WorldWideScience

Sample records for cdte buffer layers

  1. The properties of CdTe solar cells with ZnTe/ZnTe: Cu buffer layers

    Institute of Scientific and Technical Information of China (English)

    Song Huijin; Zheng Jiagui; Feng Lianghuan; Yan Qiang; Lei Zhi; Wu Lili; Zhang Jingquan; Li Wei; Li Bing

    2008-01-01

    CdS/CdTe solar cells with ZnTe/ZnTe:Cu buffer layers were fabricated and studied. The energy band structure of it was analyzed. The C-V, I-V characteristics and the spectral response show that the ZnTe/ZnTe:Cu buffer layers improve the back contact characteristic properties, the diode characteristics of the forward junction and the short-wave spectral response of the CdTe solar cells. The ZnTe/ZnTe:Cu buffer layers affect the solar cell conversion efficiency and its fill factor.

  2. Band diagrams and performance of CdTe solar cells with a Sb2Te3 back contact buffer layer

    Directory of Open Access Journals (Sweden)

    Songbai Hu

    2011-12-01

    Full Text Available Sb2Te3 thin films were prepared by vacuum co-evaporation and the crystallinity of the films was greatly improved after annealing at 573 K in N2 ambient. Then they were deposited on the CdTe thick films. Band diagrams of the as-deposited and annealed CdTe/Sb2Te3 interfaces were constructed. Consequently, Sb2Te3 was used as a back contact layer for CdTe thin film solar cells and the cell performance was investigated. It was found that the Sb impurities accumulated in the CdTe grain boundaries diffuse deeply in the CdTe layer, and more photogenerated electrons and holes are separated by the segregated SbCd+ donors into the GBs. What is more, the doping concentration in the vicinity of the CdTe/CdS heterojunction increases for the formation of substitutional SbTe- acceptors under the Cd-rich conditions. For the introduction of the p-type Sb2Te3 layers as the back contact to the CdTe thin film solar cells, the performance of CdTe thin film solar cells has been greatly improved and an efficiency of 13.1% (FF=62.3%, Jsc=25.8 mA/cm2, Voc= 815.8 mV obtained.

  3. Effect of as Passivation on Vapor-Phase Epitaxial Growth of Ge on (211)Si as a Buffer Layer for CdTe Epitaxy

    Science.gov (United States)

    2011-04-07

    time periods of (a) 5 min and (b) 10 min. It can be seen that Ge grows layer-by- layer, resulting in a very thin Ge film . Fig. 4. SEM image of Ge...REPORT Effect Of As Passivation On Vapor-Phase Epitaxial Growth of Ge on (211)Si As A Buffer Layer For CdTe Epitaxy 14. ABSTRACT 16. SECURITY...The films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-sectional 1. REPORT DATE (DD-MM-YYYY) 4

  4. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Y. G., E-mail: y.fedorenko@liverpool.ac.uk; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K. [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF (United Kingdom)

    2015-10-28

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  5. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    Science.gov (United States)

    Fedorenko, Y. G.; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K.

    2015-10-01

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  6. Recent Results on Growth of (211)B CdTe on (211)Si with Intermediate Ge and ZnTe Buffer Layers by Metalorganic Vapor-Phase Epitaxy

    Science.gov (United States)

    Shintri, Shashidhar; Rao, Sunil; Wijewarnasuriya, Priyalal; Trivedi, Sudhir; Bhat, Ishwara

    2012-10-01

    We report on the investigation of epitaxial cadmium telluride grown by metalorganic vapor-phase epitaxy (MOVPE) on (211)Si, with particular emphasis on studying the effect of changing the reactor parameters and thermal annealing conditions on the epilayer quality. The CdTe films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray diffraction (XRD). The best CdTe films were observed when the Te/Cd precursor partial pressure ratio was close to 3.1. It was also observed that, though annealing improved the crystal quality, a slight increase in surface roughness was observed. Similar attempts were made to improve the growth conditions of ZnTe intermediate buffer layer, which showed similar trends with changes in precursor flows.

  7. The Study on the Properties of CdTe Buffer Layer for MBE HgCdTe Epilayer%分子束外延HgCdTe薄膜的CdTe缓冲层特性研究

    Institute of Scientific and Technical Information of China (English)

    宋立媛; 唐利斌; 李艳辉; 孔令德; 陈雪梅

    2009-01-01

    CdTe是GaAs衬底上分子束外延(MBE)HgCdTe薄膜时的缓冲层,引入缓冲层的目的是减小失配位错,CdTe缓冲层的生长直接影响到后续HgCdTe薄膜的制备质量,然而目前现有文献鲜有报道CdTe缓冲层的最佳厚度.采用X射线双晶衍射、位错腐蚀坑密度(EPD)、FT-IR和椭圆偏振光谱的方法,从CdTe缓冲层厚度对位错密度的影响入手,分析并确定了理想的CdTe缓冲层厚度.%CdTe is the buffer layer of GaAs substrate for HgCdTe eoilayer grown by MBE,The purpose for introduction of buffer laver is to decrease the mismatched dislocation,the growth of CdTe buffer layer directly affects the quality of foilowing grown HgCdTe thin film.However,up to now only few papers have reported the optimum thickness for CdTe buffer layer.By using of X-ray double ervstal diffraction,EPD,FT-IR as well as soectroscopic ellipsometry the paper has studied the effects of the thickness on EPD for CdTe buffer layer,the optimum thickness of CdTe buffer layer has been obtained.

  8. Cd-Te-In oxide thin films as possible transparent buffer layer in CdTe based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Rodriguez, R; Camacho, J M; Pena, J L [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310, Merida, Yucatan (Mexico); Martel, A; Mendez-Gamboa, J, E-mail: romano@mda.cinvestav.m [Facultad de Ingenieria, Universidad Autonoma de Yucatan. AP 150 Cordemex, 97310 Merida, Yucatan (Mexico)

    2009-05-01

    Cd-Te-In-oxide thin films were grown by Pulsed Laser Deposition (PLD) technique using CdTe powder embedded in a matrix of indium metallic as target. The films were deposited at different oxygen pressures (P{sub o2}) from 15 to 50 mTorr at substrate temperature of 420{sup 0}C. Sheet resistance (R{sub sheet}) and transmission spectrum were measured as a function of P{sub o2}. From measurements of optical transmission, the Photonic Flux Density (PFD) spectrum were obtained and the integral of these PFD for each film were evaluated between energy range of 1.5 eV and 2.4 eV for obtain the amount of photons that can be transferred across the film in this range of solar energy spectrum. These values were evaluated over the R{sub sheet} to be used as a figure of merit. The best choice in our conditions was the films with P{sub o2} =28.5 mTorr, where the figure of merit reaches the maximum value.

  9. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions.

    Science.gov (United States)

    Miao, Yanping; Yang, Ping; Zhao, Jie; Du, Yingying; He, Haiyan; Liu, Yunshi

    2015-06-01

    CdTe quantum dots (QDs) were synthesized by 3-mercaptopropionic acid (MPA) and thioglycollic acid (TGA) as capping agents. It is confirmed that TGA and MPA molecules were attached on the surface of the QDs using Fourier transform infrared (FT-IR) spectra. The movement of the QDs in agarose gel electrophoresis indicated that MPA-capped CdTe QDs had small hydrodynamic diameter. The photoluminescence (PL) intensity of TGA-capped QDs is higher than that of MPA-capped QDs at same QD concentration because of the surface passivation of TGA. To systemically investigate the photodegradation, CdTe QDs with various PL peak wavelengths were dispersed in phosphate buffered saline (PBS) and Tris-borate-ethylenediaminetetraacetic acid (TBE) buffer solutions. It was found that the PL intensity of the QDs in PBS decreased with time. The PL peak wavelengths of the QDs in PBS solutions remained unchanged. As for TGA-capped CdTe QDs, the results of PL peak wavelengths in TBE buffer solutions indicated that S(2-) released by TGA attached to Cd(2+) and formed CdS-like clusters layer on the surface of aqueous CdTe QDs. In addition, the number of TGA on the CdTe QDs surface was more than that of MPA. When the QDs were added to buffer solutions, agents were removed from the surface of CdTe QDs, which decreased the passivation of agents thus resulted in photodegradation of CdTe QDs in buffer solutions.

  10. The growth of various buffer layer structures and their influence on the quality of (CdHg)Te epilayers

    CSIR Research Space (South Africa)

    Gouws, GJ

    1993-05-01

    Full Text Available to the formation of electrically active defects in the material. An intermediate ZnTe layer was used to select the (100) orientation and (100) CdTe layers were then deposited on this ZnTe layer. The quality of the resultant CdTe buffer was found to critically...

  11. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  12. Buffer layer for thin film structures

    Science.gov (United States)

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  13. Buffer layers on biaxially textured metal substrates

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  14. Close space sublimation of CdTe for solar cells and the effect of underlying layers

    OpenAIRE

    Wakeling, B. R.

    2010-01-01

    This work has focused on the design, construction and testing of a close space sublimation system for CdTe deposition. In addition, it also focused on variations to the treatment and fabrication procedures of the transparent conducting oxide and CdS layers prior to the CdTe deposition, in order to influence the structure and electrical properties of the CdTe/CdS interface. CdTe was deposited by the physical vapour process, close space sublimation. The equipment used was custom built for this ...

  15. Epitaxial growth of cadmium telluride films on silicon with a buffer silicon carbide layer

    Science.gov (United States)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.

    2017-02-01

    An epitaxial 1-3-μm-thick cadmium telluride film has been grown on silicon with a buffer silicon carbide layer using the method of open thermal evaporation and condensation in vacuum for the first time. The optimum substrate temperature was 500°C at an evaporator temperature of 580°C, and the growth time was 4 s. In order to provide more qualitative growth of cadmium telluride, a high-quality 100-nm-thick buffer silicon carbide layer was previously synthesized on the silicon surface using the method of topochemical substitution of atoms. The ellipsometric, Raman, X-ray diffraction, and electron-diffraction analyses showed a high structural perfection of the CdTe layer in the absence of a polycrystalline phase.

  16. Buffer layers and articles for electronic devices

    Science.gov (United States)

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  17. Back contact buffer layer for thin-film solar cells

    Science.gov (United States)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  18. Back contact buffer layer for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  19. From front contact to back contact in cadmium telluride/cadmium sulfide solar cells: Buffer layer and interfacial layer

    Science.gov (United States)

    Roussillon, Yann

    Cadmium telluride (CdTe) polycrystalline thin film solar cells, with their near optimum direct band-gap of 1.4 eV matching almost perfectly the sun radiation spectrum, are a strong contender as a less expensive alternative, among photovoltaic materials, than the more commonly used silicon-based cells. Polycrystalline solar cells are usually deposited over large areas. Such devices often exhibit strong fluctuations (nonuniformities) in electronic properties, which originate from deposition and post-deposition processes, and are detrimental to the device performance. Therefore their effects need to be constrained. A new approach in this work was, when a CdS/CdTe solar cell is exposed to light and immersed in a proper electrolyte, fluctuations in surface potential can drive electrochemical reactions which result in a nonuniform interfacial layer that could balance the original nonuniformity. This approach improved the device efficiency for CdS/CdTe photovoltaic devices from 1--3% to 11--12%. Cadmium sulfide (CdS), used as a window layer and heterojunction partner to CdTe, is electrically inactive and absorb light energies above its band-gap of 2.4 eV. Therefore, to maximize the device efficiency, a thin US layer needs to be used. However, more defects, such as pinholes, are likely to be present in the film, leading to shunts. A resistive transparent layer, called buffer layer, is therefore deposited before CdS. A key observation was that the open-circuit voltage (Voc) for cells made using a buffer layer was high, around 800 mV, similar to cells without buffer layer after Cu doping. The standard p-n junction theory cannot explain this phenomena, therefore an alternative junction mechanism, similar to metal-insulator-semiconductor devices, was developed. Furthermore, alternative Cu-free back-contacts were used in conjunction with a buffer layer. The Voc of the devices was found to be dependent of the back contact used. This change occurs as the back-contact junction

  20. Thin film photovoltaic devices with a minimally conductive buffer layer

    Science.gov (United States)

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  1. An optimized multilayer structure of CdS layer for CdTe solar cells application

    Energy Technology Data Exchange (ETDEWEB)

    Han Junfeng, E-mail: pkuhjf@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao Cheng, E-mail: Cliao@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Jiang Tao [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Spanheimer, C.; Haindl, G.; Fu, Ganhua; Krishnakumar, V. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Zhao Kui [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Klein, A.; Jaegermann, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany)

    2011-04-28

    Research highlights: > Two different methods to prepare CdS films for CdTe solar cells. > A new multilayer structure of window layer for the CdTe solar cell. > Thinner CdS window layer for the solar cell than the standard CdS layer. > Higher performance of solar cells based on the new multilayer structure. - Abstract: CdS layers grown by 'dry' (close space sublimation) and 'wet' (chemical bath deposition) methods are deposited and analyzed. CdS prepared with close space sublimation (CSS) has better crystal quality, electrical and optical properties than that prepared with chemical bath deposition (CBD). The performance of CdTe solar cell based on the CSS CdS layer has higher efficiency than that based on CBD CdS layer. However, the CSS CdS suffers from the pinholes. And consequently it is necessary to prepare a 150 nm thin film for CdTe/CdS solar cell. To improve the performance of CdS/CdTe solar cells, a thin multilayer structure of CdS layer ({approx}80 nm) is applied, which is composed of a bottom layer (CSS CdS) and a top layer (CBD CdS). That bi-layer film can allow more photons to pass through it and significantly improve the short circuit current of the CdS/CdTe solar cells.

  2. Properties of CdTe layers deposited by a novel method -Pulsed Plasma Deposition

    OpenAIRE

    Ancora, C.; Nozar, P.; Mittica, G.; Prescimone, F.; A. Neri; Contaldi, S.; Milita, S.; Albonetti, C.; Corticelli, F.; Brillante, A.; Bilotti, I.; Tedeschi, G.; Taliani, C.

    2011-01-01

    CdTe and CdS are emerging as the most promising materials for thin film photovoltaics in the quest of the achievement of grid parity. The major challenge for the advancement of grid parity is the achievement of high quality at the same time as low fabrication cost. The present paper reports the results of the new deposition technique, Pulsed Plasma Deposition (PPD), for the growth of the CdTe layers on CdS/ZnO/quartz and quartz substrates. The PPD method allows to deposit at low temperature. ...

  3. Buffer layers for REBCO films for use in superconducting devices

    Science.gov (United States)

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  4. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Methods for improved growth of group III nitride buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  6. Methods for improved growth of group III nitride buffer layers

    Science.gov (United States)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  7. Buffer layers for high-Tc thin films on sapphire

    Science.gov (United States)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  8. Buffer layers for high-Tc thin films on sapphire

    Science.gov (United States)

    Wu, X. D.; Foltyn, S. R.; Muenchausen, R. E.; Cooke, D. W.; Pique, A.; Kalokitis, D.; Pendrick, V.; Belohoubek, E.

    1992-01-01

    Buffer layers of various oxides including CeO2 and yttrium-stabilized zirconia (YSZ) have been deposited on R-plane sapphire. The orientation and crystallinity of the layers were optimized to promote epitaxial growth of YBa2Cu3O(7-delta) (YBCO) thin films. An ion beam channeling minimum yield of about 3 percent was obtained in the CeO2 layer on sapphire, indicating excellent crystallinity of the buffer layer. Among the buffer materials used, CeO2 was found to be the best one for YBCO thin films on R-plane sapphire. High Tc and Jc were obtained in YBCO thin films on sapphire with buffer layers. Surface resistances of the YBCO films were about 4 mOmega at 77 K and 25 GHz.

  9. On buffer layers as non-reflecting computational boundaries

    Science.gov (United States)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  10. MBE-Grown CdTe Layers on GaAs with In-assisted Thermal Deoxidation

    Science.gov (United States)

    Arı, Ozan; Bilgilisoy, Elif; Ozceri, Elif; Selamet, Yusuf

    2016-10-01

    Molecular beam epitaxy (MBE) growth of thin (˜2 μm) CdTe layers characterized by high crystal quality and low defect density on lattice mismatched substrates, such as GaAs and Si, has thus far been difficult to achieve. In this work, we report the effects of in situ thermal deoxidation under In and As4 overpressure prior to the CdTe growth on epiready GaAs(211)B wafers, aiming to enhance CdTe crystal quality. Thermally deoxidized GaAs samples were analyzed using in situ reflection high energy electron diffraction, along with ex situ x-ray photo-electron spectroscopy (XPS) and atomic force microscopy. MBE-grown CdTe layers were characterized using x-ray diffraction (XRD) and Everson-type wet chemical defect decoration etching. We found that In-assisted desorption allowed for easier surface preparation and resulted in a smoother surface compared to As-assisted surface preparation. By applying In-assisted thermal deoxidation to GaAs substrates prior to the CdTe growth, we have obtained single crystal CdTe films with a CdTe(422) XRD rocking curve with a full-width half-maximum value of 130.8 arc-s and etch pit density of 4 × 106 cm-2 for 2.54 μm thickness. We confirmed, by XPS analysis, no In contamination on the thermally deoxidized surface.

  11. Thin film CdTe solar cells with an absorber layer thickness in micro- and sub-micrometer scale

    Science.gov (United States)

    Bai, Zhizhong; Yang, Jun; Wang, Deliang

    2011-10-01

    CdTe thin film solar cell with an absorber layer as thin as 0.5 μm was fabricated. An efficiency of 7.9% was obtained for a 1-μm-thick CdTe solar cell. An increased intensity of deep recombination states in the band gap, which was responsible for the reduced open-circuit voltage and fill factor for ultra-thin solar cells, was induced due to the not-well-developed polycrystalline CdTe microstructure and the CdS/CdTe heterojunction and the presence of Cu in the back contact. The experimental results presented in this study demonstrated that 1-μm-thick absorber layer is thick enough to fabricate CdTe solar cell with a decent efficiency.

  12. CdTe nano-structures for photovoltaic devices

    OpenAIRE

    Corregidor, V.; Alves, L. C.; FRANCO, N.; Barreiros, Maria Alexandra; Sochinskii, N. V.; Alves, E

    2013-01-01

    CdTe nano-structures with diameter of ∼100 nm and variable length (200–600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al2O3 + Ta2O5) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orient...

  13. Buffer layers on metal alloy substrates for superconducting tapes

    Science.gov (United States)

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  14. Preparation of second buffer layers on IBAD tapes by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Sutoh, Y.; Kakimoto, K.; Iijima, Y.; Ajimura, S.; Saitoh, T

    2004-10-01

    We have studied the crystalline texture improvement of the second buffer layers of Gd{sub 2}Zr{sub 2}O{sub 7} and CeO{sub 2} grown by pulsed laser deposition (PLD) on the first buffer layer of biaxially aligned Gd{sub 2}Zr{sub 2}O{sub 7} film, which formed by ion-beam-assisted deposition (IBAD) with {delta}phi of 10 deg. on metal tape. The {delta}phi for the second buffer layers rapidly decreased with the thickness, and reached 5 deg. at the thickness of 1.4 and 0.8 {mu}m, for Gd{sub 2}Zr{sub 2}O{sub 7} and CeO{sub 2}, respectively. TEM observations indicated that sharply textured second buffer layers had largely grown grains with the diameters near 1 {mu}m. Severe contrasts in TEM from dense defect structures were observed in the initial growth stage of PLD, which gradually relaxed with the growth thickness. J{sub C} of 2.9 MA/cm{sup 2} were obtained in a 10 cm long Y-123 film by using the sharply aligned CeO{sub 2} second buffer layer on IBAD-Gd{sub 2}Zr{sub 2}O{sub 7} template tape.

  15. Characterization of GaN Buffer Layers and Its Epitaxial Layers Grown by MOCVD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Low-pressure MOCVD has been used to investigate the properties of low-temperature buffer layer deposition conditions and their influence on the properties of high-temperature GaN epilayers grown subsequently. It is found that the surface morphology of the as-grown buffer layer after thermal annealing at 1030℃ and 1050℃ depends strongly on the thickness of the buffer layer. In particular when a thick buffer layer is used, large trapezoidal nuclei are formed after annealing.

  16. Study of buffer layer thickness on bulk heterojunction solar cell.

    Science.gov (United States)

    Noh, Seunguk; Suman, C K; Lee, Donggu; Kim, Seohee; Lee, Changhee

    2010-10-01

    We studied the effect of the buffer layer (molybdenum-oxide (MoO3)) thickness on the performance of organic solar cell based on blends of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester fullerene derivative (PCBM). The thickness of MoO3 was varied from 1 nm to 30 nm for optimization of device performance. The photocurrent-voltage and impedance spectroscopy were measured under dark and AM1.5G solar simulated illumination of 100 mW/cm2 for exploring the role of the buffer layer thickness on carrier collection at an anode. The MoO3 thickness of the optimized device (efficiency approximately 3.7%) was found to be in the range of 5 approximately 10 nm. The short-circuit current and the shunt resistance decrease gradually for thicker MoO3 layer over 5 nm. The device can be modeled as the combination of three RC parallel circuits (each one for the active layer, buffer layer and interface between the buffer layer and the active layer) in series with contact resistance (Rs approximately 60 ohm).

  17. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  18. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  19. Low temperature growth of high quality CdTe polycrystalline layers

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, I R B [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Suela, J [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Oliveira, J E [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Ferreira, S O [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Motisuke, P [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, SP (Brazil)

    2007-08-07

    We have investigated the growth of CdTe thin films on glass substrates by hot wall epitaxy. The layers have been characterized by scanning electron microscopy, atomic force microscopy, profilometry, x-ray diffraction and optical transmission. The grown samples are polycrystalline with a high preferential [1 1 1] orientation. Atomic force microscopy and scanning electron microscopy reveal pyramidal grain shapes with a size of around 0.3 {mu}m. The surface roughness increases with sample thickness and growth temperature, reaching about 200 nm for 10 {mu}m thick layers grown at 300 deg. C. Samples with a thickness of 2 {mu}m grown at 150 deg. C showed a roughness of less than 40 nm. Optical transmission measurements demonstrate layers with high optical quality.

  20. Low temperature growth of high quality CdTe polycrystalline layers

    Science.gov (United States)

    Ribeiro, I. R. B.; Suela, J.; Oliveira, J. E.; Ferreira, S. O.; Motisuke, P.

    2007-08-01

    We have investigated the growth of CdTe thin films on glass substrates by hot wall epitaxy. The layers have been characterized by scanning electron microscopy, atomic force microscopy, profilometry, x-ray diffraction and optical transmission. The grown samples are polycrystalline with a high preferential [1 1 1] orientation. Atomic force microscopy and scanning electron microscopy reveal pyramidal grain shapes with a size of around 0.3 µm. The surface roughness increases with sample thickness and growth temperature, reaching about 200 nm for 10 µm thick layers grown at 300 °C. Samples with a thickness of 2 µm grown at 150 °C showed a roughness of less than 40 nm. Optical transmission measurements demonstrate layers with high optical quality.

  1. New methanofullerene as a buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Biglova, Yulia N., E-mail: bn.yulya@mail.ru [Bashkir State University, Chemistry Department, Ufa (Russian Federation); Akbulatov, Azat F. [Bashkir State University, Chemistry Department, Ufa (Russian Federation); Torosyan, Seda A. [Institute of Organic Chemistry URC RAS, Ufa (Russian Federation); Susarova, Diana K. [Institute for Problems of Chemical Physics RAS, Chernogolovka (Russian Federation); Mustafin, Akhat G. [Bashkir State University, Chemistry Department, Ufa (Russian Federation); Miftakhov, Mansur S. [Institute of Organic Chemistry URC RAS, Ufa (Russian Federation)

    2015-02-01

    The influence of the first synthesized acryl-type methanofullerene C{sub 60} on the solar cell performance as a buffer layer and its forming methods on the substrate surface was investigated. The significant impact of small concentration on the basic photovoltaic characteristics of the fabricated devices with inverted configurations was shown in this work.

  2. Substrate-induced magnetism in epitaxial graphene buffer layers.

    Science.gov (United States)

    Ramasubramaniam, A; Medhekar, N V; Shenoy, V B

    2009-07-08

    Magnetism in graphene is of fundamental as well as technological interest, with potential applications in molecular magnets and spintronic devices. While defects and/or adsorbates in freestanding graphene nanoribbons and graphene sheets have been shown to cause itinerant magnetism, controlling the density and distribution of defects and adsorbates is in general difficult. We show from first principles calculations that graphene buffer layers on SiC(0001) can also show intrinsic magnetism. The formation of graphene-substrate chemical bonds disrupts the graphene pi-bonds and causes localization of graphene states near the Fermi level. Exchange interactions between these states lead to itinerant magnetism in the graphene buffer layer. We demonstrate the occurrence of magnetism in graphene buffer layers on both bulk-terminated as well as more realistic adatom-terminated SiC(0001) surfaces. Our calculations show that adatom density has a profound effect on the spin distribution in the graphene buffer layer, thereby providing a means of engineering magnetism in epitaxial graphene.

  3. Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition

    Science.gov (United States)

    Takahashi, Nobuaki; Nagashio, Kosuke

    2016-12-01

    The integration of a high-k oxide on graphene using atomic layer deposition requires an electrically reliable buffer layer. In this study, Y was selected as the buffer layer due to its highest oxidation ability among the rare-earth elements, and various oxidation methods (atmospheric, and high-pressure O2 and ozone annealing) were applied to the Y metal buffer layer. By optimizing the oxidation conditions of the top-gate insulator, we successfully improved the capacitance of the top gate Y2O3 insulator and demonstrated a large I on/I off ratio for bilayer graphene under an external electric field.

  4. Prospects of Thickness Reduction of the CdTe Layer in Highly Efficient CdTe Solar Cells Towards 1 µm

    Science.gov (United States)

    Amin, Nowshad; Isaka, Takayuki; Okamoto, Tamotsu; Yamada, Akira; Konagai, Makoto

    1999-08-01

    This study focuses on the technique for the stable growth of CdTe (1.44 eV) with thickness near its absorption length, 1 µm, by close spaced sublimation (hereafter CSS) process, in order to achieve high conversion efficiency. X-ray diffraction (XRD) spectroscopy was carried out to examine the microstructure of the films. Current-voltage (I V) characteristics, spectral response and other features of the solar cells using these CdTe films were investigated to elucidate the optimum conditions for achieving the best performance in such thin (1 µm) CdTe solar cells. Thickness was found to be reduced by controlling the temperature profile used during CSS growth. The temperature profile was found to be an important factor in growing high-quality thin films. By controlling the growth parameters and optimizing the annealing temperature at different fabrication steps, we have succeeded, to date, in achieving cell efficiencies of 14.3% (open-circuit voltage (Voc): 0.82 V, short-circuit current (Jsc): 25.2 mA/cm2, fill factor (F.F.): 0.695, area: 1 cm2) with 5 µm, 11.4% (Voc: 0.77 V, Jsc: 23.7 mA/cm2, F.F.: 0.63, area: 1 cm2) with 1.5 µm and 11.2% (Voc: 0.77 V, Jsc: 23.1 mA/cm2, F.F.: 0.63, area: 1 cm2) with only 1 µm of CdTe layer thickness at an air mass of 1.5 without antireflection coatings. This is important for establishing a strong foundation before developing a new structure (e.g., glass/ITO/CdS/CdTe/ZnTe/Ag configuration) with a back surface field of wide-bandgap material (e.g., ZnTe).

