WorldWideScience

Sample records for cdte grain-boundary properties

  1. Electrical characterization of CdTe grain-boundary properties from as processed CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.M.; Robinson, G.Y. [Colorado State Univ., Fort Collins, CO (United States); Levi, D.H.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States); Kaydanov, V. [Colorado School of Mines, Golden, CO (United States)

    1998-09-01

    An ability to liftoff or separate the thin-film polycrystalline CdTe from the CdS, without the use of chemical etches, has enabled direct electrical characterization of the as-processed CdTe near the CdTe/CdS heterointerface. The authors use this ability to understand how a back-contact, nitric-phosphoric (NP) etch affects the grain boundaries throughout the film. Quantitative determination of the grain-boundary barrier potentials and estimates of doping density near the grain perimeter are determined from theoretical fits to measurements of the current vs. temperature. Estimates of the bulk doping are determined from high-frequency resistivity measurements. The light and dark barrier potentials change after the NP etch, and the origin of this change is postulated. Also, a variable doping density within the grains of non-etched material has been determined. These results allow a semi-quantitative grain-boundary band diagram to be drawn that should aid in determining more accurate two-dimensional models for polycrystalline CdTe solar cells.

  2. First principles modeling of grain boundaries in CdTe

    Science.gov (United States)

    Chan, Maria K. Y.; Sen, Fatih; Buurma, Christopher; Paulauskas, Tadas; Sun, Ce; Kim, Moon; Klie, Robert

    The role of extended defects is of significant interest for semiconductors, especially photovoltaics since energy conversion efficiencies are often affected by such defects. In particular, grain boundaries in CdTe photovoltaics are enigmatic since the achievable efficiencies of CdTe photovoltaics are higher in polycrystalline devices as compared to single crystalline devices. Yet, despite recent advances, the efficiency of poly-CdTe devices are still substantially below the theoretical maximum. We carry out an atomistic-level study using Scanning Transmission Electron Microscopy (STEM), together with first principles density functional theory (DFT) modeling, in order to understand the properties of specific bicrystals, i.e. artificial grain boundaries, constructed using wafer bonding. We discuss examples of bicrystals, including some involving large scale DFT calculations, and trends in defect and electronic properties. This work was funded by DOE SunShot BRIDGE program.

  3. Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Steve; Allende Motz, Alyssa; Reese, Matthew O.; Burst, James M.; Metzger, Wyatt K.

    2015-06-14

    In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 um x 190 um. PL images of large-grain (5 to 50 um) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.

  4. Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements

    Science.gov (United States)

    Tuteja, Mohit; Koirala, Prakash; MacLaren, Scott; Collins, Robert; Rockett, Angus

    2015-10-01

    Polycrystalline CdTe in 12% efficient solar cells has been studied using scanning microwave impedance microscopy (sMIM). The CdS/CdTe junctions were grown on transparent-conducting-oxide-coated soda lime glass using rf sputter deposition. sMIM based capacitance measurements were performed on the exposed surface of CdCl2 treated CdTe adjacent to thermal-evaporation-deposited Cu/Au back contacts. The sMIM instrument was operated at ˜3 GHz, and capacitance measurements were performed as a function of ac and dc voltage biases applied to the tip, with and without sample illumination. Although dc capacitance measurements are affected by sample topography, the differential capacitance measurement was shown to be topography independent. It was found that the grain boundaries exhibit a depleted carrier concentration as compared to the grain bulk. This depletion effect is enhanced under photo-generated carrier separation or under sufficiently large probe tip biases opposite to the majority carrier charge.

  5. Grain boundaries in CdTe thin film solar cells: a review

    Science.gov (United States)

    Major, Jonathan D.

    2016-09-01

    The current state of knowledge on the impact of grain boundaries in CdTe solar cells is reviewed with emphasis being placed on working cell structures. The role of the chemical composition of grain boundaries as well as growth processes are discussed, along with characterisation techniques such as electron beam induced current and cathodoluminescence, which are capable of extracting information on a level of resolution comparable to the size of the grain boundaries. Work which attempts to relate grain boundaries to device efficiency is also assessed and gaps in the current knowledge are highlighted.

  6. Grain-boundary-enhanced carrier collection in CdTe solar cells.

    Science.gov (United States)

    Li, Chen; Wu, Yelong; Poplawsky, Jonathan; Pennycook, Timothy J; Paudel, Naba; Yin, Wanjian; Haigh, Sarah J; Oxley, Mark P; Lupini, Andrew R; Al-Jassim, Mowafak; Pennycook, Stephen J; Yan, Yanfa

    2014-04-18

    When CdTe solar cells are doped with Cl, the grain boundaries no longer act as recombination centers but actively contribute to carrier collection efficiency. The physical origin of this remarkable effect has been determined through a combination of aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles theory. Cl substitutes for a large proportion of the Te atoms within a few unit cells of the grain boundaries. Density functional calculations reveal the mechanism, and further indicate the grain boundaries are inverted to n type, establishing local p-n junctions which assist electron-hole pair separation. The mechanism is electrostatic, and hence independent of the geometry of the boundary, thereby explaining the universally high collection efficiency of Cl-doped CdTe solar cells. PMID:24785058

  7. Melt growth of CdTe crystals and transmission electron microscopic investigations of their grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sabinina, I.V.; Gutakovski, A.K.; Milenov, T.I.; Lyakh, N.N.; Sidorov, Y.G.; Gospodinov, M.M. (Inst. of Semiconductor Physics, Academy of Sciences of the USSR (Siberian Branch), Novosibirsk (USSR) Inst. of Solid State Physics, Bulgarian Academy of Sciences, Sofia (Bulgaria))

    1991-01-01

    Transmission electron microscopy investigations are carried out on CdTe crystals grown in quartz ampoules in a temperature region (1020-1091degC) near to the melting point of 1092degC, by travelling heater method in quasi-closed and in sealed (at 0.135 Pa) volume, and by the Bridgman method from nearly stoichiometric melts. An original method for preparation of CdTe thin foil is reported. Two types of grain boundaries are observed: high-angle misoriented grain boundaries (more than ten degrees misorientation between adjacent grains) and low-angle misoriented grain boundaries (less than one degree misorientation between adjacent sub-grain). Both dislocations with Burgers vector b=a/6<112> and b=a/2<110> are present. (orig.).

  8. Self-passivation rule and structure of CdTe Σ3 (112) grain boundaries

    Science.gov (United States)

    Liu, Cheng-yan; Zhang, Yue-yu; Hou, Yu-sheng; Chen, Shi-you; Xiang, Hong-jun; Gong, Xin-gao

    2016-05-01

    The theoretical study of grain boundaries (GBs) in polycrystalline semiconductors is currently stalemated by their complicated nature, which is difficult to extract from any direct experimental characterization. Usually, coincidence-site-lattice models are constructed simply by aligning two symmetric planes ignoring various possible reconstructions. Here, we propose a general self-passivation rule to determine the low-energy GB reconstruction and find new configurations for the CdTe Σ3 (112) GBs. First-principles calculations show that it has lower formation energies than the prototype GBs adopted widely in previous studies. Surprisingly, the reconstructed GBs show self-passivated electronic properties without deep-level states in the band gap. Based on the reconstructed configurations, we revisited the influence of CdC l2 post-treatment on the CdTe GBs and found that the addition of both Cd and Cl atoms in the GB improves the photovoltaic properties by promoting self-passivation and inducing n -type levels, respectively. The present study provides a new route for further studies of GBs in covalent polycrystalline semiconductors and highlights that previous studies on the GBs of multinary semiconductors, which are based on the unreconstructed prototype GB models, should be revisited.

  9. Influence of Grain Boundary Properties and Orientation on Void Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Fensin, Saryu Jindal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT)

    2016-03-01

    For ductile metals, dynamic fracture during shock loading is thought to occur through void nucleation, growth, and then coalescence that leads to material failure. Particularly for high purity metals, it has been observed by numerous investigators that, under incipient spall conditions, voids appear to heterogeneously nucleate at some grain boundaries, but not others. Several factors can affect the void nucleation stress at a grain boundary, such as grain boundary structure, orientation with respect to the loading direction, energy and excess volume, in addition to its interactions with dislocations. In this work, we focus on the influence of loading direction with respect to the grain boundary plane and grain boundary properties such as energy and excess volume on the stress required for void nucleation of a grain boundary, in copper from moleculardynamics simulations. Flyer plate simulations were carried out for four boundary types with different energies and excess volumes. These boundaries were chosen as model systems to represent various boundaries observed in “real” materials. Simulations indicate that there is no direct correlation between the void nucleation stress at a boundary and either its energy and excess volume. This result suggests that average properties of grain boundaries alone are not sufficient indicators of the spall strength of a boundary and perhaps local boundary properties need to be taken into account in order to predict its susceptibility to void nucleation for broad ranges of materials. We also present both experimental and simulation results corresponding to the affect of orientation on void nucleation.

  10. Atomic-scale structure of grain boundaries: Correlations to grain boundary properties

    International Nuclear Information System (INIS)

    It is generally believed that many properties of solid interfaces are ultimately determined by their structure and composition at the atomic level. We report here on work in two areas of grain boundary (GB) research in which structure-property correlations have been investigated recently. HREM observations in connection with computer modeling of GBs in fcc metals have given considerable insight into correlations between GB energy and atomic-scale GB structure. Efforts to understand and possibly control the supercurrent transport behavior across GBs in high-temperature superconductors require the combination of microstructure characterizations with investigations of electric transport properties. In both areas considerable progress is being made and has already lead to important insights concerning interfacial properties

  11. Intercrystalline diffusion, dynamical and magnetic properties of grain boundaries

    International Nuclear Information System (INIS)

    Using the method, developed by the authors, which, combines diffusion over grain boundaries and nuclear gamma-resonance spectroscopy, electron, dynamic, magnetic, diffusion properties of impurity states of atomic probes (57Fe) in the nucleus of grain boundary (GB) of metallic polycrystals and in the regions of neighbour crystallite adjacent to GB, have been investigated. It is shown that for a wide number of metals the atomic probes in the nucleus of wide-angle GB polycrystals occupy the only state, which differs significantly as to its properties from the states in the interstitials of the metal regular lattice

  12. Study of some properties of point defects in grain boundaries

    International Nuclear Information System (INIS)

    With the aim of deducing simple informations on the grain boundary core structure, we investigated self diffusion under hydrostatic pressure, impurity diffusion (In and Au), electromigration (Sb) along certain types of grain boundaries in Ag bicrystals, and the Moessbauer effect of 57Co located in the grain boundaries of polycrystalline Be. Our results lead to the following conclusions: the formation of a vacancy like defects is necessary to grain boundary diffusion; solute atoms may release most of their elastic energy of dissolution as they segregate at the boundary; in an electrical field, the drift of Sb ions parallel to the boundary takes place toward the anode as in the bulk. The force on the grain boundary ions is larger than in the bulk; Moessbauer spectroscopy revealed the formation of Co-rich aggregates, which may proves important in the study of early stages of grain boundary precipitation. (author)

  13. Quantitative Determination of Grain Boundary Recombination Velocity in CdTe by Combination of Cathodoluminescence Measurements and Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kanevce, Ana; Moseley, John; Kuciauskas, Darius; Al-Jassim, Mowafak; Metzger, Wyatt K.

    2015-06-14

    We developed a 2D numerical model simulating cathodoluminescence (CL) measurements in CdTe. Using this model we analyze how various material parameters impact the CL contrast and intensity observed in the measured signal, and determine if and when we can accurately determine the value of grain boundary recombination rate. In addition to grain boundary (GB) recombination, the grain size and its ratio to the carrier diffusion length impact the results of the measurement. Holding the grain interior and GB recombination rates constant, we find that as the grain size increases and becomes larger than the diffusion length, the observed CL contrast is larger. In a small grain size material the surface recombination lowers the overall intensity of the signal, but does not impact the observed contrast significantly. In a large grain size material, high surface recombination velocity can lower the observed contrast in a measurement. This model in combination with an experiment is used to quantify the grain boundary recombination velocity in polycrystalline CdTe before and after the CdCl2 treatment.

  14. Atomic structures and electronic properties of phosphorene grain boundaries

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Zhang, Junfeng; Bai, Yizhen; Zhao, Jijun

    2016-06-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials.

  15. Predicting failure stress for grain boundaries using average and local properties

    International Nuclear Information System (INIS)

    Several factors can affect the failure stress of a grain boundary, such as grain boundary structure, energy and excess volume, in addition to its interactions with dislocations. In this paper, we focus on the influence of grain boundary energy, excess volume and plasticity at the boundary on the failure stress of a grain boundary, in copper from molecular-dynamics simulations. Flyer plate simulations were carried out for four boundary types with different energies and excess volumes. These boundaries were chosen as model systems to represent various boundaries observed in 'real' materials. Simulations indicate that there is no direct correlation between the void nucleation stress of a boundary and either its energy and excess volume. This result suggests that average properties of grain boundaries alone are not sufficient indicators of the failure strength of a boundary. However, local boundary properties related to the ability of a grain boundary to undergo plastic deformation are better markers of its strength.

  16. Properties of He clustering in α-Fe grain boundaries

    International Nuclear Information System (INIS)

    Classical molecular dynamics and density functional theory calculations are performed to study the impact of two distinct Fe grain boundaries (GBs) on the clustering properties of helium (He) and the possible He effect on GB decohesion. Several He concentrations are considered. Common properties of He clustering are found for the both GBs, which are visibly different from the bcc bulk. In particular, He clusters in the GBs are always elongated in the directions parallel to the interface and contracted in the direction normal to the GB plane, while they are isotropic in the bcc bulk. When the He number in the clusters is sufficiently large, the strong local pressure promotes the occurrence of loop punching, which is easier to trigger in the GBs than in the bulk, resulting in a lower He-to-vacancy ratio in the GB clusters. The emitted self-interstitial atoms (SIAs) can more easily dissociate from the clusters in the GBs than in the bulk, leading to relatively lower local pressures around the clusters in the GBs, and facilitating the clusters growth. He is found to decrease GB cohesion, and the embrittling effect of He increases with its concentration. But interestingly, this effect decreases with He clustering. The present findings are fully compatible with existing experimental evidence, for instance, for a stronger GB embrittlement due to He at rather low temperatures than at higher temperatures

  17. Grain boundary enegineering and alterations in anisotropy of interfacial properties

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Gärtnerová, Viera; Jäger, Aleš

    654-656, - (2010), s. 2350-2353. ISSN 0255-5476 R&D Projects: GA AV ČR KAN300100801; GA ČR GA106/08/0369 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain boundary segregation, * anisotropy * compensation effect * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires

    Institute of Scientific and Technical Information of China (English)

    XIE Shi-Feng; CHEN Shang-Da; SOS Ai-Kah

    2011-01-01

    @@ Molecular dynamics simulations are carried out to investigate the influences of various defects on mechanical properties of wurtzite GaN nanowires by adopting the empirical Stillinger-Weber potential.Different types of vacancies and grain boundaries are considered and the uniaxial loading condition is implemented along the [001] direction.It is found that surface defects have less impact on Voung's moduli and critical stresses of GaN nanowires compared with random defects.The grain boundary normal to the axial direction of a nanowire would not significantly affect Young's moduli of nanowires.However, the inversion domain grain boundaries with and without wrong bonds would significantly lower Young's moduli of GaN nanowires.In addition, the inversion domain grain boundary affects the critical stress of GaN nanowires more than the grain boundary with interface normal to the axial direction of the nanowire.%Molecular dynamics simulations are carried out to investigate the influences of various defects on mechanical properties of wurtzite GaN nanowires by adopting the empirical Stillinger-Weber potential. Different types of vacancies and grain boundaries are considered and the uniaxial loading condition is implemented along the [001] direction. It is found that surface defects have less impact on Young's moduli and critical stresses of GaN nanowires compared with random defects. The grain boundary normal to the axial direction of a nanowire would not significantly affect Young's moduli of nanowires. However, the inversion domain grain boundaries with and without wrong bonds would significantly lower Young's moduli of GaN nanowires. In addition, the inversion domain grain boundary affects the critical stress of GaN nanowires more than the grain boundary with interface normal to the axial direction of the nanowire.

  19. Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth—a 2D level set study

    International Nuclear Information System (INIS)

    The present study elaborates on a 2D level set model of polycrystal microstructures that was recently established by adding the influence of anisotropic grain boundary energy and mobility on microstructure evolution. The new model is used to trace the evolution of grain boundary character distribution during grain growth. The employed level set formulation conveniently allows the grain boundary characteristics to be quantified in terms of coincidence site lattice (CSL) type per unit of grain boundary length, providing a measure of the distribution of such boundaries. In the model, both the mobility and energy of the grain boundaries are allowed to vary with misorientation. In addition, the influence of initial polycrystal texture is studied by comparing results obtained from a polycrystal with random initial texture against results from a polycrystal that initially has a cube texture. It is shown that the proposed level set formulation can readily incorporate anisotropic grain boundary properties and the simulation results further show that anisotropic grain boundary properties only have a minor influence on the evolution of CSL boundary distribution during grain growth. As anisotropic boundary properties are considered, the most prominent changes in the CSL distributions are an increase of general low-angle Σ1 boundaries as well as a more stable presence of Σ3 boundaries. The observations also hold for the case of an initially cube-textured polycrystal. The presence of this kind of texture has little influence over the evolution of the CSL distribution. Taking into consideration the anisotropy of grain boundary properties, grain growth alone does not seem to be sufficient to promote any significantly increased overall presence of CSL boundaries. (paper)

  20. Transport properties through graphene grain boundaries: strain effects versus lattice symmetry

    OpenAIRE

    Nguyen, Viet Hung; Hoang, Trinh Xuan; Dollfus, Philippe; Charlier, Jean-Christophe

    2016-01-01

    As most materials available in macroscopic quantities, graphene appears in a polycrystalline form and thus contains grain boundaries. In the present work, the effect of uniaxial strain on the electronic transport properties through graphene grain boundaries is investigated using atomistic simulations. A systematic picture of the transport properties with respect to the strain and the lattice symmetry of graphene domains on both sides of the boundary is provided. In particular, it is shown tha...

  1. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.

    2010-01-01

    Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.

  2. Grain boundaries and mechanical properties of nanocrystalline diamond films.

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, H.-G.; Pageler, A.; Gruen, D. M.

    1999-08-06

    Phase-pure nanocrystalline diamond thin films grown from plasmas of a hydrogen-poor carbon argon gas mixture have been analyzed regarding their hardness and elastic moduli by means of a microindentor and a scanning acoustic microscope.The films are superhard and the moduli rival single crystal diamond. In addition, Raman spectroscopy with an excitation wavelength of 1064 nm shows a peak at 1438 l/cm and no peak above 1500 l/cm, and X-ray photoelectron spectroscopy a shake-up loss at 4.2 eV. This gives strong evidence for the existence of solitary double bonds in the films. The hardness and elasticity of the films then are explained by the assumption, that the solitary double bonds interconnect the nanocrystals in the films, leading to an intergrain boundary adhesion of similar strength as the intragrain diamond cohesion. The results are in good agreement with recent simulations of high-energy grain boundaries.

  3. Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition

    OpenAIRE

    Jauregui, Luis A.; Cao, Helin; Wu, Wei; Yu, Qingkai; Chen, Yong P.

    2011-01-01

    We synthesize hexagonal shaped single-crystal graphene, with edges parallel to the zig-zag orientations, by ambient pressure CVD on polycrystalline Cu foils. We measure the electronic properties of such grains as well as of individual graphene grain boundaries, formed when two grains merged during the growth. The grain boundaries are visualized using Raman mapping of the D band intensity, and we show that individual boundaries between coalesced grains impede electrical transport in graphene a...

  4. Finite temperature effect on mechanical properties of graphene sheets with various grain boundaries

    Science.gov (United States)

    Yong, Ge; Hong-Xiang, Sun; Yi-Jun, Guan; Gan-He, Zeng

    2016-06-01

    The mechanical properties of graphene sheets with various grain boundaries are studied by molecular dynamics method at finite temperatures. The finite temperature reduces the ultimate strengths of the graphenes with different types of grain boundaries. More interestingly, at high temperatures, the ultimate strengths of the graphene with the zigzag-orientation grain boundaries at low tilt angles exhibit different behaviors from those at lower temperatures, which is determined by inner initial stress in grain boundaries. The results indicate that the finite temperature, especially the high one, has a significant effect on the ultimate strength of graphene with grain boundaries, which gives a more in-depth understanding of their mechanical properties and could be useful for potential graphene applications. Project supported by the Nation Natural Science Foundation of China (Grant Nos. 11347219 and 11404147), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140519), the Training Project of Young Backbone Teacher of Jiangsu University, the Advanced Talents of Jiangsu University, China (Grant No. 11JDG118), the Practice Innovation Training Program Projects for Industrial Center of Jiangsu University, China, and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201308).

  5. Tunneling transport properties in (La,Sr)2CuO4 grain boundary Josephson junctions

    International Nuclear Information System (INIS)

    We investigate tunneling transport properties in thin film grain boundary Josephson junctions (GBJ's) of epitaxially grown (La,Sr)2CuO4 (LSCO) on bicrystal substrates. These optimally doped LSCO films were made by molecular beam epitaxy producing a very smooth film at the grain boundary. Measurements of the critical current Ic at low magnetic fields B (mT range) are used to characterize the quality of the junctions. Deviations from the ideal Ic(B) pattern enable us to indicate the homogeneity of the GBJ. Measurements of the differential conductance in high magnetic fields (T range) are used to investigate quasiparticle tunneling across the grain boundary. Results are compared to theoretical predictions

  6. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  7. Properties of submicron [001] tilt symmetric and asymmetric 450 bicrystal grain boundary junctions

    International Nuclear Information System (INIS)

    We have fabricated submicron YBa2Cu3O7-x [001] tilt bicrystal grain boundary junctions by a focused ion beam process. The reduction of the junction width, leading to more homogeneous grain boundary interfaces, has been proved to be very important for the study of many fundamental properties of high critical temperature superconducting junctions. In particular, experiments on 450 symmetric junctions have shown a clear evidence of midgap states, with a 0- to π- junction transition in the case of small barrier transparency; moreover, in 450 asymmetric junctions we have observed a transition from an unconventional to a Fraunhofer-like magnetic field dependence of the critical current, sign of the reduced influence of faceting on the junction properties

  8. Transport properties through graphene grain boundaries: strain effects versus lattice symmetry

    Science.gov (United States)

    Hung Nguyen, V.; Hoang, Trinh X.; Dollfus, P.; Charlier, J.-C.

    2016-06-01

    As most materials available at the macroscopic scale, graphene samples usually appear in a polycrystalline form and thus contain grain boundaries. In the present work, the effect of uniaxial strain on the electronic transport properties through graphene grain boundaries is investigated using atomistic simulations. A systematic picture of transport properties with respect to the strain and lattice symmetry of graphene domains on both sides of the boundary is provided. In particular, it is shown that strain engineering can be used to open a finite transport gap in all graphene systems where the two domains are arranged in different orientations. This gap value is found to depend on the strain magnitude, on the strain direction and on the lattice symmetry of graphene domains. By choosing appropriately the strain direction, a large transport gap of a few hundred meV can be achieved when applying a small strain of only a few percents. For a specific class of graphene grain boundary systems, strain engineering can also be used to reduce the scattering on defects and thus to significantly enhance the conductance. With a large strain-induced gap, these graphene heterostructures are proposed to be promising candidates for highly sensitive strain sensors, flexible electronic devices and p-n junctions with non-linear I-V characteristics.

  9. Grain boundary character distribution and mechanical properties of austenitic stainless steels

    International Nuclear Information System (INIS)

    The effect of grain boundaries character distributions (GBCDs) on high temperature creep and yield stress at room and high temperatures has been studied on AISI types 316 and 304 stainless stells. Different microstructural states were obtained in these steels by means of different thermo-mechanical treatments. It was established that mechanical properties depend significantly upon the microstructural state. The analysis of influences of different microstructural factors on deformation behaviour of the studied steels confirms an important role of the GBCD in the mechanical properties. (orig.)

  10. Properties of grain boundaries in bulk, melt processed Y–Ba–Cu–O fabricated using bridge-shaped seeds

    International Nuclear Information System (INIS)

    Single grain RE–Ba–Cu–O ((RE)BCO, where RE is a rare earth element or yttrium) bulk superconducting materials have significant potential for a variety of engineering applications due to their ability to trap high magnetic fields. However, it is well known that the presence of grain boundaries coupled with a high angle of misorientation (typically 5°) significantly reduces the critical current density, Jc, in all forms of high temperature superconducting materials. It is of considerable fundamental and technological interest, therefore, to investigate the grain boundary properties of bulk, film and tape (RE)BCO. We report a successful multi-seeding technique for the fabrication of fully aligned, artificial (0° misalignment) grain boundaries within large grain YBCO bulk superconductors using bridge-shaped seeds. The microstructure and critical current densities of the grain boundaries produced by this technique have been studied in detail. (paper)

  11. The structure and properties of grain boundaries in Ni3Al

    International Nuclear Information System (INIS)

    This paper reports that the mechanical behavior of polycrystalline intermetallic compounds are often strongly influenced by the properties of the interfaces present. A classic example of this is the intergranular fracture exhibited by polycrystalline Ni3Al, and the dramatic increase in ductility upon the addition of small amounts of boron. It has been proposed that boron may promote the transmission of slip across grain boundaries by inducing the formation of a local region of compositional disorder. The results of experimental efforts to characterize the effect of boron on the structure and chemistry of these grain boundaries are summarized. Recent high resolution transmission electron miroscopy studies using oriented bicrystals are described which indicate that there is no apparent change in the compositional ordering to within 0.5 nm from the boundary. These experimental results are compared with the results of atomistic calculations which have been used to examine the effect of stoichiometry and boron content on the energy and degree of ordering of these boundaries. The proposed mechanisms of intergranular fracture in Ni3Al are discussed based on the experimental and theoretical work

  12. Atomistic investigation of the structure and transport properties of tilt grain boundaries of UO2

    International Nuclear Information System (INIS)

    We apply atomistic simulation techniques to address whether oxygen shows higher diffusivity at the grain boundary region compared to that in bulk UO2, and whether the relative diffusivity is affected by the choice of the grain boundary. We consider coincident site lattice grain boundaries, Σ3, Σ5, Σ9, Σ11 and Σ19, expressing the {n n 1}, {n 1 1}, and {n 1 0} surfaces, and evaluate the extent that the grain boundary structures affect the diffusion of oxygen. We found that oxygen diffusion is enhanced at all boundaries and in the adjacent regions, with strong dependence on the temperature and local structure

  13. Variation of electric properties across the grain boundaries in BiFeO3 film

    Science.gov (United States)

    Stojadinović, Bojan; Vasić, Borislav; Stepanenko, Dimitrije; Tadić, Nenad; Gajić, Radoš; Dohčević-Mitrović, Zorana

    2016-02-01

    Stark differences in charge transport properties between the interior and the boundary regions of grains in an undoped BiFeO3 thin film have been found. The material is ferroelectric and each grain is a single domain. A spatial resolution that distinguishes between the grain interior and the boundary between the grains has been achieved by using piezoelectric force microscopy and conductive atomic force microscopy measurements. The local electric properties, as well as the local band gap show hysteresis only when probed in the grain interior, but do not show hysteresis when probed in the region around the boundary between two grains. The leakage current is more pronounced at the grain boundaries, and the region that carries significant current increases with the applied voltage.

  14. Effects of grain boundary sliding on the flow properties of Incoloy 800H

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, H.; Korhonen, M.A.; Li Cheyu (Dept. of Materials Science and Enginering, Cornell Univ., Ithaca, NY (United States))

    1992-08-01

    The nature of grain boundary sliding (GBS) is investigated in Incoloy 800H in terms of the effects of stress, temperature and grain size on the flow behavior observed by using the load relaxation test. Flow behaviors are obtained for average grain sizes ranging from 6 to 225 {mu}m at temperatures between 614 and 746degC. The flow behavior of large-grain-size material plotted as stress vs. strain rate in a doubly logarithmic scale, exhibits a sigmoidal shape which has been commonly associated with the effects of GBS on creep deformation. For the materials of smaller grain sizes the deformation properties tend toward those characteristic of structural superplasticity. It is shown that in Incoloy 800H there may exist, as a function of the grain size, a continuous scale of flow properties ranging from the normal creep to superplastic-like behavior. (orig.).

  15. The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels

    International Nuclear Information System (INIS)

    It is documented that sensitization in stainless steels results from the formation of grain boundary carbides that deplete the Cr in the vicinities of the grain boundaries. Sensitized austenitic stainless steels become brittle at cryogenic temperatures. Low carbon stainless steels are considered to be resistant to aging embrittlement. Our study of low carbon stainless steels demonstrates that aging at sensitization temperatures results in the formation of grain boundary intermetallic compounds or nitrides instead of carbides. The aging marginally change the 4 K yield strength, but decreases the 4 K stress intensity factor. The change of the yield strength is related to the pinning of the dislocations by solute atoms. The reduction of the stress intensity factor is attributed to the formation of the grain boundary precipitates. The sizes and amount of the grain boundary precipitate are so small that the 4 K crack growth rate at small ΔK is not affected.

  16. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary.

    Science.gov (United States)

    Dai, Q Q; Zhu, Y F; Jiang, Q

    2014-06-14

    Grain boundaries (GBs) that inevitably appear in CVD-grown graphene affect the electronic properties of graphene-based nanomaterials. In this paper, we introduce 558 GB (composed of a pair of pentagons and one octagon alternately) into armchair graphene nanoribbons (AGNRs) and divide them into three groups in light of the end configurations of 558 GB at the ribbon edges. By using first-principles calculations, the variations of electronic and magnetic properties with two adjustable parameters W (ribbon widths) and NZ (the distances between 558 GBs) are systematically investigated for each group. The results show that different electronic and magnetic behaviors versus W and NZ are presented for varying end configurations of 558 GB, including nonmagnetic metals, ferromagnetic metals and nonmagnetic semiconductors. By introducing 558 GB into AGNRs, the impurity states that are completely contributed by 558 GB appear around the Fermi level. Furthermore, a ferromagnetic ordering on the two zigzag chains of 558 GB occurs for the ferromagnetic metals due to the spin splitting energy bands near the Fermi level. These unique electronic and magnetic properties of AGNRs with 558 GB would find their potential applications in electronic and spintronic devices. PMID:24752487

  17. Critical current density and grain boundary property of BaFe2(As,P)2 thin films

    International Nuclear Information System (INIS)

    Highlights: •Jc and grain boundary property of BaFe2(As,P)2 thin films were investigated. •We found a correlation of Jc with the Fe/Ba composition ratio. •A very large Jc of 1.2 × 107 A/cm2 was observed with a Fe rich thin film. •A grain boundary junction having a misorientation angle of 24° was fabricated. •Jc across the grain boundary (θGB = 24°) recorded 106 A/cm2. -- Abstract: We have investigated the critical current density (Jc) and the grain boundary property of BaFe2(As,P)2 thin films grown on MgO single crystal or bicrystal substrates by molecular beam epitaxy. We found a strong correlation between Jc and the Fe/Ba composition ratio, and a very large self-field Jc of 1.2 × 107 A/cm2 at 4.2 K with a thin film for which the Fe/Ba ratio was 2.4. A grain boundary junction was fabricated by growing a thin film on a MgO bicrystal substrate having a misorientation angle of 24°. The inter-grain Jc at 4.0 K recorded 106 A/cm2, which is higher than that of YBa2Cu3Oy. These results demonstrate the high potential of BaFe2(As,P)2 in practical applications and indicate that the necessary condition for in-plane alignment is less severe than YBa2Cu3Oy

  18. Grain Boundary Engineering of Electrodeposited Thin Films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    Grain boundary engineering aims for a deliberate manipulation of the grain boundary characteristics to improve the properties of polycrystalline materials. Despite the emergence of some successful industrial applications, the mechanism(s) by which the boundary specific properties can be improved is...... analysis of the grain boundaries have happened. These improvements, for example by high-resolution imaging techniques and orientation imaging microscopy for additional crystallographic information, provide the possibilities for thorough characterization of the grain boundaries and based on that, it is...

  19. Temperature and frequency dependent electrical properties of NiCuZn ferrite with CuO-rich grain boundary segregation

    International Nuclear Information System (INIS)

    Highlights: • Sintered NiCuZn ferrite contains CuO-rich segregation along the grain boundaries. • Segregation is allied with different activation energies based on temperature zone. • Both grain boundary and segregated layer posses short-range hopping mechanism. - Abstract: Polycrystalline Ni0.9−yCuyZn0.1Fe1.98O4−δ (y = 0, 0.1 and 0.2) powder was synthesized by conventional solid-state reaction method. X-ray diffraction analysis confirmed single phase cubic spinel phase formation in the calcined powders. An additional phase was observed predominantly after sintering of y = 0.2 compound. The extra phase in the sintered sample is due to the formation of CuO-rich segregation along the grain boundary, which is confirmed by high resolution scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy analysis. In order to understand the temperature and frequency dependent electrical properties of segregated ferrite, detailed impedance spectra was investigated on Ni0.7Cu0.2Zn0.1Fe1.98O4−δ in the frequency range of 1 kHz–1 MHz and temperature range of 30–250 °C

  20. GRAIN BOUNDARIES IN POLYPHASE CERAMICS

    OpenAIRE

    Clarke, D

    1985-01-01

    The majority of polyphase ceramics contain a residual glass phase at their grain boundaries. The stability of these phases, particularly at the two-grain boundaries, is of significance since they affect the properties of the material as a whole. Drawing analogies with soap films, the stability of a continuous intergranular phase is considered in terms of the balance between the capillarity and disjoining pressures. The individual components to the disjoining pressures are discussed. It is arg...

  1. Magnetic properties on the grain boundary of high Tc Bi-system films

    International Nuclear Information System (INIS)

    The tunneling spectrum was observed on the grain boundary of the small bridge which was patterned mechanically on polycrystalline high Tc Bi-system films. The spectrum at 15 K gives 4Δ=54 meV and 2Δ0/kTc=4.2 using Tc=75 K. The quantum interference pattern and the Fraunhofer-like pattern were observed under the magnetic field on the reannealed bridge. The periods of the quantum interference pattern were 0.56 and 0.66 Oe which were modulated and they give the loop areas respectively 36 and 30 μm2. The effective areas of the junction obtained from the Fraunhofer-like pattern was about 2.5 μm2. (orig.)

  2. Self-healing properties of nanocrystalline materials: a first-principles analysis of the role of grain boundaries.

    Science.gov (United States)

    Xu, Jian; Liu, Jian-Bo; Li, Shun-Ning; Liu, Bai-Xin; Jiang, Yong

    2016-07-21

    Understanding the self-healing mechanisms of defects in nanocrystalline materials is of particular importance for developing structural materials that can support the extended lifetime of components under extremely hostile conditions in nuclear reactors. Since grain boundaries are prevalent in nanocrystalline materials, they must affect, to some extent, the overall self-healing properties and the resultant mechanical responses. In the present work, first principles calculations are carried out to investigate the energetic landscape of point defects (i.e. self-interstitials, He-interstitials, and vacancies) induced by the irradiation damage and the kinetics of the self-healing process in the vicinity of grain boundaries (GBs) in copper, focusing on six symmetric tilt grain boundaries that vary in their energies. Our results indicate that the interaction of vacancies with the self-interstitial- and He-interstitial-loaded GBs is very sensitive to the GB character. Low-energy GBs are generally accompanied by a higher propensity for self-healing behavior, in which the inter-granular interstitials and intra-granular vacancies recombine with each other. The recombination process is proved to be regulated by two mechanisms: the interstitial emission mechanism and the vacancy mediated mechanism. For low-energy GBs, the former mechanism demonstrates its efficiency in describing the atomic motion, while for the high-energy ones, the latter turns out to be superior. With the aid of these mechanisms, we conclude that low-energy GBs are comparatively more radiation-resistant than the high-energy counterparts, which may shed light on the rational design of high-performance structural materials based on nanocrystalline alloys. PMID:27326789

  3. Effects of processing optimisation on microstructure, texture, grain boundary and mechanical properties of Fe–17Cr ferritic stainless steel thick plates

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jian, E-mail: jh595@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Li, Huijun; Zhu, Zhixiong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Jiang, Laizhu; Xu, Haigang; Ma, Li [Baoshan Iron and Steel Co., Ltd., Shanghai 200431 (China)

    2014-10-20

    The relationships between microstructure, texture, grain boundary and tensile strength, Charpy impact toughness of (Nb+Ti+V) stabilised Fe–17Cr ferritic stainless steel thick plates were investigated by means of optical microscopy, X-ray diffraction, scanning electron microscopy, electron backscatter diffraction, tensile and Charpy impact testing. The results show that for Fe–17Cr ferritic stainless steel thick plate, the addition of warm rolling procedure leads to refinement of grain size, modification of texture, and then optimisation of grain boundary, including grain boundary character distribution and grain boundary connectivity. Meanwhile, the mechanical testing results indicate that optimal transformation that warm rolling procedure brings to Fe–17Cr ferritic steel thick plate is beneficial to its mechanical properties.

  4. Mechanical properties of irradiated Gd2Zr2O7 pyrochlores as studied by nanoindentation technique - Effect of grains and grain boundaries

    Science.gov (United States)

    Kurpaska, L.; Jagielski, J.

    2016-07-01

    The influence of ion irradiation on nanomechanical properties of Gd2Zr2O7 pyrochlore have been studied. The polycrystalline samples were irradiated at room temperature with 320 keV Ar ions with fluences from 2 × 1014 to 1 × 1016 ions/cm2. Nanomechanical properties of grains and grains boundaries were measured by means of nanoindentation technique. The measurements were performed in the centers of the grains and at the grain boundaries and point to the conclusion that grain boundary region is usually characterized by higher hardness and Young's modulus than the center of the grain. The analysis performed suggests that the stress induced effect related to the transition to anion-deficient fluorite structure leads to the increase of recorded hardness values and may be considered as primary source of hardening. Studied phenomenon depends on the irradiation fluence and may serve as an indicator of the structure modification in the irradiated sample. Finally, nanomechanical properties of irradiated grain boundaries were interpreted in the frames of incorporation of foreign species near grain boundary.

  5. GRAIN BOUNDARY SEGREGATIONS AND HYDROGEN EMBRITTLEMENT

    OpenAIRE

    Aucouturier, M.

    1982-01-01

    The relation between grain boundary segregation and hydrogen embrittlement of metals may be discussed from two stand points : 1°) Hydrogen has a strong tendency to segregate in structure defects, among them, in grain boundaries. Hydrogen segregation controls the properties of hydrogenated materials in many cases (hydrogen diffusion, hydrogen induced cracking, electrical properties in semiconductors, etc) and more precisely their mechanical behaviour (embrittlement itself). 2°) The occurence o...

  6. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, H.; Guan, Z.; Li, X.; Wichert, Th. [Universitaet des Saarlandes, Technische Physik (Germany)

    2001-11-15

    Perturbed {gamma}{gamma}-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with {sup 111}In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of {sup 111}In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  7. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    International Nuclear Information System (INIS)

    Perturbed γγ-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with 111In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of 111In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  8. Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se2 semiconductors for thin film solar cells

    International Nuclear Information System (INIS)

    Solar cells based on polycrystalline Cu(In,Ga)Se2 (CIGSe) thin film absorbers reach the highest energy conversion efficiency among all thin film solar cells. The record efficiency is at least partly attributed to benign electronic properties of grain boundaries (GBs) in the CIGSe layers. However, despite a high amount of research on this phenomenon the underlying physics is not sufficiently understood. This thesis presents an elaborate study on the electronic properties of GBs in CIGSe thin films. Kelvin probe force microscopy (KPFM) was employed to investigate the electronic properties of GBs in dependence of the Ga-content. Five CIGSe thin lms with various Ga-contents were grown by means of similar three stage co-evaporation processes. Both as grown as well as chemically treated (KCN etched) thin films were analyzed. The chemical treatment was employed to remove surface oxides. No difference in electronic GB properties was found with or without the chemical treatment. Therefore, we conclude that a moderate surface oxidation does not alter the electronic properties of GBs. In general, one can observe significant variations of electronic potential barriers at GBs. Under consideration of the averaging effect of the work function signal of nanoscale potential distributions in KPFM measurements which was quantified in the course of this thesis both positive and negative potential barriers in a range between ∼-350 mV and ∼+450 mV were detected. Additionally, variations in the defect densities at GBs between ∼3.1 x 1011 cm-2 and ∼2.1 x 1012 cm-2 were found. However, no correlation between the electronic properties of GBs and the Ga-content of CIGSe thin films was discovered. Consequently, one cannot explain the drop in device efficiency observed for CIGSe thin film solar cells with a high Ga-content by a change of the electronic properties of GBs. Combined KPFM and electron backscatter diffraction measurements were employed for the first time on CIGSe thin films

  9. Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se{sub 2} semiconductors for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baier, Robert

    2012-06-25

    Solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGSe) thin film absorbers reach the highest energy conversion efficiency among all thin film solar cells. The record efficiency is at least partly attributed to benign electronic properties of grain boundaries (GBs) in the CIGSe layers. However, despite a high amount of research on this phenomenon the underlying physics is not sufficiently understood. This thesis presents an elaborate study on the electronic properties of GBs in CIGSe thin films. Kelvin probe force microscopy (KPFM) was employed to investigate the electronic properties of GBs in dependence of the Ga-content. Five CIGSe thin lms with various Ga-contents were grown by means of similar three stage co-evaporation processes. Both as grown as well as chemically treated (KCN etched) thin films were analyzed. The chemical treatment was employed to remove surface oxides. No difference in electronic GB properties was found with or without the chemical treatment. Therefore, we conclude that a moderate surface oxidation does not alter the electronic properties of GBs. In general, one can observe significant variations of electronic potential barriers at GBs. Under consideration of the averaging effect of the work function signal of nanoscale potential distributions in KPFM measurements which was quantified in the course of this thesis both positive and negative potential barriers in a range between ∼-350 mV and ∼+450 mV were detected. Additionally, variations in the defect densities at GBs between ∼3.1 x 10{sup 11} cm{sup -2} and ∼2.1 x 10{sup 12} cm{sup -2} were found. However, no correlation between the electronic properties of GBs and the Ga-content of CIGSe thin films was discovered. Consequently, one cannot explain the drop in device efficiency observed for CIGSe thin film solar cells with a high Ga-content by a change of the electronic properties of GBs. Combined KPFM and electron backscatter diffraction measurements were employed for the

  10. Electronic and elemental properties of the Cu{sub 2}ZnSn(S,Se){sub 4} surface and grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B. [IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Hts., New York 10598 (United States)

    2014-01-20

    X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described.

  11. The influence of grain boundary diffusion on the electro-optical properties of CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Albin, D.S.; Gessert, T.A.; Reedy, R.C.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States); Woods, L.M. [Colorado State Univ., Fort Collins, CO (United States)

    1998-09-01

    The authors report on a study of the effects of diffusion of metals through polycrystalline CdTe thin films. The metals Ni, Pd, Cu, Cr, and Te are deposited onto the back surface of 10-{micro}m thick CdTe/CdS device structures using room-temperature evaporation. The authors found that four out of the five metals produce significant changes in the photoluminescence (PL) of the near-junction CdTe material. These changes are explained in terms of spatial variations of the photoexcited carrier distribution and spatial variations in the sulfur composition of the CdTeS alloy material near the CdTeS interface. The changes in carrier distribution appear to be associated with band bending and electric fields induced by diffusion of the metals to the CdTe/CdS interface. In addition to PL measurements, the authors have also utilized a technique for detaching the CdTe film from the CdS/TCO/glass superstrate to directly access the front surface of the CdTe absorber layer. The authors have used secondary ion mass spectroscopy to measure the metal diffusion profiles from this interface.

  12. Atomically ordered solute segregation behaviour in an oxide grain boundary

    Science.gov (United States)

    Feng, Bin; Yokoi, Tatsuya; Kumamoto, Akihito; Yoshiya, Masato; Ikuhara, Yuichi; Shibata, Naoya

    2016-01-01

    Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary. PMID:27004614

  13. Atomically ordered solute segregation behaviour in an oxide grain boundary

    Science.gov (United States)

    Feng, Bin; Yokoi, Tatsuya; Kumamoto, Akihito; Yoshiya, Masato; Ikuhara, Yuichi; Shibata, Naoya

    2016-03-01

    Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary.

  14. Electronic Structure of a Disordered Grain Boundary in Graphene

    Science.gov (United States)

    Lambin, Ph.; Vancso, P.; Nemes-Incze, P.; Mark, G.; Biró, L. P.

    2013-05-01

    Grain boundaries are constitutional elements of graphene grown on a solid metallic surface by CVD. The electronic properties of computer models of grain boundaries in graphene have been investigated by tight-binding calculations and compared with available ab initio data and with recent experimental scanning tunneling spectroscopic measurements. It is shown that twofold coordinated atoms and non-hexagonal rings, both present in grain boundaries, give rise to specific features in the local density of states.

  15. Simulation of grain boundary effect on characteristics of ZnO thin film transistor by considering the location and orientation of grain boundary

    Institute of Scientific and Technical Information of China (English)

    Zhou Yu-Ming; He Yi-Gang; Lu Ai-Xia; Wan Qing

    2009-01-01

    The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs).A novel grain boundary model was developed to analyse the effect. The model was characterized with different angles between the orientation of the grain boundary and the channel direction. The potential barriers formed by the grain boundaries increase with the increase of the grain boundary angle,so the degradation of the transistor characteristics increases. When a grain boundary is close to the drain edge,the potential barrier height reduces,so the electric properties were improved.

  16. Grain Boundaries From Theory to Engineering

    CERN Document Server

    Priester, Louisette

    2013-01-01

    Grain boundaries are a main feature of crystalline materials. They play a key role in determining the properties of materials, especially when grain size decreases and even more so with the current improvements of  processing tools and methods that allow us to control various elements in a polycrystal. This book presents the theoretical basis of the study of  grain boundaries and aims to open up new lines of research in this area. The treatment is light on mathematical approaches while emphasizing practical examples; the issues they raise are discussed with reference to theories. The general approach of the book has two main goals: to lead the reader from the concept of ‘ideal’ to ‘real’ grain boundaries; to depart from established knowledge and address the opportunities emerging through "grain boundary engineering",  the control of morphological and crystallographic features that affect material properties. The book is divided in three parts:  I ‘From interganular order to disorder’ deals wit...

  17. Grain boundary engineering with gold nanoparticles

    International Nuclear Information System (INIS)

    We investigated high-TC grain boundary Josephson junctions with and without incorporated gold nanoparticles. Pulsed laser deposition was used for the deposition of YBa2Cu3O7−δ thin films on SrTiO3 bicrystal substrates with different grain boundary angles. During the deposition process, single-crystalline nanoparticles self-assembled from a thin gold layer which was sputtered on the substrate before the YBCO deposition. The interaction between nanoparticles and thin film growth significantly influences the quality of the YBCO films [1]. The critical current density and the critical temperature of the superconducting films can be increased in a defined manner. Furthermore, the nanoparticles influence the growth conditions in the region of the grain boundary and thus the properties of the later patterned Josephson junctions. The comparison between Josephson junctions with and without nanoparticles on the same substrate shows a reduction of the critical current IC and an increase of the normal state resistance RN for all investigated types of grain boundaries in the areas with gold nanoparticles. In some cases we even found an increase of the resulting ICRN product. We present the influence of light irradiation on the properties of the Josephson junctions.

  18. Structure and electronic properties of transition metal dichalcogenide MX{sub 2} (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiguo, E-mail: zgwang@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Joint Laboratory of Police Equipment of UESTC, Chengdu, 610054 (China); Su, Qiulei [Department of Applied Physics, Hunan University, Changsha, 410082 (China); Yin, G.Q. [Joint Laboratory of Police Equipment of UESTC, Chengdu, 610054 (China); Shi, Jianjian [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Joint Laboratory of Police Equipment of UESTC, Chengdu, 610054 (China); Deng, Huiqiu [Department of Applied Physics, Hunan University, Changsha, 410082 (China); Guan, J.; Wu, M.P.; Zhou, Y.L.; Lou, H.L. [Joint Laboratory of Police Equipment of UESTC, Chengdu, 610054 (China); Fu, Y.Q., E-mail: Richard.fu@uws.ac.uk [Thin Film Centre, Scottish Universities Physics Alliance (SUPA), University of the West of Scotland, Paisley, PA1 2BE (United Kingdom)

    2014-10-15

    Layered transition metal dichalcogenides with unique mechanical, electronic, optical, and chemical properties can be used for novel nanoelectronic and optoelectronic devices. Large-area monolayers synthesized using chemical vapor deposition are often polycrystals with many dislocations and grain boundaries (GBs). In the present paper, atomic structure and electronic properties of MX{sub 2} (M = Mo, W, Nb; X = S, Se) with the GBs were investigated using first principles based on density functional theory. Simulation results revealed that the zigzag-oriented GBs (which consist of pentagon/heptagons (5-7) pairs) were more stable than the armchair-oriented GBs (which consist of pentagon/heptagons (5-7-5-7) pairs). The GBs induced defect levels are located within the band gap for the semiconductor materials of MX{sub 2} (M = Mo, W; X = S, Se) monolayers, and the NbS{sub 2} and NbSe{sub 2} remained as metallic materials with GBs. Results provided a possible pathway to build these nano-layered materials into nanoelectronic devices. - Highlights: • Atomistic structures of GBs in MX{sub 2} (M = Mo, W, Nb; X = S, Se) monolayer were identified. • Stability of GBs in the MX{sub 2} (M = Mo, W, Nb; X = S, Se) monolayer were studied. • Electronic properties of GBs in the MX{sub 2} (M = Mo, W, Nb; X = S, Se) monolayer were studied. • Defect levels induced by the GBs are located within the band gap of semiconducting MX{sub 2}. • NbS{sub 2} and NbSe{sub 2} remain as metallic materials within grain boundaries.

