11. The prospects of CdTe thin films as solar control coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, P.J.; Sivaramakrishnan, V. (Thin Film Lab., Dept. of Physics, Indian Inst. of Tech., Madras (India))

    1991-07-15

    Solar control coating refers to solar radiation filters applied on glazings of buildings in tropical countries. CdTe thin films were studied in this regard for use as an effective solar control coating. The films were characterized with respect to the film parameters such as film thickness, substrate temperature and deposition rate. On calculating the solar control parameters of various films, it was observed that the solar control parameters of the films depend on the above film parameters. CdTe films were found to be a better solar control coating than the commercial metallic coatings and exhibit comparable characteristics with Cu{sub x}S and PbS films. (orig.).

  12. A model for the growth of cdte by metal organic chemical vapor deposition

    Science.gov (United States)

    Nemirovsky, Y.; Goren, D.; Ruzin, A.

    1991-10-01

    A kinetic model for the metalorganic chemical vapor deposition (MOCVD) growth of CdTe over a wide temperature range is presented. The model yields the growth rate as a function of the gas-phase concentrations of the constituents. The model is corroborated with experimental results obtained by the MOCVD growth of CdTe at 380° C. The major features of the model are the observed two-step surface-controlled pyrolysis and surface saturation, leading initially to a growth rate that increases with the square root of the concentrations of the reacting species and subsequently to a decrease of the growth rate as the concentrations increase. At even higher concentrations, an additional increase of growth rate is observed and modeled.

  13. Melt growth of CdTe crystals and transmission electron microscopic investigations of their grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sabinina, I.V.; Gutakovski, A.K.; Milenov, T.I.; Lyakh, N.N.; Sidorov, Y.G.; Gospodinov, M.M. (Inst. of Semiconductor Physics, Academy of Sciences of the USSR (Siberian Branch), Novosibirsk (USSR) Inst. of Solid State Physics, Bulgarian Academy of Sciences, Sofia (Bulgaria))

    1991-01-01

    Transmission electron microscopy investigations are carried out on CdTe crystals grown in quartz ampoules in a temperature region (1020-1091degC) near to the melting point of 1092degC, by travelling heater method in quasi-closed and in sealed (at 0.135 Pa) volume, and by the Bridgman method from nearly stoichiometric melts. An original method for preparation of CdTe thin foil is reported. Two types of grain boundaries are observed: high-angle misoriented grain boundaries (more than ten degrees misorientation between adjacent grains) and low-angle misoriented grain boundaries (less than one degree misorientation between adjacent sub-grain). Both dislocations with Burgers vector b=a/6<112> and b=a/2<110> are present. (orig.).

  14. Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators

    Directory of Open Access Journals (Sweden)

    Assegid Flatae

    2014-01-01

    Full Text Available We report on a simple route to the efficient coupling of optical emission from strongly confining bare core CdTe quantum dots (QDs to the eigenmodes of a micro-resonator. The quantum emitters are embedded into QD/polymer sandwich microdisk cavities. This prevents photo-oxidation and yields the high dot concentration necessary to overcome Auger enhanced surface trapping of carriers. In combination with the very high cavity Q-factors, interaction of the QDs with the cavity modes in the weak coupling regime is readily observed. Under nanosecond pulsed excitation the CdTe QDs in the microdisks show lasing with a threshold energy as low as 0.33 μJ.

  15. Identification of critical stacking faults in thin-film CdTe solar cells

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl2 is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies

  16. Development of CdTe line sensors for a fast X-ray CT scanner

    International Nuclear Information System (INIS)

    A Fast scanning X-ray CT system was developed to visualize dynamic motion of interface in multi-phase flow. The scanning time less than 4 msec. was achieved by using 18 pulsed X-ray generators and highly sensitive 256-pixel CdTe line sensor modules. The sensor device technology is based on their prototypes previously assembled for high-resolution radiography and tomography imaging of electronic parts. Equipped with the above CdTe modules, the fast X-ray CT system was able to visualize the 50 mm diameter cross section with a spatial resolution of 2.8 mm. When the system was applied to an air-water two-phase flow and a simplified fluidized bed system, it successfully quantified the multi-dimensional characteristics of interface in flow. (author)

  17. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    International Nuclear Information System (INIS)

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence

  18. Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, I; Gordillo, H; Abargues, R; Albert, S; Martinez-Pastor, J, E-mail: isaac.suarez@uv.es [UMDO - Unidad Asociada al CSIC-IMM, Instituto de Ciencia de los Materiales, Universidad de Valencia, PO Box 22085, 46071 Valencia (Spain)

    2011-10-28

    In this paper, active planar waveguides based on the incorporation of CdSe and CdTe nanocrystal quantum dots in a polymer matrix are demonstrated. In the case of doping the polymer with both types of quantum dots, the nanocomposite film guides both emitted colors, green (550 nm, CdTe) and orange (600 nm, CdSe). The optical pumping laser can be coupled not only with a standard end-fire coupling system, but also directing the beam to the surface of the sample, indicating a good absorption cross-section and waveguide properties. To achieve these results, a study of the nanocomposite optical properties as a function of the nanocrystal concentration is presented and the optimum conditions are found for waveguiding.

  19. Temperature dependence of dc photoconductivity in CdTe thin films

    Indian Academy of Sciences (India)

    Pradip Kumar Kalita

    2003-06-01

    The temperature dependence of dc photoconductivity in the measuring range 303–417 K has been studied in CdTe thin films having thickness < 4000 Å. The photoactivation energy decreases in dark which is explained on the basis of grain boundary (GB) effect. The current lost to recombination at GB space charge region causes a negative effect on the photosensitivity of the films. A decrease in photosensitivity with increase in temperature is attributed to the reduction of photoexcitation process. It is observed that the minority carrier lifetime varies inversely with light intensity which supports the sublinear relationship of photoconductivity with the intensity of light and thereby confirms the defect-controlled photoconductivity in CdTe thin films.

  20. High performance p-i-n CdTe and CdZnTe detectors

    Science.gov (United States)

    Khusainov, A. Kh; Dudin, A. L.; Ilves, A. G.; Morozov, V. F.; Pustovoit, A. K.; Arlt, R. D.

    1999-06-01

    A breakthrough in the performance of p-i-n CdTe and CdZnTe detectors is reported. The detector stability has been significantly improved, allowing their use in precise gamma and XRF applications. Detectors with energy resolution close to Si and Ge were produced operating with only -30--35°C cooling (by a Peltier cooler of 15×15×10 mm size and a consumed power less than 5 W). Presently detectors with volume of up to 300 mm 3 are available. In terms of photoelectric effect efficiency it corresponds to HPGe detectors with volumes of about 1.5 cm 3. The possibilities of further improvement of CdTe and CdZnTe detector characteristics are discussed in this paper.

  1. Heteroepitaxy of CdTe(1 1 1)B on Si(1 1 1) : As

    Science.gov (United States)

    Schick, H.; Bensing, F.; Hilpert, U.; Richter, U.; Hansen, L.; Wagner, J.; Wagner, V.; Geurts, J.; Waag, A.; Landwehr, G.

    2000-06-01

    In order to improve the structural quality of CdTe/Si composite substrates, we have investigated the MBE growth mechanisms of CdTe(1 1 1) onto planar and vicinal arsenic-passivated Si(1 1 1) surfaces. The films were characterized by in situ RHEED, X-ray diffraction, Raman spectroscopy, photoluminescence, secondary electron microscopy, transmission electron microscopy and atomic force microscopy. Rocking curves had peaks narrower than 100 arcsec at a layer thickness of only 1-2 μm. BeTe buffer layers did not show a dominant effect, whereas the twin content decreased drastically when misoriented substrates were used. Efficient twin suppression can be obtained by realizing an interface step alignment between substrate and epitaxial CdTe film.

  2. CdTe in photoconductive applications. Fast detector for metrology and X-ray imaging

    International Nuclear Information System (INIS)

    Operating as a photoconductor, the sensitivity and the impulse response of semi-insulating materials greatly depend on the excitation duration compared to electron and hole lifetimes. The requirement of ohmic contact is shortly discussed. Before developing picosecond measurements with integrated autocorrelation system, this paper explains high energy industrial tomographic application with large CdTe detectors (25x15x0.9 mm3). The excitation is typically μs range. X-ray flash radiography, with 10 ns burst, is in an intermediate time domain where excitation is similar to electron life-time. In laser fusion experiment excitation is in the range of 50 ps and we develop photoconductive devices able to study very high speed X-ray emission time behaviour. Thin polycristalline MOCVD CdTe films with picosecond response are suitable to perform optical correlation measurements of single shot pulses with a very large bandwidth (- 50 GHz)

  3. Mechanism of the high X-ray sensitivity of single-crystal CdTe detectors

    International Nuclear Information System (INIS)

    One investigated into the effect of germanium amorphous impurities on X-ray sensitivity and on other features of single-crystals. One investigated into CdTe heat-stable crystals. One proposes a model of a local rearrangement of crystalline lattice near GeCd impurity atom. High X-ray sensitivity of CdTe doped by Ge impurity (doping levels = 3.0x1015 cm-3) is explained by difference of mobility of electrons and holes under ambipolar X-ray conductivity. The optimal impurity-defect composition of p-CdTe crystals serving as high-sensitive active elements of X-ray detectors is characterized by presence of GeCd, VCd defects and of VTe-Tei Frenkel pairs

  4. Thermoelectric power and Hall effect measurements in polycrystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Paez, B.A. [Pontificia Univ. Javeriana, Santafe de Bogota (Colombia). Thin Films Group

    2000-07-01

    Polycrystalline CdTe thin films deposited by close space sublimation (CSS), were characterized through thermoelectric power, {alpha}, Hall coefficient, and resistivity, {rho}, measurements in the range of 90 to 400 K. This was in order to determine the scattering mechanisms which mainly affect the electrical transport properties in CdTe thin films. The results were analyzed based on theoretical calculations of {alpha} against temperature. This model includes scattering processes within the grains and at the grain boundaries. Some of the parameters used in this calculation were determined experimentally: grain size, crystal structure, activation energy and effective mass. It is important to state that the main approximations were justified according to experimental measurements. (orig.)

  5. Si and CdTe pixel detector developments at SPring-8

    International Nuclear Information System (INIS)

    Single X-ray photon counting pixel detectors have become the most advanced detector technology in synchrotron radiation experiments recently. In particular, the PILATUS detector based on a silicon sensor has reached a very mature state and represents the world's largest detector in this field. This paper first reports on threshold energy calibrations and the capability of applying an energy-resolved X-ray imaging with PILATUS. Second the design of a cadmium telluride (CdTe) pixel detector is described. A high density and high-atomic number sensor material is required in high energy X-ray applications available at SPring-8. For this purpose we are developing a CdTe pixel detector with the SP8-01 readout ASIC covering a wide dynamic range between 10 and 100 keV and containing lower and upper discriminators.

  6. Study of polarization phenomena in Schottky CdTe diodes using infrared light illumination

    International Nuclear Information System (INIS)

    Schottky CdTe diode detectors suffer from a polarization phenomenon, which is characterized by degradation of the spectral properties over time following exposure to high bias voltage. This is considered attributable to charge accumulation at deep acceptor levels. A Schottky CdTe diode was illuminated with an infrared light for a certain period during a bias operation, and two opposite behaviors emerged. The detector showed a recovery when illuminated after the bias-induced polarization had completely progressed. Conversely, when the detector was illuminated before the emergence of bias-induced polarization, the degradation of the spectral properties was accelerated. Interpretation of these effects and discussion on the energy level of deep acceptors are presented.