  5. Synthesis and properties of 10% Zn layered CdTe thin films by SEL method

    Science.gov (United States)

    Shanmugan, S.; Mutharasu, D.

    2011-10-01

    Te/Cd/Te/Zn/Cd stacked layers were prepared by Stacked Elemental Layer (SEL) Method. All stacks were annealed from 200 °C to 500 °C and the prepared films were confirmed as polycrystalline nature. Cubic CdTe and Hexagonal ZnTe were identified at high annealing temperature. Transmittance spectra emphasized the significance of Zn doping by annealing the stack. The calculated optical constants n and k were 1.52-2.45 and 0.07-0.36 respectively. The band gaps (Eg) were observed between 1.38 and 1.44 eV at above 350 °C. A uniform surface morphology could be observed at high annealing temperatures. The observed results encouraged the Zn doping using SEL method.

  6. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    Science.gov (United States)

    Yang, Y.-B.; Seewald, L.; Mohanty, Dibyajyoti; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, Weiyu; Shi, J.; Bhat, I.; Zhang, Shengbai; Lu, T.-M.; Wang, G.-C.

    2017-08-01

    Single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (∼21-55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [ 1 bar2 1 bar]CdTe//[1 bar100]CdS//[010]mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. The use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.

  7. Advanced titania buffer layer architectures prepared by chemical solution deposition

    Science.gov (United States)

    Kunert, J.; Bäcker, M.; Brunkahl, O.; Wesolowski, D.; Edney, C.; Clem, P.; Thomas, N.; Liersch, A.

    2011-08-01

    Chemical solution deposition (CSD) was used to grow high-quality (100) oriented films of SrTiO3 (STO) on CSD CaTiO3 (CTO), Ba0.1Ca0.9TiO3 (BCT) and STO seed and template layers. These template films bridge the lattice misfit between STO and the nickel-tungsten (NiW) substrate, assisting in dense growth of textured STO. Additional niobium (Nb) doping of the STO buffer layer reduces oxygen diffusion which is necessary to avoid undesired oxidation of the NiW. The investigated templates offer suitable alternatives to established standard buffer systems like La2Zr2O7 (LZO) and CeO2 for coated conductors.

  8. ZnSe/ITO thin films: candidate for CdTe solar cell window layer

    Science.gov (United States)

    Khurram, A. A.; Imran, M.; Khan, Nawazish A.; Nasir Mehmood, M.

    2017-09-01

    The crystal structure, electrical and optical properties of ZnSe thin films deposited on an In2O3:Sn (ITO) substrate are evaluated for their suitability as the window layer of CdTe thin film solar cells. ZnSe thin films of 80, 90, and 100 nm thickness were deposited by a physical vapor deposition method on Indium tin oxide coated glass substrates. The lattice parameters are increased to 5.834 Å when the film thickness was 100 nm, which is close to that of CdS. The crystallite size is decreased with the increase of film thickness. The optical transmission analysis shows that the energy gap for the sample with the highest thickness has also increased and is very close to 2.7 eV. The photo decay is also studied as a function of ZnSe film thickness.

  9. Study on MBE CdTe layer on 3 inch silicon substrate%3英寸CdTe/Si复合衬底外延技术研究

    Institute of Scientific and Technical Information of China (English)

    周立庆; 刘铭; 巩锋; 董瑞清; 折伟林; 常米

    2011-01-01

    报道了采用分子束外延法,在3 in硅衬底上通过As钝化、ZnTe缓冲层生长、CdTe生长、周期性退火等工艺进行CdTe/Si复合衬底制备技术研究情况,采用光学显微镜、X射线高分辨衍射仪、原子力显微镜、红外傅里叶光谱仪和湿化学腐蚀等手段对碲化镉薄膜进行了表征,测试分析结果表明碲化镉薄膜的晶向得到了较好的控制,孪晶得到了抑制,且具有较好晶体结构质量和均匀性.%CdTe(211 )B films were grown by molecular beam epitaxy on As-passivated nominal three -inch Si( 211 )wafer using thin interfacial ZnTe (211 )B buffer layer,and in-situ cyclic annealing has been used during CdTe deposition to improved crystal quality.The CdTe films were characterized with Optical microscopy, X-ray diffraction, AFM,FTIR and wet chemical defect etching.The results indicate that the CdTe(112) B films has good crystal quality, excellent uniformity over three-inch area,twin-free and the crystalline orientation is controlled.

  10. [The impact of ZnS/CdS composite window layer on the quantun efficiency of CdTe solar cell in short wavelength].

    Science.gov (United States)

    Zhang, Li-xiang; Feng, Liang-huan; Wang, Wen-wu; Xu, Hang; Wu, Li-li; Zhang, Jing-quan; Li, Wei; Zeng, Guang-gen

    2015-02-01

    ZnS/CdS composite window layer was prepared by magnetron sputtering method and then applied to CdTe solar cell. The morphology and structure of films were measured. The data of I-V in light and the quantum efficiency of CdTe solar cells with different window layers were also measured. The effect of ZnS films prepared in different conditions on the performance of CdTe solar cells was researched. The effects of both CdS thickness and ZnS/CdS composite layer on the transmission in short wavelength were studied. Particularly, the quantum efficiency of CdTe solar cells with ZnS/CdS window layer was measured. The results show as follows. With the thickness of CdS window layer reducing from 100 to 50 nm, the transmission increase 18.3% averagely in short wavelength and the quantum efficiency of CdTe solar cells increase 27.6% averagely. The grain size of ZnS prepared in 250 degrees C is smaller than prepared at room temperature. The performance of CdTe solar cells with ZnS/CdS window layer is much better if ZnS deposited at 250 degrees C. This indicates grain size has some effect on the electron transportation. When the CdS holds the same thickness, the transmission of ZnS/CdS window layer was improved about 2% in short wavelength compared with CdS window layer. The quantum efficiency of CdTe solar cells with ZnS/CdS window layer was also improved about 2% in short wavelength compared with that based on CdS window layer. These indicate ZnS/CdS composite window layer can increase the photon transmission in short wavelength so that more photons can be absorbed by the absorbent layer of CdTe solar cells.

  11. Magnetic and Structural Properties in Co/Cu/Co Sandwiches with Ni and Cr Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented polycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.

  12. Buffer layers on rolled nickel or copper as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  13. Doped Y.sub.2O.sub.3 buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2007-08-21

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  14. Spectroscopic study on the doping of polycrystalline CdTe layers for solar cells; Spektroskopische Untersuchungen zur Dotierung von polykristallinen CdTe-Schichten fuer Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Christian

    2011-11-29

    First in the present thesis the fundamental properties of CdTe are described. In the following it is discussed, how a CdTe solar cell is generally constructed, which specialities are to be regarded, and how an improvement of the actually reachable data of such a solar cell in view of the efficiency can be reached fundamentally and in then practical realization. In the third chapter the physical foundations of the most important methods are discussed, which are applied in the framework of this thesis for the analysis of the CdTe layers. The fourth chapter describes the details of the experiments of this thesis. The fifth chapter deals with the analysis of the photoluminescence of CdTe layers. Special attention is put on the analysis of the excitonic luminescence. The sixth chapter treats the implantation of CdTe layers with phosphor. The influence of phosphorus as dopant on the PL spectra of CdTe and the correponding characteristics of implanted solar cells are presented. Also the influence of radiation damages as consequence of the ion implantation is studied in this chapter by means of the analysis of differently thick absorber layers. In the seventh chapter finally a new procedure for the fabrication of solar cells on the base of CdTe as absorber material is introduced, which shall make possible to change the stoichiometry of cadmium mand tellurium specifically and to present additionally a suited material, in order to form the doping of CdTE a solar-cell material variably. The fundamental properties of the new facility are experimentally determined, and first solar cells are fabricated with this facility and analyzed. Also an in-situ doping with phosphorus is thereby performed and the result studied.

  15. Enhanced surface patterning of chalcogenide glass via imprinting process using a buffer layer

    Science.gov (United States)

    Jin, Byeong Kyou; Choi, Duk-Yong; Chung, Woon Jin; Choi, Yong Gyu

    2017-09-01

    In an effort to enhance transcriptability of quasi-three-dimensional patterns present in silicon stamp onto the surface of 'bulk' chalcogenide glass, a buffer layer was introduced during the replication process via imprinting. Dissimilar patterns with diverse depths along the surface normal direction were imprinted with or without the buffer layer, and the resulting patterns on the glass surface were compared with regard to the transcription quality in both the lateral and vertical directions. After assessing the processing conditions appropriate for imprinting bulk As2S3 glass especially in terms of temperature and duration, candidate materials suitable for the buffer layer were screened: Commercially available polydimethylsiloxane was then chosen, and impact of this buffer layer was elucidated. The imprinted patterns turned out to become more uniform over large surface areas when the buffer layer was inserted. This finding confirmed that the use of buffer layer conspicuously enhanced the transcriptability of imprinting process for bulk chalcogenide glass.

  16. Influence of Si buffer layer on the giant magnetoresistance effect in Co/Cu/Co sandwiches

    Institute of Scientific and Technical Information of China (English)

    李冠雄; 沈鸿烈; 沈勤我; 李铁; 邹世昌

    2000-01-01

    The Co/Cu/Co sandwiches with a semiconductor Si buffer layer were prepared by high vacuum electron-beam evaporation. The influence of the Si buffer layer with different thickness on the giant magnetoresistance (GMR) effect in the Co/Cu/Co sandwiches was investigated. It was found that the GMR showed an obvious anisotropy when the thickness of Si buffer layer was larger than or equal to 0.9 nm, and that the GMR was basically isotropic with an Si buffer layer thinner than 0.9 nm. The anisotropic behavior of GMR can be ascribed to the in-plane magnetic anisotropy in the sandwiches. Due to the interdiffusion at the Si buffer/Co interface, a Co2Si interface layer with a good (301) texture formed and induced the in-plane magnetic anisotropy in the sandwiches. The dependence of the crystalline texture of the sandwiches on the thickness of Si buffer layer was also studied.

  17. New buffer layer materials for CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz (Germany); Kieven, David [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2009-07-01

    The compound semiconductor CuIn{sub x}Ga{sub (1-x)}Se{sub 2} (CIGSE) are used as absorber material in thin-film photovoltaic cells. In conventional CIGSE based solar cells a thin CdS layer (buffer) significantly improves the photovoltaic performance and efficiencies up to 19.9% have been realized. Since Cd is a toxic heavy metal there is a demand for suitable substitute materials. The first requirements for these materials are an adequate band gap, a crystal structure compatible to that of CIGSE, and an n-type conductivity. An interesting class of materials are half-Heuslers, which are ternary compounds with a C1b MgAgAs structure. For many half-Heusler compounds the crystal structure matches well with the layer of the tetragonal CIGS unit cell. Using ab initio calculations based on B3LYP hybrid functionals, we have studied electronic properties of the most promising half-Heusler materials. Our results affirm the band gap rule for 8-electron half- Heuslers presented.

  18. HV/CVD Grown Relaxed SiGe Buffer Layers for SiGe HMOSFETs

    Institute of Scientific and Technical Information of China (English)

    黄文韬; 罗广礼; 史进; 邓宁; 陈培毅; 钱佩信

    2003-01-01

    High-vacuum/chemical-vapor deposition (HV/CVD) system was used to grow relaxed SiGe buffer layers on Si substrates. Several methods were then used to analyze the quality of the SiGe films. X-ray diffraction and Raman spectroscopy showed that the upper layer was almost fully relaxed. Second ion mass spectroscopy showed that the Ge compositions were step-graded. Transmission electron microscopy showed that the misfit dislocations were restrained to the graded SiGe layers. Tests of the electrical properties of tensile-strained Si on relaxed SiGe buffer layers showed that their transconductances were higher than that of Si devices. These results verify the high quality of the relaxed SiGe buffer layer. The calculated critical layer thicknesses of the graded Si1-xGex layer on Si substrate and a Si layer on the relaxed SiGe buffer layer agree well with experimental results.

  19. Superconducting composite with multilayer patterns and multiple buffer layers

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  20. Misfit stress relaxation mechanism in CdTe(100) and CdTe/ZnTe(100) on a GaAs(100) highly mismatched heteroepitaxial layer

    Science.gov (United States)

    Nishino, H.; Sugiyama, I.; Nishijima, Y.

    1996-09-01

    We studied the misfit stress in CdTe(100)/GaAs(100). In general, this highly mismatched system initially forms a ``coincidence interface,'' where seven CdTe lattices match with eight GaAs lattices. In this system, the epilayer is elastically strained by the mismatch remaining between both groups of lattices. Afterward, the misfit stress is gradually relaxed with the generation of misfit dislocations. In this work, we derived a new model to describe this misfit relaxation mechanism and verified it with experimental observations. As introducing the effects of the interface modification, we found that the simple force balance between the substrate and epilayer governed the misfit stress. We assume that the relaxation process during growth is similar to that in CdTe/CdZnTe, since the residual misfit was fairly small. By extending the stress relaxation model of CdTe/GaAs, it is possible to explain the strain in CdTe/ZnTe/GaAs, which contains two highly mismatched interfaces. The threading dislocations in HgCdTe, derived from the CdTe buffer, decreased with increasing CdTe thickness. Assuming that the misfit dislocations are generated by bending threading dislocations, we could explain the dislocation reduction by utilizing the above misfit stress relaxation model. In spite of the extremely large mismatch, the structural quality of CdTe(100)/GaAs(100) was improved due to the relatively small strain remaining in the coincidence interface.

  1. Electroplating of CdTe Thin Films from Cadmium Sulphate Precursor and Comparison of Layers Grown by 3-Electrode and 2-Electrode Systems

    Directory of Open Access Journals (Sweden)

    Imyhamy M. Dharmadasa

    2017-01-01

    Full Text Available Electrodeposition of CdTe thin films was carried out from the late 1970s using the cadmium sulphate precursor. The solar energy group at Sheffield Hallam University has carried out a comprehensive study of CdTe thin films electroplated using cadmium sulfate, cadmium nitrate and cadmium chloride precursors, in order to select the best electrolyte. Some of these results have been published elsewhere, and this manuscript presents the summary of the results obtained on CdTe layers grown from cadmium sulphate precursor. In addition, this research program has been exploring the ways of eliminating the reference electrode, since this is a possible source of detrimental impurities, such as K+ and Ag+ for CdS/CdTe solar cells. This paper compares the results obtained from CdTe layers grown by three-electrode (3E and two-electrode (2E systems for their material properties and performance in CdS/CdTe devices. Thin films were characterized using a wide range of analytical techniques for their structural, morphological, optical and electrical properties. These layers have also been used in device structures; glass/FTO/CdS/CdTe/Au and CdTe from both methods have produced solar cells to date with efficiencies in the region of 5%–13%. Comprehensive work carried out to date produced comparable and superior devices fabricated from materials grown using 2E system.

  2. Buffer layer investigations on MFIS capacitors consisting of ferroelectric poly[vinylidene fluoride trifluoroethylene

    Science.gov (United States)

    Henkel, K.; Seime, B.; Paloumpa, I.; Müller, K.; Schmeißer, D.

    2010-02-01

    In this paper we present capacitance-voltage (CV) measurements on metal-ferroelectric-insulator-semiconductor (MFIS) capacitors with poly[vinylidene fluoride trifluoroethylene] (P[VDF/TrFE] as ferroelectric layer and SiO2, Al2O3 and HfO2 as buffering insulator layer. In order to discuss our data in a quantitative manner we perform fits to the data based on a model proposed by Miller and McWorther. The improvement of the polarization values and subsequently its effect on the hysteresis of the CV curve by the successive shrinking of the buffer layer thickness and the following choice of a high-k buffer material is demonstrated. Our data underline that a saturated polarization of P[VDF/TrFE] cannot be controlled with a SiO2 buffer layer and the insertion of a high-k buffer layer is essential for further improvements of the characteristics of MFIS stacks.

  3. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    Science.gov (United States)

    Yunpeng, Jia; Hongyuan, Su; Rui, Jin; Dongqing, Hu; Yu, Wu

    2016-02-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. Project supported by the National Natural Science Foundation of China (No. 61176071), the Doctoral Fund of Ministry of Education of China (No. 20111103120016), and the Science and Technology Program of State Grid Corporation of China (No. SGRI-WD-71-13-006).

  4. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells

    Science.gov (United States)

    Paudel, Naba R.; Grice, Corey R.; Xiao, Chuanxiao; Yan, Yanfa

    2014-07-01

    High efficiency CdTe solar cells typically use oxygenated CdS (CdS:O) window layers. We synthesize CdS:O window layers at room temperature (RT) and 270 °C using reactive sputtering. The band gaps of CdS:O layers deposited at RT increase when O2/(O2 + Ar) ratios in the deposition chamber increase. On the other hand, the band gaps of CdS:O layers deposited at 270 °C decrease as the O2/(O2 + Ar) ratios increase. Interestingly, however, our high temperature closed-space sublimation (CSS) processed CdTe solar cells using CdS:O window layers deposited at RT and 270 °C exhibit very similar cell performance, including similar short-circuit current densities. To understand the underlying reasons, CdS:O thin films deposited at RT and 270 °C are annealed at temperatures that simulate the CSS process of CdTe deposition. X-ray diffraction, atomic force microscopy, and UV-visible light absorption spectroscopy characterization of the annealed films reveals that the CdS:O films deposited at RT undergo grain regrowth and/or crystallization and exhibit reduced band gaps after the annealing. Our results suggest that CdS:O thin films deposited at RT and 270 °C should exhibit similar optical properties after the deposition of CdTe layers, explaining the similar cell performance.

  5. CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates

    Science.gov (United States)

    He, Zhao-Yu; Campbell, Calli M.; Lassise, Maxwell B.; Lin, Zhi-Yuan; Becker, Jacob J.; Zhao, Yuan; Boccard, Mathieu; Holman, Zachary; Zhang, Yong-Hang

    2016-09-01

    We have demonstrated an 820 nm cutoff CdTe nBn photodetector with ZnTe barrier layer grown on an InSb substrate. At room temperature, under a bias of -0.1 V, the photodetector shows Johnson and shot noise limited specific detectivity (D*) of 3 × 1013 cm Hz1/2/W at a wavelength of 800 nm and 2 × 1012 cm Hz1/2/W at 200 nm. The D* is optimized by using a top contact design of ITO/undoped-CdTe. This device not only possesses nBn advantageous characteristics, such as generation-recombination dark current suppression and voltage-bias-addressed two-color photodetection, but also offers features including responsivity enhancements by deep-depletion and by using a heterostructure ZnTe barrier layer. In addition, this device provides a platform to study nBn device physics at room temperature, which will help us to understand more sophisticated properties of infrared nBn photodetectors that may possess a large band-to-band tunneling current at a high voltage bias, because this current is greatly suppressed in the large-bandgap CdTe nBn photodetector.

  6. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    OpenAIRE

    2012-01-01

    The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis o...

  7. Improvement of the crystallinity of CdTe epitaxial film grown on Si substrates by molecular beam epitaxy using the two-step growth method

    Energy Technology Data Exchange (ETDEWEB)

    Han, M.S.; Ryu, Y.S.; Song, B.K.; Kang, T.W. [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Phys.; Kim, T.W. [Department of Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of)

    1997-01-05

    Molecular beam epitaxy growth of CdTe epitaxial layers on Si (100) substrates using the two-step growth method was performed to produce high-quality CdTe thin layers. The reflection high-energy electron diffraction patterns were streaky with clear Kikuchi lines, which is direct evidence for layer-by-layer two-dimensional growth of CdTe on Si. From the X-ray diffraction analysis, the grown layer was found to be a CdTe (111) epitaxial film, regardless of the film thickness. Photoluminescence (PL) measurements at 12 K showed that the defect density of the CdTe film grown on Si using two-step growth decreased in comparison with that grown using direct growth. The bound exciton appearing in the PL measurements shifted to the low energy side as the thickness of the CdTe increased. When the CdTe thickness increased from 1 to 1.8 {mu}m, the peak position of the bound exciton shifted by 7.2 meV, and the stress obtained from the exciton peak shift was -12.405 kbar. These results indicate that high quality CdTe films grown by two-step growth hold promise for applications as buffer layers for the subsequent growth of Hg{sub x}Cd{sub 1-x}Te. (orig.) 16 refs.

  8. Band Gap Opening Induced by the Structural Periodicity in Epitaxial Graphene Buffer Layer.

    Science.gov (United States)

    N Nair, Maya; Palacio, Irene; Celis, Arlensiú; Zobelli, Alberto; Gloter, Alexandre; Kubsky, Stefan; Turmaud, Jean-Philippe; Conrad, Matthew; Berger, Claire; de Heer, Walter; Conrad, Edward H; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-04-12

    The epitaxial graphene buffer layer on the Si face of hexagonal SiC shows a promising band gap, of which the precise origin remains to be understood. In this work, we correlate the electronic to the atomic structure of the buffer layer by combining angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and high-resolution scanning transmission electron microscopy (HR-STEM). We show that the band structure in the buffer has an electronic periodicity related to the structural periodicity observed in STM images and published X-ray diffraction. Our HR-STEM measurements show the bonding of the buffer layer to the SiC at specific locations separated by 1.5 nm. This is consistent with the quasi 6 × 6 periodic corrugation observed in the STM images. The distance between buffer C and SiC is 1.9 Å in the bonded regions and up to 2.8 Å in the decoupled regions, corresponding to a 0.9 Å corrugation of the buffer layer. The decoupled regions are sp(2) hybridized. Density functional tight binding (DFTB) calculations demonstrate the presence of a gap at the Dirac point everywhere in the buffer layer, even in the decoupled regions where the buffer layer has an atomic structure close to that of graphene. The surface periodicity also promotes band in the superperiodic Brillouin zone edges as seen by photoemission and confirmed by our calculations.

  9. A Novel Buffer Layer of Alq3 in Organic Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Feng; DENG Zhen-Bo; LIANG Chun-Jun; LIN Peng; ZHANG Meng-Xin; XU Deng-Hui

    2004-01-01

    @@ Inserting the Alq3 layer in the ITO/NPB interface as the buffer layer can improve the organic electroluminescent devices. The current density efficiency and power efficiency of the device with the Alq3 buffer layer rises to 6.5 cd/A and 1.21 m/W at the current density of 120 mA/cm2, respectively. The improvement is mostly attributed to the balance of the hole and the electron injections.

  10. Microstructures of YBa2Cu3Oy Layers Deposited on Conductive Layer-Buffered Metal Tapes

    Science.gov (United States)

    Ichinose, Ataru; Hashimoto, Masayuki; Horii, Shigeru; Doi, Toshiya

    REBa2Cu3Oy (REBCO; RE: rare-earth elements)-coated conductors (CCs) have high potential for use in superconducting devices. In particular, REBCO CCs are useful for superconducting devices working at relatively high temperatures near 77 K. The important issues in their applications are high performance, reliability and low cost. To date, sufficient performance for some applications has almost been achieved by considerable efforts. The establishment of the reliability of superconducting devices is under way at present. The issue of low cost must be resolved to realize the application of superconducting devices in the near future. Therefore, we have attempted several ways to reduce the cost of REBCO CCs. The coated conductors using a Nb-doped SrTiO3 buffer layer and Ni-plated Cu and stainless steel laminate metal tapes have recently been developed to eliminate the use of electric stabilization layers of Cu and Ag, which are expected to reduce the material cost. Good superconducting properties are obtained at 77 K. The critical current density (JC) at 77 K under a magnetic self-field is determined to be more than 2x106 A/cm2. The microstructures of the CCs are analyzed by transmission electron microscopy to obtain a much higher quality. By microscopic structure analysis, an overgrowth of the buffer layer is observed at a grain boundary of the metal substrate, which is one of the reasons for the high JC.

  11. Simultaneous shunt protection and back contact formation for CdTe solar cells with single wall carbon nanotube layers

    Science.gov (United States)

    Phillips, Adam B.; Khanal, Rajendra R.; Song, Zhaoning; Watthage, Suneth C.; Kormanyos, Kenneth R.; Heben, Michael J.

    2015-12-01

    Thin film photovoltaic (PV) devices and modules prepared by commercial processes can be severely compromised by through-device low resistance electrical pathways. The defects can be due to thin or missing semiconductor material, metal diffusion along grain boundaries, or areas containing diodes with low turn-on potentials. We report the use of single wall carbon nanotube (SWCNT) layers to enable both protection against these defects and back contact formation for CdTe PV devices. Samples prepared with a SWCNT back contact exhibited good efficiency and did not require shunt protection, while devices prepared without shunt protection using a standard metal back contact performed poorly. We describe the mechanism by which the SWCNT layer functions. In addition to avoiding the need for shunt protection by other means, the SWCNT film also provides a route to higher short circuit currents.

  12. Effects of Anodic Buffer Layer in Top-Illuminated Organic Solar Cell with Silver Electrodes

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2013-01-01

    Full Text Available An efficient ITO-free top-illuminated organic photovoltaic (TOPV based on small molecular planar heterojunction was achieved by spinning a buffer layer of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS, on the Ag-AgOx anode. The PEDOT:PSS thin film separates the active layer far from the Ag anode to prevent metal quenching and redistributes the strong internal optical field toward dissociated interface. The thickness and morphology of this anodic buffer layer are the key factors in determining device performances. The uniform buffer layer contributes a large short-circuit current and open-circuit voltage, benefiting the final power conversion efficiency (PCE. The TOPV device with an optimal PEDOT:PSS thickness of about 30 nm on Ag-AgOx anode exhibits the maximum PCE of 1.49%. It appreciates a 1.37-fold enhancement in PCE over that of TOPV device without buffer layer.

  13. Effects of the ZnO buffer layer and Al proportion on AZO film properties

    Institute of Scientific and Technical Information of China (English)

    SUI Cheng-hua; LIU Bin; XU Tian-ning; YAN Bo; WEI Gao-yao

    2012-01-01

    To evaluate the influence of the ZnO buffer layer and AI proportion on the properties ofZnO:AI (AZO)/ZnO bi-layer films,a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporation.The X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness.The electrical properties of the films are investigated.The carrier concentration and Hall mobility both increase with the increase of buffer layer thickness.However,the resistivity reaches the lowest at about 50 nm-thick buffer layer.The lowest resistivity and the maximum Hall mobility are both obtained at 1 wt% AI concentration.But the optical transmittance of all the films is greater than 80% regardless of the buffer layer thickness with AI concentration lower than 5 wt% in the visible region.