  19. Do grain boundaries assist S diffusion in polycrystalline CdS/CdTe heterojunctions?

    International Nuclear Information System (INIS)

    We report on a transmission electron microscopy and energy-dispersive x-ray spectroscopy study of S diffusion in polycrystalline CdS/CdTe heterojunctions. We find that grain boundaries significantly assist S diffusion in the CdTe layer when the CdTe is grown without the presence of oxygen, i.e., the S diffuses more easily along the grain boundaries than in the grains. However, grain boundaries do not enhance the S diffusion in CdTe when it is grown in the presence of oxygen. The reason is likely to be the formation of Cd--O bonds at the grain boundaries, which are resistance to the S diffusion

  20. Electronic and plasmonic phenomena at graphene grain boundaries

    Science.gov (United States)

    Fei, Z.; Rodin, A. S.; Gannett, W.; Dai, S.; Regan, W.; Wagner, M.; Liu, M. K.; McLeod, A. S.; Dominguez, G.; Thiemens, M.; Castro Neto, Antonio H.; Keilmann, F.; Zettl, A.; Hillenbrand, R.; Fogler, M. M.; Basov, D. N.

    2013-11-01

    Graphene, a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics and plasmonics, can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for technological applications. The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries. However, the physical properties of these grain boundaries remain challenging to characterize directly and conveniently. Here we show that it is possible to visualize and investigate the grain boundaries in CVD-grown graphene using an infrared nano-imaging technique. We harness surface plasmons that are reflected and scattered by the graphene grain boundaries, thus causing plasmon interference. By recording and analysing the interference patterns, we can map grain boundaries for a large-area CVD graphene film and probe the electronic properties of individual grain boundaries. Quantitative analysis reveals that grain boundaries form electronic barriers that obstruct both electrical transport and plasmon propagation. The effective width of these barriers (~10-20 nm) depends on the electronic screening and is on the order of the Fermi wavelength of graphene. These results uncover a microscopic mechanism that is responsible for the low electron mobility observed in CVD-grown graphene, and suggest the possibility of using electronic barriers to realize tunable plasmon reflectors and phase retarders in future graphene-based plasmonic circuits.

  1. Electronic and plasmonic phenomena at graphene grain boundaries.

    Science.gov (United States)

    Fei, Z; Rodin, A S; Gannett, W; Dai, S; Regan, W; Wagner, M; Liu, M K; McLeod, A S; Dominguez, G; Thiemens, M; Castro Neto, Antonio H; Keilmann, F; Zettl, A; Hillenbrand, R; Fogler, M M; Basov, D N

    2013-11-01

    Graphene, a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics and plasmonics, can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for technological applications. The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries. However, the physical properties of these grain boundaries remain challenging to characterize directly and conveniently. Here we show that it is possible to visualize and investigate the grain boundaries in CVD-grown graphene using an infrared nano-imaging technique. We harness surface plasmons that are reflected and scattered by the graphene grain boundaries, thus causing plasmon interference. By recording and analysing the interference patterns, we can map grain boundaries for a large-area CVD graphene film and probe the electronic properties of individual grain boundaries. Quantitative analysis reveals that grain boundaries form electronic barriers that obstruct both electrical transport and plasmon propagation. The effective width of these barriers (∼10-20 nm) depends on the electronic screening and is on the order of the Fermi wavelength of graphene. These results uncover a microscopic mechanism that is responsible for the low electron mobility observed in CVD-grown graphene, and suggest the possibility of using electronic barriers to realize tunable plasmon reflectors and phase retarders in future graphene-based plasmonic circuits. PMID:24122082

  2. Effect of thickness and cold substrate on transport properties of thermally evaporated CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Mongy, A.Abd; Hashem, H.M.; Ramadan, A.A. [Physics Department, Faculty of Science, Helwan University, Helwan, Cairo (Egypt)

    2005-08-01

    The correlation between the structural characteristics (stoichiometry and crystallite size) of CdTe films and their electronic transport properties were the aims of the present study to bring attention to the dual importance of grain size and conversion of the semiconductivity type with changing film thickness. Two main parameters were considered: the substrate temperature and film thickness. Transport properties were influenced by grain boundaries as well as by native doping. Optical measurements showed two main direct transitions at energies: E{sub 1} {approx}1.55 eV (fundamental gap) and E{sub 2}{approx}2.49 eV (due to valence band splitting). Both transitions were found to be thickness dependent with a marked change at a film thickness of about 300 nm. In the case of low substrate temperature, the scaling relation between resistivity and grain size showed a deviation from linear behavior at a size of 20 nm and the transmission coefficient is reduced. Also, the deposition on cold substrate enhanced both dark and photoconductivity for films of thickness {>=}300 nm. It is also proved that the carrier transport was affected by the transmission coef-ficient for carriers to pass a single grain boundary as well as the number of grain boundaries per mean free path. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Electronic and plasmonic phenomena at graphene grain boundaries

    OpenAIRE

    Fei, Z.; A. S. Rodin; Gannett, W.; Dai, S; Regan, W.; Wagner, M.; Liu, M. K.; Mcleod, A. S.; Dominguez, G; Thiemens, M.; Castro Neto, Antonio H.; Keilmann, F.; Zettl, A.; Hillenbrand, R.; Fogler, M. M.

    2013-01-01

    Graphene, a two-dimensional honeycomb lattice of carbon atoms, is of great interest in (opto)electronics and plasmonics and can be obtained by means of diverse fabrication techniques, among which chemical vapor deposition (CVD) is one of the most promising for technological applications. The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries. However, the physical properties of these grain boundaries remain challengin...

  4. Review on first-principles study of defect properties of CdTe as a solar cell absorber

    Science.gov (United States)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Ma, Jie; Wei, Su-Huai

    2016-08-01

    CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is T{e}Cd2+, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generally will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve {10}17 {{{cm}}}-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of {10}17 {{{cm}}}-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te–Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.

  5. Review on First-Principles Study of Defect Properties of CdTe as a Solar Cell Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Ma, Jie; Wei, Su-Huai

    2016-08-01

    CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is Te-2+/Cd, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generally will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve 10^17 cm-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of 10^17 cm-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te-Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.

  6. Molecular dynamics simulation of mechanical behavior of a system including both a crack and grain boundaries under cyclic loading

    International Nuclear Information System (INIS)

    The evaluation of material properties has been recently executed using a molecular dynamics simulation for the purpose of the application to the analysis of semiconductor manufacture process and structural design of a micro machine. The effect of grain boundaries on the mechanical behaviors of material has been examined. These studies, however, dealt with the initial phase of brittle fracture such as crack propagation in a polycrystalline materials. On the other hand, the effect of grain boundaries on ductile fracture is not enough to be examined. Therefore, in order to observe the initial phase of ductile fracture of a material with grain boundaries, we performed a molecular dynamics simulation for a system including both a crack and two tilt grain boundaries under uniaxial tension. Three kinds of the grain boundaries were examined. The {112} grain boundary has the lowest grain boundary energy among all tilt grain boundaries. The {111} grain boundary is one of the grain boundaries which have a local-maximum grain boundary energy. The {332} grain boundary has a grain boundary energy between the preceding two grain boundaries. In a system including both the crack and the {112} grain boundaries, not only a phase transition from bcc to hcp but also ductile deformation such as dislocations and twin deformation were observed around the crack tip in order to relax stress concentration. Then, two dislocation pile-ups near the grain boundaries were formed after the dislocations reached the grain boundaries. In a system including both the crack and the {111} grain boundaries, a new crack was generated at the grain boundaries and intergranular fracture occurred. In a system including both the crack and the {332} grain boundaries, dislocations were emitted not only from the crack tip but also from contact points of a free surface and the grain boundary, then complex dislocation structure was formed. Refs. 3 (author)

  7. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion

    International Nuclear Information System (INIS)

    Mg2Ni intermetallics are processed using three different routes to produce three different microstructural features: annealing at high temperature for coarse grain formation, severe plastic deformation through high-pressure torsion (HPT) for nanograin formation, and HPT processing followed by annealing for the introduction of stacking faults. It is found that both grain boundaries and stacking faults are significantly effective to activate the Mg2Ni intermetallics for hydrogen storage at 423 K (150 °C). The hydrogenation kinetics is also considerably enhanced by the introduction of large fractions of grain boundaries and stacking faults while the hydrogenation thermodynamics remains unchanged. This study shows that, similar to grain boundaries and cracks, stacking faults can act as quick pathways for the transportation of hydrogen in the hydrogen storage materials

  8. Applied Thermodynamics: Grain Boundary Segregation

    OpenAIRE

    Pavel Lejček; Lei Zheng; Siegfried Hofmann; Mojmír Šob

    2014-01-01

    Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary se...

  9. Applied thermodynamics: Grain boundary segregation

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Zheng, L.; Hofmann, S.; Šob, Mojmír

    2014-01-01

    Roč. 16, č. 3 (2014), s. 1462-1484. ISSN 1099-4300 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GAP108/12/0144; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : interfacial segregation * Gibbs energy of segregation * enthalpy * entropy * volume * grain boundaries * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.502, year: 2014

  10. EBIC INVESTIGATIONS OF EXTENDED DEFECTS IN CdTe

    OpenAIRE

    Panin, G.; Yakimov, E.

    1991-01-01

    The EBIC and remote contact EBIC (REBIC) techniques have been used to reveal grain boundaries and precipitates in CdTe crystals and to study their recombination contrast as a function of the electron beam parameters and temperature. The results obtained are discussed taking into account the defect charge state and the recombination properties of their environment.

  11. On the elastic stiffness of grain boundaries

    International Nuclear Information System (INIS)

    The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)

  12. Transient Solute Drag in Migrating Grain Boundaries

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Liendl, M.

    2011-01-01

    Roč. 59, č. 17 (2011), s. 6556-6562. ISSN 1359-6454 R&D Projects: GA MŠk(CZ) OC10029 Institutional research plan: CEZ:AV0Z20410507 Keywords : Grain boundary diffusion * Grain boundary migration * Grain boundary segregation Subject RIV: BJ - Thermodynamics Impact factor: 3.755, year: 2011

  13. Migration energy barriers of symmetric tilt grain boundaries in body-centered cubic metal Fe

    International Nuclear Information System (INIS)

    Graphical abstract: DFT calculated migration energy barrier (left) for symmetric grain boundary in metals is an essential physical property to measure the trend of grain boundary migration, in particular, in terms of the classical homogeneous nucleation model of GB dislocation/disconnection loops (right). - Migration energy barriers of two symmetric tilt grain boundaries in body-centered cubic metal Fe are obtained via first-principles calculations in combination with the nudged elastic band methods. Although the two grain boundaries show similar grain boundary energies, the migration energy barriers are different. Based on a homogeneous nucleation theory of grain-boundary dislocation loops, the calculated energy barrier provides a measure of intrinsic grain-boundary mobility and helps to evaluate effects due to vacancy and interstitial atoms such as carbon

  14. Grain boundary structure and solute segregation in titanium-doped sapphire bicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Seth T.

    2002-05-17

    Solute segregation to ceramic grain boundaries governs material processing and microstructure evolution, and can strongly influence material properties critical to engineering performance. Understanding the evolution and implications of grain boundary chemistry is a vital component in the greater effort to engineer ceramics with controlled microstructures. This study examines solute segregation to engineered grain boundaries in titanium-doped sapphire (Al2O3) bicrystals, and explores relationships between grain boundary structure and chemistry at the nanometer scale using spectroscopic and imaging techniques in the transmission electron microscope (TEM). Results demonstrate dramatic changes in solute segregation stemming from small fluctuations in grain boundary plane and structure. Titanium and silicon solute species exhibit strong tendencies to segregate to non-basal and basal grain boundary planes, respectively. Evidence suggests that grain boundary faceting occurs in low-angle twis t boundaries to accommodate nonequilibrium solute segregation related to slow specimen cooling rates, while faceting of tilt grain boundaries often occurs to expose special planes of the coincidence site lattice (CSL). Moreover, quantitative analysis of grain boundary chemistry indicates preferential segregation of charged defects to grain boundary dislocations. These results offer direct proof that static dislocations in ionic materials can assume a net charge, and emphasize the importance of interactions between charged point, line, and planar defects in ionic materials. Efforts to understand grain boundary chemistry in terms of space charge theory, elastic misfit and nonequilibrium segregation are discussed for the Al2O3 system.

  15. Discovering the Role of Grain Boundary Complexions in Materials

    Energy Technology Data Exchange (ETDEWEB)

    Harmer, Martin P. [Lehigh Univ., Bethlehem, PA (United States)

    2015-03-19

    Grain boundaries are inherently an area of disorder in polycrystalline materials which define the transport and various other material properties. The relationship between the interfacial chemistry, structure and the material properties is not well understood. Among the various taxonomies for grain boundaries, Grain Boundary Complexion is a relatively new conceptual scheme that relates the structure and kinetic properties of grain boundaries. In this classification scheme, grain boundaries are considered to be distinct three dimensional (the thickness being considerably smaller as compared to the other two dimensions but nonetheless discernible) equilibrium thermodynamic phases abutted between two crystalline phases. The stability and structure of these interfacial phases are dictated by various thermodynamic variables such as temperature, stress (pressure), interfacial chemistry (chemical potential) and most importantly by the energies of the adjoining crystal surfaces. These phases are only stable within the constraint of the adjoining grains. Although these interfacial phases are not stable in bulk form, they can transform from one complexion to another as a function of various thermodynamic variables analogous to the behavior of bulk phases. Examples of different complexions have been reported in various publications. However, a systematic investigation exploring the existence of grain boundary complexions in material systems other than alumina remains to be done. Although the role of interfacial chemistry on grain boundary complexions in alumina has been addressed, a clear understanding of the underlying thermodynamics governing complexion formation is lacking. Finally, the effects of grain boundary complexions in bulk material properties are widely unknown. Factors above urge a thorough exploration of grain boundary complexions in a range of different materials systems The purpose of the current program is to verify the existence of grain boundary complexion

  16. Impedance spectroscopy of nanocrystalline MgFe2O4 and MnFe2O4 ferrite ceramics: Effect of grain boundaries on the electrical properties

    Directory of Open Access Journals (Sweden)

    Sekulić Dalibor L.

    2016-01-01

    Full Text Available Two ferrite ceramic materials, MgFe2O4 and MnFe2O4, were successfully fabricated by a conventional sintering of nanosized powders (at 1373 K for 2 h synthesized by soft mechanochemical route. The particle size and morphology of powders were studied using X-ray diffraction (XRD and transmission electron microscopy (TEM. XRD analysis was carried out for the determination of phase purity, crystal structure and average crystallite size of sintered ferrites. Both mechanosynthesized ferrite samples show mean crystallite sizes in the nm-range. Over the frequency range of 100 Hz to 1 MHz, impedance spectra of prepared ferrite ceramics are investigated at and above room temperature. Changes in the impedance plane plots with temperature have been discussed and correlated to the microstructure of materials. An equivalent circuit model is applied to explore the electrical parameters (resistance and capacitance associated with grains and grain boundaries. Complex impedance analysis indicates the dominance of grain boundary effects which control the overall electrical behaviour of studied ferrites. The decrease in grain boundary resistance with temperature suggests a thermally activated conduction mechanism. [Projekat Ministarstva nauke Republike Srbije, br. III43008 i br. III45003

  17. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low shear stress: implications for rheology and transport properties

    Science.gov (United States)

    Desbois, G.; Urai, J. L.; De Bresser, J. H. P.

    2012-04-01

    We used a combination of broad ion beam (BIB) cross-sectioning and high resolution (cryogenic) SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary (GB) microstructures and fluid distribution in naturally deformed halite from a salt glacier (Kum Quh, central Iran). At the scale of observations, four types of fluid or gas filled grain boundaries can be distinguished: (1) straight boundaries with thick (up to 10 µm) GB tubes (2) straight boundaries with narrow (about 50 nm) GB tubes (3) wavy (tens of µm wavelength) GB with isolated inclusions of a few µm, and (4) wavy (µm wavelength) GB with small (µm) isolated inclusions. Grain boundary fluid inclusions can have three types of morphologies: the inclusion of Type 1 is intruded completely in one grain, inclusion of Type 2 has its major part included in one grain with a minor part in the second grain and the inclusion of Type 3 is located in both grains. Solid second phases in GB are mainly euhedral anhydrite crystals. The mobility of the brine is shown after cutting the inclusions by BIB in vacuum and fine-grained halite forms efflorescence and precipitates on internal walls of inclusions. At cryogenic temperature, in-situ brine is seen as continuous film in GB of type (1) and (2), and in isolated inclusions in GB of type (3) and (4). The structure of halite-halite contact between isolated fluid inclusions in GB of type (3) and (4) is below the resolution of SEM. GB of type (3) and (4) are interpreted to have formed by healing of mobile fluid films. First results of deformation experiments on the same samples under shear stress corresponding to conditions of natural salt glacier, show very low strain rates (7.43x10-10 s-1 and 1x10-9 s-1), up to one order of magnitude below of expected strain rates by solution precipitation creep. Both microstructures and deformation experiments suggest interfacial energy-driven GB healing, in agreement with the

  18. Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Tschopp, Mark A.; Solanki, K. N.; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.; Horstemeyer, Mark

    2012-02-10

    The energetics and length scales associated with the interaction between point defects (vacancies and self-interstitial atoms) and grain boundaries in bcc Fe was explored. Molecular statics simulations were used to generate a grain boundary structure database that contained {approx}170 grain boundaries with varying tilt and twist character. Then, vacancy and self-interstitial atom formation energies were calculated at all potential grain boundary sites within 15 {angstrom} of the boundary. The present results provide detailed information about the interaction energies of vacancies and self-interstitial atoms with symmetric tilt grain boundaries in iron and the length scales involved with absorption of these point defects by grain boundaries. Both low- and high-angle grain boundaries were effective sinks for point defects, with a few low-{Sigma} grain boundaries (e.g., the {Sigma}3{l_brace}112{r_brace} twin boundary) that have properties different from the rest. The formation energies depend on both the local atomic structure and the distance from the boundary center. Additionally, the effect of grain boundary energy, disorientation angle, and {Sigma} designation on the boundary sink strength was explored; the strongest correlation occurred between the grain boundary energy and the mean point defect formation energies. Based on point defect binding energies, interstitials have {approx}80% more grain boundary sites per area and {approx}300% greater site strength than vacancies. Last, the absorption length scale of point defects by grain boundaries is over a full lattice unit larger for interstitials than for vacancies (mean of 6-7 {angstrom} versus 10-11 {angstrom} for vacancies and interstitials, respectively).

  19. Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe

    Science.gov (United States)

    Tschopp, M. A.; Solanki, K. N.; Gao, F.; Sun, X.; Khaleel, M. A.; Horstemeyer, M. F.

    2012-02-01

    The energetics and length scales associated with the interaction between point defects (vacancies and self-interstitial atoms) and grain boundaries in bcc Fe was explored. Molecular statics simulations were used to generate a grain boundary structure database that contained ≈170 grain boundaries with varying tilt and twist character. Then, vacancy and self-interstitial atom formation energies were calculated at all potential grain boundary sites within 15 Å of the boundary. The present results provide detailed information about the interaction energies of vacancies and self-interstitial atoms with symmetric tilt grain boundaries in iron and the length scales involved with absorption of these point defects by grain boundaries. Both low- and high-angle grain boundaries were effective sinks for point defects, with a few low-Σ grain boundaries (e.g., the Σ3{112} twin boundary) that have properties different from the rest. The formation energies depend on both the local atomic structure and the distance from the boundary center. Additionally, the effect of grain boundary energy, disorientation angle, and Σ designation on the boundary sink strength was explored; the strongest correlation occurred between the grain boundary energy and the mean point defect formation energies. Based on point defect binding energies, interstitials have ≈80% more grain boundary sites per area and ≈300% greater site strength than vacancies. Last, the absorption length scale of point defects by grain boundaries is over a full lattice unit larger for interstitials than for vacancies (mean of 6-7 Å versus 10-11 Å for vacancies and interstitials, respectively).

  20. Grain-boundary resistance in polycrystalline metals

    Science.gov (United States)

    Reiss, G.; Vancea, J.; Hoffmann, H.

    1986-05-01

    Grain boundaries are known to reduce significantly the electrical dc conductivity of polycrystalline metallic materials. In this paper, we give a quantum mechanical calculation of the grain-boundary resistance based on the transfer matrix approach. The results show an exponential decrease of the conductivity with respect to the number of grain boundaries per mean free path in accord with an empirical model proposed recently.

  1. Grain boundary resistance in polycrystalline metals

    OpenAIRE

    Reiss, Günter; Vancea, Johann; Hoffmann, Horst

    1986-01-01

    Grain boundaries are known to reduce significantly the electrical dc conductivity of polycrystalline metallic materials. In this paper, we give a quantum mechanical calculation of the grain-boundary resistance based on the transfer-matrix approach. The results show an exponential decrease of the conductivity with respect to the number of grain boundaries per mean free path in accord with an empirical model proposed recently.

  2. Superfluidity of grain boundaries and supersolid behavior.

    Science.gov (United States)

    Sasaki, S; Ishiguro, R; Caupin, F; Maris, H J; Balibar, S

    2006-08-25

    When two communicating vessels are filled to a different height with liquid, the two levels equilibrate because the liquid can flow. We have looked for such equilibration with solid (4)He. For crystals with no grain boundaries, we see no flow of mass, whereas for crystals containing several grain boundaries, we detect a mass flow. Our results suggest that the transport of mass is due to the superfluidity of grain boundaries. PMID:16873608

  3. Grain boundary structure and solute segregation in titanium-doped sapphire bicrystals

    OpenAIRE

    Taylor, Seth T.

    2002-01-01

    Solute segregation to ceramic grain boundaries governs material processing and microstructure evolution, and can strongly influence material properties critical to engineering performance. Understanding the evolution and implications of grain boundary chemistry is a vital component in the greater effort to engineer ceramics with controlled microstructures. This study examines solute segregation to engineered grain boundaries in titanium-doped sapphire (Al2O3) bicrystals, and explores re...

  4. Nanohardness of molybdenum in the vicinity of grain boundaries and triple junctions

    International Nuclear Information System (INIS)

    We performed a nanoindentation study of the inherent mechanical properties of grain boundaries and their triple junctions in molybdenum tricrystals of controlled geometry grown from the melt. A region with increased hardness is revealed in the vicinity of all grain boundaries studied. The width of this region is about 2 μm and the maximum relative increase of hardness at the grain boundary is about 30%. The local nanohardness at the triple junctions was found to be higher than that at the grain boundaries. This effect is analyzed in terms of the indentation size effect model of Nix and Gao, assuming that the grain boundaries represent ideal barriers for the first nucleated dislocation loops. We calibrated the parameters of the developed model using the data for nanohardness of grain boundaries. The model predicts values of nanohardness at the triple junctions which are in good agreement with the experimental results

  5. Influence of S, P, C on grain boundary diffusion and creep properties of Alloy 800; Einfluss von S, P, C auf die Korngrenzendiffusion und Kriecheigenschaften von Alloy 800

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, J.; Hannesen, K.; Mast, R.; Viefhaus, H. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Grabke, H.J.

    1998-12-31

    The paper reports examinations of Alloy 800 and specific commercially available variants known under the names of 800H, 800HT, and 800LC, differing in their concentrations of C, Al, and Ti. In addition, melts also containing phosphorus (0.09 wt-%) or sulfur (0.04 wt-%) as additional alloying materials have been prepared for the experiments. The volume diffusion and the grain boundary diffusion of {sup 59}Fe in those alloys was measured at temperatures between 800 and 1000 C by means of a radioactive tracer method combined with residual activity measurements. It was found that accompanying elements like phosphorus and sulfur increase the activation energy of the grain boundary diffusion of the iron and thus delay the grain boundary self-diffusion in Alloy 800. Creep curves were measured of the same materials after age-hardening treatment for 100 hours at 800 C, measurements performed at constant temperature but at three different, constant creep stress loads. The results showed that addition of phosphorus markedly increases the lifetime of Alloy 800, and reduces the creep rupture strain. The minimum strain rate in Alloy 800 containing 0.09 wt-% of phosphorus was found to be lower by a factor of 100, as compared to the other Alloy 800 materials used. (orig./CB) [Deutsch] Alloy 800 ist ein austenitischer Fe-Ni-Cr Stahl, der relativ geringe, aber wichtige Konzentrationen von Kohlenstoff, Aluminium und Titan enthaelt. Besondere Varianten von Alloy 800, bekannt als 800H, 800HT und 800LC, unterscheiden sich in den Konzentrationen dieser Elemente. Diese kommerziellen Legierungen wurden untersucht, und zusaetzlich wurden Schmelzen mit zulegiertem Phosphor (0,09 Gew-%) bzw. Schwefel (0,04 Gew-%) hergestellt. Mittels einer radioaktiven Tracermethode in Verbindung mit Restaktivitaetsmessungen wurde die Volumen- und Korngrenzendiffusion von {sup 59}Fe in diesen Legierungen im Temperaturbereich 800-1000 C gemessen. Es wurde gefunden, dass Begleitelemente wie Phosphor und

  6. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ming; Zhuo, Longchao [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China); Liu, Zhanli [Applied Mechanics Lab, School of Aerospace, Tsinghua University, Beijing 100084 (China); Lu, Xiaogang [School of Materials Science and Engineering, Shanghai University, Shanghai (China); Shi, Zhenxue; Li, Jiarong [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China)

    2015-07-29

    The mechanical properties of nickel-based single crystal superalloys deteriorate with increasing misorientation, thus the finished product rate of the casting of single crystal turbine airfoils may be reduced due to the formation of grain boundaries especially when the misorientation angle exceeds to some extent. To this day, evolution of the microstructures at the grain boundaries with misorientation and the relationship between the microstructures and the mechanical properties are still unclear. In this work a detailed characterization of the misorientation related microstructure at the grain boundary in DD6 single crystal superalloy has been carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques; the elemental distribution at the grain boundaries has been analyzed by energy dispersive (EDS) X-ray mapping; and the effect of precipitation of μ phases at the grain boundary on the mechanical property has been evaluated by finite element calculation. It is shown that the proportion of γ phase at the grain boundaries decreases, while the proportion of γ′ phase at the grain boundaries increases with increasing misorientation; the μ phase is precipitated at the grain boundaries when the misorientation angle exceeds about 10° and thus it could lead to a dramatic deterioration of the mechanical properties, as well as that the enrichment of Re and W gradually disappears as the misorientation angle increases. All these factors may result in the degradation of the mechanical properties at the grain boundaries as the misorientation increases. Furthermore, the finite element calculation confirms that precipitation of μ phases at the grain boundary is responsible for the significant deterioration of the mechanical properties when the misorientation exceeds about 10°. This work provides a physical imaging of the microstructure for understanding the relationship between the mechanical properties and the misorientation

  7. Diffusion mechanisms in grain boundaries in solids

    International Nuclear Information System (INIS)

    A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures

  8. Plasticity enhancement through disordering at grain boundaries

    International Nuclear Information System (INIS)

    In seeking to explain the boron effect in Ni3Al, Frost first suggested that disordering at the grain boundary might lead to enhanced plasticity by relieving some of the geometric constraints upon dislocation interactions with these normally brittle interfaces. This idea was further investigated by King and Yoo, who performed an extensive survey on the possible reactions between lattice dislocations or superdislocations and coincidence-related grain boundaries in the L12 structure. It was found that, indeed, the number of available reactions in any case was multiplied by as much as a factor of four if the requirement for maintaining chemical order in the grain boundary was removed. This suggests that it may be considerably easier to relax plastic strain at grain boundaries in the case where order is not imposed than where it is, and thus that the plastic energy contributing to the fracture process may be partly relieved. This would contribute to ductilizing the grain boundaries. There ar, in fact, several mechanisms by which grain boundary disordering may contribute to improved interfacial ductility. These mechanisms primarily relate to the fat that smaller Burgers vectors are available for the grain boundary dislocations in the case where order is not preserved, in much the same way that superdislocations are not required in the matrix if the material is disordered. This paper discusses the contributions to ductility

  9. Modulation of transport properties of optimally doped La{sub 1.85}Sr{sub 0.15}CuO{sub 4} thin films via electric field modification of the grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhammad Umair [Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Cavendish Laboratory, Cambridge (United Kingdom); Wimbush, Stuart C. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington (New Zealand)

    2015-09-15

    Modulation of the transport properties of a superconducting La{sub 1.85}Sr{sub 0.15}CuO{sub 4}-based ionic-liquid gated transistor has been achieved. For an applied gate bias V{sub g} ≥ 2 V, the characteristic sheet resistivity vs. temperature (R{sub s}-T) curves exhibit a fully reversible foot feature below the superconducting transition temperature (T{sub c}). In contrast to the behaviour expected from the large charge carrier density of this high-T{sub c} superconductor material, the normal state conductance above T{sub c} also exhibits a large modulation, indicating a larger charge screening length than that predicted from a simple Thomas-Fermi model. We regard these changes as due to electrostatic modification of the charge density at structural imperfections such as grain boundaries present within the sample. Such modification alters the coupling between superconducting domains and dictates the overall R{sub s}-T trend of the gated film. To explain our findings, we employ Mannhart's model of electronic band bending at the grain boundaries and propose that this band bending can be modulated by large electric fields resulting in the observed modulation of the transport properties of the device. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Transient solute drag in migrating grain boundaries

    International Nuclear Information System (INIS)

    Understanding the solute drag in migrating grain boundaries or interfaces has been a topic in materials research since Cahn's seminal paper in 1962. However, mostly steady-state solutions for solute segregation and drag in a migrating interface have been investigated. Here a new concept, based on the thermodynamic extremal principle, is introduced, which allows a detailed study of the transient processes in the migrating interface starting from a given initial configuration. The system is then described by two parameters, the first representing the amount of segregated solute in the grain boundary and the second the grain boundary position. Stability studies are performed using the perturbation concept. The model is demonstrated by simulations for a Fe-0.1 at.% Ni alloy taking different values for the grain boundary mobility and the driving force.

  11. Grain boundary strengthening in austenitic nitrogen steels

    International Nuclear Information System (INIS)

    The effect of nitrogen and carbon on the strengthening of the austenitic steel Cr18Ni16Mn10 by grain boundaries is studied. It is established in accordance with previous results that contrary to carbon nitrogen increases the coefficient k in the Hall-Petch equation markedly. Because of a pronounced planar slip induced by nitrogen and the absence of any noticeable segregation of nitrogen atoms at the grain boundaries, nitrogen austenite presents an excellent object for testing different existing models of grain boundary strengthening (pile-up, grain boundary dislocation sources, work hardening theories). Based on the analysis of available data and measurements of interaction between nitrogen (carbon) atoms and dislocations it is shown that the nitrogen effect can be attributed to a strong blocking of dislocation sources in grains adjacent to those where the slip started. (orig.)

  12. A mechanistic study of impurity segregation at silicon grain boundaries

    International Nuclear Information System (INIS)

    The segregation behavior of carbon and oxygen atoms at various silicon grain boundaries was studied using a combination of atomistic simulation and analytical modeling. First, quasi-lattice Grand Canonical Monte Carlo simulations were used to compute segregation isotherms as a function of grain boundary type, impurity atom loading level, and temperature. Next, the atomistic results were employed to regress different analytical segregation models and extract thermodynamic and structural properties. The multilayer Brunauer–Emmett–Teller (BET) isotherm was found to quantitatively capture all the simulation conditions probed in this work, while simpler, single layer models such as the Langmuir-McLean model did not. Some of the BET parameters, namely, the binding free energy of the first adsorption layer and the impurity holding capacity of each layer, were tested for correlation with various measures of grain boundary structure and/or mechanical properties. It was found that certain measures of the atomistic stress distribution correlate strongly with the first-layer binding free energy for substitutional carbon atoms, while common grain boundary identifiers such as sigma value and energy density are not useful in this regard. Preliminary analysis of the more complex case of interstitial oxygen segregation showed that similar measures based on atomistic stress also may be useful here, but more systematic correlative studies are needed to develop a comprehensive picture

  13. Relationship between lattice mismatch and ionic conduction of grain boundary in YSZ

    Institute of Scientific and Technical Information of China (English)

    Fei Ye; Chunyu Yin; Dingrong Ou; Toshiyuki Mori

    2014-01-01

    The grain boundary plays an important role in the electrical behaviors of solid oxide electrolytes for solid state fuel cells. To reveal the relationship between the structure and the ionic conductivity of grain boundary, the conductive properties of {1 1 1} and {1 1 0} twist grain boundaries in 8 mol%yttria-stabilized zirconia have been examined. These boundaries have a series ofΣvalues defined by the coincident site lattice model. It has been found that the activation energy of{1 1 1}twist grain boundary increases and then decreases with theΣvalue, while that of the{1 1 0}boundary shows an opposite trend. It is suggested that the properties can reflect the balance of the effects of lattice mismatch on the diffusion ability of oxygen vacancies and the segregation of oxygen vacancies and Y3 þ ions. Therefore, the properties in polycrystalline electrolyte can be adjusted by controlling the grain boundary structures.

  14. GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner

    2003-01-01

    Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.

  15. Preparation and properties of evaporated CdTe films compared with single crystal CdTe

    Science.gov (United States)

    Bube, R. H.

    The hot wall vacuum deposition system is discussed and is is good temperature tracking between the furnace core and the CdTe source itself are indicated. Homojunction cells prepared by HWVE deposition of n-CdTe on p-CdTe substrates show no significant change in dark or light properties after open circuit storage for the next 9 months. CdTe single crystal boules were grown with P, As and Cs impurity. For P impurity it appears that the segregation coefficient is close to unity, that the value of hole density is controlled by the P, and that growth with excess Cd gives slightly higher values of hole density than growth with excess Te. CdTe:As crystals appear similar to CdTe:P crystals.

  16. Electrical properties of single CdTe nanowires

    Directory of Open Access Journals (Sweden)

    Elena Matei

    2015-02-01

    Full Text Available Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport properties.

  17. SIMULATIVE INVESTIGATION OF GRAIN BOUNDARIES IN NiAl ALLOY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Using embedded atom potentials and molecular static relaxation method or Monte Carlo relaxation method, the grain boundary atomic structures of a series of [100], [110] and [111] symmetric tilt grain boundaries in NiAl with different geometrical indexes and compositions were studied. The grain boundary energies, grain boundary cohesive energies and point defects formation energies at the grain boundary were calculated. The results show that the grain boundaries of NiAl alloy have a periodic unit structure. Grain boundary energies of Al rich grain boundary is very high, but the cohesive energies are lower than those of others. The interaction of point defects and grain boundaries shows that grain boundaries incline to absorb point defects to decrease their orders and to relax the distortions caused by point defects. The boundary atomic structures relaxed by Monte Carlo method show that the disorder of them, grain boundary energies and cohesive energies increase with increasing temperature.

  18. Grain Boundary Design and Grain Boundary Character Distribution (GBCD) in Texture Polycrystalline Materials

    OpenAIRE

    Watanabe, Tadao

    1991-01-01

    The importance of grain boundary character distribution (GBCD) to materials development by grain boundary design is briefly discussed. Particular attention has been paid to the relationship between GBOD and the nature of texture in polycrystalline materials produced by different processing methods. Several important findings on the relationship are discussed.

  19. Science at the interface : grain boundaries in nanocrystalline metals.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  20. Interactions between Dislocations and Grain Boundaries

    NARCIS (Netherlands)

    Soer, Wouter Anthon

    2006-01-01

    Dislocations (line defects) and grain boundaries (planar defects) are two types of lattice defects that are crucial to the deformation behavior of metals. Permanent deformation of a crystalline material is microscopically associated with the nucleation and propagation of dislocations, and extensive

  1. Developing grain boundary diagrams for multicomponent alloys

    International Nuclear Information System (INIS)

    Impurity-based, premelting-like, intergranular films (IGFs, a common type of grain boundary complexion) can form in various materials and influence sintering, creep, and microstructure development. A thermodynamic framework is presented to forecast the formation and stability of these premelting-like grain boundary complexions (a.k.a. interfacial “phases” that are thermodynamically two dimensional) in multicomponent alloys to consider the interactions of multiple alloying elements. Key thermodynamic parameters that control the interfacial segregation and disordering behaviors have been identified and systematically examined. Subsequently, ternary and quaternary grain boundary diagrams have been computed and used to forecast the sintering behaviors of W–Ni–M (M = Fe, Co, Cr, Zr, Nb and Ti) and Mo–Si–B–M (M = Ni, Co and Fe) systems. This work supports a long-range scientific goal of extending bulk computational thermodynamics and CALPHAD methods to interfaces and developing grain boundary complexion (interfacial “phase”) diagrams as extensions to bulk phase diagrams, which can be a generally useful materials science tool

  2. Grain boundary effects in nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Nesládek, Miloš

    2008-01-01

    Roč. 205, č. 9 (2008), 2163-2168. ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * grain boundary * superconductivity * noise * ballistic transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.205, year: 2008

  3. Exploring grain boundary energy landscapes with the activation-relaxation technique

    OpenAIRE

    Alexander, Kathleen C.; Schuh, Christopher A

    2013-01-01

    To develop a structure–kinetic property mapping for grain boundaries requires an understanding of their energy landscapes, i.e. the energy basins and nearby saddle points separating adjacent structures. We implement the activation-relaxation technique to obtain a first view of grain boundary energy landscapes for the Σ5 (1 3 0), Σ5 (2 1 0) and Σ3 (1 1 1) grain boundaries in copper. The energy landscapes of these boundaries are very different, which supports a focus on energy landscapes, rathe...

  4. Assessment of grain boundary segregation inducing intergranular fracture

    International Nuclear Information System (INIS)

    Intergranular fracture is often attributed to grain boundary embrittlement resulting from the segregation of some embrittling elements. Consequently, it is often associated with catastrophic premature brittle fracture, in particular with respect to the more common transgranular cleavage fracture. One of the embrittling elements known to promote intergranular fracture of reactor pressure vessel steels under irradiation is phosphorus, even without hardening. To better assess the effect of intergranular grain boundary segregation on the mechanical properties of reactor pressure vessel steels, an experimental program was carried out on an embrittled steel through a step cooling heat treatment. This reversible temper embrittlement treatment consists of gradually cooling the steel in the range 600-400 deg. C with increasing time resulting in phosphorus segregation to grain boundaries. Tensile, Charpy impact and fracture toughness tests were performed in both as received and step cooled condition, together with scanning electron microscopy examination to reveal the fracture mode. The results show that intergranular fracture is not as catastrophic as originally thought. Crack instability is clearly higher during transgranular cleavage than intergranular fracture. The interpretation of experimental results based on the Charpy impact test can be biased by the ductile fracture contribution. Experimental data including both Charpy impact and fracture toughness could be analyzed in a consistent way allowing for an improved interpretation. (authors)

  5. Surface transition on ice induced by the formation of a grain boundary.

    Directory of Open Access Journals (Sweden)

    Christian Pedersen

    Full Text Available Interfaces between individual ice crystals, usually referred to as grain boundaries, play an important part in many processes in nature. Grain boundary properties are, for example, governing the sintering processes in snow and ice which transform a snowpack into a glacier. In the case of snow sintering, it has been assumed that there are no variations in surface roughness and surface melting, when considering the ice-air interface of an individual crystal. In contrast to that assumption, the present work suggests that there is an increased probability of molecular surface disorder in the vicinity of a grain boundary. The conclusion is based on the first detailed visualization of the formation of an ice grain boundary. The visualization is enabled by studying ice crystals growing into contact, at temperatures between -20°C and -15°C and pressures of 1-2 Torr, using Environmental Scanning Electron Microscopy. It is observed that the formation of a grain boundary induces a surface transition on the facets in contact. The transition does not propagate across facet edges. The surface transition is interpreted as the spreading of crystal dislocations away from the grain boundary. The observation constitutes a qualitatively new finding, and can potentially increase the understanding of specific processes in nature where ice grain boundaries are involved.

  6. Silver grain boundary diffusion in Pd

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Z., E-mail: bz0015@delfin.unideb.hu [Department of Solid State Physics, University of Debrecen, P.O. Box 2, H-4010 Debrecen (Hungary); Erdelyi, Z.; Beke, D.L. [Department of Solid State Physics, University of Debrecen, P.O. Box 2, H-4010 Debrecen (Hungary); Portavoce, A.; Girardeaux, C.; Bernardini, J.; Rolland, A. [Aix-Marseille Universite, IM2NP, Faculte des Sciences et Techniques, Campus de Saint-Jerome, Avenue Escadrille Normandie Niemen - Case 142, F-13397 Marseille Cedex (France); CNRS, IM2NP (UMR 6242), Faculte des Sciences et Techniques, Campus de Saint-Jerome, Avenue Escadrille Normandie Niemen - Case 142, F-13397 Marseille Cedex (France)

    2009-02-15

    Two to ten nanometer thick polycrystalline Pd films were prepared on the (1 1 1) surface of Ag single crystal and investigations of the Ag diffusion along Pd grain boundaries were carried out using the Hwang-Balluffi method. The samples were monitored by Auger electron spectroscopy (AES) during isothermal heat treatments in the 438-563 K temperature range. Using plausible simplifying assumptions, the activation energy of the product of the grain boundary (GB) diffusion coefficient and k' (k' = c{sub s}/c{sub gb}; c{sub s} and c{sub gb} are the surface and GB concentration, respectively) was calculated (0.99 {+-} 0.08 eV) from the evaluated saturation coefficients of the surface accumulation. This energy, for weak temperature dependence of k', is approximately equal to the activation energy of the GB diffusion.

  7. Analytical model for intergrain expansion and cleavage: random grain boundaries

    International Nuclear Information System (INIS)

    A description of rigid-body grain boundary relaxation and cleavage in tungsten is performed using a pair-wise Morse interatomic potential in real and reciprocal spaces. Cleavage energies and grain boundary dilatation of random grain boundaries were formulated and computed using atomic layer interaction energies. These values were determined using a model for a relaxed random grain boundary that consists of rigid grains on either side of the boundary plane that are allowed to float to reach the equilibrium position. Expressions are given that describe in real space the energy of interatomic interaction on random grain boundaries with twist orientation. It was shown that grain-boundary expansion and cleavage energies of the most widespread random grain boundaries are mainly determined by grain boundary atomic density

  8. Properties of the quantum Hall effect of the two-dimensional electron gas in the n-inversion layer of InSb grain boundaries under high hydrostatic pressure

    International Nuclear Information System (INIS)

    The magnetotransport properties of the two-dimensional electron gas (2DEG) confined at the interface of the grain boundary in p-type InSb bicrystals are investigated. Under high hydrostatic pressures and in high magnetic fields (B > 5 T) the integral quantum Hall regime is reached, where the Hall resistance ρxy is quantized to h/e2j (j is the number of filled Landau levels of the 2DEG). In this high field regime detailed measurements are given of the resistivity ρxx and the Hall resistance ρxy as function of temperature T and current density jx. An unexpected high accuracy of the Hall resistance ρxy at magnetic field values close to a fully occupied Landau level is found, despite the high value of the diagonal resistivity ρxx. At high current densities jx in the quantum Hall regime (j = 1) a sudden breakdown of the quantized resistance value associated with a jump-like switching to the next lower quantized value h/2e2 is observed. A simple macroscopic picture is proposed to account for these novel transport properties associated with the quantum Hall effect. (author)

  9. Grain boundary electrochemistry of {beta}-type Nb-Ti alloy using a scanning droplet cell

    Energy Technology Data Exchange (ETDEWEB)

    Woldemedhin, Michael Teka; Hassel, Achim Walter [Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria); Max-Planck-Institut fuer Eisenforschung GmbH, Max Planck Str. 1, 40237 Duesseldorf (Germany); Raabe, Dierk [Max-Planck-Institut fuer Eisenforschung GmbH, Max Planck Str. 1, 40237 Duesseldorf (Germany)

    2011-06-15

    Localized oxide spots were grown at the grain boundaries of a technically relevant 30 at.% Nb-Ti {beta}-type titanium alloy to study the local electrochemical response. The grain boundaries selected were combinations of grains having different orientations and grain boundary angle. Crystallographic information of the grains and boundary angles were revealed by electron back scattering diffraction (EBSD) technique. Cyclic voltammetry is the electrochemical technique used to grow the oxides starting from 0 V and increasing the potential in steps of 1 V till 8 V at a scan rate of 100 mV s{sup -1} in an acetate buffer of pH 6.0. Electrochemical impedance spectroscopy was used to investigate the electrical properties of the oxide/electrolyte interface in the frequency range between 100 kHz and 100 mHz. Important oxide parameters such as formation factor and dielectric number were determined from these measurements. Significant differences were observed for different grain boundaries. The semiconducting properties of the oxides at the grain boundaries were assessed by using Mott-Schottky analysis on a potentiostatically grown oxide. All the oxides showed n-type semiconducting properties where the donor concentration varies with the grain boundaries mentioned above. A flat band potential -0.25 {+-} 0.02 V versus standard hydrogen electrode is more or less the same for all the boundaries studied. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Challenges of interfacial classification for grain boundary engineering

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Paidar, Václav

    2005-01-01

    Roč. 21, č. 4 (2005), s. 393-398. ISSN 0267-0836 R&D Projects: GA ČR(CZ) GA106/02/0253 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain boundary classification * grain boundary engineering * grain boundary segregation * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.639, year: 2005

  11. High-strength chemical-vapor-deposited graphene and grain boundaries.

    Science.gov (United States)

    Lee, Gwan-Hyoung; Cooper, Ryan C; An, Sung Joo; Lee, Sunwoo; van der Zande, Arend; Petrone, Nicholas; Hammerberg, Alexandra G; Lee, Changgu; Crawford, Bryan; Oliver, Warren; Kysar, Jeffrey W; Hone, James

    2013-05-31

    Pristine graphene is the strongest material ever measured. However, large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain grain boundaries that can potentially weaken the material. We combined structural characterization by means of transmission electron microscopy with nanoindentation in order to study the mechanical properties of CVD-graphene films with different grain sizes. We show that the elastic stiffness of CVD-graphene is identical to that of pristine graphene if postprocessing steps avoid damage or rippling. Its strength is only slightly reduced despite the existence of grain boundaries. Indentation tests directly on grain boundaries confirm that they are almost as strong as pristine. Graphene films consisting entirely of well-stitched grain boundaries can retain ultrahigh strength, which is critical for a large variety of applications, such as flexible electronics and strengthening components. PMID:23723231

  12. Effect of grain boundary on the mechanical behaviors of irradiated metals: a review

    Science.gov (United States)

    Xiao, XiaZi; Chu, HaiJian; Duan, HuiLing

    2016-06-01

    The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale.

  13. Grain Boundary Character Distributions in Nanocrystalline Metals Produced by Different Processing Routes

    Science.gov (United States)

    Bober, David B.; Khalajhedayati, Amirhossein; Kumar, Mukul; Rupert, Timothy J.

    2016-03-01

    Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantly random high angle (73 pct). These grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.

  14. UHV-cluster-tool for fabrication of thin film structures and transport- and noise properties of YBa2Cu3O7-δ grain boundary-SQUIDs

    International Nuclear Information System (INIS)

    A UHV-thin-film-deposition system for the fabrication of thin film structures of metals and oxides was designed and optimized. For oxide materials, Pulsed Laser Deposition (PLD) was implemented. Epitaxial thin film growth can be analyzed during the PLD process by high-pressure RHEED (Reflection High-Energy Electron Diffraction). Furthermore layer-by-layer growth can be triggered by Pulsed Laser Intervall Deposition (PLiD). Heteroepitaxial multilayers can be fabricated automatically. Metal thin films can be grown by planar magnetron sputtering and by electron beam evaporation. Furthermore the system contains an rf-plasma source for surface cleaning and Ion Beam Etching (IBE). The three different deposition techniques are located in separate vacuum chambers which are connected by a central handling chamber allowing to combine all these processes in-situ. Furthermore superconducting quantum interference devices (SQUIDs) were fabricated out of epitaxially grown high-temperature superconducting YBa2Cu3O7-films on bicrystals. The SQUIDs were structured using a combined process of ion milling and chemical wet etching. By this combined etching process, edge signals that appear during imaging of flux quanta by low temperature scanning microscopy can be avoided. The transport- and noise properties of the SQUIDs were investigated. (orig.)

  15. Large Tc depression at low angle [100] tilt grain boundaries in bulk Bi2Sr2CaCu2O8+δ bicrystals

    International Nuclear Information System (INIS)

    Large depression of Tc at 7 degree [100] tilt grain boundaries was observed in bulk Bi2Sr2CaCu2O8+δ (Bi2212) bicrystals by measuring the zero-field electrical transport properties of the grain boundaries and the constituent single crystals over an extended range of currents and voltages. The Tc-depressed region was determined to be around 20 nm, comparable to the width of the strain field associated with the observed array of grain-boundary dislocations. Superconducting coupling of the grain boundaries increases sharply as temperature decreases below the grain-boundary Tc congruent 68 K. copyright 1997 American Institute of Physics

  16. Micromechanical testing of stress corrosion cracking of individual grain boundaries

    International Nuclear Information System (INIS)

    Grain boundaries of different misorientation and chemistry have differing susceptibilities to stress corrosion cracking but carrying out mechanical tests on individual grain boundaries of known character has until now been very difficult. We present a method for manufacturing specimens containing a single grain boundary (in 304 stainless steel) using focused ion beam machining. A nanoindenter/atomic force microscope was used to drive controlled grain boundary crack growth under load in an active solution. Scanning electron microscopy examination confirmed the growth of the crack along the grain boundary.

  17. Twin boundary interactions with grain boundaries investigated in pure rhenium

    International Nuclear Information System (INIS)

    The mechanical behavior of pure rhenium was investigated using uniaxial compression tests, transmission electron microscopy and electron backscatter diffraction characterization. The plasticity was characterized by a large amount of twin formation and propagation, including twin transmission across grain boundaries. In-depth analysis of the interactions of {112¯1}〈1¯1¯26〉 twins with grain boundaries found that grain boundaries with misorientation angles below ∼25° allowed twin transmission, while grain boundaries with higher angles did not. Similar to dislocation interactions with grain boundaries, twin transmission was largely dictated by the minimization of the angle between the shear vectors of the incoming and outgoing twins

  18. Grain Boundary Traction Signatures: Quantitative Predictors of Dislocation Emission

    Science.gov (United States)

    Li, Ruizhi; Chew, Huck Beng

    2016-08-01

    We introduce the notion of continuum-equivalent traction fields as local quantitative descriptors of the grain boundary interface. These traction-based descriptors are capable of predicting the critical stresses to trigger dislocation emissions from ductile ⟨110 ⟩ symmetrical-tilt nickel grain boundaries. We show that Shockley partials are emitted when the grain boundary tractions, in combination with external tensile loading, generate a resolved shear stress to cause dislocation slip. The relationship between the local grain boundary tractions and the grain boundary energy is established.