  7. Growth and optical properties of CdTe quantum dots in ZnTe nanowires

    International Nuclear Information System (INIS)

    We report on the formation of optically active CdTe quantum dots in ZnTe nanowires. The CdTe/ZnTe nanostructures have been grown by a gold nanocatalyst assisted molecular beam epitaxy in a vapor-liquid solid growth process. The presence of CdTe insertions in ZnTe nanowire results in the appearance of a strong photoluminescence band in the 2.0 eV-2.25 eV energy range. Spatially resolved photoluminescence measurements reveal that this broad emission consists of several sharp lines with the spectral width of about 2 meV. The large degree of linear polarization of these individual emission lines confirms their nanowire origin, whereas the zero-dimensional confinement is proved by photon correlation spectroscopy.

  8. Optical nonlinearity enhanced by metal nanoparticle in CdTe quantum dots

    International Nuclear Information System (INIS)

    The optical nonlinearity of a CdTe quantum dot enhanced by a gold nanoparticle has been theoretically studied by employing the multi-bands effective mass method. The energy levels have been computed using 6x6 k.p model for the valence band. The semiconductor quantum dot-size-dependent third-order susceptibility of third harmonic generation in a CdTe-Au nanocrystal complex has been analyzed. It is found that the metal nanoparticle enhances the optical nonlinearity of the semiconductor quantum dot due to the dipole/multipole interaction that will bring in the strong damping and the field enhancement. By choosing the radius of CdTe quantum dot, the third-order nonlinear susceptibility for third harmonic generation can be optimized for the one- and multi-photon resonance. Also, we can alter the optical nonlinearity by changing the ratio of semiconductor-metal nanoparticle distance to the metal nanoparticle radius.

  9. Improvement of the sensitivity of CdTe detectors in the high energy regions

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Hiroshi; Ikegami, Kazunori; Takashima, Kazuo; Usami, Teruo [Mitsubishi Electric Corp., Tokyo (Japan); Yamamoto, Takayoshi

    1996-07-01

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of {sup 137}Cs (662keV) and {sup 60}Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  10. Cu containing CdTe thin films deposited by two sources technique

    International Nuclear Information System (INIS)

    Cadmium Telluride (CdTe) thin films were deposited onto glass substrates by the two-source evaporation technique. Films were heated under vacuum at 500 degree C for 1 hour and dipped in Cu(No/sub 3/)/sub 2/-H/sub 2/O solution at room temperature These films were again heated under vacuum for 1 hour at 500 degree C to obtain maximum Cu diffusion. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), optically by Lambda 900 UV/VIS/NIR spectrophotometer and electrically, i.e. DC electrical resistivity, by the Van der Pauw method at room temperature. The EDX results showed an increase of Cu content in the samples by increasing the immersion time of the CdTe films in the solution. (author)

  11. P-I-N CdTe gamma-ray detectors by liquid phase epitaxy (LPE)

    International Nuclear Information System (INIS)

    A new device concept of CdTe gamma ray detectors has been demonstrated by using p+(HgCdTe)-n(CdTe)-n+(HgCdTe) diode structures. Both p+ and n+-type Hg/sub 0.25/Cd/sub 0.75/Te epilayers were grown by the liquid phase epitaxy (LPE) technique on semi-insulating CdTe sensor elements. The LPE-grown P-I-N structure offers potential advantages for p-n junction formation and ohmic contact over standard ion-implanted diodes or Schottky barrier devices. Detectors with active areas of 2 mm2 were fabricated. Resolutions of 10 keV were obtained for the 122 keV gamma peak of Co57 at room temperature

  12. CdTe and ZnTe metal interface formation and Fermi-level pinning

    Science.gov (United States)

    Wahi, A. K.; Carey, G. P.; Chiang, T. T.; Lindau, I.; Spicer, W. E.

    1989-01-01

    Interfacial morphology and Fermi-level pinning behavior at the interfaces of Al, Ag, and Pt with UHV-cleaved CdTe and ZnTe are studied using X-ray photoelectron and ultraviolet photoemission spectroscopies. Results are compared to metal/HgCdTe interface formation. For Al/CdTe, a case is found where significantly greater intermixing occurs in CdTe than seen on HgCdTe. The Al/ZnTe interface is also more abrupt than Al/CdTe. Band bending results for interfaces of all three metals with p-CdTe and p-ZnTe are presented and implications for metal/HgZnTe interface formation are considered.

  13. Crystal Growth of CdTe by Gradient Freeze in Universal Multizone Crystallizator (UMC)

    Science.gov (United States)

    Su, Ching-Hua; Lehoczky, S. L.; Li, C.; Knuteson, D.; Raghothamachar, B.; Dudley, M.; Szoke, J.; Barczy, P.

    2004-01-01

    In the case of unsealed melt growth of an array of II-VI compounds, namely, CdTe, CdZnTe and ZnSe, there is a tremendous amount of experimental data describing the correlations between melt conditions and crystal quality. The results imply that the crystallinity quality can be improved if the melt was markedly superheated or long-time held before growth. It is speculated that after high superheating the associated complex dissociate and the spontaneous nucleation is retarded. In this study, crystals of CdTe were grown from melts which have undergone different thermal history by the unseeded gradient freeze method using the Universal Multizone Crystallizator (UMC). The effects of melt conditions on the quality of grown crystal were studied by various characterization techniques, including Synchrotron White Beam X-ray Topography (SWSXT), infrared microscopy, chemical analysis by glow discharge mass spectroscopy (GDMS), electrical conductivity and Hall measurements.

  14. First-principles DFT +G W study of oxygen-doped CdTe

    Science.gov (United States)

    Flores, Mauricio A.; Orellana, Walter; Menéndez-Proupin, Eduardo

    2016-05-01

    The role of oxygen doping in CdTe is addressed by first-principles calculations. Formation energies, charge transition levels, and quasiparticle defect states are calculated within the DFT+G W formalism. The formation of a new defect is identified, the (OTe-TeCd) complex.Thiscomplex is energetically favored over both isovalent (OTe) and interstitial oxygen (Oi), in the Te-rich limit. We find that the incorporation of oxygen passivates the harmful deep energy levels associated with (TeCd), suggesting an improvement in the efficiency of CdTe based solar cells. Substitutional (OCd) is only stable in the neutral charge state and undergoes a Jahn-Teller distortion. We also investigate the diffusion profiles of interstitial oxygen and find a low-energy diffusion barrier of only 0.14 eV between two structurally distinct interstitial sites.

  15. Optical Properties of Al- and Sb-Doped CdTe Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Nondoped and (Al, Sb-doped CdTe thin films with 0.5, 1.5, and 2.5  wt.%, respectively, were deposited by thermal evaporation technique under vacuum onto Corning 7059 glass at substrate temperatures ( of room temperature (RT and 423 K. The optical properties of deposited CdTe films such as band gap, refractive index (n, extinction coefficient (, and dielectric coefficients were investigated as function of Al and Sb wt.% doping, respectively. The results showed that films have direct optical transition. Increasing and the wt.% of both types of dopant, the band gap decrease but the optical is constant as n, and real and imaginary parts of the dielectric coefficient increase.

  16. Evaluation of CdTe for use in a prototype emission/transmission CT imaging system

    International Nuclear Information System (INIS)

    Cadmium telluride has been investigated for potential use in a prototype imaging system capable of acquiring both x-ray CT and SPECT data. The system is being designed to accumulate SPECT images with 140 keV gamma rays, thus requiring 4 mm detector thicknesses to achieve satisfactory stopping power. This study primarily investigates whether an alternative pixel orientation can be used with thick detectors to preserve the higher photopeak efficiencies normally associated with smaller thicknesses. Using 57Co (122 keV) as a substitute isotope to 99mTc, small 2 mm CdTe cubes were investigated along with edge irradiated 2 x 4 x 2 mm bars of both CdTe and CdZnTe. The photopeak efficiency of the large bars can be increased through the use of cooling but energy resolution remains less than desired. Small cubes of either material meet the resolution requirements, but the efficiency of patient dose would be sacrificed

  17. Dislocation-induced electronic levels in semi-insulated CdTe

    International Nuclear Information System (INIS)

    We studied deformation-induced defects in semi-insulating CdTe and CdZnTe by infrared photoluminescence (PL) and compared our data with earlier results. We confirmed the direct correlation between Y-emission and dislocation density in both compounds. The Y-band intensified near an indenter deformation or near a scribing line, but was barely visible in low-dislocation areas (etch pit density 5 cm-2). Plastic deformation also increased the concentrations of grown-in defects, namely, those of an important midgap level EC-0.74 eV in CdTe and Cd1-xZnxTe (x<0.1), the materials of choice in today's detector technology. Our findings demonstrate that dislocation-induced defects can degrade charge collection in radiation detectors.

  18. Voltammetry as a Tool for Characterization of CdTe Quantum Dots

    OpenAIRE

    Vojtech Adam; Pavlina Sobrova; Marketa Ryvolova; Jaromir Hubalek; Rene Kizek

    2013-01-01

    Electrochemical detection of quantum dots (QDs) has already been used in numerous applications. However, QDs have not been well characterized using voltammetry, with respect to their characterization and quantification. Therefore, the main aim was to characterize CdTe QDs using cyclic and differential pulse voltammetry. The obtained peaks were identified and the detection limit (3 S/N) was estimated down to 100 fg/mL. Based on the convincing results, a new method for how to study stability an...

  19. CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy

    OpenAIRE

    RAKOVICH, YURY; Donegan, John Francis

    2010-01-01

    We have studied the photodynamic properties of novel CdTe quantum dots?methylene blue hybrid photosensitizer. Absorption spectroscopy, photolumines- cence spectroscopy, and fluorescence lifetime imaging of this system reveal efficient charge transfer between nano- crystals and the methylene blue dye. Near-infrared photo- luminescence measurements provide evidence for an increased efficiency of singlet oxygen production by the methylene blue dye. In vitro studies on the...

  20. Nonresonant four wave mixing in photorefractive CdTe crystals using a picosecond parametric generator

    OpenAIRE

    Jarasiunas, Kestutis; Gudelis, Vytautas; Delaye, Philippe; Roosen, Gérald

    1998-01-01

    We demonstrate that a parametrically pumped picosecond laser has enough coherence and energy to write transient phase gratings at nonresonant interaction, thus allowing a study of time-resolved carrier transport in CdTe crystals to be made. Autocorrelation trace of light diffraction efficiency on transient grating allowed us to measure a coherence length of the parametric generator. Carrier diffusion, recombination, and drift in light-created internal space-charge ~SC! electric fields have be...

  1. CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy

    OpenAIRE

    Savateeva Diana; Lesnyak Vladimir; Eychmüller Alexander; Rakovich Tatsiana; Kelly Vincent; Rakovich Aliaksandra; Donegan John; Rakovich Yury

    2010-01-01

    Abstract We have studied the photodynamic properties of novel CdTe quantum dots—methylene blue hybrid photosensitizer. Absorption spectroscopy, photoluminescence spectroscopy, and fluorescence lifetime imaging of this system reveal efficient charge transfer between nanocrystals and the methylene blue dye. Near-infrared photoluminescence measurements provide evidence for an increased efficiency of singlet oxygen production by the methylene blue dye. In vitro studies on the growth of HepG...

  2. Si, CdTe and CdZnTe radiation detectors for imaging applications

    OpenAIRE

    Schulman, Tom

    2006-01-01

    The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General ...

  3. Development of fluorescent nanocomposites based on CdTe quantum dots

    OpenAIRE

    Oliveira, Vanessa; Moura, I; Machado, A.V.

    2015-01-01

    Cadmium telluride (CdTe) quantum dots (QDs) are efficient fluorescence semiconductor nanoparticles with unique optical and physicochemical properties. Their incorporation into polymer matrices allows the development of materials with several applications such as in opto-eletronic devices. Nevertheless, one of the most important prerequisite of these high-efficiency nanocomposites is the fluorescence efficiency of the QDs– polymer, which is mainly related with the QDs...

  4. Angle-resolved photoemission studies of the CdTe(110) surface

    Science.gov (United States)

    Qu, H.; Kanski, J.; Nilsson, P. O.; Karlsson, U. O.