  14. Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2002-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  15. MgO buffer layers on rolled nickel or copper as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2001-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  16. Fluoroscopic x-ray demonstrator using a CdTe polycrystalline layer coupled to a CMOS readout chip

    Science.gov (United States)

    Arques, M.; Renet, S.; Brambilla, A.; Feuillet, G.; Gasse, A.; Billon-Pierron, N.; Jolliot, M.; Mathieu, L.; Rohr, P.

    2010-04-01

    Dynamic X-ray imagers require large surface, fast and highly sensitive X-ray absorbers and dedicated readout electronics. Monocrystalline photoconductors offer the sensitivity, speed, and MTF performances. Polycristalline photoconductors offer the large surface at a moderate cost. The challenge for them is to maintain the first performances at a compatible level with the medical applications requirements. This work has been focused on polycristalline CdTe grown by Close Space Sublimation (CSS) technique. This technique offers the possibility to grow large layers with a high material evaporation yield. This paper presents the results obtained with an image demonstrator using 350μm thick CdTe_css layers coupled to a CMOS readout circuit with Indium bumping. The present demonstrator has 200 x 200 pixels, with a pixel pitch of 75μm ×75μm. A total image surface of 15mm × 15mm has then been obtained. The ASIC works in an integration mode, i.e. each pixel accumulates the charges coming from the CdTe layer on a capacitor, converting them to a voltage. Single images as well as video sequences have been obtained. X-ray performance at 16 frames per second rate is measured. In particular a readout noise of 0.5 X ray, an MTF of 50% at 4 lp/mm and a DQE of 20% at 4lp/mm and 600 nGy are obtained. Although present demonstrator surface is moderate, it demonstrates that high performance can be expected from this assembly concept and its interest for medical applications.

  17. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    Science.gov (United States)

    Ahn, Kwangseok; Kim, Jong Beom; Kim, Hyo Jung; Lee, Hyun Hwi; Lee, Dong Ryeol

    2015-01-01

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 -2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  18. Pulsed Laser Deposition of YBCO With Yttrium Oxide Buffer Layers (Postprint)

    Science.gov (United States)

    2012-02-01

    AFRL-RZ-WP-TP-2012-0092 PULSED LASER DEPOSITION OF YBCO WITH YTTRIUM OXIDE BUFFER LAYERS (POSTPRINT) Paul N. Barnes, Timothy J. Haugan...Paper Postprint 01 January 2002 – 01 January 2004 4. TITLE AND SUBTITLE PULSED LASER DEPOSITION OF YBCO WITH YTTRIUM OXIDE BUFFER LAYERS (POSTPRINT...Textured metallic substrate based HTS coated conductors with the YBCO /CeO2/YSZ/CeO2/Ni architecture have already been shown to exhibit high current

  19. Layer-by-layer growth of high-optical-quality ZnO film on atomically smooth and lattice relaxed ZnO buffer layer

    OpenAIRE

    2003-01-01

    The growth mode of ZnO thin films can be well regulated in a molecular layer-by-layer growth by employing a ZnO buffer layer deposited on a lattice-matched ScAlMgO4 substrate and annealed at high temperature. The annealed buffer layer has atomically flat surface and relaxed (strain-free) crystal structure. The intensity oscillation of reflection high-energy electron diffraction persisted for more than a 100-nm film deposition under optimized conditions on such a buffer layer. Thus prepared th...

  20. Morphology and wettability of ZnO nanostructures prepared by hydrothermal method on various buffer layers

    Science.gov (United States)

    Li, Bao-jia; Huang, Li-jing; Zhou, Ming; Ren, Nai-fei

    2013-12-01

    Zinc oxide (ZnO) nanostructures were prepared by hydrothermal method on glass substrates with various buffer layers: Ag, Al, aluminum-doped zinc oxide (AZO) and tin-doped indium oxide (ITO). The structure, morphology and wettability of the ZnO nanostructured surfaces were investigated by using X-ray diffraction, scanning electron microscopy and water contact angle (WCA) analysis methods, respectively. All the nanostructures grown on glass with various buffer layers exhibited strong growth orientation along the (1 0 1) plane. The nature of the buffer layer was found to have remarkable effect on the morphology and wettability of the ZnO nanostructures. Whether the buffer layers were hydrophilic or low hydrophobic, all the ZnO nanostructures grown on the various buffer layers showed high hydrophobic property, and that grown on the AZO buffer layer even exhibited superhydrophobicity with a WCA of 151.1°. This work may provide a scientific basis for self-cleaning ZnO-based optoelectronic device applications.

  1. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    Science.gov (United States)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  2. Multidirectional channeling analysis of epitaxial CdTe layers using an automatic RBS/channeling system

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Applied Physics Div.

    1993-12-31

    Rutherford Backscattering Spectrometry (RBS) is an ion beam analysis technique used in many fields. The high depth and mass resolution of RBS make this technique very useful in semiconductor material analysis [1]. The use of ion channeling in combination with RBS creates a powerful technique which can provide information about crystal quality and structure in addition to mass and depth resolution [2]. The presence of crystal defects such as interstitial atoms, dislocations or dislocation loops can be detected and profiled [3,4]. Semiconductor materials such as CdTe, HgTe and Hg+xCd{sub 1-x}Te generate considerable interest due to applications as infrared detectors in many technological areas. The present paper demonstrates how automatic RBS and multidirectional channeling analysis can be used to evaluate crystal quality and near surface defects. 6 refs., 1 fig.

  3. Perpendicular magnetization of CoFeB on top of an amorphous buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongseok; Jung, K.Y. [Department of Display and Semiconductor Physics, Korea University, Sejong 339-700 (Korea, Republic of); Joo, Sungjung [Department of Display and Semiconductor Physics, Korea University, Sejong 339-700 (Korea, Republic of); Center for Electricity and Magnetism, Korea Research Institute of Standard and Science, Daejeon 305-340 (Korea, Republic of); Jang, Youngjae; Hong, Jinki [Department of Display and Semiconductor Physics, Korea University, Sejong 339-700 (Korea, Republic of); Lee, B.C.; You, C.Y.; Cho, J.H. [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of); Kim, M.Y. [Department of Nano Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Rhie, K., E-mail: krhie@korea.ac.kr [Department of Display and Semiconductor Physics, Korea University, Sejong 339-700 (Korea, Republic of)

    2015-01-15

    Perpendicular magnetic anisotropy was observed in sputtered FeZr/CoFeB/MgO multilayers. A thin paramagnetic amorphous FeZr layer was used as a buffer layer and perpendicular anisotropy was obtained by annealing the samples without an external magnetic field. The critical CoFeB thickness for perpendicular anisotropy was 1.8 nm; the anisotropy changes from out-of-plane to in-plane as the CoFeB thickness increases beyond this point. Perpendicular anisotropy was also enhanced when a Ta layer was capped on top of the MgO layer. The amorphous buffer provided better perpendicular anisotropy than previously reported Ta buffer, and it may be applied to perpendicular magnetization MRAM devices where good uniformity of tunnel junctions is required. - Highlights: • Perpendicular magnetic anisotropy (PMA) of buffer/CoFeB/MgO was investigated. • The PMA was enhanced by using an amorphous buffer. • The PMA of the CoFeB layer was maintained up to 1.8 nm. • Ta capping layer further improved the PMA by 40%.

  4. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paudel, Naba R.; Grice, Corey R.; Xiao, Chuanxiao; Yan, Yanfa [Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606 (United States)

    2014-07-28

    High efficiency CdTe solar cells typically use oxygenated CdS (CdS:O) window layers. We synthesize CdS:O window layers at room temperature (RT) and 270 °C using reactive sputtering. The band gaps of CdS:O layers deposited at RT increase when O{sub 2}/(O{sub 2} + Ar) ratios in the deposition chamber increase. On the other hand, the band gaps of CdS:O layers deposited at 270 °C decrease as the O{sub 2}/(O{sub 2} + Ar) ratios increase. Interestingly, however, our high temperature closed-space sublimation (CSS) processed CdTe solar cells using CdS:O window layers deposited at RT and 270 °C exhibit very similar cell performance, including similar short-circuit current densities. To understand the underlying reasons, CdS:O thin films deposited at RT and 270 °C are annealed at temperatures that simulate the CSS process of CdTe deposition. X-ray diffraction, atomic force microscopy, and UV-visible light absorption spectroscopy characterization of the annealed films reveals that the CdS:O films deposited at RT undergo grain regrowth and/or crystallization and exhibit reduced band gaps after the annealing. Our results suggest that CdS:O thin films deposited at RT and 270 °C should exhibit similar optical properties after the deposition of CdTe layers, explaining the similar cell performance.

  5. Dependence of Magnetic Properties of Co/Pt Multilayers on Deposition Temperature of Pt Buffer Layers

    Science.gov (United States)

    Shiomi, Shigeru; Nishimura, Tomotaka; Kobayashi, Tadashi; Masuda, Morio

    1993-04-01

    A 15-nm-thick Pt buffer layer was deposited on a glass slide at temperature Ts(Ptbuf) ranging from 30 to 300°C by e-gun evaporation. Following the cooling in vacuum to ambient temperature, Co and Pt layers have been alternately deposited on it. Very large perpendicular anisotropy and coercivity have been obtained at Ts(Ptbuf) higher than 200°C. The (111) preferred orientation of the Co/Pt multilayer as well as the Pt buffer layer became more pronounced with elevating Ts(Ptbuf), to which the enhancement of perpendicular anisotropy with elevating Ts(Ptbuf) might be ascribable.

  6. Perpendicular magnetization of CoFeB on top of an amorphous buffer layer

    Science.gov (United States)

    Kim, Dongseok; Jung, K. Y.; Joo, Sungjung; Jang, Youngjae; Hong, Jinki; Lee, B. C.; You, C. Y.; Cho, J. H.; Kim, M. Y.; Rhie, K.

    2015-01-01

    Perpendicular magnetic anisotropy was observed in sputtered FeZr/CoFeB/MgO multilayers. A thin paramagnetic amorphous FeZr layer was used as a buffer layer and perpendicular anisotropy was obtained by annealing the samples without an external magnetic field. The critical CoFeB thickness for perpendicular anisotropy was 1.8 nm; the anisotropy changes from out-of-plane to in-plane as the CoFeB thickness increases beyond this point. Perpendicular anisotropy was also enhanced when a Ta layer was capped on top of the MgO layer. The amorphous buffer provided better perpendicular anisotropy than previously reported Ta buffer, and it may be applied to perpendicular magnetization MRAM devices where good uniformity of tunnel junctions is required.

  7. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer

    Science.gov (United States)

    Tsai, Meng-Yen; Cheng, Wen-Hui; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-06-01

    In this study, a low-temperature solution-processed zinc tin oxide (ZTO) films are successfully utilized as the cathode buffer layer in the inverted organic P3HT:PCBM bulk heterojunction solar cells. ZTO film cathode buffer layer with an appropriate Sn-doping concentration outperforms the zinc oxide (ZnO) film with an improved power conversion efficiency (1.96% (ZTO film) vs. 1.56% (ZnO film)). Furthermore, ZTO nanoparticles (NPs) are also synthesized via low-temperature solution route and the device with ZTO NPs buffer layer exhibits a significant improvement in device performance to reach a PCE of 2.60%. The crystallinity of the cathode buffer layer plays an influential factor in the performance. From impedance spectroscopy analysis, a correlation between short circuit current (Jsc), carrier life time (τavg) and, thus, PCE is observed. The interplay between composition and crystallinity of the cathode buffer layers is discussed to find their influences on the solar cell performance.

  8. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    Science.gov (United States)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-07

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  9. A Comparison of GaN Epilayers with Multiple Buffer Layers and with a Single Buffer Layer Grown on Si(111) Studied by HRXRD and RBS/Channeling

    Institute of Scientific and Technical Information of China (English)

    DING Zhi-Bo; WANG Kun; YAO Shu-De

    2008-01-01

    @@ Two hexagonal GaN epilayers (samples A and B) with multiple buffer layers and single buffer layer are grown on Si (111) by metal-organic vapour phase epitaxy (MOVPE).From the results of Rutherford backscattering (RBS)/channeling and high resolution x-ray diffraction (HRXRD),we obtain the lattice constant (a and c) of two GaN epilayers (aA = 0.3190 nm,cA = 0.5184 nm and aB = 0.3192 nm,cB = 0.5179 nm),the crystal quality of two GaN epilayers ( XminA = 4.87%,XminB=7.35% along axis) and the tetragonal distortion eT of the two samples along depth (sample A is nearly fully relaxed,sample B is not relaxed enough).

  10. Evaluation of methods for application of epitaxial layers of superconductor and buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, based on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an

  11. Amorphous carbon buffer layers for separating free gallium nitride films

    Science.gov (United States)

    Altakhov, A. S.; Gorbunov, R. I.; Kasharina, L. A.; Latyshev, F. E.; Tarala, V. A.; Shreter, Yu. G.

    2016-11-01

    The possibility of using amorphous diamond-like carbon (DLC) films for self-separation of gallium nitride (GaN) layers grown by hydride vapor-phase epitaxy has been analyzed. DLC films have been synthesized by plasma-enhanced chemical vapor deposition under low pressure on sapphire (Al2O3) substrates with a (0001) crystallographic orientation. The samples have been studied by the methods of Raman scattering and X-ray diffraction analysis. It is shown that thin DLC films affect only slightly the processes of nucleation and growth of gallium nitride films. Notably, the strength of the "GaN film-Al2O3" substrate interface decreases, which facilitates separation of the GaN layers.

  12. Defect Reduction in Epitaxial Growth Using Superlattice Buffer Layers

    Science.gov (United States)

    1988-07-01

    Katsuyama, Y. J. Yang and S. M. Bedair, Electron Dev. Lett., vol. 8, p. 240, 1987. 0 -15 -" Journal of (ryOstal (io iih 77 (108(,) ,xQ 9i4 S9 North-I...layer facilitat the csea of Gaosu 3 (5% in H2) + 500 sccm of H , and ed cross-sectional thickness measurements. trimethylgallium (TMG) + 500 sccm of H

  13. Hafnium nitride buffer layers for growth of GaN on silicon

    Science.gov (United States)

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  14. Silver hollow optical fibers with acrylic silicone resin coating as buffer layer for sturdy structure

    Science.gov (United States)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2016-03-01

    For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.

  15. High efficiency CIGS and CIS cells with CVD ZnO buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, L.C.; Lei, W.; Addis, F.W. [Washington State Univ./Tri-Cities, Richland, WA (United States); Shafarman, W.N. [Univ. of Delaware, Newark, DE (United States). Inst. of Energy Conversion; Contreras, M.A.; Ramanathan, K. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper describes investigations of CIS and CIGS solar cells with ZnO buffer layers. These studies are a result of a team effort between investigators at Washington State University (WSU), the Institute of Energy Conversion (IEC) and the National Renewable Energy Laboratory (NREL). Cells with ZnO buffer layers were fabricated with both Siemens CIS and NREL CIGS substrates. An active area efficiency of 13.95% was achieved for a ZnO/CIGS cell. ZnO buffer layers are grown by reacting a zinc adduct with tetrahydrofuran using a two-step approach: growth of approximately 100 {angstrom} of ZnO at 250 C; and then growth of 500 to 700 {angstrom} of ZnO at 100 C. The high temperature step is necessary to achieve good cell performance. It appears that exposure of CIGS to hydrogen at 250 C may remove contaminants and/or passivate recombination centers on the surface and subsurface regions.

  16. Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    PAN Feng; QIAN Xian-Rui; HUANG Li-Zhen; WANG Hai-Bo; YAN Dong-Hang

    2011-01-01

    High-mobility vanadyl phthalocyanine (VOPc)/5,5″′-bis(4-fluorophenyl)-2,2′:5′,2″:5″,2″′-quaterthiophene (F2-P4T) thin-film transistors are demonstrated by employing a copper hexadecafluorophthalocyanine (F16 CuPc)/copper phthalocyanine (CuPc) heterojunction unit,which are fabricated at different substrate temperatures,as a buffer layer. The highest mobility of 4.08cm2/Vs is achieved using a F16CuPc/CuPc organic heterojunction buffer layer fabricated at high substrate temperature.Compared with the random small grain-like morphology of the room-temperature buffer layer,the high-temperature organic heterojunction presents a large-sized fiber-like film morphology,resulting in an enhanced conductivity.Thus the contact resistance of the transistor is significantly reduced and an obvious improvement in device mobility is obtained.

  17. Buffer layer between a planar optical concentrator and a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Manuel E. [Departamento de Ingeniería Matemática and CI" 2 MA, Universidad de Concepción, Concepción, Casilla 160-C (Chile); Barber, Greg D. [Penn State Institute of Energy and the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Faryad, Muhammad [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Monk, Peter B. [Department of Mathematical Sciences, University of Delaware, Newark, DE 19716 (United States); Mallouk, Thomas E. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  18. Effect of buffer layer and external stress on magnetic properties of flexible FeGa films

    Science.gov (United States)

    Zhang, Xiaoshan; Zhan, Qingfeng; Dai, Guohong; Liu, Yiwei; Zuo, Zhenghu; Yang, Huali; Chen, Bin; Li, Run-Wei

    2013-05-01

    We systematically investigated the effect of a Ta buffer layer and external stress on the magnetic properties of magnetostrictive Fe81Ga19 films deposited on flexible polyethylene terephthalate (PET) substrates. The Ta buffer layers could effectively smoothen the rough surface of PET. As a result, the FeGa films grown on Ta buffer layers exhibit a weaker uniaxial magnetic anisotropy and lower coercivity, as compared to those films directly grown on PET substrates. By inward and outward bending the FeGa/Ta/PET samples, external in-plane compressive and tensile stresses were applied to the magnetic films. Due to the inverse magnetostrictive effect of FeGa, both the coercivity and squareness of hysteresis loops for FeGa/Ta films could be well tuned under various strains.

  19. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    Science.gov (United States)

    Srinivas, S.; Pinto, R.; Pai, S. P.; Dsousa, D. P.; Apte, P. R.; Kumar, D.; Purandare, S. C.; Bhatnagar, A. K.

    1995-01-01

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  20. Epitaxial Growth of Hard Ferrimagnetic Mn3Ge Film on Rhodium Buffer Layer

    Directory of Open Access Journals (Sweden)

    Atsushi Sugihara

    2015-06-01

    Full Text Available Mn\\(_3\\Ge has a tetragonal Heusler-like D0\\(_{22}\\ crystal structure, exhibiting a large uniaxial magnetic anisotropy and small saturation magnetization due to its ferrimagnetic spin structure; thus, it is a hard ferrimagnet. In this report, epitaxial growth of a Mn\\(_3\\Ge film on a Rh buffer layer was investigated for comparison with that of a film on a Cr buffer layer in terms of the lattice mismatch between Mn\\(_3\\Ge and the buffer layer. The film grown on Rh had much better crystalline quality than that grown on Cr, which can be attributed to the small lattice mismatch. Epitaxial films of Mn\\(_3\\Ge on Rh show somewhat small coercivity (\\(H_{\\rm c}\\ = 12.6 kOe and a large perpendicular magnetic anisotropy (\\(K_{\\rm u}\\ = 11.6 Merg/cm\\(^3\\, comparable to that of the film grown on Cr.

  1. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  2. Strain compensation in a semiconducting device structure using an intentionally mismatched uniform buffer layer

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2016-12-01

    The extent of strain relaxation in semiconducting device heterostructures has important implications in the design of high electron mobility transistors, light-emitting diodes, and laser diodes, in which the residual strain affects the device characteristics. In this work, we develop the theoretical framework for understanding strain compensation in a semiconductor device layer using a uniform buffer layer which can be intentionally mismatched to the material above. Specifically, we determined the critical condition for complete strain compensation in the device layer by intentionally introducing a compositional mismatch at the device-buffer interface. We present minimum energy calculations and show that for a given device layer with fixed mismatch and layer thickness, the buffer layer may be designed with the appropriate combination of thickness and mismatch such that the device layer will have zero residual strain in equilibrium. Such a structure can be referred to as a completely strain-compensated design. In the more general case, there may be partial strain compensation, and we give a simple physics-based Gaussian-type function describing the residual strain in the device layer. We have applied this general framework to In x Ga1-x As/GaAs (001) heterostructures for the purpose of illustration, but the work is applicable to any diamond or zinc blende (001) heteroepitaxial material system.

  3. OPTIMISATION OF BUFFER SIZE FOR ENHANCING QOS OF VIDEO TRAFFIC USING CROSS LAYERED HYBRID TRANSPORT LAYER PROTOCOL APPROACH

    Directory of Open Access Journals (Sweden)

    S. Matilda

    2011-03-01

    Full Text Available Video streaming is gaining importance, with the wide popularity of multimedia rich applications in the Internet. Video streams are delay sensitive and require seamless flow for continuous visualization. Properly designed buffers offer a solution to queuing delay. The diagonally opposite QoS metrics associated with video traffic poses an optimization problem, in the design of buffers. This paper is a continuation of our previous work [1] and deals with the design of buffers. It aims at finding the optimum buffer size for enhancing QoS offered to video traffic. Network-centric QoS provisioning approach, along with hybrid transport layer protocol approach is adopted, to arrive at an optimum size which is independent of RTT. In this combinational approach, buffers of routers and end devices are designed to satisfy the various QoS parameters at the transport layer. OPNET Modeler is used to simulate environments for testing the design. Based on the results of simulation it is evident that the hybrid transport layer protocol approach is best suited for transmitting video traffic as it supports the economical design.

  4. Surface passivation for CdTe devices

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Matthew O.; Perkins, Craig L.; Burst, James M.; Gessert, Timothy A.; Barnes, Teresa M.; Metzger, Wyatt K.

    2017-08-01

    In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.

  5. RTP-Packets' Loss Recovery Scheme Based on Layered Buffer-Routers

    Institute of Scientific and Technical Information of China (English)

    XU Xian-bin; YU Wei; CHEN Xin-meng

    2004-01-01

    This paper introduces an RTP-packets' loss recovery scheme in MPEG-4 playback type multicast application model, which is based on retransmission scheme. Through the auxiliary and coordinated buffer playing scheme of layered "buffer-routers", the RTP-packets' loss recovery in limited time is made possible. We consider in the scheme to handle retransmission request with buffer waiting when network congestion occurs. Thus, neither the degree of congestion will be worsened nor the retransmission request will be lost when sending the request to higher-level buffer router. The RTP-packets' loss recovery scheme suggested by us is not only applied to MPEG-4 multicast application in LAN, but also can be extended to more spacious WAN (wide area network) when user groups comparatively centralize in certain number of local areas.

  6. Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Xin, Peipei

    Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction

  7. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    Science.gov (United States)

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  8. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells.

    Science.gov (United States)

    Wei, Hung-Yu; Huang, Jen-Hsien; Ho, Kuo-Chuan; Chu, Chih-Wei

    2010-05-01

    We have developed polymer solar cells featuring a buffer layer of polythiophene (PT) sandwiched between the active layer and the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer. We attribute the improvement in power conversion efficiency of these polymer solar cells, relative to that of those based on poly(3-hexylthiophene):[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM), to a reduction in the degree of carrier recombination at the junction interface. Because the conductivity and the energy level of PT can be tuned simply by applying a bias to it in an electrolytic solution, we also investigated the effect of the energy level on the devices' performances. The power conversion efficiency of a solar cell containing a PT buffer layer reached 4.18% under AM 1.5 G irradiation (100 mW/cm(2)).

  9. Field electron emission enhancement of amorphous carbon through a niobium carbide buffer layer

    Science.gov (United States)

    Xu, L.; Wang, C.; Hu, C. Q.; Zhao, Z. D.; Yu, W. X.; Zheng, W. T.

    2009-01-01

    We investigate the field electron emission for amorphous carbon (a-C) films deposited on Si (100) substrates through a niobium carbide buffer layer with different structures and find that the niobium carbide buffer layer can substantially improve the electron field emission properties of a-C films, which can be attributed to an increase in the enhancement factor β on the surface of a-C films after the insertion of the niobium carbide layer in between a-C film and substrate. Moreover, a phase transition for niobium carbide layer from hexagonal (Nb2C) to cubic (NbC) structure, revealed by x-ray diffraction, further enhances the electron field emission. The first-principles calculated results show that the work function of NbC is lower than that of Nb2C, which is the reason why the electron emission of a-C is further enhanced.

  10. Benzocyclobutene (BCB) Polymer as Amphibious Buffer Layer for Graphene Field-Effect Transistor.

    Science.gov (United States)

    Wu, Yun; Zou, Jianjun; Huo, Shuai; Lu, Haiyan; Kong, Yuecan; Chen, Tangshen; Wu, Wei; Xu, Jingxia

    2015-08-01

    Owing to the scattering and trapping effects, the interfaces of dielectric/graphene or substrate/graphene can tailor the performance of field-effect transistor (FET). In this letter, the polymer of benzocyclobutene (BCB) was used as an amphibious buffer layer and located at between the layers of substrate and graphene and between the layers of dielectric and graphene. Interestingly, with the help of nonpolar and hydrophobic BCB buffer layer, the large-scale top-gated, chemical vapor deposited (CVD) graphene transistors was prepared on Si/SiO2 substrate, its cutoff frequency (fT) and the maximum cutoff frequency (fmax) of the graphene field-effect transistor (GFET) can be reached at 12 GHz and 11 GHz, respectively.

  11. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    Science.gov (United States)

    Saravanan, K.; Jayalakshmi, G.; Krishnan, R.; Sundaravel, B.; Panigrahi, B. K.

    2016-09-01

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ˜8 nm in ZnO/C/Si and ˜22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influence of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K-300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.

  12. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  13. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund;

    2016-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used in ...

  14. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.; Bhatnagar, A.K. [Univ. of Hyderabad (India); Pinto, R. [Solid State Electronics Group, Bombay (India)] [and others

    1994-12-31

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si<100>, Sapphire and LaAlO{sub 3} <100> substrates. The effect of substrate temperatures upto 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar structure with variation growth conditions. The buffer layers of YSZ and STO showed orientation. The tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa{sub 2}Cu{sub 9}O{sub 7-x} (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  15. New Approach to Depositing Yttria-Stabilized Zirconia Buffer Layers for Coated Conductors (Postprint)

    Science.gov (United States)

    2012-02-01

    YBa2Cu3O7− ( YBCO ) cannot be deposited directly onto the tapes due to tape oxidation and chemical interdiffu- sion issues,5 so buffer layers must be used... YBCO can be deposited. Control of the biaxial texture of the final YBCO superconducting layer is critical to the success of the YBCO -coated conductor...Misorientation at YBCO grain boundaries, both [100]-tilt and [100]-twist, have a significant impact on critical cur- rent density (Jc); nearly an

  16. Strontium Titanate Buffer Layers on Cu/33%Ni Substrates using a Novel Solution Chemistry

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Hui, Tian;

    2013-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a buffer template which can be simply applied between a metal substrate tape and a superconducting layer in 2G high temperature superconducting (HTS) tapes. In this study, heteroepitaxial SrTiO3 thin films were deposited on t......, suggesting that they are promising templates for further deposition of YBCO superconducting layers....