  19. Atom probe study of grain boundary segregation in technically pure molybdenum

    International Nuclear Information System (INIS)

    Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitive techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores. - Highlights: • First study of grain boundary segregation in molybdenum by atom probe • Site-specific preparation technique by FIB and TEM successfully developed • Grain boundary segregation of

  20. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  1. A TEM and DLTS study of a near. Sigma. 25 CdTe bicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Haasen, P. (Inst. fuer Metallphysik, Univ. Goettingen (Germany))

    1991-11-16

    Cadmium precipitates are observed at the grain boundary (GB) of a CdTe bicrystal by means of transmission electron microscopy (TEM). In a simple model based on the theory of electron hopping, electrons can be excited by thermal activation and flow from boundary states to precipitates in the boundary. This model gives, in particular, a simple explanation for the emission properties of the precipitates, as determined by deep-level-transient spectroscopy (DLTS) on the bicrystal. (orig.).

  2. Randomized Grain Boundary Liquid Crystal Phase

    Science.gov (United States)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  3. Liquid Nucleation at Superheated Grain Boundaries

    Science.gov (United States)

    Frolov, T.; Mishin, Y.

    2011-04-01

    Grain boundaries with relatively low energies can be superheated above the melting temperature and eventually melt by heterogeneous nucleation of liquid droplets. We propose a thermodynamic model of this process based on the sharp-interface approximation with a disjoining potential. The distinct feature of the model is its ability to predict the shape and size of the critical nucleus by using a variational approach. The model reduces to the classical nucleation theory in the limit of large nuclei but is more general and remains valid for small nuclei. Contrary to the classical nucleation theory, the model predicts the existence of a critical temperature of superheating and offers a simple formula for its calculation. The model is tested against molecular dynamic simulations in which liquid nuclei at a superheated boundary were obtained by an adiabatic trapping procedure. The simulation results demonstrate a reassuring consistency with the model.

  4. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  5. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Chiu, Ming-Hui; Li, Ming-Yang; Zhao, Jiong; Perello, David J; Cichocka, Magdalena Ola; Oh, Hye Min; Chae, Sang Hoon; Jeong, Hye Yun; Yao, Fei; Li, Lain-Jong; Lee, Young Hee

    2014-11-25

    Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due to accessibility of all the atoms viable to ambient gases, and therefore, there is no guarantee that impurities and defects such as vacancies, grain boundaries, and wrinkles behave as those of ideal bulk. On the other hand, this could be advantageous in engineering such defects. Here, we report a method of observing grain boundary distribution of monolayer TMdCs by a selective oxidation. This was implemented by exposing directly the TMdC layer grown on sapphire without transfer to ultraviolet light irradiation under moisture-rich conditions. The generated oxygen and hydroxyl radicals selectively functionalized defective grain boundaries in TMdCs to provoke morphological changes at the boundary, where the grain boundary distribution was observed by atomic force microscopy and scanning electron microscopy. This paves the way toward the investigation of transport properties engineered by defects and grain boundaries. PMID:25343242

  6. Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy

    International Nuclear Information System (INIS)

    Highlights: ► Grain boundary segregation in superalloys can be decreased by controlling of the chemical composition of alloys. ► One of the most effective element on decreasing of grain boundary segregation is Molybdenum. ► The Mo addition up to 6.7 % have a suitable effect on decreasing of grain boundary segregation of other elements.. ► The partitioning coefficients of all elements except Fe and Ni are less than one. - Abstract: In this paper, the effect of molybdenum on the grain boundary segregation of other elements was studied in Incoloy 901 superalloy. Initially, five alloys were prepared with different percentages of Mo by using a vacuum induction furnace. Then, these alloys were remelted by Electro-slag remelting (ESR) process and after homogenizing at 1160 °C for 2 h followed by air cooling, were rolled. The effect of Mo on segregation of elements was evaluated with Scanning Electron Microscopy, Linear Analysis, and the mechanical tests. The results showed that the grain boundary segregations of elements in Incoloy 901 superalloy were decreased by increasing of molybdenum content up to 6.7% and the mechanical properties (tensile and hardness properties) were improved. Also, the segregations of elements were increased by increasing the percentage of Mo from 6.7 to 7.5, and the mechanical properties were reduced

  7. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides

    KAUST Repository

    Ly, Thuchue

    2014-11-25

    Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due to accessibility of all the atoms viable to ambient gases, and therefore, there is no guarantee that impurities and defects such as vacancies, grain boundaries, and wrinkles behave as those of ideal bulk. On the other hand, this could be advantageous in engineering such defects. Here, we report a method of observing grain boundary distribution of monolayer TMdCs by a selective oxidation. This was implemented by exposing directly the TMdC layer grown on sapphire without transfer to ultraviolet light irradiation under moisture-rich conditions. The generated oxygen and hydroxyl radicals selectively functionalized defective grain boundaries in TMdCs to provoke morphological changes at the boundary, where the grain boundary distribution was observed by atomic force microscopy and scanning electron microscopy. This paves the way toward the investigation of transport properties engineered by defects and grain boundaries. (Figure Presented).

  8. Ab initio calculations of grain boundaries in bcc metals

    Science.gov (United States)

    Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz

    2016-03-01

    In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.

  9. Mathematical simulation of point defect interaction with grain boundaries

    International Nuclear Information System (INIS)

    Published works, where the interaction of point defects and grain boundaries was studied by mathematical simulation methods, have been analysed. Energetics of the vacancy formation both in nuclei of large-angle special grain boundaries and in lattice regions adjoining them has been considered. The data obtained permit to explain specific features of grain-boundary diffusion processes. Results of mathematical simulation of the interaction of impurity atoms and boundaries have been considered. Specific features of the helium atom interaction with large-angle grain boundaries are analysed as well

  10. Measurement of krypton grain-boundary inventories in CANDU fuel

    International Nuclear Information System (INIS)

    A technique for measuring the Kr-85 grain-boundary inventory in irradiated fuel based on the conversion of UO2 to U3O8 at low temperatures has been improved. The improvements include: 1) the use of a tracer isotope to account for release from the matrix during measurement of the grain-boundary inventory and 2) the cutting of samples from known locations. With these improvements it is possible to measure radial variations in the grain-boundary inventory. The measurements of Kr-85 grain-boundary inventory can be combined with gamma mapping and ceramography to allow investigation of the connection between microstructure and fission-product distribution. (author)

  11. Grain-boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel 2; Effects of grain-boundary nonstoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Y.M. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Materials Science and Engineering); Kingery, W.D. (Arizona Univ., Tucson, AZ (USA))

    1990-05-01

    The grain-boundary chemistry of magnesium aluminate spinel solid solutions MgO {center dot} nAl{sub 2}O{sub 3} has been investigated in order to understand the mechanism of grain-boundary migration. It is found that although segregation of impurity Ca and Si is common, much larger deviations in grain-boundary stoichiometry are present. There is an excess of Al and O relative to Mg at grain boundaries in all compositions. Grain-boundary migration appears to be rate-limited by solute drag from intrinsic defects accommodating lattice nonstoichiometry, rather than by extrinsic solutes, consistent with the observed impurity tolerance of grain-boundary mobility. Different rate-limiting defects are proposed for magnesia-rich and alumina-rich spinels.

  12. Atomistic studies of grain boundaries and heterophase interfaces in alloys and compounds. Final report, July 1987-August 1998

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, Vaclav

    1998-08-01

    The overarching goal of the research supported by this grant was investigation of the structure and properties of interfaces in multicomponent systems by atomistic modeling. Initially, the research was devoted to studies of segregation to grain boundaries in binary disordered alloys. The next step was then studies of the structure and properties of grain boundaries in ordered compounds, specifically Ni3Al and NiAl, and grain boundary segregation in these compounds in the case of off-stoichiometry. Finally, the structure of Nb/sapphire interfaces, in particular the core configurations of the misfit dislocations, was studied.

  13. Grain-boundary layering transitions and phonon engineering

    Science.gov (United States)

    Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2016-09-01

    We employ semi-grand canonical Monte Carlo simulation to investigate layering transitions at grain boundaries in a prototypical binary alloy. We demonstrate the existence of such transitions among various interfacial states and examine the role of elastic fields in dictating state equilibria. The results of these studies are summarized in the form of diagrams that highlight interfacial state coexistence in this system. Finally, we examine the impact of layering transitions on the phononic properties of the system, as given by the specific heat and, by extension, the thermal conductivity. Thus, it is suggested that by inducing interfacial layering transitions via changes in temperature or pressure, one can thereby engineer thermodynamic and transport properties in materials.

  14. Increase of Grain Boundary Mobility by Radiation Damage under Thermal Gradient Condition using Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woongkee; Kaviany, Massoud Kaviany; Shim, Jihoon [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2015-05-15

    Most transformations of microstructure, such as recrystallization, grain growth are based on migration of grain boundaries. These transformations greatly influence on thermal, electrical transport and mechanical properties of materials. Material industries always set aim to design and produce decent materials by controlling microstructure evolution under various conditions. Since understanding grain boundary migration is critical for predicting the microstructural evolution in material, it has been very widely investigated for several decades. Also simple information from GB migration can give the clue to depict complicated and scale-up microstructural evolution. In this work, we investigated the grain boundary migration after the radiation damage. Without radiation damage, thermal gradient driving force was insufficient to cause the movement of grain boundary. However, with introduction of radiation damage, grain boundary showed the migration behavior while it is restored from damaged state. This is due to the fact that kinetic energy of energetic particles trigger the migration of GB by increasing temperature at GB region enormously. Rapid collision supplies the energy to exceed energy barrier to make the movement of migration As temperature of local region goes up due to radiation damage, mobility of GB should rise according to the eq.2. Therefore, radiation damage act as the trigger of local gratin boundary migration.

  15. Grain boundary strength as point defect sink strength

    International Nuclear Information System (INIS)

    Sink strength of spherical grain boundary as an absolutely absorbing surface and as finite thickness wall consisting of the edge dislocations are considered. The values of the grain boundary sink strength are shown to be critically dependent on the point defect recombination degree

  16. Calculation of local elastic constants at a metallic grain boundary

    International Nuclear Information System (INIS)

    A new atomistic-simulation method for calculating the full local elastic-constant tensor in terms of local stress and local strain for inhomogeneous systems is described. Results of simulations of an isolated high-angle twist grain boundary are presented. A dramatic reduction in resistance to shear parallel to the grain boundary is observed, and its relation to structural disorder is discussed

  17. Critical currents across low-angle grain boundaries in YBCO

    International Nuclear Information System (INIS)

    The following topics were covered in this thesis: Currents in HTSC, Shubnikov phase, HTSC thin films, magneto-optical Faraday effect, current density distribution, flux density, grain boundaries in YBa2Cu3O7-x (YBCO), currents across grain boundaries, planar defect (WL)

  18. Grain-boundary melting: A Monte Carlo study

    DEFF Research Database (Denmark)

    Besold, Gerhard; Mouritsen, Ole G.

    1994-01-01

    Grain-boundary melting in a lattice-gas model of a bicrystal is studied by Monte Carlo simulation using the grand canonical ensemble. Well below the bulk melting temperature T(m), a disordered liquidlike layer gradually emerges at the grain boundary. Complete interfacial wetting can be observed...

  19. Boundary plane distribution for Σ13 grain boundaries in magnesium

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andriy; Molnár, P.; Lejček, P.

    2014-01-01

    Roč. 137, DEC (2014), s. 102-105. ISSN 0167-577X R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : magnesium * grain boundaries * CSL * Grain boundary plane Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) Impact factor: 2.489, year: 2014

  20. Comparative study of grain-boundary migration and grain-boundary self-diffusion of [0 0 1] twist-grain boundaries in copper by atomistic simulations

    International Nuclear Information System (INIS)

    Molecular-dynamics simulations were used to study grain-boundary migration as well as grain-boundary self-diffusion of low-angle and high-angle [0 0 1] planar twist grain boundaries (GBs) in copper. Elastic strain was imposed to drive the planar [0 0 1] twist GBs. The temperature dependence of the GB mobility was determined over a wide misorientation range. Additionally grain-boundary self-diffusion was studied for all investigated [0 0 1] planar twist GBs. A comparison of the activation energies determined shows that grain-boundary migration and self-diffusion are distinctly different processes. The behavior of atoms during grain-boundary migration was analyzed for all studied GBs. The analysis reveals that usually in absolute pure materials high-angle planar [0 0 1] twist GBs move by a collective shuffle mechanism while low-angle GBs move by a dislocation based mechanism. The obtained activation parameters were analyzed with respect to the compensation effect

  1. Experimental approaches for probing interfaces and grain boundaries

    International Nuclear Information System (INIS)

    This paper focuses its attention on several research efforts performed by the authors and colleagues whose primary aim is probing interfacial and grain boundary properties. The first investigations described pertain to impurity segregation induced embrittlement which were modeled using thermodynamic considerations and were characterized by fracture testing using Auger electron spectroscopy (AES). Localized interface chemical characterization is essential in this research. The second investigation focuses on interface/impurity interaction determination. Extended X-Ray Absorption Fine Structure (EXAFS), a structure characterization tool, was used to determine the local environment of impurities in metal-impurity-metal laminate composites, where the impurities were in monolayer to submonolayer interface concentrations. The third study pertains to the interface fracture in metal-matrix (metal/metal oxide/graphite) composites where a correlation was made between electronic states and fracture path

  2. Interstitial clusters on Σ = 11(113) grain boundary in copper: Geometric structure, stability, and ability to annihilate vacancies

    Science.gov (United States)

    Liu, Liangliang; Liu, Qin; Wang, Zhu; Tang, Zheng

    2016-02-01

    The properties of interstitial clusters on Σ = 11 (113) grain boundary (GB) in copper are studied by first-principle calculations. The results show that the interstitial atoms on GB plane energetically tend to accumulate into a cluster. The geometric structures of interstitial clusters prefer to present in a line along the direction [ 1 1 bar 0] on Σ = 11 GB plane if the grain boundary and neighbor lattices remain undamaged, and the stability of clusters increases with their elongation. The ability of interstitials in clusters to annihilate vacancies is decreased compared with isolated interstitials, however, interstitial clusters still could efficiently heal vacancies within a certain distance from grain boundary.

  3. Diffusion behaviors of helium atoms at two Pd grain boundaries

    Institute of Scientific and Technical Information of China (English)

    XIA Ji-xing; HU Wang-yu; YANG Jian-yu; AO Bing-yun

    2006-01-01

    The diffusion behaviors of helium atoms at two symmetric grain boundaries (Σ5{210} and Σ3 {112}) of Pd were investigated using molecular dynamics simulations through an analytical embedded-atom method(MAEAM) model. The simulations demonstrate that the interstitial helium atoms are easily trapped at the grain boundaries and precipitated into clusters. Due to the closed-shell electronic configurations of both helium and palladium,Pd grain boundaries yield strong capability of retaining helium atoms. By calculating the mean square displacements(MSD) of an interstitial helium atom at the grain boundaries,the diffusion coefficients were determined,and the linear fits to Arrhenius relation. The diffusion activation energies of interstitial helium atom at these two Pd grain boundaries were also evaluated.

  4. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.

    Science.gov (United States)

    He, Mo-Rigen; Samudrala, Saritha K; Kim, Gyuseok; Felfer, Peter J; Breen, Andrew J; Cairney, Julie M; Gianola, Daniel S

    2016-01-01

    The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries. Site-specific nanoindentation leads to grain growth that is retarded by impurities, and enables quantification of the critical stress for the onset of grain boundary migration. Our results show that a critical excess of impurities is required to stabilize interfaces in nanocrystalline materials against mechanical driving forces, providing new insights to guide control of deformation mechanisms and tailoring of mechanical properties apart from grain size alone. PMID:27071458

  5. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen

    Science.gov (United States)

    He, Mo-Rigen; Samudrala, Saritha K.; Kim, Gyuseok; Felfer, Peter J.; Breen, Andrew J.; Cairney, Julie M.; Gianola, Daniel S.

    2016-04-01

    The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries. Site-specific nanoindentation leads to grain growth that is retarded by impurities, and enables quantification of the critical stress for the onset of grain boundary migration. Our results show that a critical excess of impurities is required to stabilize interfaces in nanocrystalline materials against mechanical driving forces, providing new insights to guide control of deformation mechanisms and tailoring of mechanical properties apart from grain size alone.

  6. Grain boundary premelting and activated sintering in binary refractory alloys

    Science.gov (United States)

    Shi, Xiaomeng

    Quasi-liquid intergranular film (IGF) which has been widely observed in ceramic systems can persist into sub-solidus region whereby an analogy to Grain boundary (GB) premelting can be made. In this work, a grain boundary (GB) premelting/prewetting model in a metallic system was firstly built based on the Benedictus' model and computational thermodynamics, predicting that GB disordering can start at 60-85% of the bulk solidus temperatures in selected systems. This model quantitatively explains the long-standing mystery of subsolidus activated sintering in W-Pd, W-Ni, W-Co, W-Fe and W-Cu, and it has broad applications for understanding GB-controlled transport kinetics and physical properties. Furthermore, this study demonstrates the necessity of developing GB phase diagrams as a tool for materials design. Subsequently, Grain boundary (GB) wetting and prewetting in Ni-doped Mo are systematically evaluated via characterizing well-quenched specimens and thermodynamic modeling. In contrast to prior reports, the delta-NiMo phase does not wet Mo GBs in the solid state. In the solid-liquid two-phase region, the Ni-rich liquid wets Mo GBs completely. Furthermore, high-resolution transmission electron microscopy demonstrates that nanometer-thick quasi-liquid IGFs persist at GBs into the single-phase region where the bulk liquid phase is no longer stable; this is interpreted as a case of GB prewetting. An analytical thermodynamic model is developed and validated, and this model can be extended to other systems. Furthermore, the analytical model was refined based upon Beneditus' model with correction in determining interaction contribution of interfacial energy. A calculation-based GB phase diagram for Ni-Mo binary system was created and validated by comparing with GB diffusivities determined through a series of controlled sintering experiments. The dependence of GB diffusivity on doping level and temperature was examined and compared with model-predicted GB phase diagram. The

  7. The effect of grain boundary chemistry on the slip transmission process through grain boundaries in Ni3Al

    International Nuclear Information System (INIS)

    This paper reports on the conditions established in disordered FCC systems for predicting the slip system that will be activated by a grain boundary to relieve a local stress concentration that have been applied to the ordered FCC alloy Ni3Al. The slip transfer behavior in hypo-stoichiometric Ni3Al with (0.2 at. %B) and without boron was directly observed by performing the deformation experiments in situ in the transmission electron microscope. In the boron-free and boron-doped alloys, lattice dislocations were incorporated in the grain boundary, but did not show evidence of dissociation to grain boundary dislocations or of movement in the grain boundary plane. The stress concentration associated with the dislocation pileup at the grain boundary are relieved by the emission of dislocations from the grain boundary in the boron-doped alloy. The slip system initiated in the adjoining grain obeyed the conditions established for disordered FCC systems. In the boron-free alloy, the primary stress relief mechanism was grain-boundary cracking, although dislocation emission from the grain boundary also occurred and accompanied intergranular crack advance

  8. Electrical properties of single CdTe nanowires

    OpenAIRE

    Elena Matei; Camelia Florica; Andreea Costas; María Eugenia Toimil-Molares; Ionut Enculescu

    2015-01-01

    Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were p...

  9. Interactions of impurities with a moving grain boundary

    International Nuclear Information System (INIS)

    Most theories developed to explain interaction of impurities with a moving grain boundary involve a uniform excess impurity concentration distributed along a planar grain boundary. As boundary velocity increases, the excess impurities exert a net drag force on the boundary until a level is reached whereat the drag force no longer can balance the driving force and breakaway of the boundary from these impurities occurs. In this investigation, assumptions of a uniform lateral impurity profile and a planar grain boundary shape are relaxed by allowing both forward and lateral diffusion of impurities in the vicinity of a grain boundary. It is found that the two usual regions (drag of impurities by, and breakaway of a planar grain boundary) are separated by an extensive region wherein a uniform lateral impurity profile and a planar grain boundary shape are unstable. It is suspected that, in this unstable region, grain boundaries assume a spectrum of more complex morphologies and that elucidation of these morphologies can provide the first definitive description of the breakaway process and insight to more complex phenomena such as solid-solution strengthening, grain growth and secondary recrystallization

  10. Properties of CdTe nanocrystalline thin films grown on different substrates by low temperature sputtering

    Institute of Scientific and Technical Information of China (English)

    Chen Huimin; Guo Fuqiang; Zhang Baohua

    2009-01-01

    CdTe nanocrystalline thin films have been prepared on glass, Si and Al2O3 substrates by radio-frequency magnetron sputtering at liquid nitrogen temperature. The crystal structure and morphology of the films were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The XRD examinations revealed that CdTe films on glass and Si had a better crystal quality and higher preferential orientation along the (111) plane than the Al2O3. FESEM observations revealed a continuous and dense morphology of CdTe films on glass and Si substrates. Optical properties of nanocrystalline CdTe films deposited on glass substrates for different deposited times were studied.

  11. Fission gas bubble percolation on crystallographically consistent grain boundary networks

    Science.gov (United States)

    Sabogal-Suárez, Daniel; David Alzate-Cardona, Juan; Restrepo-Parra, Elisabeth

    2016-07-01

    Fission gas release in nuclear fuels can be modeled in the framework of percolation theory, where each grain boundary is classified as open or closed to the release of the fission gas. In the present work, two-dimensional grain boundary networks were assembled both at random and in a crystallographically consistent manner resembling a general textured microstructure. In the crystallographically consistent networks, grain boundaries were classified according to its misorientation. The percolation behavior of the grain boundary networks was evaluated as a function of radial cracks and radial thermal gradients in the fuel pellet. Percolation thresholds tend to shift to the left with increasing length and number of cracks, especially in the presence of thermal gradients. In general, the topology and percolation behavior of the crystallographically consistent networks differs from those of the random network.

  12. Hyperfine field at grain boundary atoms in iron nanostructures

    International Nuclear Information System (INIS)

    Iron nanocrystallites of ball-milled iron powder, partially crystallized melt quenched amorphous alloys and polycrystalline multilayers were studied. The change in the hyperfine field at iron atoms due to grain boundaries does not exceed the experimental linewidth

  13. Hydrogen effects on nanovoid nucleation at nickel grain boundaries

    International Nuclear Information System (INIS)

    We performed molecular dynamics (MD) simulations to study hydrogen effects on nanovoid nucleation at nickel grain boundaries using an embedded atom method (EAM) potential. Monte Carlo (MC) simulations were performed to introduce hydrogen atoms in low-angle and high-angle symmetrical [0 0 1] tilt boundaries at 300 K for analysis of plasticity and nanovoid nucleation. The simulation results show that hydrogen atoms were trapped at the grain boundaries and reduced the critical stresses and strains for nanovoid nucleation. The MD results also show that the effects of hydrogen on nanovoid nucleation depended on the grain-boundary hydrogen concentration regardless of the grain-boundary misorientations. The MD results were then inserted into a new hydrogen associated void nucleation model that operates as an internal state variable in the context of continuum thermodynamic plasticity

  14. Highly conductive grain boundaries in copper oxide thin films

    Science.gov (United States)

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-06-01

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu2O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu2O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu2O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  15. Grain-boundary diffusion: structural effects, models and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, N L

    1979-01-01

    Grain boundary diffusion phenomena were considered including: anisotropy, effect of orientation, crystallographic transformation, boundary type, dislocation dissociation, pressure, and isotope effects. Diffusivity is different for various boundaries. Dissociated dislocations and stacking faults are not efficient paths for grain boundary diffusion. Results suggest a vacancy mechanism along the dislocation core, and involves atomic jumps away from the back towards the dislocation as well as jumps along the core. Measurements were made on nickel and silver. (FS)

  16. Grain boundaries in ceramics and ceramic-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D.R.; Wolf, D.

    1986-01-01

    Three interfaces exist: the crystal-crystal grain boundary in very pure single-phase ceramics, the crystal-glass-crystal grain boundary in most single-phase and polyphase ceramics, and the ceramic-metal interface. It is needed to correlate their structure and adhesion/failure. Methods for studying the bonding, interfacial structure, and fracture and adhesion are discussed, and recommendations are given. 42 refs. (DLC)

  17. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    Science.gov (United States)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  18. Reconstruction of 3d grain boundaries from rock thin sections, using polarised light

    Science.gov (United States)

    Markus Hammes, Daniel; Peternell, Mark

    2016-04-01

    Grain boundaries affect the physical and chemical properties of polycrystalline materials significantly by initiating reactions and collecting impurities (Birchenall, 1959), and play an essential role in recrystallization (Doherty et al. 1997). In particular, the shape and crystallographic orientation of grain boundaries reveal the deformation and annealing history of rocks (Kruhl and Peternell 2002, Kuntcheva et al. 2006). However, there is a lack of non-destructive and easy-to-use computer supported methods to determine grain boundary geometries in 3D. The only available instrument using optical light to measure grain boundary angles is still the polarising microscope with attached universal stage; operated manually and time-consuming in use. Here we present a new approach to determine 3d grain boundary orientations from 2D rock thin sections. The data is recorded by using an automatic fabric analyser microscope (Peternell et al., 2010). Due to its unique arrangement of 9 light directions the highest birefringence colour due to each light direction and crystal orientation (retardation) can be determined at each pixel in the field of view. Retardation profiles across grain boundaries enable the calculation of grain boundary angle and direction. The data for all positions separating the grains are combined and further processed. In combination with the lateral position of the grain boundary, acquired using the FAME software (Hammes and Peternell, in review), the data is used to reconstruct a 3d grain boundary model. The processing of data is almost fully automatic by using MATLAB®. Only minor manual input is required. The applicability was demonstrated on quartzite samples, but the method is not solely restricted on quartz grains and other birefringent polycrystalline materials could be used instead. References: Birchenall, C.E., 1959: Physical Metallurgy. McGraw-Hill, New York. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M

  19. YSZ thin films with minimized grain boundary resistivity.

    Science.gov (United States)

    Mills, Edmund M; Kleine-Boymann, Matthias; Janek, Juergen; Yang, Hao; Browning, Nigel D; Takamura, Yayoi; Kim, Sangtae

    2016-04-21

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film-substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg(2+) diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary "design" as an attractive method to obtain highly conductive solid electrolyte thin films. PMID:27030391

  20. Misoriented grain boundaries vicinal to the ? twin in nickel Part I: thermodynamics & temperature-dependent structure

    Science.gov (United States)

    O'Brien, Christopher J.; Medlin, Douglas L.; Foiles, Stephen M.

    2016-05-01

    Grain boundary-engineered materials are of immense interest for their corrosion resistance, fracture resistance and microstructural stability. This work contributes to a larger goal of understanding both the structure and thermodynamic properties of grain boundaries vicinal (within ?) to the ?? (coherent twin) boundary which is found in grain boundary-engineered materials. The misoriented boundaries vicinal to the twin show structural changes at elevated temperatures. In the case of nickel, this transition temperature is substantially below the melting point and at temperatures commonly reached during processing, making the existence of such boundaries very likely in applications. Thus, the thermodynamic stability of such features is thoroughly investigated in order to predict and fully understand the structure of boundaries vicinal to twins. Low misorientation angle grain boundaries (?) show distinct ? disconnections which accommodate misorientation in opposite senses. The two types of disconnection have differing low-temperature structures which show different temperature-dependent behaviours with one type undergoing a structural transition at approximately 600 K. At misorientation angles greater than approximately ?, the discrete disconnection nature is lost as the disconnections merge into one another. Free energy calculations demonstrate that these high-angle boundaries, which exhibit a transition from a planar to a faceted structure, are thermodynamically more stable in the faceted configuration.

  1. Size and shape of grain boundary network components and their atomic structures in polycrystalline nanoscale materials

    International Nuclear Information System (INIS)

    Microstructure in polycrystalline materials is composed of grain boundary plane, triple junction line, and vertex point. They are the integral parts of the grain boundary network structure and the foundation for the structure-property relations. In polycrystalline, especially nanocrystalline, materials, it becomes increasingly difficult to probe the atomistic structure of the microstructure components directly in experiment due to the size limitation. Here, we present a numerical approach using pair correlation function from atomistic simulation to obtain the detailed information for atomic order and disorder in the grain boundary network in nanocrystalline materials. We show that the atomic structures in the different microstructural components are related closely to their geometric size and shape, leading to unique signatures for atomic structure in microstructural characterization at nanoscales. The dependence varies systematically with the characteristic dimension of the microstructural component: liquid-like disorder is found in vertex points, but a certain order persists in triple junctions and grain boundaries along the extended dimensions of these microstructure components

  2. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition

    Science.gov (United States)

    Yu, Qingkai; Jauregui, Luis A.; Wu, Wei; Colby, Robert; Tian, Jifa; Su, Zhihua; Cao, Helin; Liu, Zhihong; Pandey, Deepak; Wei, Dongguang; Chung, Ting Fung; Peng, Peng; Guisinger, Nathan P.; Stach, Eric A.; Bao, Jiming; Pei, Shin-Shem; Chen, Yong P.

    2011-06-01

    The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene’s electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman ‘D’ peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.

  3. Investigation of grain boundary chemistry in Al-Li 2195 welds using Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.H. [National Aeronautics and Space Administration, Huntsville, AL (United States). George C. Marshall Space Flight Center

    1996-05-01

    Al-Li alloy 2195 is a low-density material with high fracture toughness that is particularly well-suited for aerospace systems. It will replace Al-Cu alloy 2219 in the Super Light Weight Tank (SLWT), a modified version of the external tank being developed for the Space Shuttle to support Space Station deployment. Recent efforts have focused on joining 2195 with variable polarity plasma arc welding, as well as repairing 2195 welds with tungsten inert gas techniques. During this study, Auger electron spectroscopy (AES) was used to examine grain boundary chemistry in 2195 welds. Results indicated that weld integrity depends on whether (and how much) the grain boundaries are covered with thin films comprised of a mixture of discontinuous Al{sub 2}O{sub 3} in Al (Al/Al{sub 2}O{sub 3}), which form during weld solidification. O was probably introduced as a contaminant in the shielding gases, occurring at low levels considered negligible for Al alloys that do not contain Li. However, oxidation kinetics in 2195 are increased by Li enrichment of small quantities of Al{sub 2}O{sub 3}, further enhancing thin film formation at the grain boundaries. Al{sub 2}O{sub 3} can ultimately occupy sufficient grain boundary area to degrade the material`s mechanical properties, producing negative effects that are compounded by the cumulative heat input of multi-pass repair welding. (orig.)

  4. Phase-field crystal study for the characteristics and influence factors of grain boundary segregation in binary alloys

    International Nuclear Information System (INIS)

    Grain boundary segregation strongly modifies grain boundary behaviors and affects the physical and mechanical properties of solid polycrystalline materials. In this paper, we study the grain boundary segregation characteristics and the variation law of grain boundary segregation with temperature, crystal misorientation angle, undercooling, lattice mismatch and the difference of interspecies bond energy and self-bond energy using the binary-alloy phase-field crystal model. The simulation results show that the solute atoms segregate into individual dislocation regions for the low-angle grain boundary while the solute atoms homogeneously segregate into the entire boundary for the high-angle grain boundary with nonzero initial concentration. The degree of segregation strongly increases when the temperature, the difference of interspecies bond energy and the self-bond energy decrease, and when misorientation and undercooling increase. Small lattice mismatches did not strongly affect segregation; however, the higher mismatch has obvious effects on segregation. Our simulation results agree well with theoretical and experimental results. (paper)

  5. Interaction of shear-coupled grain boundary motion with crack: Crack healing, grain boundary decohesion, and sub-grain formation

    Science.gov (United States)

    Aramfard, Mohammad; Deng, Chuang

    2016-02-01

    Stress-driven grain boundary motion is one of the main mechanisms responsible for microstructural evolution in polycrystalline metals during deformation. In this research, the interaction of shear-coupled grain boundary motion (SCGBM) in face-centered cubic metals with crack, which is a common type of structural defects in engineering materials, has been studied by using molecular dynamics simulations in simple bicrystal models. The influences of different parameters such as metal type, temperature, grain boundary structure, and crack geometry have been examined systematically. Three types of microstructural evolution have been identified under different circumstances, namely, crack healing, grain boundary decohesion, and sub-grain formation. The underlying atomistic mechanisms for each type of SCGBM-crack interaction, particularly grain boundary decohesion and crack healing, have also been examined. It is found that crack healing is generally favoured during the SCGBM-crack interaction at relatively high temperature in metals with relatively low stacking fault energy and grain boundary structure with relatively low misorientation angles. The results of this work may open up new opportunities for healing severely damaged materials.

  6. Theoretical progress in non-equilibrium grain-boundary segregation(II):Micro-mechanism of grain boundary anelastic relaxation and its analytical formula

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Finding the internal-friction peak of grain boundary anelastic relaxation was one of the important breakthroughs in the study of internal friction in the last century.But the micro-mechanism of grain boundary anelastic relaxations is still obscure.Based on the observations of the grain boundary seg-regation or depletion of solute induced by an applied stress,the following micro-mechanism was suggested:grain-boundaries will work as sources to emit vacancies when a compressive stress is exerted on them and as sinks to absorb vacancies when a tensile stress is exerted,inducing grain-boundary depletion or segregation of solute,respectively.The equations of vacancy and solute con-centrations at grain boundaries were established under the equilibrium of grain-boundary anelastic relaxation.With these the kinetic equations were established for grain boundary segregation and depletion during the grain boundary relaxation progress.

  7. Grain boundary high-Tc dc-SQUIDs with self-organized nanocrystals

    International Nuclear Information System (INIS)

    We fabricated and investigated direct current superconducting quantum interference devices (dc-SQUIDs) based on YBa2Cu3O7-x (YBCO) grain boundary Josephson junctions. Directed embedding of gold nanoparticles different sizes can modify the crystalline structure and thus the superconducting properties of the YBCO thin films and grain boundaries. We investigated the growth conditions of these particles as well as their influence on the properties of the YBCO thin films. The variation of the size and distribution of the gold nanoparticles changes the electrical properties of the dc-SQUIDs. For this kind of device the normal resistance, critical current density, the resulting IcRN-product, the London penetration depth and transfer function are analyzed. Furthermore we show noise properties for such modified dc-SQUIDs.

  8. Numerical study of the atomic and electronic structure of some silicon grain boundaries

    International Nuclear Information System (INIS)

    This work contributes to the theoretical study of extended defects in covalent materials. The study is especially devoted to the tilt grain boundaries in silicon as a model material. The theoretical model is based on the self-consistent tight-binding approximation and is applied within two numerical techniques: the fast 'order N' density-matrix method and the diagonalization technique which allows the sampling of the reciprocal space. Total energy parameters of the model have been fitted in order to reproduce the silicon band structure (with a correct gap value) and the transferability of crystalline and mechanical properties of this material. A new type of boundary conditions is proposed and tested. These conditions, named 'ante-periodic' or 'Moebius', allow only one grain boundary per box instead of two and decrease the CPU time by a factor of two. The model is then applied to the study of the Σ=25 [001] (710) grain boundary. The results show the possible presence in this boundary of low energy non-reconstructed atomic structures which are electrically active. This confirms what had been suggested by some experimental observations. The same study is also performed for the Σ=13 [001] (510) grain boundary. In order to compare the intrinsic electrical activity in the previous grain boundaries with the one induced by impurities, a total energy parametrization for the silicon-nickel bond is achieved and used in preliminary calculations. Finally the two variants of the Σ=11 [011] (2-33) interface are studied, especially their respective interfacial energies. The result disagrees with previous calculations using phenomenological potentials. (author)

  9. Global Goss grain growth and grain boundary characteristics in magnetostrictive Galfenol sheets

    International Nuclear Information System (INIS)

    Single Goss grains were globally grown in magnetostrictive Galfenol thin sheets via an abnormal grain growth (AGG) process. The sample behaves like single crystal Galfenol, exhibiting large magnetostriction along the 〈100〉 axes. Small variations in surface energy conditions, which were governed by different flow rates of 0.5% H2S gas in argon during annealing, had a significant impact of the development of AGG. AGG with a fully developed Goss (011) grain over 95% of the sample surface is very reproducible and feasible for a broad range of annealing conditions. In addition, the 〈100〉 orientation of the single-crystal-like Galfenol sheet aligns exactly with the rolling direction, and produces magnetostriction values of ∼300 ppm. AGG often produces isolated grains inside Goss grains due to anisotropic properties of grain boundaries. To better understand island formation mechanisms, grain orientation and grain boundary characteristics of island grains in Goss-oriented Galfenol thin sheets were also investigated. We examined samples annealed either under an argon atmosphere or under a sulfur atmosphere, and characterized the observed island grain boundaries in terms of grain misorientation angles. Trends in measured and simulated data on misorientation angles indicate that the presence of (001) island grain boundaries with angles higher than 45° can be explained by the high energy grain boundary (HEGB) model, whereas (111) boundaries with intermediate angles (20°–45°) cannot. The role of low energy coincident site lattice (CSL) boundaries on AGG in both annealing cases was found to be negligible. (paper)

  10. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    Directory of Open Access Journals (Sweden)

    Ghasem Rezanejade Bardajee

    2013-01-01

    Full Text Available This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs by using poly(acrylic acid grafted onto salep (salep-g-PAA as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR spectrum, thermogravimetric (TG analysis, and transmission electron microscopy (TEM. The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical properties of CdTe QDs. The results showed that the optical properties of CdTe QDs were significantly enhanced by using salep-g-PAA-based biopolymer.

  11. Grain boundaries and glasses: birds of a feather

    Science.gov (United States)

    Zhang, Hao; Srolovitz, David; Douglas, Jack; Warren, James

    2010-03-01

    Polycrystalline materials can be viewed as composites of crystalline ``grains'' separated from one another by thin ``amorphous'' grain boundary (GB) regions. While GBs have been exhaustively investigated at low temperatures (T), where these regions are relatively ordered, much less is known about them at higher T where they exhibit structural disorder, and where characterization methods are limited. The time and spatial scales accessible to molecular dynamics (MD) simulation are appropriate for investigating the dynamical and structural properties of GB at elevated T and we exploit MD to explore basic aspects of GB dynamics as a function of T. It has long been hypothesized, based on the processing characteristics of polycrystalline materials, that GBs have features in common with glass-forming liquids. We find remarkable support for this suggestion, as evidenced by string-like collective motion, transient caging of atom motion, and non-Arrhenius T dependence of GB mobility. Evidently, the frustration caused by the inability of atoms in the GB region to simultaneously order with respect to competing grains is responsible for this similarity. The paradigm that grains are encapsulated by a ``frustrated fluid'' provides a powerful conceptual model of polycrystalline materials.

  12. Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers

    Science.gov (United States)

    Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano

    2016-02-01

    Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.

  13. Quantum Hall effect in polycrystalline CVD graphene: grain boundaries impact

    Science.gov (United States)

    Ribeiro-Palau, Rebeca; Lafont, Fabien; Schopfer, Felicien; Poirier, Wilfrid; Bouchiat, Vincent; Han, Zhen; Cresti, Alessandro; Cummings, Aron; Roche, Stephan

    2014-03-01

    It was demonstrated by Janssen et al. (New J. Phys. 2011) that graphene could surpass GaAs for quantum Hall resistance standards with an accuracy better than 10-10. Graphene should render possible the realization of a standard operating at T > 4 K and B graphene with outstanding electronic transport properties is required. We present measurements performed in large area Hall bars made of polycrystalline CVD graphene on Si/SiO2, with a carrier mobility of 0.6 T-1. Even at 20.2 T and 300 mK, the Hall resistance plateaus are insufficiently quantized at ν = +/- 2 and +/- 6 . This is due to a high dissipation manifested by a longitudinal resistance which does not drop to zero. We pointed out unusual power-law temperature dependencies of Rxx and an exponential magnetic field dependence. We do not observe the common thermally activated or VRH behaviors. This can be attributed to the grain boundaries in the sample that short-circuit the edge states, as supported by our numerical simulations. This reveals new and peculiar aspects of the quantum Hall effect in polycrystalline systems. Another unexpected feature is the observation of the ν = 0 and 1 states in such low mobility systems.

  14. Pipe and grain boundary diffusion of He in UO2.

    Science.gov (United States)

    Galvin, C O T; Cooper, M W D; Fossati, P C M; Stanek, C R; Grimes, R W; Andersson, D A

    2016-10-12

    Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion in [Formula: see text]. Calculations were carried out for the {1 0 0}, {1 1 0} and {1 1 1} [Formula: see text] edge dislocations, the screw [Formula: see text] dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300-3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. An Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundary. PMID:27537341

  15. On transport of helium grain boundaries during irradiation

    International Nuclear Information System (INIS)

    The rate of accumulation of helium at grain boundaries is one of the important parameters determining the integrity and lifetime of the structural components of a fusion reactor. A diffusion calculation is made of the flux of helium to a grain boundary. The flux is found to depend on the gas production rate, the width of the cavity denuded zone and the cavity sink strength in the grain interior. The calculated accumulation of helium is in good agreement with the measured gas content of grain boundaries in Al, PE16 and 316 stainless steel. The flux of helium to grain boundaries increases with helium generation rate but the increase is less than proportional to the generation rate. The loss of helium to grain boundaries during the nucleation of the bubbles within the grains has been estimated; no great loss is expected to occur. However, the loss would be considerably enhanced if any delay in bubble nucleation were to occur due to incubation effects. The role of material variables is found to be difficult to predict at present. (author)

  16. Effect of grain boundary layer strain on the magnetic and transport properties of (100- x) La 0.7Ca 0.3MnO 3/( x) BaTiO 3 composites showing enhanced magnetoresistance

    Science.gov (United States)

    Bose, Esa; Taran, S.; Karmakar, S.; Chaudhuri, B. K.; Pal, S.; Sun, C. P.; Yang, H. D.

    2007-07-01

    A ferromagnetic/ferroelectric composite system, viz. (100- x)La 0.7Ca 0.3 MnO 3 [LCMO]/( x) BaTiO 3 [BTO] (with x=0.0%, 1.0%, 5.0%, 7.5%, 10.0% and 15.0%, in wt%) has been synthesized and the temperature-dependent DC magnetization M( T), resistivity ρ( T), magnetoresistance (MR), and thermoelectric power S( T) have been studied. Both metal-insulator transition temperature ( TMI) and the corresponding Curie temperature ( TC) decrease whereas peak resistivity at TMI increases as x is enhanced from 0.0% to 10.0%. For x>10.0%, this trend of variation is reversed. A maximum three-fold increase of magnetoresistance (MR) is observed (for sample with x=10.0%) due to the addition of ferroelectric (non-magnetic) perovskite BTO (compared to the mother compound LCMO). Interestingly, thermoelectric power S( T) shows a pronounced depression (dip) near the magnetic transition region for the composite samples. The above results have been analyzed considering strain induced by the LCMO/BTO grain boundary layer (BL).

  17. Effect of grain boundary layer strain on the magnetic and transport properties of (100-x) La0.7Ca0.3MnO3/(x) BaTiO3 composites showing enhanced magnetoresistance

    International Nuclear Information System (INIS)

    A ferromagnetic/ferroelectric composite system, viz. (100-x)La0.7Ca0.3 MnO3 [LCMO]/(x) BaTiO3 [BTO] (with x=0.0%, 1.0%, 5.0%, 7.5%, 10.0% and 15.0%, in wt%) has been synthesized and the temperature-dependent DC magnetization M(T), resistivity ρ(T), magnetoresistance (MR), and thermoelectric power S(T) have been studied. Both metal-insulator transition temperature (T MI) and the corresponding Curie temperature (T C) decrease whereas peak resistivity at T MI increases as x is enhanced from 0.0% to 10.0%. For x>10.0%, this trend of variation is reversed. A maximum three-fold increase of magnetoresistance (MR) is observed (for sample with x=10.0%) due to the addition of ferroelectric (non-magnetic) perovskite BTO (compared to the mother compound LCMO). Interestingly, thermoelectric power S(T) shows a pronounced depression (dip) near the magnetic transition region for the composite samples. The above results have been analyzed considering strain induced by the LCMO/BTO grain boundary layer (BL)

  18. Present state of the controversy about the grain boundary relaxation

    International Nuclear Information System (INIS)

    An analysis of the internal friction produced by grain boundary relaxation in metals, alloys and ceramics is presented. The different interpretations given in the literature to relaxation phenomena occurring at temperatures above about half the melting point which include the influence of grain boundaries and their interaction with solutes and precipitates are discussed in detail. A complete set of the experimental data disposable in this field since 1972 until today is reviewed. Finally, some recent experiments are discussed and new ones are suggested. They might solve the actual controversy about the real origin of the relaxation phenomena observed. If this is the case, a considerable amount of information already published can be taken into account with a good degree of confidence. This information contributes to the description of the structure and behaviour of grain boundaries, both being important topics for materials science. (author). 119 refs, 21 figs, 1 tab

  19. Studies of Grain Boundaries in Materials Subjected to Diffusional Creep

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas

    Grain boundaries in crystalline Cu(2%Ni) creep specimens have been studied by use of scanning and transmission electron microscopy in order to establish the mechanism of deformation. Creep rate measurements and dependencies were found to fit reasonably well with the model for diffusional creep...... the activity displayed during diffusional creep testing. It was found that boundaries with low deviation from perfect Σ did not contribute macroscopically to the creep strain. A resist deposition procedure was examined to improve the reference surface grid so as to allow determination of the grain...... boundary plane by use of simple stereomicroscopy directly on the surface. The etched pattern deteriorated heav-ily during creep testing, supposedly because of dislocation creep, due to exces-sive creep stress. Grain boundaries have been studied and characterised by TEM providing an insight into the...

  20. NANOSIZE EFFECT IN GRAIN BOUNDARY MIGRATION OF COPPER

    Institute of Scientific and Technical Information of China (English)

    L. Zhou; X.Q. Wei; N.G. Zhou; D.G. Li

    2004-01-01

    Molecular dynamics simulations of high temperature annealing of copper bicrystals have been carried out. The bicrystals have planar grain boundaries, and the gain size varies in nano range. An EAM (embedded atom method) potential of FS type is used for calculating the interatomic forces. The results show that in nanocrystalline copper, GB migration driven by inter-GB reaction can take place. A critical grain size is identified, below which the inter-GB reaction becomes strong enough to trigger GB motion, which accelerates rapidly and leads to annihilation of the grain boundaries. The critical size is found to be 16 atomic radii. A "through intermediate grain mechanism" is identified for the nano-grain boundary motion observed, which is never reported for GB migrations of conventional polycrystalline metals.

  1. Grain boundary migration during sintering of Mo with Ni additions

    International Nuclear Information System (INIS)

    The development of the microstructure during sintering in the system Mo-Ni was investigated using powders with model geometry. Single crystalline Mo spheres (220 to 250 μm) were mixed with fine Mo powder (5 μm) and Ni (1.5 and 10 wt.%) and then sintered at 1250, 1340 and 14000C up to 2 h. Qualitative and quantitative metallography indicate a rapid movement of the grain boundaries in the Mo. Microhardness measurements and electron microprobe analysis show a difference of No concentration across the graon boundary; this is thought to act as the driving force of enhanced graon baoundary migration. The rapid migration of the grain boundaries is considered as the reason for increased grain boundary diffusivity and thus enhanced densification of Mo in the presence of small Ni contents. (orig.)

  2. Grain boundary engineering technology : materials to reduce recovery boiler maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, K.C.; MacKenzie, C.M. [Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada)

    2001-05-01

    This paper presented a new technology designed to improve the mechanical reliability of recovery boilers. Thermal fatigue and environmentally-assisted stress corrosion cracking often cause cracking in 304L composite tubes in the lower recovery furnace. In March 1999, Babcock and Wilcox Canada created Integran Technologies Inc. with co-shareholders Ontario Power Generation and Nanometals to develop and market advanced materials applications using patented Grain Boundary Engineering (GBE) and nanocrystalline technologies. The main objective was to provide their customers with a better return on equipment investments. GBE is the method by which the local grain boundary structure is characterized and the material processing variables are adjusted to create an optimized grain boundary structure that improves the performance of the material beyond that which would result from conventional processing techniques. The technology has resulted in significant improvements in intergranular corrosion cracking resistance, creep resistance and fatigue resistance. 9 refs., 4 figs.

  3. The potential link between high angle grain boundary morphology and grain boundary deformation in a nickel-based superalloy

    International Nuclear Information System (INIS)

    Focused ion beam (FIB) based serial sectioning was utilized to characterize the morphology of two high angle grain boundaries (HAGB) in a nickel based superalloy, one that experienced grain boundary sliding (GBS) and the other experienced strain accumulation, during elevated temperature constant stress loading conditions. A custom script was utilized to serial section and collect ion-induced secondary electron images from the FIB-SEM system. The MATLAB based MIPARTM software was utilized to align, segment and reconstruct 3D volumes from the sectioned images. Analysis of the 3D data indicates that the HAGB that exhibited GBS had microscale curvature that was planar in nature, and local serrations on the order of ±150 nm. In contrast, the HAGB that exhibited strain accumulation was not planar and had local serrations an order of magnitude greater than the other grain boundary. It is hypothesized that the serrations and the local grain boundary network are key factors in determining which grain boundaries experience GBS during creep deformation

  4. New deformation model of grain boundary strengthening in polycrystalline metals

    International Nuclear Information System (INIS)

    A new model explaining grain boundary strengthening in polycrystalline metals and alloys by strain hardening due to localization of plastic deformation in narrow bands near grain boundaries is suggested. Occurrence of localized deformation is caused by different flow stresses in grains of different orientation. A new model takes into account the active role of stress concentrator, independence of the strengthening coefficient on deformation, influence of segregations. Successful use of the model suggested for explanation of rhenium effect in molybdenum and tungsten is alloys pointed out

  5. Charge carrier transport properties in CdTe measured with time of flight technique

    International Nuclear Information System (INIS)

    The experimental results of charge carrier transport properties obtained in high resistivity CdTe with time of flight technique is reviewed. The data for electrons and holes measured Cl and In doped material are presented. The effect of ionized scattering centers are also analyzed. A comparison between theory and experiment is made

  6. The effect of grain boundaries state on the thermal stability of a submicrocrystalline titanium alloy structure

    Science.gov (United States)

    Chuvil'deev, V. N.; Kopylov, V. I.; Nokhrin, A. V.; Lopatin, Yu. G.; Kozlova, N. A.; Tabachkova, N. Yu.; Semenycheva, A. V.; Smirnova, E. S.; Gryaznov, M. Yu.; Pirozhnikova, O. E.