    1991-06-01

    The electronic structure of the CdTe(110) surface has been studied with angle-resolved photoelectron spectroscopy using synchrotron radiation. An empirical tight-binding linar combination of atomic orbitals band structure has been derived, based on normal-emission spectra. Several, previously unreported, surface-related states have been observed in off-normal emission, and their dispersions have been mapped along symmetry directions of the surface Brillouin zone.

  5. Chemical beam epitaxy of CdTe, HgTe, and HgCdTe

    Energy Technology Data Exchange (ETDEWEB)

    Benz, R.G. II; Wagner, B.K.; Rajavel, D.; Summers, C.J. (Physical Sciences Lab., Georgia Tech Research Inst., Atlanta, GA (USA))

    1991-05-01

    A chemical beam epitaxy (CBE) system has been implemented for the growth of CdTe, HgTe, and their alloys. The system is briefly described. Results on the cracking of the organometallic source gases are presented. Epitaxial layers have been grown from gas sources of diethylcadmium, diisopropyltelluride and Hg vapor, as well as conventional solid sources. Optical and electrical properties are reported, demonstrating the potential of CBE for growing high quality solar cell and infrared detector material. (orig.).

  6. GROWTH KINETICS, CRYSTAL STRUCTURE, AND MORPHOLOGY OF OMVPE-GROWN HOMOEPITAXIAL CdTe

    OpenAIRE

    Snyder, D.; Sides, P.; Ko, E.; Mahajan, S.

    1991-01-01

    The growth rate, crystal structure, morphology, and electronic properties of homoepitaxial CdTe grown by OMVPE in an impinging jet reactor were investigated. Under operating conditions where surface reactions controlled the rate, the deposition rate depended on the diethyltelluride partial pressure to the .8 power and on the dimethylcadmium partial pressure to the .2 power, approximately. Cadmium was easily adsorbed and was ubiquitous on the surface during deposition ; tellurium was relativel...

  7. A TEM and DLTS study of a near. Sigma. 25 CdTe bicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Haasen, P. (Inst. fuer Metallphysik, Univ. Goettingen (Germany))

    1991-11-16

    Cadmium precipitates are observed at the grain boundary (GB) of a CdTe bicrystal by means of transmission electron microscopy (TEM). In a simple model based on the theory of electron hopping, electrons can be excited by thermal activation and flow from boundary states to precipitates in the boundary. This model gives, in particular, a simple explanation for the emission properties of the precipitates, as determined by deep-level-transient spectroscopy (DLTS) on the bicrystal. (orig.).

  8. Ion channeling studies of CdTe films on GaAs

    International Nuclear Information System (INIS)

    Thin films of [111] oriented CdTe have been MOCVD grown onto [111] GaAs substrates. When thickness exceed 1000 Angstrom the epitaxy is quite good (backscattering minimum yield of approximately 15%) in spite of a 14% lattice mismatch. A narrowing of the Cd angular scan suggests a displacement of some of the Cd atoms in the lattice. A model based on a Te vacancy is presented to describe the data

  9. Study of point defects in CdTe and CdTe:V by cathodoluminescence

    OpenAIRE

    Pal, U.; Piqueras de Noriega, Javier; Fernández Sánchez, Paloma; M.D. Serrano; Diéguez, E.

    1994-01-01

    Cathodoluminescence in the scanning electron microscope has been used to investigate the relationship of point defects in CdTe and CdTe:V with luminescence bands at 1.40 and 1.13 eV. V has been found to inhibit the 1.40 eV luminescence. Annealing experiments indicate that Cd and Te vacancies are involved in the mentioned emission bands.

  10. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    OpenAIRE

    Denise Feder; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Santos-Mallet, Jacenir R.; Suzete A.O. Gomes; Cecilia Stahl Vieira; Almeida, Diogo B.

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellul...

  11. Cyclodextrin capped CdTe quantum dots as versatile fluorescence sensors for nitrophenol isomers

    Science.gov (United States)

    Zhang, Zhixing; Zhou, Jie; Liu, Yun; Tang, Jian; Tang, Weihua

    2015-11-01

    Cyclodextrin (CD) capped CdTe quantum dots (QDs) were prepared with uniform dimension (average diameter ~5 nm) and high quantum yield (ca. 65%). By taking advantage of the inclusion complexation of CD, β-CD-CdTe QDs exhibited strong fluorescence quenching in a linear relationship with the concentration of o-, m- and p-nitrophenol in the range of 20-100 μM. The detection limit reached 0.05 μM for o-/p-nitrophenol and 0.3 μM for m-nitrophenol. The fluorescence decay study revealed the stabilization effect of CD covering on CdTe QDs and fine-tuning of the fluorescence for selective ultrasensitive detection of nitrophenol isomers.Cyclodextrin (CD) capped CdTe quantum dots (QDs) were prepared with uniform dimension (average diameter ~5 nm) and high quantum yield (ca. 65%). By taking advantage of the inclusion complexation of CD, β-CD-CdTe QDs exhibited strong fluorescence quenching in a linear relationship with the concentration of o-, m- and p-nitrophenol in the range of 20-100 μM. The detection limit reached 0.05 μM for o-/p-nitrophenol and 0.3 μM for m-nitrophenol. The fluorescence decay study revealed the stabilization effect of CD covering on CdTe QDs and fine-tuning of the fluorescence for selective ultrasensitive detection of nitrophenol isomers. Electronic supplementary information (ESI) available: Experimental procedure and characterization for new materials. See DOI: 10.1039/c5nr06073g

  12. Electronic structure, structural and optical properties of thermally evaporated CdTe thin films

    International Nuclear Information System (INIS)

    Thin films of CdTe were deposited on glass substrates by thermal evaporation. From the XRD measurements it is found that the films are of zinc-blende-type structure. The lattice parameter was determined as a=6.529A, which is larger than 6.48A of the powder sample, because the recrystallized lattice of the grown films is subjected to a compressive stress aroused as a result of the lattice mismatch and/or differences in thermal expansion coefficient between the CdTe and the underlying substrate. Transmittance, absorption, extinction and refractive coefficients are measured. Electronic structure, band parameters and optical spectra of CdTe were calculated from ab initio studies within the LDA and LDA+U approximations. It is shown that LDA underestimates the band gap, energy levels of the Cd-4d states, s-d coupling and band dispersion. However, it calculates the spin-orbit coupling correctly. LDA+U did not increase much the band gap value, but it corrected the s-d coupling by shifting the Cd-4d levels towards the experimentally determined location and by splitting the LDA-derived single s peak into two peaks, which originates from admixture of s and d states. It is shown that the s-d coupling plays an important role in absorption and reflectivity constants. The calculated optical spectra fairly agree with experimental data. Independent of wave vector scissors operator is found to be a good first approximation to shift rigidly the band gap of CdTe underestimated by LDA

  13. Cytotoxicity and DNA Damage Effect of TGA-capped CdTe Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    LI Yan-bo; ZHANG Hai-xia; GUO Cai-xia; HU Gui-qin; DU Hai-ying; JIN Ming-hua; HUANG Pei-li; SUN Zhi-wei; YANG Wen-sheng

    2012-01-01

    The cytotoxicity and DNA damage caused by thioglycolic acid(TGA)-capped cadmium telluride(CdTe)quantum dots(QDs)to hepatocyte line HL-7702 were investigated.Cell viability was measured by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay; DNA damage was detected by single cell gel electrophoresis(SCGE); the change of cell cycle progression was examined by propidium iodide(PI)-flow cytometry(FCM);apoptosis was measured by acridine orange/ethidium bromide(AO/EB)assay and Annexin V-FITC/PI-FCM(FITC:fluorescein isothiocyanate).The results show that the cytotoxicity induced by CdTe QDs was increased in a dose-dependent and time-dependent manner; after exposure to QDs for 24 h,as the exposure dose increased,the rate of DNA damage was significantly increased(P<0.05),and the degree of DNA damage was elevated.As the dose of CdTe QDs increased,the percentage of G0/G1 phase cells was significantly decreased(P<0.001),while the percenttages of S and G2/M phases cells were significantly increased(P<0.001).In AO/EB assay,apoptotic cells could be observed under a fluorescence microscope,and apoptotic rate was increased as exposure dose increased.In Annexin V-FITC/PI-FCM assay,the apoptotic rates of CdTe QDs treated groups were significantly increased compared with that of control group(P<0.05).Our studies indicate that CdTe QDs could influence cell viability,and induce DNA damage,the S and G2/M phases arrest and apoptosis of HL-7702.

  14. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    OpenAIRE

    2010-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties...

  15. Applications of CdTe to nuclear medicine. Annual report, February 1, 1979-January 31, 1980

    International Nuclear Information System (INIS)

    The application of CdTe gamma detectors in nuclear medicine is reported on. An internal probe was developed which can be inserted into the heart to measure the efficiency of various radiopharmaceuticals in the treatment of heart attacks. A second application is an array of detectors which is light enough to be worn by ambulatory patients and can measure the change in cardiac output over an eight hour period during heart attack treatment. The instrument includes an on board tape recorder

  16. New Architecture towards Ultrathin CdTe Solar Cells for High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    A. Teyou Ngoupo

    2015-01-01

    Full Text Available Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D is used to investigate the possibility of realizing ultrathin CdTe based solar cells with high and stable conversion efficiency. In the first step, we modified the conventional cell structure by substituting the CdS window layer with a CdS:O film having a wide band gap ranging from 2.42 to 3.17 eV. Thereafter, we simulated the quantum efficiency, as well as the parameters of J-V characteristics, and showed how the thickness of CdS:O layer influences output parameters of Glass/SnO2/ZTO/CdS:O/CdTe1-xSx/CdTe/Ni reference cell. High conversion efficiency of 17.30% has been found using CdTe1-xSx (x=0.12 and CdTe layers of thickness 15 nm and 4 μm, respectively. Secondly, we introduced a BSR layer between the absorber layer and back metal contact, which led to Glass/SnO2/ZTO/CdS:O/CdTe1-xSx/CdTe/BSR/Ni configuration. We found that a few nanometers (about 5 nm of CdTe1-xSx layer is sufficient to obtain high conversion efficiency. For BSR layer, different materials with large band gap, such as ZnTe, Cu2Te, and p+-CdTe, have been used in order to reduce minority carrier recombination at the back contact. When ZnTe is used, high conversion efficiency of 21.65% and better stability are obtained, compared to other BSR.

  17. Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels

    Czech Academy of Sciences Publication Activity Database

    Agrawal, M.; Rubio-Retama, J.; Zafeiropoulos, N. E.; Gaponik, N.; Gupta, S.; Cimrová, Věra; Lesnyak, V.; López-Cabarcos, E.; Tzavalas, S.; Rojas-Reyna, R.; Eychmuller, A.; Stamm, M.

    2008-01-01

    Roč. 24, č. 17 (2008), s. 9820-9824. ISSN 0743-7463 R&D Projects: GA AV ČR IAA4050409; GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z40500505 Keywords : switchable photoluminescence * temperature-responsive microgels * CdTe nanocrystals Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.097, year: 2008

  18. Optical studies of spin relaxation in CdTe self-assembled quantum dots

    International Nuclear Information System (INIS)

    We study exciton spin relaxation in CdTe self-assembled quantum dots (QDs) by using polarized photoluminescence (PL) spectroscopy in magnetic field. The results show that by combining LO phonon - assisted absorption with circularly polarized resonant excitation, spin-polarized excitons may be photo-excited into the ground states of QDs. We find for both single CdTe QDs and large QD ensembles that when the exciton spin levels are degenerate, the spins randomize very rapidly, so that no net spin polarization is observed. In contrast, when this degeneracy is lifted, excitons maintain their spin polarization on a time scale much longer than the exciton recombination time (∝300 ps). A rate equation model allows us to estimate the spin relaxation time of the excitons in the CdTe QDs to be 4.8±0.3 ns at T=5 K. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Analysis of CdTe solar cells in relation to materials issues

    International Nuclear Information System (INIS)

    By now, extensive experimental research is available on thin film solar cells based on CdTe and on CIGS, and their electrical and optical behaviour is characterised by a multitude of diverse characterisation techniques. At the same time, numerical simulation programmes have matured and are available to the research community to assist in interpreting these measurements consistently. Once multiple measurements are (more or less) quantitatively described, the numerical simulation can be used to explore the effect of a variation of materials parameter (e.g. the presence or absence of a property, or variation in a range of values) to the final solar cell characteristics. Examples of such analysis for CdTe solar cells are shown. In CdTe cells, much research has been devoted to the activation treatment of the absorber, and to the technology of the back contact. Analysis of ample measurements has evidenced the crucial role of the profile of the (effective) doping density through the device. It will be illustrated how this relative simple (but hardly mastered) materials property has a far reaching influence to the cell characteristics such as roll-over and cross-over of I-V curves, also in dependence on illumination and voltage, conventional and apparent quantum efficiency, and finally fill factor and efficiency

  20. Optical absorption enhancement of CdTe nanostructures by low-energy nitrogen ion bombardment

    Science.gov (United States)

    Akbarnejad, E.; Ghoranneviss, M.; Mohajerzadeh, S.; Hantehzadeh, M. R.; Asl Soleimani, E.