  17. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  18. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe{sub 2} base layers

    Energy Technology Data Exchange (ETDEWEB)

    Khrypunov, G. S., E-mail: khrip@ukr.net; Sokol, E. I. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine); Yakimenko, Yu. I. [National Technical University “Kyiv Polytechnic Institute”, Research Institute of Applied Electronics (Ukraine); Meriuts, A. V. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine); Ivashuk, A. V. [National Technical University “Kyiv Polytechnic Institute”, Research Institute of Applied Electronics (Ukraine); Shelest, T. N. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine)

    2014-12-15

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe{sub 2} base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 μm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe{sub 2}-based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected.

  19. Layer-based buffer aware rate adaptation design for SHVC video streaming

    Science.gov (United States)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  20. Studies on the Properties of Organic Photovoltaic Cells Using TiOx and DMDCNQI as Double Buffer Layers.

    Science.gov (United States)

    Kim, Gyu Min; Han, Seong Hun; Oh, Se Young

    2015-02-01

    Various types of n-type buffer layers have been used in organic electronic devices. These buffer layers turned out to expedite carrier injection and reduce series resistance, leading to good performance of organic electronic devices. In our current work, we have fabricated organic photovoltaic (OPV) cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/TiOx/DMDCNQI/AI which were fabricated in the presence of air. To incorporate the individual advantages of each n-type buffer layer, a DMDCNQI and TiOx layers were inserted to act as n-type double buffer layers. This leads to an increase of short-circuit current (JSC) and fill factor (FF) with good stability, in comparison to P3HT:PCBM based conventional cells. The results imply that the structures of double buffer layers can provide possible alternative to achieving high performance and air durability.

  1. van der Waals epitaxy of CdTe thin film on graphene

    Science.gov (United States)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  2. Interface properties of Cd-free buffer layers on on CIGSe thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, J.P.; Erfurth, F.; Weinhardt, L. [University of Wuerzburg (Germany). Experimental Physics VII; Duarte, R.; Baer, M. [Helmholtz Institut, Berlin (Germany); Niesen, T.; Palm, J. [Avancis GmbH, Muenchen (Germany); Barreau, N.; Couzinie-Devy, F.; Kessler, J. [Institut des Materiaux, Nantes (France); Reinert, F. [University of Wuerzburg (Germany). Experimental Physics VII; Forschungszentrum Karlsruhe GmbH (Germany). Gemeinschaftslabor fuer Nanoanalytik

    2010-07-01

    In order to replace the toxic Cadmium, the substitution of the CdS buffer layer in thin film solar cells based on Cu(In,Ga)(S,Se){sub 2} (CIGSSe) is of great interest. Alternative buffer layers like (In,Al){sub 2}S{sub 3}, In{sub 2}S{sub 3}, or (Zn{sub 1-x},Mg{sub x})O deposited by conventional sputter and chemical bath deposition techniques, have shown efficiencies close to or comparable to those of CdS containing solar cells. To understand the chemical and electronic properties of these buffer layers and its influence on the absorber, we studied the buffer-absorber interface using photoelectron spectroscopy (XPS, UPS) and inverse photoelectron spectroscopy (IPES). The combination of these non-destructive techniques provides detailed information about the chemical properties of the studied surface, as well as can be used for a direct determination of the conduction and valence band alignment at the heterojunction. Band-gap values at the surface as derived by UPS and IPES are also verified by electron energy loss spectroscopy (EELS). The results are discussed in conjunction with the respective cell parameters.

  3. Thermally induced strain relaxation in SiGe/Si heterostructures with low-temperature buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.I.; Mil' vidskii, M.G. [Institute for Chemical Problems of Microelectronics, 119017 Moscow (Russian Federation); Yugova, T.G. [Institute of Rare Metals ' Giredmet' , 119017 Moscow (Russian Federation); Rzaev, M.M. [Lebedev Physical Institute, RAS, 119991 Moscow (Russian Federation); Schaeffler, F. [Institut fuer Halbleiter- und Festkoerperphysik, 4040 Linz (Austria)

    2005-04-01

    Processes of misfit dislocation (MD) nucleation and multiplication in SiGe/Si strained-layer heterostructures under thermal annealing were studied. Specific subjects include the kinetics of dislocation network formation in heterostructures with low-temperature (LT) buffer layers and mechanisms of dislocation nucleation. Samples with LT-Si (400 C) and LT-SiGe (250 C) buffer layers were grown by MBE. In general, the processes of MD generation occur similarly in the heterostructures studied independently of the alloy composition (Ge content: 0.15, 0.30) and kind of buffer layer. Intrinsic point defects related to the LT epitaxial growth influence mainly the rate of MD nucleation. We suggest a new mechanism of MD generation which includes a nucleation of incipient dislocation loops at heterogeneous sources within SiGe epitaxial layer and formation of spiral sources at threading V-shaped dislocation half-loops. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Improvement of luminescence properties of GaN buffer layer for fast nitride scintillator structures

    Science.gov (United States)

    Hubáček, T.; Hospodková, A.; Oswald, J.; Kuldová, K.; Pangrác, J.

    2017-04-01

    We have optimized technology of GaN buffer layer growth with respect to the application in fast scintillation structures. The deep defect luminescence so called yellow band (YB) with decay time up to tens of microseconds is undesired for these applications and should be suppressed or at least the ratio of intensities of excitonic to YB maximum has to be considerably increased. The required photoluminescence properties were achieved by optimization of growth parameters of nucleation and coalescence layer on sapphire substrate. We have shown that decrease of NH3 flow, decrease of coalescence temperature, increase of nucleation time and nucleation pressure lead to improvement of the structure and luminescence properties of the buffer layer. Results indicate a significant increased ratio of excitonic/YB luminescence intensity.

  5. Effect of Polymer Inclusion in Preparation of Thick LZO Buffer Layers for YBCO Coated Conductors

    Institute of Scientific and Technical Information of China (English)

    Vyshnavi Narayanan; Isabel Van Driessche

    2013-01-01

    In this work,water-based precursor solutions suitable for dip-coating of thick La2Zr2O7 (LZO) buffer layers for coated conductors on Ni-5%W substrates with an inclusion of polymeric polyvinyl pyrrolidone were developed.The effect of varying percentage of the polymer addition on the preparation of the deposited films with maximum crack-free thickness was investigated.This novel water-based chemical solution deposition method involving polymers in two different chelate-chemistry compositions revealed the possibility to grow single,crack-free layers with thicknesses ranging from 140 to 280 nm,with good crystallinity and epitaxial growth.The effect of increasing polymer concentrations on the morphology and the structure of the films was studied.The appropriate buffer layer action of the films in preventing Ni diffusion was studied by X-ray photoelectron spectroscopy.

  6. Efficient small-molecule organic solar cells incorporating a doped buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dei-Wei [Department of aviation and Communication Electronics, Air Force Institute of Technology, Kaohsiung 820, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung 831, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Nanzih, Kaohsiung 811, Taiwan (China); Tsao, Yao-Jen [Department of Applied Physics, National University of Kaohsiung, Nanzih, Kaohsiung 811, Taiwan (China); Chen, Wen-Ray; Meen, Teen-Hang [Department of Electronic Engineering, National Formosa University, Hu-Wei, Yunlin 632, Taiwan (China)

    2013-06-01

    Small-molecule organic solar cells (OSCs) with an optimized structure of indium tin oxide/poly (3,4-ethylenedioxythioxythiophene):poly(styrenesulfonate)/copper phthalocyanine (CuPc) (10 nm)/CuPc: fullerene (C{sub 60}) mixed (20 nm)/C{sub 60} (20 nm)/4,7-diphenyl-1,10-phenanthroline (BPhen) (5 nm)/Ag were fabricated. In this study, the cesium carbonate-doped BPhen (Cs{sub 2}CO{sub 3}:BPhen) was adopted as the buffer layer to enhance the efficiency of the OSCs. The photovoltaic parameters of the OSCs, such as the short-circuit current density and fill factor, depend on the doping concentration of Cs{sub 2}CO{sub 3} in the BPhen layer. The cell with a Cs{sub 2}CO{sub 3}:BPhen (1:4) cathode buffer layer exhibits a power conversion efficiency (PCE) of 3.51%, compared to 3.37% for the device with the pristine BPhen layer. The enhancement of PCE was attributed to the energy-level alignment between the C{sub 60} layer and the Cs{sub 2}CO{sub 3}:BPhen layer. In addition, the characterization measured using atomic force microscopy shows that the Cs{sub 2}CO{sub 3}:BPhen layers have smoother surfaces. - Highlight: • Cs2CO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) cathode buffer layer. • Cs2CO3:BPhen layer with different ratios affects organic solar cells performance. • Cell with 1:4 (Cs2CO3:BPhen) ratio shows 3.51% power conversion efficiency.

  7. Al-doped ZnO films deposited on a slightly reduced buffer layer by reactive dc unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kusayanagi, Minehide; Uchida, Azusa; Oka, Nobuto; Jia, Junjun [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Nakamura, Shin-ichi [Center for Instrumental Analysis, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-03-31

    Al-doped ZnO (AZO) films were deposited on a fused silica glass substrate by reactive dc unbalanced magnetron sputtering using a Zn–Al (Al: 3.6 at.%) alloy target with an impedance control system. A very thin slightly reduced AZO buffer layer was inserted between the glass substrate and AZO films. For the AZO films deposited at 200 °C, the lowest resistivity in the absence of the buffer layer was 8.0 × 10{sup −4} Ω cm, whereas this was reduced to 5.9 × 10{sup −4} Ω cm after introducing a 5-nm-thick buffer layer. The transmittance for all the films was above 80% in the visible region. The effects of the buffer layer were analysed and discussed in detail. It is found that the insertion of the buffer layer can improve the crystallinity of the AZO film. - Highlights: • Al-doped ZnO (AZO) films with AZO buffer layers were deposited. • Reactive dc unbalance magnetron sputtering with impedance control was used. • Insertion of a buffer layer can lead to a lower resistivity. • Insertion of a buffer layer improved the crystallinity of AZO films.

  8. Conduction band offset engineering in wide-bandgap Ag(In,Ga)Se2 solar cells by hybrid buffer layer

    Science.gov (United States)

    Umehara, Takeshi; Zulkifly, Faris Akira Bin Mohd; Nakada, Kazuyoshi; Yamada, Akira

    2017-08-01

    Ag(In,Ga)Se2 (AIGS) is one of the promising candidates for the top cell absorber in the tandem structure. However, the conversion efficiency of AIGS solar cells is still lower than that required for the top cell. In this study, to improve the conversion efficiency of AIGS solar cells, we controlled the conduction band offset (CBO) at the buffer layer/ZnO and buffer layer/AIGS interfaces. The reduction in interface recombination at the CdS buffer layer/AIGS interface was achieved by introducing a ZnS(O,OH) buffer layer instead of a CdS buffer layer, although the fill factor (FF) decreased markedly because the CBO at the ZnS(O,OH)/ZnO interface prevented the electron flow under a forward bias. We found that the introduction of a CdS/ZnS(O,OH) hybrid buffer layer is efficient in controlling the CBO at both the buffer layer/AIGS and buffer layer/ZnO interfaces and improving the solar cell conversion efficiency.

  9. Transmission-mode GaN photocathode based on graded AlxGa1-xN buffer layer

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Du; Benkang Chang; Yunsheng Qian; Pin Gao

    2011-01-01

    @@ We create a GaN photocathode based on graded AlxGa1-xN buffer layers to overcome the influence of buffer-emission layer interface on the photoemission of transmission-mode GaN photocathodes. A gateshaped spectral response with a 260-nm starting wavelength and a 375-nm cut-off wavelength is obtained.Average quantum efficiency is 15% and short wavelength responses are almost equivalent to long wavelength ones. The fitted interface recombination velocity is 5×104 cm/s, with negligible magnitude, proving that the design of the graded buffer layers is efficient in obtaining good interface quality between the buffer and the emission layer.%We create a GaN photocathode based on graded AlxGa1-xN buffer layers to overcome the influence of buffer-emission layer interface on the photoemission of transmission-mode GaN photocathodes. A gateshaped spectral response with a 260-nm starting wavelength and a 375-nm cut-off wavelength is obtained. Average quantum efficiency is 15% and short wavelength responses are almost equivalent to long wavelength ones. The fitted interface recombination velocity is 5× 104 cm/s, with negligible magnitude, proving that the design of the graded buffer layers is efficient in obtaining good interface quality between the buffer and the emission layer.

  10. Ultraviolet-ozone-treated PEDOT:PSS as anode buffer layer for organic solar cells.

    Science.gov (United States)

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhao, Haifeng; Chu, Bei; Li, Wenlian

    2012-08-17

    Ultraviolet-ozone-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)was used as the anode buffer layer in copper phthalocyanine (CuPc)/fullerene-based solar cells. The power conversion efficiency of the cells with appropriated UV-ozone treatment was found to increase about 20% compared to the reference cell. The improved performance is attributed to the increased work function of the PEDOT:PSS layer, which improves the contact condition between PEDOT:PSS and CuPc, hence increasing the extraction efficiency of the photogenerated holes and decreasing the recombination probability of holes and electrons in the active organic layers.

  11. Surface Roughness and Dislocation Distribution in Compositionally Graded Relaxed SiGe Buffer Layer with Inserted Strained Si Layers

    Science.gov (United States)

    Yoon, Tae-Sik

    2005-03-01

    We report the experimental investigation of surface roughness and dislocation distribution of 1 μm-thick, compositionally graded, relaxed SiGe buffer layer with a final Ge surface content of 30%. Tensile-strained Si layers are inserted at various locations in the graded buffer during SiGe epitaxial growths. Slight reduction in surface roughness from about 10.3 nm to about 7.8 nm by inserting two 20 nm thick tensile-strained Si layers followed by SiGe growths. It turns out that majority of the residual surface roughness is developed during the SiGe growths on top of the topmost strain Si layer. The surface immediately after the growth of tensile strained Si is very flat with about 1.1 nm RMS roughness and without crosshatch morphology. Cross-sectional TEM shows clear signs of increased interaction between dislocation half-loops at the top surface of the strained Si layers. Our observation shows that although thin Si layers under tensile-strain are effective in reducing cross-hatch, they could in the meantime impede dislocation propagation leading to higher threading dislocation density. Considerations for an optimized scheme exploiting the flattening function of tensile-strained layers will be discussed.

  12. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001 substrate

    Directory of Open Access Journals (Sweden)

    Syed Sheraz Ahmad

    2016-11-01

    Full Text Available Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001 substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm. The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED, magneto-optical Kerr effect (MOKE and anisotropic magnetoresistance (AMR. By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA. We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer to 300 Oe (with 20 nm Cu buffer, in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.

  13. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001) substrate

    Science.gov (United States)

    Ahmad, Syed Sheraz; He, Wei; Zhang, Yong-Sheng; Tang, Jin; Gul, Qeemat; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2016-11-01

    Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001) substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm). The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED), magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR). By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer) one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA). We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer) to 300 Oe (with 20 nm Cu buffer), in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.

  14. Pyroelectric and dielectric properties of ferroelectric films with interposed dielectric buffer layers

    Science.gov (United States)

    Espinal, Y.; Kesim, M. T.; Misirlioglu, I. B.; Trolier-McKinstry, S.; Mantese, J. V.; Alpay, S. P.

    2014-12-01

    The dielectric and pyroelectric properties of c-domain ferroelectric films with linear dielectric buffer layers were investigated theoretically. Computations were carried out for multilayers consisting of PbZr0.2Ti0.8O3 with Al2O3, SiO2, Si3N4, HfO2, and TiO2 buffers on metalized Si. It is shown that the dielectric and pyroelectric properties of such multilayers can be increased by the presence of the buffer compared to ferroelectric monolayers. Calculations for PbZr0.2Ti0.8O3 films with 1% Al2O3 interposed between electrodes on Si show that the dielectric and pyroelectric coefficients are 310 and 0.070 μC cm-2 °C-1, respectively. Both values are higher than the intrinsic response of PbZr0.2Ti0.8O3 monolayer on Si.

  15. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Directory of Open Access Journals (Sweden)

    Wang Lan

    2016-01-01

    Full Text Available We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  16. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Science.gov (United States)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  17. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    Science.gov (United States)

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  18. Degradation and capacitance: voltage hysteresis in CdTe devices

    Science.gov (United States)

    Albin, D. S.; Dhere, R. G.; Glynn, S. C.; del Cueto, J. A.; Metzger, W. K.

    2009-08-01

    CdS/CdTe photovoltaic solar cells were made on two different transparent conducting oxide (TCO) structures in order to identify differences in fabrication, performance, and reliability. In one set of cells, chemical vapor deposition (CVD) was used to deposit a bi-layer TCO on Corning 7059 borosilicate glass consisting of a F-doped, conductive tin-oxide (cSnO2) layer capped by an insulating (undoped), buffer (iSnO2) layer. In the other set, a more advanced bi-layer structure consisting of sputtered cadmium stannate (Cd2SnO4; CTO) as the conducting layer and zinc stannate (Zn2SnO4; ZTO) as the buffer layer was used. CTO/ZTO substrates yielded higher performance devices however performance uniformity was worse due to possible strain effects associated with TCO layer fabrication. Cells using the SnO2-based structure were only slightly lower in performance, but exhibited considerably greater performance uniformity. When subjected to accelerated lifetime testing (ALT) at 85 - 100 °C under 1-sun illumination and open-circuit bias, more degradation was observed in CdTe cells deposited on the CTO/ZTO substrates. Considerable C-V hysteresis, defined as the depletion width difference between reverse and forward direction scans, was observed in all Cu-doped CdTe cells. These same effects can also be observed in thin-film modules. Hysteresis was observed to increase with increasing stress and degradation. The mechanism for hysteresis is discussed in terms of both an ionic-drift model and one involving majority carrier emission in the space-charge region (SCR). The increased generation of hysteresis observed in CdTe cells deposited on CTO/ZTO substrates suggests potential decomposition of these latter oxides when subjected to stress testing.

  19. Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2014-01-01

    Full Text Available An optimized hybrid planar heterojunction (PHJ of small molecule organic solar cells (SM-OSCs based on copper phthalocyanine (CuPc as donor and fullerene (C60 as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL, also known as hole extraction layer (HEL. A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C60/BCP/Ag cells and the new ITO/double ABL/CuPc/C60/BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (Voc, fill factor (FF, and lifetime in this work compared to monolayer of ABL.

  20. Buffer layer selection for CuIn1 - x Ga x Se2 based thin film solar cells

    Science.gov (United States)

    Kumari, Sarita; Singh Verma, Ajay

    2014-03-01

    In this work, device modeling and simulation studies have been carried out with a variety of buffer layers over CIGS absorption layer. The band diagram, electric field variation and I/V curves are analyzed and device performance parameters i.e. efficiency, open circuit voltage, short circuit current, quantum efficiency are calculated. The efficiency of CIGS solar cell with ZnSe buffer layer is found comparable with that of CdS layer. The highest short circuit current is found for solar cell with ZnSe buffer layer, whereas the ZnS/CIGS heterojunction provides the highest quantum efficiency in the structures considered. The device physics is discussed and the effect of thickness of buffer layers and absorption layer is studied in order to find a more efficient and stable solar cell.

  1. Effect of an organic buffer layer on the stability of zinc oxide thin-film transistors.

    Science.gov (United States)

    Lee, H W; Hyung, G W; Koo, J R; Cho, E S; Kwon, S J; Park, J H; Kim, Y K

    2014-07-01

    Compared with other materials, zinc oxide (ZnO) exhibits stability in air, high-electron mobility, transparency and low light sensitivity. We investigated these properties in ZnO thin-film transistors (TFTs) containing a cross-linked poly(vinyl alcohol) (C-PVA) (1:3) buffer layer stacked between the semiconductor and gate dielectric. We measured the impact of this C-PVA layer on gate bias stress. We measured the transfer characteristics of the saturation region to determine the threshold voltage and the field-effect mobility of the transistors. We recorded a threshold voltage of 11.53 V in the ZnO TFTs with the C-PVA buffer layer, the field-effect mobility was 0.2 cm2/Vs. There was a positive shift in the threshold voltage of deltaV(TH) approximately 10 V in response to the application of a gate bias stress of 20 V. The positive shift in the threshold voltage was lower than that in pristine ZnO TFTs. This finding suggests that the shift in threshold voltage was due to reduced charge trapping at the semiconductor-gate dielectric interface. Our report indicates that the organic buffer layer enhanced the stability of ZnO TFTs.

  2. Exploring Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics

    Science.gov (United States)

    Varley, J.; He, X.; Mackie, N.; Rockett, A.; Lordi, V.

    2015-03-01

    The development of thin-film photovoltaics has largely focused on alternative absorber materials, while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the USDoE by LLNL under Contract DE-AC52-07NA27344 and funded by the DoE EERE through the SunShot BRIDGE program.

  3. Characterisation of CuInSe2-based solar cells with different buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Werth, Anton; Ohland, Joerg; Riedel, Ingo; Parisi, Juergen [Abteilung EHF, Institiut fuer Physik, Carl von Ossietzky Universitaet, Oldenburg (Germany); Rechid, Juan [CIS Solartechnik GmbH and Co. KG, c/o Aurubis AG, Hamburg (Germany)

    2010-07-01

    The optoelectronic properties of the buffer layer in chalcopyrite solar cells may present strong efficiency limitation due to parasitic absorption, interface states and band discontinuities in respect of the light absorber. In this work we investigated CuInSe{sub 2}-based (CIS) solar cells processed on flexible steel substrates with In{sub 2}S{sub 3} and CdS buffer layers by means of temperature dependent current-voltage (J-V) measurements at varying illumination intensity and external quantum efficiency (EQE) measurements. Under illumination the J-V curves of both cell types exhibit distinct ''s''-shape non-ideality (roll over) at temperatures below 260 K. The occurrence of the ''s''-shape in the 4th and/or 1st quadrant is explained by an heuristic model which relates the band discontinuity being present at the buffer CIS interface to limitation of the minority carrier extraction and injection. Further, we employed the suns-V{sub oc} method to extract the diode parameters saturation current and diode ideality from the J-V characteristics under illumination (small effect of series resistance) in order to identify clues on dominant surface or bulk recombination. We conclude that interface recombination is less dominant in the investigated samples independent of the used buffer material.

  4. Effect of magnetic structural processing on structure and texture of La2Zr2O7 buffer layers

    Science.gov (United States)

    Chibirova, F. Kh.; Kotina, G. V.; Bovina, E. A.; Tarasova, D. V.; Polisan, A. A.; Parkhomenko, Yu. N.

    2016-11-01

    Epitaxial CeO2 seed layer and La2Zr2O7 (LZO) buffer layers were deposited on biaxially-textured Ni-5 at.% W (NiW) tape substrate by liquid-phase polymer assisted nanoparticles deposition (PAND) method. LZO layers deposited by PAND have consistently shown tilting of the c-axis toward the direction of the sample’s surface normal. A new approach increasing the sharpening of the buffer texture by magnetic structural processing (MSP) of buffer layers was tested. The LZO layers, deposited on the seed and buffer layers after MSP, have dense and smooth surface structure, and more importantly, significantly improved out-of-plane texture, compared with the LZO layers that were deposited on a layer without MSP. Transmission electron microscopy study confirmed the c-axis tilting of CeO2 and LZO layers and revealed the absence of interfaces between LZO layers which have been grown on the layers after MSP. There are very small (2-4 nm) gated pores in the single-crystal structure of LZO layers that are not typical for structure of LZO layers obtained by liquid-phase methods. Thus the LZO buffer layers can serve as an effective metal-ion diffusion barrier.

  5. Environmental Modeling, The Buffer Priority layers for Phosphorus / Sediment) Removal identify priority forest/grass buffer opportunities by subwatershed. Land use, hydrology, soil, and landscape characteristics were analyzed to rank buffer opportunities with high P/sed removal., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Buffer Priority layers for Phosphorus / Sediment) Removal identify priority forest/grass buffer opportunities...

  6. Environmental Modeling, The Natural Filter Buffer Targeting layers identify riparian forest and grass buffer opportunities by county. Land use and hydrology characteristics were used to identify potential riparian buffer locations., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Natural Filter Buffer Targeting layers identify riparian forest and grass buffer opportunities by county. Land...

  7. All solution processable organic photovoltaic cells using DMDCNQI as an organic N-type buffer layer.

    Science.gov (United States)

    Yang, Eui Yeol; So, Byoung Min; Chung, Chan Moon; Oh, Se Young

    2012-01-01

    Organic photovoltaic cells consisting of ITO/PEDOT-PSS/P3HT:PCBM/TiO(x)/DMDCNQI/Al have been fabricated by using dip-coated DMDCNQI layer as a cathode buffer material. We have investigated the physical effects of charge transfer complex and wettability of DMDCNQI between TiO(x)/P3HT:PCBM layer and Al cathode electrode on the performance of organic photovoltaic cell. The photovoltaic cell fabricated with a dip-coated DMDCNQI layer exhibited almost similar performance compared to the device using conventional evaporated DMDCNQI layer. Especially, the power conversion efficiency of the prepared organic photovoltaic cell using TiO(x)/DMDCNQI layer was improved to 3.1%, which is mainly due to the decrease in the low contact resistance of organic-metal interface.

  8. Interface Study of ITO/ZnO and ITO/SnO2 Complex Transparent Conductive Layers and Their Effect on CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Tingliang Liu

    2013-01-01

    Full Text Available Transparent ITO/ZnO and ITO/SnO2 complex conductive layers were prepared by DC- and RF-magnetron sputtering. Their structure and optical and electronic performances were studied by XRD, UV/Vis Spectroscopy, and four-probe technology. The interface characteristic and band offset of the ITO/ZnO, ITO/SnO2, and ITO/CdS were investigated by Ultraviolet Photoelectron Spectroscopy (UPS and X-ray Photoelectron Spectroscopy (XPS, and the energy band diagrams have also been determined. The results show that ITO/ZnO and ITO/SnO2 films have good optical and electrical properties. The energy barrier those at the interface of ITO/ZnO and ITO/SnO2 layers are almost 0.4 and 0.44 eV, which are lower than in ITO/CdS heterojunctions (0.9 eV, which is beneficial for the transfer and collection of electrons in CdTe solar cells and reduces the minority carrier recombination at the interface, compared to CdS/ITO. The effects of their use in CdTe solar cells were studied by AMPS-1D software simulation using experiment values obtained from ZnO, ITO, and SnO2. From the simulation, we confirmed the increase of Eff, FF, Voc, and Isc by the introduction of ITO/ZnO and ITO/SnO2 layers in CdTe solar cells.

  9. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    Science.gov (United States)

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  10. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer.