    2015-06-01

    The thermal stability of the structure and the mechanical properties of submicrocrystalline (SMC) titanium alloy Ti-4Al-2V (industrial designation PT3V) are investigated. The alloy was produced by equal-channel angular pressing (ECAP). It is demonstrated that the enhanced thermal stability of the SMC alloy structure is associated with a change in the concentration of aluminum at the grain boundaries during ECAP.

  7. Formation and Properties of Polycrystalline p-Type High-Conductivity CdTe Films by Coevaporation of CdTe and Te

    Science.gov (United States)

    Hayashi, Toshiya; Hayashi, Hiroaki; Fukaya, Mitsuru; Ema, Yoshinori

    1991-10-01

    Polycrystalline p-type high-dark-conductivity CdTe films have been prepared by coevaporation of CdTe and Te. The structural and electrical properties were investigated. The dark conductivity of the films at 300 K ranged from 6.32× 10-8 to 3.41 S cm-1. The film structure was of the zincblende type with a preferential orientation of the (111) planes parallel to the substrate. The crystallinity was rather good. From the measurements of the carrier concentration versus ambient temperature characteristics, it was found that the high-conductivity p-type conduction of the films was due to the formation of Cd vacancies, acceptors resulting from the coevaporation of CdTe and Te. It is shown that the high-conductivity films obtained are suitable for p-CdTe/n-CdS solar cells.

  8. Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films

    International Nuclear Information System (INIS)

    A new simple route was presented for the preparation of stable fluorescent CdTe/polymethylmethacrylate (CdTe/PMMA) composite films by using hydrophilic thioglycolic acid capped CdTe quantum dots (TGA-CdTe QDs) and polymethylmethacrylate (PMMA) as raw materials. The TGA-CdTe QDs were firstly exchanged with n-dodecanethiol (DDT) to become hydrophobic DDT-CdTe QDs via a ligand exchange strategy, and then incorporated into PMMA matrix to obtain fluorescent CdTe/PMMA composite films. The structure and optical properties of DDT-CdTe QDs and CdTe/PMMA composite films were investigated by XRD, IR, UV and PL techniques. The results indicated that the obtained DDT-CdTe QDs well preserved the intrinsic structure and the maximum emission wavelength of the initial water-soluble QDs and the resulting 6.10 wt% CdTe/PMMA composite film exhibited significantly enhanced PL intensity. Furthermore, the multicolored composite films with green, yellow-green, yellow and orange light emissions were well tuned by incorporating the CdTe QDs of various maximum emission wavelengths. The TEM image demonstrated that the CdTe QDs were well-dispersed in the PMMA matrix without aggregation. Superior photostability of QDs in the composite film was confirmed by fluorescence lifetime measurement. Thermo-gravimetric analysis of CdTe/PMMA composite films showed no obvious enhancement of thermal stability compared with pure PMMA. - Highlights: • Ligand-exchange strategy was used to render CdTe QDs oil-soluble. • CdTe QDs were incorporated into PMMA matrix to fabricate fluorescent films. • The resulting 6.10 wt% CdTe/PMMA film exhibited significantly enhanced PL intensity. • Fluorescent colors of films were tuned by varying the λem of incorporated CdTe QDs

  9. Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanni; Liu, Jianjun, E-mail: jjliu717@aliyun.com; Yu, Yingchun; Zuo, Shengli

    2015-10-25

    A new simple route was presented for the preparation of stable fluorescent CdTe/polymethylmethacrylate (CdTe/PMMA) composite films by using hydrophilic thioglycolic acid capped CdTe quantum dots (TGA-CdTe QDs) and polymethylmethacrylate (PMMA) as raw materials. The TGA-CdTe QDs were firstly exchanged with n-dodecanethiol (DDT) to become hydrophobic DDT-CdTe QDs via a ligand exchange strategy, and then incorporated into PMMA matrix to obtain fluorescent CdTe/PMMA composite films. The structure and optical properties of DDT-CdTe QDs and CdTe/PMMA composite films were investigated by XRD, IR, UV and PL techniques. The results indicated that the obtained DDT-CdTe QDs well preserved the intrinsic structure and the maximum emission wavelength of the initial water-soluble QDs and the resulting 6.10 wt% CdTe/PMMA composite film exhibited significantly enhanced PL intensity. Furthermore, the multicolored composite films with green, yellow-green, yellow and orange light emissions were well tuned by incorporating the CdTe QDs of various maximum emission wavelengths. The TEM image demonstrated that the CdTe QDs were well-dispersed in the PMMA matrix without aggregation. Superior photostability of QDs in the composite film was confirmed by fluorescence lifetime measurement. Thermo-gravimetric analysis of CdTe/PMMA composite films showed no obvious enhancement of thermal stability compared with pure PMMA. - Highlights: • Ligand-exchange strategy was used to render CdTe QDs oil-soluble. • CdTe QDs were incorporated into PMMA matrix to fabricate fluorescent films. • The resulting 6.10 wt% CdTe/PMMA film exhibited significantly enhanced PL intensity. • Fluorescent colors of films were tuned by varying the λ{sub em} of incorporated CdTe QDs.

  10. Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Due to its high scalability and low production cost, CdTe solar cells have shown a very strong potential for large scale energy production. Although the number of modules produced could be limited by tellurium scarcity, it has been reported that reducing CdTe thickness down to 1.5 μm would solve this issue. There are, however, issues to be considered when reducing thickness, such as formation of pinholes, lower crystallization, and different possible effects on material diffusion within the interfaces. In this work, we present the study of CdTe solar cells fabricated by vacuum evaporation with different CdTe thicknesses. Several cells with a CdTe thickness ranging from 0.7 to 6 μm have been fabricated. The deposition process has been optimized accordingly and their physical and electrical properties have been studied. Thin cells show a different electrical behavior in terms of open circuit voltage and fill factor. Efficiencies range from 7% for thin CdTe cells to 13.5% for the standard thickness. - Highlights: ► Ultra thin CdTe absorbers have been prepared and studied. ► Grain size is depending on the CdTe thickness but spread in the grains increases. ► Lattice parameter is reduced only for ultra thin CdTe. ► The band gap reveals an intermixed CdTe absorber. ► The reason for lower efficiency of ultra thin CdTe is explained

  11. Filaments in the twist-grain-boundary smectic A phase

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor; Novotná, Vladimíra; Glogarová, Milada

    2015-01-01

    Roč. 92, č. 3 (2015), "032505-1"-"032505-10". ISSN 1539-3755 R&D Projects: GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : twist- grain -boundary smectic-A phase * filament * dislocation walls Subject RIV: BK - Fluid Dynamics Impact factor: 2.288, year: 2014

  12. Annealing Twinning and the Nucleation of Recrystallization at Grain Boundaries

    DEFF Research Database (Denmark)

    Jones, A R.

    1981-01-01

    Experimental evidence is presented which shows that, in three different low stacking fault energy materials, annealing twins form at grain boundaries during the very early stages of recovery following deformation. These observations provide the basis for the suggestion that twinning at grain...

  13. The influence of grain boundary structure on diffusional creep

    DEFF Research Database (Denmark)

    Thorsen, Peter Anker; Bilde-Sørensen, Jørgen

    A Cu-2wt%Ni-alloy was deformed in tension in the diffusional creep regime (Nabarro-Herring creep). A periodic grid consisting of alumina was deposited on the surface of the creep specimen prior to creep. This makes it possible to separate the deformation caused by grain boundary sliding from the...

  14. Nanosegregation phenomena at grain boundaries of metallic materials

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Janovec, J.; Konečná, R.

    2007-01-01

    Roč. 13, č. 1 (2007), s. 117-130. ISSN 1335-1532 R&D Projects: GA ČR GA202/06/0049 Institutional research plan: CEZ:AV0Z10100520 Keywords : segregation * grain boundaries * prediction * thermodynamics * ferrite alloys Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Kinetics of interstitial segregation in Cottrell atmospheres and grain boundaries

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Zickler, G. A.; Kozeschnik, E.; Fischer, F. D.

    2015-01-01

    Roč. 95, č. 9 (2015), s. 458-465. ISSN 0950-0839 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : segregation * grain boundaries * dislocations * simulation * thermodynamic extremal principle Subject RIV: BJ - Thermodynamics Impact factor: 1.087, year: 2014

  16. A Molecular Dynamics Approach to Grain Boundary Structure and Migration

    DEFF Research Database (Denmark)

    Cotterill, R. M. J.; Leffers, Torben; Lilholt, Hans

    1974-01-01

    It has been demonstrated that grain boundary formation from the melt can be simulated by the molecular dynamics method. The space between two mutually-misoriented crystal slabs was filled with atoms in a random manner and this liquid was then cooled until crystallization occurred. The general...

  17. The SEM-EBIV signals near the grain boundary in a polycrystalline solar cell

    Science.gov (United States)

    Romanowski, A.; Buczkowski, A.

    1985-12-01

    A new technique of EBIV measurements has been proposed. The open-circuit voltage signal modified by a grain boundary (GB) assuming a simple equivalent circuit of a polycrystalline solar cell has been analyzed. The numerical calculations of the voltage contrast as a function of the distance between the electron-hole generation sphere and the GB were performed. The EBIC and EBIV characteristics have been compared on account of their usefulness for evaluating the carrier diffusion length. The recombination velocity at the grain boundary, and the shunt resistance of the cell. It was found that EBIV measurements provided more detailed information about the electrical properties of the GB and the junction parameters of a polycrystalline solar cell.

  18. Segregation and clustering of solutes at grain boundaries in Mg–rare earth solid solutions

    International Nuclear Information System (INIS)

    The present study validates the previously reported investigations about segregation of rare-earth (RE) elements at grain boundaries in Mg–RE alloys and ultimately provides a direct visualization of the distribution of the solute atoms in the structure of a Mg–Gd alloy. It is demonstrated that Gd forms a solid solution within the Mg matrix in addition to substantial segregation at high-angle grain boundaries in the form of 1–2 nm clusters, with a postulated face-centered cubic Gd structure. The results suggest significant implications for the texture development during alloy processing and recrystallization, and thus for the mechanical behavior and properties of Mg–RE alloys

  19. Study by capacitance spectroscopy of electronic levels associated with grain boundaries in germanium

    International Nuclear Information System (INIS)

    This research thesis mainly deals with the application of capacitance spectroscopy for the measurement of interface states. Methods have been developed to determine density and cross sections of electronic capture of interface states, to detect the presence of trap levels associated with localised defects or impurities in the loading area of the grain boundary. The author presents a model of potential barrier associated with the boundary, and reports the study of boundary properties when submitted to a continuous electric voltage. Mechanisms of conduction through the barrier are discussed, and processes of capture and emissions of carriers by interface levels are addressed. A brief study of the boundary behaviour under alternative current is also reported. The next parts report the crystallographic characterization of samples, the results of electrical measurements performed on the grain boundary in conditions of permanent regime (current-voltage characteristics, capacitance-voltage curves), the study of grain boundary electrical properties in transient regime, and the application of capacitance spectroscopy to the measurement of interface states

  20. Grain boundaries in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    The scientific literature on grain boundaries (GBs) in graphene was reviewed. The review focuses mainly on the experimental findings on graphene grown by chemical vapor deposition (CVD) under a very wide range of experimental conditions (temperature, pressure hydrogen/hydrocarbon ratio, gas flow velocity and substrates). Differences were found in the GBs depending on the origin of graphene: in micro-mechanically cleaved graphene (produced using graphite originating from high-temperature, high-pressure synthesis), rows of non-hexagonal rings separating two perfect graphene crystallites are found more frequently, while in graphene produced by CVD—despite the very wide range of growth conditions used in different laboratories—GBs with more pronounced disorder are more frequent. In connection with the observed disorder, the stability of two-dimensional amorphous carbon is discussed and the growth conditions that may impact on the structure of the GBs are reviewed. The most frequently used methods for the atomic scale characterization of the GB structures, their possibilities and limitations and the alterations of the GBs in CVD graphene during the investigation (e.g. under e-beam irradiation) are discussed. The effects of GB disorder on electric and thermal transport are reviewed and the relatively scarce data available on the chemical properties of the GBs are summarized. GBs are complex enough nanoobjects so that it may be unlikely that two experimentally produced GBs of several microns in length could be completely identical in all of their atomic scale details. Despite this, certain generalized conclusions may be formulated, which may be helpful for experimentalists in interpreting the results and in planning new experiments, leading to a more systematic picture of GBs in CVD graphene. (paper)

  1. Dynamical simulation of structural multiplicity in grain boundaries

    International Nuclear Information System (INIS)

    Work on a computer simulation study of a low-energy high-angle boundary structure which is not periodic have been recently reported. This result is of interest since grain boundary structures are usually assumed to have a periodicity corresponding to the appropriate coincidence site lattice (CSL) and many experimental observations of the structure of grain boundaries performed using conventional and high-resolution electron microscopy, electron diffraction and x-ray diffraction appear to support this work. However, this work, using empirical interatomic pair potentials and the relaxation method of molecular statics, have simulated a Σ = 5 36.870 (001) twist boundary and found a low energy structure having a larger repeat cell than the CSL and is composed of two different types of structural unit that are randomly distributed in the boundary plane. This result, which has been termed the multiplicity of grain boundary structures, has also been found in the simulation of tilt boundaries. The multiplicity phenomenon is of special interest in twist boundaries since it is used as a structural model to explain the x-ray scattering from a Σ = 5 boundary in gold. These scattering patterns had previously remained unexplained using stable structures that had simple CSL periodicity. Also, the effect of having a multiple number of low energy structural units coexisting in the grain boundary is of more general interest since it implies that the boundary structures may be quasi-periodic and, in some circumstances, may even result in a roughening of the boundary plane. This paper extends this work by showing, using molecular dynamics, that a multiplicity of structural units can actually nucleate spontaneously in a high-angle grain boundary at finite temperatures

  2. Grain boundary composition and intergranular fracture of steels. Volume 1. Detection of grain boundary segregation in steels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, S.M.; Charlot, L.A.; Thomas, M.T.; Jones, R.H.

    1985-01-01

    Several alternative techniques for the measurement of grain boundary composition in iron-base alloys were evaluated, including Secondary Ion Mass Spectroscopy (SIMS), Analytical Electron Microscopy (AEM), and chemical/electrochemical etching. Potential problems in grain boundary composition measurements of CrMoV and NiCrMoV steels by AES were identified as a result of AES, high-resolution AES, and AEM characterization. Significant differences were identified in comparing peak height ratios on identical specimens using PHI 545, 560, and 595 systems. These differences were due to instrument parameters that are generally not known for any particular AES sysyem. Localized ductile tearing regions and the presence of second phase particles on intergranular faces exposed by fracture led to significant point to point composition variations. Phosphorus levels varied by more than 50% across individual grain boundary facets. Copper-tin intermetallics were observed by AEM in the CrMoV steel and nickel-tin intermetallics in the NiCrMoV steel. Much of the tin documented by AES at grain boundaries could be explained by the presence of these small intermetallic precipitates.

  3. Grain boundary composition and intergranular fracture of steels. Volume 1: Detection of grain boundary segregation in steels

    Science.gov (United States)

    Bruemmer, S. M.; Charlot, L. A.; Thomas, M. T.; Jones, R. H.

    1985-01-01

    Several alternative techniques for the measurement of grain boundary composition in iron-base alloys were evaluated, including Secondary Ion Mass Spectroscopy (SIMS), Analytical Electron Microscopy (AEM), and chemical/electrochemical etching. Potential problems in grain boundary composition measurements of CrMoV and NiCrMoV steels by AES were identified as a result of AES, high-resolution AES, and AEM characterization. Significant differences were identified in comparing peak height ratios on identical specimens using PHI 545, 560, and 595 systems. These differences were due to instrument parameters that are generally not known for any particular AES system. Localized ductile tearing regions and the presence of second phase particles on intergranular faces exposed by fracture led to significant point to point composition varitions. Phosphorus levels varied by more than 50% across individual grain boundary facets. Copper-tin intermetallics were observed by AEM in the CrMoV steel and nickel-tin intermetallics in the NiCrMoV steel. Much of the tin documented by AES at grain boundaries could be explained by the presence of these small intermetallic precipitates.

  4. Improvement of the charge-carrier transport property of polycrystalline CdTe for digital fluoroscopy

    International Nuclear Information System (INIS)

    Minimizing the radiation impact to the patient is currently an important issue in medical imaging. Particularly, in case of X-ray fluoroscopy, the patient is exposed to high X-ray dose because a large number of images is required in fluoroscopic procedures. In this regard, a direct-conversion X-ray sensor offers the advantages of high quantum efficiency, X-ray sensitivity, and high spatial resolution. In particular, an X-ray sensor in fluoroscopy operates at high frame rate, in the range from 30 to 60 image frames per second. Therefore, charge-carrier transport properties and signal lag are important factors for the development of X-ray sensors in fluoroscopy. In this study, in order to improve the characteristics of polycrystalline cadmium telluride (CdTe), CdTe films were prepared by thermal evaporation and RF sputtering. The deposition was conducted to form a CdTeO3 layer on top of a CdTe film. The role of CdTeO3 is not only to improve the charge-carrier transport by increasing the life-time but also to reduce the leakage current of CdTe films by acting as a passivation layer. In this paper, to establish the effect of a thin oxide layer on top of a CdTe film, the morphological and electrical properties including charge-carrier transport and signal lag were investigated by means of X-ray diffraction, X-ray photoemission spectroscopy, and resistivity measurements

  5. Improvement of the charge-carrier transport property of polycrystalline CdTe for digital fluoroscopy

    Science.gov (United States)

    Oh, K. M.; Heo, Y. J.; Kim, D. K.; Kim, J. S.; Shin, J. W.; Lee, G. H.; Nam, S. H.

    2014-05-01

    Minimizing the radiation impact to the patient is currently an important issue in medical imaging. Particularly, in case of X-ray fluoroscopy, the patient is exposed to high X-ray dose because a large number of images is required in fluoroscopic procedures. In this regard, a direct-conversion X-ray sensor offers the advantages of high quantum efficiency, X-ray sensitivity, and high spatial resolution. In particular, an X-ray sensor in fluoroscopy operates at high frame rate, in the range from 30 to 60 image frames per second. Therefore, charge-carrier transport properties and signal lag are important factors for the development of X-ray sensors in fluoroscopy. In this study, in order to improve the characteristics of polycrystalline cadmium telluride (CdTe), CdTe films were prepared by thermal evaporation and RF sputtering. The deposition was conducted to form a CdTeO3 layer on top of a CdTe film. The role of CdTeO3 is not only to improve the charge-carrier transport by increasing the life-time but also to reduce the leakage current of CdTe films by acting as a passivation layer. In this paper, to establish the effect of a thin oxide layer on top of a CdTe film, the morphological and electrical properties including charge-carrier transport and signal lag were investigated by means of X-ray diffraction, X-ray photoemission spectroscopy, and resistivity measurements.

  6. Fe precipitation at the grain boundaries in Zn-reacted Nd-Fe-B magnets: Experimental and first-principles studies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, YuQi; Lu, Zhao; Huang, DongFang; Wang, DongDong; Guo, KeKe; Sun, ZhiQiang; Li, TaoTao [Shool of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou (China); Han, BaoJun [Gannan Normal University, Ganzhou (China); Zhou, Yang [Shool of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou (China)

    2016-01-15

    Traces of non-magnetic atoms at the grain boundaries can effectively increase the coercivity of sintered Nd-Fe-B magnets. These atoms also have chance to occupy crystallographic Fe sites in Nd{sub 2}Fe{sub 14}B, which may force the unbound Fe to precipitate at the grain boundaries and thus destroy the nonmagnetic properties of the grain boundaries. In order to provide the thermodynamic evidences of Fe migration to the grain boundaries, one Zn diffusion reaction in Nd{sub 2}Fe{sub 14}B is investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy experiments, which confirm that 90 atomic percent of Fe is expelled to the grain boundaries. Magnetization measurements show that when Fe atoms precipitate at the grain boundaries, magnet's coercivity rapidly declines. The first-principle calculations using linearized augmented plane wave method show that Zn atoms in 16k1, 8j2, and 4e sites have positive substitution energies and unfavorable for the Zn substitution at these sites, while the substitution energies are negative values and favorable for the Zn substitution at the sites of 8j1, 4c, and 16k2. Our experimental and theoretical calculations indicate that the doped atoms have significant effect on the formation of the Fe-enriched layer at the grain boundary. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Detecting Grain-Boundary Chromium Depletion in Inconel 600

    Science.gov (United States)

    Airey, G. P.; Vaia, A. R.; Pessall, N.; Aspden, R. G.

    1981-11-01

    Techniques to evaluate grain-boundary chromium depletion in Inconel Alloy 600 were investigated. Procedures studied were a modified Huey test, reactivation polarization, magnetic permeability measurements, and eddy current measurements. Results from these tests were correlated with susceptibility to stress-assisted intergranular cracking in polythionic acid. Thermally treated Inconel Alloy 600 steam generator tubing was the principal source of material evaluated, but experimental heats of Ni-Cr-Fe alloys with 8-18 wt.% Cr were prepared to determine the critical chromium level below which stress-assisted intergranular cracking occurs; this critical chromium content was found to be between 9.8 and 11.7 wt.%. All four techniques were considered suitable to evaluate grain-boundary chromium depletion; the modified Huey test and reactivation polarization technique showed a greater sensitivity than the magnetic permeability and eddy current measurements.

  8. Grain boundary engineering to enhance thermal stability of electrodeposited nickel

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    miniaturization of the grains down to nano-meter scale. However, this augments the total grain boundary energy stored in the material, hence, making the material less thermally stable. Coherent twin boundaries are of very low energy and mobility compared to all other boundaries in a FCC material. Accordingly...... interest. The evolution of microstructure in as-deposited and annealed condition was investigated with a combination of complementary microscopic techniques, electron backscatter diffraction (EBSD), electron channelling contrast imaging (ECCI), ion channelling contrast imaging (ICCI), and, for the as-deposited...... state also high resolution transmission electron microscopy (TEM). Based on the obtained results, it is demonstrated that the grain boundary character including the network of special boundaries has a pronounced influence on the thermal stability of the as-deposited microstructure....

  9. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries

    Science.gov (United States)

    Yan, Jianfeng; Heckman, Nathan M.; Velasco, Leonardo; Hodge, Andrea M.

    2016-05-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering.

  10. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries.

    Science.gov (United States)

    Yan, Jianfeng; Heckman, Nathan M; Velasco, Leonardo; Hodge, Andrea M

    2016-01-01

    The sensitization and subsequent intergranular corrosion of Al-5.3 wt.% Mg alloy has been shown to be an important factor in stress corrosion cracking of Al-Mg alloys. Understanding sensitization requires the review of grain boundary character on the precipitation process which can assist in developing and designing alloys with improved corrosion resistance. This study shows that the degree of precipitation in Al-Mg alloy is dependent on grain boundary misorientation angle, adjacent grain boundary planes and grain boundary types. The results show that the misorientation angle is the most important factor influencing precipitation in grain boundaries of the Al-Mg alloy. Low angle grain boundaries (≤15°) have better immunity to precipitation and grain boundary acid attack. High angle grain boundaries (>15°) are vulnerable to grain boundary acid attack. Grain boundaries with adjacent plane orientations near to {100} have potential for immunity to precipitation and grain boundary acid attack. This work shows that low Σ (Σ ≤ 29) coincident site lattice (CSL) grain boundaries have thinner β precipitates. Modified nitric acid mass loss test and polarization test demonstrated that the global corrosion resistance of sputtered Al-Mg alloy is enhanced. This may be attributed to the increased fractions of low Σ (Σ ≤ 29) CSL grain boundaries after sputtering. PMID:27230299

  11. GRAIN BOUNDARY CORROSION, STRUCTURE AND SEGREGATION IN NICKEL BICRYSTALS

    OpenAIRE

    Vignaud, C.; Beaunier, L.; Biscondi, M.

    1990-01-01

    Nickel bicrystals with tilt boundaries are used to study the influence of the structure of the grain boundaries on the intergranular corrosion. An electrochemical test allows to obtain the evolution of the corrosion versus the misorientation of grains and the repartition of elements segregated during the elaboration and / or heat treatment at 800°C. Auger electron spectroscopy (AES) and scanning electron microscopy (SEM) on intergranular fracture surfaces allows a corrosion-segregation-struc...

  12. Grain boundary sliding in beta phase zircaloy-2

    International Nuclear Information System (INIS)

    Grain boundary sliding in zircaloy-2 was investigated in torsion using bamboo-structured wire coiled into helical springs. The rate of sliding is shown to vary with stress raised to a power slightly greater than unity with an activation energy close to that for lattice diffusion. Results are interpreted in terms of sliding controlled by diffusion between undulations in the boundary geometry. The geometry required to satisfy the observed rates of sliding is estimated

  13. Solute interaction in grain boundary segregation and cohesion

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    Zurich : Trans Tech Publications, 2014 - (Šandera, P.), s. 389-392 ISBN 978-3-03785-934-6. ISSN 1013-9826. - (Key Engineering Materials. 592-593). [International Conference on Materials Structure and Micromechanics of Fracture /7./. Brno (CZ), 01.07.2013-03.07.2013] R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : interfacial segregation * grain boundary embrittlemenmt * solute interaction modeling Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    OpenAIRE

    Dong Chen; Fei Gao; Bo Liu

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C in...

  15. Boundary plane distribution for Σ13 grain boundaries in magnesium

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andriy; Molnár, Peter; Lejček, Pavel

    2014-01-01

    Roč. 37, Dec (2014), s. 102-105. ISSN 0167-577X R&D Projects: GA ČR GBP108/12/G043; GA ČR GPP108/12/P054 Institutional support: RVO:68378271 Keywords : magnesium * grain boudaries * csl * grain boundary plane Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.489, year: 2014

  16. Hydrogen embrittlement of a carbon segregated Σ5(310)[001] symmetrical tilt grain boundary in α-Fe

    International Nuclear Information System (INIS)

    The physical and mechanical properties of a Σ5(310)[001] symmetrical tilt grain boundary (STGB) in body centred cubic (bcc) Fe are investigated by means of ab initio calculations with respect to the effect of a varying number of C and H atoms at the grain boundary. The obtained results show that with increasing number of C atoms the grain boundary energy is lowered, and the segregation energy remains negative up to a full coverage of the grain boundary with C. Thus, in a bcc Fe–C system with a sufficient amount of interstitial C, the C segregated state should be considered as the ground state of this interface. Ab initio uni-axial tensile tests of the grain boundary reveal that the work of separation as well as the theoretical strength of the Σ5(310)[001] STGB increases significantly with increasing C content. The improved cohesion due to C is mainly a chemical effect, but the mechanical contribution is also cohesion enhancing. The presence of hydrogen changes the cohesion enhancing mechanical contribution of C to an embrittling contribution, and also reduces the beneficial chemical contribution to the cohesion. When hydrogen is present together with C at the grain boundary, the reduction in strength amounts to almost 20% for the co-segregated case and to more than 25% if C is completely replaced by H. Compared to the strength of the STGB in pure iron, however, the influence of H is negligible. Hence, H embrittlement can only be understood in the three component Fe–C–H system

  17. Grain-boundary-induced melting in quenched polycrystalline monolayers

    Science.gov (United States)

    Deutschländer, Sven; Boitard, Charlotte; Maret, Georg; Keim, Peter

    2015-12-01

    Melting in two dimensions can successfully be explained with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario which describes the formation of the high-symmetry phase with the thermal activation of topological defects within an (ideally) infinite monodomain. With all state variables being well defined, it should hold also as freezing scenario where oppositely charged topological defects annihilate. The Kibble-Zurek mechanism, on the other hand, shows that spontaneous symmetry breaking alongside a continuous phase transition cannot support an infinite monodomain but leads to polycrystallinity. For any nonzero cooling rate, critical fluctuations will be frozen out in the vicinity of the transition temperature. This leads to domains with different director of the broken symmetry, separated by a defect structure, e.g., grain boundaries in crystalline systems. After instantaneously quenching a colloidal monolayer from a polycrystalline to the isotropic fluid state, we show that such grain boundaries increase the probability for the formation of dislocations. In addition, we determine the temporal decay of defect core energies during the first few Brownian times after the quench. Despite the fact that the KTHNY scenario describes a continuous phase transition and phase equilibrium does not exist, melting in polycrystalline samples starts at grain boundaries similar to first-order phase transitions.

  18. Energy conserving orientational force for determining grain boundary mobility

    International Nuclear Information System (INIS)

    Current experimental methods are not able to determine the mobility of flat grain boundaries across the large misorientation phase space. We find that the synthetic driving force method proposed to achieve this feat by simulation has a deficiency concerning numerical accuracy. We introduce a new synthetic driving force method by defining a new way to differentiate between crystal orientations. In contrast to the former method, this has the advantage that energy is correctly preserved during the simulation and is thus more reliable. This also results in a closer match of the applied energy difference to the thermodynamic free energy. This reduces the necessity of a post-simulation correction of the applied energy per atom to resulting driving pressure. We compare the newly proposed version to the old one for two grain boundaries and investigate the influence of simulation parameters on the resulting mobility values. For future simulations using a synthetic grain boundary driving force, we recommend using this newly proposed version over previous methods. (paper)

  19. Grain boundary segregation and intergranular fracture in molybdenum

    International Nuclear Information System (INIS)

    The present paper reports results from a systematic study of segregation and intergranular embrittlement in binary molybdenum-oxygen and ternary molybdenum-oxygen-carbon alloys. The experiments were carried out on 'bamboo' specimens containing a series of identical single grain boundaries traversing their cross-sections. Measurements have been made of the activation energy for oxygen segregation to grain boundaries in the binary alloys. The influence of carbon additions on the level of oxygen segregation and the influence of oxygen segregation on the energy to fracture have been studied. Results from metallographic studies show the effects of segregation on fracture surface topography and dislocation surfaces immediately adjacent to the fracture surfaces. The thermodynamics of oxygen segregation to grain boundaries is considered and the role played by carbon in inhibiting segregation. The influence of segregation on the work of fracture is also considered and it is shown that the reduction in oxygen segregation resulting from the addition of carbon produces small increases in fracture energy. This increases the local stress to propagate a crack sufficiently to promote plastic deformation which blunts the crack tip; this reduces the stress concentration at the crack tip and the applied fracture stress and the work to fracture is thus increased. (author)

  20. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells

    Science.gov (United States)

    Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel

    2015-12-01

    Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.

  1. Diffusive-to-ballistic transition in grain boundary motion studied by atomistic simulations

    International Nuclear Information System (INIS)

    An adapted simulation method is used to systematically study grain boundary motion at velocities and driving forces across more than five orders of magnitude. This analysis reveals that grain boundary migration can occur in two modes, depending upon the temperature (T) and applied driving force (P). At low P and T, grain boundary motion is diffusional, exhibiting the kinetics of a thermally activated system controlled by grain boundary self-diffusion. At high P and T, grain boundary migration exhibits the characteristic kinetic scaling behavior of a ballistic process. A rather broad transition range in both P and T lies between the regimes of diffusive and ballistic grain boundary motion, and is charted here in detail. The recognition and delineation of these two distinct modes of grain boundary migration also leads to the suggestion that many prior atomistic simulations might have probed a different kinetic regime of grain boundary motion (ballistic) as compared to that revealed in most experimental studies (diffusional).

  2. Multiple grain boundary transitions in ceramics: A case study of alumina

    International Nuclear Information System (INIS)

    There is a growing body of the literature that suggests that there are grain boundary structures that exist in ceramic systems that are not predicted by bulk thermodynamics. Transitions between the various grain boundary structures are not well understood either experimentally or theoretically. This study identifies six different types of grain boundary structures present in the alumina system. These grain boundary structures were directly correlated with significantly different grain boundary mobilities. There is a general trend towards increasing grain boundary disorder and increasing grain boundary mobility with increasing temperature. This is the first time such a broad range of behavior has been observed in a single system. The results have many implications on understanding grain boundary transport phenomena in ceramic systems

  3. Materials Design of Microstructure in Grain Boundary and Second Phase Particles

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects:grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.

  4. COBALT SEGREGATION IN CARBIDE GRAIN BOUNDARIES IN WC-Co COMPOSITES

    OpenAIRE

    Vicens, J.; Dubon, A.; Laval, J; Benjdir, M.; Nouet, G.

    1990-01-01

    The cobalt concentration at WC-WC grain boundaries in WC-Co composites was determined via X-ray energy dispersive analysis in STEM. Cobalt profiles were performed-across coincidence grain boundaries Σ2 and Σ5 with a (10(-1)0) prismatic plane. A small cobalt segregation has been detected when dislocations were imaged in the grain boundaries. The cobalt segregation value is compared to the segregation ratio obtained in low angle and general grain boundaries.

  5. EFFECT OF GRAIN BOUNDARY SEGREGATION OF ANTIMONY ON RELAXATION AT GRAIN BOUNDARIES IN SILICON-IRON ALLOYS

    OpenAIRE

    Iwasaki, Y.; Fujimoto, K

    1981-01-01

    A sharp grain boundary peak appears in both 2 and 3% silicon-iron alloys due to a substitutional solute of silicon. This peak is highly sensitive to the segregation of the third element of antimony and, contrary to orthodox solute peaks in binary and ternary alloys, largely decreases in magnitude on heating after a segregation treatment. The subsequent measurement on cooling returns the peak to the ordinary magnitude. As a function of annealing time at a temperature of segregation, the height...

  6. Thermoelectric power and Hall effect measurements in polycrystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Paez, B.A. [Pontificia Univ. Javeriana, Santafe de Bogota (Colombia). Thin Films Group

    2000-07-01

    Polycrystalline CdTe thin films deposited by close space sublimation (CSS), were characterized through thermoelectric power, {alpha}, Hall coefficient, and resistivity, {rho}, measurements in the range of 90 to 400 K. This was in order to determine the scattering mechanisms which mainly affect the electrical transport properties in CdTe thin films. The results were analyzed based on theoretical calculations of {alpha} against temperature. This model includes scattering processes within the grains and at the grain boundaries. Some of the parameters used in this calculation were determined experimentally: grain size, crystal structure, activation energy and effective mass. It is important to state that the main approximations were justified according to experimental measurements. (orig.)

  7. Optical Properties of Al- and Sb-Doped CdTe Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Nondoped and (Al, Sb-doped CdTe thin films with 0.5, 1.5, and 2.5  wt.%, respectively, were deposited by thermal evaporation technique under vacuum onto Corning 7059 glass at substrate temperatures ( of room temperature (RT and 423 K. The optical properties of deposited CdTe films such as band gap, refractive index (n, extinction coefficient (, and dielectric coefficients were investigated as function of Al and Sb wt.% doping, respectively. The results showed that films have direct optical transition. Increasing and the wt.% of both types of dopant, the band gap decrease but the optical is constant as n, and real and imaginary parts of the dielectric coefficient increase.

  8. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  9. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State Univeristy; Brinkman, Daniel [Arizona State Univeristy; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Dragica, Vasileska [Arizona State Univeristy; Ringhofer, Christian [Arizona State University

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  10. Physics and applications of novel structures with CVD graphene: edges, grain boundaries, twisted bilayers, and hybrids

    Science.gov (United States)

    Chen, Yong P.

    2014-03-01

    In this talk, I will discuss experimental studies (including electronic transport, optical/Raman, and STM) of physical properties of various novel synthetic graphene structures formed in CVD graphene grown on Cu, including edges of graphene single crystals, grain boundaries between such single crystals, and twisted bilayer graphene. Such synthetic graphene structures could be used as playground to explore novel physics and engineer new functionalities in graphene based electronic devices. Furthermore, I will discuss graphene based ``hybrid'' materials combining CVD graphene with semiconductor and metallic nanostructures for potential optoelectronic and plasmonics applications.

  11. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Science.gov (United States)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-10-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table.

  12. Final report: Constructing comprehensive models of grain boundaries using high-throughput experiments

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Michael [Texas A & M Univ., College Station, TX (United States); Schuh, Christopher [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Marzouk, Youssef [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-29

    This is the final report on project DE-SC0008926. The goal of this project was to create capabilities for constructing, analyzing, and modeling experimental databases of the crystallographic characters and physical properties of thousands of individual grain boundaries (GBs) in polycrystalline metals. This project focused on gallium permeation through aluminum (Al) GBs and hydrogen uptake into nickel (Ni) GBs as model problems. This report summarizes the work done within the duration of this project (including the original three-year award and the subsequent one-year renewal), i.e. from August 1, 2012 until April 30, 2016.

  13. Solute segregation on Σ3 and random grain boundaries in type 316L stainless steel

    International Nuclear Information System (INIS)

    Solute segregation and impurity segregation on random and Σ3 grain boundaries in a type 316L stainless steel were investigated by means of atom probe tomography (APT). Segregation of Mo, P, B, and C was observed on random grain boundaries, irrespective of grain boundary misorientation. Two-dimensional concentration maps along the grain boundary plane revealed that the concentrations of all segregated elements were not homogeneous and no co-segregation was observed. In contrast, no segregation was observed on Σ3 grain boundaries

  14. Carbon on Quartz Grain Boundaries: Continuous Films versus Isolated Plates

    Science.gov (United States)

    Price, J. D.; Watson, E. B.; Wark, D. A.

    2003-12-01

    Piston-cylinder experiments on quartzites containing a small amount of carbon were conducted at 1.0-1.4 GPa and 850-1500° C in order to assess the microstructure of graphite along grain boundaries in deep crustal materials. In one series of experiments, polished 3mm diameter single-crystal quartz discs were coated with ˜50 to 150 nm of evaporated carbon or 500 to 1000 nm of alcohol-based carbon paint. Stacks of these were subjected to high P-T conditions for durations ranging from 5 minutes to 10 days. Observations from our earlier experiments suggested that the coatings become discontinuous with time at high temperature. However, more recent observations show that coated disc boundaries contain a dark, interconnected material: those subjected to lower temperatures and shorter durations exhibited continuous films; those run at higher temperatures for longer durations contained thicker, yet still interconnected dendrite and plate structures. In contrast, relatively fine-grained synthetic quartzites produced at similar conditions typically do not contain continuous films. Quartz powder with an initial grain size between 75-150 μ m, coated with 30-50 nm of evaporated carbon, was subjected to 850-1300° C for durations ranging from 1 hour to 6 days. Only very short runs at low temperatures contained irregular boundaries still darkened by a connected film; longer duration and higher temperature quartzites exhibited texturally-equilibrated quartz grains accompanied by isolated small opaque carbon plates located along grain corners, edges, and grain boundaries. Identical features are seen in additional quartzite materials constructed in graphite cylinders using uncoated powdered silica glass or smaller quartz crystals (<22 μ m) taken to 1000° C and 1.4 GPa for 14 days. The results suggest that carbon may remain as a connected surface, at least metastably, on silicate mineral boundaries in the absence of grain boundary movement. With grain growth, carbon diffuses

  15. Microcrystalline silicon, grain boundaries and role of oxygen

    Czech Academy of Sciences Publication Activity Database

    Kočka, Jan; Stuchlíková, The-Ha; Ledinský, Martin; Stuchlík, Jiří; Mates, Tomáš; Fejfar, Antonín

    2009-01-01

    Roč. 93, č. 8 (2009), s. 1444-1447. ISSN 0927-0248 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510; GA AV ČR IAA1010413 Institutional research plan: CEZ:AV0Z10100521 Keywords : microcrystalline silicon * grain boundaries * electronic transport * hydrogen * oxygen Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.858, year: 2009

  16. Elementary Mechanisms of Shear-Coupled Grain Boundary Migration

    Science.gov (United States)

    Rajabzadeh, A.; Mompiou, F.; Legros, M.; Combe, N.

    2013-06-01

    A detailed theoretical study of the elementary mechanisms occurring during the shear-coupled grain boundary (GB) migration at low temperature is performed focusing on both the energetic and structural characteristics. The migration of a Σ13(320) GB in a copper bicrystal in response to external shear displacements is simulated using a semiempirical potential. The minimum energy path of the shear-coupled GB migration is computed using the nudge elastic band method. The GB migration occurs through the nucleation and motion of GB steps identified as disconnections. Energy barriers for the GB and disconnection migrations are evaluated.

  17. The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum

    International Nuclear Information System (INIS)

    Atomistic simulations have shown that the grain boundary (GB) structure affects a number of physical, mechanical, thermal, and chemical properties, which can have a profound effect on macroscopic properties of polycrystalline materials. The research objective herein is to use atomistic simulations to explore the role that GB structure and the adjacent crystallographic orientations have on the directional asymmetry of an intergranular crack (i.e. cleavage behavior is favored along one direction, while ductile behavior along the other direction of the interface) for aluminum grain boundaries. Simulation results from seven 〈110〉 symmetric tilt grain boundaries (STGBs) show that the GB structure and the associated free volume directly influence the stress–strain response, crack growth rate, and crack tip plasticity mechanisms for middle-tension (M(T)) crack propagation specimens. In particular, the structural units present within the GB promote whether a dislocation or twinning-based mechanism operates at the crack tip during intergranular fracture along certain GBs (e.g., the ‘E’ structural unit promotes twinning at the crack tip in Al). Furthermore, the crystallography of the adjacent grains, and therefore the available slip planes, can significantly affect the crack growth rates in both directions of the crack – this creates a strong directional asymmetry in the crack growth rate in the Σ11 (113) and the Σ27 (552) STGBs. Upon comparing these results with the theoretical Rice criterion, it was found that certain GBs in this study (Σ9 (221), Σ11 (332) and Σ33 (441)) show an absence of directional asymmetry in the observed crack growth behavior, in conflict with the Rice criterion. The significance of the present research is that it provides a physical basis for the role of GB character and crystallographic orientation on intergranular crack tip deformation behavior

  18. Simulation on Grain Boundary Sliding during Superplastic Deformation Using Molecular Dynamics Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Grain growth and grain boundary sliding are the two main superplastic deformation mechanisms. In the paper,simulation work is focused on the sliding of a ∑3 (111) symmetric twist coincidence grain boundary, a ∑13 (110)asymmetric tilt coincidence grain boundary, and a ∑3 (110) symmetric tilt coincidence grain boundary in Al, and the energies of grain boundary for each of equilibrium configurations are computed. An embedded atom method (EAM) potential was used to simulate the atomic interactions in a bicrystal containing more than 2000 atoms. At 0 K, the relationships between total potential energy and time steps for ∑3 (111) symmetric twist coincidence grain boundary and ∑3 (110) symmetric tilt coincidence grain boundary during sliding at 2 m/s represent the periodic characteristic. However, the relationship between total potential energy and time steps for ∑13 (110) asymmetric tilt coincidence grain boundary represents the damp surge characteristic. It is found that grain boundary sliding for ∑ 3 (110) symmetric tilt coincidence grain boundary is coupled with apparent grain boundary migration.

  19. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    Science.gov (United States)

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  20. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface.

    Science.gov (United States)

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K Y; Klie, Robert F; Kim, Moon J

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1-10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  1. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    Science.gov (United States)

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-06-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.

  2. In Situ Observations of the Interaction of Liquid Lead Inclusions with Grain Boundaries in Aluminum.

    Science.gov (United States)

    Gabrisch; Dahmen; Johnson

    1998-05-01

    : The evolution of liquid lead (Pb) inclusions at grain boundaries in aluminum (Al) was investigated by direct in situ TEM observation in the temperature range from 330 degrees-643 degreesC. In agreement with earlier reports on quenched alloys, the characteristic contact angle of the lens-shaped grain boundary inclusions was found to be near 120 degrees. This angle remained approximately constant over the entire temperature range, ruling out the possibility of a wetting transition. Coarsening of grain boundary inclusions was observed to proceed mainly by Ostwald ripening, although coalescence could also be observed. Inclusions at grain boundaries, at triple junctions, and at the intersection of grain boundaries with the foil surfaces adopted characteristic shapes that were shown to be equilibrium forms. At the highest temperatures, the grain boundaries were observed to detach from the inclusions and the interaction of a migrating grain boundary with inclusions could be observed. PMID:9767666

  3. Grain boundary character dependence of oxygen grain boundary diffusion in α-Al2O3 bicrystals

    International Nuclear Information System (INIS)

    We measured oxygen diffusion coefficients (Dgb) along five grain boundaries (GBs) in alumina bicrystals by tracing 18O by secondary ion mass spectrometry. Although all boundaries are classified as coincident site lattice boundaries with relatively ordered structures, Dgb varied up to 103 times among them. On the other hand, the boundaries with identical boundary planes had relatively similar diffusivities as well as similar structures, regardless of Σ values. These results suggest that Dgb are related to GB atomic structures and hence the GB character, especially GB planes.

  4. The influence of vortex pinning and grain boundary structure on critical currents across grain boundaries in YBa2Cu3Ox

    International Nuclear Information System (INIS)

    We have used studies of single grain boundaries in YBCO thin films and bulk bicrystals to study the influence of vortex pinning along a grain boundary on dissipation. The critical current density for transport across grain boundaries in thin films is typically more than an order of magnitude larger than that measured for transport across grain boundaries in bulk samples. For low disorientation angles, the difference in critical current density within the grains that form the boundary can contribute to the substantial differences in current density measured across the boundary. However, substantial differences exist in the critical current density across boundaries in thin film compared to bulk bicrystals even in the higher angle regime in which grain boundary dissipation dominates. The differences in critical current density in this regime can be understood on the basis of vortex pinning along the boundary

  5. Photoluminescence and photoelectric properties of CdTe crystals doped with Er atoms

    International Nuclear Information System (INIS)

    The low-temperature photoluminescence (PL) and photodiffusion spectra of CdTe crystals doped with Er atoms were measured. The most intensive and narrow line in the PL spectrum is A°X-line which is caused by the emission of an exciton bound to a neutral center associated with Na residual impurity. The presence of Na atoms in CdTe:Er crystals is supported by observation of recombination between electrons of the conduction band and acceptor levels associated with these impurity atoms. Other PL bands caused by optical transition with participation of donor–acceptor pairs (DAP) are also observed. It is shown that in this case P acceptor centers and donors caused by the presence of Al atoms situated in the Cd sites take part in the recombination process. The PL bands associated with recombination of DAP which include the complex acceptor centers do not appear in the PL spectra. Our findings indicate a high optical quality of the crystals. Thus, they provide a way to improve structural properties of CdTe crystals using the ability of rare earth (RE) elements to react with residual impurities in semiconductor materials. This is a result of the manifestation of so-called “cleaning” process of the semiconductor materials by their doping with RE elements. - Highlights: • The photoluminescence (PL) and photoelectric properties of CdTe:Er crystals were studied. • The PL exciton (A°X)-line and exciton reflection band is very narrow (about 1 meV). • The broad PL bands are due to the recombination of DAPs and (e,A) transitions. • The nature and energy levels of donor and acceptor levels in CdTe:Er were found. • It was shown that Na and P atoms are the residual impurities in the investigated crystals. • The results provide a way to improve the optical properties of CdTe by RE doping

  6. Effect of the disorder in graphene grain boundaries: A wave packet dynamics study

    International Nuclear Information System (INIS)

    Chemical vapor deposition (CVD) on Cu foil is one of the most promising methods to produce graphene samples despite of introducing numerous grain boundaries into the perfect graphene lattice. A rich variety of GB structures can be realized experimentally by controlling the parameters in the CVD method. Grain boundaries contain non-hexagonal carbon rings (4, 5, 7, 8 membered rings) and vacancies in various ratios and arrangements. Using wave packet dynamic (WPD) simulations and tight-binding electronic structure calculations, we have studied the effect of the structure of GBs on the transport properties. Three model GBs with increasing disorder were created in the computer: a periodic 5–7 GB, a “serpentine” GB, and a disordered GB containing 4, 8 membered rings and vacancies. It was found that for small energies (E = EF ± 1 eV) the transmission decreases with increasing disorder. Four membered rings and vacancies are identified as the principal scattering centers. Revealing the connection between the properties of GBs and the CVD growth method may open new opportunities in the graphene based nanoelectronics.

  7. Effect of the disorder in graphene grain boundaries: A wave packet dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Vancsó, Péter, E-mail: vancso.peter@ttk.mta.hu [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, PO Box 49, H-1525 Budapest (Hungary); Korean-Hungarian Joint Laboratory for Nanosciences, PO Box 49, H-1525 Budapest (Hungary); Márk, Géza I. [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, PO Box 49, H-1525 Budapest (Hungary); Korean-Hungarian Joint Laboratory for Nanosciences, PO Box 49, H-1525 Budapest (Hungary); Lambin, Philippe; Mayer, Alexandre [Department of Physics of Matter and Radiation, University of Namur, 61, Rue de Bruxelles, B-5000 Namur (Belgium); Hwang, Chanyong [Center for Nano-characterization, Division of Industrial Metrology, Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340 (Korea, Republic of); Korean-Hungarian Joint Laboratory for Nanosciences, PO Box 49, H-1525 Budapest (Hungary); Biró, László P. [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, PO Box 49, H-1525 Budapest (Hungary); Korean-Hungarian Joint Laboratory for Nanosciences, PO Box 49, H-1525 Budapest (Hungary)

    2014-02-01

    Chemical vapor deposition (CVD) on Cu foil is one of the most promising methods to produce graphene samples despite of introducing numerous grain boundaries into the perfect graphene lattice. A rich variety of GB structures can be realized experimentally by controlling the parameters in the CVD method. Grain boundaries contain non-hexagonal carbon rings (4, 5, 7, 8 membered rings) and vacancies in various ratios and arrangements. Using wave packet dynamic (WPD) simulations and tight-binding electronic structure calculations, we have studied the effect of the structure of GBs on the transport properties. Three model GBs with increasing disorder were created in the computer: a periodic 5–7 GB, a “serpentine” GB, and a disordered GB containing 4, 8 membered rings and vacancies. It was found that for small energies (E = EF ± 1 eV) the transmission decreases with increasing disorder. Four membered rings and vacancies are identified as the principal scattering centers. Revealing the connection between the properties of GBs and the CVD growth method may open new opportunities in the graphene based nanoelectronics.

  8. Effect of the disorder in graphene grain boundaries: A wave packet dynamics study

    Science.gov (United States)

    Vancsó, Péter; Márk, Géza I.; Lambin, Philippe; Mayer, Alexandre; Hwang, Chanyong; Biró, László P.