    2016-02-01

    In this paper we present the fabrication of cadmium telluride (CdTe) nanostructures by means of RF magnetron sputtering followed by low-energy ion implantation and post-thermal treatment. We have thoroughly studied the structural, optical, and morphological properties of these nanostructures. The effects of nitrogen ion bombardment on the structural parameters of CdTe nanostructures such as crystal size, microstrain, and dislocation density have been examined. From x-ray diffractometer (XRD) analysis it could be deduced that N+ ion fluence and annealing treatment helps to form (3 0 0) orientation in the crystalline structure of cadmium-telluride films. Fluctuations in optical properties like the optical band gap and absorption coefficient as a function of N+ ion fluences have been observed. The annealing of the sample irradiated by a dose of 1018 ions cm-2 has led to great enhancement in the optical absorption over a wide range of wavelengths with a thickness of 250 nm. The enhanced absorption is significantly higher than the observed value in the original CdTe layer with a thickness of 3 μm. Surface properties such as structure, grain size and roughness are noticeably affected by varying the nitrogen fluences. It is speculated that nitrogen bombardment and post-annealing treatment results in a smaller optical band gap, which in turn leads to higher absorption. Nitrogen bombardment is found to be a promising method to increase efficiency of thin film solar cells.

  1. Luminescent borate glass for efficiency enhancement of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steudel, Franziska, E-mail: franziska.steudel@iwmh.fraunhofer.de [Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM, Lübecker Ring 2, 59494 Soest (Germany); Loos, Sebastian [Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany); Ahrens, Bernd; Schweizer, Stefan [Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM, Lübecker Ring 2, 59494 Soest (Germany); Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany)

    2015-08-15

    Rare-earth (RE) doped borate glasses are investigated for their potential as photon down-shifting cover glass for CdTe solar cells. The barium borate base glass is doped with trivalent rare-earth ions such as Sm{sup 3+}, Eu{sup 3+}, and Tb{sup 3+} showing an intense luminescence in the red (Sm{sup 3+}, Eu{sup 3+}) and green (Tb{sup 3+}) spectral range upon excitation in the ultraviolet and blue. Additionally, the glasses are double-doped with two RE ions for a broad-band absorption. The gain in short-circuit current density of CdTe solar cells with different thicknesses of the CdS buffer layer is calculated. Though the single-doped glasses already reveal a slight increase in short-circuit current density, the double-doped glasses allow for higher efficiency gains since a significant broader spectral range is covered for absorption. For a Tb{sup 3+}/Eu{sup 3+} double-doped glass with a RE doping level of 1 at% each, an efficiency increase of 1.32% can be achieved. - Highlights: • Rare-earth doped front glass for high efficiency CdTe solar cells were prepared. • Double-doping allows for higher efficiency gains than single-doping. • Efficiency enhancement of 1.32% can be achieved with Tb{sup 3+}/Eu{sup 3+} doped front glass.

  2. Characterisation of an electron collecting CdTe strip sensor using the MYTHEN readout chip

    International Nuclear Information System (INIS)

    MYTHEN is a single photon counting hybrid strip X-ray detector that has found application in x-ray powder diffraction (XRPD) experiments at synchrotrons worldwide. Originally designed to operate with hole collecting silicon sensors, MYTHEN is suited for detecting X-rays above 5 keV, however many PD beamlines have been designed for energies above 50 keV where silicon sensors have an efficiency of only few percent. In order to adapt MYTHEN to meet these energies the absorption efficiency of the sensor must be substantially increased. Cadmium-Telluride (CdTe) has an absorption efficiency approximately 30 times that of silicon at 50 keV, and is therefore a very promising replacement candidate for silicon. Furthermore, the large dynamic range of the pre-amplifier of MYTHEN and its double polarity capability has enabled the characterisation of an electron collecting Schottky type CdTe sensor. A CdTe MYTHEN system has undergone a series of characterisation experiments including stress test of bias and radiation induced polarizations. The performance of this system will be presented and discussed

  3. First-principles DFT+GW study of oxygen doped CdTe

    Science.gov (United States)

    Orellana, Walter; Flores, Mauricio A.; Menéndez-Proupin, Eduardo

    The role of oxygen doping in CdTe is addressed by first-principles calculations. Formation energies, charge transition levels and quasiparticle defect states are calculated within the DFT+GW formalism. The formation of a new defect is identified, the (OTe -TeCd) complex. This complex is energetically favored over both isovalent (OTe) and interstitial oxygen (Oi). We find that incorporation of oxygen passivates the harmful deep energy levels derived from Te antisites, suggesting an improvement in the efficiency of CdTe based solar cells. Our calculations indicate that both (OTe) and (Oi) have low formation energies. Moreover, (OCd) is only stable in the neutral charge state and undergoes a Jahn-Teller distortion. The (VCd - OTe) complex is found to be a shallow acceptor with a high formation energy. We also report an oxygen-related interstitial defect, which plays a key role in the diffusion mechanism of oxygen in CdTe. Support by FONDECYT Grant No. 1130437 is acknowledged. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

  4. Luminescent borate glass for efficiency enhancement of CdTe solar cells

    International Nuclear Information System (INIS)

    Rare-earth (RE) doped borate glasses are investigated for their potential as photon down-shifting cover glass for CdTe solar cells. The barium borate base glass is doped with trivalent rare-earth ions such as Sm3+, Eu3+, and Tb3+ showing an intense luminescence in the red (Sm3+, Eu3+) and green (Tb3+) spectral range upon excitation in the ultraviolet and blue. Additionally, the glasses are double-doped with two RE ions for a broad-band absorption. The gain in short-circuit current density of CdTe solar cells with different thicknesses of the CdS buffer layer is calculated. Though the single-doped glasses already reveal a slight increase in short-circuit current density, the double-doped glasses allow for higher efficiency gains since a significant broader spectral range is covered for absorption. For a Tb3+/Eu3+ double-doped glass with a RE doping level of 1 at% each, an efficiency increase of 1.32% can be achieved. - Highlights: • Rare-earth doped front glass for high efficiency CdTe solar cells were prepared. • Double-doping allows for higher efficiency gains than single-doping. • Efficiency enhancement of 1.32% can be achieved with Tb3+/Eu3+ doped front glass

  5. The activation of thin film CdTe solar cells using alternative chlorine containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, B., E-mail: B.Maniscalco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); Abbas, A.; Bowers, J.W.; Kaminski, P.M.; Bass, K. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); West, G. [Department of Materials, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom)

    2015-05-01

    The re-crystallisation of thin film cadmium telluride (CdTe) using cadmium chloride (CdCl{sub 2}) is a vital process for obtaining high efficiency photovoltaic devices. However, the precise micro-structural mechanisms involved are not well understood. In this study, we have used alternative chlorine-containing compounds to determine if these can also assist the re-crystallisation of the CdTe layer and to understand the separate roles of cadmium and chlorine during the activation. The compounds used were: tellurium tetrachloride (TeCl{sub 4}), cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}), hydrochloric acid (HCl) and zinc chloride (ZnCl{sub 2}). TeCl{sub 4} was used to assess the role of Cl and the formation of a Te-rich outer layer which may assist the formation of the back contact. (Cd(CH{sub 3}CO{sub 2}){sub 2}) and HCl were used to distinguish between the roles of cadmium and chlorine in the process. Finally, ZnCl{sub 2} was employed as an alternative to CdCl{sub 2}. We report on the efficacy of using these alternative Cl-containing compounds to remove the high density of planar defects present in untreated CdTe. - Highlights: • Cadmium chloride (CdCl{sub 2}) activation treatment • Alternative chlorine containing compounds • Microstructure analysis and electrical performances.

  6. Pixelized M-pi-n CdTe detector coupled to Medipix2 readout chip

    CERN Document Server

    Kalliopuska, J; Penttila, R; Andersson, H; Nenonen, S; Gadda, A; Pohjonen, H; Vanttajac, I; Laaksoc, P; Likonen, J

    2011-01-01

    We have realized a simple method for patterning an M-pi-n CdTe diode with a deeply diffused pn-junction, such as indium anode on CdTe. The method relies on removing the semiconductor material on the anode-side of the diode until the physical junction has been reached. The pixelization of the p-type CdTe diode with an indium anode has been demonstrated by patterning perpendicular trenches with a high precision diamond blade and pulsed laser. Pixelization or microstrip pattering can be done on both sides of the diode, also on the cathode-side to realize double sided detector configuration. The article compares the patterning quality of the diamond blade process, pulsed pico-second and femto-second lasers processes. Leakage currents and inter-strip resistance have been measured and are used as the basis of the comparison. Secondary ion mass spectrometry (SIMS) characterization has been done for a diode to define the pn-junction depth and to see the effect of the thermal loads of the flip-chip bonding process. Th...

  7. Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.; von Roedern, B.

    2007-09-01

    We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. In CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.

  8. Spatial uniformity of electron charge transport in high resistivity CdTe

    International Nuclear Information System (INIS)

    Electron charge transport in high resistivity CdTe was investigated in terms of drift mobility, charge collection efficiency, and mobility-lifetime product. CdTe devices were produced from material grown by the Travelling Heater Method. Infrared microscopy was used to assess the quality of CdTe wafers, which showed a concentration of bulk defects and tellurium precipitates around the edges of the wafers. Laser-induced time of flight was used to measure the electron drift velocity, which was linear with respect to electric field at field strengths up to 200 V/cm. The measured electron drift mobility was 1040±20 cm2/V s. Ion-beam induced charge (IBIC) imaging of the device cathode was carried out to produce high resolution maps of signal amplitude and electron drift time. Excellent spatial uniformity was observed in the sample, and a value of 6x10-3 cm2/V was measured for the electron mobility-lifetime product

  9. Microscopic partition of pressure and elastic constants in CdTe polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, T. [Laboratoire de Physique Théorique, Tlemcen University, 13000 Tlemcen (Algeria); École Préparatoire en Sciences et Techniques, 13000 Tlemcen (Algeria); Franco, R.; Menéndez, J.M.; Marqués, M. [MALTA Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo (Spain); Recio, J.M., E-mail: jmrecio@uniovi.es [MALTA Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo (Spain)

    2014-04-01

    Highlights: • Pressure ranges of stability of CdTe polymorphs are successfully computed. • A cubic B2 phase is predicted at pressures above 70 GPa. • Microscopic pressures are defined without resorting to energy partitions. • Cd shows a greater mechanical resistance than Te when pressure is applied. • Atomic equations of state are proposed for Cd and Te along the polymorphic sequence. - Abstract: Within the framework of density functional theory, first principles calculations were carried out to determine pressure stability ranges of zinc-blende (B3), cinnabar (Cinn), rock-salt (B1), orthorhombic (Cmcm), and cesium chloride (B2) phases of CdTe. In agreement with experimental observations, we found a B3→Cinn→B1→Cmcm pressure-induced sequence, and predict the B2 phase as a potential high pressure polymorph. The equations of state of all these polymorphs and the components of the elasticity tensor of the B3 phase at zero pressure were determined and microscopically analyzed in terms of atomic contributions. The concept of local pressure allows for quantifying differences in the role played by Cd and Te as regards the compressibility of CdTe phases, and suggests the existence of a general behavior under pressure for binary II–VI semiconductors.