    Science.gov (United States)

    Ambade, Swapnil B; Ambade, Rohan B; Kim, Seojin; Park, Hanok; Yoo, Dong Jin; Leel, Soo-Hyoung

    2014-11-01

    Polymer solar cells (PSCs) have attracted increasing attention in recent years. The rapid progress and mounting interest suggest the feasibility of PSC commercialization. However, critical issues such as stability and the weak nature of their interfaces posses quite a challenge. In the context of improving stability, PSCs with inverted geometry consising of inorganic oxide layer acting as an n-buffer offer quite the panacea. Zinc oxide (ZnO) is one of the most preferred semiconducting wide band gap oxides as an efficient cathode layer that effectively extracts and transports photoelectrons from the acceptor to the conducting indium-doped tin oxide (ITO) due to its high conductivity and transparency. However, the existence of a back charge transfer from metal oxides to electron-donating conjugated polymer and poor contact with the bulk heterojunction (BHJ) active layer results in serious interfacial recombination and leads to relatively low photovoltaic performance. One approach to improving the performance and charge selectivity of these types of inverted devices consists of modifying the interface between the inorganic metal oxide (e.g., ZnO) and organic active layer using a sub-monolayer of interfacial materials (e.g., functional dyes). In this work, we demonstrate that the photovoltaic parameters of inverted solar cells comprising a thin overlayer of functional dyes over ZnO nanoparticle as an n-buffer layer are highly influenced by the anchoring groups they possess. While an inverted PSC containing an n-buffer of only ZnO exhibited an overall power conversion efficiency (PCE) of 2.87%, the devices with an interlayer of dyes containing functional cyano-carboxylic, cyano-cyano, and carboxylic groups exhibited PCE of 3.52%, 3.39%, and 3.21%, respectively, due to increased forward charge collection resulting from enhanced electronic coupling between the ZnO and BHJ active layers.

  11. Non-Toxic Buffer Layers in Flexible Cu(In,GaSe2 Photovoltaic Cell Applications with Optimized Absorber Thickness

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2017-01-01

    Full Text Available Absorber layer thickness gradient in Cu(In1−xGaxSe2 (CIGS based solar cells and several substitutes for typical cadmium sulfide (CdS buffer layers, such as ZnS, ZnO, ZnS(O,OH, Zn1−xSnxOy (ZTO, ZnSe, and In2S3, have been analyzed by a device emulation program and tool (ADEPT 2.1 to determine optimum efficiency. As a reference type, the CIGS cell with CdS buffer provides a theoretical efficiency of 23.23% when the optimum absorber layer thickness was determined as 1.6 μm. It is also observed that this highly efficient CIGS cell would have an absorber layer thickness between 1 μm and 2 μm whereas the optimum buffer layer thickness would be within the range of 0.04–0.06 μm. Among all the cells with various buffer layers, the best energy conversion efficiency of 24.62% has been achieved for the ZnO buffer layer based cell. The simulation results with ZnS and ZnO based buffer layer materials instead of using CdS indicate that the cell performance would be better than that of the CdS buffer layer based cell. Although the cells with ZnS(O,OH, ZTO, ZnSe, and In2S3 buffer layers provide slightly lower efficiencies than that of the CdS buffer based cell, the use of these materials would not be deleterious for the environment because of their non-carcinogenic and non-toxic nature.

  12. Rectification and tunneling effects enabled by Al{sub 2}O{sub 3} atomic layer deposited on back contact of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng, E-mail: panfeng@pkusz.edu.cn [School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055 (China)

    2015-07-06

    Atomic layer deposition (ALD) of Aluminum oxide (Al{sub 2}O{sub 3}) is employed to optimize the back contact of thin film CdTe solar cells. Al{sub 2}O{sub 3} layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al{sub 2}O{sub 3} deposition, compared with the efficiency of 10.7% without Al{sub 2}O{sub 3} modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al{sub 2}O{sub 3} maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al{sub 2}O{sub 3} modification layer features a desired low-density of interface state of 8 × 10{sup 10 }cm{sup −2} by estimation.

  13. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of); Han, Dong-Soo; Kim, June-Seo, E-mail: spin2mtj@gmail.com; Swagten, Henk J. M. [Department of Applied Physics, Center for NanoMaterials, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2015-10-05

    We report systematic measurements of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) by employing Brillouin light scattering in Pt/Co/AlO{sub x} and Ta/Pt/Co/AlO{sub x} structures. By introducing a tantalum buffer layer, the saturation magnetization and the interfacial perpendicular magnetic anisotropy are significantly improved due to the better interface between heavy metal and ferromagnetic layer. From the frequency shift between Stokes- and anti-Stokes spin-waves, we successively obtain considerably larger iDM energy densities (D{sub max} = 1.65 ± 0.13 mJ/m{sup 2} at t{sub Co} = 1.35 nm) upon adding the Ta buffer layer, despite the nominally identical interface materials. Moreover, the energy density shows an inverse proportionality with the Co layer thickness, which is the critical clue that the observed iDMI is indeed originating from the interface between the Pt and Co layers.

  14. Process Development for High Voc CdTe Solar Cells: Phase I, Annual Technical Report, October 2005 - September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C. S.; Morel, D. L.

    2007-04-01

    The focus of this project is the open-circuit voltage of the CdTe thin-film solar cell. CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, but the efficiency of the CdTe solar cell has been stagnant for the last few years. At the manufacturing front, the CdTe technology is fast paced and moving forward with U.S.-based First Solar LLC leading the world in CdTe module production. To support the industry efforts and continue the advancement of this technology, it will be necessary to continue improvements in solar cell efficiency. A closer look at the state-of-the-art performance levels puts the three solar cell efficiency parameters of short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) in the 24-26 mA/cm2, 844?850 mV, and 74%-76% ranges respectively. During the late 1090s, efforts to improve cell efficiency were primarily concerned with increasing JSC, simply by using thinner CdS window layers to enhance the blue response (<510 nm) of the CdTe cell. These efforts led to underscoring the important role 'buffers' (or high-resistivity transparent films) play in CdTe cells. The use of transparent bi-layers (low-p/high-p) as the front contact is becoming a 'standard' feature of the CdTe cell.

  15. The growth of AgGaTe{sub 2} layers on glass substrates with Ag{sub 2}Te buffer layer by closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Uruno, Aya; Usui, Ayaka; Takeda, Yuji; Inoue, Tomohiro [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2015-06-15

    The AgGaTe{sub 2} layer growth was performed by the closed space sublimation method on the Mo/glass substrate. The Ag{sub 2}Te buffer layer was inserted between AgGaTe{sub 2} and Mo layers, to improve the quality of grown layers. Crystallographic properties were analyzed by x-ray diffraction (XRD), and the surface morphologies were analyzed by scanning electron microscopy (SEM). The Ag{sub 2}Te layer grown on the Mo/glass exhibited a membrane filter structure from the SEM observation. XRD spectra of layers grown with and without the buffer layer were compared. The AgGaTe{sub 2} layer with the Ag{sub 2}Te buffer layer exhibited peaks originating from AgGaTe{sub 2}, and a very strong diffraction peak of 112 was observed. On the other hand, it was cleared that the layer grown without the buffer layer exhibited no strong peaks associated with AgGaTe{sub 2}, but Ga-Te compounds. From this, crystallographic properties of the AgGaTe{sub 2} layer were drastically improved by the insertion of the Ag{sub 2}Te buffer layer. Moreover, the surface morphology exhibited a smooth surface when the Ag{sub 2}Te buffer layer was inserted. The nucleation site density of AgGaTe{sub 2} was probably increased since the membrane filter structure exhibited numbers of kinks at the edge. Chemical reaction between Ga and Mo was also eliminated. It was cleared that the insertion of the buffer layer and its surface morphology were an important parameter to grow high quality AgGaTe{sub 2} layers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Investigation of CeO2 Buffer Layer Effects on the Voltage Response of YBCO Transition-Edge Bolometers

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Nazifi, Rana; Wulff, Anders Christian

    2016-01-01

    The effect on the thermal parameters of superconducting transition-edge bolometers produced on a single crystalline SrTiO3 (STO) substrate with and without a CeO2 buffer layer was investigated. Metal-organic deposition was used to deposit the 20-nm CeO2 buffer layer, whereas RF magnetron sputtering...... responses, and the results were compared with that of simulations conducted by applying a one-dimensional thermophysical model. It was observed that adding the buffer layer to the structure of the bolometer results in an increased response at higher modulation frequencies. Results from simulations made...

  17. Influence of growth pressure of a GaN buffer layer on the properties of MOCVD GaN

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jun(陈俊); ZHANG; Shuming(张书明); ZHANG; Baoshun(张宝顺); ZHU; Jianjun(朱建军); FENG; Gan(冯淦); DUAN; Lihong(段俐宏); WANG; Yutian(王玉田); YANG; Hui(杨辉); ZHENG; Wenchen(郑文琛)

    2003-01-01

    The influence of growth pressure of GaN buffer layer on the properties of MOCVD GaN on α-Al2O3 has been investigated with the aid of a home-made in situ laser reflectometry measurement system. The results obtained with in situ measurements and scanning electron microscope show that with the increase in deposition pressure of buffer layer, the nuclei increase in size, which roughens the surface, and delays the coalescence of GaN nuclei. The optical and crystalline quality of GaN epilayer was improved when buffer layer was deposited at high pressure.

  18. Preparation and characterization of pulsed laser deposited a novel CdS/CdSe composite window layer for CdTe thin film solar cell

    Science.gov (United States)

    Yang, Xiaoyan; Liu, Bo; Li, Bing; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-03-01

    A novel CdS/CdSe composite window structure was designed and then the corresponding films were prepared by pulsed laser deposition as an improved window layer for CdTe-based solar cells. Two types of this composite window structure with 5 cycles and 10 cycles CdS/CdSe respectively both combined with CdS layers were prepared at 200 °C compared with pure CdS window layer and finally were applied into CdTe thin film solar cells. The cross section and surface morphology of the two composite window layers were monitored by using scanning electron microscopy and the result shows that the pulsed laser deposited composite window layers with good crystallinity are stacking together as the design. The devices based on CdS/CdSe composite window layers have demonstrated the enhanced photocurrent collection from both short and long wavelength regions compared to CdS/CdTe solar cell. The efficiency of the best reference CdS/CdTe solar cell was 10.72%. And the device with 5 cycles CdS/CdSe composite window showed efficiency of 12.61% with VOC of 772.92 mV, JSC of 25.11 mA/cm2 and FF of 64.95%. In addition, there are some differences which exist within the optical transmittance spectra and QE curves between the two CdS/CdSe composite window samples, indicating that the volume proportion of CdSe may influence the performance of CdTe thin film solar cell.

  19. Growth of highly textured SnS on mica using an SnSe buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C., E-mail: charles.surya@polyu.edu.hk

    2014-08-01

    We report the growth of SnS thin films on mica substrates by molecular beam epitaxy. Excellent 2D layered structure and strong (001) texture were observed with a record low rocking curve full width at half maximum of ∼ 0.101° for the SnS(004) diffraction. An interface model is used to investigate the nucleation of SnS on mica which indicates the co-existence of six pairs of lateral growth orientations and is in excellent agreement with the experimental Φ-scan measurements indicating 12 peaks separated by 30° from each other. To control the lateral growth of the SnS epilayers we investigate the utilization of a thin SnSe buffer layer deposited on the mica substrate prior to the growth of the SnS thin film. The excellent lattice match between SnSe and mica enhances the alignment of the nucleation of SnS and suppresses the minor lateral orientations along the mica[110] direction and its orthogonal axis. Detailed low-frequency noise measurement was performed to characterize the trap density in the films and our results clearly demonstrate substantial reduction in the density of the localized states in the SnS epilayer with the use of an SnSe buffer layer. - Highlights: • A record low rocking curve FWHM for deposited SnS on mica • Investigation of the nucleation of SnS on mica using the interface model • Investigation of nucleation mechanism by phi-scan measurement • Grain boundary formation from crystallites of various nucleation orientations • Suppression of nucleation orientations using an SnSe buffer layer.

  20. Annealing temperature dependence of magnetic properties of CoFeB/MgO stacks on different buffer layers

    Science.gov (United States)

    Watanabe, Kyota; Fukami, Shunsuke; Sato, Hideo; Ikeda, Shoji; Matsukura, Fumihiro; Ohno, Hideo

    2017-08-01

    We investigate the annealing temperature dependence of the magnetic properties of CoFeB/MgO stacks with different buffer materials (Mo, Ta, and W). For Mo and W, bcc-crystalline and amorphous-like films are prepared by changing the deposition conditions. A relatively small saturation magnetization is maintained after annealing up to 400 °C for the samples with bcc-W, bcc-Mo, and amorphous-like Mo buffers. A small variation in magnetic dead layer thickness with annealing is observed for the samples with bcc-crystalline buffer layers. The interfacial anisotropy is found to mainly depend on the element of the buffer layer used regardless of its crystalline structure, and is larger for the samples with W and Mo buffers than those with Ta buffer. The sample with bcc-Mo buffer shows the highest robustness against annealing among the studied systems. We give a systematic picture based on the thermochemistry that can reasonably explain the observed buffer layer dependence of the variations in magnetic properties with annealing.

  1. Low-Frequency Noise Properties of GaN Schottky Barriers Deposited on Intermediate Temperature Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    B.; H.; Leung; W.; K.; Fong; C.; Surya; L.; W.; Lu; W.; K.; Ge

    2003-01-01

    Flicker noise and deep level transient spectroscopy were used to characterize defect properties of GaN films with different buffer structures. Results indicate improved properties with the use of intermediate temperature buffer layers due to the relaxation of residue strain in the films.

  2. Characterization of chemical bath deposited buffer layers for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, D.; Efstathiadis, H.; Haldar, P. [College of Nanoscale Science and Engineering, University at Albany - State University of New York, 257 Fuller Rd., Albany, NY 12203 (United States); Sun, R. [Angstrom Sun Technologies Inc., 33 Nagog Park, Acton, MA 01720 (United States)

    2010-10-15

    Cadmium sulfide (CdS), indium sulfide (In{sub 2}S{sub 3}) and zinc sulfide (ZnS) thin films have been deposited by chemical bath deposition (CBD) for buffer layer applications in Cu-chalcopyrite-based thin film solar cells. Films were characterized by scanning electron microscopy (SEM), UV-Vis transmission, X-ray photoelectron spectroscopy (XPS), grazing-incidence X-ray diffraction (GIXRD), and spectroscopic ellipsometry. Results indicate CdS can be deposited with low oxygen content and high light transmission over 245-1700 nm. CBD-ZnS and CBD-InS both exhibit 5-10% less light transmission than CdS in the same thickness range. In terms of light transmission and degree of impurities CdS appears to be a better buffer material than CBD-ZnS or CBD-InS. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Microstructural characterization of chemical bath deposited and sputtered Zn(O,S) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Gautron, E., E-mail: eric.gautron@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Buffière, M. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44solar, 14 rue Kepler, 44240 La Chapelle sur Erdre (France); Harel, S.; Assmann, L.; Arzel, L.; Brohan, L. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Kessler, J. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44solar, 14 rue Kepler, 44240 La Chapelle sur Erdre (France); Barreau, N. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-05-01

    The present work aims at investigating the microstructure of Zn(O,S) buffer layers relative to their deposition route, namely either chemical bath deposition (CBD) or RF co-sputtering process (PVD) under pure Ar. The core of the study consists of cross-sectional transmission electron microscopy (TEM) characterization of the differently grown Zn(O,S) thin films on co-evaporated Cu(In,Ga)Se{sub 2} (CIGSe) absorbers. It shows that the morphology of Zn(O,S) layer deposited on CIGSe using CBD process is made of a thin layer of well oriented ZnS sphalerite-(111) and/or ZnS wurtzite-(0002) planes parallel to CIGSe chalcopyrite-(112) planes at the interface with CIGSe followed by misoriented nanometer-sized ZnS crystallites in an amorphous phase. As far as (PVD)Zn(O,S) is concerned, the TEM analyses reveal two different microstructures depending on the S-content in the films: for [S] / ([O] + [S]) = 0.6, the buffer layer is made of ZnO zincite and ZnS wurtzite crystallites grown nearly coherently to each other, with (0002) planes nearly parallel with CIGSe-(112) planes, while for [S] / ([O] + [S]) = 0.3, it is made of ZnO zincite type crystals with O atoms substituted by S atoms, with (0002) planes perfectly aligned with CIGSe-(112) planes. Such microstructural differences can explain why photovoltaic performances are dependent on the Zn(O,S) buffer layer deposition route. - Highlights: ► Zn(O,S) layers were grown by chemical bath (CBD) or physical vapor (PVD) deposition. ► For CBD, a 3 nm ZnS layer is followed by ZnS nano-crystallites in an amorphous phase. ► For PVD with [S] / ([O] + [S]) = 0.3, the layer has a Zn(O,S) zincite structure. ► For PVD with [S] / ([O] + [S]) = 0.6, ZnS wurtzite and ZnO zincite phases are mixed.

  4. Buffer Layer Effects on Tandem InGaAs TPV Devices

    Science.gov (United States)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  5. ZnO buffer layer for metal films on silicon substrates

    Science.gov (United States)

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  6. Effects of bonding structure from niobium carbide buffer layer on the field electric emission properties of a-C films

    Science.gov (United States)

    Xu, L.; Wang, C.; Hu, C. Q.; Zhao, Z. D.; Yu, W. X.; Zheng, W. T.

    2009-04-01

    We investigate the field electron emission for amorphous carbon (a-C) films deposited on Si (100) substrates through a niobium carbide buffer layer at different flow rate ratios of CH4/(CH4+Ar) in a CH4/Ar mixture discharge, and find that the composition and chemical bonding of the buffer layer can substantially affect the electron field emission properties of a-C films. The high ratio of Nb-C/Nb-Nb bonds in the buffer layer promotes the electron emission of a-C film. The first-principles calculated results show that the work function of NbC is lower than that of Nb, which is the reason why the high ratio of Nb-C/Nb-Nb bonds in the buffer layer favors the field emission of a-C film.

  7. The Influence of Surface Morphology of Buffer Layer on the Critical Current Density in YBCO Coated Conductors

    Directory of Open Access Journals (Sweden)

    Jie Xiong

    2013-01-01

    Full Text Available 1 μm-thick YBa2Cu3O7-δ (YBCO films were grown on the Y2O3/yttria stabilized zirconia (YSZ/CeO2 buffer layers with different surface morphologies using direct-current sputtering. The critical current density (Jc value of YBCO was 1.1 MA/cm2 when the root mean square surface roughness (Rrms of the buffer layer was 2.5 nm. As the Rrms of the buffer layer increased to 15 nm, the Jc decreased to 0.3 MA/cm2. X-ray diffraction and scanning electron microscopy showed the strong relevance of the evolution of the structure and surface morphologies of YBCO films with the buffer layer of different Rrms. A model was proposed to explain the influence of surface morphology on the superconducting properties of YBCO films.

  8. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.

    Science.gov (United States)

    Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L

    2015-06-21

    A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV).

  9. The microstructure and magnetic properties of electrodeposited Co-Pt thin films on Ru buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, G.H. [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)], E-mail: skk94@skku.edu; Lee, C.H.; Jang, J.H. [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, N.J. [Department of Materials Science and Engineering, Kumoh National University of Technology, Kumi 730-701 (Korea, Republic of); Suh, S.J. [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Advanced Materials and Process Research Center for IT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2008-11-15

    For high-density magnetic recording media, this study examined the crystal structure and the texture of electrodeposited cobalt-platinum (Co-Pt) films on Ru buffer layer. A 15-nm-thick Co-Pt film exhibited very high out-of-plane coercivity and squareness, which were 6248 Oe and 0.89, respectively. The coercivity, H{sub c}, of Co-Pt films grown on Ru buffer layer decreased significantly with increasing thickness, possibly due to the lattice misfit of 5.4% between Co-Pt and Ru, leading to the decrease of perpendicular magnetic anisotropy (PMA) of Co-Pt films as indicated by the observed hexagonal-closed-packed (HCP) (1 1-bar 0 1) plane of Co-Pt films. According to nano beam diffraction pattern (NBDP), however, Co-Pt film grown on Ru layer of HCP exhibited mixed HCP and FCC phases. Also, cross-sectional TEM image suggests that the high PMA may result from the columnar structure of physically isolated Co-Pt grains with the c-axis perpendicular to the film plane.

  10. Optimization of CdS Buffer Layer for High Efficiency CIGS Solar Cells.

    Science.gov (United States)

    Kim, Donguk; Jang, Yong-Jun; Jung, Ho-Sung; Kim, Minha; Baek, Dohyun; Yi, Junsin; Lee, Jaehyeong; Choi, Youngkwan

    2016-05-01

    In present work, effects of the thickness on the structural and optical properties of chemically deposited CdS thin films were investigated. In addition, we fabricated Cu(In, Ga)Se2 solar cells with various thicknesses of CdS buffer layer and optimized the thickness for a high efficiency. When the CdS thin films were thicker, the crystallinity improved but the transmittance decreased. The short-circuit current density (J(sc)) and the fill factor are the major efficiency limiting factors for the CIGS solar cells. As the thickness of the CdS buffer layer, the open-circuit voltage (V(oc)) and the fill factor increased, whereas the J(sc) slightly decreased. The improvement of the fill factor and thus efficiency resulted from larger shunt resistance. For the solar cells without a high resistive intrinsic ZnO layer, the highest efficiency was acquired at the thickness of 89 nm. With further increasing the thickness, the J(sc) decreased significantly, resulting in poor efficiency.

  11. Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Si [The Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Chen, Jiangtao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Mid. Road, Lanzhou 730000 (China); Liu, Jianlin [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Qi, Jing, E-mail: qijing@lzu.edu.cn [The Key Laboratory for Magnetism and Magnetic Materials of MOE, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Yuhua, E-mail: wyh@lzu.edu.cn [Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2016-11-30

    Highlights: • We obtained ZnO nanowire arrays grown on ZnO seed layer on Si with MgO buffer. • FE properties of ZnO nanowire arrays grown on ZnO seed layer on Si with MgO buffer is better than that without MgO buffer. • With MgO buffer, the ZnO seed layer shows lower top-bottom resistance and better electron transport. • The enhanced field emission properties can be attributed to good electron transport in seed layer, good nanowire alignment because of MgO buffer. - Abstract: Field emitters based on ZnO nanowires and other nanomaterials are promising high-brightness electron sources for field emission display, microscopy and other applications. The performance of a ZnO nanowire field emitter is linked to the quality, conductivity and alignment of the nanowires on a substrate, therefore requiring ways to improve these parameters. Here, ZnO nanowire arrays were grown on ZnO seed layer on silicon substrate with MgO buffer between the seed layer and Si. The turn-on field and enhancement factor of these nanowire arrays are 3.79 V/μm and 3754, respectively. These properties are improved greatly compared to those of ZnO nanowire arrays grown on ZnO seed layer without MgO buffer, which are 5.06 V/μm and 1697, respectively. The enhanced field emission properties can be attributed to better electron transport in seed layer, and better nanowire alignment because of MgO buffer.

  12. Structural and optical properties of ZnO nanorods grown chemically on sputtered GaN buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, R.; Joshi, Pranav [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Singh, Devendra; Mohanta, Pravanshu [Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Srinivasa, R.S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Major, S.S., E-mail: syed@iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2014-03-31

    ZnO nanorods were grown on 200 nm thick sputtered ZnO and GaN buffer layers on quartz substrates by chemical bath deposition. Field emission scanning electron microscopy and X-ray diffraction studies show that the ZnO nanorods on GaN buffer layer possess larger diameter and smaller lengths and are vertically misaligned, compared to those grown on ZnO buffer layer. These differences are attributed to lack of complete c-axis orientation of crystallites in GaN buffer layer, its lattice mismatch with that of ZnO and a hindered nucleation process of ZnO on GaN surface, owing to a finite nucleation barrier and limited surface diffusion. Photoluminescence spectrum of ZnO nanorods on GaN buffer layer, however, exhibits a much stronger near-band-edge luminescence and drastically suppressed defect luminescence compared to the luminescence spectrum of the nanorods grown on ZnO buffer layer. Deconvolution of the photoluminescence peaks and Raman studies indicate significant reduction of oxygen vacancies and gallium incorporation in the ZnO nanorods grown on GaN buffer layer. These observations suggest the possibility of exchange reaction mediated by the aqueous medium, particularly during the initial stages of growth. - Highlights: • ZnO nanorods were grown on sputtered GaN buffer layer deposited on quartz. • ZnO nanorods on polycrystalline GaN show limited vertical alignment of c-axis. • ZnO nanorods on GaN show high band edge and negligible defect luminescence. • Raman and photoluminescence studies indicate solution mediated interface reaction.

  13. Effect of bathocuproine buffer layer in small molecule organic solar cells with inverted structure

    Science.gov (United States)

    Hao, Xia; Wang, Shenghao; Sakurai, Takeaki; Akimoto, Katsuhiro

    2015-04-01

    Inverted organic solar cells (OSCs) based on boron subphthalocynine chloride (SubPc) and fullerene (C60) were fabricated and the device structure was optimized by inserting a bathocuproine (C26H20N2) buffer layer. The power conversion efficiency was greatly improved from 0.8 to 1.6%. The roles of bathocuproine in this inverted device were investigated by photoluminescence and transient photovoltage/photocurrent measurements. The results show that the bathocuproine in the device not only blocks the exciton quenching, but also prohibits the build-up of charge trapping and suppresses the trap-assisted recombination.

  14. Investigation of top-emitting OLEDs using molybdenum oxide as anode buffer layer

    Institute of Scientific and Technical Information of China (English)

    LIN Hui; YU Jun-sheng; ZHANG Wei

    2012-01-01

    A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs).In this paper,Ag-based top-emitting OLEDs are investigated.Ag has the highest reflectivity for visible light among all metals,yet its hole-injection properties are not ideal for anodes of top-emitting OLED.The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag.By introducing the molybdenum oxide,the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.

  15. Flexible Substrates with Polyimide Buffer Layers for Organic Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    常春; 王立铎; 李扬; 段炼; 邱勇

    2004-01-01

    We report a new method to enhance the properties of the polyethyleneterephthalate (PET) substrates for flexible organic light-emitting diodes (OLEDs). By spin-coating a polyimide (PI) film between the PET and the indiumtin-oxide anode, the flexible substrate with a smooth surface, high transmission over the visible spectrum and good adhesion are achieved. We also compare the flexible OLEDs on different substrates. The diodes on the substrates with polyimide buffer layers exhibit a brightness of 7280cd/m2 at 15 V and the maximum efficiency of 2.64 cd/A.

  16. Surface plasmon enhanced organic solar cells with a MoO3 buffer layer.

    Science.gov (United States)

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhang, Guang; Zhao, Haifeng; Yang, Haigui; Ma, Yuejia; Chu, Bei; Li, Wenlian

    2013-12-26

    High-efficiency surface plasmon enhanced 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane:C70 small molecular bulk heterojunction organic solar cells with a MoO3 anode buffer layer have been demonstrated. The optimized device based on thermal evaporated Ag nanoparticles (NPs) shows a power conversion efficiency of 5.42%, which is 17% higher than the reference device. The improvement is attributed to both the enhanced conductivity and increased absorption due to the near-field enhancement of the localized surface plasmon resonance of Ag NPs.