    2014-02-01

    Chemical vapor deposition (CVD) on Cu foil is one of the most promising methods to produce graphene samples despite of introducing numerous grain boundaries into the perfect graphene lattice. A rich variety of GB structures can be realized experimentally by controlling the parameters in the CVD method. Grain boundaries contain non-hexagonal carbon rings (4, 5, 7, 8 membered rings) and vacancies in various ratios and arrangements. Using wave packet dynamic (WPD) simulations and tight-binding electronic structure calculations, we have studied the effect of the structure of GBs on the transport properties. Three model GBs with increasing disorder were created in the computer: a periodic 5-7 GB, a "serpentine" GB, and a disordered GB containing 4, 8 membered rings and vacancies. It was found that for small energies (E = EF ± 1 eV) the transmission decreases with increasing disorder. Four membered rings and vacancies are identified as the principal scattering centers. Revealing the connection between the properties of GBs and the CVD growth method may open new opportunities in the graphene based nanoelectronics.

  9. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    OpenAIRE

    Ghasem Rezanejade Bardajee; Zari Hooshyar

    2013-01-01

    This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs) by using poly(acrylic acid) grafted onto salep (salep-g-PAA) as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR) spectrum, thermogravimetric (TG) analysis, and transmission electron microscopy (TEM). The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical propertie...

  10. Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel

    Science.gov (United States)

    Lillo, T. M.; van Rooyen, I. J.

    2016-05-01

    In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.

  11. Multiscale model of metal alloy oxidation at grain boundaries.

    Science.gov (United States)

    Sushko, Maria L; Alexandrov, Vitaly; Schreiber, Daniel K; Rosso, Kevin M; Bruemmer, Stephen M

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  12. Multiscale model of metal alloy oxidation at grain boundaries

    International Nuclear Information System (INIS)

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for

  13. Long time scale simulation of a grain boundary in copper

    DEFF Research Database (Denmark)

    Pedersen, A.; Henkelman, G.; Schiøtz, Jakob;

    2009-01-01

    A general, twisted and tilted, grain boundary in copper has been simulated using the adaptive kinetic Monte Carlo method to study the atomistic structure of the non-crystalline region and the mechanism of annealing events that occur at low temperature. The simulated time interval spanned 67 mu s at...... and a common neighbor analysis. Annealing events leading to lowering of the energy typically involved concerted displacement of several atoms-even as many as 10 atoms displaced by more than half an Angstrom. Increased local icosahedral ordering is observed in the boundary layer, but local HCP...... coordination was also observed. In the final low-energy configurations, the thickness of the region separating the crystalline grains corresponds to just one atomic layer, in good agreement with reported experimental observations. The simulated system consists of 1307 atoms and atomic interactions were...

  14. Fiske resonances in mesoscopic '0-π' grain boundary junctions

    International Nuclear Information System (INIS)

    A theory describing Fiske resonance steps in high-temperature 'd-wave' superconductive Josephson junctions has been developed. The model is an extension of the theory proposed by Kulik in 1965, which applies in the case of conventional low-temperature junctions ('s-wave' superconductors). The theory allows to derive the magnetic field dependences of the n-th order Fiske step, also in the presence of '0-π' singularities in the junction phase difference. An analysis of Fiske steps in asymmetric 0-45o [0 0 1] 'd-wave' Josephson junctions has been presented. Finally, in order to describe the phenomenology encountered in real grain boundary junctions, the presence of facets of different orientations and lengths has also been considered

  15. Atomistic studies of grain boundaries in alloys and compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, V.

    1992-02-01

    In this research project we carry out theoretical, computer modeling, studies of the atomic structure of grain boundaries in binary alloys. Both ordered and disordered alloys are investigated. The goal is to analyze those structural, chemical and electronic features that distinguish alloys from pure metals and are responsible for remarkably different intergranular fracture behavior of alloys when compared with pure metals. The most important phenomenon is, of course, segregation and related structural changes in the boundary region. When studying segregation phenomena copper-bismuth is a very suitable model system since bismuth segregation occurs readily, leads to boundary faceting and thus to remarkable changes in the boundary structure, as well as to a very strong embrittlement. Our recent research concentrated on the investigation of the structure of {Sigma} = 3 (111)/(11{bar 1}) facets formed during segregation from boundaries which were originally curved.

  16. Oxidation embrittlement of grain boundaries in nickel alloys

    International Nuclear Information System (INIS)

    Intergranular oxidation-embrittlement of Alloy 600 has been studied by surface analysis of fractured thin foils pre-exposed to hydrogenated steam at 400 C. The results are believed to be relevant to primary-water stress corrosion cracking in nuclear power plants. Earlier work had shown that pre-exposure to this environment caused several micrometers of intergranular failure during subsequent straining. This cracking had none of the characteristics of hydrogen embrittlement and could be due to oxidation of chromium and/or carbon at the grain boundaries, or to ingress of a monolayer of oxygen. New results show that an oxide phase of chromium does indeed penetrate but most of the cracking seems to be due to oxygen segregation. Sulfur was also found on the fractured boundaries

  17. Long Fe3O4 nanowires decorated by CdTe quantum dots: Synthesis and magnetic-optical properties

    International Nuclear Information System (INIS)

    This work describes the synthesis and magnetic-optical properties of Fe3O4 nanowires decorated by CdTe quantum dots. The composite nanowires with a length of 1 μm and an average diameter of 23±3 nm were prepared in a high yield through the preferential growth of Fe3O4 on CdTe quantum dots using ethylenediamine as template. Their growth mechanism was discussed based on the results of control experiments. Studies on the optical and magnetic properties of the composite nanowires reveal that they assume not only yellow-green emission feature but also room temperature ferromagnetism. - Graphical abstract: The long and flexible CdTe quantum dots-decorated Fe3O4 nanowires assume not only room temperature ferromagnetism but also strong luminescent effect

  18. A study on the role of grain boundary engineering in promoting high-cycle fatigue resistance and improving reliability in nickel base superalloys for propulsion systems

    Science.gov (United States)

    Gao, Yong

    High-cycle fatigue, involving the premature initiation and/or rapid propagation of small cracks to failure due to high-frequency (vibratory) loading, remains the principal cause of failures in military gas-turbine propulsion systems. The objective of this study is to examine whether the resistance to high-cycle fatigue failures can be enhanced by grain-boundary engineering, i.e., through the modification of the spatial distribution and topology of the grain boundaries in the microstructure. While grain boundary engineering has been used to obtain significant improvements in intergranular corrosion and cracking, creep and cavitation behavior, toughness and plasticity, cold-work embrittlement, and weldability, only very limited, but positive, results exist for fatigue. Accordingly, using a commercial polycrystalline nickel base gamma/gamma' superalloy, ME3, as a typical engine disk material, sequential thermomechanical processing, involving alternate cycles of strain and annealing, is used to (i) modify the proportion of special grain boundaries, and (ii) interrupt the connectivity of the random boundaries in the grain boundary network. The processed microstructures are then subjected to fracture-mechanics based high cycle fatigue testing to evaluate how the crack initiation and small- and large-crack growth properties are affected and to examine how the altered grain boundary population and connectivity can influence growth rates and overall lifetimes. The effect of such grain-boundary engineering on the fatigue-crack-propagation behavior of large (˜8 to 20 mm), through-thickness cracks at 25, 700, and 800°C was examined. Although there was little influence of an increased special boundary fraction at ambient temperatures, the resistance to near-threshold crack growth was definitively improved at elevated temperatures, with fatigue threshold-stress intensities some 10 to 20% higher than at 25°C, concomitant with a lower proportion (˜20%) of intergranular

  19. Effect of grain-boundary flux pinning in MgB2 with columnar structure

    International Nuclear Information System (INIS)

    We studied the flux pinning properties by grain boundaries in MgB2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities (Jcs) and reduced resistances when an external magnetic field (B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank-Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.

  20. Effects of grain boundaries on superconductivity in multi-phase systems

    International Nuclear Information System (INIS)

    The experimental results presented show that there are three types of effects of grain boundaries on Tc in multi-phase systems studied. The critical current density (Jc) can raise apparently by improving the properties of the boundary between the two superconducting grains. The first type is that the grain boundary is beneficial to Tc, e.g., in the Ba-Ln-Cu-O system, Tc of the multi-phase superconductors is often found higher than that of the corresponding single phase ones. The second type shows that Tc degrades, e.g., in Ba-Sr-Y-Cu-O system. The third type is zero, as in the system with nominal composition Ba2-xCaxYCu3Oy, Tc remains 78K when x is larger than 0.25. In the system with nominal composition Ba2YCu3-xPbxOy, Tc keeps constant, but Jc increases obviously when a suitable amount of Pb is doped

  1. Investigation of grain boundary migration in situ by synchrotron x-ray topography

    International Nuclear Information System (INIS)

    Grain boundary migration has been investigated in prestrained monocrystalline specimens of aluminum in situ, continuously and at temperatures ranging from 415 to 610 degrees C by synchrotron (polychromatic) x-ray topography (SXRT). In general, new (recrystallized) grains nucleate at prepositioned surface indentations and expand into the prestrained matrix, revealing complex evolution of crystallographic facets and occasional generation of (screw) dislocations in the wake of the moving boundaries. Analysis of corresponding migration rates for several faceted grain boundaries yields activation energies ranging from 56 to 125 kCal/mole, depending on the grain boundary character. It is concluded that grain boundary mobility is a sensitive function of grain boundary inclination, resulting in ultimate survival of low-mobility (faceted) inclinations as a natural consequence of growth selection. Advantages and disadvantages associated with measurement of grain boundary migration by SXRT are enumerated and correspondi

  2. Grain-boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel 2

    International Nuclear Information System (INIS)

    The grain-boundary chemistry of magnesium aluminate spinel solid solutions MgO · nAl2O3 has been investigated in order to understand the mechanism of grain-boundary migration. It is found that although segregation of impurity Ca and Si is common, much larger deviations in grain-boundary stoichiometry are present. There is an excess of Al and O relative to Mg at grain boundaries in all compositions. Grain-boundary migration appears to be rate-limited by solute drag from intrinsic defects accommodating lattice nonstoichiometry, rather than by extrinsic solutes, consistent with the observed impurity tolerance of grain-boundary mobility. Different rate-limiting defects are proposed for magnesia-rich and alumina-rich spinels

  3. Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films

    International Nuclear Information System (INIS)

    In this paper, we report on physical properties of pure and Cu doped cadmium telluride (CdTe) films deposited onto corning 7059 microscopic glass substrates by electron beam evaporation technique. X-ray diffraction study showed that all the deposited films belong to amorphous nature. The average transmittance of the films is varied between 77% and 90%. The optical energy band gap of pure CdTe film is 1.57 eV and it decreased to 1.47 eV upon 4 wt. % of Cu addition, which may be due to the extension of localized states in the band structure. The refractive index of the films was calculated using Swanepoel method. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, and oscillator energy (Eo) of CdTe and CdTe:Cu films were calculated and discussed in detail with the light of possible mechanisms underlying the phenomena. The variation in intensity of photoluminescence band edge emission peak observed at 820 nm with Cu dopant is due to the change in surface state density. The observed trigonal lattice of Te peaks in the micro-Raman spectra confirms the p-type conductive nature of films, which was further corroborated by the Hall effect measurement. The lowest resistivity of 6.61 × 104 Ω cm was obtained for the CdTe:Cu (3 wt. %) film

  4. Structure / property relationship for grain boundary engineering of polycrystals

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Hoffmann, S.; Paidar, Václav

    Auckland : The Institute of Materials Engineering Australasia, 2000 - (Zhang, K.; Pickering, K.; Xiong, X.), s. 615-620 [International Conference on Advanced Materials Processing /1./. Rotorua (NZ), 19.11.2000-23.11.2000] R&D Projects: GA ČR GA106/99/1178; GA ČR GA202/99/1665; GA MŠk OC 517.40 Grant ostatní: Copernicus(XX) ERBIC15 CT980812 Institutional research plan: CEZ:AV0Z1010914 Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Ostwald Ripening of Diffusion-Limited Small-Size Precipitates at Grain Boundaries

    OpenAIRE

    A.V. Koropov

    2012-01-01

    The paper describes a theoretical study of the Ostwald ripening of two-dimensional small-size precipitates of a newly formed phase at the grain boundary of finite thickness, taking into account the diffusion of impurity atoms from the grain interior to the grain boundary. The precipitate growth is believed to be limited by the impurity-atom diffusion in the grain boundary. The asymptotic time dependences are found for the average and critical precipitate radius, supersaturation of solid solut...

  6. Model calculations for evaluation of bulk- and grain boundary diffusion coefficients

    International Nuclear Information System (INIS)

    Model calculations are developed for evaluation of bulk- and grain boundary diffusion coefficients in polycrystalline media in the case of a semi-infinite diffusion source. The Matrix is assumed to be either quasi-homogeneous or to be composed of grain material and ''grain boundary-material''. Using Whipple's solution of the diffusion equation the flux of material from the grain boundaries into the grain is considered additionally. Examples are given to show the possibility to classify experimentally found diffusion profiles. (author)

  7. Grain Boundary Related Effects in Aluminium during 600 MeV Proton Irradiation of Different Temperatures

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Green, W.V.; Victoria, M.

    Samples of high-purity aluminium were irradiated with 600 MeV protons at temperatures in the range 130 to 433°C; in these experiments 615 and 125 appm of hydrogen and helium, respectively, are produced per dpa. Bubble formation and growth at grain boundaries and in the zone adjacent to the bubble......-denuded zone are described. Precipitation at grain boundaries and migration of grain boundaries during irradiation are also reported....

  8. An atomistic modeling survey of the shear strength of twist grain boundaries in aluminum

    International Nuclear Information System (INIS)

    A computational survey of the shear strength of 343 unique grain boundaries was performed. For each boundary, the strength was surveyed as a function of shear direction. The results suggest that: (1) the shear strength cannot be comprehensively predicted by common grain boundary descriptors, (2) the shear strength depends significantly and simply on shear direction due to the faceted geometry of boundary planes, and (3) grain boundary shear strengths in an ordinary material can be represented by a simple statistical distribution

  9. Observation of mesoscopic conductance fluctuations in YBaCuO grain boundary Josephson Junctions

    OpenAIRE

    Tagliacozzo, A.; Born, D.; D. Stornaiuolo; Gambale, E.; Dalena, D.; Lombardi, F.; Barone, A.; Altshuler, B. L.; Tafuri, F.

    2006-01-01

    Magneto-fluctuations of the normal resistance R_N have been reproducibly observed in high critical temp erature superconductor (HTS) grain boundary junctions, at low temperatures. We attribute them to mesoscopic transport in narrow channels across the grain boundary line. The Thouless energy appears to be the relevant energy scale. Our findings have significant implications on quasiparticle relaxation and coherent transport in HTS grain boundaries.

  10. Energy scales in YBaCuO grain boundary biepitaxial Josephson junctions

    International Nuclear Information System (INIS)

    Self-assembled nanoscale channels may naturally arise in the growth process of grain boundaries (GBs) in high critical temperature superconductor (HTS) systems, and deeply influence the transport properties of the GB Josephson junctions (JJs). By isolating nano-channels in YBCO biepitaxial JJs and studying their properties, we sort out specific fingerprints of the mesoscopic nature of the contacts. The size of the channels combined to the characteristic properties of HTS favors a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Thouless energy emerges as a characteristic energy of these types of Josephson junctions. Possible implications on the understanding of coherent transport of quasiparticles in HTS and of the dissipation mechanisms are discussed, along with elements to take into account when designing HTS nanostructures.

  11. Scanning Kelvin probe measurements on As-doped CdTe solar cells

    International Nuclear Information System (INIS)

    Scanning Kelvin probe microscopy (SKPM) has been used to study the Fermi level shift in arsenic (As) doped cadmium telluride (CdTe) photovoltaic devices. The contact potential difference (CPD) between probe tip and sample surface revealed that increasing As concentrations in CdTe led to a decrease in CPD. This highlighted a downward shift in the CdTe Fermi level and an increase in the CdTe work function. Using a highly oriented pyrolytic graphite sample in ambient conditions as a reference, the absolute work functions of the CdTe samples were estimated to vary from 3.88 to 4.09 eV. High-resolution SKPM measurements revealed localized shifts in CPD at CdTe grain boundaries. This was directly correlated to As doping concentrations, and indicated the segregation of As to grain boundaries. A mechanism is proposed where localized band bending at grain boundaries channels minority carriers away from the grain boundary, leading to reduced carrier recombination. (paper)

  12. Formation of Graphene Grain Boundaries on Cu(100) Surface and a Route Towards Their Elimination in Chemical Vapor Deposition Growth

    OpenAIRE

    Qinghong Yuan; Guangyao Song; Deyan Sun; Feng Ding

    2014-01-01

    Grain boundaries (GBs) in graphene prepared by chemical vapor deposition (CVD) greatly degrade the electrical and mechanical properties of graphene and thus hinder the applications of graphene in electronic devices. The seamless stitching of graphene flakes can avoid GBs, wherein the identical orientation of graphene domain is required. In this letter, the graphene orientation on one of the most used catalyst surface — Cu(100) surface, is explored by density functional theory (DFT) calculatio...

  13. Grain Boundary Engineering for Assessing Durability and Aging Issues with Nickel-Based Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Grain Boundary Engineering (GBE) approach, successfully demonstrated in Phase I, that microstructural optimization provides a very significant improvement in...

  14. Effect of thermal cycling on impurity grain boundary segregation in maraging steel

    International Nuclear Information System (INIS)

    The paper presents results of Auger spectroscopy of grain boundary elemental composition of maraging steel 11Cr10Ni2TiMo after typical heat treatment followed by thermal cycling. Specimens in the austenitic condition were subjected to aging at 550 deg. C and to cyclic heat treatment. Afterwards specimens were doped by hydrogen in an electrolytic cell in order to produce grain boundary brittleness. Fracture was performed by tensile loading in an ultrahigh vacuum chamber of a special Auger spectrometer. A noticeable phosphorus grain boundary segregation was observed after aging at 550 deg. C. A substantial decrease in grain boundary impurity segregation following thermal cycling has been observed

  15. THE INSTABILITY OF THE DIFFUSION-CONTROLLED GRAIN-BOUNDARY VOID IN STRESSED SOLID

    Institute of Scientific and Technical Information of China (English)

    王华; 李中华

    2003-01-01

    As atoms migrate along a void surface and grain-boundary, driven by various thermodynamic forces, the grain-boundary void changes its shape and volume. When the void changes its configuration, the free energy of the system also changes. In this article, the free energy is calculated for an evolving grain-boundary void filled with gas in a stressed solid. Then the instability conditions and the equilibrium shape of the void are determined as a function of the grain-boundary and surface energies, the void volume, the externally applied stresses, as well as the internal pressure built up by the gas filled in the void.

  16. Grain boundary sliding at high temperature deformation in cold-rolled ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Yoshito, E-mail: y-sugino@eng.hokudai.ac.jp [Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Ukai, Shigeharu [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Leng, Bin [Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Oono, Naoko; Hayashi, Shigenari [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo 060-8628 (Japan); Kaito, Takeji; Ohtsuka, Satoshi [Advanced Nuclear System R and D Directorate, Japan Atomic Energy Agency (JAEA), 4002, Narita, Oarai, Ibaraki 311-1393 (Japan)

    2014-09-15

    A tensile test was performed at a loading direction perpendicular to elongated cold-rolled grains, and it confirmed the step of the scratched lines across the grain boundaries on the specimen surface, providing evidence for grain boundary sliding in oxide dispersion strengthened (ODS) steels. Dynamic recovery within the grains was also observed, and a simple model was constructed that consisted of grain boundary sliding and mismatch accommodation induced by vacancy flow. It was confirmed that such grain boundary sliding was suppressed in ODS steel relative to iron as a result of the pinning of the dislocation movement by the dispersed oxide particles.

  17. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K[sub ISCC], crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  18. Grain boundary chemistry effects on environment-induced crack growth of iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H.

    1992-11-01

    Relation between grain boundary chemistry and environment-induced crack growth of Fe-based alloys is reviewed. The importance of the cleanliness of steels is clearly demonstrated by direct relations between grain boundary chemistry and crack growth behavior for both H and anodic dissolution-induced crack growth. Relationships between strain to failure, work of fracture, K{sub ISCC}, crack velocity and fracture mode and grain boundary chemistry are presented. Only results in which the grain boundary chemistry has been measured directly by Auger electron spectroscopy (AES) on intergranular surfaces exposed by in situ fracture have been considered in this review.

  19. Metallographic screening of grain boundary engineered type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    An electrochemical etching method for the identification of grain boundary engineered type 304 austenitic stainless steel microstructures is described. The method can be applied for rapid microstructure screening to complement electron backscatter diffraction analysis. A threshold parameter to identify grain boundary engineered microstructure is proposed, and the application of metallographic etching for characterising the degree of grain boundary engineering discussed. - Highlights: • As-received (annealed) and grain boundary engineered microstructures were compared. • Electro-chemical polarisation in nitric acid solutions was carried out. • A metallographic screening method has been developed. • The screening method complements EBSD analysis for microstructure identification

  20. Atomic structures and oxygen dynamics of CeO2 grain boundaries

    Science.gov (United States)

    Feng, Bin; Sugiyama, Issei; Hojo, Hajime; Ohta, Hiromichi; Shibata, Naoya; Ikuhara, Yuichi

    2016-02-01

    Material performance is significantly governed by grain boundaries (GBs), a typical crystal defects inside, which often exhibit unique properties due to the structural and chemical inhomogeneity. Here, it is reported direct atomic scale evidence that oxygen vacancies formed in the GBs can modify the local surface oxygen dynamics in CeO2, a key material for fuel cells. The atomic structures and oxygen vacancy concentrations in individual GBs are obtained by electron microscopy and theoretical calculations at atomic scale. Meanwhile, local GB oxygen reduction reactivity is measured by electrochemical strain microscopy. By combining these techniques, it is demonstrated that the GB electrochemical activities are affected by the oxygen vacancy concentrations, which is, on the other hand, determined by the local structural distortions at the GB core region. These results provide critical understanding of GB properties down to atomic scale, and new perspectives on the development strategies of high performance electrochemical devices for solid oxide fuel cells.

  1. Gettering effect in grain boundaries of multi-crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, H.; Bouaicha, M.; Ben Rabha, M.; Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-10-15

    In this work, we analyze the effect of three gettering procedures on the variation of the grain boundaries (GBs) defect density in multicrystalline silicon (mc-Si). The effective defect density (N{sup B}) was calculated using a theoretical model where we consider the potential barrier induced by the GB as being due to structural defects and impurities. Results are compared to those obtained from C-V measurements. The potential barrier was evaluated from the dark current-voltage (I-V) characteristic performed across the GB. In addition to the Rapid Thermal Annealing (RTA), we use aluminum (Al) in the first gettering procedure, in the second we use porous silicon (PS), whereas in the third one, we realize a chemical damage (grooving). Mc-Si wafers were annealed in an infrared furnace in the same conditions, at temperatures ranging from 600 C to 1000 C (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Local and bulk melting of Cu at grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Han, Li - Bo [USTC; An, Qi [USTC/CALTECH; Fu, Rong - Shan [USTC; Zheng, Lianqing [FSU

    2008-01-01

    We investigate gain boundary (GB) melting using molecular dynamics simulations on face-centered-cubic Cu bicrystals with symmetric {l_angle}110{r_angle} tilt grain boundaries. Two representative types of GBs are explored: {Sigma} = 11/(113)/50.48{sup o} (low GB energy) and {Sigma} = 27/(552)/148.41{sup o} (high GB energy). The temperature and temporal evolutions of the Cu bicrystals under stepped heating are characterized in terms of order parameters and diffusion coefficients, as ell as the nucleation and growth of melt. Within the GB region, continuous local melting precedes discontinuous bulk melting, while continuous solid state disordering may precede local melting. Premelting may occur for local melting but not for bulk melting. For {Sigma} = 11/(113)/50.48{sup o}, premelting of the GB region is negligible, and local melting occurs near the thermodynamic melting temperature. The GB region as a whole is superheated by about 13% before its bulk melting. In the case of {Sigma} = 27/(552)/148.41, considerable premelting is observed for local melting, while the bulk melting occurs with negligible superheating. The exact melting behavior of a general GB depends on the GB energy, but is likely bracketed within these two cases.

  3. Molecular dynamics simulations of point defects in plutonium grain boundaries

    Institute of Scientific and Technical Information of China (English)

    Ao Bing-Yun; Xia Ji-Xing; Chen Pi-Heng; Hu Wang-Yu; Wang Xiao-Lin

    2012-01-01

    A modified analytic embedded atom method (MAEAM) potential is constructed for fcc δ-Pu.Molecular dynamics (MD) simulations with the potential are performed to investigate the interactions between two symmetrical tilt grain boundaries (GBs) and point defects such as He atom,vacancy and self-interstitial atom (SIA) in Pu.The calculated results show that point defect formation energies are on average lower than those in the lattice but variations from site to site along the GBs are very remarkable.Both substitutional and interstitial He atoms are trapped at GBs.Interstitial He atom is more strongly bound at the GB core than the substitutional He atom.The binding energy of SIA at GB core is higher than those of He atom and vacancy.GB core can bind many He atoms and SIAs due mainly to the fact that it contains many vacancies.Compared with He atom and SIA,the vacancy far from GB core is difficult to diffuse into the core.The GBs can act as sinks and sources of He atoms and SIAs,which may be a reason for the swelling of Pu after a period of self-irradiation because of the higher concentration of vacancy in the bulk.

  4. The influence of the grain boundary structure on diffusional creep

    International Nuclear Information System (INIS)

    An experiment was carried out to quantify the deformation in the diffusional creep domain. It was found that material had indisputably been deposited at grain boundaries in tension. A characterisation of 131 boundaries in terms of their misorientation was carried out and this was correlated to the observed deformation. Twin boundaries below a certain limit of deviation from an exact twin misorientation were totally inactive in the deformation. A large qualitative difference was found in the way general boundaries take part in the deformation. The experiments have taken place at Materials Research Department, Risoe National Laboratory at Roskilde. The present thesis has been submitted in partial fulfillment of the requirements for the Ph.D. degree in physics at the Niels Bohr Institute, University of Copenhagen. Besides the results of the creep experiment the thesis contains a description of the theoretical background to diffusional creep models. Also, the results from an investigation of helium bubble formation in an irradiated copper sample is included. (au)

  5. Grain boundary mobility in anion doped MgO

    Science.gov (United States)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Certain anions OH(-), F(-) and Gl(-) are shown to enhance grain growth in MgO. The magnitude of their effect decreases in the order in which the anions are listed and depends on their location (solid-solution, second phase) in the MgO lattice. As most anions exhibit relatively high vapor pressures at sintering temperatures, they retard densification and invariably promote residual porosity. The role of anions on grain growth rates was studied in relation to their effect on pore mobility and pore removal; the atomic process controlling the actual rates was determined from observed kinetics in conjunction with the microstructural features. With respect to controlling mechanisms, the effects of all anions are not the same. OH(-) and F(-) control behavior through creation of a defect structure and a grain boundary liquid phase while Cl(-) promotes matter transport within pores by evaporation-condensation. Studies on an additional anion, S to the minus 2nd power gave results which were no different from undoped MgO, possibly because of evaporative losses during hot pressing. Hence, the effect of sulphur is negligible or undetermined.

  6. Simulations of thermal conductance across tilt grain boundaries in graphene

    Institute of Scientific and Technical Information of China (English)

    Peng Wang; Bo Gong; Qiong Feng; Hong-Tao Wang

    2012-01-01

    Non-equilibrium molecular dynamics (MD) method was performed to simulate the thermal transportation process in graphene nanoribbons (GNRs).A convenient way was conceived to introduce tilt grain boundaries (GBs) into the graphene lattice by repetitive removing C atom rows along certain directions.Comprehensive MD simulations reveal that larger-angle GBs are effective thermal barriers and substantially reduce the average thermal conductivity of GNRs.The GB thermal conductivity is ~ 10 W.m-1·K-1 for a bicrystal GNR with a misorientation of 21.8°,which is ~97% less than that of a prefect GNR with the same size.The total thermal resistance has a monotonic dependence on the density of the 5-7 defects along the GBs.A theoretical model is proposed to capture this relation and resolve the contributions by both the reduction in the phonon mean free path and the defect-induced thermal resistance.

  7. The influence of the grain boundary structure on diffusional creep

    Energy Technology Data Exchange (ETDEWEB)

    Thorsen, P.A

    1998-05-01

    An experiment was carried out to quantify the deformation in the diffusional creep domain. It was found that material had indisputably been deposited at grain boundaries in tension. A characterisation of 131 boundaries in terms of their misorientation was carried out and this was correlated to the observed deformation. Twin boundaries below a certain limit of deviation from an exact twin misorientation were totally inactive in the deformation. A large qualitative difference was found in the way general boundaries take part in the deformation. The experiments have taken place at Materials Research Department, Risoe National Laboratory at Roskilde. The present thesis has been submitted in partial fulfillment of the requirements for the Ph.D. degree in physics at the Niels Bohr Institute, University of Copenhagen. Besides the results of the creep experiment the thesis contains a description of the theoretical background to diffusional creep models. Also, the results from an investigation of helium bubble formation in an irradiated copper sample is included. (au) 7 tabs., 56 ills., 75 refs.

  8. Direct visualization of dislocation dynamics in grain-boundary scars.

    Science.gov (United States)

    Lipowsky, Peter; Bowick, Mark J; Meinke, Jan H; Nelson, David R; Bausch, Andreas R

    2005-05-01

    Mesoscale objects with unusual structural features may serve as the analogues of atoms in the design of larger-scale materials with novel optical, electronic or mechanical behaviour. In this paper we investigate the structural features and the equilibrium dynamics of micrometre-scale spherical crystals formed by polystyrene particles adsorbed on the surface of a spherical water droplet. The ground state of sufficiently large crystals possesses finite-length grain boundaries (scars). We determine the elastic response of the crystal by measuring single-particle diffusion, and quantify the fluctuations of individual dislocations about their equilibrium positions within a scar by determining the dislocation spring constants. We observe rapid dislocation glide with fluctuations over the barriers separating one local Peierls minimum from the next and rather weak binding of dislocations to their associated scars. The long-distance (renormalized) dislocation diffusion glide constant is extracted directly from the experimental data and is found to be moderately faster than single-particle diffusion. We are also able to determine the parameters of the Peierls potential induced by the underlying crystalline lattice. PMID:15834411

  9. Hydrogen diffusion along grain boundaries in erbium oxide coatings

    International Nuclear Information System (INIS)

    Diffusion of interstitial atomic hydrogen in erbium oxide (Er2O3) was investigated using density functional theory (DFT) and molecular dynamics (MD) methods. Hydrogen diffusivity in bulk, on (0 0 1) surface, and along Σ13 (4–3–1)/[1 1 1] symmetric tilt grain boundaries (GBs) were evaluated in a temperature range of 673–1073 K, as well as hydrogen diffusion barriers. It was found that H diffusion shows the faster on (0 0 1) surface than along GBs and in bulk. Also, energy barrier of H diffusion in bulk estimated by DFT and MD methods is somewhat higher than that along GBs evaluated in the experiments. This suggests that H diffusion in Er2O3 coatings depends on GBs rather than bulk. In addition, with a correction of GB density, the simulated diffusivity along GBs in MD simulations is in good agreement with the experimental data within one order of magnitude. The discrepancy of H diffusivity between the experiments and the simulations should be reduced by considering H concentration, H diffusion direction, deviations of the initial configuration, vacancy defects, etc

  10. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    Science.gov (United States)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  11. Theory and computerized simulation of interaction of point defects with grain boundaries

    International Nuclear Information System (INIS)

    The issued results on mathematical simulation at the atomic level of formation and migration of point defects arising under radiation (of intrinsic point defects, helium atoms) in the region of grain boundary are analyzed. Simulation data on impurity atom interaction with grain boundaries are also considered

  12. Influence of Grain Boundary on Fatigue Behavior of Ni-base Bicrystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the grain boundary on the fatigue behavior was studied by two three-point-bending (TPB) specimens.One TPB specimen was named Bicrystal 1, whose pre-crack was along the grain boundary and the applied loadparalleled to pre-crack direction, while the other TPB specimen was named Bicrystal 2, whose the pre-crack wasperpendicular to the grain boundary and the applied load paralleled also to the pre-crack. It was found that the rateof the fatigue crack growth of Bicrystal 1 was about a tenfold higher than that of Bicrystal 2. The fatigue behaviorof Bicrystal 2 specimens was dependent on the distance between the crack tip and grain boundary. The crack growthrate was highest when the crack tip was at a critical distance to the grain boundary, while the rate was the lowestwhen the crack tip reached grain boundary. After the crack was over the grain boundary, the crack growth rateincreased. The crystallographic finite element method was applied to analyze the stress and strain structure aheadof the crack, in order to reveal the above characteristics of the fatigue behavior. It is the grain boundary-inducedredistribution of stresses near the crack tip that induces the difference of fatigue behavior.

  13. Atomic scale study of grain boundary segregation before carbide nucleation in Ni–Cr–Fe Alloys

    International Nuclear Information System (INIS)

    Highlights: • Impurities segregated at grain boundaries were observed by atom probe tomography. • The comparison of segregation features in two Ni–Cr–Fe alloys was studied by APT. • C and Cr atoms co-segregated at grain boundaries before carbide precipitation. -- Abstract: Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni–Cr–Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni–Cr–Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni–Cr–Fe alloys were carried out based on the experimental results

  14. Anisotropic radiation-induced segregation in 316L austenitic stainless steel with grain boundary character

    International Nuclear Information System (INIS)

    Radiation-induced segregation (RIS) and subsequent depletion of chromium along grain boundaries has been shown to be an important factor in irradiation-assisted stress corrosion cracking in austenitic face-centered cubic (fcc)-based alloys used for nuclear energy systems. A full understanding of RIS requires examination of the effect of the grain boundary character on the segregation process. Understanding how specific grain boundary structures respond under irradiation would assist in developing or designing alloys that are more efficient at removing point defects, or reducing the overall rate of deleterious Cr segregation. This study shows that solute segregation is dependent not only on grain boundary misorientation, but also on the grain boundary plane, as highlighted by markedly different segregation behavior for the Σ3 incoherent and coherent grain boundaries. The link between RIS and atomistic modeling is also explored through molecular dynamic simulations of the interaction of vacancies at different grain boundary structures through defect energetics in a simple model system. A key insight from the coupled experimental RIS measurements and corresponding defect–grain boundary modeling is that grain boundary–vacancy formation energy may have a critical threshold value related to the major alloying elements’ solute segregation

  15. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.

    Science.gov (United States)

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Ditto, Jeff J; Drazin, John W; Castro, Ricardo H R

    2016-06-22

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ. PMID:27282392

  16. Critical currents across low-angle grain boundaries in YBCO; Kritische Stroeme ueber Kleinwinkelkorngrenzen in YBCO

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, J.

    2001-07-01

    The following topics were covered in this thesis: Currents in HTSC, Shubnikov phase, HTSC thin films, magneto-optical Faraday effect, current density distribution, flux density, grain boundaries in YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO), currents across grain boundaries, planar defect (WL)

  17. RECENT THEORETICAL AND EXPERIMENTAL ADVANCES IN THE UNDERSTANDING OF GRAIN BOUNDARY MIGRATION

    OpenAIRE

    Bauer, Ch.

    1982-01-01

    The subject of grain boundary migration continues to command significant attention because of its relevance to many important technological processes. The purpose of this article is to review recent theoretical and experimental advances in the understanding of grain boundary migration in order to define the current state of present knowledge and identify important problems which require further investigation.

  18. Photoluminescence and Electroluminescence Properties of CdTe Nanoparticles in Conjugated Polymer Hosts

    Institute of Scientific and Technical Information of China (English)

    GUO, Fengqi; XIE, Puhui

    2009-01-01

    The photoinduced energy transfer process from conjugated polymer (PPE4+) to CdTe nanocrystals was found both in solutions and in thin films by a fluorescence spectroscopic technique. Films of PPE4+ blended with CdTe-2 nanocrystals were formed by an electrostatic layer-by-layer assembly technique. Light emitting diodes were fabricated using CdTe-2 as an emitter in PPE4+ host. PPE4+ works as a molecular wire in the energy transfer process from the polymer to the CdTe-2 nanocrystals.

  19. Roles of grain boundaries on the semiconductor to metal phase transition of VO2 thin films

    International Nuclear Information System (INIS)

    Vanadium dioxide (VO2) thin films with controlled grain sizes are deposited on amorphous glass substrates by pulsed laser deposition. The grain boundaries (GBs) are found as the dominating defects in the thin films. The semiconductor to metal transition (SMT) properties of VO2 thin films are characterized and correlated to the GB density. The VO2 films with lower GB density exhibit a sharper SMT with a larger transition amplitude. A high resolution TEM study at GB area reveals the disordered atomic structures along the boundaries and the distorted crystal lattices near the boundaries. The VO2 SMT amplitude and sharpness could be directly related to these defects at and near the boundaries

  20. Self-organized pseudo-graphene on grain boundaries in topological band insulators

    Science.gov (United States)

    Slager, Robert-Jan; Juričić, Vladimir; Lahtinen, Ville; Zaanen, Jan

    2016-06-01

    Semimetals are characterized by nodal band structures that give rise to exotic electronic properties. The stability of Dirac semimetals, such as graphene in two spatial dimensions, requires the presence of lattice symmetries, while akin to the surface states of topological band insulators, Weyl semimetals in three spatial dimensions are protected by band topology. Here we show that in the bulk of topological band insulators, self-organized topologically protected semimetals can emerge along a grain boundary, a ubiquitous extended lattice defect in any crystalline material. In addition to experimentally accessible electronic transport measurements, these states exhibit a valley anomaly in two dimensions influencing edge spin transport, whereas in three dimensions they appear as graphenelike states that may exhibit an odd-integer quantum Hall effect. The general mechanism underlying these semimetals—the hybridization of spinon modes bound to the grain boundary—suggests that topological semimetals can emerge in any topological material where lattice dislocations bind localized topological modes.

  1. Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary

    International Nuclear Information System (INIS)

    We employ a classic molecular dynamics method to investigate the dissolution and diffusion properties of hydrogen (H) in a Σ5(3 1 0) tilt grain boundary (GB). A maximum binding energy of 2.5 eV and a diffusion barrier of 1.65 eV indicate that GB plays an important role in H trapping. Dynamic simulations with temperature ranging from 600 K to 1200 K verify the diffusion and the aggregation of H in the GB are closely associated with the temperature. Pair radius distribution function analysis suggests a high local GB concentration of H such as 30% at 900 K can lead to a disordered GB structure

  2. Ostwald Ripening of Diffusion-Limited Small-Size Precipitates at Grain Boundaries

    Directory of Open Access Journals (Sweden)

    A.V. Koropov

    2012-10-01

    Full Text Available The paper describes a theoretical study of the Ostwald ripening of two-dimensional small-size precipitates of a newly formed phase at the grain boundary of finite thickness, taking into account the diffusion of impurity atoms from the grain interior to the grain boundary. The precipitate growth is believed to be limited by the impurity-atom diffusion in the grain boundary. The asymptotic time dependences are found for the average and critical precipitate radius, supersaturation of solid solution of impurity atoms in the grain boundary, precipitate size distribution function, precipitate density, and for the factor of grain boundary filling with precipitates. A discussion of the limits of validity of obtained results is given.

  3. Mean-field model for the growth and coarsening of stoichiometric precipitates at grain boundaries

    International Nuclear Information System (INIS)

    In this paper, a model for growth and coarsening of precipitates at grain boundaries is developed. The concept takes into account that the evolution of grain boundary precipitates involves fast short-circuit diffusion along grain boundaries as well as slow bulk diffusion of atoms from the grain interior to the grain boundaries. The mathematical formalism is based on a mean-field approximation, utilizing the thermodynamic extremal principle. The model is applied to the precipitation of aluminum nitrides in microalloyed steel in austenite, where precipitation occurs predominately at the austenite grain boundaries. It is shown that the kinetics of precipitation predicted by the proposed model differs significantly from that calculated for randomly distributed precipitates with spherical diffusion fields. Good agreement of the numerical solution is found with experimental observations as well as theoretical treatment of precipitate coarsening

  4. Synergistic effect of hydrogen and impurity segregations on the grain boundary embrittlement in Nb

    International Nuclear Information System (INIS)

    Niobium and its alloys are the candidate materials for fusion reactors and can be used at high-temperatures. This paper was intended to study embrittlement of niobium by high-concentrations of hydrogen and impurity segregation at grain boundaries. Specimens of commercial Nb were subjected to heat treatment at 1100 deg. C and 500 deg. C and subsequently charged with deuterium in an electrolytic cell. The charged specimens were placed into the high-vacuum chamber of a special self-made Auger electron spectrometer. They were then fractured under high-vacuum conditions and the chemistry of grain boundaries was analysed. Carbon and oxygen were found as the main impurities on the grain boundaries and effective energies for hydrogen-impurity-grain boundary interaction have been estimated. It was found that there is a noticeable reduction of fracture strength corresponding to the grain boundary oxygen and carbon segregation levels

  5. Deformation characteristics of various grain boundary angles on AFM-based nanolithography using molecular dynamics

    International Nuclear Information System (INIS)

    Molecular dynamics simulations are performed to verify the deformation characteristics of grain boundaries on the AFM-based nanolithography. The model used has about 750,000 (Cu) atoms and is composed of two different crystal orientations. The grain boundaries are located in the center of model and have 45, 90, 135, and -135 degree angles in the xz-plane. The tool is made of rigid diamond-like carbon and is in the shape of the Berkovich indenter. The simulation has four different stages: relaxation, indentation, re-relaxation, and lithography. The simulation results reveal that the lithography deforms the grain boundary shape by the tool. The deformation of grain boundary's angle proceeds to minimize the total potential energy of whole system. Consequently, the grain boundary angle is changed about 90 degrees

  6. Stress relaxation in thin film/substrate systems by grain boundary diffusion: a discrete dislocation framework

    International Nuclear Information System (INIS)

    The relaxation of stress in a thin film due to grain boundary diffusion is investigated in terms of a new discrete dislocation framework. Discrete dislocations along grain boundaries are nucleated from the free surface and are then driven to 'climb' by the Peach–Koehler force, with a mobility that is determined by the grain boundary diffusivity. Application to a planar film/substrate problem with (sub-) micrometer scale columnar grains shows that the amount of relaxation is dependent on the initial stress and on the grain aspect ratio. For thin columnar grains the relaxation is faster and more effective and the opening displacements along the grain boundary are more uniform, an effect that is not captured by current continuum models. When the initial stress is low and and the grain size is small, it is necessary to account for variations in the threshold stress for diffusion among different grain boundaries to achieve realistic results

  7. Point-defect recombination efficiency at grain boundaries in irradiated SiC

    International Nuclear Information System (INIS)

    We studied the atomic-scale mechanisms of radiation damage recovery, by molecular dynamics simulations of irradiation cascades in a β-SiC model system, containing one general (001) twist grain boundary in the direction approximately perpendicular to the cascade. The (001) grain boundary has a disordered atomic structure, representative of high-angle, high-energy boundaries in cubic silicon carbide. Compared to the perfect crystal model system, we find a relevant effect of grain boundaries on the annealing of cascade defects, both in terms of localization of defects, which are preferentially concentrated around the grain boundary, and of relative defect recovery efficiency. In general, C interstitials are the prevalent type of defect over the whole range of energies explored. A slight grain boundary expansion is observed, accompanied by a broadening of the central atomic planes

  8. The role of grain boundary sliding on creep deformation characteristics of discontinuous reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Biner, S.B.

    1994-10-01

    In this study, the grain boundary sliding behavior in discontinuous reinforced composites is investigated numerically. Results indicate that the stress enhancement factor for the composite is much larger than the one observed for the matrix material. In the composite, the increase in the strain rates as a result of grain boundary sliding occurs in a wider stress range in comparison to the matrix. It is shown that the experimentally observed large scale triple point grain boundary cavitation in the composites could occur as a result of large grain rotations resulting from grain boundary sliding and evolution of triaxial stress state. Also, the observed larger creep exponent values or stress dependent creep exponent values for the composites may not be explained solely by the mechanism of grain boundary sliding.

  9. Two channel model as a possible microscopic configuration of the open-quotes barrierclose quotes in high-Tc grain boundary junctions

    International Nuclear Information System (INIS)

    High-Tc superconductors are intensively studied for applications such as biomagnetism, but the great difficulties in making integrated dc SQUIDs have slowed down applications in the biomedical field. Moreover, magnetic noise and energy resolution are not always low enough to permit measurements of human body magnetic signals. Noise in bicrystal and biepitaxial grain boundary junctions has been extensively analyzed, and both structures showed similar 1/f noise behaviors. In order to account for the experimental results, different models describing grain boundary junctions have been made, each able to explain some aspects of the phenomenology. In this work we suggest that the open-quotes barrierclose quotes is constituted by a large number of microscopic weak links in parallel, and we analyze the effects of such a model on noise properties and the temperature dependences of the critical current, finding a good agreement with most experiments carried out on grain boundary junctions. 15 refs., 1 fig

  10. A new method for evaluation of transport properties in CdTe and CZT detectors

    CERN Document Server

    Jung, M; Fougeres, P; Hage-Ali, M; Siffert, P

    1999-01-01

    The precise evaluation of transport properties of both electrons and holes in compound semiconductor detectors, like CdTe or CZT, is of great interest for the development of these devices. Although the electron behaviour can be measured in most cases, that of holes is much more difficult. Both alpha or gamma radiations, as well as conventional computer simulations, have shown their limits. In this paper, we present a new approach based on computer simulations, which are performed at various energies. This model will be applied on various kinds of materials. The results will be discussed in terms of sensitivity of the method, electronic noise level as well as electric field distribution within the detector.

  11. Computer simulation of grain boundary self-diffusion in aluminum

    International Nuclear Information System (INIS)

    In the work study the process of self-diffusion in symmetric tilt grain boundaries (GB) with the axes misorientation [100], [110] and [111]. The research was carried out by the methods of computer simulation The objects of the research are the three GB of common and special type for each axis misorientation. The angles of misorientation of the common GB is amounted to 10°, 30° and 50°. The simulation was performed by the method of molecular dynamics in the temperature range from 600 to 1000 K, with an interval of 50 K. For research on the direction jumps atoms were built tracks the movement of atoms in the process of self-diffusion. The calculations have shown, that for all of GB is characterized by pronounced anisotropy of the jumps at low temperatures (< 700K). At temperatures near to the melting point directions of the jumps are isotropic only for three GB (Θ=30°[100], Θ=50=[100] and Σ5(013)[100]). For other GB such as [100] and [110] remains priority direction of diffusion along the nuclei GB dislocations. Arrenius curves have from one to three linear plots with different tilt. Change the tilt of Arrenius dependences testifies to the change in the mechanism of self-diffusion. The parameters of grainboundary self-diffusion were determined The activation energy of grainboundary diffusion in 4–5 times lower than the energy of activation of a volume self-diffusion of aluminum (about 200 KJ/mol). The minimum value of activation energy has GB 10° with the axis misorientation [100] (10,15 KJ/mol), maximum (104.12 Kj/mol) - a special GB Σ11(113)

  12. Computer simulation of grain boundary self-diffusion in aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Dragunov, Andrei S., E-mail: andrei.dragunov@aun.edu.ng [American University of Nigeria, Nigeria, Adamawa State, Yola Yola By-Pass 98 Lamido Zubairu Way (Nigeria); Weckman, A. V.; Demyanov, B. F. [Altai State Technical University, Russia, Altai Region, Barnaul (Russian Federation)

    2014-10-06

    In the work study the process of self-diffusion in symmetric tilt grain boundaries (GB) with the axes misorientation [100], [110] and [111]. The research was carried out by the methods of computer simulation The objects of the research are the three GB of common and special type for each axis misorientation. The angles of misorientation of the common GB is amounted to 10°, 30° and 50°. The simulation was performed by the method of molecular dynamics in the temperature range from 600 to 1000 K, with an interval of 50 K. For research on the direction jumps atoms were built tracks the movement of atoms in the process of self-diffusion. The calculations have shown, that for all of GB is characterized by pronounced anisotropy of the jumps at low temperatures (< 700K). At temperatures near to the melting point directions of the jumps are isotropic only for three GB (Θ=30°[100], Θ=50=[100] and Σ5(013)[100]). For other GB such as [100] and [110] remains priority direction of diffusion along the nuclei GB dislocations. Arrenius curves have from one to three linear plots with different tilt. Change the tilt of Arrenius dependences testifies to the change in the mechanism of self-diffusion. The parameters of grainboundary self-diffusion were determined The activation energy of grainboundary diffusion in 4–5 times lower than the energy of activation of a volume self-diffusion of aluminum (about 200 KJ/mol). The minimum value of activation energy has GB 10° with the axis misorientation [100] (10,15 KJ/mol), maximum (104.12 Kj/mol) - a special GB Σ11(113)

  13. Studies on CdTe solar cell front contact properties using X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The chemical changes between transparent conducting oxide (TCO) and cadmium sulphide (CdS) layers were analyzed using X-ray photoelectron spectroscopy (XPS). Commercially available indium tin oxide (ITO) and ITO/SnO2 were used as substrates. The CdS layers were deposited in vacuum (∼ 10−2 Pa) at two different (low and high) substrate temperatures by close spaced sublimation technique. During the growth of CdS layer, the substrate temperature was increased from 25 to 250 °C for low temperature layer and from 490 to 550 °C for high temperature CdS layer due to the high crucible temperature. Similar to CdTe solar cell device process steps, the samples (TCO/CdS) were annealed in vacuum (10−2 Pa) at 520 °C and in air at 375 °C with and without CdCl2. The XPS depth profile analysis shows that annealing ITO/CdS sample in vacuum induces diffusion of indium into the CdS layer from ITO. The most of the diffused indium atoms are found on top of the CdS layer. No indium diffusion into the CdS layer was observed for the TCO with SnO2 buffer layer between ITO and CdS. However, at SnO2/CdS interface Cd atoms diffuse into the SnO2 buffer layer after CdCl2 activation. The change in chemical and electronic properties of the ITO/CdS and ITO/SnO2/CdS interfaces is discussed in detail. - Highlights: • The chemical change between different layers of CdTe solar cell is analyzed. • The annealing treatment induces diffusion of chemical elements. • SnO2 buffer layer acts as barrier for indium diffusion. • The CdCl2 annealing induces cadmium diffusion into tin oxide layer

  14. The correlation of damping capacity with grain-boundary precipitates in Fe-Cr-based damping alloys annealed at high temperature

    International Nuclear Information System (INIS)

    We report the damping capacity measurements and grain-boundary (GB) precipitates observations on a set of four Fe-Cr-based ferromagnetic damping alloys annealed at 1473 K. The alloys were prepared by vacuum induction melt furnace of which each cast ingot weighed 15 kg. The technique of inverted torsion pendulum was employed to measure the damping capacity, and a field emission scanning electron microscope (FESEM) with a X-ray energy dispersive spectrometer (EDS) attachment was used to observe the grain-boundary precipitates. The results indicate the damping capacity of the alloys is definitely correlated with the amount of the grain-boundary precipitates as well as with the chromium concentration in the precipitates. Among the alloys investigated, Fe-Cr-2Al-Si exhibits the highest damping capacity but the least amount of grain-boundary precipitates with the lowest chromium concentration, and vice versa to that Fe-Cr-Al-Si(L) does. Though chromium concentration in the grain-boundary precipitates are very close, the amount of grain-boundary precipitates in Fe-Cr-Al is obviously less than that in Fe-Cr-Si, and the damping capacity of the former is apparently higher than that of the latter. Further discussion pointed out such correlation stems from the effects of alloying on the diffusion behavior of solute atoms as well as on the chemical potential of Cr in the matrix, with which correlates the magnetic properties especially the energy density of domain walls (DWs) which has a significant impact on the damping capacity of Fe-Cr-based damping alloys annealed at high temperature

  15. Irradiation induced changes in the grain boundary chemistry of high-manganese low activation martensitic steels

    International Nuclear Information System (INIS)

    The effects of neutron irradiation (10 dpa at 638 K, FFTF/MOTA) on solute segregation to the grain boundaries in high-manganese martensitic steels were investigated using Auger electron spectroscopy (AES). The AES spectrum obtained from the grain boundaries in martensitic steels was significantly influenced by neutron irradiation. Neutron irradiation caused a marked increase in the amount of intergranular segregation of manganese in 12%Cr-6%Mn-1%W steel, while no significant increases in sulfur and/or phosphorus segregations were found in the steel. In 9%Cr-2%Mn-1%W steel, a large amount of silicon as well as a small amount of manganese segregation at grain boundaries was induced by the irradiation. The following mechanisms of irradiation induced embrittlement are proposed; (1) neutron irradiation induced intergranular segregation of manganese causes a reduction of grain boundary cohesive force, (2) intergranular segregation of silicon reduces carbon concentration at grain boundaries by a site competition mechanism resulting in the weakening of the grain boundary strength. Another possible explanation involves grain boundary precipitation. (orig.)