  10. Hard x-ray polarimetry with a thick CdTe position sensitive spectrometer

    Science.gov (United States)

    Caroli, Ezio; Bertuccio, Giuseppe; Cola, Adriano; Curado da Silva, R. M.; Donati, Ariano; Dusi, Waldes; Landini, Gianni; Siffert, Paul; Sampietro, Marco; Stephen, John B.

    2000-12-01

    Even though it is recognized that the study of polarization from cosmic high-energy sources can give very important information about the nature of the emission mechanism, to date very few measurements have been attempted. For several years we have proposed the use of a thick CdTe array as a position sensitive spectrometer for hard X- and soft gamma-ray astronomy, a design which is also efficient for use as a polarimeter at energies above approximately 100 keV. Herein we describe the preliminary results of our study of a polarimeter based on 4096 CdTe microcrystals that we would like to develop for a high altitude balloon experiment. We present the telescope concept with a description of each subsystem together with some results on activities devoted to the optimization of the CdTe detector units' response. Furthermore we give an evaluation of the telescope performance in terms of achievable spectroscopic and polarimetric performance. In particular we will show the results of Monte Carlo simulations developed to evaluate the efficiency of our detector as a hard X ray polarimeter.

  11. Frontal IBICC study of the induced proton radiation damage in CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pastuovic, Zeljko E-mail: pastu@rudjer.irb.hr; Jaksic, Milko

    2001-07-01

    Within a continuous international effort in developing the non-cryogenic semiconductor detectors for gamma ray spectroscopy, various wide gap materials were considered. With a best performance achieved, CdTe- and CdZnTe-based detectors become today widely accepted and commercially available. In addition to possible future use of such detectors for particle-induced gamma-ray emission (PIGE), nuclear microprobes are in recent years applied more as their characterisation tool using the ion beam-induced charge collection (IBICC) technique. Several CdTe detectors of 2x2x1 mm{sup 3} size were used in this study. On the basis of frontal IBICC measurements of the charge collection efficiency (CCE) distribution, the spectroscopy performance of detectors were measured. Further degradation of charge collection efficiency and the downward trend in peak position were studied by on-line irradiation of CdTe samples with 3 MeV protons up to 10{sup 10} p/cm{sup 2} radiation dose.

  12. Frontal IBICC study of the induced proton radiation damage in CdTe detectors

    Science.gov (United States)

    Pastuović, Željko; Jakšić, Milko

    2001-07-01

    Within a continuous international effort in developing the non-cryogenic semiconductor detectors for gamma ray spectroscopy, various wide gap materials were considered. With a best performance achieved, CdTe- and CdZnTe-based detectors become today widely accepted and commercially available. In addition to possible future use of such detectors for particle-induced gamma-ray emission (PIGE), nuclear microprobes are in recent years applied more as their characterisation tool using the ion beam-induced charge collection (IBICC) technique. Several CdTe detectors of 2×2×1 mm3 size were used in this study. On the basis of frontal IBICC measurements of the charge collection efficiency (CCE) distribution, the spectroscopy performance of detectors were measured. Further degradation of charge collection efficiency and the downward trend in peak position were studied by on-line irradiation of CdTe samples with 3 MeV protons up to 10 10 p/cm2 radiation dose.

  13. High-efficiency, large-area CdTe panels: Annual report, June 1987--June 1988

    Energy Technology Data Exchange (ETDEWEB)

    Albright, S.P.; Singh, V.P.; Ackerman, B.

    1989-04-01

    This technical progress report on large-area CdTe solar panels cover work accomplished from June 1987 to May 1988. The highest-efficiency devices produced during this period measured 10.6% efficient on a 0.302-cm{sup 2} cell. On 11-7/8 in. by 12 in. panels, the highest output obtained was 5.3 W over 847 cm{sup 2}, or 7.0% active-area efficiency. The aperture-area efficiency is presently about 12% lower, or 6.3% efficiency, because of interconnection losses. A 4-ft{sup 2} panel was also produced. Resistivities of less than 100 ohm-cm have been observed consistently in phosphorus- or copper-doped CdTe. Surface analysis is presented for various CdTe treatments. Devices were characterized and analyzed using electron-beam-induced current, capacitance, spectral response, and I-V curves at various temperatures. A model for junction transport is presented. An encapsulation system is described, and lifetime test results are presented. 13 refs., 26 figs.

  14. High-efficiency, large-area CdTe panels: Annual report, June 1987--June 1988

    Energy Technology Data Exchange (ETDEWEB)

    Albright, S.P.; Singh, V.P.; Ackerman, B.

    1989-04-01

    This technical progress report on large-area CdTe solar panels cover work accomplished from June 1987 to May 1988. The highest-efficiency devices produced during this period measured 10.6% efficient on a 0.302-cm/sup 2/ cell. On 11-7/8 in. by 12 in. panels, the highest output obtained was 5.3 W over 847 cm/sup 2/, or 7.0% active-area efficiency. The aperture-area efficiency is presently about 12% lower, or 6.3% efficiency, because of interconnection losses. A 4-ft/sup 2/ panel was also produced. Resistivities of less than 100 ohm-cm have been observed consistently in phosphorus- or copper-doped CdTe. Surface analysis is presented for various CdTe treatments. Devices were characterized and analyzed using electron-beam-induced current, capacitance, spectral response, and I-V curves at various temperatures. A model for junction transport is presented. An encapsulation system is described, and lifetime test results are presented. 13 refs., 26 figs.

  15. Fabrication and performance of p-i-n CdTe radiation detectors

    International Nuclear Information System (INIS)

    We report on the fabrication and performance of CdTe radiation detectors in a new p-i-n structure which helps to reduce the leakage current to a minimum level. Chlorine-doped single-crystal CdTe substrates having resistivity in the order of 109 Ω cm were used in this study. Iodine-doped n-type CdTe layers were grown homoepitaxially on one face of each crystals using the hydrogen plasma-radical-assisted metalorganic chemical vapor deposition technique at low substrate temperature of 150 deg. C. Indium electrode was evaporated on the n-CdTe side while a gold electrode on the opposite side acted as a p-type contact. Detectors thus fabricated exhibited low leakage current (below 0.4 nA/mm2 at 250 V applied reverse bias for the best one) and good performance at room temperature. Spectral response of the detectors showed improved energy resolution for Am-241, Co-57, and Cs-137 radioisotopes. Detectors were further tested with X-ray photons of different intensities for their potential application in imaging systems and promising responses were obtained

  16. Effect of active treatments on photovoltaic characteristics of structures based on CdTe films

    International Nuclear Information System (INIS)

    Photoelectric characteristics of ITO/CdTe structures fabricated by the thermal evaporation in vacuum followed by their deposition in a quasi closed volume have been studied before and after treatments of various kinds. Some specimens were subjected to a 'chloride' treatment, the others were annealed in air. Afterward, the specimens were treated in hydrogen plasma, and they were covered with a thin diamond-like carbon film. The 'chloride' treatment of ITO/CdTe structures is shown to result in an increase of the diffusion length of charge carriers in the CdTe layer. The thermal annealing did not affect this parameter, but significantly enhanced the photosensitivity, which means a reduction of the surface recombination rate in the surface CdTe layer. For all considered ITO/CdTe structures obtained by the thermal evaporation in vacuum, the following treatment in hydrogen plasma and the deposition of thin diamondlike films brought about a substantial increase in the diffusion length of charge carriers in the CdTe layer. The ITO/CdTe structures obtained by the thermal vacuum evaporation and treated with hydrogen plasma demonstrated a significant enhancement of their spectral sensitivity in a wavelength range of 400-800 nm, whereas the same effect for structures subjected to the 'chloride' treatment was obtained after the sequential hydrogen plasma treatment and the diamond-like carbon film deposition.

  17. Preparation and Properties of CdTe Polycrystalline Films for Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huajing; ZHANG Jingquan; FENG Lianghuan; ZHENG Jiagui; CAI Wei; LI Bing; CAI Yaping

    2006-01-01

    The structure and characteristics of CdTe thin films are closely dependent on the whole deposition process in close-space sublimation (CSS). The physical mechanism of CSS was analyzed and the temperature distribution in CSS system was measured, and the influences of the increasing-temperature process and pressure on the preliminary nucleus creation were studied. The results indicate: the samples deposited at different pressures have a cubical structure of CdTe and the diffraction peaks of CdS and SnO2∶F. As the atmosphere pressure increases, the crystal size of CdTe decreases, the rate of the transparency of the thin film decreases and the absorption side moves towards the short-wave direction. After a 4-minute depositing process with a substrate temperature of 500 ℃ and a source temperature of 620 ℃, the polycrystalline thin films can be made, so the production of high-quality integrated cell with SnO2:F/CdS/CdTe/Au structure is hopeful.

  18. The activation of thin film CdTe solar cells using alternative chlorine containing compounds

    International Nuclear Information System (INIS)

    The re-crystallisation of thin film cadmium telluride (CdTe) using cadmium chloride (CdCl2) is a vital process for obtaining high efficiency photovoltaic devices. However, the precise micro-structural mechanisms involved are not well understood. In this study, we have used alternative chlorine-containing compounds to determine if these can also assist the re-crystallisation of the CdTe layer and to understand the separate roles of cadmium and chlorine during the activation. The compounds used were: tellurium tetrachloride (TeCl4), cadmium acetate (Cd(CH3CO2)2), hydrochloric acid (HCl) and zinc chloride (ZnCl2). TeCl4 was used to assess the role of Cl and the formation of a Te-rich outer layer which may assist the formation of the back contact. (Cd(CH3CO2)2) and HCl were used to distinguish between the roles of cadmium and chlorine in the process. Finally, ZnCl2 was employed as an alternative to CdCl2. We report on the efficacy of using these alternative Cl-containing compounds to remove the high density of planar defects present in untreated CdTe. - Highlights: • Cadmium chloride (CdCl2) activation treatment • Alternative chlorine containing compounds • Microstructure analysis and electrical performances

  19. CdTe detectors in medicine: a review of current applications and future perspectives

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) semiconductor sensors have been evaluated for medical applications for 15 years owing to their high stopping power, convenient energy resolution and operating conditions at room temperature. Most of the applications herein reviewed concern medical imaging procedures, i.e., nuclear medicine, including positron emission tomography and radiology with computerized tomography (XCT). Despite their attractive physical characteristics, their preliminary commercial development has been slowed down in the early 80s because of technical problems, particularly when large arrays were considered, and because of the competition with the more available and less expensive scintillators or xenon chambers which are still mounted in most modern medical imaging systems. Nowadays the characteristics of new materials have allowed the development of restricted but more specific domains of CdTe medical applications i.e. miniaturized nuclear probes dedicated to per-operative tumor detection or ambulatory monitoring of physiological (renal, cardiac) functions and bone absorptiometry using either planar or miniature tomographic systems. Supported by the features and encouraged by the growing competition between ionising and non-ionizing imaging modalities (US, MRI), research work is presently conducted with a view to using CdTe detectors in XCT. (orig.)

  20. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  1. Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe

    Science.gov (United States)

    Dai, Shujun; Wang, Tao; Liu, Huimin; He, Yihui; Jie, Wanqi

    2016-06-01

    A thermodynamic equilibrium model for CdTe annealed under Te vapor is established, in which possible point defects and a defect reaction existing in undoped and In-doped Te-rich CdTe crystals are taken into consideration. Independent point defects, such as VCd, Cdi, and Tei, as well as defect complexes, namely TeCd-VCd (B complex), {{Te}}_{{Cd}}^{2 + } - {{V}}_{{Cd}}^{2 - } (D complex), {{In}}_{{Cd}}^{ + } - {{V}}_{{Cd}}^{ - } (A-center) and Tei-VCd (TeCd), are discussed based on the defect chemistry theory. More specially, the mass action law and quasi-chemical equations are used to calculate defects concentration and Fermi level in undoped and doped CdTe crystals with different indium concentrations. It is found that the Fermi level is controlled by a {{V}}_{{Cd}}^{2 - } , TeCd, and B/D-complex in undoped crystal. The concentration of VCd drops down in an obvious manner and that of TeCd rises for doped crystal with increasing [In].