  17. A pyridine-functionalized pyrazolinofullerene used as a buffer layer in polymer solar cells.

    Science.gov (United States)

    Yang, Pingao; Chen, Shan; Liu, Yu; Xiao, Zuo; Ding, Liming

    2013-10-28

    A pyridine-functionalized pyrazolinofullerene (1) was synthesized in 42% yield via an improved one-pot reaction of C60, 3,6-di(2-pyridyl)-1,2,4,5-tetrazine, and water. The structure of 1 was unambiguously determined by X-ray diffraction of its single crystal. Due to the coordination capability of the functional groups on fullerene, compound 1 was used as a buffer layer to modify ZnO in inverted polymer solar cells. The power conversion efficiency was improved from 3.65% to 4.18% for inverted P3HT:PC61BM solar cells.

  18. a Novel pt and Npt Mixed Igbt Having a New n-BUFFER Layer

    Science.gov (United States)

    Zhang, Fei; Luo, Shuhua; Zhang, Liang; Wang, Wei; Yu, Wen; Li, Chengfang; Sun, Xiaowei

    For the first time, a novel mixed insulated gate bipolar transistor (MIGBT) is proposed and verified by two-dimensional (2D) mixed device-circuit simulations. The structure of the proposed device is almost identical with that of the conventional IGBT, except for the buffer layer which is formed by employing the n+/n- structure, so that the trade-off relation between the conduction and switching losses is greatly improved and efficiently decoupled. Furthermore, the proposed device exhibits larger forward blocking voltage and positive temperature coefficient of the forward voltage drop, facilitating parallel integration.

  19. Heterointegration of III-V on silicon using a crystalline oxide buffer layer

    Science.gov (United States)

    Bhatnagar, K.; Rojas-Ramirez, J. S.; Contreras-Guerrero, R.; Caro, M.; Droopad, R.

    2015-09-01

    The integration of III-V compound semiconductors with Si can combine the cost advantage and maturity of Si technology with the superior performance of III-V materials. We have achieved the heteroepitaxial growth of III-V compound semiconductors on a crystalline SrTiO3 buffer layer grown on Si(0 0 1) substrates. A two-step growth process utilizing a high temperature nucleation layer of GaAs, followed by a low-temperature GaAs layer at a higher growth rate was employed to achieve highly crystalline thick GaAs layers on the SrTiO3/Si substrates with low surface roughness as seen by AFM. The effect of the GaAs nucleation layer on different surface terminations for the SrTiO3 layer was studied for both on axis and miscut wafers, which led to the conclusion that the Sr terminated surface on miscut substrates provides the best GaAs films. Using GaAs/STO/Si as virtual substrates, we have optimized the growth of high quality GaSb using the interfacial misfit (IMF) dislocation array technique. This work can lead to the possibility of realizing infrared detectors and next-generation high mobility III-V CMOS within the existing Si substrate infrastructure.

  20. Cu(In,Ga)Se{sub 2} solar cells with double layered buffers grown by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.Q.; Shi, J.H.; Zhang, D.W.; Liu, Q.Q.; Sun, Z.; Chen, Y.W. [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062 (China); Yang, Z. [Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, S.M., E-mail: engp5591@yahoo.com [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062 (China)

    2011-10-31

    In based mixture In{sub x}(OH,S){sub y} buffer layers deposited by chemical bath deposition technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. We report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)Se{sub 2} (CIGS) absorber and CdS or ZnS buffer by addition of a thin In based mixture layer. It is shown that the presence of thin In{sub x}(OH,S){sub y} at the CIGS absorber/CdS or ZnS buffer interfaces greatly improve the solar cell performances. The performances of CIGS cells using dual buffer layers composed of In{sub x}(OH,S){sub y}/CdS or In{sub x}(OH,S){sub y}/ZnS increased by 22.4% and 51.6%, as compared to the single and standard CdS or ZnS buffered cells, respectively.

  1. Growth of Semi-Insulating GaN by Using Two-Step A1N Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhong-Tang; QUO Li-Wei; XING Zhi-Gang; DING Guo-Jian; ZHANG Jie; PENG Ming-Zeng; JIA Hai-Qiang; CHEN Hong; ZHOU Jun-Ming

    2007-01-01

    Semi-insulating GaN is grown by using a two-step A1N buffer layer by metalorganic chemical vapour deposition. The sheet resistance of as-grown semi-insulating GaN is dramatically increased to 1013 Ω/sq by using two-step A1N buffer instead of the traditional low-temperature GaN buffer. The high sheet resistance of as-grown GaN over 10 Ωfi/sq is due to inserting an insulating buffer layer (two-step A1N buffer) between the high-temperature GaN layer and a sapphire substrate which blocks diffusion of oxygen and overcomes the weakness of generating high density carrier near interface of GaN and sapphire when a low-temperature GaN buffer is used. The result suggests that the high conductive feature of unintentionally doped GaN is mainly contributed from the highly conductive channel near interface between GaN and the sapphire substrate, which is indirectly manifested by room-temperature photoluminescence excited by an incident laser beam radiating on growth surface and on the substrate. The functions of the two-step A1N buffer layer in reducing screw dislocation and improving crystal quality of GaN are also discussed.

  2. Dark Current Characteristics of a Radiation Detector Array Developed Using MOVPE-Grown Thick CdTe Layers on Si Substrate

    Science.gov (United States)

    Yasuda, K.; Niraula, M.; Fujimura, N.; Tachi, T.; Inuzuka, H.; Namba, S.; Muramatsu, S.; Kondo, T.; Agata, Y.

    2012-10-01

    We present reverse bias current (dark current) characteristics of a two-dimensional monolithic pixel-type nuclear radiation detector array fabricated using metalorganic vapor-phase epitaxy (MOVPE)-grown thick CdTe epitaxial layers on Si substrate. The (14 × 8) pixel array was formed by cutting deep vertical trenches using a dicing saw, where each pixel possesses a p-CdTe/ n-CdTe/ n +-Si heterojunction diode structure. The dark currents showed pixel-to-pixel variations when measured at higher applied biases exceeding 100 V. The dark current had a dependence on the pixel thickness, where pixels with lower CdTe thickness exhibited higher currents. Moreover, the temperature dependence of the dark current revealed that a deep level with activation energy of around 0.6 eV is responsible for the observed dark currents and their pixel-to-pixel variation. We discuss that the effective ratio of Te to Cd at the growth surface is a major factor that controls the thickness variation, and is also responsible for the formation of 0.6 eV deep levels.

  3. Post-growth CdCl₂ treatment on CdTe thin films grown on graphene layers using a close-spaced sublimation method.

    Science.gov (United States)

    Jung, Younghun; Yang, Gwangseok; Chun, Seungju; Kim, Donghwan; Kim, Jihyun

    2014-05-05

    We investigated the morphological, structural and optical properties of CdCl₂-treated cadmium telluride (CdTe) thin films deposited on defective graphene using a close-spaced sublimation (CSS) system. Heat treatment in the presence of CdCl₂ caused recrystallization of CSS-grown CdTe over the as-deposited structures. The preferential (111) orientation of as-deposited CdTe films was randomized after post-growth CdCl₂ treatment. New small grains (bumps) on the surface of CdCl₂-treated CdTe films were ascribed to nucleation of the CdTe grains during the CdCl₂ treatment. The properties of as-deposited and CdCl₂-treated CdTe films were characterized by room temperature micro-photoluminescence, micro-Raman spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. Our results are useful to demonstrate a substrate configuration CdTe thin film solar cells.

  4. Effect of buffer-layered buttering on microstructure and mechanical properties of dissimilar metal weld joints for nuclear plant application

    Energy Technology Data Exchange (ETDEWEB)

    Rathod, Dinesh W., E-mail: dineshvrathod@gmail.com [Department of Mechanical Enggineering, Indian Institute of Technology Delhi, Hauz-khas, New Delhi 110016 (India); Singh, P.K. [Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Sunil; Aravindan, S. [Department of Mechanical Enggineering, Indian Institute of Technology Delhi, Hauz-khas, New Delhi 110016 (India)

    2016-06-01

    In this study, we present the metallurgical and mechanical investigation of four dissimilar welds between SA508Gr.3Cl.1 and SS304LN. The welding processes for buttering deposition and fill-pass welding were varied with ERNiCr-3/ENiCrFe-3 consumables. The Ni-Fe alloy buffer layer was introduced as intermediate layer in buttering and then the joints (with and without buffer layer in buttering) were fabricated. The effect of Ni-Fe buffer layered buttering and welding processes on the resulting weld joints properties has been addressed. Metallurgical and mechanical properties, fracture toughness were measured and various examinations were carried out for integrity assessment on all the weld joints. Addition of a Ni-Fe buttering layer leads to the development of more favourable properties than observed in welded joints made using the current practice without a buffer layer. Control of carbon migration and its subsequent effect on metallurgical, mechanical properties due to buffer layer has been justified in the study. Conventional procedure of DMW fabrication has been proven to be the least favourable against the new technique suggested. Modification in current integrity assessment procedure would be possible by considering the properties at interfacial regions, introduction of yield strength ratio mismatch and the plastic instability strength in the integrity assessment.

  5. Uncovering the role of cathode buffer layer in organic solar cells

    Science.gov (United States)

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL.

  6. Stability of optimal streaks in the buffer layer of a turbulent channel flow with variable viscosity

    Science.gov (United States)

    Patel, Ashish; Rinaldi, Enrico; Pecnik, Rene; Schlatter, Philipp; Bagheri, Shervin

    2016-11-01

    Direct Numerical Simulations (DNS) of turbulent channel flows with variable viscosity (Patel et al., 2015, PoF) show that low speed streaks in the buffer layer strengthen and are stabilized for increasing viscosity away from the wall, as they do not lift and tilt as intensely as in a constant property flow. The opposite holds for cases where viscosity decreases away from the wall. In this work, we investigate the above observation by studying the linear stability of the mean turbulent velocity profile obtained from DNS of variable viscosity flows. Examples of such studies for constant property turbulent flows include work of del Alamo & Jiménez, 2006, JFM and Pujals et al., 2009, PoF. The calculated optimal buffer layer streaks show larger transient energy growth for a case where the viscosity increases away from the wall. We further study the stability of the saturated optimal streaks by imposing a secondary sinuous perturbation and by following the nonlinear evolution of the structures in time. The present investigation will improve the understanding of the near-wall turbulence cycle for wall-bounded turbulent flows with viscosity gradients.

  7. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    Science.gov (United States)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  8. Buffer layers on metal surfaces having biaxial texture as superconductor substrates

    Science.gov (United States)

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  9. Experimental and theoretical investigations of special type coil heat exchanger with the nanofluid buffer layer

    Directory of Open Access Journals (Sweden)

    Smusz Robert

    2017-01-01

    Full Text Available The paper presents the results of experimental and theoretical investigations of special type of coil heat exchanger. The tested device is equipped with three vertical coils and the temperature stratification system. Water is a heating medium in two coils. The refrigerant transferring the waste heat from air conditioning system is the heating medium in the third coil. The finned pipe of this coil has a double wall in which the annular buffer layer with nanofluid is mounted. Thermophysical properties of the applied water based Cu nanofluid cause the enhancement of heat transfer through the buffer layer. The paper presents thermal characteristics of the exchanger received on the basis of measurements performed on the industrial test stand. Measurements were conducted during the operation of the coil with refrigerant. Heat loss to the surroundings, distributions of water temperature in the storage tank, changes of water temperature in time and thermal power of the coil heat exchanger were obtained. The measurement results were compared with those received on the basis of theoretical analysis of the exchanger.

  10. Copper variation in Cu(In,Ga)Se{sub 2} solar cells with indium sulphide buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Spiering, S., E-mail: stefanie.spiering@zsw-bw.de [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Paetel, S.; Kessler, F. [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Igalson, M.; Abdel Maksoud, H. [Warsaw University of Technology (WUT), Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland)

    2015-05-01

    In the manufacturing of Cu(In,Ga)Se{sub 2} (CIGS) thin film solar cells the application of a buffer layer on top of the absorber is essential to obtain high efficiency devices. Regarding the roll-to-roll production of CIGS cells and modules a vacuum deposition process for the buffer is preferable to the conventional cadmium sulphide buffer deposited in a chemical bath. Promising results have already been achieved for the deposition of indium sulphide buffer by different vacuum techniques. The solar device performance is very sensitive to the conditions at the absorber-buffer heterojunction. In view of optimization we investigated the influence of the Cu content in the absorber on the current-voltage characteristics. In this work the integral copper content was varied between 19 and 23 at.% in CIGS on glass substrates. An improvement of the cell performance by enhanced open circuit voltage was observed for a reduction to ~ 21 at.% when thermally evaporated indium sulphide was applied as the buffer layer. The influence of stoichiometry deviations on the transport mechanism and secondary barriers in the device was studied using detailed dark and light current-voltage analysis and admittance spectroscopy and compared to the reference CdS-buffered cells. We conclude that the composition of the absorber in the interface region affects current transport in In{sub x}S{sub y}-buffered and CdS-buffered cells in different ways hence optimal Cu content in those two types of devices is different. - Highlights: • Influence of Cu-variation in CIGS cells with In{sub x}S{sub y} buffer layer on cell performance • Enhanced efficiency by slight reduction of Cu-content to 21 at.% • Contribution of tunnelling-enhanced interface recombination for higher Cu-content.

  11. MIS and MFIS Devices: DyScO3 as a gate-oxide and buffer-layer

    Science.gov (United States)

    Melgarejo, R.; Karan, N. K.; Saavedra-Arias, J.; Pradhan, D. K.; Thomas, R.; Katiyar, R. S.

    2008-03-01

    Metal-Ferroelectric-Insulator-Semiconductor (MFIS) structure is of importance in nonvolatile memories, as insulating buffer layer that prevents interdiffusion between the ferroelectric (FE) and the Si substrate. However, insulating layer has some disadvantages viz. generation of depolarization field in FE film and increase of operation voltage. To overcome this, it is important to find a FE with low ɛr (compared to normal FE) and an insulating buffer layer with high ɛr (compared to ɛr = 3.9 of SiO2). High-k materials viz. LaAlO3, SiN, HfO2, HfAlO etc. have been studied as buffer layers in the MFIS structures and as gate-oxide in metal-insulator-silicon (MIS). Recently, a novel gate dielectric material, DyScO3 was considered and studies indicate that crystallization temperature significantly increased and the film on Si remained amorphous even at 1000 C annealing. Considering the requirements on crystallization temperature, ɛr, electrical stability for high-k buffer layers, DyScO3 seems to be very promising for future MFIS device applications. Therefore, the evaluations of MOCVD grown DyScO3 as gate-oxide for MIS and the buffer layers for Bi3.25La0.75Ti3O12 based MFIS structures are presented.

  12. Optimal Cu buffer layer thickness for growing epitaxial Co overlayers on Si(111)7 x 7

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu. P.; Zotov, A. V. [School of Natural Science, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Institute of Automation and Control Processes, 690041 Vladivostok (Russian Federation); Ilin, A. I.; Davydenko, A. V. [School of Natural Science, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2011-10-15

    Using scanning tunneling microscopy, reflection high energy diffraction and magnetic optical Kerr effect measurements, growth mode and the magnetic properties of epitaxial Co films on Si(111) with epitaxial Cu(111) buffer layers of various thicknesses have been studied. The strained 3.5-monolayer-thick Cu/Si(111) film has been found to be an optimal buffer, in which case an almost ideal layer-by-layer like growth of Co is observed up to six Co monolayers, due to a negligible lattice mismatch. The coercivity of Co films grown in this layer-by-layer like fashion has been determined to be about 10 Oe, testifying to the high quality of the formed Co film and Co/Cu interface. Changeover of the Co film growth mode from layer-by-layer like to multilayer has been found to result in the transition of the film magnetic properties from isotropic to markedly uniaxially anisotropic.

  13. Improved Performance of Organic Light-Emitting Diodes with MgF2 as the Anode Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    XIE Jing; ZHANG De-Qiang; WANG Li-Duo; DUAN Lian; QIAO Juan; QIU Yong

    2006-01-01

    @@ Organic light-emitting diodes (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) and tris (8-hydroxyquinoline) aluminium (Alq3) are improved by using a thin MgF2 buffer layer sandwiched between the indium tin oxide (ITO) anode and hole transporting layer (HTL) of NPB.

  14. Performance improvement of MEH-PPV:PCBM solar cells using bathocuproine and bathophenanthroline as the buffer layers

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Dong; Xu Xu-Rong; Zhao Su-Ling; Xu Zheng; Zhang Fu-Jun; Zhang Tian-Hui; Gong Wei; Yan Guang; Kong Chao; Wang Yong-Sheng

    2011-01-01

    In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-l,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-nm BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in scries resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.

  15. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  16. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates.

    Science.gov (United States)

    Liu, Yi; Wang, Nanyi; Pan, Jia Hong; Steinbach, Frank; Caro, Jürgen

    2014-10-15

    We develop here a urea hydrolysis method to in situ prepare asymmetric ZnAl-CO3 layered double hydroxide (LDH) buffer layers with various stable equilibrium morphology on porous Al2O3 substrates. In particular it is found that well-intergrown ZIF-8 membranes can be directly synthesized on the ZnAl-CO3 LDH buffer layer-modified substrates, owing to the specific metal-imidazole interaction between ZnAl-CO3 LDHs and ZIF-8. Other Zn-based MOF membranes, like ZIF-7 and ZIF-90, can also be synthesized with this method. Our finding demonstrates that LDH buffer layer represents a new concept for substrate modification.

  17. Role of the buffer layer in the active junction in amorphous-crystalline silicon heterojunction solar cells

    Science.gov (United States)

    Pallarès, J.; Schropp, R. E. I.

    2000-07-01

    We fabricated pn and pin a-SiC:H/c-Si heterojunction solar cells following two different processes. In the first approach, wafers were subjected to an extra atomic hydrogen (produced by hot wire chemical vapor deposition) prior to the deposition of the amorphous layer. A reduction in the open-circuit voltage was observed for the passivated cells due to their higher leakage current. In the second process, pin solar cells with two different quality intrinsic a-Si:H buffer layers were fabricated using plasma enhanced chemical vapor deposition. The cells with a device quality buffer layer (deposited at higher temperature) showed better performance than those with a buffer layer with high hydrogen content and higher defect density (deposited at lower temperatures).

  18. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers; Filmes finos de carbono depositados por meio da tecnica de magnetron sputtering usando cobalto, cobre e niquel como buffer-layers

    Energy Technology Data Exchange (ETDEWEB)

    Costa e Silva, Danilo Lopes

    2015-11-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  19. A Comparative Study on the Optical Properties of Multilayer CdSe / CdTe Thin Film with Single Layer CdTe and CdSe Films

    Directory of Open Access Journals (Sweden)

    M. Melvin David Kumar

    2013-07-01

    Full Text Available CdTe and CdSe single layer thin films and CdSe / CdTe multilayer (ML thin film were prepared by using physical vapour deposition method. Optical properties of CdSe / CdTe multilayer thin film shows different behavior due to type II band structure alignment. Energy band gap value of CdSe / CdTe ML thin film is shifted to higher value than that of single layer CdTe film. This is due to decrease in crystallite size to dimension smaller than the Bohr exciton radius of CdTe (14 nm. Crystallite size of the multilayer sample was calculated with the predictions of the effective mass approximation model (i.e., Brus model. It is observed that the photoluminescence peak of CdSe / CdTe ML thin film is red shifted compared to the peaks corresponding to individual CdSe and CdTe thin films. This may be due to the presence of type II quantum dot formation in the CdSe / CdTe heterostructure multilayer thin film.

  20. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  1. Compact hematite buffer layer as a promoter of nanorod photoanode performances

    Science.gov (United States)

    Milan, R.; Cattarin, S.; Comisso, N.; Baratto, C.; Kaunisto, K.; Tkachenko, N. V.; Concina, I.

    2016-10-01

    The effect of a thin α-Fe2O3 compact buffer layer (BL) on the photoelectrochemical performances of a bare α-Fe2O3 nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-Fe2O3 nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.

  2. GZO/MgO IBAD-buffer layers for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, S. [Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan)], E-mail: s_hanyu@fujikura.co.jp; Miura, T.; Iijima, Y.; Igarashi, M.; Hanada, Y.; Fuji, H.; Kakimoto, K. [Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan); Kato, T.; Hirayama, T. [Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 (Japan); Saitoh, T. [Fujikura Ltd., 1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan)

    2008-09-15

    Long-length and low-cost coated conductors are necessary for practical use such as motor, generator, transformer, fault current limiter, SMES and so on. For fabricating low-cost coated conductors, production speeds at each process should be faster. The structure of coated conductor we adopted, is GdBa{sub 2}Cu{sub 3}O{sub y}(GdBCO)/CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} (GZO)/metal. To make processes faster without changing such beneficial structures, we adopted another buffer layer under GZO film. At the IBAD (ion-beam-assisted deposition) process, MgO is known as one of the suitable materials to achieve high alignment with thin film thickness. We fabricated IBAD-MgO film with changing deposition rates and ion-current densities, and got two types of IBAD-MgO film. One is the film with its crystal orientation aligned to the MgO(1 1 1) parallel to the tape surface, and the other is with MgO(1 0 0). And each film has in-plane texture such that 3-fold symmetry, and 4-fold symmetry respectively in the pole figure of MgO<1 1 0>. We performed IBAD-GZO on the 3-fold IBAD-MgO film, and got 4-fold IBAD-GZO film. In-plane textures of GZO were not so different from the ordinary IBAD-GZO film, but the thickness of the films became from 1.2 {mu}m to 0.3 {mu}m (1/4). And a critical current of the GdBCO film on the buffer layer was over 210 A/cm (J{sub c} > 1.5 MA/cm{sup 2}) at 77 K.

  3. Atmospheric spatial atomic layer deposition of Zn(O,S) buffer layer for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Frijters, C.H.; Poodt, P.; Illeberi, A.

    2016-01-01

    Zinc oxysulfide has been grown by spatial atomic layer deposition (S-ALD) and successfully applied as buffer layer in Cu(In, Ga)Se2 (CIGS) solar cells. S-ALD combines high deposition rates (up to nm/s) with the advantages of conventional ALD, i.e. excellent control of film composition and superior u

  4. Effect of Al2O3 Buffer Layers on the Properties of Sputtered VO2 Thin Films

    Science.gov (United States)

    Zhang, Dainan; Wen, Tianlong; Xiong, Ying; Qiu, Donghong; Wen, Qiye

    2017-07-01

    VO2 thin films were grown on silicon substrates using Al2O3 thin films as the buffer layers. Compared with direct deposition on silicon, VO2 thin films deposited on Al2O3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al2O3/VO2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C- V measurement result indicates that the phase transformation of VO2 thin films can be induced by an electrical field.

  5. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  6. Solution-dispersed CuO nanoparticles anode buffer layer: Effect of ultrasonic agitation duration on photovoltaic performance

    Science.gov (United States)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji

    2016-11-01

    The performance of inverted type hybrid organic solar cell based on poly(3-hexyltheopene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) can be improved by adding an anode buffer layer of copper oxide (CuO). CuO that serves as an electron blocking layer which could effectively reduce the charge recombination at the photoactive layer (P3HT:PCBM)/silver (Ag) interfaces. At the same time, Cuo anode buffer layer could accelerate the holes collection from the photoactive layer to the top electrode. In this study we investigated the effects of ultrasonic agitation duration in preparation of solution-dispersed CuO anode buffer layer on the performance of the devices with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorod arrays/P3HT:PCBM/ CuO/Ag. Different durations of ultrasonic agitation (0, 5, 15 and 25 min) were used for CuO nanoparticles solution dispersion to obtain the optimum particle size distribution of CuO. It was found that the smallest average particle size of CuO was obtained by applying the ultrasonic agitation for longest duration of 25 min. The highest power conversion efficiency of 1.22% was recorded from the device incorporating with CuO anode buffer layer with the smallest average particle size. It is believed that CuO anode buffer layer with the smallest average particle size had the least agglomerates, thus leading to better film formation and contact surface area.

  7. Planarization and Processing of Metamorphic Buffer Layers Grown by Hydride Vapor-Phase Epitaxy

    Science.gov (United States)

    Zutter, Brian T.; Schulte, Kevin L.; Kim, Tae Wan; Mawst, Luke J.; Kuech, T. F.; Foran, Brendan; Sin, Yongkun

    2014-04-01

    Hydride vapor-phase epitaxy (HVPE) is a high-growth-rate, cost-effective means to grow epitaxial semiconductor material. Thick HVPE-based metamorphic buffer layers (MBLs) can serve as "pseudosubstrates" with controllable lattice parameter. In our structures, the indium content in In x Ga1- x As is gradually increased from zero to the final composition corresponding to the desired lattice constant, and then a thick (˜10 μm) constant-composition capping layer is grown. This thick capping layer promotes maximum strain relaxation while permitting use of polishing procedures to achieve surface planarity. Lattice-mismatched growth of MBLs invariably results in rough, cross-hatched surface morphology exhibiting up to 200 nm peak-to-valley roughness. This roughness can be eliminated by chemical mechanical planarization, thus creating a suitable surface for subsequent regrowth. Polishing of In x Ga1- x As is complicated by the sensitivity of the surface layer to the polishing parameters, particularly the applied pressure. Polishing at high applied pressure (12 psi) results in the formation of circular asperities hundreds of nanometers high and tens of microns in diameter. When lower applied pressure (4 psi) was used, the cross-hatching height of MBLs was lowered from 200 nm to <10 nm over a 350 μm lateral scale. The successfully planarized In0.20Ga0.80As MBLs were used as a substrate for a superlattice (SL) structure such as that used in quantum cascade lasers. Use of planarization before regrowth of the SL resulted in a reduction of the high-resolution x-ray diffraction peak full-width at half-maximum from 389″ to 159″.

  8. Effects of buffer layer and thermal annealing on the performance of hybrid Cu2S/PVK electrically bistable devices

    Science.gov (United States)

    Li, Xu; Lu, Yue; Guan, Li; Li, Jiantao; Wang, Yichao; Dong, Guoyi; Tang, Aiwei; Teng, Feng

    2016-09-01

    Hybrid organic/inorganic electrically bistable devices (EBDs) based on Cu2S/PVK nanocomposites have been fabricated by using a simple spin-coating method. An obvious electrical bistability is observed in the current-voltage (I-V) characteristics of the devices, and the presence of the buffer layer and the annealing process have an important effect on the enhancement of the ON/OFF current ratios. Different electrical conduction mechanisms are responsible for the charge switching of the devices in the presence and absence of the buffer layer.