  16. Capabilities and limitations of analytical methods used to measure radiation-induced grain boundary segregation

    International Nuclear Information System (INIS)

    The quantitative determination of instrumental effects on the measurement of radiation-induced grain boundary segregation (RIS) in stainless steel have been irradiated with 3.4 MeV protons to 1 dpa at 400 degrees C and the resulting segregation has been measured by Auger electron spectroscopy (AES) and scanning-transmission electron microscopy using energy-dispersive x-ray spectroscopy (STEM-EDS). Depletion of chromium and enrichment of nickel and impurity elements at the grain boundaries have been observed and quantified using both techniques. Determination of true grain boundary compositions, as compared to measured compositions, has been attempted using a variety of techniques Deconvolution of the measured STEM profiles is possible, along with the effects of discrete sampling at finite step spacings render the technique incapable of a reliable determination of the true grain boundary compositions. Convolution of computer simulated segregation profiles with the beam-interaction volume to fit measured profiles provides a better method to estimate the true grain boundary concentration and segregation profile shape. Direct comparisons between the simulated STEM profiles and AES measurements show good agreement and indicate that the simulated profiles provide good estimates of the true grain boundary concentration. Use of computer codes based on the Perks model are shown to seriously overestimate the amount of RIS and the width of the segregation profiles. A calculational model for monolayer-type segregation of impurities combines the STEM and AES measurements to calculate the distribution of the impurity element at the grain boundary

  17. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu

    Energy Technology Data Exchange (ETDEWEB)

    Reda Chellali, Mohammed, E-mail: m_chel01@uni-muenster.de [Institute of Materials Physics, Westf. Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster (Germany); Laboratoire de Chimie des Polymères, Faculté des Sciences, Université d' Oran (Algeria); Balogh, Zoltan; Schmitz, Guido [Institute of Materials Physics, Westf. Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster (Germany)

    2013-09-15

    Nanocrystalline materials are distinguished by a high density of structural defects and grain boundaries. Due to the small grain size, a particular defect of the grain boundary topology, the so-called triple junction takes a dominant role for grain growth and atomic transport. We demonstrate by atom probe tomography that triple junctions in nanocrystalline Cu have 100–300 times higher diffusivity of Ni than standard high angle grain boundaries. Also, a previously unexpected systematic variation of the grain boundary width with temperature is detected. The impurity segregation layer at the grain boundaries grows from the 0.7 nm at 563 K to 2.5 nm at 643 K. This variation is clearly not controlled by simple bulk diffusion. Taking this effect into consideration, the activation energies for Ni diffusion in triple junctions and grain boundaries in Cu can be determined to be (83±10) and (120±15) kJ/mol, respectively. Thus, triple junctions are distinguished by considerably lower activation energy with respect to grain boundaries. - Highlights: ► TJs, GBs, and individual grains are clearly localized. ► Diffusion (and segregation) in TJ can be studied. ► TJs diffusivity more than 2 orders of magnitude faster than GBs. ► The chemical width of GBs grows from 0.7 nm at 563 K to 2.5 nm at 643 K.

  18. Diffusion Growth and Morphological Stability of Two-Dimensional Grain Boundary Precipitates

    Directory of Open Access Journals (Sweden)

    A.V. Koropov

    2010-01-01

    Full Text Available Diffusion growth of two-dimensional precipitates at the grain boundary of a finite thickness was considered with due regard to the diffusion fluxes of impurity atoms from the grain volume to the grain boundary. Stability of the growing precipitates of a relatively small radius was analyzed with respect to the small random perturbations of its size and subject to the surface kinetics of impurity atoms at the grain boundary/precipitate profile. Threshold radii of the precipitates, above which the amplitude of the shape defect and the amplitude of the relative shape deformation of the precipitates rise, were found.

  19. The function of the grain boundaries in embrittlement of corrosion-resistant steels

    International Nuclear Information System (INIS)

    The influence of processes proceeding at grain boundaries during heat treatment and grain size effect on ductility are considered for high-strength corrosion resistant steels [Fe-0.1%C-(13-15)%Cr-(5-6)%Ni-(1.5-3.7)%Mo-2%Cu-0.9%Si-0.2%Nb]. It is shown that to ensure high reliability of the steels it is necessary to obtain a fine-grained structure with no impurity segregations or phase precipitates along grain boundaries. The steel alloying with molybdenum in amounts of ∼ 2 mass % is stated to retard the grain boundary phase precipitation and to enhance the steel ductility

  20. Phosphorus segregation behavior at the grain boundary in a Ti-IF steel after annealing

    International Nuclear Information System (INIS)

    The behavior of phosphorus grain boundary segregation is researched for an interstitial-free Ti steel which is cold rolled and recrystallized by annealing for different times at 810 oC. The results show that the segregation of phosphorus at the grain boundary is a non-equilibrium phenomenon. The critical segregation time is 120 s, when the segregation level is about 14 at.%. Its segregation mechanism is a solute atom 'atmosphere' that is formed around each dislocation and moves toward grain boundary.

  1. Non-equilibrium grain-boundary segregation of Bi in binary Ni(Bi) alloy

    International Nuclear Information System (INIS)

    The minimum ductility of Ni(Bi) alloy caused by isothermal annealing at 750 °C or 650 °C is determined through tensile tests at room temperature. Tensile samples with minimum ductility display intergranular facets. Strong grain-boundary segregation of Bi in nanocrystalline Ni–Bi layer is observed by atom probe tomography. The minimum ductility, intergranular facets and grain-boundary segregation of Bi confirm the non-equilibrium grain-boundary segregation of Bi in Ni(Bi) alloy for the first time

  2. The anatomy of grain boundaries: Their structure and atomic-level solute distribution

    International Nuclear Information System (INIS)

    The full macroscopic parameters of grain boundaries in a nanostructured ferritic alloy have been experimentally measured. A new atom-probe-tomography-based method determines the five degrees of freedom of the orientation relationship of the adjacent grains, and the local variations in the habit plane and solute excesses for tungsten and chromium across the grain boundary with a spatial resolution of up to 1 nm × 1 nm. The method also distinguishes ultrafine precipitates and ferrite–ferrite regions for a full description of the grain boundary

  3. Effects of low-frequency magnetic field on grain boundary segregation in horizontal direct chill casting of 2024 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effects of low frequency electromagnetic field on grain boundary segregation in horizontal direct chill (HDC)casting process was investigated experimentally. The grain boundary segregation and microstructures of the ingots,which manufactured by conventional HDC casting and low frequency electromagnetic HDC casting were compared.Results show that low frequency electromagnetic field significantly refines the microstructures and reduces grain boundary segregation. Decreasing electromagnetic frequency or increasing electromagnetic intensity has great effects in reducing grain boundary segregation. Meanwhile, the governing mechanisms were discussed.

  4. Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-07-01

    Full Text Available Nanocrystalline Cadmium Telluride (CdTe thin films were deposited onto glass substrates using electron beam evaporation technique. The effect of substrate temperature on the structural, morphological and optical properties of CdTe thin films has been investigated. All the CdTe films exhibited zinc blende structure with (111 preferential orientation. The crystallite size of the films increased from 35 nm to 116 nm with the increase of substrate temperature and the band gap of the films decreased from 2.87 eV to 2.05 eV with the increase of the crystallite size.

  5. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    Science.gov (United States)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  6. Grain boundary sliding and structure. Progress report, December 1, 1974--November 30, 1975

    International Nuclear Information System (INIS)

    Load relaxation experiments were performed in the region where the grain matrix plastic deformation is important on type 316 stainless steel and a zircaloy specimen, and the data are being analyzed. Anelastic deformation in pure aluminum was investigated. A dislocation glide-controlled anelastic component is identified which may be governed by the same laws as those for plastic deformation at low temperature and/or high plastic strain rate. The investigation of grain boundary sliding in type 316 stainless steel is being continued. Experimental data without the influence of thermal aging are successfully obtained. Load relaxation data on single crystal and polycrystal nickel specimens show that the constant hardness curves of these specimens belong to two different families. The growth of the grain boundary cavity under applied stress and irradiation has been analyzed. It is found that the normal stress at the grain boundary which is the driving force for atomic transport controlled cavity growth can be relaxed by grain boundary sliding

  7. Surface-Kinetics-Controlled Ostwald Ripening of Plane Precipitates at Grain Boundaries

    Directory of Open Access Journals (Sweden)

    A.V. Koropov

    2013-04-01

    Full Text Available Ostwald ripening (coarsening of plane precipitates was analytically analyzed at a grain boundary for the case when the precipitates growth is controlled by surface kinetics. Asymptotic characteristics of Ostwald ripening are found.

  8. Surface-Kinetics-Controlled Ostwald Ripening of Plane Precipitates at Grain Boundaries

    OpenAIRE

    A.V. Koropov

    2013-01-01

    Ostwald ripening (coarsening) of plane precipitates was analytically analyzed at a grain boundary for the case when the precipitates growth is controlled by surface kinetics. Asymptotic characteristics of Ostwald ripening are found.

  9. Flux-line pinning by the grain boundary in niobium bicrystals

    International Nuclear Information System (INIS)

    Flux-line pinning by the grain boundary in niobium bicrystals was investigated by making four-terminal measurements of the critical current and neutron diffraction measurements of the flux-line bending. The elementary pinning interaction is estimated from the critical current data by using an approximate theory of the current distribution on the grain boundary. The data reported here are mainly for a sample in which the applied magnetic field is parallel to the [111] and the [001] crystal directions in the two grains when it is in the plane of the boundary and perpendicular to the current direction. Evidence is seen of grain boundary faceting and of a flux-flow rectification effect that peaks as a function of temperature below 30K. The scale of the grain-boundary pinning is consistent with the quasiparticle-scattering theory

  10. Electron irradiation induced solute segregation near grain boundaries in austenitic stainless steel

    International Nuclear Information System (INIS)

    Radiation-induced solute segregation near internal defect sinks such as high angle grain boundaries was investigated, through the interaction between point defects and solute atom in austenitic stainless steel and its model alloys. Electron irradiation was performed in a high voltage electron microscope (H V E M) at a dose rate of about 2 multiple 10-3 d p a.S-1 at a temperature range of 350-600 degree C. Solute concentration profile near grain boundaries was measured by E D X in S T E M mode. Strong enrichment and depletion of solutes were observed on grain boundaries during irradiation and segregation rate went through a maximum at 450 degree C. These facts indicate that grain boundaries act as preferential sinks for radiation-induced point defects

  11. The effect of surface contact conditions on grain boundary interdiffusion in a semi-infinite bicrystal

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Klinger, L.; Rabkin, E.

    2014-01-01

    Roč. 94, č. 30 (2014), s. 3398-3412. ISSN 1478-6435 Institutional support: RVO:68081723 Keywords : grain boundary diffusion * liquid metals * stress analysis * interfacial thermodynamics Subject RIV: BJ - Thermodynamics Impact factor: 1.825, year: 2014

  12. Influence of annealing on grain boundary segregation of neutron irradiated type 316L stainless steel

    International Nuclear Information System (INIS)

    Type 316L stainless steel was neutron irradiated (8x1025 n/m2, E>1MeV) and annealed at 673 K - 973 K for 1 hour. After the annealing, intergranular fracture ratio measurement by SSRT, grain boundary analysis by FE-TEM with EDS and simulation of grain boundary Cr depletion healing were performed in order to consider an effect of segregation healing on IASCC. The intergranular fracture ratio was healed to 0% by annealing above 723 K, but the healing of grain boundary Cr depletion of 723 K annealed specimen was not recognized by EDS analysis. Considering about the EDS analysis result and analysis probe diameter, concentration profiles were calculated. As a result, it was considered that grain boundary segregation which depleted to about 8 mass% by neutron irradiation, healed to about 12 mass% by annealing at 723 K, so that IASCC susceptibility was decreased. (author)

  13. DIFFUSION AND EQUILIBRIUM SEGREGATION IN GRAIN BOUNDARIES : EFFECTS OF LARGE SEGREGATION

    OpenAIRE

    Bernardini, J.; Cabane, F.

    1985-01-01

    From recent experiments in binary and ternary solid solutions, we discuss the determination of grain boundary diffusion coefficients, some structural aspects of diffusion and segregation and the influence of segregation on impurity diffusion.

  14. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan

    2011-12-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary diffusion, grain boundary sliding and dislocation activities are considered. Effects of pressure on the grain boundary diffusion and sliding mechanisms are taken into account. Furthermore, the influence of grain size distribution on macroscopic response is studied. The model is shown to capture the fundamental mechanical characteristics of nanocrystalline metals. These include grain size dependence of the strength, i.e., both the traditional and the inverse Hall-Petch effects, the tension-compression asymmetry and the enhanced rate sensitivity. © 2011 Elsevier B.V. All rights reserved.

  15. Phase-field-crystal study of grain boundary premelting and shearing in bcc iron

    OpenAIRE

    Adland, Ari; Karma, Alain; Spatschek, Robert; Buta, Dorel; Asta, Mark

    2012-01-01

    We use the phase-field-crystal (PFC) method to investigate the equilibrium premelting and nonequilibrium shearing behaviors of $[001]$ symmetric tilt grain boundaries (GBs) at high homologous temperature over the complete range of misorientation $0

  16. Atomic simulation of grain boundary sliding in Co/Cu two-phase bicrystals

    International Nuclear Information System (INIS)

    Molecular dynamic simulations of grain boundary sliding were performed on Cu/Cu one-phase bicrystal and Co/Cu two-phase bicrystal models. The grain boundary sliding and migration behaviors of the Co/Cu bicrystals were different from those of the Cu/Cu bicrystals, and the Co/Cu sliding behavior was less related to the free volume, than that of Cu/Cu. In the Co/Cu(2 2 1) grain boundary model, the pore structure units were formed on the Cu side very near the Co/Cu interface, not just at the interface. The onset of grain boundary sliding in the Co/Cu bicrystals was due to the uncorrelated atomic shuffling induced by the pore structure units.

  17. Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals

    Science.gov (United States)

    Zhou, Xiao; Marchand, Daniel; McDowell, David L.; Zhu, Ting; Song, Jun

    2016-02-01

    Hydrogen embrittlement of metals is widely observed, but its atomistic origins remain little understood and much debated. Combining a unique identification of interstitial sites through polyhedral tessellation and first-principles calculations, we study hydrogen adsorption at grain boundaries in a variety of face-centered cubic metals of Ni, Cu, γ -Fe , and Pd. We discover the chemomechanical origin of the variation of adsorption energetics for interstitial hydrogen at grain boundaries. A general chemomechanical formula is established to provide accurate assessments of hydrogen trapping and segregation energetics at grain boundaries, and it also offers direct explanations for certain experimental observations. The present study deepens our mechanistic understanding of the role of grain boundaries in hydrogen embrittlement and points to a viable path towards predictive microstructure engineering against hydrogen embrittlement in structural metals.

  18. Spatially resolved analytical electron microscopy at grain boundaries of {alpha}-Al{sub 2}O{sub 3}; Ortsaufgeloeste analytische Elektronenmikroskopie an Korngrenzen in {alpha}Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nufer, S.

    2001-10-01

    Aluminum oxide, {alpha}-Al{sub 2}O{sub 3}, is a common structural ceramic material. The most technologically important properties are either determined or strongly influenced by the polycrystalline microstructure. For instance, the grain boundaries control the mechanical behavior (e.g. plasticity, creep, and fracture) or various transport phenomena (e.g. ion diffusion, segregation, and electrical resistivity). In order to understand the structure-properties relationships, it is therefore important to characterize the structure and chemistry of grain boundaries, both experimentally and theoretically. In this work the electronic structure of the basal and rhombohedral twin grain boundaries and the impurity excess at different tilt grain boundaries in bicrystals were investigated, using electron energy-loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS). The electronic structure of the rhombohedral twin grain boundary was determined by comparing spatially resolved EELS measurements of the O-K ionisation edge with the theoretical density of states (DOS), obtained from local density functional theory (LDFT) calculations. The interface excess of impurities was quantitatively analysed at grain boundaries with and without Y-doping. (orig.)

  19. Effect of the disorder in graphene grain boundaries: A wave packet dynamics study

    OpenAIRE

    Vancsó, Péter; Márk, Géza I.; Lambin, Philippe; Mayer, Alexandre; Hwang, Chanyong; Biró, László P.

    2013-01-01

    Chemical vapor deposition (CVD) on Cu foil is one of the most promising methods to produce graphene samples despite of introducing numerous grain boundaries into the perfect graphene lattice. A rich variety of GB structures can be realized experimentally by controlling the parameters in the CVD method. Grain boundaries contain non-hexagonal carbon rings (4,5,7,8 membered rings) and vacancies in various ratios and arrangements. Using wave packet dynamic (WPD) simulations and tight-binding elec...

  20. A molecular dynamics study of lithium grain boundary intercalation in graphite

    International Nuclear Information System (INIS)

    Lithium-ion diffusion rates in graphitic battery anodes have been shown to vary greatly in experiments, with numerous hypotheses to explain this behavior. Here, we model several grain boundaries using molecular dynamics and quantify intercalation from the free surface. A significant variation in intercalation rates is revealed as dictated by local bond structure where the grain boundary intersects the free surface. Data presented may help explain dramatic differences in diffusion rates and permit more accurate predictions of lithium-ion battery performance

  1. Study on grain boundary structure analysis and control of oxide dispersion strengthened (ODS) martensitic steel cladding

    International Nuclear Information System (INIS)

    For the purpose of improving high-temperature creep strength of Oxide Dispersion Strengthened (ODS) steel for advanced Fast Reactor (FR) cladding, grain boundary structure of ODS steel cladding was analyzed. Based on the analysis, grain boundary control procedure was discussed. The derived results can be summarized as follows: (1) By investigating the effects of several heat treatments on microstructure for enlarging grain size and reducing special coincidence grain boundary, a unique martensite microstructure composed of single variant and reduction of the special coincidence grain boundary were achieved. It was revealed that furnace-cooling heat treatment (1050degC x 1 hr, furnace-cooling (30degC/hr)) induces gamma to alpha diffusion transformation and reduction of the special coincidence grain boundary. A composite microstructure composed of ferrite phase and residual alpha-phase is effective for high-temperature strength enhancement. (2) As a result of investigation on grain boundary control using recrystallization, it was shown that the special coincidence grain boundary can be reduced by the appropriate combination of cold-rolling and recrystallization heat treatment. It would be easier to reduce grain boundary sliding in recrystallized ODS ferritic steel than in ODS martensite steel. (3) The precipitation behavior of Y2O3 particles in mechanically alloyed (MA) powder was investigated using transmission electron microscope (TEM). It was shown that few Y2O3 particles precipitate by a heat treatment up to 800degC. Combination of a heat treatment at 800degC for grain coarsening and a heat treatment at 800degC-1100degC for oxide particle precipitation would be a prospective procedure for the microstructure control to fine oxide particle dispersion in coarse grain structure, which is an ideal microstructure for creep strength enhancement. (author)

  2. Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in FCC Metals

    OpenAIRE

    Zhou, Xiao; Marchand, Daniel; McDowell, David L.; Zhu, Ting; Song, Jun

    2015-01-01

    Hydrogen embrittlement of metals is widely observed, but its atomistic origins remain little understood and much debated. Combining a unique identification of interstitial sites through polyhedral tessellation and first-principles calculations, we study hydrogen adsorption at grain boundaries in a variety of face-centered cubic metals of Ni, Cu, gamma-Fe and Pd. We discover the chemomechanical origin of variation of adsorption energetics for interstitial hydrogen at grain boundaries. A genera...

  3. HYDROGEN EMBRITTLEMENT IN GRAIN BOUNDARIES STUDIED BY FATIGUE CRACK PROPAGATION IN Al-Zn-Mg BICRYSTALS

    OpenAIRE

    Niegel, A.; Gudladt, H.-J.; Gerold, V.

    1988-01-01

    High cycle fatigue crack propagation in grain boundaries was studied in precipitation hardened Al-Zn-Mg specimens containing a single grain boundary (gb) perpendicular to the load axis. In peak-aged bicrystals tested in wet nitrogen atmospheres, cracks propagated in an intercrystalline manner. Under cyclic loading conditions two different mechanisms contribute to crack propagation which are termed stress corrosion cracking (SCC) and intergranular corrosion fatigue (CF). In both cases, it is w...

  4. Effect of heat treatment on grain boundary precipitate formation in Nimonic PE16

    International Nuclear Information System (INIS)

    Isothermal precipitation curves for small grain boundary precipitates in Nimonic PE16 have been determined experimentally. A theoretical model which describes the growth of grain boundary precipitates is summarised and its application specific to Nimonic PE16 is considered. The fit between experimental and theoretical isothermal precipitation curves and thus the usefulness of the model in predicting improved heat treatments for the alloy is discussed. (author)

  5. APFIM Characterization of Grain Boundary Segregation in Titanium Carbide-Doped Molybdenum

    OpenAIRE

    Miller, M; Kurishita, H.

    1996-01-01

    The grain boundary segregation behavior of titanium and carbon have been characterized in two titanium carbide-doped molybdenum alloys. The matrix of these alloys was found to be significantly depleted in titanium, carbon, oxygen, and nitrogen. Both titanium oxycarbide and molydenum carbide precipitates were observed. The Gibbsian Interfacial Excess, Γ, determined from atom probe analyses revealed significant enrichments of carbon and nitrogen at the grain boundaries in both alloys. In atom p...

  6. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    Science.gov (United States)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  7. An analysis of segregation-induced changes in grain boundary cohesion in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šob, Mojmír

    2014-01-01

    Roč. 49, č. 6 (2014), 2477-2482. ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144; GA AV ČR IAA100100920; GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : grain boundary segregation * grain boundary embrittlement * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.371, year: 2014

  8. Grain boundary sliding quantification by atomic force microscopy: contribution to high temperature embrittlement analyses

    International Nuclear Information System (INIS)

    We developed an original experimental method for measuring grain boundary sliding by atomic force microscopy. The analysed alloys were previously tested at high temperatures and low strain rates, for short time tests. We measured grain boundary sliding along his perpendicular component to the sample surface. The detection limit is of 10 nm. Thin and flat austenitic stainless steels and superalloys samples were tested at high temperature (360 C to 750 C), under ultra high vacuum atmosphere, with slow rate tensile tests and constant load tests. After short times tests, AFM characterization showed that grain boundary sliding could be activated at the loading, within amplitudes of several tens of nm. Furthermore, after short time tests, grain boundary sliding amplitudes are independent of the geometrical orientation of the boundary trace compared with loading direction. On the other hand crystallographic misorientation has a strong influence on boundaries propensity to slide. Intergranular segregation was also analyzed by AES for two alloys (304H austenitic stainless steel and X- 750 nickel-base alloy), previously submitted to high temperature slow strain rate tensile tests. AES analysis showed preferential segregation of S and P near 304H triple junctions. Whereas, AES analysis on X-750 alloy showed P segregation at the bottom of microvoids distributed on a micro-ductile grain facet and a strong segregation of S at the location of grain boundary precipitate. Our experimental methods allows the study of the correlation between two main phenomena contributing to high temperature embrittlement: grain boundary sliding and intergranular segregation embrittlement. Determining grain boundary sliding kinetics should confirm our method of step measure by AFM as a way to indicate high temperature embrittlement sensitivity of alloys in service conditions and also give information about the contribution of grain boundary sliding to stress corrosion cracking initiation and

  9. In situ observation of grain boundary migration by synchrotron radiation topography

    International Nuclear Information System (INIS)

    The application of in situ synchrotron radiation (SR) transmission topography to the study of grain boundary migration in bicrystals of an Fe-6 at.%Si alloy is described. The details on experimental arrangement of the high-temperature in situ observations of dynamic processes in material are given. The pertinence of this method is documented by comparison of the data on migration of {130} grain boundary measured this way and by optical method after heating and cooling cycles

  10. Importance of frequency-dependent grain boundary scattering in nanocrystalline silicon and silicon-germanium thermoelectrics

    OpenAIRE

    Hua, Chengyun; Minnich, Austin J.

    2014-01-01

    Nanocrystalline silicon and silicon-germanium alloys are promising thermoelectric materials that have achieved substantially improved figure of merits compared to their bulk counterparts. This enhancement is typically attributed to a reduction in lattice thermal conductivity by phonon scattering at grain boundaries. However, further improvements are difficult to achieve because grain boundary scattering is poorly understood, with recent experimental observations suggesting that the phonon tra...

  11. Nonequilibrium grain-boundary cosegregation of nitrogen and chromium in NiCrMoV steel

    Science.gov (United States)

    Zheng, Lei; Xu, Tingdong

    2005-12-01

    It is concluded in this article that nonequilibrium grain-boundary cosegregation (NCGS) of nitrogen and chromium occurs in NiCrMoV steel. That conclusion is reached from experimental observations of the parallel segregation isotherms and the maximum coverage of Cr and N at grain boundaries during the isotherms. This means that the nonequilibrium segregation of Cr induces that of N, in NiCrMoV steel.

  12. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  13. Grain boundary migration in Fe-3mass%Si alloy bicrystals under a magnetic field

    Czech Academy of Sciences Publication Activity Database

    Tsurekawa, S.; Inoue, K.; Lejček, Pavel

    2010-01-01

    Roč. 50, č. 4 (2010), 591-595. ISSN 0915-1559 R&D Projects: GA ČR GA106/08/0369 Grant ostatní: JSPS(JP) 19106013 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain boundary migration * magnetic field * grain boundary character * Fe-Si alloy * bicrystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.742, year: 2010

  14. Characterizing twist grain boundaries in BCC Nb by molecular simulation: Structure and shear deformation

    Science.gov (United States)

    Liu, Zeng-Hui; Feng, Ya-Xin; Shang, Jia-Xiang

    2016-05-01

    Atomic scale modeling was used to study the structure, energy and shear behaviors of (110) twist grain boundaries (TWGBs) in body-centered cubic Nb. The relation between grain boundary energy (GBE) and the twist angle θ agrees well with the Read-Shockley equation in low-angle range. At higher angles, the GBEs show no distinct trend with the variation of the twist angle or the density of coincident lattice sites. All (110) twist boundaries can be classified into two types: low-angle grain boundaries (LAGBs) and high-angle grain boundaries (HAGBs). LAGBs contain a hexagonal dislocation network (HDN) which is composed of 1/2 [ 111 ], 1/2 [ 1 bar 1 bar 1 ] and [001] screw dislocations. HAGBs can be classified into three sub-types further: special boundaries with low Σ, boundaries in the vicinity of special boundaries with similar structures and ordinary HAGBs consisting of periodic patterns. Besides, a dependence of grain boundary shear response vs the twist angle over the entire twist angle range is obtained. Pure sliding behavior is found at all TWGBs. When θ < 12°, the flow stress of LAGBs is found to be correlated with the HDNs and decreases with the increasing twist angle. For ordinary HAGBs, the magnitude of flow stress is around 0.8-1.0 GPa and the twist angle has little effect on the anisotropy mobility. For special grain boundaries with low Σ, the boundary structures govern the GBEs and shear motion behavior significantly.

  15. Investigation and optimization of YBa2Cu3O7-δ grain boundaries and coated conductors

    International Nuclear Information System (INIS)

    With increasing misorientation angle grain boundaries strongly reduce the critical current density of high temperature superconductors. For this reason costly techniques are used in production of modern Coated Conductors to induce sharp textures in the polycrystalline superconductor layers. In this dissertation measurements of the critical current density of different grain boundary types are presented showing that out-of-plane grain boundaries exhibit, also in applied magnetic fields, much higher critical current densities than expected. In further analysis of the grain boundaries indications for a microstructural reason of the high critical current densities were found. The high critical current densities of the out-of-plane grain boundaries should in fabrication of Coated Conductors allow for a relaxation of the out-of-plane grain alignment requirements and a concomitant cost reduction. In this work also results of a industrial cooperation with Nexans are presented demonstrating that the critical current density of metal-organic deposited grain boundaries and Coated Conductor layers can be increased by selective Calcium-doping. In the experiments selective Calcium-doping most effectively increased the critical current density of weak spots. (orig.)

  16. On the small angle twist sub-grain boundaries in Ti3AlC2

    Science.gov (United States)

    Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun

    2016-04-01

    Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al–Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations.

  17. A phase-field model of stress effect on grain boundary migration

    International Nuclear Information System (INIS)

    We developed a phase-field model to study the stress-driven grain boundary migration in elastically inhomogeneous polycrystalline materials with arbitrary elastic inhomogeneity and anisotropy. The dependence of elastic stiffness tensor on grain orientation is taken into account, and the elastic equilibrium equation is solved using the Fourier spectral iterative-perturbation method. We studied the migration of planar and curved grain boundaries under an applied stress. The relation between grain boundary migration velocity and driving force is found to be linear in the steady-state regime. Our study shows that the stress distribution depends on the relative misorientation between the grains and the nature of the applied load. As a consequence, the mechanism of grain boundary migration is different when the load is applied parallel or perpendicular to a grain boundary. The bulk mechanical driving force for grain boundary migration is provided by the difference in the level of stress in the adjoining grains which arise due to difference in elastic moduli. We further show that under certain conditions an applied stress may act as a precursor to abnormal grain growth

  18. Helium bubbles at grain boundaries of high-density 238PuO2 shards

    International Nuclear Information System (INIS)

    Hydroxide- and oxalate-base 238PuO2 shards that were sintered to high density at 1200 or 16000C and then aged for 6 months or more exhibited grain-boundary gas bubbles due to agglomeration of alpha-decay helium when heated to 12000C and above. Conditions for bubble formation depended markedly on shard microstructure; large-grained shards with few large residual sintering pores formed gas bubbles at lower temperatures than small-grained shards with many pores. This behavior was especially apparent in oxalate-base 238PuO2, in which small-grained shards resisted bubble formation to above 15000C; small-grained hydroxide-base shards with less internal porosity than oxalate-base shards formed bubbles at lower temperatures. Helium is apparently released from aged 238PuO2 shards at high temperatures by bulk diffusion within grains to the grain boundaries, where bubbles are formed and interconnect into networks which permit helium escape. It is postulated that helium is released by grain boundary diffusion at temperatures below thresholds for grain boundary bubble formation. Small grain size and high residual porosity within grains inhibit the formation of the grain-boundary gas bubbles by reducing the concentration of helium gas at the grain boundaries. (10 fig)

  19. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  20. Localized electronic states at grain boundaries on the surface of graphene and graphite

    Science.gov (United States)

    Luican-Mayer, Adina; Barrios-Vargas, Jose E.; Toft Falkenberg, Jesper; Autès, Gabriel; Cummings, Aron W.; Soriano, David; Li, Guohong; Brandbyge, Mads; Yazyev, Oleg V.; Roche, Stephan; Andrei, Eva Y.

    2016-09-01

    Recent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline morphology affects the electronic properties is crucial for the development of applications such as flexible electronics, energy harvesting devices or sensors. We here report on atomic scale characterization of several GBs and on the structural-dependence of the localized electronic states in their vicinity. Using low temperature scanning tunneling microscopy and spectroscopy, together with tight binding and ab initio numerical simulations we explore GBs on the surface of graphite and elucidate the interconnection between the local density of states and their atomic structure. We show that the electronic fingerprints of these GBs consist of pronounced resonances which, depending on the relative orientation of the adjacent crystallites, appear either on the electron side of the spectrum or as an electron-hole symmetric doublet close to the charge neutrality point. These two types of spectral features will impact very differently the transport properties allowing, in the asymmetric case to introduce transport anisotropy which could be utilized to design novel growth and fabrication strategies to control device performance.

  1. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries

    Science.gov (United States)

    Zhou, Ying; Wang, Liang; Chen, Shiyou; Qin, Sikai; Liu, Xinsheng; Chen, Jie; Xue, Ding-Jiang; Luo, Miao; Cao, Yuanzhi; Cheng, Yibing; Sargent, Edward H.; Tang, Jiang

    2015-06-01

    Solar cells based on inorganic absorbers, such as Si, GaAs, CdTe and Cu(In,Ga)Se2, permit a high device efficiency and stability. The crystals’ three-dimensional structure means that dangling bonds inevitably exist at the grain boundaries (GBs), which significantly degrades the device performance via recombination losses. Thus, the growth of single-crystalline materials or the passivation of defects at the GBs is required to address this problem, which introduces an added processing complexity and cost. Here we report that antimony selenide (Sb2Se3)—a simple, non-toxic and low-cost material with an optimal solar bandgap of ˜1.1 eV—exhibits intrinsically benign GBs because of its one-dimensional crystal structure. Using a simple and fast (˜1 μm min-1) rapid thermal evaporation process, we oriented crystal growth perpendicular to the substrate, and produced Sb2Se3 thin-film solar cells with a certified device efficiency of 5.6%. Our results suggest that the family of one-dimensional crystals, including Sb2Se3, SbSeI and Bi2S3, show promise in photovoltaic applications.

  2. Effect of grain boundary sliding on the toughness of ultrafine grain structure steel: A molecular dynamics simulation study

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Xian; Liu Bo; Yin Fu-Xing; Yu Tao

    2013-01-01

    Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel.The simulation results suggest that the sliding of the {001}/{ 11 0} type and { 110}/{ 111 } type grain boundary can improve the impact toughness.Then,the mechanism of grain boundary sliding is studied and it is found that the motion of dislocations along the grain boundary is the underlying cause of the grain boundary sliding.Finally,the sliding of the grain boundary is analyzed from the standpoint of the energy.We conclude that the measures which can increase the quantity of the {001}/{110} type and {110}/{111} type grain boundary and elongate the free gliding distance of dislocations along these grain boundaries will improve the low-temperature impact toughness of the ultrafine grain structure steel.

  3. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2015-09-01

    This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.

  4. Three-dimensional heterogenous fields in metallic multicrystals with explicit account of grain boundary effects

    International Nuclear Information System (INIS)

    Full text: A significant portion of modern material technology is concerned with materials that possess a polycrystalline structure, i.e. a collection of grains with different lattice orientations. A direct consequence of the periodic structure of the lattice is the anisotropic behavior of the single crystal and, therefore, the resulting dependence of the polycrystal properties on grain orientation, shape and distribution (texture). The resulting macroscopic properties of the material including its anisotropy are ultimately dictated by the resulting texture and other microstructural effects. A number of basic strategies have been proposed to describe the aggregate behavior of the crystallites. These theories postulate some mean-field hypothesis on the response of a collection of grain orientations associated with a continuum material point and result in some averaging procedure of the response of the single crystals. In this paper we present the evolution of the inhomogeneous features of the full 3D stress and strain fields in metallic polycrystals arising from the lattice misorientation among grains and grain boundary effects. The computation of full field solutions is especially critical for the analysis of the deformation of crystals with low symmetry. In these materials, inhomogeneity of deformation stems from an increased grain constraint effect. Effective calculations of these systems require massive parallel computation, which is accomplished by partitioning the finite element mesh so as to equidistribute the number of elements among the processors while minimizing communications. Each mesh partition is assigned to a different processor and the grains are identified with the mesh partitions. Refs. 7 (author)

  5. Micromechanical Modeling of Grain Boundaries Damage in a Copper Alloy Under Creep

    International Nuclear Information System (INIS)

    In order to include the processes on the scale of the grain structure into the description of the creep behaviour of polycrystalline materials, the damage development of a single grain boundary has been initially investigated in the present work. For this purpose, a special simulationmethod has been used, whose resolution procedure based on holomorphic functions. The mechanisms taken into account for the simulations include nucleation, growth by grain boundary diffusion, coalescence and shrinkage until complete sintering of grain boundary cavities. These studies have then been used to develop a simplified cavitation model, which describes the grain boundary damage by two state variables and the time-dependent development by a mechanism-oriented rate formulation. To include the influence of grain boundaries within continuum mechanical considerations of polycrystals, an interface model has been developed, that incorporates both damage according to the simplified cavitation model and grain boundary sliding in dependence of a phenomenological grain boundary viscosity. Furthermore a micromechanical model of a polycrystal has been developed that allows to include a material's grain structure into the simulation of the creep behaviour by means of finite element simulations. Thereby, the deformations of individual grains are expressed by a viscoplastic single crystal model and the grain boundaries are described by the proposed interface model. The grain structure is represented by a finite element model, in which the grain boundaries are modelled by cohesive elements. From the evaluation of experimental creep data, the micromechanical model of a polycrystal has been calibrated for a copper-antimony alloy at a temperature of 823 K. Thereby, the adjustment of the single crystal model has been carried out on the basis of creep rates of pure copper single crystal specimens. The experimental determination of grain boundary sliding and grain boundary porosity for coarse

  6. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  7. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    International Nuclear Information System (INIS)

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations

  8. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Park, Ji-Sang; Metzger, Wyatt [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Yin, Wan-Jian [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); College of Physics, Optoelectronics and Energy and Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Wei, Su-Huai, E-mail: suhuaiwei@csrc.ac.cn [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Beijing Computational Science Research Center, Beijing 100094 (China)

    2016-01-28

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  9. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    Science.gov (United States)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Metzger, Wyatt; Wei, Su-Huai

    2016-01-01

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  10. Intergranular brittle fracture of a low alloy steel induced by grain boundary segregation of impurities: influence of the microstructure

    International Nuclear Information System (INIS)

    The study contributes to improve the comprehension of intergranular embrittlement induced by the phosphorus segregation along prior austenitic grain boundaries of low alloy steels used in pressurized power reactor vessel. A part of this study was performed using a A533 steel which contains chemical fluctuations (ghost lines) with two intensities. Axi-symmetrically notched specimens were tested and intergranular brittle de-cohesions were observed in the ghost lines. The fracture initiation sites observed on fracture surfaces were identified as MnS inclusions. A bimodal statistic obtained in a probabilistic model of the fracture is explained by the double population of ghost lines' intensities. A metallurgical study was performed on the same class of steel by studying the influence of the microstructure on the susceptibility to temper embrittlement. Brittle fracture properties of such microstructures obtained by dilatometric experiments were tested on sub-sized specimens to measure the V-notched fracture toughness. Fraction areas of brittle fracture modes were determined on surface fractures. A transition of the fracture mode with the microstructure is observed. It is shown that tempered microstructures of martensite and lower bainite are more susceptible to intergranular embrittlement than tempered upper bainitic microstructure. The intergranular fracture is the most brittle mode. The analysis of crystalline mis-orientations shows a grain boundary structure appreciably more coherent for tempered microstructures of martensite and lower bainite. The higher density of random grain boundaries is susceptible to drag the phosphorus in the upper bainitic matrix and to make the quantity of free phosphorus decreasing. Microstructure observations show a difference in the size and the spatial distribution of carbides, essentially cementite, between tempered martensite and upper bainite. It can explain the bigger susceptibility of this last microstructure to cleavage mode

  11. Barrier layer and grain boundary effects in Nd/Zr doped BaTiO3 ceramics

    International Nuclear Information System (INIS)

    Gradient structures with barrier layer characteristics and core-shell morphology have been developed in BaTiO3 ceramics with Nd2O3 and ZrO2 as co-dopants. Features include reduced Curie temperatures and anisotropic stress gradients, resulting from an oxidized surface layer and reduced interior, developed during air sintering. Co-doping was typically carried out through solution milling of the BaTiO3 powders with nitrate precursors of the dopant oxides, spray drying and sintering of the pressed pellets in air ambient at 1300-1320 deg. C/60-90 min with furnace cooling. Structural characterization, as well as dielectric and d.c. resistance measurements of the pellets, as-sintered and after removing equal amounts of material from both surfaces, revealed the existence of an oxidized surface layer and barrier layer microstructures consisting of graded regions of oxidized insulating surfaces over partially oxidized or conducting grain interiors. In this complex structure, the ZrO2 segregates to the grain boundary region, forming a core-shell structure, with Nd2O3 partitioning between the BaTiO3 and ZrO2 phases. The overall system was modeled in terms of an equivalent circuit and the analysis indicates that the dielectric constant and the loss behavior are strongly impacted by both the surface and grain boundary barrier characteristics, with the surface barrier effects having the more dominant effect on the dielectric properties of the doped compositions. Indications are that fine-tuning of the system to optimize the grain boundary effect could lead to extraordinary dielectric constant effects which could potentially be utilized in high energy storage devices.

  12. Evolution of transport properties along a semi-insulating CdTe crystal grown by vertical gradient freeze method

    International Nuclear Information System (INIS)

    The evolution of transport properties along a chlorine-doped CdTe crystal grown by the gradient freeze (GF) method has been investigated by time of flight (TOF) measurement. Drift mobilities as high as 1100 cm2/(Vs) and 80 cm2/(Vs) for electrons and holes, respectively, are measured at the initial part of the grown crystal, and were found to decrease with increasing solidified fraction (g). On the other hand, the specific resistivity increases with increasing g. These behaviors can be understood as the dopant (Cl) concentration variation due to segregation during growth. The change in γ-detection properties between crystals having different g is demonstrated. (author)

  13. Numerical study of the atomic and electronic structure of some silicon grain boundaries; Etude numerique de la structure atomique et electronique de quelques joints de grains du silicium

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, M

    1996-07-01

    This work contributes to the theoretical study of extended defects in covalent materials. The study is especially devoted to the tilt grain boundaries in silicon as a model material. The theoretical model is based on the self-consistent tight-binding approximation and is applied within two numerical techniques: the fast 'order N' density-matrix method and the diagonalization technique which allows the sampling of the reciprocal space. Total energy parameters of the model have been fitted in order to reproduce the silicon band structure (with a correct gap value) and the transferability of crystalline and mechanical properties of this material. A new type of boundary conditions is proposed and tested. These conditions, named 'ante-periodic' or 'Moebius', allow only one grain boundary per box instead of two and decrease the CPU time by a factor of two. The model is then applied to the study of the {sigma}=25 [001] (710) grain boundary. The results show the possible presence in this boundary of low energy non-reconstructed atomic structures which are electrically active. This confirms what had been suggested by some experimental observations. The same study is also performed for the {sigma}=13 [001] (510) grain boundary. In order to compare the intrinsic electrical activity in the previous grain boundaries with the one induced by impurities, a total energy parametrization for the silicon-nickel bond is achieved and used in preliminary calculations. Finally the two variants of the {sigma}=11 [011] (2-33) interface are studied, especially their respective interfacial energies. The result disagrees with previous calculations using phenomenological potentials. (author)

  14. Meso-scale anisotropic hydrogen segregation near grain-boundaries in polycrystalline nickel characterized by EBSD/SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Oudriss, A.; Le Guernic, Solenne; Wang, Zhaoying; Osman Hock, B.; Bouhattate, Jamaa; Conforto, E.; Zhu, Zihua; Li, Dongsheng; Feaugas, Xavier

    2016-02-15

    To study anisotropic hydrogen segregation and diffusion in nickel polycrystalline, Secondary Ion Mass Spectrometry (SIMS) and Electron Back Scattered Diffraction (EBSD) are integrated to investigate hydrogen distribution around grain boundaries. Hydrogen distribution in pre-charged samples were correlated with grain boundary character by integrating high-resolution grain microstructure from EBSD inverse pole figure map and low-resolution hydrogen concentration profile map from SIMS. This multimodal imaging instrumentation shows that grain boundaries in nickel can be categorized into two families based on behavior of hydrogen distribution crossing grain boundary: the first one includes random grain boundaries with fast hydrogen diffusivity, showing a sharp gap for hydrogen concentration profile cross the grain boundaries. The second family are special Σ3n grain boundaries with low hydrogen diffusivity, showing a smooth gradient of hydrogen concentration cross the grain boundary. Heterogeneous hydrogen distributions due to grain boundary family revealed by SIMS/EBSD on mesoscale further validate the recent hydrogen permeation data and anisotropic ab-initio calculations in nanoscale. The results highlight the fact that grain boundaries character impacts hydrogen distribution significantly.

  15. Ab initio description of segregation and cohesion of grain boundaries in W–25 at.% Re alloys

    International Nuclear Information System (INIS)

    We investigate grain boundaries (GBs) in W–25 at.% Re alloys with special focus on the segregation of Re to the GBs and the changes in their cohesive properties that arise therefrom. Our simulations rely on density functional theory and a mean-field approximation, the virtual crystal approximation, to model the highly alloyed system. Based on a gamma-surface approach, the geometry of a wide range of GBs, including tilt, twist and mixed GBs, is obtained. Segregation energies are found to vary strongly between different segregation sites, with the strongest segregation energy amounting to −0.75 eVs. We show that bond-order parameters are able to identify strong segregation sites based on purely geometric information only. With a thermodynamic model based on a Bragg–Williams approach, the concentration of Re atoms is calculated as a function of GB character at 1913 K and compared with atom probe experiments. The segregation levels are similar, with a trend towards higher segregation levels observed in the calculations for certain misorientation angles. Finally, Re alloying is found to lead to a general increase in the work of separation of the GBs, suggesting a reduction in the tendency for intergranular fracture

  16. Molecular dynamics study on the grain boundary dislocation source in nanocrystalline copper under tensile loading

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Pei, Linqing; Zhao, Xing; Cheng, Kuiyu

    2015-03-01

    Grain boundary (GB) is the interface between different oriented crystals of the same material, and it can have a significant effect on the many properties of materials. When the average or entire range of grain size is reduced to less than 100 nm, the conventional plastic deformation mechanisms dominated by dislocation processes become difficult and GB mediated deformation mechanisms become increasingly important. One of the mechanisms that can play a profound role in the strength and plasticity of metallic polycrystalline materials is the heterogeneous nucleation and emission of dislocations from GB. In this study, we conducted molecular dynamics simulations to study the dislocation nucleation from copper bicrystal with a number of tilt GBs that covered a wide range of misorientation angles (θ). We will show from this analysis that the mechanic behavior of GBs and the energy barrier of dislocation nucleation from GBs are closely related to the lattice crystallographic orientation, GB energy, and the intrinsic GB structures. An atomistic analysis of the nucleation mechanisms provided details of this nucleation and emission process that can help us to better understand the dislocation source in GB.

  17. Structural stability and energetics of grain boundary triple junctions in face centered cubic materials

    Science.gov (United States)

    Adlakha, I.; Solanki, K. N.

    2015-03-01

    We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.