  2. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  3. Review on first-principles study of defect properties of CdTe as a solar cell absorber

    Science.gov (United States)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Ma, Jie; Wei, Su-Huai

    2016-08-01

    CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is T{e}Cd2+, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generally will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve {10}17 {{{cm}}}-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of {10}17 {{{cm}}}-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te–Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.

  4. Preliminary study of CdTe and CdTe:Cu thin films nanostructures deposited by using DC magnetron sputtering

    International Nuclear Information System (INIS)

    Growth and properties of CdTe and CdTe:Cu thin films nanostrucures deposited by using dc magnetron sputtering are reported. Scanning electron microscope (SEM) was used to observe the surface morphologies of the thin films. At growth conditions of 250 °C and 14 W, CdTe films did not yet evenly deposited. However, at growth temperature and plasma power of 325 °C and 43 W, both CdTe and CdTe:Cu(2%) have deposited on the substrates. In this condition, the morphology of the films indicate that the films have a grain-like nanostructures. Grain size diameter of about 200 nm begin to appear on top of the films. Energy Dispersive X-rays spectroscopy (EDX) was used to investigate chemical elements of the Cu doped CdTe film deposited. It was found that the film deposited consist of Cd, Te and Cu elements. XRD was used to investigate the full width at half maximum (FWHM) values of the thin films deposited. The results show that CdTe:Cu(2%) thin film has better crystallographic properties than CdTe thin film. The UV-Vis spectrometer was used to investigate the optical properties of thin films deposited. The transmittance spectra showed that transmittance of CdTe:Cu(2%) film is lower than CdTe film. It was found that the bandgap energy of CdTe and CdTe:Cu(2%) thin films of about 1.48 eV

  5. Review on First-Principles Study of Defect Properties of CdTe as a Solar Cell Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Ma, Jie; Wei, Su-Huai

    2016-08-01

    CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is Te-2+/Cd, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generally will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve 10^17 cm-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of 10^17 cm-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te-Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.

  6. Electro-Plating and Characterisation of CdTe Thin Films Using CdCl2 as the Cadmium Source

    Directory of Open Access Journals (Sweden)

    Nor A. Abdul-Manaf

    2015-09-01

    Full Text Available Cadmium telluride (CdTe thin films have been successfully prepared from an aqueous electrolyte bath containing cadmium chloride (CdCl2·H2O and tellurium dioxide (TeO2 using an electrodeposition technique. The structural, electrical, morphological and optical properties of these thin films have been characterised using X-ray diffraction (XRD, Raman spectroscopy, optical profilometry, DC current-voltage (I-V measurements, photoelectrochemical (PEC cell measurement, scanning electron microscopy (SEM, atomic force microscopy (AFM and UV-Vis spectrophotometry. It is observed that the best cathodic potential is 698 mV with respect to standard calomel electrode (SCE in a three electrode system. Structural analysis using XRD shows polycrystalline crystal structure in the as-deposited CdTe thin films and the peaks intensity increase after CdCl2 treatment. PEC cell measurements show the possibility of growing p-, i- and n-type CdTe layers by varying the growth potential during electrodeposition. The electrical resistivity of the as-deposited layers are in the order of 104 Ω·cm. SEM and AFM show that the CdCl2 treated samples are more roughness and have larger grain size when compared to CdTe grown by CdSO4 precursor. Results obtained from the optical absorption reveal that the bandgap of as-deposited CdTe (1.48–1.52 eV reduce to (1.45–1.49 eV after CdCl2 treatment. Full characterisation of this material is providing new information on crucial CdCl2 treatment of CdTe thin films due to its built-in CdCl2 treatment during the material growth. The work is progressing to fabricate solar cells with this material and compare with CdTe thin films grown by conventional sulphate precursors.

  7. Apuntes sobre liderazgo

    OpenAIRE

    Contreras, Manuel E.

    2010-01-01

    Este trabajo presenta una breve síntesis de las principales teorías de liderazgo y se centra sobre el enfoque de liderazgo adaptativo de Ronald Heifetz. El documento originalmente fue desarrollado para las sesiones de educación a distancia de INDES. Ha sido revisado para usar en otros ámbitos de capacitación y ha sido utilizado en sesiones presenciales llevadas a cabo por INDES, como por otras entidades en universidades y centros de capacitación de America Latina.

  8. Informe APEI sobre movilidad

    OpenAIRE

    Arroyo Vázquez, Natalia

    2011-01-01

    Este informe incluye una amplia aproximación al concepto de movilidad, desde un punto de vista introductorio, que nunca antes en nuestro ámbito había abarcado todos los aspectos que tienen que ver con él, desde cuestiones técnicas como los dispositivos móviles, sistemas operativos y navegadores, conectividad y estándares —cuya intención es poder comprender todos aquellos aspectos relacionados con la movilidad y que tienen una incidencia directa sobre los contenidos— hasta otras más relacionad...

  9. Sobre el razonamiento judicial

    OpenAIRE

    Asís Roig, Rafael de

    1998-01-01

    El trabajo elabora modelos a través de los cuáles es posible reconstruir la argumentación judicial plasmada en las sentencias y, a la vez, hacer explícitas las reglas que sirven de justificación a sus decisiones, y el marco normativo utilizado como referencia. El estudio analiza tanto los pronunciamientos sobre hechos como los que se refieren a la calificación jurídica, en principio, desde una perspectiva descriptiva. Ahora bien, también se llevan a cabo reflexiones y propuestas que van más a...

  10. Photo-responsivity characterizations of CdTe films for direct-conversion X-ray detectors

    International Nuclear Information System (INIS)

    We have fabricated and investigated thin, polycrystalline, cadmium-telluride (CdTe) films in order to utilize them for optical switching readout layers in direct-conversion X-ray detectors. The polycrystalline CdTe films are fabricated on ITO glasses by using the physical vapor deposition (PVD) method at a slow deposition rate and a pressure of 10-6 torr. CdTe films with thicknesses of 5 and 20 μm are grown. The electrical and the optical characteristics of the CdTe films are investigated by measuring the dark-current and the photo-current as functions of the applied field under different wavelengths of light. Higher photo-currents are generated at the longer wavelengths of light for the same applied voltage. When a higher electrical field is applied to the 20 μm-thick CdTe film, a higher dark-current, a higher photo-current, a larger number of charges, and a higher quantum efficiency are generated.

  11. Synthesis and characterization of magnetic and luminescent Fe3O4/CdTe nanocomposites using aspartic acid as linker

    Institute of Scientific and Technical Information of China (English)

    Xiu Ling Wang; Lu Wei; Guan Hong Tao; Meng Qiong Huang

    2011-01-01

    In this study, the preparation of a new kind of magnetic and luminescent Fe3O4/CdTe nanocomposites was demonstrated. Superparamagnetic Fe3O4 nanoparticles were first synthesized by hydrothermal coprecipitation of ferric and ferrous ions, followed by the modification of their surfaces with tetramethylammonium hydroxide (TMAOH) and the chemical activation with aspartic acid. The surface-modified Fe3O4 nanoparticles were then covalently coated with CdTe quantum dots (QDs), which were modified with mercaptoacetic acid (MPA), to form the Fe3O4/CdTe magnetic and luminescent nanocomposites through the coordination of the amino groups on the surfaces of Fe3O4 and the carboxyl groups on CdTe QDs. The structure and properties of as-synthesized nanocomposites were characterized. It was indicated that the nanocomposites possessed structure with an average diameter of 40-50 nm, yellow-green emission feature and room temperature ferro-magnetism. Both the fluorescence and UV-vis absorption spectra of the nanocomposites showed a blue shift comparing with those of CdTe QDs. The mechanism of the blue shift was presented. The nanocomposites retained the ferromagnetic property with a saturation magnetization of 8.9 emu/g.

  12. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution

    International Nuclear Information System (INIS)

    In this paper, the electrogenerated chemiluminescence (ECL) from thiol-capped CdTe quantum dots (QDs) was reported. The ECL emission was occurred at -1.1 V and reached a maximum value at -2.4 V when the potential was cycled between 0.0 and -2.5 V. The reduced species of CdTe QDs could react with the coreactants to produce the ECL emission. The CdTe QD concentration (6.64 x 10-7 mol L-1) of ECL is lower than that (1.0 x 10-3 mol L-1) of chemiluminescence (CL). Based on the enhancement of light emission from thiol-capped CdTe QDs by H2O2 in the negative electrode potential, a novel method for the determination of H2O2 was developed. The light intensity was linearly proportional to the concentration of H2O2 between 2.0 x 10-7 and 1.0 x 10-5 mol L-1 with a detection limit of 6.0 x 10-8 mol L-1. Compared with most of previous reports, the proposed method has higher sensitivity for the determination of H2O2. In addition, the ECL spectrum of thiol-capped CdTe QDs exhibited a peak at around 620 nm, which was substantially red shifted from the photoluminescence (PL) spectrum, suggesting the surface states play an important role in this ECL process

  13. Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals.

    Directory of Open Access Journals (Sweden)

    Erbo Ying

    Full Text Available Here we present a facile one-pot method to prepare high-quality CdTe nanocrystals in aqueous phase. In contrast to the use of oxygen-sensitive NaHTe or H(2Te as Te source in the current synthetic methods, we employ more stable sodium tellurite as the Te source for preparing highly luminescent CdTe nanocrystals in aqueous solution. By selecting mercaptosuccinic acid (MSA as capping agent and providing the borate-citrate acid buffering solution, CdTe nanocrystals with high quantum yield (QY >70% at pH range 5.0-8.0 can be conveniently prepared by this method. The influence of parameters such as the pH value of the precursor solution and the molar ratio of Cd(2+ to Na(2TeO(3 on the QY of CdTe nanocrystals was systematically investigated in our experiments. Under optimal conditions, the QY of CdTe nanocrystals is even high up to 83%. The biological application of luminescent MSA-CdTe to HEK 293 cell imaging was also illustrated.

  14. Crystal growth of CdTe in space and thermal field effects on mass flux and morphology

    Science.gov (United States)

    Wiedemeier, H.

    1988-01-01

    The primary, long-range goals are the development of vapor phase crystal growth experiments, and the growth of technologically useful crystals in space. The necessary ground-based studies include measurements of the effects of temperature variations on the mass flux and crystal morphology in vapor-solid growth processes. For in-situ mass flux measurements dynamic microbalance techniques will be employed. Crystal growth procedures and equipment will be developed to be compatible with microgravity conditions and flight requirements. Emphasis was placed on the further development of crystal growth and the investigation of relevant transport properties of CdTe. The dependence of the mass flux on source temperature was experimentally established. The CdTe synthesis and pretreatment procedures are being developed that yield considerable improvements in mass transport rates, and mass fluxes which are independent of the amount of source material. A higher degree of stoichiometric control of CdTe than before was achieved during this period of investigation. Based on this, a CdTe crystal growth experiment, employing physical vapor transport, yielded very promising results. Optical microscopy and X-ray diffraction studies revealed that the boule contained several large sized crystal grains of a high degree of crystallinity. Further characterization studies of CdTe crystals are in progress. The reaction chamber, furnace dimensions, and ampoule location of the dynamic microbalance system were modified in order to minimize radiation effects on the balance performance.

  15. NONLINEAR OPTICS: Energy exchange between optical waves due to self-diffraction by photorefractive gratings in a CdTe crystal

    Science.gov (United States)

    Borshch, A. A.; Brodin, M. S.; Burin, O. M.; Volkov, V. I.; Kukhtarev, N. V.; Semenets, T. I.; Smereka, Z. N.