  9. Metalorganic vapor phase epitaxy of GaAs on Si using II a-flouride buffer layers

    Science.gov (United States)

    Tiwari, A. N.; Freundlich, A.; Beaumont, B.; Blunier, S.; Zogg, H.; Teodoropol, S.; Vèrié, C.

    1992-11-01

    Metalorganic vapor phase epitaxy has been used for the first time to grow epitaxial GaAs layers on (111) and (100) oriented Si either using CaF 2 or stacked (Ca,Sr)F 2/CaF 2 as a buffer. The GaAs layers show sharp and well resolved electron channeling patterns. The Rutherford backscattering (RBS) ion channeling minimum yield is 5% for (111) orientation and 6% for (100) orientation. The GaAs(111) layers are untwinned. The strain in the GaAs layer has been measured with RBS and X-ray diffraction and it is found that the thermal mismatch-induced strain in the GaAs layer is considerably lower than in similar GaAs films grown without flouride buffer.

  10. Characteristics of GaN-based light emitting diodes with different thicknesses of buffer layer grown by HVPE and MOCVD

    Science.gov (United States)

    Tian, Pengfei; Edwards, Paul R.; Wallace, Michael J.; Martin, Robert W.; McKendry, Jonathan J. D.; Gu, Erdan; Dawson, Martin D.; Qiu, Zhi-Jun; Jia, Chuanyu; Chen, Zhizhong; Zhang, Guoyi; Zheng, Lirong; Liu, Ran

    2017-02-01

    GaN-based light emitting diodes (LEDs) have been fabricated on sapphire substrates with different thicknesses of GaN buffer layer grown by a combination of hydride vapor phase epitaxy and metalorganic chemical vapor deposition. We analyzed the LED efficiency and modulation characteristics with buffer thicknesses of 12 μm and 30 μm. With the buffer thickness increase, cathodoluminescence hyperspectral imaging shows that the dislocation density in the buffer layer decreases from  ∼1.3  ×  108 cm‑2 to  ∼1.0  ×  108 cm‑2, and Raman spectra suggest that the compressive stress in the quantum wells is partly relaxed, which leads to a large blue shift in the peak emission wavelength of the photoluminescence and electroluminescent spectra. The combined effects of the low dislocation density and stress relaxation lead to improvements in the efficiency of LEDs with the 30 μm GaN buffer, but the electrical-to-optical modulation bandwidth is higher for the LEDs with the 12 μm GaN buffer. A rate equation analysis suggests that defect-related nonradiative recombination can help increase the modulation bandwidth but reduce the LED efficiency at low currents, suggesting that a compromise should be made in the choice of defect density.

  11. IBAD-MgO buffer layers for coated conductors in the large-scale system

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, S., E-mail: s_hanyu@fujikura.co.j [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550 (Japan); Tashita, C.; Hanada, Y.; Hayashida, T.; Kutami, H.; Igarashi, M.; Fuji, H.; Kakimoto, K.; Iijima, Y.; Saitoh, T. [Fujikura Ltd., 1440, Mutsuzaki, Sakura, Chiba 285-8550 (Japan)

    2009-10-15

    For practical applications of high-temperature superconductor tape, the high production rate of tapes is needed to reduce its cost. Recently, the long-length coated conductor with high performance has been fabricated by an ion beam assisted deposition/pulsed laser deposition (IBAD/PLD) method in Fujikura. In IBAD process, we adopted IBAD-Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) film. The process speed of IBAD-GZO film was increased up to 5 m/h using a polished metal substrate tape. To fabricate biaxially-textured buffer layers at a higher rate, we have started to develop another structures such as (a) IBAD-GZO/IBAD-MgO (3-fold symmetry) and (b) IBAD-MgO (4-fold symmetry). In the case (a), we fabricated GdBCO/CeO{sub 2}/IBAD-GZO/IBAD-MgO tape and the critical current was I{sub c} = 550 A/cm (2.46 MA/cm{sup 2}) and throughput of IBAD processes were 20 m/h. In the case (b), IBAD-MgO short samples with DELTAPHI of 9 deg. - 11 deg. were obtained at 500 m/h. The 500 m/h (10 mm width) is extremely high rate in IBAD process in the world. As long-length IBAD layer 10 m, 50 m and 100 m IBAD-MgO films were fabricated at the speed of 100 m/h. After CeO{sub 2} deposition, in-plane textures of these samples were DELTAPHI of 3.7 deg.-3.7 deg., 4.1 deg.-4.9 deg. and 4.2 deg.-4.8 deg. Using some of these buffer layers, we have obtained GdBCO film with I{sub c} = 400 A/cm (2 MA/cm{sup 2}, 10 m) and I{sub c} = 550 A/cm (2.7 MA/cm{sup 2}, short sample).

  12. Matrix effects in SIMS depth profiles of SiGe relaxed buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Almazan, F.; Napolitani, E.; Carnera, A.; Drigo, A.V.; Isella, G.; Kaenel, H. von; Berti, M

    2004-06-15

    The combined use of Rutherford backscattering spectrometry and secondary ion mass spectroscopy allowed a complete characterization of a set of SiGe relaxed buffer layers grown by low-energy plasma-enhanced chemical vapor deposition. The Ge contents for the top SiGe constant composition layers have been obtained by RBS. Matrix effects have been studied by using monoatomic and biatomic ions as well as low and high energy O{sub 2}{sup +} and Cs{sup +} primary beam ions. We show that matrix effects are suppressed when an O{sub 2}{sup +} primary beam ion source is used at 3 keV, and when detecting with {sup 30}Si{sup +} and {sup 70}Ge{sup +} secondary ions for Ge contents <0.47. For higher Ge contents a better compromise is achieved with Cs{sup +} bombardment at 14.5 keV when detecting with {sup 74}Ge{sup 76}Ge{sup -} secondary ions. The procedure allows to extract the Ge concentration profiles with good accuracy even at very high depths and at very low Ge concentrations.

  13. Graphene as a Buffer Layer for Silicon Carbide-on-Insulator Structures

    Directory of Open Access Journals (Sweden)

    Kanji Yasui

    2012-11-01

    Full Text Available We report an innovative technique for growing the silicon carbide-on-insulator (SiCOI structure by utilizing polycrystalline single layer graphene (SLG as a buffer layer. The epitaxial growth was carried out using a hot-mesh chemical vapor deposition (HM-CVD technique. Cubic SiC (3C-SiC thin film in (111 domain was realized at relatively low substrate temperature of 750 °C. 3C-SiC energy bandgap of 2.2 eV was confirmed. The Si-O absorption band observed in the grown film can be caused by the out-diffusion of the oxygen atom from SiO2 substrate or oxygen doping during the cleaning process. Further experimental works by optimizing the cleaning process, growth parameters of the present growth method, or by using other growth methods, as well, are expected to realize a high quality SiCOI structure, thereby opening up the way for a breakthrough in the development of advanced ULSIs with multifunctionalities.

  14. Enhancing electrochemical performance by control of transport properties in buffer layers--solid oxide fuel/electrolyser cells.

    Science.gov (United States)

    Ramasamy, Devaraj; Nasani, Narendar; Brandão, Ana D; Pérez Coll, Domingo; Fagg, Duncan P

    2015-05-01

    The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-δ + 2 mol% Co buffer layers (where R = Gd, Pr) with Nd2NiO4+δ electrodes were fabricated by spin coating on dense YSZ electrolyte supports. Dramatic decreases in polarization resistance, Rp, of up to an order of magnitude, could be achieved in the order, Pr ≪ Gd layer. The current article shows how this improvement can be related to increased levels of ambipolar conductivity in the mixed conducting buffer layer, which provides an additional parallel path for electrochemical reaction. This is an important breakthrough as it shows how electrode polarization resistance can be substantially improved, in otherwise identical electrochemical cells, solely by tailoring the transport properties of thin intermediate buffer layers.

  15. Improved Efficiency of Flexible Organic Light-Emitting Diodes by Insertion of Ultrathin SiO2 Buffer Layers

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2013-01-01

    Full Text Available An ultrathin hole-injection buffer layer (HBL using silicon dioxide (SiO2 by electron beam evaporation in flexible organic light-emitting diode (FOLED has been fabricated. While the current of the device at constant driving voltage decreases as increasing SiO2 thickness. Compared to the different thicknesses of the buffer layer, the FOLED with the buffer layer of 4 nm showed the highest luminous efficiency. The atomic force microscopy (AFM investigation of indium tin oxide (ITO/SiO2 topography reveals changes at the interface between SiO2 and N,N′-bis-(1-naphthl-diphenyl-1,1′-bipheny-4,4′-diamine (NPB, resulting in ultrathin SiO2 layers being a clear advantage for a FOLED. However, the SiO2 can be expected to be a good buffer layer material and thus enhance the emission performance of the FOLED.

  16. Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics.

    Science.gov (United States)

    Alonzo, José; Kochemba, W Michael; Pickel, Deanna L; Ramanathan, Muruganathan; Sun, Zhenzhong; Li, Dawen; Chen, Jihua; Sumpter, Bobby G; Heller, William T; Kilbey, S Michael

    2013-10-01

    Buffer layers that control electrochemical reactions and physical interactions at electrode/film interfaces are key components of an organic photovoltaic cell. Here the structure and properties of layers of semi-rigid poly(3-hexylthiophene) (P3HT) chains tethered at a surface are investigated, and these functional systems are applied in an organic photovoltaic device. Areal density of P3HT chains is readily tuned through the choice of polymer molecular weight and annealing conditions, and insights from optical absorption spectroscopy and semiempirical quantum calculation methods suggest that tethering causes intrachain defects that affect co-facial π-stacking of brush chains. Because of their ability to modify oxide surfaces, P3HT brushes are utilized as an anode buffer layer in a P3HT-PCBM (phenyl-C₆₁-butyric acid methyl ester) bulk heterojunction device. Current-voltage characterization shows a significant enhancement in short circuit current, suggesting the potential of these novel nanostructured buffer layers to replace the PEDOT:PSS buffer layer typically applied in traditional P3HT-PCBM solar cells.

  17. Effects of the buffer layer inserted between the transparent conductive oxide anode and the organic electron donor

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, A.; Kouskoussa, B.; Benchouk, K.; Khelil, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L.; Soto, G.M. [Universite de Nantes, Nantes Atlantique Universites, Institut des Materiaux Jean Rouxel (IMN)-CNRS, Faculte des Sciences et Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Toumi, L. [LPCM2E, Universite d' Oran Es-Senia, LPCM2E (Algeria); Diaz, F.R.; del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M.; Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, Faculte des Sciences et Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France)

    2010-04-15

    In optoelectronic devices, the work function of the transparent conductive oxide, which is used as anode, does not match well the highest occupied molecular orbital of the organic material, which induces the formation of a barrier opposed to hole exchange at this interface. Therefore a thin buffer layer is often used to achieve good matching of the band structure at the interface. From experimental results it can be deduced that the main effects of the buffer layer consist in a better matching of the band structure at the interface anode/organic material and in a more homogeneous organic layer growth. We show that, whatever the nature of the buffer layer-metal, oxide, organic material - the classical Schottky-Mott model allows to anticipate, at least roughly, the behaviour of the contact, even if some dipole effect are often present. A good correlation between the ''metal/buffer layer'' work function and the barrier {phi}{sub b} for hole exchange at anode/organic electron donor interfaces is obtained, as expected by the model. (author)

  18. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping 58183 (Sweden); Bergsten, J.; Rorsman, N. [Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg 41296 (Sweden)

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  19. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    Science.gov (United States)

    Li, X.; Bergsten, J.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Rorsman, N.; Janzén, E.; Forsberg, U.

    2015-12-01

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 1018 cm-3) epitaxial layer closest to the substrate and a lower doped layer (3 × 1016 cm-3) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 1018 cm-3) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  20. Superconducting YBa2Cu3O(7-delta) thin films on GaAs with conducting indium-tin-oxide buffer layers

    Science.gov (United States)

    Kellett, B. J.; Gauzzi, A.; James, J. H.; Dwir, B.; Pavuna, D.

    1990-12-01

    Superconducting YBa2Cu3O(7-delta) (YBCO) thin films have been grown in situ on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 milliohm cm.

  1. Simple solution-processed CuO{sub X} as anode buffer layer for efficient organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Yang, Chunpeng [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Sun, Liang; Wang, Ning [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Tang, Jianguo [Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Yang, Renqiang, E-mail: yangrq@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Simple solution-processed CuO{sub X} hole transport layer for efficient organic solar cell. • Good photovoltaic performances as hole transport layer in OSCs with P3HT and PBDTTT-C as donor materials. • The device with CuO{sub X} as hole transport layer shows great improved stability compared with that of device with PEDOT:PSS as hole transport layer. - Abstract: A simple, solution-processed ultrathin CuO{sub X} anode buffer layer was fabricated for high performance organic solar cells (OSCs). XPS measurement demonstrated that the CuO{sub X} was the composite of CuO and Cu{sub 2}O. The CuO{sub X} modified ITO glass exhibit a better surface contact with the active layer. The photovoltaic performance of the devices with CuO{sub X} layer was optimized by varying the thickness of CuO{sub X} films through changing solution concentration. With P3HT:PC{sub 61}BM as the active layer, we demonstrated an enhanced PCE of 4.14% with CuO{sub X} anode buffer layer, compared with that of PEDOT:PSS layer. The CuO{sub X} layer also exhibits efficient photovoltaic performance in devices with PBDTTT-C:PC{sub 71}BM as the active layer. The long-term stability of CuO{sub X} device is better than that of PEDOT:PSS device. The results indicate that the easy solution-processed CuO{sub X} film can act as an efficient anode buffer layer for high-efficiency OSCs.

  2. Highly Efficient Simplified Organic Light-Emitting Diodes Utilizing F4-TCNQ as an Anode Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    DONG Mu-Sen; WU Xiao-Ming; HUA Yu-Lin; QI Qing-Jin; YIN Shou-Gen

    2010-01-01

    @@ We demonstrate that the electroluminescent performances of organic light-emitting diodes(OLEDs)are significantly improved by evaporating a thin F4-TCNQ film as an anode buffer layer on the ITO anode.The optimum Alq3-based OLEDs with F4-TCNQ buffer layer exhibit a lower turn-on voltage of 2.6 V,a higher brightness of39820cd/m2 at 13 V,and a higher current efficiency of 5.96cd/A at 6 V,which are obviously superior to those of the conventional device(turn-on voltage of 4.1 V,brightness of 18230cd/m2 at 13 V,and maximum current efficiency of 2.74 cd/A at 10 V).Furthermore,the buffered devices with F4-TCNQ as the buffer layer could not only increase the efficiency but also simplify the fabrication process compared with the p-doped devices in which F4-TCNQ is doped into/3-NPB as p-HTL(3.11 cd/A at 7 V).The reason why the current efficiency of the p-doped devices is lower than that of the buffered devices is analyzed based on the concept of doping,the measurement of absorption and photoluminescence spectra of the organic materials,and the current density-voltage characteristics of the corresponding hole-only devices.

  3. The influence of impurity on the critical thickness of the CeO2 buffer layer for coated conductors

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The lattice parameters, band structure, density of state and elastic constant of RE-doped CeO2 (RE=Sm, Gd, Dy), the buffer material for coated HTS conductors, are calculated using the plane-wave method with pseudopotentials based on the density functional theory (DFT) of first-principle. The rule and mechanism of the effect of rare earth impurity on the critical thickness of the CeO2 buffer layer are investigated. It is found that, in the range of the calculation, the changes of the lattice volume V and elastic constant E of CeO2 with the impurity are mainly determined by the increased electrons ne of the system. The relationship of the elastic constant E and increased electrons ne is established. It is indicated that the critical thickness of the CeO2 single buffer layer doped with Sm, Gd, and Dy may be enhanced by 22%, 43% and 33%, respectively.

  4. A Feasibility Study of Applying SS 307Si Buffer Layer for Mitigating the Hot Cracking of Ni-Based Weld Overlay

    Science.gov (United States)

    Tsai, Kun-Chao; Jeng, Sheng-Long

    2017-07-01

    The hot cracking behavior of Ni-based Alloy 52M weld overlay with respective SS 307Si and SS 308L buffer layers was investigated. The dilution level of SS 307Si buffer layer is a little higher than that of SS 308L. However, the hot crack length of overlay with SS 307Si buffer layer is shorter and the SS 307Si layer has higher mechanical properties than that of SS 308L layer. As observed by SEM and EBSD, ferrites precipitated in SS 307Si buffer layer are in vermicular skeletons dotted with lathy precipitates, which have a little higher local stain than that of SS 308L weld. However, Alloy 52M weld around SS 307Si fusion boundary has a lower degree of local distortion. The results generalize that the SS 307Si buffer layer is marginally better for reducing hot cracking susceptibility, owing to its lower local stain and slightly higher mechanical strength.

  5. Pulsed Laser Deposition ZnS Buffer Layers for CIGS Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Pai-feng Luo; Guo-shun Jiang; Chang-fei Zhu

    2009-01-01

    Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blends structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite struc-ture by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show A1 mode at approxi-mately 350 cm-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells.

  6. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates

    Science.gov (United States)

    Bogumilowicz, Y.; Hartmann, J. M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.-Y.; Sanchez, E.

    2016-11-01

    We have grown GaAs epitaxial layers on Ge buffers, themselves on Si (001) substrates, using an Applied Materials 300 mm metal organic chemical vapor deposition tool. We varied the Ge buffer thickness between 0.36 and 1.38 μm and studied the properties of a 0.27 μm thick GaAs layer on top. We found that increasing the Ge buffer thickness yielded smoother GaAs films with an rms surface roughness as low as 0.5 nm obtained on a 5×5 μm2 area. The bow of the substrate increased following a linear law with the epitaxial stack thickness up to 240 μm for a 1.65 μm stack. We have also characterized the threading dislocations present in the GaAs layers using X-ray diffraction and cathodoluminescence. Increasing the Ge buffer thickness resulted in lower threading dislocation densities, enabling us to obtain anti-phase boundary - free GaAs films with a threading dislocation density as low as 3×107 cm-2. In addition, atomic force microscopy surface topology measurements showed the presence of pits in the GaAs layers whose density agreed well with other threading dislocation density assessments. It thus seems that threading dislocations can in certain cases induce some growth rate variations, making them visible in as-grown GaAs films. Using thicker Ge buffers results in smoother films with less threading dislocations, with the side effect of increasing the bow on the wafer. If bow is not an issue, this is a practical approach to improve the GaAs (on Ge buffer) on silicon quality.

  7. High Quality GaAs Epilayers Grown on Si Substrate Using 100 nm Ge Buffer Layer

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Kuo

    2016-01-01

    Full Text Available We present high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers. The thin Ge buffer layers were modulated by hydrogen flow rate from 60 to 90 sccm to improve crystal quality by electron cyclotron resonance chemical vapor deposition (ECR-CVD at low growth temperature (180°C. The GaAs and Ge epilayers quality was verified by X-ray diffraction (XRD and spectroscopy ellipsometry (SE. The full width at half maximum (FWHM of the Ge and GaAs epilayers in XRD is 406 arcsec and 220 arcsec, respectively. In addition, the GaAs/Ge/Si interface is observed by transmission electron microscopy (TEM to demonstrate the epitaxial growth. The defects at GaAs/Ge interface are localized within a few nanometers. It is clearly showed that the dislocation is well suppressed. The quality of the Ge buffer layer is the key of III–V/Si tandem cell. Therefore, the high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers is suitable to develop the low cost and high efficiency III–V/Si tandem solar cells.

  8. The Influence of an EPS Concrete Buffer Layer Thickness on Debris Dams Impacted by Massive Stones in the Debris Flow

    Directory of Open Access Journals (Sweden)

    Xianbin Yu

    2015-01-01

    Full Text Available The failure of debris dams impacted by the massive stones in a debris flow represents a difficult design problem. Reasonable materials selection and structural design can effectively improve the resistance impact performance of debris dams. Based on the cushioning properties of expanded polystyrene (EPS concrete, EPS concrete as a buffer layer poured on the surface of a rigid debris dam was proposed. A three-dimensional numerical calculation model of an EPS concrete buffer layer/rigid debris dam was established. The single-factor theory revealed change rules for the thickness of the buffer layer concerning the maximal impact force of the rigid debris dam surface through numerical simulation. Moreover, the impact force-time/history curves under different calculation conditions for the rigid debris dam surface were compared. Simulation results showed that the EPS concrete buffer layer can not only effectively extend the impact time of massive stones affecting the debris dam but also reduce the impact force of the rigid debris dam caused by massive stones in the debris flow. The research results provide theoretical guidance for transferring the energy of the massive stone impact, creating a structural design and optimizing debris dams.

  9. Dip Coating of Nano Hydroxyapatite on Titanium Alloy with Plasma Assisted γ-Alumina Buffer Layer: A Novel Coating Approach

    Institute of Scientific and Technical Information of China (English)

    M.Khalid; M.Mujahid; A.Nusair Khan; R.S.Rawat

    2013-01-01

    This paper reported a novel coating approach to deposit a thin,crack free and nano-structured hydroxyapatite (HA) film on Ti6Al4V alloy with Al2O3 buffer layer for biomedical implants.The Al2O3 buffer layer was deposited by plasma spraying while the HA top layer was applied by dip coating technique.The X-ray diffraction (XRD) and Raman reflections of alumina buffer layer showed α-to γ-Al2O3 phase transformation;and the fractographic analysis of the sample revealed the formation of columnar grains in well melted splats.The bonding strength between Al2O3 coating and Ti6Al4V substrate was estimated to be about 40 MPa.The presence of dip coated HA layer was confirmed using XRD,scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis.The SEM images exhibited that HA top layer enveloped homogenously the troughs and crests of the underneath rough (Ra =2.91 μm) Al2O3 surface.It is believed that the novel coating approach adopted might render the implant suitable for rapid cement-less fixation as well as biocompatible for longer periods.

  10. Cd-Zn-O-S alloys for optimal buffer layers in thin-film photovoltaics (Presentation Recording)

    Science.gov (United States)

    Varley, Joel B.; He, Xiaoqing; Mackie, Neil; Rockett, Angus A.; Lordi, Vincenzo

    2015-09-01

    Advances in thin-film photovoltaics have largely focused on modifying the absorber layer(s), while the choices for other layers in the solar cell stack have remained somewhat limited. In particular, cadmium sulfide (CdS) is widely used as the buffer layer in typical record devices utilizing absorbers like Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSnS4 (CZTS) despite leading to a loss of solar photocurrent due to its band gap of 2.4 eV. While different buffers such as Zn(S,O,OH) are beginning to become competitive with CdS, the identification of additional wider-band gap alternatives with electrical properties comparable to or better than CdS is highly desirable. Here we use hybrid density functional calculations to characterize CdxZn1-xOyS1-y candidate buffer layers in the quaternary phase space composed by Cd, Zn, O, and S. We focus on the band gaps and band offsets of the alloys to assess strategies for improving absorption losses from conventional CdS buffers while maintaining similar conduction band offsets known to facilitate good device performance. We also consider additional criteria such as lattice matching to identify regions in the composition space that may provide improved epitaxy to CIGSe and CZTS absorbers. Lastly, we incorporate our calculated alloy properties into device model simulations of typical CIGSe devices to identify the CdxZn1-xOyS1-y buffer compositions that lead to the best performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Department of Energy office of Energy Efficiency and Renewable Energy (EERE) through the SunShot Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program.

  11. The effect of buffer layer on the thermochromic properties of undoped radio frequency sputtered VO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulou, M., E-mail: marpanag@mail.ntua.gr [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR 157 80, Zografou Campus, Athens (Greece); Gagaoudakis, E. [Physics Department, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Aperathitis, E.; Michail, I. [Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Kiriakidis, G. [Physics Department, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Tsoukalas, D.; Raptis, Y.S. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR 157 80, Zografou Campus, Athens (Greece)

    2015-11-02

    Thermochromic (TC) coatings can find use in a wide range of applications. Vanadium dioxide (VO{sub 2}) specifically, can be potentially used as a smart window coating, as it presents a metal-to-semiconductor transition close to the room temperature (T{sub c} = 68 °C). This results in low transmission in the infrared (thermal) part of the spectrum, while preserving its transmittance in the visible. In the present work, vanadium dioxide (VO{sub 2}) thin films with a thickness of ~ 85 nm were prepared by radio frequency sputtering, to investigate the influence of the buffer layer and deposition properties employed, on their thermochromic behavior. The substrates used were uncoated glass and pre-coated glasses with SnO{sub 2} or ZnON as buffer layer. The lowest growth temperature applied was 300 °C, yielding TC-VO{sub 2}, without the necessity of any post-growth treatment. The structure of the VO{sub 2} films was studied by X-ray diffraction and temperature-dependent micro Raman techniques, and the transition temperatures were determined through transmittance measurements. - Highlights: • RF-sputtered thermochromic VO{sub 2}, was grown at 300 °C and 400 °C. • Buffer layers of SnO{sub 2} or ZnON are used over glass. • Low Tc, without post-treatment, for both buffer-layers and T-growth • Thermochromicity of glass/VO{sub 2}, at low T-growth, is improved by ZnON buffer layer.

  12. Fabricating Buffer Layers for YBa2Cu3Oy Coated Conductor by Surface Oxidation Epitaxy

    Institute of Scientific and Technical Information of China (English)

    Yang Jian; Liu Huizhou; Gu Hongwei; Qu Fei; Fan Hongyan

    2005-01-01

    NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes.

  13. Inverted Organic Solar Cells with Improved Performance using Varied Cathode Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang Guan; Jun-sheng Yu; Yue Zang; Xing-xin Zeng

    2012-01-01

    Organic solar cells with inverted planar heterojunction structure based on subphthalocyanine and C60 were fabricated using several kinds of materials as cathode buffer layer (CBL),including tris-8-hydroxy-quinolinato aluminum (Alq3),bathophenanthroline (Bphen),bathocuproine,2,3,8,9,14,15-hexakis-dodecyl-sulfanyl-5,6,11,12,17,18-hexaazatrinaphthylene (HATNA),and an inorganic compound of Cs2CO3.The influence of the lowest unoccupied molecular orbital level and the electron mobility of organic CBL on the solar cells performance was compared.The results showed that Alq3,Bphen,and HATNA could significantly improve the device performance.The highest efficiency was obtained from device with annealed HATNA as CBL and increased for more than 7 times compared with device without CBL.Furthermore,the simulation results with space charge-limited current theory indicated that the Schottky barrier at the organic/electrode interface in inverted OSC structure was reduced for 27% by inserting HATNA CBL.