  18. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    International Nuclear Information System (INIS)

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2θ = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (ΔE) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, λ. The value of n and k increases with the increase of substrate temperature

  19. Influence of slip localization on surface relief formation and grain boundary microcrack nucleation

    International Nuclear Information System (INIS)

    Slip localization is often observed in metallic polycrystals after cyclic deformation (persistent slip bands) or pre-irradiation followed by tensile deformation (channels). To evaluate its influence on surface relief formation and grain boundary microcrack nucleation, crystalline finite element (FE) computations are carried out using microstructure inputs (slip band aspect ratio/spacing). Slip bands (low critical resolved shear stress (CRSS)) are embedded in small elastic aggregates. Slip band aspect ratio and neighboring grain orientations influence strongly the surface slips. But only a weak effect of slip band CRSS, spacing and grain boundary orientation is observed. Analytical formulae are deduced which allow an easy prediction of the surface and bulk slips. The computed slips are in agreement with experimental measures (AFM/TEM measures on pre-irradiated austenitic stainless steels and nickel, copper and precipitate-strengthened alloy subjected to cyclic loading). Grain boundary normal stresses are computed for various materials and loading conditions. A square root dependence with respect to the distance to the slip band corner is found similarly to the pile-up stress field. But the equivalent stress intensity factor is considerably lower. Analytical formulae are proposed for predicting the grain boundary normal stress field depending on the microstructure lengths. Finally, an energy balance criterion is applied using the equivalent elastic energy release rate and the surface/grain boundary energies. The predicted macroscopic stresses for microcrack nucleation are compared to the experimental ones. (authors)

  20. Critical current across grain boundaries in melt-textured YBa2Cu3O

    International Nuclear Information System (INIS)

    We determine the critical current JcB of grain boundaries fabricated by ''welding'' of melt-textured YBCO with various degrees of ab-plane misalignment. JcB is determined by monitoring the magnetic moment due to persistent shielding currents, which were induced in rings containing two sections of a single grain boundary. The voltage drop across the junctions is estimated to be below 10-12 V, much smaller than in typical transport measurements. As the temperature or magnetic field is increased, an abrupt decrease (kink) is observed in the magnetic moment of the ring when the induced shielding current in the ring exceeds the critical current across the boundaries. The kink signals that flux has begun to penetrate through the grain boundaries into the bore of the ring. This behavior is confirmed by magneto-optical imaging. We observe that grain boundaries with [001] tilt mismatch angles up to 5o have critical current densities in excess of 104 A/cm2, comparable to the bulk current density. At larger mismatch angles, the critical current rapidly decreases with increasing angle. The qualitative behavior of JcB as function of temperature, magnetic field, and misorientation angle is similar to that observed YBCO grain boundaries manufactured by other methods

  1. Yttrium segregation and oxygen diffusion along high-symmetry grain boundaries in YSZ

    Energy Technology Data Exchange (ETDEWEB)

    González-Romero, Robert L. [Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas, Caixa Postal 6165, CEP 13083-970, Campinas (Brazil); Meléndez, Juan J. [Department of Physics, University of Extremadura. Avda. de Elvas, s/n, 06006, Badajoz (Spain); Institute for Advanced Scientific Computing of Extremadura (ICCAEx). Avda. de Elvas, s/n, 06006, Badajoz (Spain)

    2015-02-15

    Highlights: • A study of yttrium segregation to three grain boundaries (GB) in YSZ is performed. • A steady concentration of yttrium is reached after a short transient regime. • Segregation does not change the coefficients for oxygen diffusion along the GB. • The main effect after segregation appears for oxygen bulk diffusion. • The effect is related to the rearrangement of oxygen vacancies after segregation. - Abstract: A study by Molecular Dynamics of yttrium segregation to high-symmetry grain boundaries of yttria-stabilized zirconia has been performed for different amounts of dopants. After an initial (and short) transient, segregation reaches a steady regime in which the concentration of the defect species at the grain-boundaries does not change in time. The maximum concentration of yttrium is reached at the grain-boundary planes, while oxygen vacancies screen the electric field created by segregation. Segregation of yttrium does not change appreciably the coefficients for oxygen diffusion along the grain boundaries, but instead modifies those for bulk diffusion. This effect is rationalized in terms of the rearrangement of the oxygen vacancies at the vicinities of the yttrium cations. The activation energies vary smoothly with the concentration of yttria for all the boundaries. Our data for diffusion coefficients and activation energies compare fairly well with experimental values when segregation is explicitly taken into account.

  2. Yttrium segregation and oxygen diffusion along high-symmetry grain boundaries in YSZ

    International Nuclear Information System (INIS)

    Highlights: • A study of yttrium segregation to three grain boundaries (GB) in YSZ is performed. • A steady concentration of yttrium is reached after a short transient regime. • Segregation does not change the coefficients for oxygen diffusion along the GB. • The main effect after segregation appears for oxygen bulk diffusion. • The effect is related to the rearrangement of oxygen vacancies after segregation. - Abstract: A study by Molecular Dynamics of yttrium segregation to high-symmetry grain boundaries of yttria-stabilized zirconia has been performed for different amounts of dopants. After an initial (and short) transient, segregation reaches a steady regime in which the concentration of the defect species at the grain-boundaries does not change in time. The maximum concentration of yttrium is reached at the grain-boundary planes, while oxygen vacancies screen the electric field created by segregation. Segregation of yttrium does not change appreciably the coefficients for oxygen diffusion along the grain boundaries, but instead modifies those for bulk diffusion. This effect is rationalized in terms of the rearrangement of the oxygen vacancies at the vicinities of the yttrium cations. The activation energies vary smoothly with the concentration of yttria for all the boundaries. Our data for diffusion coefficients and activation energies compare fairly well with experimental values when segregation is explicitly taken into account

  3. Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

    International Nuclear Information System (INIS)

    Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating towards grain boundaries, eventually leading to a lowering of the thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted-UO2 samples was irradiated with 0.7 and 1.8 MeV Kr-ions and annealed to 1000℃, 1300℃, and 1600℃ for 1 hour to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. While Kr migration is active at elevated temperatures, no changes in grain size or texture were observed in the irradiated UO2 samples.

  4. Grain boundary self-diffusion in polycrystalline nickel of different purity levels

    International Nuclear Information System (INIS)

    Grain boundary self-diffusion in Ni materials of two different purity levels (99.6 and 99.999 wt.%) was measured over wide temperature intervals using the radiotracer technique and applying the 63Ni radioisotope. The diffusion experiments were performed in both Harrison's type B and type C kinetic regimes. The diffusional grain boundary width, δ, was found to be equal to 0.54 ± 0.1 nm, that is reasonably close to the accepted value of δ=0.5nm in face-centred cubic metals. The purer the material, the higher the grain boundary diffusivity and the lower the corresponding activation enthalpy of self-diffusion along general high-angle grain boundaries. Using the semi-empirical approach of Borisov et al., the average energy of high-angle grain boundaries was estimated to be about 0.79 and 0.98 J m-2 in the low- and high-purity Ni materials at room temperature, respectively.

  5. Continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries

    Science.gov (United States)

    Zhu, Xiaohong; Xiang, Yang

    2014-09-01

    We present a continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries that are allowed to be nonplanar or nonequilibrium. In our continuum framework, we define a dislocation density potential function on the dislocation array surface or grain boundary to describe the orientation dependent continuous distribution of dislocations in a very simple and accurate way. The continuum formulations incorporate both the long-range dislocation interaction and the local dislocation line energy, and are derived from the discrete dislocation model. The continuum framework recovers the classical Read-Shockley energy formula when the long-range elastic fields of the low angle grain boundaries are canceled out. Applications of our continuum framework in this paper are focused on dislocation structures on static planar and nonplanar low angle grain boundaries and misfitting interfaces. We present two methods under our continuum framework for this purpose, including the method based on the Franks formula and the energy minimization method. We show that for any (planar or nonplanar) low angle grain boundary, the Franks formula holds if and only if the long-range stress field in the continuum model is canceled out, and it does not necessarily hold for a total energy minimum dislocation structure.

  6. Investigation of Structural, Chemical, and Electrical Properties of CdTe/Back Contact Interface by TEM and XPS

    Science.gov (United States)

    Han, Jun-feng; Krishnakumar, V.; Schimper, H.-J.; Cha, Li-mei; Liao, Cheng

    2015-10-01

    CdTe solar cell back contact preparation usually includes a chemical etching process which helps to obtain a Te-rich p-doped CdTe surface. In this work we compared the influence of two different etching solutions [nitricâ€"phosphoric (NP) and nitricâ€"acetic acid (NA)] on the CdTe surface. Transmission electron microscopy indicated that a Te-rich layer was formed on the surface of polycrystalline CdTe films after the etching process. The layer thickness was 80 nm and 10 nm for NP and NA etching solutions, respectively. In addition, the images showed that the influence of the etching solution was preferentially along the grain boundaries. The chemical properties of the etched CdTe surface were studied by using x-ray photoelectron spectroscopy. The nitricâ€"phosphoric acid yielded a relatively thicker Te-rich layer on the CdTe surface. On the other hand, the Jâ€" V properties of the solar cells prepared using nitricâ€"acetic acid showed no rollover behavior, indicating improved back contact. The solar cells prepared with the NA and NP etching processes yielded >10% solar cell efficiency. The CdTe solar cell homogeneity was improved by the NA etching method.

  7. Electrical properties of Schottky diodes based on high-resistance CdTe crystals

    International Nuclear Information System (INIS)

    Measurement of the Schottky barrier height on the CdTe monocrystals alloyed with the Cl, Br, J during the growth process is carried out through the method of chemical transport reactions. Verification of the efficiency of the proposed F(V) function modification with the purpose of determining the Me(In, Sn)-p-CdTe diodes parameters is accomplished. The Schottky barriers with the current transmission diffusion mechanism perspective for developing high-efficiency semiconducting detectors of nuclear radiation are created on the basis of the method for the gas-phase growth of the semiinsulating CdTe monocrystals

  8. Study of trapping density in electrical characteristics of CdTe thin films

    International Nuclear Information System (INIS)

    CdTe thin films were deposited on glass at various substrate temperatures using vacuum evaporated technique. The X-ray diffraction analysis of vacuum evaporated cadmium telluride (CdTe) films reveals was polycrystalline in nature for the samples prepared at higher temperatures. Micro structural feature associated with the as deposited CdTe thin films were studied by Transmission Electron Microscopy (TEM). A high density of trapping centers, responsible for grain boundary space-charge potential barriers, which oppose the passage of carriers from a grain to the neighbouring ones, was explained from this analysis. (author)

  9. Effect of CdCl2 treatment on structural and electronic property of CdTe thin films deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    The structural and electrical properties of the magnetron sputtered CdTe thin films with subsequent CdCl2 solution treatment have been studied with a major focus on the influence of CdCl2 treatment to achieve high quality thin films. In this study, CdTe films with a thickness of 1.5 to 2 μm have been grown using the magnetron sputtering technique on top of glass substrate at an optimized substrate temperature of 250 °C. Aqueous CdCl2 concentration varied from 0.3 mol to 1.2 mol with the annealing temperature from 360 °C to 450 °C. The surface roughness of the films increases with the increase of solution concentration, while it fluctuates with the increase of annealing temperature. The density of nucleation centers and the strain increases for the films treated at 360 °C with 0.3 M to1.2 M while the grain growth of the films reduces. However, these strains are released at higher annealing temperatures, resulting in reduced dislocation densities, structural defects as well as increased crystalline property and grain size. The carrier concentration increases with the increase of treated CdCl2 concentration and subsequent annealing temperature. The highest carrier concentration of 1.05 × 1014/cm3 was found for the CdTe thin films treated with 0.3 M CdCl2 solution followed by an annealing treatment at 420 °C for 20 min. - Highlights: • CdTe thin films are grown as absorption layers in CdTe solar cells by sputtering. • CdTe film quality in terms of structural and electronic properties is examined. • All growth parameters are optimized in the range of 1.5 to 2 μm CdTe films

  10. Effect of CdCl{sub 2} treatment on structural and electronic property of CdTe thin films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A. [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Hossain, M.S.; Aliyu, M.M. [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Karim, M.R. [Center of Excellence for Research in Engineering Materials (CEREM) College of Engineering, King Saud University, Riyadh, 11421 (Saudi Arabia); Razykov, T.; Sopian, K. [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, N., E-mail: nowshad@eng.ukm.my [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM) College of Engineering, King Saud University, Riyadh, 11421 (Saudi Arabia)

    2013-11-01

    The structural and electrical properties of the magnetron sputtered CdTe thin films with subsequent CdCl{sub 2} solution treatment have been studied with a major focus on the influence of CdCl{sub 2} treatment to achieve high quality thin films. In this study, CdTe films with a thickness of 1.5 to 2 μm have been grown using the magnetron sputtering technique on top of glass substrate at an optimized substrate temperature of 250 °C. Aqueous CdCl{sub 2} concentration varied from 0.3 mol to 1.2 mol with the annealing temperature from 360 °C to 450 °C. The surface roughness of the films increases with the increase of solution concentration, while it fluctuates with the increase of annealing temperature. The density of nucleation centers and the strain increases for the films treated at 360 °C with 0.3 M to1.2 M while the grain growth of the films reduces. However, these strains are released at higher annealing temperatures, resulting in reduced dislocation densities, structural defects as well as increased crystalline property and grain size. The carrier concentration increases with the increase of treated CdCl{sub 2} concentration and subsequent annealing temperature. The highest carrier concentration of 1.05 × 10{sup 14}/cm{sup 3} was found for the CdTe thin films treated with 0.3 M CdCl{sub 2} solution followed by an annealing treatment at 420 °C for 20 min. - Highlights: • CdTe thin films are grown as absorption layers in CdTe solar cells by sputtering. • CdTe film quality in terms of structural and electronic properties is examined. • All growth parameters are optimized in the range of 1.5 to 2 μm CdTe films.

  11. Effect of grain boundary misorientation on discontinuous precipitation in an AZ91 alloy

    Indian Academy of Sciences (India)

    H Azzeddine; S Abdessameud; B Alili; Z Boumerzoug; D Bradai

    2011-12-01

    A scanning electron microscopy (SEM)-based electron backscatter diffraction (EBSD) analysis showed that the discontinuous precipitation (DP) reaction rate was dependent on the geometry of the grain boundary in Mg–9Al–1Zn (wt.%) alloys. DP converted a supersaturated solid solution, 0 (magnesium (Mg)-rich solid solution), into a two-phase + aggregate, with being a precipitated Mg17Al12 (intermetallic phase) behind a migrating reaction front. The near-special grain boundary was rather inactive, whereas most of the random high-angle boundaries promoted the reaction. Prior deformation (hot rolling to achieve up to 80% thickness reduction) had no effect on the frequency of special-grain boundaries.

  12. Equivalent Plastic Strain Gradient Plasticity with Grain Boundary Hardening and Comparison to Discrete Dislocation Dynamics

    CERN Document Server

    Bayerschen, E; Wulfinghoff, S; Weygand, D; Böhlke, T

    2015-01-01

    The gradient crystal plasticity framework of Wulfinghoff et al. [53] incorporating an equivalent plastic strain and grain boundary yielding, is extended with additional grain boundary hardening. By comparison to averaged results from many discrete dislocation dynamics (DDD) simulations of an aluminum type tricrystal under tensile loading, the new hardening parameter in the continuum model is calibrated. It is shown that although the grain boundaries (GBs) in the discrete simulations are impenetrable, an infinite GB yield strength corresponding to microhard GB conditions, is not applicable in the continuum model. A combination of a finite GB yield strength with an isotropic bulk Voce hardening relation alone also fails to model the plastic strain profiles obtained by DDD. Instead, a finite GB yield strength in combination with GB hardening depending on the equivalent plastic strain at the GBs is shown to give a better agreement to DDD results. The differences in the plastic strain profiles obtained in DDD simu...

  13. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    Science.gov (United States)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  14. Relating the grain boundary microchemistry of alloy 600 to the DL-EPR response

    International Nuclear Information System (INIS)

    The double loop electrochemical potentiokinetic reactivation (DL-EPR) response of Alloy 600 was characterized for a variety of grain boundary Cr depletion profiles. Solutions containing H2SO4 with either KSCN, Na2S4O6 or SC(NH2)2 were studied for their sensitivity to pitting and variations in the grain boundary Cr minimum and width of the depletion zone. Results show that a solution consisting of 0.01IM H2SO4 + 0.0001M KSCN has good sensitivity to the grain boundary Cr minimum and produced minimal pitting. A solution of 0.5M H2SO4 + 0.001M SC(NH2)2 was slightly more sensitive to small amounts of Cr depletion than the KSCN solution. Solutions containing H2SO4 + Na2S4O6 were not successful as they did not consistently repassivate all heat treat conditions

  15. Plastic deformation-induced phosphorus segregation to ferrite grain boundaries in an interstitial free steel

    International Nuclear Information System (INIS)

    Research highlights: → Plastic deformation causes non-equilibrium grain boundary phosphorus segregation. → Deformation induced segregation increases with increasing deformation rate. → Non-equilibrium segregation is induced by supersaturated vacancy-phosphorus complex. → Model predictions show a reasonable agreement with the observations. - Abstract: Grain boundary concentration of phosphorus in an interstitial free steel is observed by virtue of Auger electron spectroscopy after the alloy is plastically deformed to different strains under different strain rates at a high temperature in the ferrite region. The results reveal that phosphorus segregates at grain boundaries during plastic deformation. The segregation increases with increasing deformation until reaching a steady value, and at the same deformation amount it increases with increasing strain rate. Model predictions are made, which shows a reasonable agreement between the predictions and the observations.

  16. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  17. Low-frequency noise of dc SQUID magnetometers having slotted structure along the grain boundary junction

    International Nuclear Information System (INIS)

    In order to operate high-Tc SQUID magnetometers in an environment with no or weak magnetic shielding, we incorporated slots along the wide (3 mm) grain boundary junction in the pickup coil and the flux dam of direct-coupled SQUID magnetometers. It was confirmed that the slots formed along the wide grain boundary junction suppressed vortex motion and prevented a large increase in low-frequency noise. When we applied external fields above a threshold value of the flux dam after zero-field cooling, the flux-locked-loop output fluctuated, and the low-frequency field noise Bn increased but became stable after a time. The relaxation time after field application was longer for higher fields. A slight increase in the low-frequency noise remained, which was attributed to the fluctuation of the flux trapped in the slots having grain boundaries. (author)

  18. Grain boundary composition effects on environmentally induced cracking of engineering materials

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, S.M. (Pacific Northwest Lab., P.O. Box 999, Richland, WA (US))

    1988-06-01

    There is now clear evidence that intergranular stress corrosion cracking (IGSCC) and hydrogen embrittlement (HE) of engineering materials depend on grain boundary composition. Two examples are used to illustrate this interrelationship: (1) stress corrosion cracking (SCC) of austenitic stainless steel (SS) in high temperature water and (2) HE of NiCrMoV rotor steels in acidic solutions. Grain boundary compositions are characterized by analytical electron microscopy and scanning Auger electron spectroscopy. Environmental cracking susceptibility is indicated by slow strain rate tests (SSRTs) in appropriate aqueous environments. Direct correlations are documented between measured grain boundary compositions and environmental cracking. The ability to establish these types of correlations enables diagnosis of embrittlement susceptibility and helps identify methods to control to eliminate embrittlement by bulk chemistry or processing modifications.

  19. Atomic structure of the Σ = 2 twist carbide grain boundary in WC-Co alloys

    Science.gov (United States)

    Lay, Sabine; Missiaen, Jean-Michel

    2013-04-01

    The Σ = 2 twist carbide grain boundary with a (10 ? 0) habit plane was investigated by high resolution transmission electron microscopy in a WC-Co alloy. The atomic structure at the boundary was determined by comparing experimental images and simulations. It corresponds to the boundary model with the lowest energy according to atomistic calculations. Periodic monolayer interfacial steps, compensating for the parametric misfit at the boundary were studied. The displacement field around the defects was simulated and corresponds to a dislocation with a mixed character and a Burgers vectors equal to 1/6⟨ ? 2 ? 3⟩ lying in the boundary plane. Another step with a larger height and connected to a stacking fault was analyzed. It likely arises from the interaction of a matrix dislocation with the boundary. The observations suggest that the migration of Σ = 2 grain boundaries can be induced by the glide of the monolayer steps along the grain boundary.

  20. Excellent optical quality versus strong grain boundary effect in a double-layer ZnO structure

    Science.gov (United States)

    Wu, Bin; Zhuang, Shi-Wei; Chi, Chen; Shi, Zhi-Feng; Jiang, Jun-Yan; Chu, Xian-Wei; Dong, Xin; Li, Wan-Cheng; Li, Guo-Xing; Zhang, Yuan-Tao; Zhang, Bao-Lin; Du, Guo-Tong

    2016-03-01

    ZnO samples with a double-layer structure and top nanorod arrays on the bottom film layer were grown by metal-organic chemical vapor deposition at a temperature range from 340 to 400 °C. The ZnO nanorods show excellent optical quality and no obvious defect related emission can be detected below 40 K except for I6 line and the surface bound exciton emission. The free exciton emission and its phonon replicas dominate the near band edge emission between 40 and 295 K. For the film layer, the temperature-dependent Hall measurements showed that the conduction region is degenerate. In the conduction region, the carrier mobility is mainly limited by the grain boundary effect, which can be weakened by thermal annealing. The conduction mechanism in this region before and after annealing can be fitted by a uniform and a non-uniform conduction model, respectively. The results indicate that grain boundary effects strongly limit the mobility and consume large amounts of carriers by the trap states. Furthermore, we propose a qualitative model to explain the expansion of the conduction regions by annealing. It reveals a mechanism for the improvement of electrical properties of polycrystalline thin films by annealing treatments.

  1. Dynamically- and chemically-induced grain boundary migration in quartz: microstructures, crystallographic fabrics, and trace element contents

    Science.gov (United States)

    Nachlas, Will; Thomas, Jay

    2016-04-01

    Grain boundary migration (GBM) is a common mechanism by which quartz recrystallizes in the Earth. In the most basic sense, GBM occurs as atoms exchange structural positions across a planar defect. Reconstitution of grains via GBM imparts a new crystallographic orientation, but its effect on the geochemistry of recrystallized grains remains uncertain and depends on the kinetic and thermodynamic properties of the moving grain boundary. Two of the dominant driving forces for GBM are lattice strain energy, controlled by the applied stress field, and chemical potential energy, controlled by differences in mineral stability. We present observations from static and dynamic recrystallization experiments showing evidence for GBM in response to both of these driving forces. In static recrystallization experiments, quartz recrystallized in response to local variations in trace-level Ti concentrations, whereas in dynamic recrystallization experiments, quartz recrystallized during dislocation creep in response to the imposed differential stress. Each case produced recrystallized quartz exhibiting diagnostic microstructures, crystallographic fabrics, and trace element contents that can be used to infer the mechanisms of quartz recrystallization and the pressure-temperature conditions at which recrystallization occurred.

  2. The properties of CdTe solar cells with ZnTe/ZnTe: Cu buffer layers

    Institute of Scientific and Technical Information of China (English)

    Song Huijin; Zheng Jiagui; Feng Lianghuan; Yan Qiang; Lei Zhi; Wu Lili; Zhang Jingquan; Li Wei; Li Bing

    2008-01-01

    CdS/CdTe solar cells with ZnTe/ZnTe:Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe:Cu buffer layers affect the solar cell conversion efficiency and its fill factor.

  3. Structural, Optical, and Magnetic Properties of Co Doped CdTe Alloy Powders Prepared by Solid-State Reaction Method

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-01-01

    Full Text Available Co doped CdTe powder samples were prepared by solid-state reaction method. In the present work effect of Co doping on structural, optical, and magnetic properties has been studied. X-ray diffraction studies confirm zinc blend structure for all the samples. The lattice parameter showed linear increase with the increase in Co content. The elemental constituents were characterized by EDAX. Optical studies showed the increase in band gap with increase in Co level. The samples were diluted magnetic semiconductors and exhibited clear hysteresis loop showing room temperature ferromagnetism as confirmed by vibrating sample magnetometer.

  4. Load relaxation studies of grain boundary sliding in Incoloy 800H

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, H.; Hannula, S.P.; Korhonen, M.A.; Suzuki, H.; Li, C.Y (Cornell Univ., Ithaca, NY (USA))

    Load relaxation tests were performed on Incoloy 800H at elevated temperatures as a function of prior plastic deformation. The log stress vs. log strain rate curves obtained exhibit the typical sigmoidal shape predicted by current theories. A stress enhancement factor with a value near 0.7 can be estimated based on limiting stress values both at the high and low strain rate ends. The results of data analysis yielded long grain boundary stress vs. log grain boundary sliding rate curves. These curves are found to show grain matrix-like characteristics. The significance of these results is discussed in terms of a state variable theory.

  5. Estimation of grain boundary diffusivity in near-α titanium polycrystals

    International Nuclear Information System (INIS)

    The role of enhanced grain boundary diffusivity in high-temperature diffusion of interstitial elements through metals is widely recognized but poorly characterized in most materials. This paper summarizes an effort to estimate grain boundary diffusivity of oxygen in a near-α titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, by explicitly incorporating microstructure obtained from electron backscatter diffraction into an analytical model. Attention is focused on near-surface diffusion behavior contributing to the rapid ingress of oxygen and possible crack initiation in high-temperature environments.

  6. Precipitation at grain boundaries in irradiated austenitic Fe-Cr-Mn alloys

    International Nuclear Information System (INIS)

    In previous work, the phase stability of Fe-Cr-Mn alloys during irradiation was investigated in a study that included simple binaries, simple ternaries and commercially produced alloys. These low activation alloys are being considered for fusion reactor service in the first wall and in other structural applications subject to high neutron doses. In addition to phase instabilities observed within the grains, grain boundaries were susceptible to varying levels of precipitation dependent upon alloy composition, displacement dose and irradiation temperature. This paper describes the grain boundary microstructures that developed in these Fe-Cr-Mn alloys during irradiation

  7. Structure of high angle grain boundaries in metals and ceramic oxides

    International Nuclear Information System (INIS)

    A critical review is given of the state of our current knowledge of the structure of high angle grain boundaries in metals and in ceramic oxides. Particular attention is given to effects due to differences in the bonding and crystal structure in these solid types. The results of recent experimental work and efforts to model grain boundary structure using computer simulation methods are described. Important characteristic features of boundaries in these materials are discussed. Difficulties which are presently being encountered in efforts to determine their structure are pointed out

  8. Grain boundary effect on the nature of cleavage fracture in copper crystallite under pulsed loading

    International Nuclear Information System (INIS)

    The computer modeling of cleavage fracture in the copper crystallite, containing grain boundary under pulsed loading, is carried out. It is shown that tendency to material destruction along the grain boundary is increasing by initiation of packages of several isolated compression pulses (ICP) in the material. Increase in the ICP number in the package leads to the cleavage fracture along the boundaries, outlying over a great distance from the free surface. The cleaved fragments decompose with time into smaller ones due to growing spread of atomic velocities

  9. Molecular dynamics simulation of Ga penetration along grain boundaries in Al: a dislocation climb mechanism.

    Science.gov (United States)

    Nam, Ho-Seok; Srolovitz, David J

    2007-07-13

    Many systems where a liquid metal is in contact with a polycrystalline solid exhibit deep liquid grooves where the grain boundary meets the solid-liquid interface. For example, liquid Ga quickly penetrates deep into grain boundaries in Al, leading to intergranular fracture under very small stresses. We report on a series of molecular dynamics simulations of liquid Ga in contact with an Al bicrystal. We identify the mechanism for liquid metal embrittlement, develop a new model for it, and show that is in excellent agreement with both simulation and experimental data. PMID:17678231

  10. Negligible effect of grain boundaries on the thermal conductivity of rocks

    Science.gov (United States)

    Vandersande, J. W.; Pohl, R. O.

    1982-08-01

    The thermal conductivity of marble, gabbro, quartz-monzonite, basalt and of labradorite was measured between 0.3 and 80 K. In all cases, the phonon mean free paths ℓ¯ were found to increase with decreasing temperature, but even at the lowest temperatures, ℓ¯ was far smaller than the average grain sizes. This demonstrates that phonon scattering by grain boundaries has very little influence on the heat transport in these rocks. Evidence is presented that lamellae due to twinning or exsolution, rod-like large inclusions, and density fluctuations inside the grains mask the effect of grain boundaries.

  11. Correlation between electrical activity and various structures of Ge grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Palais, O [Laboratoire TECSEN, UMR 6122-CNRS, Faculte des Sciences et Techniques de St Jerome, F-13397 Marseille, Cedex 20 (France); Lamzatouar, A [Laboratoire TECSEN, UMR 6122-CNRS, Faculte des Sciences et Techniques de St Jerome, F-13397 Marseille, Cedex 20 (France); Duparc, O B M Hardouin [LSI, UMR 7642-CNRS-CEA, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Thibault, J [CEA/DRFMC, 17 rue des Martyrs, 38054 Grenoble (France); Chara, A [Laboratoire TECSEN, UMR 6122-CNRS, Faculte des Sciences et Techniques de St Jerome, F-13397 Marseille, Cedex 20 (France)

    2004-01-21

    The links between the electrical activity and the atomic structure of various Ge grain boundaries (GBs) are investigated. The atomic structure is studied using high resolution electron microscopy, while the electrical activity is evaluated thanks to the measurement of minority carrier lifetime by means of the contactless microwave phase shift technique. Results show that in the {sigma} = 51 GB the electrical activity depends on the atomic structure connected to the configuration of the grain boundary, i.e. tilt, twist or mixed. Lower energy structures such as {sigma} = 3 and 9 GBs appear not to be recombinant.

  12. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  13. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  14. Atomic and electronic structures of YBa2Cu3O7 [001], [010] tilt and twist grain boundaries

    International Nuclear Information System (INIS)

    We study the electronic structures of YBa2Cu3O7 (YBCO) [010]([001]) tilt and twist grain boundaries using first-principles density functional theory. The Σ3(010)/[010](90°) twist grain boundary has the lowest grain-boundary energy. Across this interface, the (001)-CuO2 layers on one side link almost perfectly to the (100)-Cu3O5 layers on the other side. To explain why the super-fluid remains almost unchanged when flowing across this kind of interface (Eom et al 1991 Nature 353 544), the (100)-Cu3O5 layers should have conductivity as good as that of the (001)-CuO2 layers. The negative grain-boundary energy between such thin YBCO [010] films means that the special one-dimensional super-lattice structure along the [010] direction is more stable than a perfect YBCO lattice. A special Σ5[001] twist grain boundary with low grain-boundary energy probably has a small barrier for super-current transport because it has the same chemical composition as that in crystal and there is minimal damage to the basic crystal structure. The Σ5[001] tilt grain boundaries and the other twist grain boundaries generally have high grain-boundary energies—more than 1.0 (J m−2). (paper)

  15. First-principles calculations on the grain boundary de-cohesion of iron and nickel by oxygen

    International Nuclear Information System (INIS)

    It is not known in detail whether segregation of elemental oxygen bring about grain boundary de-cohesion in iron or nickel, because its experimental confirmation is difficult. From first-principles calculations, we show that a strong de-cohesion in bcc/fcc iron and fcc nickel grain boundaries can occur if elemental oxygen segregate at the grain boundaries. Oxygen adsorption in fracture surfaces brings about much larger stabilization energy than oxygen segregation in grain boundary; this significantly reduces grain boundary cohesive energy. On the other hand, we show that the formation energy per an oxygen atom of iron and nickel oxides (FeO, Fe2O3, Fe3O4, NiO) are comparable to or larger than the grain boundary segregation energy of oxygen. In addition, we show that the cohesive energy of the (001) plane of these oxides is as small as that of oxygen-segregated grain boundaries. These results indicate that a strong grain-boundary de-cohesion occurs in iron and nickel by oxygen segregation and/or oxide formation as a result of oxygen penetration from environment to grain boundaries. (authors)

  16. Properties of CdTe films deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Murali, K.R.; Radhakrishna, I.; Nagaraja Rao, K.; Venkatesan, V.K. (Central Electrotechnical Research Inst., Karaikudi (India))

    1990-04-01

    Cadmium telluride thin films were prepared by electron beam evaporation on glass substrates kept at different temperatures in the range 30-300degC. The films were characterized by X-ray diffraction, scanning electron microscopy and optical absorption measurements. The conductivity of the films was measured in the temperature range 100-300 K. While the low temperature data (100-200 K) could be explained by the variable range hopping process, the high temperature data (200-300 K) could be explained on the basis of Seto's model for thermionic emission of the carriers over the grain boundaries. Transmission spectra have indicated a direct and gap around 1.55 eV. (orig.).

  17. Atomistic simulations of the effect of helium clusters on grain boundary mobility in iron

    Science.gov (United States)

    Wicaksono, A. T.; Militzer, M.; Sinclair, C. W.

    2015-08-01

    A series of molecular dynamics simulations was performed in this work to investigate the kinetic interaction between helium clusters and grain boundaries in iron. Helium cluster formation and size distributions were found to be markedly different in the bulk compared to the region of a stationary boundary. Upon reaching a steady-state cluster distribution, the spatial fluctuation of cluster-enriched boundaries was analyzed to determine the grain boundary mobility using the random walk method. Segregated clusters reduced the boundary mobility, the drag effect of clusters increasing as the bulk solute concentration increases. The drag effect was further rationalized by employing Cahn's solute drag model using the effective binding energy of He clusters and the grain boundary diffusivity of a single He atom, their magnitudes having been determined from the segregation level and from monitoring the trajectory of a solute atom in the investigated grain boundaries, respectively. The model is found to provide a satisfactory explanation of the simulation results in the zero velocity limit.

  18. Simulation of grain boundary sliding based on mechanics at atomic scale

    International Nuclear Information System (INIS)

    Molecular dynamics (MD) and statics simulations are being increasingly used to model the behavior of systems at the atomic scale, where atomistic details play a critical role such as in grain boundary sliding. In the last few years atomic simulations have gone beyond the realm of understanding the effects of a few atoms to that of systems of millions of atoms. Even these simulations, which demand extensive computational resources, may not be able to adequately represent the behavior of systems of interest. This necessitates a multi-scale approach to such problems. In this paper, we present the atomistic simulation studies of grain boundary sliding of symmetric tilt grain boundaries in aluminum. The simulations are in agreement with experimental results and show a clear dependence of magnitude of sliding on grain boundary energy. Asymptotic expansion homogenization (AEH) is a mathematically rigorous approach to homogenization of periodic structures, which has been used extensively in composites and porous media. We propose a methodology to adapt AEH technique to atomic scale. Refs. 2 (author)

  19. Three-dimensional digital approximations of grain boundary networks in polycrystals

    International Nuclear Information System (INIS)

    In this work, we offer a set of algorithms that convert a voxellated image to a conformal surface mesh that is targeted for polycrystalline materials containing grains with a wide range of sizes and complex shapes. More specifically, we propose a simple but effective algorithm for approximating the grain boundary networks that are implicit in three-dimensional digital images of polycrystals. The algorithm segments a three-dimensional digital image of a polycrystalline microstructure and then smoothes an interpolated conformal surface mesh of the grain boundary network while maintaining certain characteristic features of the microstructure. It is found that the proposed algorithm successfully approximates the grain boundary network based only on the digital, voxellated images of the polycrystal. Simulated microstructures are used to verify that the resulting mesh qualitatively and quantitatively approximates the true structure, in terms of the displacement of the nodes, the grain volume change and the dihedral angle distribution along triple junctions after smoothing. The effect of the use of the cubic grid for mapping digital microstructures on the grain boundary approximation is also discussed. (paper)

  20. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Magnfält, D., E-mail: danma@ifm.liu.se; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Fillon, A.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Boyd, R. D.; Helmersson, U. [Plasma and Coatings Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-02-07

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  1. Thermodynamic effect of elastic stress on grain boundary segregation of phosphorus in a low alloy steel

    Czech Academy of Sciences Publication Activity Database

    Zheng, L.; Lejček, Pavel; Song, S.; Schmitz, G.; Meng, Y.

    2015-01-01

    Roč. 647, Oct (2015), s. 172-178. ISSN 0925-8388 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundaries * segregation * elastic stress * thermodynamics * chemical potential * molar volume Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  2. Adsorption of metal atoms at a buckled graphene grain boundary using model potentials

    International Nuclear Information System (INIS)

    Two model potentials have been evaluated with regard to their ability to model adsorption of single metal atoms on a buckled graphene grain boundary. One of the potentials is a Lennard-Jones potential parametrized for gold and carbon, while the other is a bond-order potential parametrized for the interaction between carbon and platinum. Metals are expected to adsorb more strongly to grain boundaries than to pristine graphene due to their enhanced adsorption at point defects resembling those that constitute the grain boundary. Of the two potentials considered here, only the bond-order potential reproduces this behavior and predicts the energy of the adsorbate to be about 0.8 eV lower at the grain boundary than on pristine graphene. The Lennard-Jones potential predicts no significant difference in energy between adsorbates at the boundary and on pristine graphene. These results indicate that the Lennard-Jones potential is not suitable for studies of metal adsorption on defects in graphene, and that bond-order potentials are preferable

  3. Effect of solute interaction on interfacial and grain boundary embrittlement in binary alloys

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 6 (2013), 2574-2580. ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * grain boundary embrittlement * binary interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  4. Structure And Mobilities Of Tungsten Grain Boundaries Calculated From Atomistic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-09

    The objective of this study is to develop a computational methodology to predict structure, energies and mobilities of tungsten grain boundaries as a function of misorientation and inclination. The energies and the mobilities are the necessary input for thermomechanical model of recrystallization being developed by the Marian Group at UCLA.

  5. Dissolution kinetics of nanoscale liquid Pb/Bi inclusions at a grain boundary in aluminum

    DEFF Research Database (Denmark)

    Prokofjev, S.I.; Johnson, Erik; Zhilin, V.M.; Dahmen, U.

    2008-01-01

    In situ transmission electron microscopy is used to study dissolution of liquid single-phase Pb/Bi inclusions attached to a grain boundary in an alloy of Al99.29Pb0.65Bi0.06 at temperatures of 343, 370, and 389 degrees C, respectively. The initial size of the inclusions was smaller than 60 nm. Di...

  6. Subgrain Coalescence and the Nucleation of Recrystallization of Grain Boundaries in Aluminium

    DEFF Research Database (Denmark)

    Jones, A. R.; Ralph, B.; Hansen, Niels

    1979-01-01

    An experimental study has been made of recrystallization processes which have been initiated at grain boundaries in aluminium samples. The samples had an initial grain size of between 30 and 130 $\\mu $m and were deformed 50% by rolling before annealing at 573 K. The microstructures developed in t...

  7. Influence of phosphorus grain boundary segregation on fracture behaviour of iron-base alloys

    Czech Academy of Sciences Publication Activity Database

    Janovec, J.; Pokluda, J.; Lejček, Pavel

    567-568, - (2007), s. 33-38. ISSN 0255-5476 Institutional research plan: CEZ:AV0Z10100520 Keywords : austenitic stainless steel * Fe-Si-P alloy * grain boundary segregation precipitation * instrumented impact test * Auger elektron spectroscopy * transmission elektron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.399, year: 2005

  8. Analysis of grain boundary corrosion in canister material for radioactive waste using transmission electron microscope

    International Nuclear Information System (INIS)

    Canister for the processed waste is sensitive to corrosion. The grain boundary corrosion is a localized corrosion type which probably takes place on AISI 304 stainless steel canister as a result of pouring the waste glass into it. This research was aimed to study AISI 304 stainless steel as candidate material for high level waste canister. A study of Cr23C6 precipitation at the grain boundary as corrosion initiating agent had been done by observation using Transmission Electron Microscope (TEM). The experiment was carried out by heating the samples at temperature of 700oC for 2 hours followed by water quenching. It was found that the Cr23C6 precipitation occurs and the diameter of the precipitates is 0.2 μm, FCC structure with lattice parameter of 10.585 A. The precipitate was separated one another. It could be said that by the treatment mentioned above, the grain boundary corrosion was insignificant. Therefore the use of AISI 304 stainless steel as canister material candidate of high level waste will be safe from grain boundary corrosion. (author)

  9. Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations

    Science.gov (United States)

    Xydou, A.; Parviainen, S.; Aicheler, M.; Djurabekova, F.

    2016-09-01

    By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature ({{T}\\text{m}} ). The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculated based on molecular dynamic simulations. This value agrees well with the experimental given in the Ashby maps for the creep in copper via Coble GB diffusion.

  10. Anisotropy of grain boundary migration observed in situ by synchrotron radiation

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Lejček, Pavel; Polcarová, Milena; Brádler, Jaroslav; Jacques, A.

    467-470, - (2004), s. 911-916. ISSN 0255-5476 R&D Projects: GA ČR GA202/02/0916 Institutional research plan: CEZ:AV0Z1010914 Keywords : bicrystals * grain boundary motion * synchrotron radiation * X-ray topography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.498, year: 2004

  11. Grain boundaries as microreactors during reactive fluid flow: experimental dolomitization of a calcite marble

    Science.gov (United States)

    Etschmann, B.; Brugger, J.; Pearce, M. A.; Ta, C.; Brautigan, D.; Jung, M.; Pring, A.

    2014-08-01

    Limestone dolomitization is an example of a fluid-induced mineralogical transformation that commonly affects extensive rock volumes. To understand the mechanisms enabling these efficient replacement reactions, we investigated experimentally the dolomitization of a fractured calcite marble under flow-through conditions at mild hydrothermal conditions. Contrary to most earlier studies of coupled dissolution reprecipitation reactions that were conducted using small, individual grains, in this study, the integrity of the rock was preserved, so that the experiment explored the links between flow in a fracture and fluid-rock interaction. In these experiments, grain boundaries acted as microreactors, in which a Mg-poor `protodolomite' formed initially, and then transformed into dolomite. The difficulty in nucleating dolomite played a key role in controlling the evolution of the porosity, by allowing for (1) initial dissolution along grain boundaries, and (2) formation of coarse porosity at the reaction interface. This porosity evolution not only enabled the reaction to progress efficiently, but also controlled the mineralogy of the system, as shown by brucite replacing calcite near the fracture once the fluid along calcite grain boundaries became sufficiently connected to the fluid flowing through the fracture. This study illustrates the role of grain boundaries, porosity evolution and nucleation in controlling reaction progress as well as the nature and textures of the products in pervasive mineralogical transformations.

  12. Adsorption of metal atoms at a buckled graphene grain boundary using model potentials

    Energy Technology Data Exchange (ETDEWEB)

    Helgee, Edit E.; Isacsson, Andreas [Department of Applied Physics, Chalmers University of Technology, SE-412 96, Göteborg (Sweden)

    2016-01-15

    Two model potentials have been evaluated with regard to their ability to model adsorption of single metal atoms on a buckled graphene grain boundary. One of the potentials is a Lennard-Jones potential parametrized for gold and carbon, while the other is a bond-order potential parametrized for the interaction between carbon and platinum. Metals are expected to adsorb more strongly to grain boundaries than to pristine graphene due to their enhanced adsorption at point defects resembling those that constitute the grain boundary. Of the two potentials considered here, only the bond-order potential reproduces this behavior and predicts the energy of the adsorbate to be about 0.8 eV lower at the grain boundary than on pristine graphene. The Lennard-Jones potential predicts no significant difference in energy between adsorbates at the boundary and on pristine graphene. These results indicate that the Lennard-Jones potential is not suitable for studies of metal adsorption on defects in graphene, and that bond-order potentials are preferable.

  13. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    Science.gov (United States)

    Magnfält, D.; Fillon, A.; Boyd, R. D.; Helmersson, U.; Sarakinos, K.; Abadias, G.

    2016-02-01

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  14. The Structure of Grain Boundaries in Strontium Titanate: Theory, Simulation, and Electron Microscopy

    Science.gov (United States)

    von Alfthan, Sebastian; Benedek, Nicole A.; Chen, Lin; Chua, Alvin; Cockayne, David; Dudeck, Karleen J.; Elsässer, Christian; Finnis, Michael W.; Koch, Christoph T.; Rahmati, Behnaz; Rühle, Manfred; Shih, Shao-Ju; Sutton, Adrian P.

    2010-08-01

    We review a combination of theoretical and experimental techniques that have been applied to the study of grain boundaries in SrTiO3, with particular attention to Σ3 and ( 100 )-oriented grain boundaries. Electron microscopy, which includes high-resolution transmission and high-angle annular dark-field methods, is discussed, with successful applications to mapping atomic columns and testing theoretical models. Then, we compare and contrast different techniques of electron holography that may be used to map electrostatic potentials. Problems with the current methods of interpretation in holography and impedance spectroscopy are highlighted in an attempt to reconcile their respective estimates of electrostatic potentials at grain boundaries. Then, standard theoretical tools for the atomistic simulation of boundary structures are critically reviewed, which include classical potentials and density functional theory. A promising genetic algorithm for discovering low-energy grain boundary structures is described and tested. Finally, the synergy of experiment, theory, and simulation that is required to understand boundaries is demonstrated, and we identify major challenges to understanding multicomponent systems.

  15. Fractal pattern formation in thermal grooving at grain boundaries in Ag films on Si(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roy, A. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Sundaravel, B. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Batabyal, R. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Dev, B.N., E-mail: msbnd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2012-05-31

    Growth of Ag films on Br- and H-passivated Si(111) surfaces and the annealing behaviour have been investigated by Rutherford backscattering spectrometry, scanning electron microscopy and photoemission electron microscopy techniques. Upon annealing the phenomenon of thermal grooving was observed in the Ag films. Depending on the annealing temperature, at an intermediate annealing time Ag depletion (evaporation) from the grain boundaries produces fractal patterns of Ag-depleted regions. Continued annealing eventually produces a percolated network of Ag-depleted regions (thermal grooves) along the grain boundaries and isolated Ag grains appear as the depth of the grooves reaches the substrate. For the fractal structures produced by thermal grooving, the fractal dimension has been estimated to be 1.60 {+-} 0.04. Observation of a fractal pattern in thermal grooving was not hitherto reported. A thorough analysis of the experimental results has been carried out in the context of current theories. These theories are inadequate to describe the experimental results. - Highlights: Black-Right-Pointing-Pointer Thermal grooving in Ag films grown on Si(111) surfaces has been investigated. Black-Right-Pointing-Pointer At appropriate temperatures short annealing shows partly depleted grain boundaries. Black-Right-Pointing-Pointer Depleted grain boundaries reveal a fractal pattern with a fractal dimension of 1.60. Black-Right-Pointing-Pointer Long annealing produces percolated Ag-depleted regions with isolated Ag grains. Black-Right-Pointing-Pointer A thorough analysis shows that current theories are unable to explain the results.

  16. On the segregation behavior of tin and antimony at grain boundaries of polycrystalline bcc iron

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šandera, P.; Horníková, J.; Pokluda, J.; Godec, M.

    2016-01-01

    Roč. 363, Feb (2016), 140-144. ISSN 0169-4332 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundary segregation * tin * antimony * Fe based alloy * AES quantification Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  17. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    International Nuclear Information System (INIS)

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low

  18. Decoupled phase transitions and grain-boundary melting in supported phospholipid bilayers

    DEFF Research Database (Denmark)

    Keller, D.; Larsen, N.B.; Møller, I.M.;

    2005-01-01

    and the mica support. The transition temperature of the proximal monolayer is increased and this transition occurs over a narrower temperature range. Both transitions occur via grain-boundary melting and the variation of the width of the interfacial zone with temperature is consistent with mean-field theory....

  19. Silicalite-1 polycrystalline layers and crystal twins: Morphology and grain boundaries

    Czech Academy of Sciences Publication Activity Database

    Brabec, Libor; Kočiřík, Milan

    2007-01-01

    Roč. 102, č. 1 (2007), s. 67-74. ISSN 0254-0584 R&D Projects: GA ČR GA203/05/0846 Institutional research plan: CEZ:AV0Z40400503 Keywords : silicalite-1 * HF acid * etching * grain boundaries Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.871, year: 2007

  20. Multiscale simulation of xenon diffusion and grain boundary segregation in UO2

    International Nuclear Information System (INIS)

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO2 have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO2 (Sigma 5 tilt, Sigma 5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures

  1. Interstitial and substitutional solute segregation at individual grain boundaries of α-iron: data revisited

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Hofmann, S.

    2016-01-01

    Roč. 28, č. 6 (2016), s. 064001. ISSN 0953-8984 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : anisotropy * enthalpy-entropy compensation effect * grain boundary * iron solute segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  2. The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution

    International Nuclear Information System (INIS)

    In this study, the equilibrium crystal shape (ECS) of a model system, strontium titanate, is compared with the grain boundary plane distribution (GBPD) as a function of temperature. Strontium titanate has a pronounced surface energy anisotropy and a grain growth anomaly, with the grain growth rate decreasing by orders of magnitude with increasing temperature. The ECS was determined from the shape of small intragranular pores and the GBPD was determined from orientation measurements on surfaces, with the relative areas of grain boundary planes in a polycrystal correlated to the surface energy of both adjacent crystal planes. The grain boundary energy has been previously proposed to be the sum of the surface energy of the adjacent grains less a binding energy that is assumed to be constant. While much experimental evidence exists for this assumption at a fixed temperature, the influence of temperature is not known. While the anisotropy of the ECS was found to decrease with temperature, the anisotropy of the GBPD increased with temperature. These findings indicate that changes in the binding energy with temperature must be considered, as the binding energy links the surface energy to the grain boundary energy. The results are discussed with respect to the grain growth anomaly of strontium titanate, in which the grain growth decreases with increasing temperature

  3. Excitonic localization in AlN-rich AlxGa1−xN/AlyGa1−yN multi-quantum-well grain boundaries

    KAUST Repository

    Ajia, Idris A.

    2014-09-22

    AlGaN/AlGaN multi-quantum-wells (MQW) with AlN-rich grains have been grown by metal organic chemical vapor deposition. The grains are observed to have strong excitonic localization characteristics that are affected by their sizes. The tendency to confine excitons progressively intensifies with increasing grain boundary area. Photoluminescence results indicate that the MQW have a dominant effect on the peak energy of the near-bandedge emission at temperatures below 150 K, with the localization properties of the grains becoming evident beyond 150 K. Cathodoluminescence maps reveal that the grain boundary has no effect on the peak intensities of the AlGaN/AlGaN samples.

  4. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2

    Science.gov (United States)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane; Batzill, Matthias

    2016-05-01

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe2 monolayers on MoS2 substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic "wagon wheel" pattern with only ˜2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give the monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe2 and thus determine the band-alignment in the MoTe2/MoS2 interface.

  5. Growth and optical properties of CdTe quantum dots in ZnTe nanowires

    International Nuclear Information System (INIS)

    We report on the formation of optically active CdTe quantum dots in ZnTe nanowires. The CdTe/ZnTe nanostructures have been grown by a gold nanocatalyst assisted molecular beam epitaxy in a vapor-liquid solid growth process. The presence of CdTe insertions in ZnTe nanowire results in the appearance of a strong photoluminescence band in the 2.0 eV-2.25 eV energy range. Spatially resolved photoluminescence measurements reveal that this broad emission consists of several sharp lines with the spectral width of about 2 meV. The large degree of linear polarization of these individual emission lines confirms their nanowire origin, whereas the zero-dimensional confinement is proved by photon correlation spectroscopy.