    1990-07-01

    Theoretical and experimental investigations were made of a photorefractive nonlinearity of CdTe semiconductor crystals. Photorefractive gratings were formed in undoped CdTe and used to provide efficient energy exchange between nanosecond pulsed light beams (λ approx 1.06 μm) characterized by an exchange gain of ~ 0.13 cm - 1.

  16. Sobre historia mundial hoy

    Directory of Open Access Journals (Sweden)

    Vera Weiler

    2010-08-01

    Full Text Available Los procesos de globalización son una realidad; su enorme impacto sobre la vida humana los ha convertido en un tema recurrente sobre el que se escribe y se comenta a diario también en Colombia. Los libros que de ellos tratan, ante todo los que 10 hacen en tono crítico, baten records en la industria editorial en todo el mundo. Las expectativas que acerca del futuro abrigan cientos de millones de personas se relacionan con 10 que ellas esperan, para bien o para mal, de la globalización. Las posturas que los gobernantes ocupan al respecto en el mundo son, cuando menos de aceptación, generalmente de activa participación en pos de la globalización. Por un lado, crece la preocupación y se multiplican las protestas; por el otro, dominan los razonamientos de los especialistas en materia de maximización de los rendimientos de los capitales que presentan la globalización, al estilo que se viene imponiendo, como el camino ineludible del gobierno universal de la eficiencia. ¿Tienen que decir algo los historiadores frente a todo esto?.

  17. Comportamiento del tiempo de duración, la frecuencia de los cortocircuitos y la conductividad eléctrica durante el reencendido del arco en la soldadura SMAW (AC con electrodos E6013 Behavior of short-circuit frequency and duration time and electrical conductivity on arc turn- on during SMAW (AC with E6013 electrodes

    Directory of Open Access Journals (Sweden)

    Alejandro García Rodríguez

    2009-03-01

    Full Text Available El presente trabajo tiene como objetivo la evaluación del comportamiento del tiempo de duración, la frecuencia de los cortocircuitos y la conductividad durante el reencendido del arco en el proceso de soldadura SMAW (Shielded Metal Arc Welding, con corriente alterna y electrodos E6013. El análisis estadístico no-paramétrico garantiza un procesamiento robusto de los datos, atenuando la influencia de valores atípicos y errores derivados del empleo de aproximaciones a distribuciones continuas conocidas. La mediana y la mediana de la desviación absoluta (MAD, respecto a la mediana de los datos, constituyen los estimadores de localización y dispersión utilizados, respectivamente. El electrodo, en el régimen de 160 A, presenta una mayor estabilidad, en el aporte metálico, dada por el menor valor del MAD promedio del período de cortocircuito (39,36 ms y de la duración del cortocircuito (1,43 ms, reafirmada con la presencia de una mayor conductividad eléctrica durante el reencendido (1766,17x10-3 S·s-1.The objective of this work is the valuation of the behavior of short-circuits frequency and duration time and electrical conductivity on arc reigniting in SMAW (Shielded Metal Arc Welding process with alternate current and E6013 electrodes. The non parametric statistic analysis realize a robust data processing, minimizing the outliers influence and mistakes derivates about employ of approximations to well know continues distributions. The median and the median absolute deviation (MAD respect to median of the data are the localization and dispersion estimators used, respectively. The electrode at 160 A present a better stability on metal transference supported on the most little value of MAD for the period of transference (39,36 ms, and the MAD of the short-circuit duration (1,43 ms, according with the presence of a major electric conductivity during the arc reigniting (1766,17x10-3 S·s-1.

  18. EFEITO DA ESTRUTURA MOLECULAR DE LIGANTES DE SUPERFÍCIE EM PONTOS QUÂNTICOS DE CdTe DISPERSOS EM ÁGUA

    Directory of Open Access Journals (Sweden)

    Brener R. C. Vale

    2015-01-01

    Full Text Available Water-soluble CdTe quantum dots are synthesized to investigate how short-chain surface ligands bearing -SH, -COOH, and -NH2 groups interact with CdTe during nucleation/growth processes. Their optical properties and colloidal stability after the ligand exchange are also investigated. We then characterize the resulting CdTe by fluorescence, UV–Vis absorption, and infrared spectroscopies. The stability of the colloidal dispersions was determined by their Zeta potentials. The results show that in the synthesis of water-soluble CdTe, surface ligands with at least two functional groups are required and the hard/soft character of them is an important factor in the stability of CdTe.

  19. Atmospheric Pressure Chemical Vapor Deposition of CdTe for High-Efficiency Thin-Film PV Devices; Annual Report, 26 January 1998-25 January 1999

    International Nuclear Information System (INIS)

    ITN's 3-year project, titled ''Atmospheric Pressure Chemical Vapor Deposition (APCVD) of CdTe for High-Efficiency Thin-Film Photovoltaic (PV) Devices,'' has the overall objectives of improving thin-film CdTe PV manufacturing technology and increasing CdTe PV device power conversion efficiency. CdTe deposition by APCVD employs the same reaction chemistry as has been used to deposit 16%-efficient CdTe PV films, i.e., close-spaced sublimation, but employs forced convection rather than diffusion as a mechanism of mass transport. Tasks of the APCVD program center on demonstrating APCVD of CdTe films, discovering fundamental mass-transport parameters, applying established engineering principles to the deposition of CdTe films, and verifying reactor design principles that could be used to design high-throughput, high-yield manufacturing equipment. Additional tasks relate to improved device measurement and characterization procedures that can lead to a more fundamental understanding of CdTe PV device operation, and ultimately, to higher device conversion efficiency and greater stability. Specifically, under the APCVD program, device analysis goes beyond conventional one-dimensional device characterization and analysis toward two-dimension measurements and modeling. Accomplishments of the first year of the APCVD subcontract include: selection of the Stagnant Flow Reactor design concept for the APCVD reactor, development of a detailed reactor design, performance of detailed numerical calculations simulating reactor performance, fabrication and installation of an APCVD reactor, performance of dry runs to verify reactor performance, performance of one-dimensional modeling of CdTe PV device performance, and development of a detailed plan for quantification of grain-boundary effects in polycrystalline CdTe devices

  20. Low cost sprayed CdTe solar cell research. First quarterly progress report, 15 August-14 November 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sienkiewicz, P.; Lis, S.; Serreze, H.B.; Entine, G.

    1979-12-01

    During the first quarter of this contract, facilities for the spray pyrolysis deposition of CdTe thin films using a process anolagous to that used to spray deposit device-quality films of CdS were prepared. A Te salt, ..beta..-(CH/sub 3/)/sub 2/TeI/sub 2/, suitable for use in the spray process was synthesized. The facilities were shown to function properly by the successful spraying of good quality CdS thin films. A number of initial spray experiments were conducted utilizing the ..beta..-(CH/sub 3/)/sub 2/TeI/sub 2/ and other inorganic tellurium-bearing compounds which also show great promise in producing low-cost sprayed CdTe solar cells. Initial chemical tests of these films indicated the presence of both Cd and Te, and x-ray diffraction analysis is presently underway to determine the actual concentration of CdTe.

  1. Influence of thermal treatment temperatures on CdTe nanocrystal films and photoelectric properties of ITO/CdTe/Al

    Institute of Scientific and Technical Information of China (English)

    Xu Wenqing; Qu Shengchun; Wang Kefan; Bi Yu; Liu Kong; Wang Zhanguo

    2012-01-01

    The influence of sintering temperatures on solution-processed cadmium telluride (CdTe) nanocrystal films is studied in order to maximize the performance of CdTe/Al Schottky nanocrystal solar cells,The best overall performance of 2.67% efficiency at air mass 1.5 was achieved from devices with CdTe films sintered at 350 ℃ X-ray diffraction,scanning electron microscopy and UV-vis absorption measurements show that the CdTe nanocrystal grains began to grow remarkably well when sintering temperatures increased to 350 ℃.By analyzing the current-voltage characteristics,we find that the short-circuit current densities of devices increase with sintering temperatures ranging from 200 to 400 ℃,but,the over-sintered (450 ℃) treatment induces the shunting of devices.

  2. Modeling of axial vibrational control technique for CdTe VGF crystal growth under controlled cadmium partial pressure

    Science.gov (United States)

    Avetissov, I.; Kostikov, V.; Meshkov, V.; Sukhanova, E.; Grishechkin, M.; Belov, S.; Sadovskiy, A.

    2014-01-01

    A VGF growth setup assisted by axial vibrations of baffle submerged into CdTe melt with controlled Cd partial pressure was designed. An influence of baffle shape on flow velocity map, temperature distribution in CdTe melt and interface shape of growing crystal was analyzed by numerical simulation and physical modeling. To produce the desirable shape of crystal melt interface we slant under different angles vertical generatrix in a cylindrical disk and made chasing on faceplates of a disk. It was ascertained that a disk with conical generatrix formed more intensive convective flows from a faceplate with larger diameter. It was shown that at CdTe VGF crystal growth rate about 10 mm/h application of AVC technique made it possible to produce convex interface for 2 in. crystal diameter.

  3. Luminescence Dynamics of Cr2+ in CdTe and Cd0.55Mn0.45Te

    Science.gov (United States)

    Bluiett, A.; Hommerich, U.; Seo, J. T.; Shah, R.; Trivedi, S. B.; Kutcher, S. W.; Chen, R. J.; Wang, C. C.; Zong, H.

    2001-04-01

    Cr^2+ in tetrahedrally coordinated CdTe and Cd_0.55Mn_0.45Te crystals are under investigation as potential host materials for tunable, mid-infrared (MIR) lasers. The small crystal field splitting of the free ion energy levels of Cr^2+ induces absorption (1900nm) and stokes shifted emission (2000nm-3000nm) bands in the MIR. Also, the relatively large ionic mass and tetrahedral environment of Cr^2+ in CdTe and Cd_0.55Mn_0.45Te have shown that the luminescence efficiency at room temperature is approximately 72100luminescence lifetime decreases rapidly, which suggest that the effects of nonradiative decay increases. The decay dynamics of Cr^2+ in CdTe and Cd_0.55Mn_0.45Te will be described with the model of Struck and Fonger for the non-radiative decay rate.

  4. Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells

    Science.gov (United States)

    Grecu, D.; Compaan, A. D.; Young, D.; Jayamaha, U.; Rose, D. H.

    2000-09-01

    We explore Cu electronic states in CdTe using photoluminescence as the main investigative method. Our results are consistent with some Cu atoms occupying substitutional positions on the Cd sublattice and with others forming Frenkel pairs of the type Cui+-VCd- involving an interstitial Cu and a Cd vacancy. In addition, we find that Cu-doped CdTe samples exhibit a significant "aging" behavior, attributable to the instability of Cu acceptor states as verified by our Hall measurements. The aging appears to be reversible by a 150-200 °C anneal. Our results are used to explain efficiency degradation of some CdTe solar-cell devices which use Cu for the formation of a backcontact.

  5. Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grecu, D. [University of Toledo, Toledo, Ohio 43606-3390 (United States); Compaan, A. D. [University of Toledo, Toledo, Ohio 43606-3390 (United States); Young, D. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Jayamaha, U. [First Solar LLC., Perrysburg, Ohio 43551 (United States); Rose, D. H. [First Solar LLC., Perrysburg, Ohio 43551 (United States)

    2000-09-01

    We explore Cu electronic states in CdTe using photoluminescence as the main investigative method. Our results are consistent with some Cu atoms occupying substitutional positions on the Cd sublattice and with others forming Frenkel pairs of the type Cu{sub i}{sup +}-V{sub Cd}{sup -} involving an interstitial Cu and a Cd vacancy. In addition, we find that Cu-doped CdTe samples exhibit a significant ''aging'' behavior, attributable to the instability of Cu acceptor states as verified by our Hall measurements. The aging appears to be reversible by a 150-200 degree sign C anneal. Our results are used to explain efficiency degradation of some CdTe solar-cell devices which use Cu for the formation of a backcontact. (c) 2000 American Institute of Physics.

  6. Long Fe3O4 nanowires decorated by CdTe quantum dots: Synthesis and magnetic-optical properties

    International Nuclear Information System (INIS)

    This work describes the synthesis and magnetic-optical properties of Fe3O4 nanowires decorated by CdTe quantum dots. The composite nanowires with a length of 1 μm and an average diameter of 23±3 nm were prepared in a high yield through the preferential growth of Fe3O4 on CdTe quantum dots using ethylenediamine as template. Their growth mechanism was discussed based on the results of control experiments. Studies on the optical and magnetic properties of the composite nanowires reveal that they assume not only yellow-green emission feature but also room temperature ferromagnetism. - Graphical abstract: The long and flexible CdTe quantum dots-decorated Fe3O4 nanowires assume not only room temperature ferromagnetism but also strong luminescent effect

  7. Correction of diagnostic x-ray spectra measured with CdTe and CdZnTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M. [Osaka Univ., Suita (Japan). Medical School; Kanamori, H.; Toragaito, T.; Taniguchi, A.

    1996-07-01

    We modified the formula of stripping procedure presented by E. Di. Castor et al. We added the Compton scattering and separated K{sub {alpha}} radiation of Cd and Te (23 and 27keV, respectively). Using the new stripping procedure diagnostic x-ray spectra (object 4mm-Al) of tube voltage 50kV to 100kV for CdTe and CdZnTe detectors are corrected with comparison of those spectra for the Ge detector. The corrected spectra for CdTe and CdZnTe detectors coincide with those for Ge detector at lower tube voltage than 70kV. But the corrected spectra at higher tube voltage than 70kV do not coincide with those for Ge detector. The reason is incomplete correction for full energy peak efficiencies of real CdTe and CdZnTe detectors. (J.P.N.)

  8. High efficiency thin film CdTe solar cells. Second quarterly progress report, June 19-September 18, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Serreze, H.B.; Entine, G.; Goldner, R.B.

    1979-10-01

    During the second quarter of this program primary emphasis was put into depositing and evaluating both n and p-type CdTe films on a variety of conducting and non-conducting substrates. Improvements in the deposition apparatus permitted preparation of a large number of CdTe films and numerous analytic techniques available at Tufts University were utilized to examine these films. It was found that the introduction of a thin (100 A). In layer between the ITO and the CdTe significantly reduced the previously observed barrier present at the ITO/n-CdTe interface without adversely reducing optical transmission. While the resistivity of the films is still rather high, very recent results show that proper changes in procedure are capable of markedly lowering the resistivity. Preliminary Schottky barrier devices have been made which show promising photovoltaic characteristics.

  9. Distributed Bragg reflectors obtained by combining Se and Te compounds: Influence on the luminescence from CdTe quantum dots

    Science.gov (United States)

    Rousset, J.-G.; Kobak, J.; Janik, E.; Parlinska-Wojtan, M.; Slupinski, T.; Golnik, A.; Kossacki, P.; Nawrocki, M.; Pacuski, W.

    2016-05-01

    We report on the optical properties of structures containing self assembled CdTe quantum dots (QDs) combined with Te and Se based distributed Bragg reflectors either in a half cavity geometry with a relatively broad cavity mode or in a full cavity geometry where the cavity mode is much narrower. We show that for both structures the extraction coefficient of the light emitted from the QDs ensemble is enhanced by more than one order of magnitude with respect to the QDs grown on a ZnTe buffer. However, a single QD line broadening is observed and attributed to an unintentional incorporation of Se in the vicinity of the CdTe QDs. We show that postponing the QDs growth for 24 h after the distributed Bragg reflector deposition allows recovering sharp emission lines from individual QDs. This two step growth method is proven to be efficient also for the structures with CdTe QDs containing a single Mn2+ ion.

  10. New trends in CdTe and CdZnTe detectors for X- and gamma-ray applications

    International Nuclear Information System (INIS)

    The CdTe gamma-ray camera IBIS/ISGRI, on board the INTEGRAL satellite launched in October 2002, is currently the largest spectro-imager of this type in the world. The development of this detector, for research in the field of astrophysics, has provided the opportunity to demonstrate the feasibility of massive integration of CdTe nuclear detectors, taking advantage of the CdTe good spectral performances and high modularity. Many other groups in the world work also to further develop detectors using this material in view of improving its spectral performances (crystal quality, electrode geometry and type, electronics and filtering, etc.), the spatial resolution (pixelization of monolithic crystals) and the detection efficiency at high energy (thickness). In this review, I will detail the main directions in which to strive in order to explore these fields in the upcoming years through examples of techniques or applications

  11. Voz sobre frame relay

    OpenAIRE

    D´Elia, Gabriel Anibal

    2000-01-01

    Esta tesis trata el tema de VOFR, desde la digitalización de la voz hasta su transmisión a través de dicha red, así también como la comparación con otros medios de transporte como VOIP. Dada las características del protocolo frame relay y su disponibilidad se eligió como el medio más apropiado para la transmisión de voz y datos en forma integrada sobre una misma red. El trabajo comienza con una breve explicación de la voz, su digitalización y forma actual de transmisión a través de una red di...

  12. Excertos sobre o sedentarismo

    Directory of Open Access Journals (Sweden)

    Alexandre Palma

    2014-09-01

    Full Text Available O sedentarismo tem sido tratado como algo perfeitamente determinável, objetivo e, portanto, que pode ser apreendido. Por outro lado, o conceito de sedentarismo ainda permanece questionável e, por conseguinte, os instrumentos mostram-se inconsistentes. Neste sentido, o objetivo do presente estudo foi mostrar que diferentes discursos de verdade vêm concorrendo por esse conceito, o que nos motiva a pensar qual é a verdade ou, até mesmo, se há alguma verdade sobre ele. Após apresentarmos diferentes possibilidades de compreender o sedentarismo, através do uso de aforismos, entendemos que postular um discurso como verdade talvez apenas signifique que as pessoas nele creem e que há uma vontade de verdade como uma vontade voltada para o poder.

  13. Direct Analysis of JV-Curves Applied to an Outdoor-Degrading CdTe Module (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D; Kurtz, S.; Ulbrich, C.; Gerber, A.; Rau, U.

    2014-03-01

    We present the application of a phenomenological four parameter equation to fit and analyze regularly measured current density-voltage JV curves of a CdTe module during 2.5 years of outdoor operation. The parameters are physically meaningful, i.e. the short circuit current density Jsc, open circuit voltage Voc and differential resistances Rsc, and Roc. For the chosen module, the fill factor FF degradation overweighs the degradation of Jsc and Voc. Interestingly, with outdoor exposure, not only the conductance at short circuit, Gsc, increases but also the Gsc(Jsc)-dependence. This is well explained with an increase in voltage dependent charge carrier collection in CdTe.

  14. Improvement of the energy resolution of pixelated CdTe detectors for applications in 0νββ searches

    Science.gov (United States)

    Gleixner, T.; Anton, G.; Filipenko, M.; Seller, P.; Veale, M. C.; Wilson, M. D.; Zang, A.; Michel, T.

    2015-07-01

    Experiments trying to detect 0νββ are very challenging. Their requirements include a good energy resolution and a good detection efficiency. With current fine pixelated CdTe detectors there is a trade off between the energy resolution and the detection efficiency, which limits their performance. It will be shown with simulations that this problem can be mostly negated by analysing the cathode signal which increases the optimal sensor thickness. We will compare different types of fine pixelated CdTe detectors (Timepix, Dosepix, HEXITEC) from this point of view.

  15. Transmission electron microscopy study of CdTe(111) grown on GaAs(100) by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Reno, J.L.; Carr, M.J.; Gourley, P.L. (Sandia National Laboratory, Albuquerque, New Mexico 87185 (USA))

    1990-05-01

    We have used transmission electron microscopy to investigate CdTe(111) grown on GaAs(100) by molecular-beam epitaxy. The loop structure previously observed by photoluminescence microscopy has been identified as the boundary between twinned microcrystallites that extend from the CdTe/GaAs interface to the CdTe surface. When viewed along the growth axis, these boundaries between the columnar twins appear as loops and segments. Surface roughness of the GaAs substrate contributes to the initial growth of twinned material. This leads to competitive growth between the twins and the creation of the observed columnar twins.

  16. Characterization of CdTe, (Cd,Zn)Te, and Cd(Te,Se) single crystals by transmission electron microscopy

    Science.gov (United States)

    Rai, R. S.; Mahajan, S.; McDevitt, S.; Johnson, C. J.

    1991-10-01

    CdTe, (Cd,Zn)Te, and Cd(Te,Se) crystals grown by the Bridgman technique have been characterized by transmission electron microscopy. Results indicate that the Te precipitates are seen in all the crystals, but their density and size are lowest and largest in the case of Cd(Te,Se) crystals. In addition, dislocations, stacking faults, and microtwins are observed in as-grown CdTe, (Cd,Zn)Te, and Cd(Te,Se) crystals. Arguments have been developed to rationalize these observations and their ramifications on crystal perfection are discussed.

  17. High-efficiency CdTe thin-film solar cells using metalorganic chemical vapor deposition techniques

    Science.gov (United States)

    Nouhi, A.; Stirn, R. J.; Meyers, P. V.; Liu, C. H.

    1989-06-01

    Energy conversion efficiency of metalorganic chemical vapor deposited CdTe as an intrinsic active layer in n-i-p solar cell structures is reported. Small-area devices with efficiencies over 9 percent have been demonstrated. I-V characteristics, photospectral response, and the results of Auger profiling of structural composition for typical devices will be presented. Also presented are preliminary results on similar photovoltaic devices having Cd(0.85)Mn(0.15)Te in place of CdTe as an i layer.

  18. Allyl- iso-propyltelluride, a new MOVPE precursor for CdTe, HgTe and (Hg,Cd)Te

    Science.gov (United States)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William

    2000-06-01

    The use of allyl- iso-propyltelluride as the tellurium precursor for the growth of CdTe, HgTe and (Hg,Cd)Te by metal organic vapour-phase epitaxy has been investigated. It has proved to be an efficient source of tellurium with growth rates for HgTe and (Hg,Cd)Te of up to 10 μm h -1 at 300°C. The best CdTe was grown at 4.5 μm h -1 under Me 2Cd-rich conditions at 300°C in the presence of Hg vapour.

  19. High-efficiency CdTe thin-film solar cells using metalorganic chemical vapor deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nouhi, A.; Stirn, R.J.; Meyers, P.V.; Liu, C.H.

    1989-05-01

    Energy conversion efficiency of metalorganic chemical vapor deposited CdTe as an intrinsic active layer in n-i-p solar cell structures is reported. Small-area devices with efficiencies over 9% have been demonstrated. I--V characteristics, photospectral response, and the results of Auger profiling of structural composition for typical devices will be presented. Also presented are preliminary results on similar photovoltaic devices having Cd/sub 0.85/Mn/sub 0.15/Te in place of CdTe as an i layer.

  20. Structural and optical properties of Cu-doped CdTe films with hexagonal phase grown by pulsed laser deposition

    OpenAIRE

    F. de Moure-Flores; J. G. Quiñones-Galván; A. Guillén-Cervantes; Santoyo-Salazar, J.; A. Hernández-Hernández; Olvera, M. de la L.; M. Zapata-Torres; Meléndez-Lira, M.

    2012-01-01

    Cu-doped CdTe thin films were prepared by pulsed laser deposition on Corning glass substrates using powders as target. Films were deposited at substrate temperatures ranging from 100 to 300 °C. The X-ray diffraction shows that both the Cu-doping and the increase in the substrate temperature promote the presence of the hexagonal CdTe phase. For a substrate temperature of 300 °C a CdTe:Cu film with hexagonal phase was obtained. Raman and EDS analysis indicate that the films grew with an excess ...