  6. Electronic structure, structural and optical properties of thermally evaporated CdTe thin films

    International Nuclear Information System (INIS)

    Thin films of CdTe were deposited on glass substrates by thermal evaporation. From the XRD measurements it is found that the films are of zinc-blende-type structure. The lattice parameter was determined as a=6.529A, which is larger than 6.48A of the powder sample, because the recrystallized lattice of the grown films is subjected to a compressive stress aroused as a result of the lattice mismatch and/or differences in thermal expansion coefficient between the CdTe and the underlying substrate. Transmittance, absorption, extinction and refractive coefficients are measured. Electronic structure, band parameters and optical spectra of CdTe were calculated from ab initio studies within the LDA and LDA+U approximations. It is shown that LDA underestimates the band gap, energy levels of the Cd-4d states, s-d coupling and band dispersion. However, it calculates the spin-orbit coupling correctly. LDA+U did not increase much the band gap value, but it corrected the s-d coupling by shifting the Cd-4d levels towards the experimentally determined location and by splitting the LDA-derived single s peak into two peaks, which originates from admixture of s and d states. It is shown that the s-d coupling plays an important role in absorption and reflectivity constants. The calculated optical spectra fairly agree with experimental data. Independent of wave vector scissors operator is found to be a good first approximation to shift rigidly the band gap of CdTe underestimated by LDA

  7. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    Science.gov (United States)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and CdTe//Ge//{ }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  8. Preparation and Properties of CdTe Polycrystalline Films for Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huajing; ZHANG Jingquan; FENG Lianghuan; ZHENG Jiagui; CAI Wei; LI Bing; CAI Yaping

    2006-01-01

    The structure and characteristics of CdTe thin films are closely dependent on the whole deposition process in close-space sublimation (CSS). The physical mechanism of CSS was analyzed and the temperature distribution in CSS system was measured, and the influences of the increasing-temperature process and pressure on the preliminary nucleus creation were studied. The results indicate: the samples deposited at different pressures have a cubical structure of CdTe and the diffraction peaks of CdS and SnO2∶F. As the atmosphere pressure increases, the crystal size of CdTe decreases, the rate of the transparency of the thin film decreases and the absorption side moves towards the short-wave direction. After a 4-minute depositing process with a substrate temperature of 500 ℃ and a source temperature of 620 ℃, the polycrystalline thin films can be made, so the production of high-quality integrated cell with SnO2:F/CdS/CdTe/Au structure is hopeful.

  9. Relative contributions of surface and grain boundary scattering to the spin-polarized electrons transport in the AlN/NiFe/AlN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chong-Jun; Zhao, Zhi-Duo [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Wu, Zheng-Long [Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China); Yang, Guang; Liu, Fen [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Ding, Lei [School of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Zhang, Jing-Yan [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-04-01

    Highlights: • Ta/AlN/Ni{sub 81}Fe{sub 19}/AlN/Ta films were prepared by magnetron sputtering. The electronic transport properties were studied. • Chemical status change at the NiFe/AlN interface was quantified by X-ray photoelectron spectroscopy. • The average grain size as well as the crystallinity was determined from X-ray diffraction studies. • The relative contributions of surface and grain boundary scattering to the electrons transport were analyzed. - Abstract: When the film thickness approaches the electron mean free path (MFP), the relative contributions of surface/grain boundary scattering to the resistivity remain indefinitive. In this work, series of NiFe films sandwiched by AlN barriers were employed to study the transport properties. Surface scattering is found to provide the strongest contribution to the resistivity increase for very thin films (d{sub NiFe} ≤ 10 nm). With the increase of the film thickness, the effect of the grain boundary scattering gradually increases while the surface scattering decreases. When the thickness of the film is over 30 nm, the former becomes predominant.

  10. Final Technical Report: Grain Boundary Complexions and Transitions in Doped Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jian Luo

    2012-10-15

    This four-year research project has advanced the fundamental knowledge of grain boundary (GB) complexions (i.e., "two-dimensional interfacial phases") and associated GB "phase" transitions in several grounds. First, a bilayer interfacial phase, which had been directly observed by microscopy only in complex ceramic systems in prior studies, has been identified in simpler systems such as Au-doped Si and Bi-doped Ni in this study, where the interpretations of the their formation mechanisms and microscopic images are less equivocal. Second, convincing evidence for the existence of a first-order GB transition from a nominally "clean" GB to a bilayer adsorption interfacial phase has been revealed for Au-doped Si; the confirmation of the first-order nature of interfacial transitions at GBs, which was rare in prior studies, is scientifically significant and technologically important. Third, the bilayer interfacial phase discovered in Bi-doped Ni has been found to be the cause of the mysterious liquid metal embrittlement phenomenon in this system; the exact atomic level mechanism of this phenomenon has puzzled the materials and physics communities for over a century. Finally, significant advancements have been made to establish phenomenological thermodynamic models for GB complexions and transitions. Since GB complexions can control the transport, mechanical and physical properties of a broad range of metallic and ceramic materials, the fundamental knowledge generated by this project can have broad impacts on materials design in general. In this regard, understanding and controlling GB phase behaviors (complexions and transitions) can be an important component for the "Materials Genome" project.

  11. Computational Capabilities for Predictions of Interactions at the Grain Boundary of Refractory Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Debasis; Kwak, Shaun; Vasenkov, Alex; Shin, Yun Kyung; Duin, Adri van

    2014-09-30

    New high performance refractory alloys are critically required for improving efficiency and decreasing CO2 emissions of fossil energy systems. The development of these materials remains slow because it is driven by a trial-and-error experimental approach and lacks a rational design approach. Atomistic Molecular Dynamic (MD) design has the potential to accelerate this development through the prediction of mechanical properties and corrosion resistance of new materials. The success of MD simulations depends critically on the fidelity of interatomic potentials. This project, in collaboration with Penn State, has focused on developing and validating high quality quantum mechanics based reactive potentials, ReaxFF, for Ni-Fe-Al-Cr-O-S system. A larger number of accurate density functional theory (DFT) calculations were performed to generate data for parameterizing the ReaxFF potentials. These potentials were then used in molecular dynamics (MD) and molecular dynamics-Monte Carlo (MD-MC) for much larger system to study for which DFT calculation would be prohibitively expensive, and to understand a number of chemical phenomena Ni-Fe-Al-Cr-O-S based alloy systems . These include catalytic oxidation of butane on clean Cr2O3 and pyrite/Cr2O3, interfacial reaction between Cr2O3 (refractory material) and Al2O3 (slag), cohesive strength of at the grain boundary of S-enriched Cr compared to bulk Cr and Ssegregation study in Al, Al2O3, Cr and Cr2O3 with a grain structure. The developed quantum based ReaxFF potential are available from the authors upon request. During this project, a number of papers were published in peer-reviewed journals. In addition, several conference presentations were made.

  12. Computational Capabilities for Predictions of Interactions at the Grain Boundary of Refractory Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Debasis; Kwak, Shaun; Vasenkov, Alex; Shin, Yun Kyung; Duin, Adri van

    2014-09-30

    New high performance refractory alloys are critically required for improving efficiency and decreasing CO2 emissions of fossil energy systems. The development of these materials remains slow because it is driven by a trial-and-error experimental approach and lacks a rational design approach. Atomistic Molecular Dynamic (MD) design has the potential to accelerate this development through the prediction of mechanical properties and corrosion resistance of new materials. The success of MD simulations depends critically on the fidelity of interatomic potentials. This project, in collaboration with Penn State, has focused on developing and validating high quality quantum mechanics based reactive potentials, ReaxFF, for Ni-Fe-Al-Cr-O-S system. A larger number of accurate density functional theory (DFT) calculations were performed to generate data for parameterizing the ReaxFF potentials. These potentials were then used in molecular dynamics (MD) and molecular dynamics-Monte Carlo (MD-MC) for much larger system to study for which DFT calculation would be prohibitively expensive, and to understand a number of chemical phenomena Ni-Fe-Al-Cr-O-S based alloy systems . These include catalytic oxidation of butane on clean Cr2O3 and pyrite/Cr2O3, interfacial reaction between Cr2O3 (refractory material) and Al2O3 (slag), cohesive strength of at the grain boundary of S-enriched Cr compared to bulk Cr and Ssegregation study in Al, Al2O3, Cr and Cr2O3 with a grain structure. The developed quantum based ReaxFF potential are available from the authors upon request. During this project, a number of papers were published in peer-reviewed journals. In addition, several conference presentations were made.

  13. Atomistic investigation of Cr influence on primary radiation damage in Fe-12 at.% Cr grain boundaries

    Science.gov (United States)

    Esfandiarpour, A.; Feghhi, S. A. H.; Arjhangmehr, A.

    2016-08-01

    In this paper, we investigate the influence of Cr on the primary radiation damage in Fe-12 at.% Cr with different atomic grain boundaries (GBs). Four different GB structures, two twists and two symmetric tilt boundaries are selected as the model structures. The primary radiation damage near each GB in α-Fe and Fe-12 at.% Cr is simulated using Molecular Dynamics for 9 keV primary knock-on atoms with velocity vectors perpendicular to the GB plane. In agreement with previous works, the results indicate that the atomic GBs are biased toward interstitials and due to the reduction of ‘in-cascade’ interstitial-vacancy annihilation rates, vacancies accumulate in the bulk grains. The minimum defect production occurs when the overlap between cascade center and GB plane is maximum; in contrast, the number of residual defects in the bulk (vacancies and interstitials) increases when the overlap decreases. Moreover, we find that the presence of Cr hardly affects the number of residual defects in the grain interiors, and causes a Cr-enrichment in the surviving self-interstitial atoms in bulk during relaxation of the primary cascades—also in agreement with previous studies. Further, in order to study the effect of 12 at.% Cr on the energetic and kinetic properties of vacancies near the atomic GBs, we calculate formation energies and diffusion barriers of defects using Molecular Static and climbing-Nudged Elastic Band methods. The results reveal that the vacancies energetically and kinetically tend to form and cluster around the GB plane due to the substantial reduction of their formation energies and migration barriers in layers close to the GB center and are immobile on the simulated time frame (~ps).

  14. Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy

    International Nuclear Information System (INIS)

    Research highlights: → Hold-time crack growth rates for Allvac 718Plus are shown to be affected by delta-phase. → Delta-phase is shown to alter microstructure and chemistry at and about grain boundaries. → Two types of oxides were found and their presence was linked to the different fracture modes. - Abstract: The correlation between grain boundary microstructure and fatigue crack growth with hold-times was investigated for two conditions of the superalloy Allvac 718Plus; a Standard condition with the recommended distribution of grain boundary phases and a Clean condition with virtually no grain boundary phases. Fatigue testing was performed at 704 deg. C using 10 Hz cyclic load with intermittent hold-times of 100 s at maximum tensile load. Microstructural characterization and fractography were conducted using scanning- and transmission electron microscopy techniques. Auger electron- and X-ray photoelectron spectroscopy techniques were used for oxide analyses on fracture surfaces. It was found that in the Standard condition crack growth is mostly transgranular for 10 Hz loading and intergranular for hold-times, while for the Clean condition crack growth is intergranular in both load modes. The lower hold-time crack growth rates in the Standard condition are attributed to grain boundary δ-phase precipitates. No effect of δ-phase was observed for 10 Hz cyclic loading crack growth rates. Two different types of oxides and oxide colours were found on the fracture surfaces in the Standard condition and could be correlated to the different loading modes. For cyclic loading a bright thin Cr-enriched oxide was dominate and for hold-times a dark and slightly thicker Nb-enriched oxide was dominant These oxide types could be related to the oxidation of δ-phase and the matrix respectively. The influence of δ-phase precipitates on crack propagation is discussed.

  15. Resetting the Defect Chemistry in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Wyatt K.; Burst, James; Albin, David; Colegrove, Eric; Moseley, John; Duenow, Joel; Farrell, Stuart; Moutinho, Helio; Reese, Matt; Johnston, Steve; Barnes, Teresa; Perkins, Craig; Guthrey, Harvey; Al-Jassim, Mowafak

    2015-06-14

    CdTe cell efficiencies have increased from 17% to 21% in the past three years and now rival polycrystalline Si [1]. Research is now targeting 25% to displace Si, attain costs less than 40 cents/W, and reach grid parity. Recent efficiency gains have come largely from greater photocurrent. There is still headroom to lower costs and improve performance by increasing open-circuit voltage (Voc) and fill factor. Record-efficiency CdTe cells have been limited to Voc <; 880 mV, whereas GaAs can attain Voc of 1.10 V with a slightly smaller bandgap [2,3]. To overcome this barrier, we seek to understand and increase lifetime and carrier concentration in CdTe. In polycrystalline structures, lifetime can be limited by interface and grain-boundary recombination, and attaining high carrier concentration is complicated by morphology.

  16. Grain boundary character distribution of CuNiSi and FeNi alloys processed by severe plastic deformation

    Science.gov (United States)

    Azzeddine, H.; Baudin, T.; Helbert, A. L.; Brisset, F.; Larbi, F. Hadj; Tirsatine, K.; Kawasaki, M.; Bradai, D.; Langdon, T. G.

    2015-04-01

    In this work the Grain Boundary Character Distribution (GBCD) in general and the relative proportion of low-Σ CSL (Coincidence Site Lattice) grain boundaries are determined through EBSD in Cu-2.5Ni-0.6Si (wt.%) and Fe-36Ni (wt.%) alloys after processing by high-pressure torsion, equal- channel angular pressing and accumulative roll bonding.

  17. Migration of grain boundaries and triple junctions in high-purity aluminum during annealing after slight cold rolling

    International Nuclear Information System (INIS)

    Grain orientations and grain boundary migrations near triple junctions in a high purity aluminum were analyzed by electron back scattered diffraction. The results indicate that there are good correlations between the Schmid factors or Taylor factors and the misorientation values of point to original point in grains near the triple junctions in a slightly deformed sample. Grains with higher Schmid factors or lower Taylor factors typically correspond to higher misorientation values near the triple junctions. In a subsequent annealing at 400 °C, both grain boundaries and triple junctions migrate, but the former leave ghost lines. During such migration, a grain boundary grows from the grain with lower Schmid factor (higher Taylor factor) into the grain with higher Schmid factor (lower Taylor factor). Usually, the amount of migration of a grain boundary is considerably greater than that of a triple junction, and the grain boundary becomes more curved after migration. These observations indicate that the triple junctions have drag effects on grain boundary migration. - Highlights: • Polycrystalline aluminum with fine grains about 30 μm were used. • Off-line in situ EBSD was used to identify TJs before and after annealing. • Grains with higher SFs have higher misorientation values near TJs after deformation. • Grain boundaries grow from hard grains into soft grains during annealing. • Triple junctions have drag effects on grain boundaries migration

  18. Columns formed by multiple twinning in nickel layers—An approach of grain boundary engineering by electrodeposition

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Somers, Marcel A. J.;

    2013-01-01

    grain boundaries. A peculiar arrangement of Σ3 boundaries forming five-fold junctions is observed. The resulting microstructure meets the requirements for grain boundary engineering. Twinning induced effects on the crystallographic orientation of grains result in one major texture component being a ⟨210...

  19. Effect of grain boundaries on the conductivity of high-purity ZrO2---Y2O3 ceramics

    NARCIS (Netherlands)

    Verkerk, M.J.; Middelhuis, B.J.; Burggraaf, A.J.

    1982-01-01

    Grain boundary conductivities are determined by complex impedance measurements (1–106 Hz) on high-purity ceramics prepared by the alkoxide synthesis and on less pure ceramics obtained from a commercial powder. The grain size was varied systematically in the region 0.36–55 μm. The grain boundary cond

  20. Non-destructive analysis of micro texture and grain boundary character from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    King, A.; Herbig, M.; Ludwig, W.; Reischig, P.; Lauridsen Mejdal, Erik; Marrow, T.; Buffière, J.Y.

    material can be quantified in more detail by post-processing of the volume data provided by DCT. In particular one can determine the local crystallographic habit plane of the grain boundary by analysing the surface normal of the grain boundary with respect to the crystal orientation. The resulting five...

  1. Theoretical studies of the pressure-induced zinc-blende to cinnabar phase transition in CdTe and thermodynamical properties of each phase

    International Nuclear Information System (INIS)

    Luminescence of CdTe quantum dots embedded in ZnTe is quenched at pressure of about 4.5 GPa in the high-pressure experiments. This pressure-induced quenching is attributed to the “zinc-blende–cinnabar” phase transition in CdTe, which was confirmed by the first-principles calculations. Theoretical analysis of the pressure at which the phase transition occurs for CdTe was performed using the CASTEP module of Materials Studio package with both generalized gradient approximation (GGA) and local density approximation (LDA). The calculated phase transition pressures are equal to about 4.4 GPa and 2.6 GPa, according to the GGA and LDA calculations, respectively, which is in a good agreement with the experimental value. Theoretically estimated value of the pressure coefficient of the band-gap luminescence in zinc-blende structure is in very good agreement with that recently measured in the QDs structures. The calculated Debye temperature, elastic constants and specific heat capacity for the zinc-blend structure agree well with the experimental data; the data for the cinnabar phase are reported here for the first time to the best of the authors' knowledge. - Highlights: • Quenching of luminescence of CdTe quantum dots embedded in ZnTe is theoretically explained. • The theoretical calculation of elastic and thermodynamic properties of CdTe by two types of ab-initio methods. • Theoretical calculations of some optical properties of CdTe under pressure in zinc-blende and cinnabar phases

  2. Preparation and characterization of bifunctional dendrimer modified Fe3O4/CdTe nanoparticles with both luminescent and superparamagnetic properties

    International Nuclear Information System (INIS)

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe3O4/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe3O4 were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe3O4 nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe3O4/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe3O4/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g

  3. Preparation and characterization of bifunctional dendrimer modified Fe{sub 3}O{sub 4}/CdTe nanoparticles with both luminescent and superparamagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiuling, E-mail: wxling_self@163.com [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Gu, Yinjun; Dong, Shuling [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhao, Qin [School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019 (China); Liu, Yongjian [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2015-10-15

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe{sub 3}O{sub 4} were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe{sub 3}O{sub 4} nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g.

  4. Formation of Graphene Grain Boundaries on Cu(100) Surface and a Route Towards Their Elimination in Chemical Vapor Deposition Growth

    Science.gov (United States)

    Yuan, Qinghong; Song, Guangyao; Sun, Deyan; Ding, Feng

    2014-10-01

    Grain boundaries (GBs) in graphene prepared by chemical vapor deposition (CVD) greatly degrade the electrical and mechanical properties of graphene and thus hinder the applications of graphene in electronic devices. The seamless stitching of graphene flakes can avoid GBs, wherein the identical orientation of graphene domain is required. In this letter, the graphene orientation on one of the most used catalyst surface -- Cu(100) surface, is explored by density functional theory (DFT) calculations. Our calculation demonstrates that a zigzag edged hexagonal graphene domain on a Cu(100) surface has two equivalent energetically preferred orientations, which are 30 degree away from each other. Therefore, the fusion of graphene domains on Cu(100) surface during CVD growth will inevitably lead to densely distributed GBs in the synthesized graphene. Aiming to solve this problem, a simple route, that applies external strain to break the symmetry of the Cu(100) surface, was proposed and proved efficient.

  5. Formation of graphene grain boundaries on Cu(100) surface and a route towards their elimination in chemical vapor deposition growth.

    Science.gov (United States)

    Yuan, Qinghong; Song, Guangyao; Sun, Deyan; Ding, Feng

    2014-01-01

    Grain boundaries (GBs) in graphene prepared by chemical vapor deposition (CVD) greatly degrade the electrical and mechanical properties of graphene and thus hinder the applications of graphene in electronic devices. The seamless stitching of graphene flakes can avoid GBs, wherein the identical orientation of graphene domain is required. In this letter, the graphene orientation on one of the most used catalyst surface - Cu(100) surface, is explored by density functional theory (DFT) calculations. Our calculation demonstrates that a zigzag edged hexagonal graphene domain on a Cu(100) surface has two equivalent energetically preferred orientations, which are 30 degree away from each other. Therefore, the fusion of graphene domains on Cu(100) surface during CVD growth will inevitably lead to densely distributed GBs in the synthesized graphene. Aiming to solve this problem, a simple route, that applies external strain to break the symmetry of the Cu(100) surface, was proposed and proved efficient. PMID:25286970

  6. The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation.

    Science.gov (United States)

    Aksyonov, D A; Hickel, T; Neugebauer, J; Lipnitskii, A G

    2016-09-28

    The solution, grain boundary (GB) segregation, and co-segregation of carbon and oxygen atoms in α-titanium are studied using density functional theory. For five titanium tilt boundaries, including T1, T2, and C1 twin systems, we determine the GB structure, as well as GB energy and excess volume. The segregation energies and volumes of carbon and oxygen are calculated for 23 inequivalent interstitial voids, while for co-segregation 75 configurations are considered. It is obtained that depending on the type of the segregation void both a positive and a negative segregation process is possible. The physical reasons of segregation are explained in terms of the analysis of the void atomic geometry, excess volume and features of the electronic structure at the Fermi level. Although carbon and oxygen show qualitatively similar properties in α-Ti, several distinctions are observed for their segregation behavior and mutual interactions. PMID:27460043

  7. The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation

    Science.gov (United States)

    Aksyonov, D. A.; Hickel, T.; Neugebauer, J.; Lipnitskii, A. G.

    2016-09-01

    The solution, grain boundary (GB) segregation, and co-segregation of carbon and oxygen atoms in α-titanium are studied using density functional theory. For five titanium tilt boundaries, including T1, T2, and C1 twin systems, we determine the GB structure, as well as GB energy and excess volume. The segregation energies and volumes of carbon and oxygen are calculated for 23 inequivalent interstitial voids, while for co-segregation 75 configurations are considered. It is obtained that depending on the type of the segregation void both a positive and a negative segregation process is possible. The physical reasons of segregation are explained in terms of the analysis of the void atomic geometry, excess volume and features of the electronic structure at the Fermi level. Although carbon and oxygen show qualitatively similar properties in α-Ti, several distinctions are observed for their segregation behavior and mutual interactions.

  8. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  9. First-Principles Calculations of Electronic States and Self-Doping Effects at a 45° Grain Boundary in the High Temperature YBa2Cu3O7 Superconductor

    KAUST Repository

    Schwingenschlögl, Udo

    2009-06-03

    The charge redistribution at grain boundaries determines the applicability of high-Tc superconductors in electronic devices because the transport across the grains can be hindered considerably. We investigate the local charge transfer and the modification of the electronic states in the vicinity of the grain-grain interface by ab initio calculations for a (normal-state) 45°-tilted [001] grain boundary in YBa2Cu3O7. Our results explain the suppressed interface transport and the influence of grain boundary doping in a quantitative manner, in accordance with the experimental situation. The charge redistribution is found to be strongly inhomogeneous, which has a substantial effect on transport properties since it gives rise to a self-doping of 0.10±0.02 holes per Cu atom.

  10. Electric characterization of grain boundaries in ionic conductors by impedance spectroscopy measurements in a bicrystal; Caracterizacion electrica de fronteras de grano en conductores ionicos mediante medidas de espectroscopia de impedancias en un bicristal

    Energy Technology Data Exchange (ETDEWEB)

    Frechero, M. A.; Rocci Riner Schmidt, M.; Diaz-Guillen, M.; Doaz-Guillen, M. R.; Dura, O.; Rivera-Calzada, A.; Santamaria, J.; Leon, C.

    2012-07-01

    Here we show impedance spectroscopy measurements on a bicrystal of the ionically conducting Yttria stabilized zirconia (YSZ). By using micrometer sized electrodes it is possible to measure ionic transport perpendicular to a single grain boundary, and characterize its electrical properties. We are thus able to obtain the microscopic parameters that determine the charge distribution at the grain boundary and the ionic transport through it, as the potential energy barrier {delta}{phi} = 0.35{+-}0.01 V at 275 degree centigrade, and the space charge layer thickness {lambda} = 5{+-}1 A. These values are significantly different from those previously obtained in polycrystalline ceramic samples of the same material, and show much better agreement with the values predicted by the Mott-Schottky model for the charge distribution and ionic transport through the grain boundary. (Author) 31 refs.

  11. High-cycle fatigue of nickel-base superalloy Rene 104 (ME3): Interaction of microstructurally small cracks with grain boundaries of known character

    International Nuclear Information System (INIS)

    High-cycle fatigue (HCF), involving the premature initiation and/or rapid propagation of small cracks to failure due to high-frequency cyclic loading, has been identified as one of the leading causes of turbine engine failures in aircraft. In this work, we consider the feasibility of using grain-boundary engineering to improve the HCF properties of a polycrystalline nickel-base superalloy, Rene 104 (also known as ME3), through systematic modification of the grain-boundary distribution. In particular, we investigate the growth of microstructurally small fatigue cracks at ambient temperature in microstructures with varying proportions of 'special' vs. 'random' boundaries, as defined by coincident-site lattice theory. Specifically, we examine the interaction of propagating small (∼10-900 μm) surface cracks with grain boundaries of known character, with respect both to any deflection in crack trajectory that occurs at or near the boundary, and more importantly to any local changes in crack-growth rates. In addition, finite-element calculations are performed to evaluate the effective driving force and plastic-zone profile for such small-crack propagation, incorporating information from both the local microstructure (from electron backscattering diffraction scans) and the surface crack-path profile

  12. Grain boundary complexion transitions in WO3- and CuO-doped TiO2 bicrystals

    International Nuclear Information System (INIS)

    Several grain boundary complexions (grain boundary interfacial phases) have been identified in TiO2 bicrystals by high-resolution transmission electron microscopy (TEM) and aberration-corrected scanning TEM (STEM). An intrinsic grain boundary with no apparent impurity segregation was observed in an undoped TiO2 bicrystal. In a WO3-doped TiO2 bicrystal, WO3 second-phase particles formed along the boundary, with a nominally clean, intrinsic-type grain boundary in between the particles. In a CuO-doped bicrystal, a remarkable series of three distinct grain boundary complexions with abrupt structural transitions was discovered coexisting at the grain boundary, and the existence of a fourth equilibrium complexion at the annealing temperature was implied. Thus, the WO3- and CuO-doped TiO2 bicrystals exhibit dramatically different solute partitioning behavior which can be understood in terms of the relative interphase boundary energies of these two systems. STEM–electron energy loss spectroscopy and energy-dispersive X-ray spectroscopy analysis of the nanoscale lens-shaped films of amorphous material in the CuO-doped TiO2 bicrystal demonstrated an excess of CuO, as expected, yet also revealed the unintentional presence of SiOx. The multiple grain boundary complexions in CuO-doped TiO2 offer an explanation for the CuO-enhanced grain growth and sintering of TiO2 that has been reported in the literature. Conversely, the intrinsic grain boundary complexion observed in WO3-doped TiO2 is consistent with previous work showing that WO3 has no effect on grain boundary mobility in TiO2. A phenomenological thermodynamic model is proposed to explain the physical origin of these observed grain boundary complexions and the abrupt, first-order complexion transitions that are believed to occur upon cooling of the CuO-doped TiO2 bicrystal

  13. Micro-mechanical investigation for effects of helium on grain boundary fracture of austenitic stainless steel

    International Nuclear Information System (INIS)

    Highlights: • We investigate effects of helium on grain boundary fracture of stainless steel. • We conduct micro-tensile tests on helium ion-implanted type 316 stainless steel. • Brittle fracture occur on grain boundaries on which small bubbles formed densely. • Formation of bubbles both on grain boundary and in matrix promotes brittle fracture. • Grain boundary segregated helium atoms may have a role in grain boundary fracture. - Abstract: Effects of helium (He) on grain boundary (GB) fracture of austenitic stainless steel were investigated by micro-tensile tests. Micro-bicrystal tensile specimens were fabricated for non-coincidence site lattice boundaries of He ion-irradiated 316 stainless steel by focused ion beam (FIB) micro-processing. Micro-tensile tests were conducted in a vacuum at room temperature in the FIB system. Specimens containing more than 2 at.% He fractured at GBs. The criteria for brittle fracture occurrence on GBs were: (1) He concentrations higher than 2 at.%; (2) formation of He bubbles on the GBs with less than a 5 nm spacing; and (3) matrix hardening to more than 4.6 GPa (nano-indentation hardness). The fracture stress of GB brittle fracture was lower for a specimen with higher He concentration while the size and areal density of the GB He bubbles were the same. The specimens that contained 10 at.% He and had been annealed at 923 K after irradiation fractured at the GB nominally in a brittle manner; however the inter-bubble matrix at the GB experienced ductile fracture. The annealing caused He bubbles to grow but decreased the areal density so that the spacing of the GB He bubbles widened and the hardness decreased, therefore the fracture mode changed from brittle to ductile. The findings revealed that He promotes GB fracture by weakening the GB strength and hardening the matrix due to the formation of He bubbles both on GBs and in the matrix. In addition, the findings suggested that GB segregated He atoms may have a role in GB

  14. The effect of grain size, microcracking and grain boundary grooving on osteoblast attachment in hydroxyapatite

    Science.gov (United States)

    Smith, Ian Orland

    This research examined the effect of particle size, microcracking and grain-boundary grooving in hydroxyapatite (HA) ceramics on osteoblast (OB) attachment, with the overall goal of understanding the role of physical characteristics in optimized scaffolds for bone tissue engineering. Bimodally porous HA scaffolds were fabricated by foaming and sintering either micron-scale or nano-scale HA powder, yielding two sets with average grain diameters of 8.6 +/- 1.9 mum and 588 +/- 55 nm, respectively. OBs were seeded onto these scaffolds and counted at 0.5, 1, 2 and 4 hours for attachment and 1, 3 and 5 days for proliferation using a hemacytometer. Results showed that OB attachment and proliferation was not significantly affected by the change in grain size and may depend more on the bimodal porosity of the implant. However, as our attempt to reduce the error in the hemacytometer counts was not fully successful, a more accurate method of counting the OBs, such as a quantifiable dye, must be used to verify this trend. While microcracks occur as a result of thermal processing of HA, these TEA-induced cracks are not easily controlled. For our studies we used Vickers-induced microcracks to quantify the effect of microcracking on OB attachment in HA. OB attachment was not significantly affected at one hour, but increased at four hours to 61% higher than on non-microcracked control specimens. This increase indicates that microcracking does have an effect on OB attachment and should be studied further, to assess its effect on OB proliferation and differentiation. It is not surprising that microcracks have a positive effect on OB attachment, as this mimics the natural process of bone remodeling. However, they are not likely to occur in nano-grained HA as a result of processing, as its small grain size falls below the known values of critical grain size for microcracking (GCR) in HA. Grain boundary grooving in dense HA is also investigated in this dissertation. OBs were seeded

  15. Intergranular corrosion in AA5XXX aluminum alloys with discontinuous precipitation at the grain boundaries

    Science.gov (United States)

    Bumiller, Elissa

    The US Navy currently uses AA5xxx aluminum alloys for structures exposed to a marine environment. These alloys demonstrate excellent corrosion resistance over other aluminum alloys (e.g., AA2xxx or AA7xxx) in this environment, filling a niche in the marine structures market when requiring a light-weight alternative to steel. However, these alloys are susceptible to localized corrosion; more specifically, intergranular corrosion (IGC) is of concern. IGC of AA5xxx alloys due to the precipitation of beta phase on the grain boundaries is a well-established phenomenon referred to as sensitization. At high degrees of sensitization, the IGC path is a continuous anodic path of beta phase particles. At lower degrees of sensitization, the beta phase coverage at the grain boundaries is not continuous. The traditional ranges of susceptibility to IGC as defined by ASTM B928 are in question due to recent studies. These studies showed that even at mid range degrees of sensitization where the beta phase is no longer continuous, IGC may still occur. Previous thoughts on IGC of these alloy systems were founded on the idea that once the grain boundary precipitate became discontinuous the susceptibility to IGC was greatly reduced. Additionally, IGC susceptibility has been defined metallurgically by compositional gradients at the grain boundaries. However, AA5xxx alloys show no compositional gradients at the grain boundaries, yet are still susceptible to IGC. The goal of this work is to establish criteria necessary for IGC to occur given no continuous beta phase path and no compositional gradient at the grain boundaries. IGC performance of the bulk alloy system AA5083 has been studied along with the primary phases present in the IGC system: alpha and beta phases using electrochemistry and modeling as the primary tools. Numerical modeling supports that at steady-state the fissure tip is likely saturated with Mg in excess of the 4% dissolved in the matrix. By combining these results

  16. Transferring CdTe Nanoparticles from Liquid Phase to Polyvinylpyrrolidone Nanofibers by Electrospinning and Detecting Its Photoluminescence Property

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-gang; YANG Qing-biao; BAI Jie; SONG Yan; ZHANG Chao-qun; LI Yao-xian

    2008-01-01

    The major aim of this work was to synthesize thio-stabilized CdTe nanoparticles(NPs) in an aqueous solution,which was then enwrapped with cetyltrimethylammonium bromide(CTAB),and finally transferred to the polyvinylpyrrolidone(PVP) matrix by electrospinning,The PVP nanofibers containing CdTe NPs were characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM),to observe the morphology of the nanofibers and the distribution of CdTe NPs,The selective area electronic diffraction(SAED) pattern verified that CdTe NPs were cubic lattice,The photoluminescence(PL) spectrum indicated that CdTe NPs existed in an optical style in PVP nanofibers,Moreover,X-ray photoelectron spectra(XPS) revealed that thiol-stabilized CdTe NPs were enwrapped by CTAB,and PVP acted as a dispersant in the process of electrospinning.

  17. Band diagrams and performance of CdTe solar cells with a Sb2Te3 back contact buffer layer

    OpenAIRE

    Songbai Hu; Zhe Zhu; Wei Li; Lianghuan Feng; Lili Wu; Jingquan Zhang; Jingjing Gao

    2011-01-01

    Sb2Te3 thin films were prepared by vacuum co-evaporation and the crystallinity of the films was greatly improved after annealing at 573 K in N2 ambient. Then they were deposited on the CdTe thick films. Band diagrams of the as-deposited and annealed CdTe/Sb2Te3 interfaces were constructed. Consequently, Sb2Te3 was used as a back contact layer for CdTe thin film solar cells and the cell performance was investigated. It was found that the Sb impurities accumulated in the CdTe grain boundaries d...

  18. First principles study of Bi dopen CdTe thin film solar cells: electronic and optical properties

    OpenAIRE

    Seminóvski Pérez, Yohanna; Palacios Clemente, Pablo; Wahnón Benarroch, Perla

    2011-01-01

    Nowadays, efficiency improvement of solar cells is one of the most important issues in photovoltaic systems and CdTe is one of the most promising thin film photovoltaic materials we can found. CdTe reported efficiencies in solar energy conversion have been as good as that found in polycrystalline Si thin film cell [1], besides CdTe can be easily produced at industrial scale.

  19. Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly

    OpenAIRE

    Shen, Mao; Jia, Wenping; You, Yujing; Hu, Yan; Li, Fang; Tian, Shidong; Li, Jian; Jin, Yanxian; Han, Deman

    2013-01-01

    A facile one-step synthesis of CdTe quantum dots (QDs) in aqueous solution by atmospheric microwave reactor has been developed using 3-mercaptopropionic acid reduction of TeO2 directly. The obtained CdTe QDs were characterized by ultraviolet–visible spectroscopy, fluorescent spectroscopy, X-ray powder diffraction, multifunctional imaging electron spectrometer (XPS), and high-resolution transmission electron microscopy. Green- to red-emitting CdTe QDs with a maximum photoluminescence quantum y...

  20. Nanoscale grain boundary channels in fracture cement enhance flow in mudrocks

    Science.gov (United States)

    Landry, Christopher J.; Eichhubl, Peter; Prodanović, Maša.; Wilkins, Scott

    2016-05-01

    Hydrocarbon production from mudrock or shale reservoirs typically exceeds estimates based on mudrock laboratory permeability measurements, with the difference attributed to natural fractures. However, natural fractures in these reservoirs are frequently completely cemented and thus assumed not to contribute to flow. We quantify the permeability of nanoscale grain boundary channels with mean apertures of 50-130 nm in otherwise completely cemented natural fractures of the Eagle Ford Formation and estimate their contribution to production. Using scanning electron imaging of grain boundary channel network geometry and a digital rock physics workflow of image reconstruction and direct flow modeling, we estimate cement permeability to be 38-750 nd, higher than reported permeability of Eagle Ford host rock (~2 nd) based on laboratory measurements. Our results suggest that effective fracture-parallel mudrock permeability can exceed laboratory values by upward of 1 order of magnitude in shale reservoirs of high macroscopic cemented fracture volume fraction.

  1. Fundamental Studies of the Role of Grain Boundaries on Uniform Corrosion of Advanced Nuclear Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Mitra [Drexel Univ., Philadelphia, PA (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Marquis, Emmanuelle [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-05-20

    The main objective of this proposal is to develop fundamental understanding of the role of grain boundaries in stable oxide growth. To understand the process of oxide layer destabilization, it is necessary to observe the early stages of corrosion. During conventional studies in which a sample is exposed and examined after removal from the autoclave, the destabilization process will normally have already taken place, and is only examined post facto. To capture the instants of oxide destabilization, it is necessary to observe it in-situ; however significant question always arise as to the influence of the corrosion geometry and conditions on the corrosion process. Thus a combination of post facto examinations and in-situ studies is proposed, which also combines state-of-the-art characterization techniques to derive a complete understanding of the destabilization process and the role of grain boundaries.

  2. Phase-field study of grain boundary tracking behavior in crack-seal microstructures

    CERN Document Server

    Ankit, Kumar; Selzer, Michael; Reichardt, Mathias

    2012-01-01

    In order to address the vein-growth problem in geology, a multi-phase-field model is used to capture the dynamics of crystals precipitating from a super-saturated solution. To gain a complete understanding, we investigate the influence of various boundary conditions on crystal growth (free-growth and crack-sealing) that result in formation of vein microstructures. To begin with, we consider the anisotropy in surface energy to simulate crystals (with flat facets and sharp corners) possessing different orientations and study the resulting growth competition to deduce a consistent orientation selection rule in the free-growth regime. Next, from crack-sealing simulations, we co-relate the grain boundary tracking behavior and the relative rates of crack opening and trajectory, initial grain size and wall roughness. Further, we illustrate how these parameters induce the microstructural transition between blocky (crystals growing anisotropically) to fibrous morphology (isotropic) and formation of grain boundaries. T...

  3. Role of Grain Boundaries and Microstructure on the Environment Assisted Cracking of Pipeline Steels

    Science.gov (United States)

    Arafin, Muhammad

    2011-12-01

    In this research, two common types of environment assisted cracking (EAC) of pipeline steels, namely the intergranular stress corrosion cracking (IGSCC) and the hydrogen induced cracking (HIC), have been studied, and computer models have been developed to simulate the intergranular stress corrosion crack propagation behaviour in pipeline steel as well as to predict the intergranular fracture susceptibility, due to mechanical loading in non-corrosive environment, of polycrystalline materials. First, a new understanding of the IGSCC resistance of pipeline steel has been obtained by studying the grain boundary character and crystallographic orientation in both cracked and non-cracked pipeline steel samples using electron backscattered diffraction (EBSD) and X-ray texture measurements. It has been found that the low-angle and certain types of special boundaries, known as the coincident site lattice (CSL) boundaries (S5, S11, and S13b types), are crack-resistant while the random high angle boundaries are prone to cracking. However, it has been also observed that the grain boundaries associated with {110} and {111} neighbour grain orientations having and rotation axis, respectively, are crack-resistant, while the cracked boundaries are mainly linked to the {100} orientation with rotation axis. Subsequently, a novel integrated modeling approach, combining Voronoi Algorithm, Markov Chain theory, and Monte Carlo simulations, has been developed in order to predict the IGSCC behaviour of pipeline steels. The model takes both the physical microstructural features, such as the grain shape and grain size distribution, as well as the grain boundary characters and their orientations with respect to the external stress axis into account. The predicted crack propagation behaviour has been found to be in excellent agreement with the experimental crack-propagation and arrest data in API X65 pipeline steel. In addition, a texture based grain boundary character reconstruction model has

  4. Effect of grain boundary trapping kinetics on diffusion in polycrystalline materials: hydrogen transport in Ni

    Science.gov (United States)

    Ilin, Dmitrii N.; Kutsenko, Anton A.; Tanguy, Dome; Olive, Jean-Marc

    2016-03-01

    Due to experimental limitations, the solute distribution in polycrystalline materials is difficult to obtain directly, especially in the vicinity of grain boundaries. Using a newly developed computational method which mixes continuum diffusion equations and atomic scale jump rates, we study the interstitial diffusion in solids containing interfaces taking into account trapping kinetics. The model is applied to hydrogen diffusion in Ni in elementary configurations: fast intergranular diffusion with no segregation (in agreement with Fisher’s model), slow intergranular diffusion with trapping, diffusion through a triple junction and solute redistribution due to stress gradients across the interface. It is shown that the classical diffusion modes can be captured and a new diffusion regime with the effect of grain boundary trapping is revealed.

  5. Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys

    Science.gov (United States)

    Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2016-07-01

    We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.

  6. Atomistic features in the electrochemical potential drop across a graphene grain boundary

    International Nuclear Information System (INIS)

    A recent publication presents a new computational approach to the local electrochemical potential in the vicinity of a graphene grain boundary subject to an in-plane electric current [1]. The local electrochemical potential can be measured using scanning tunneling potentiometry, a method related to scanning tunneling microscopy. The paper predicts that atomistic features should be measurable. These features reflect the local electrochemical potential drop caused by the opaque grain boundary which is non-transparent to ballistic electrons. The paper has implications not only for scanning tunneling potentiometry, but also for Kelvin probe-force microscopy which can also measure the local electrochemical potential. In addition it could help to understand electronic transport across metallic nanocontacts. (viewpoint)

  7. Study on Grain Boundary Structure and Corrosion Behavior of Copper Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The grain boundary structure of Cu alloy was observed and the characteristic of the boundaries was studied,including 70∶30 cupronickel and 7 0∶30 brass. The results show that in the case of the 70∶30 cupronickel thin platelets with nickel and iron e nrichment in it precipitate intergranular so that the alloy was sensitive to sea water corrosion. In the case of 70∶30 brass the situation of grain boundary seg regation of different inclusions made the corrosion resistance of the alloy even worse. All of those were discovered through the corrosion behavior of the two d iff erent copper alloys served in various environments. The experimental methods use d here were, scanning electron microscopy(SEM), transmission electron microscopy(T EM) and energy dispersive of X ray(EDX). The intergranular corrosion morphologie s of those copper alloys served in engineering or exposed to seaw ater for a long term were given.

  8. Evidence for cascade overlap and grain boundary enhanced amorphization in silicon carbide irradiated with Kr ions

    International Nuclear Information System (INIS)

    Evolution of amorphous domains in silicon carbide with 1 MeV Kr2+ irradiation is investigated using high-resolution transmission electron microscopy and simulations. An unusual morphology of highly curved crystalline/amorphous boundaries is observed in the images, which is identified as a result of cascade overlap and reproduced by a coarse-grained model informed by atomistic simulations. Comparison of local amorphization fractions near grain boundaries and within grain interiors provides experimental evidence for the interstitial starvation mechanism in SiC for the first time. As a competing effect to defect sinks, interstitial starvation increases the rate of local amorphization near grain boundaries and reduces the radiation resistance of nanocrystalline silicon carbide

  9. Surface studies of iridium-alloy grain boundaries associated with weld cracking

    International Nuclear Information System (INIS)

    Plutonium-238 oxide fuel pellets for the General Purpose Heat Source (GPHS) Radioisotopic Thermoelectric Generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in iridium alloy at the Savannah River Plant (SRP). Underbead cracks occasionally occur in the girth weld on the iridium-alloy-clad vent sets in the region where the gas tungsten arc is quenched. Grain-boundary structures and compositions were characterized by scanning electron microscopy/x-ray energy spectroscopy, electron microprobe analysis and scanning Auger microprobe analysis to determine the cause of weld quench area cracking. Results suggest that weld quench area cracking may be caused by gas porosity or liquation in the grain boundaries

  10. Diffusion of Hydrogen along the Grain Boundaries in Ni3Al Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The diffusivity of hydrogen in two Ni3Al alloys (No.1 and No.2)has been measured in the temperature range of 100℃ to 420℃ using an ultrahigh vacuum gaseous permeation technique.The diffusivity data fall into two segments, in which the hydrogen diffusivity adheres to the Arrhenius form, respectively. From the hydrogen diffusivity, it is conjectured that the hydrogen diffusivity reflects the hydrogen transportation along the grain boundaries at lower temperature and the hydrogen transportation in the lattice at higher temperature. The intergranular fracture of L12-type intermetallics induced by hydrogen at relative low temperature results from hydrogen transportation along the grain boundaries and not in the lattice.

  11. Physical properties of spray deposited CdTe thin films: PEC performance

    Institute of Scientific and Technical Information of China (English)

    V. M. Nikale; S. S. Shinde; C. H. Bhosale; K.Y. Rajpure

    2011-01-01

    p-CdTe thin films were prepared by spray pyrolysis under different ambient conditions and characterized using photoelectrochemical (PEC),X-ray diffraction (XRD),scanning electron microscopy,energy-dispersive analysis by X-ray (EDAX),and optical transmission studies.The different preparative parameters viz solution pH,solution quantity,substrate temperature and solution concentration have been optimized by the PEC technique in order to get good-quality photosensitive material.XRD analysis shows the polycrystalline nature of the film,having cubic structure with strong (111) orientation.Micrographs reveal that grains are uniformly distributed over the surface of the substrate indicating the well-defined growth ofpolycrystalline CdTe thin film.The EDAX study for the sample deposited at optimized preparative parameters shows the nearly stoichiometric Cd:Te ratio.Optical absorption shows the presence of direct transition with band gap energy of 1.5 eV.Deposited films exhibit the highest photocurrent of 2.3 mA,a photovoltage of 462 mV,a 0.48 fill factor and 3.4% efficiency for the optimized preparative parameters.

  12. Analysis of grain boundary sinks and interstitial diffusion in neutron-irradiated SiC

    OpenAIRE

    Kondo, Sosuke; Katoh, Yutai; Snead, Lance

    2011-01-01

    The widths of the interstitial loop denuded zone (DZ) along grain boundaries were examined for 3C-SiC irradiated at 1010–1380 °C by transmission electron microscopy (TEM) in an effort to obtain the activation energy of interstitial migration. Denuded-zone widths as small as 17 nm were observed below 1130 °C, indicating that a substantial population of “TEM invisible” voids of diameter

  13. Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries

    Directory of Open Access Journals (Sweden)

    T. Bartels-Rausch

    2013-07-01

    Full Text Available Release of trace gases from surface snow on earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analysed by means of X-ray-computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures, surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature-dependent air–ice partitioning coefficients, better described the observed diffusion profiles than the use of air–liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. For this, a snow sample with an artificially high amount of ice grains was produced and the grain boundary surface measured using thin sections. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.

  14. Multiple time step molecular dynamics simulation for interaction between dislocations and grain boundaries

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Li; Wei Yang

    2005-01-01

    A multiple time step algorithm, called reversible reference system propagator algorithm, is introduced for thelong time molecular dynamics simulation. In contrast to the conventional algorithms, the multiple time method has better convergence, stability and efficiency. The method is validated by simulating free relaxation and the hypervelocity impact of nano-clusters. The time efficiency of the multiple time step method enables us to investigate the long time interaction between lattice dislocations and low-angle grain boundaries.

  15. Fundamental Study of Hydrogen Segregation at Vacancy and Grain Boundary in Palladium

    OpenAIRE

    Pham, Hieu H.; Cagin, Tahir

    2015-01-01

    We have studied the fundamental process of hydrogen binding at interstitial, vacancy and grain boundary (GB) in palladium crystals using Density-Functional Theory. It showed that hydrogen prefers to occupy the octahedral interstitial site in Pd matrix, however a stable H-vacancy complex with most H occupations would contain up to eight hydrogen atoms surrounding the vacancy at tetrahedral sites. Furthermore, H presence assists the pairing or formation of nearby vacancies, which in agreement w...

  16. Stress Field of Non-equilibrium Grain Boundaries in Nano-crystalline Metals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Introducing the stress distribution near grain boundaries to improve the dislocation pileup model for the Hall-Petch (H-P) relation, the continuous distribution of dislocations in the pileup could be solved by means of Tschebysheff polynomials for the Hilbert transformation. An analytical formula of the stress intensity factor for the dislocation pileup is obtained. The reverse H-P relation may be explained by the modified dislocation-pileup-model.

  17. Role of grain boundaries in the conduction of Eu–Ni substituted Y-type hexaferrites

    International Nuclear Information System (INIS)

    Single phase nanostructured (Eu–Ni) substituted Y-type hexaferrites with nominal composition of Sr2Co2−xNixEuyFe12−yO22 (x=0.0–1, y=0.0–0.1) were synthesized by the microemulsion method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The presence of Debye peaks in imaginary electric modulus curves confirmed the existence of relaxation phenomena in given frequency range. The AC conductivity follows power law, with exponent (n) value, ranges from 0.81–0.97, indicating that the mechanism is due to polaron hopping. In the present ferrite system, Cole–Cole plots were used to separate the grain and grain boundary effects. Eu–Ni substitution leads to a remarkable rise of grain boundary resistance as compared to the grain resistance. As both AC conductivity and Cole–Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. It was also observed that the AC activation energy is lower than the DC activation energy. Appreciable improved values of quality factor suggested the possible use of these synthesized materials for power applications and high frequency multilayer chip inductors. - Highlights: • Single phase nanostructures were synthesized by the micro-emulsion method. • Substitution leads to a remarkable rise of grain boundary resistance. • The AC activation energy is lower than the DC activation energy. • Improved values of quality factor make these materials useful for high frequency multilayer chip inductors

  18. Potential barrier height at the grain boundaries of a poly-silicon nanowire.

    Science.gov (United States)

    Shamir, Assaf; Amit, Iddo; Englander, Danny; Horvitz, Dror; Rosenwaks, Yossi

    2015-09-01

    We present measurements of the potential barrier height and its dependence on grain size in poly-silicon nanowire (P-SiNW) arrays. Measurements conducted using Kelvin probe force microscopy coupled with electrostatic simulations, enabled us also to extract the density of the grain boundary interface states and their energy distribution. In addition it was shown that the barrier height scales with the grain size as the square of the grain radius. PMID:26245190

  19. Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel

    Czech Academy of Sciences Publication Activity Database

    Všianská, Monika; Šob, Mojmír

    2011-01-01

    Roč. 84, č. 1 (2011), Art.n. 014418. ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100920; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnetically dead layers * sp-impurity-decorated grain boundaries and surfaces * nickel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  20. Dissolution of kinetics of nanoscale liquid Pb/Bi inclusions at a grain boundary in aluminium

    DEFF Research Database (Denmark)

    Prokofjev, Sergei I.; Johnson, Erik; Zhilin, Victor M.;

    2008-01-01

    In situ transmission selctron microscopy is used to study dissolution of liquid single-phase Pb/Bi inclusions attached to grain boundary in an alloy of Al99.29Pb0.65Bi0.06 at temperatures of 343, 370, and 389 °C, respectively.  The initial size of the inclusions was smaller than 60 nm.  Dissoluti...