  14. Enhancement in electrical properties of ITO/PEDOT:PSS/PTCDA/Ag by using calcium buffer layer

    Science.gov (United States)

    Tahir, Muhammad; Hassan Sayyad, Muhammad; Wahab, Fazal; Aziz, Fakhra; Ullah, Irfan; Khan, Gulzar

    2015-06-01

    This paper reports on electrical characterization of ITO/PEDOT:PSS/PTCDA/Ca/Ag device based on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) and calcium (Ca) buffer layer with improved junction properties. The I-V characteristics have been utilized to extract various electrical parameters such as ideality factor (n), barrier height (ϕB) and series resistance Rs, which are found to be 1.9, 0.79 eV and 2.5 kΩ, respectively. The device shows good rectifying behavior, with a rectification ratio of 528, and also field-lowering mechanism with a linear dependence of log I on V1/2. The device reported in the present work shows 50% improvement in the rectification ratio and ideality factor as compared to our previously fabricated device. It appears from the experimental data that the transport mechanism in the PTCDA thin film is dominated by the Poole-Frenkel model of thermionic emission, which may be associated with high density of structural defects or traps present in the film.

  15. Enhancement in electrical properties of ITO/PEDOT:PSS/PTCDA/Ag by using calcium buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology Topi, KPK 23640 (Pakistan); Department of Physics, Abdul Wali Khan University Mardan, 23200 KPK (Pakistan); Hassan Sayyad, Muhammad [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology Topi, KPK 23640 (Pakistan); Wahab, Fazal [Department of Physics, Abdul Wali Khan University Mardan, 23200 KPK (Pakistan); Aziz, Fakhra, E-mail: fakhra69@yahoo.com [Department of Electronics, Jinnah College for Women, University of Peshawar, Peshawar 25120 (Pakistan); Ullah, Irfan; Khan, Gulzar [Department of Physics, Abdul Wali Khan University Mardan, 23200 KPK (Pakistan)

    2015-06-15

    This paper reports on electrical characterization of ITO/PEDOT:PSS/PTCDA/Ca/Ag device based on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) and calcium (Ca) buffer layer with improved junction properties. The I–V characteristics have been utilized to extract various electrical parameters such as ideality factor (n), barrier height (ϕ{sub B}) and series resistance R{sub s}, which are found to be 1.9, 0.79 eV and 2.5 kΩ, respectively. The device shows good rectifying behavior, with a rectification ratio of 528, and also field-lowering mechanism with a linear dependence of log I on V{sup 1/2}. The device reported in the present work shows 50% improvement in the rectification ratio and ideality factor as compared to our previously fabricated device. It appears from the experimental data that the transport mechanism in the PTCDA thin film is dominated by the Poole–Frenkel model of thermionic emission, which may be associated with high density of structural defects or traps present in the film.

  16. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    Science.gov (United States)

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated.

  17. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  18. Influence of Fe Buffer Layer on Co-Doped BaFe2As2 Superconducting Thin Films

    Directory of Open Access Journals (Sweden)

    C. Bonavolontà

    2015-01-01

    Full Text Available A systematic characterization of Co-doped BaFe2As2 (Ba-122 thin films has been carried out. Two samples were available, one grown on CaF2 substrate and the other on MgO with an Fe buffer layer. The goal was to investigate films’ magnetic and superconducting properties, their reciprocal interplay, and the role played by the Fe buffer layer in modifying them. Morphological characterization and Energy Dispersive X-ray analyses on the Fe-buffered sample demonstrate the presence of diffused Fe close to the Co-doped Ba-122 outer surface as well as irregular holes in the overlying superconducting film. These results account for hysteresis loops obtained with magneto-optic Kerr effect measurements and observed at both room and low temperatures. The magnetic pattern was visualized by magneto-optical imaging with an indicator film. Moreover, we investigated the onset of superconductivity through a measure of the superconducting energy gap. The latter is strictly related to the decay time of the excitation produced by an ultrashort laser pulse and has been determined in a pump-probe transient reflectivity experiment. A comparison of results relative to Co-doped Ba-122 thin films with and without Fe buffer layer is finally reported.

  19. Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers

    Science.gov (United States)

    Li, Changli; Hisatomi, Takashi; Watanabe, Osamu; Nakabayashi, Mamiko; Shibata, Naoya; Domen, Kazunari; Delaunay, Jean-Jacques

    2016-07-01

    Coating n-type buffer and protective layers on Cu2O may be an effective means to improve the photoelectrochemical (PEC) water-splitting performance of Cu2O-based photocathodes. In this letter, the functions of the buffer layer and protective layer on Cu2O are examined. It is found that a Ga2O3 buffer layer can form a buried junction with Cu2O, which inhibits Cu2O self-reduction as well as increases the photovoltage through a small conduction band offset between the two semiconductors. The introduction of a TiO2 thin protective layer not only improves the stability of the photocathode but also enhances the electron transfer from the photocathode surface into the electrolyte, thus resulting in an increase in photocurrent at positive potentials. These results show that the selection of overlayers with appropriate conduction band positions provides an effective strategy for obtaining a high photovoltage and high photocurrent in PEC systems.

  20. Preferential orientation growth of ITO thin film on quartz substrate with ZnO buffer layer by magnetron sputtering technique

    Science.gov (United States)

    Du, Wenhan; Yang, Jingjing; Xiong, Chao; Zhao, Yu; Zhu, Xifang

    2017-07-01

    In order to improve the photoelectric transformation efficiency of thin-film solar cells, one plausible method was to improve the transparent conductive oxides (TCO) material property. In-doped tin oxide (ITO) was an important TCO material which was used as a front contact layer in thin-film solar cell. Using magnetron sputtering deposition technique, we prepared preferential orientation ITO thin films on quartz substrate. XRD and SEM measurements were used to characterize the crystalline structure and morphology of ITO thin films. The key step was adding a ZnO thin film buffer layer before ITO deposition. ZnO thin film buffer layer increases the nucleation center numbers and results in the (222) preferential orientation growth of ITO thin films.

  1. Dark Current Reduction of P3HT-Based Organic Photodiode Using a Ytterbium Fluoride Buffer Layer in Electron Transport

    CERN Document Server

    Lim, Seong Bin; Kim, Ki Tae; Oh, Se Young

    2016-01-01

    Photodiodes are widely used to convert lights into electrical signals. The conventional silicon (Si) based photodiodes boast high photoelectric conversion efficiency and detectivity. However, in general, inorganic-based photodiodes have low visible wavelength sensitivity due to their infrared wavelength absorption. Recently, electrical conducting polymer-based photodiodes have received significant attention due to their flexibility, low cost of production and high sensitivity of visible wavelength ranges. In the present work, we fabricated an organic photodiode (OPD) consisting of ITO/ NiOx/ P3HT:PC60BM/ YbF3/ Al. In the OPD, a yitterbium fluoride (YbF3) buffer layer was used as the electron transport layer. The OPD was analyzed for its optical-electrical measurements, including J-V characteristics, detectivity and dynamic characteristics. We have investigated the physical effects of the YbF3 buffer layer on the performance of OPD such as its carrier extraction, leakage current and ohmic characteristics.

  2. X-ray Photoelectron Spectroscopy (XPS Depth Profiling for Evaluation of La2Zr2O7 Buffer Layer Capacity

    Directory of Open Access Journals (Sweden)

    Isabel van Driessche

    2012-02-01

    Full Text Available Lanthanum zirconate (LZO films from water-based precursors were deposited on Ni-5%W tape by chemical solution deposition. The buffer capacity of these layers includes the prevention of Ni oxidation of the substrate and Ni penetration towards the YBCO film which is detrimental for the superconducting properties. X-ray Photoelectron Spectroscopy depth profiling was used to study the barrier efficiency before and after an additional oxygen annealing step, which simulates the thermal treatment for YBCO thin film synthesis. Measurements revealed that the thermal treatment in presence of oxygen could severely increase Ni diffusion. Nonetheless it was shown that from the water-based precursors’ buffer layers with sufficient barrier capacity towards Ni penetration could be synthesized if the layers meet a certain critical thickness and density.

  3. Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer

    Science.gov (United States)

    Wong, Man Hoi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2016-12-01

    The electron mobility in depletion-mode lateral β-Ga2O3(010) metal-oxide-semiconductor field-effect transistors (MOSFETs) with an n-channel formed by Si-ion (Si+) implantation doping was extracted using low-field electrical measurements on FET structures. An undoped Ga2O3 buffer layer protected the channel against charge compensation by suppressing outdiffusion of deep Fe acceptors from the semi-insulating substrate. The molecular beam epitaxy growth temperature was identified as a key process parameter for eliminating parasitic conduction at the buffer/substrate growth interface. Devices with a resistive buffer showed room temperature channel mobilities of 90-100 cm2 V-1 s-1 at carrier concentrations of low- to mid-1017 cm-3, with small in-plane mobility anisotropy of 10-15% ascribable to anisotropic carrier scattering.

  4. Improving Electron Transfer from Dye to TiO2 by Using CdTe Nanostructure Layers in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Beshkar, Farshad; Sabet, Mohammad; Salavati-Niasari, Masoud

    2015-08-01

    In this work, TiO2 P25 was deposited successfully on the FTO glass by electrophoresis method. Different chemical methods were served for deposition of nanosized CdTe such as successive ion layer adsorption and reaction (SILAR) and drop-cast. Dye-sensitized solar cells were fabricated from prepared electrodes, Pt as a counter electrode, dye solution, and electrolyte. The effects of chemical deposition methods were investigated on the surface quality, optical properties, and solar cell efficiency. It was observed that deposition method has an important role on the solar cell performance. It was also seen that deposition method affects directly on surface thickness and the amount of dye adsorption. In fact, each deposition method creates different surfaces, and hence, they act variously in electron transfer across the electrode surface. Among different deposition methods that were used in this experimental work, SILAR method showed the best performance and the surface that was created by this method could transfer the electrons across the electrode faster than the other ones. But this chemical method cannot improve solar cell efficiency due to some different reasons that we mentioned in this paper.

  5. Dynamic effects in CdTe quantum-dot LEDs

    OpenAIRE

    Gallardo, D. E.

    2006-01-01

    In this work the electrical and electroluminescence properties CdTe nanocrystal films were analysed. The structure consisted of a multilayer of CdTe nanocrystals deposited by the layer-by-layer technique, sandwiched between an ITO anode and an aluminium cathode. The first part of this work was dedicated to structural and process improvement. Earlier devices, produced through a layer-by-layer (LbL) manual procedure, had an average thickness of 30nm per nanocrystal monolayer,...

  6. Electrochemical preparation of MoO{sub 3} buffer layer deposited onto the anode in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gacitua, M.; Soto, G.; Valle, M.A. del [Pontificia Universidad Catolica de Chile, Facultad de Quimica, Laboratorio de Electroquimica de Polimeros (LEP), Santiago (Chile); Boutaleb, Y.; Rehamnia, R. [Laboratoire d' Electrochimie, Universite Badji Mokhtar, Annaba (Algeria); Cattin, L.; Louarn, G. [Universite de Nantes, Nantes Atlantique Universites, Institut des Materiaux Jean Rouxel (IMN)-CNRS, Faculte des Sciences et Techniques, Nantes (France); Abe, S.Y. [Laboratoire de Physique de la Matiere Condensee et de Technologie (LPMCT), Universite de Cocody (Ivory Coast); Lare, Y. [Laboratoire d' Energie Solaire, Universite de Lome, Lome (Togo); Morsli, M; Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, Nantes (France); Drici, A. [LEREC Departement de physique, Universite Badji Mokhtar, Annaba (Algeria)

    2010-08-15

    In this work the authors have studied the advantages of using electrochemically deposited molybdenum oxide as a buffer layer in an organic bilayer heterojunction solar cell arrangement. Furthermore, it has been probed that electrochemistry provides an alternative low cost, reproducible and less laborious method to prepare thin layered deposits. The precursor solution is composed by a concentrated molybdic acid solution in a sulphuric media in order to ensure the obtainment of low reduced molybdenum species. Therefore, by means of potentiostatic techniques, ITO/molybdenum oxide transparent anodes were tested for the photovoltaic device showing improved surface properties. XDR and AFM techniques were used to characterize the morphology of the deposits. The films with optimum thickness (5 nm) are amorphous. XPS analysis indicates that the best results in solar cell performance are in hand with a heterogeneous composition of the molybdenum oxide film presenting Mo{sup V} and Mo{sup VI} as predominant species. The MoO{sub 3} films deposited by cyclic voltammetry are not as homogeneous as those deposited by potentiostatic technique and only Mo{sup VI} species are present. These differences may justify the different behaviour of the solar cells using these different buffer layers. Only buffer layers deposited by potentiostatic technique allow improving the cells performances in the same way than those achieved by evaporation. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Preparation and Characterization of CeO2/YSZ/CeO2 Buffer Layers for YBCO Coated Conductors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CeO2 seed layer was deposited on rolling-assisted biaxially textured metal substrates by direct-current (DC) magnetron reactive sputtering. The effect of deposition temperature on epitaxial orientation of CeO2 thin films was examined. High quality CeO2 layers were achieved at deposition temperature from 750℃ to 850℃.Subsequently yttria-stabilized zirconia (YSZ) and CeO2 films were deposited to complete the buffer layer structure via the same process. The best samples exhibited a highly biaxial texture, as indicated by FWHM (full width half maximum) values in the range of 4°-5°, and 2°-4° for in-plane and out-of-plane orientations,respectively. Secondary ion mass spectrometer analysis confirmed the effective prevention of buffer layer against Ni and W metal interdiffusion. Atomic force microscope observations revealed a smooth, dense and crack-free surface morphology, which provided themselves as the good buffer structure to the YBa2Cu3O7-δ(YBCO) coated conductors.

  8. Simulating characteristics of Si/Ge tandem monolithic solar cell with Si1-xGex buffer layer

    Directory of Open Access Journals (Sweden)

    Gnilenko A. B.

    2015-12-01

    Full Text Available In spite of many efforts to propose new semiconductor materials and sophisticated constructions of solar cells, crystalline silicone remains the main photovoltaic material widely used up to now. There are various methods to enhance the efficiency of silicone solar cells. One of them is to combine silicone with an additional semiconductor material with the different bandgap to form a tandem construction. For example, the germanium sub-cell used as the bottom cascade for the silicone sub-cell in the tandem monolithic solar cell makes it possible to utilize the "red" sub-band of solar spectra increasing overall solar cell efficiency. The problem of the 4.2% mismatch in lattice constant between Si and Ge can be resolved in such a case by the use of SiGe buffer layer. In the paper the results of the computer simulation for Si/Ge tandem monolithic solar cell with Si1-xGex buffer layer are presented. In the solar cell under consideration, the step graded Si1-xGex buffer layer is located between the top silicone and the bottom germanium cascades to reduce the threading dislocation density in mismatched materials. The cascades are commutated by the use of the germanium tunnel diode between the bottom sub-cell and the buffer layer. For the solar cell modeling, the physically-based device simulator ATLAS of Silvaco TCAD software is employed to predict the electrical behavior of the semiconductor structure and to provide a deep insight into the internal physical processes. The voltage-current characteristic, photovoltaic parameters and the distribution of basic physical values are obtained for the investigated tandem solar cell. The influence of layer thicknesses on the photovoltaic parameters is studied. The calculated efficiency of the tandem solar cell reaches 13% which is a quarter more than the efficiency of a simple silicone solar cell with the same constructive parameters and under the same illumination conditions.

  9. Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Isabel van Driessche

    2012-09-01

    Full Text Available In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO films and non-stoichiometric lanthanum zirconate (LZO buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD, starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

  10. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Pomeroy, J.; Kuball, M. [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2014-02-14

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  11. Thermally robust perpendicular Co/Pd-based synthetic antiferromagnetic coupling enabled by a W capping or buffer layer.

    Science.gov (United States)

    Lee, Ja-Bin; An, Gwang-Guk; Yang, Seung-Mo; Park, Hae-Soo; Chung, Woo-Seong; Hong, Jin-Pyo

    2016-02-18

    Perpendicularly magnetized tunnel junctions (p-MTJs) that contain synthetic antiferromagnetic (SAF) frames show promise as reliable building blocks to meet the demands of perpendicular magnetic anisotropy (PMA)-based spintronic devices. In particular, Co/Pd multilayer-based SAFs have been widely employed due to their outstanding PMA features. However, the widespread utilization of Co/Pd multilayer SAFs coupled with an adjacent CoFeB reference layer (RL) is still a challenge due to the structural discontinuity or intermixing that occurs during high temperature annealing. Thus, we address the thermally robust characteristics of Co/Pd multilayer SAFs by controlling a W layer as a potential buffer or capping layer. The W-capped Co/Pd multilayer SAF, which acts as a pinning layer, exhibited a wide-range plateau with sharp spin-flip and near-zero remanence at the zero field. Structural analysis of the W-capped multilayer SAF exhibited single-crystal-like c-axis oriented crystalline features after annealing at 400 °C, thereby demonstrating the applicability of these frames. In addition, when the W layer serving as a buffer layer in the Co/Pd multilayer SAF was coupled with a conventional CoFeB RL, higher annealing stability up to 425 °C and prominent antiferromagnetic coupling behavior were obtained.

  12. The influence of epitaxial Ti buffer layers for fabricating as-grown MgB{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Oba, T. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)]. E-mail: t3806005@iwate-u.ac.jp; Sun, P. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Harada, Y. [JST Satellite Iwate, 3-35-2 Iioka-shinden, Morioka, Iwate 020-0852 (Japan); Takahashi, T. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Iriuda, H. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Seki, M. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Nakanishi, Y. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Noguchi, S. [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); JST-CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishida, T. [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); JST-CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); JST Satellite Iwate, 3-35-2 Iioka-shinden, Morioka, Iwate 020-0852 (Japan)

    2007-03-15

    We have measured the magnetic field dependence of the resistivity using a 35T pulsed magnet for the as-grown MgB{sub 2} films fabricated on the epitaxial Ti buffer layer grown on c-plane ZnO and Al{sub 2}O{sub 3} substrates by molecular beam epitaxy (MBE). We will report the upper critical fields (H{sub c2}) along H||c-axis and H||ab-plane. The anisotropy ratio were obtained from these H{sub c2} values. The effects of Ti buffer layer on the H{sub c2} and the anisotropy of MgB{sub 2} film were discussed.

  13. Fabrication of (110)-one-axis-oriented perovskite-type oxide thin films and their application to buffer layer

    Science.gov (United States)

    Sato, Tomoya; Ichinose, Daichi; Kimura, Junichi; Inoue, Takaaki; Mimura, Takanori; Funakubo, Hiroshi; Uchiyama, Kiyoshi

    2016-10-01

    BaCe0.9Y0.1O3-δ (BCYO) and SrZr0.8Y0.2O3-δ (SZYO) thin films of perovskite-type oxides were deposited on (111)Pt/TiO x /SiO2/(100)Si substrates. X-ray diffraction patterns showed that the (110)-oriented BCYO and SZYO thin films were grown on (111)Pt/Si substrates directly without using any buffer layers. Thin films of SrRuO3 (SRO), a conductive perovskite-type oxide, were also deposited on those films and highly (110)-oriented SRO thin films were obtained. We believe that this (110)-oriented SRO works as a buffer layer to deposit (110)-oriented perovskite-type ferroelectric oxide thin films as well as a bottom electrode and can modify the ferroelectric properties of the oxide thin films by controlling their crystallographic orientations.

  14. Effects of Controlling the AZO Thin Film's Optical Band Gap on AZO/MEH-PPV Devices with Buffer Layer

    Directory of Open Access Journals (Sweden)

    Jaehyoung Park

    2012-01-01

    Full Text Available Organic/inorganic hybrid solar cells were fabricated incorporating aluminum-doped zinc oxide (AZO thin films of varying optical band gap in AZO/poly(2-methoxy-5-(2′-ethyl-hexyloxy-p-phenylene vinylene structures. The band gaps were controlled by varying the flow rates of Ar and O2 used to deposit the AZO. Devices with CdS buffer layer were also fabricated for improved efficiency. The effects of AZO optical band gap were assessed by testing the I–V characteristics of devices with structures of glass/ITO/AZO/MEH-PPV/Ag under AM1.5 illumination (100 mW/cm2. Efficiency was improved about 30 times by decreasing the AZO optical band gap, except in devices deposited without oxygen. A power conversion efficiency of 0.102% was obtained with the incorporation of a CdS buffer layer.

  15. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO₃ and ZnO Charge Transport Buffer Layers.

    Science.gov (United States)

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-11-08

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO₃) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO₃ by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  16. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, J.R.; Berens, T.A.; Keane, J. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  17. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.

    Science.gov (United States)

    Zhao, Tianshuo; Goodwin, Earl D; Guo, Jiacen; Wang, Han; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-09-22

    Advanced architectures are required to further improve the performance of colloidal PbS heterojunction quantum dot solar cells. Here, we introduce a CdI2-treated CdSe quantum dot buffer layer at the junction between ZnO nanoparticles and PbS quantum dots in the solar cells. We exploit the surface- and size-tunable electronic properties of the CdSe quantum dots to optimize its carrier concentration and energy band alignment in the heterojunction. We combine optical, electrical, and analytical measurements to show that the CdSe quantum dot buffer layer suppresses interface recombination and contributes additional photogenerated carriers, increasing the open-circuit voltage and short-circuit current of PbS quantum dot solar cells, leading to a 25% increase in solar power conversion efficiency.

  18. Effects of Buffer Layer on Hetero-Epi-Growth of SiCGe on 6H-SiC

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Growth of SiCGe ternary alloy on 6H-SiC in a conventional hot-wall CVD system was initially studied. SiH4, GeH4 and C3H8 were employed as silicon, germanium and carbon source, respectively, while H2 was employed as the carrier gas. To reduce the heavy lattice mismatch between the film and the substrate, a 3C-SiC buffer layer was inserted between them in a CVD process. Optimizing the growth conditions was discussed. The samples were measured by means of SEM, SAXRD (Small Angle X-Ray Diffraction). It is shown that use of the 3C-SiC buffer layer is an effective way to improve the quality of the ternary alloy.

  19. Organometallic tris(8-hydroxyquinoline)aluminum complexes as buffer layers and dopants in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tolkki, Antti, E-mail: antti.tolkki@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Kaunisto, Kimmo [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Heiskanen, Juha P. [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Omar, Walaa A.E. [Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Chemistry Branch, Department of Science and Mathematics, Suez Canal University, Suez 43721 (Egypt); Huttunen, Kirsi; Lehtimaeki, Suvi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Hormi, Osmo E.O. [Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland)

    2012-04-30

    Tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) is a frequently used material for organic light emitting diodes. The electronic properties and solubility can be tuned by chemical tailoring of the quinoline part, which makes it an interesting candidate for organic solar cells. Steady-state absorption and fluorescence, as well as time-resolved fluorescence properties of the parent Alq{sub 3} and a series of complexes consisting of derivatives, such as 4-substituted pyrazol, methylpyrazol, arylvinyl, and pyridinoanthrene moieties, of the quinoline ligand, were studied in solutions and in thin films. Suitability of the complexes as anodic buffer layers or dopants in inverted organic solar cells based on the well known bulk heterojunction of poly(3-hexylthiophene) (P3HT) and phenyl-C{sub 61}-butyric acid methyl ester (PCBM) was tested. The devices equipped with the derivatives showed higher power conversion efficiency ({eta}) compared to the photocells containing the parent Alq{sub 3}. Open circuit voltage (V{sub oc}) was increased when the derivatives were utilized as the anodic buffer layer. Doping of the P3HT:PCBM with a small amount of Alq{sub 3} or its derivative improved short circuit current density, V{sub oc}, fill factor, and {eta}, while the series resistance decreased. In addition, the devices were stable in air over several weeks without encapsulation. Possible mechanisms leading to the improvements in the photovoltaic performance by using the parent Alq{sub 3} or its derivative as buffer layer or dopant are discussed. - Highlights: Black-Right-Pointing-Pointer Tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) complexes in inverted organic solar cells. Black-Right-Pointing-Pointer The Alq{sub 3} complexes were used as an anodic buffer layer and as a dopant. Black-Right-Pointing-Pointer Efficiency increased and the derivatives revealed varying open circuit voltage. Black-Right-Pointing-Pointer Photovoltaic performance was stable after storage in a dark ambient

  20. Atomically flat Ge buffer layers and alternating shutter growth of CaGe2 for large area germanane

    Science.gov (United States)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam; Pinchuk, Igor; Williams, Robert; McComb, David; Kawakami, Roland

    Germanane (GeH), which is converted from CaGe2 by soaking in HCl acid, has recently attracted interest because of its novel properties, such as large band gap (1.56eV), spin orbit coupling and predictions of high mobility (18000 cm2/Vs). Previously CaGe2 was successfully grown on Ge(111) substrates by molecular beam epitaxy (MBE) growth. But there were cracks between µm-sized islands, which is not desirable for scientific study and application, and limits the material quality. By growing atomically flat Ge buffer layers and using alternating shutter MBE growth, we are able to grow crack-free, large area films of CaGe2 films. Reflection high energy electron diffraction (RHEED) patterns of Ge buffer layer and CaGe2 indicates high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform Ge buffer layer and CaGe2. The appearance of Laue oscillation in X-ray diffraction (XRD) and Kiessig fringes in X-ray reflectivity (XRR) proves the uniformity of CaGe2 film and the smoothness of the interface. The high quality of CaGe2 film makes it promising to explore novel properties of GeH. Funded by NSF MRSEC DMR-1420451.

  1. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    Directory of Open Access Journals (Sweden)

    Rui Sun

    2016-06-01

    Full Text Available We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100 substrates with a TiN buffer layer. A 50-nm-thick (200-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large IcRN product of 3.8 mV, a sharp quasiparticle current rise with a ΔVg of 0.4 mV, and a small subgap leakage current. The junction quality factor Rsg/RN was about 23 for the junction with a Jc of 47 A/cm2 and was about 6 for the junction with a Jc of 3.0 kA/cm2. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200-orientated TiN buffer layer and had a highly crystalline structure with the (200 orientation.

  2. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lare, Y. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Godoy, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, IMN, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Jondo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Abachi, T. [Ecole Normale Superieure, Kouba, Alger (Algeria); Diaz, F.R. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Napo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Bernede, J.C., E-mail: jean-christian.bernede@univ-nantes.fr [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France)

    2009-04-15

    ZnO thin films synthetized by chemical bath deposition are used as buffer layer between the anode and the organic electron donor in organic solar cells. Films deposited from zinc nitrate solutions are annealed in room air at 300 deg. C for half an hour. The X-ray diffraction and microanalysis studies show that ZnO polycrystalline thin films are obtained. The solar cells used are based on the couple copper phthalocyanine as electron donor and (N,N-diheptyl-3,4,9,10-perylenetetracarboxylicdiimide-PTCDI-C7) as electron acceptor. It is shown that the presence of the ZnO buffer layer improves the energy conversion efficiency of the cells. Such improvement could be attributed to a better energy level alignment at the anode/electron donor interface. The anode roughness induced by the ZnO buffer layer can also transform the planar interface organic electron donor/electron acceptor into roughen topography. This increases the interface area, where carrier separation takes place, which improves solar cells performances.

  3. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  4. Fabrication and electrochemical properties of insoluble fullerene-diamine adduct thin-films as buffer layer by alternate immersion process

    Science.gov (United States)

    Saito, Jo; Akiyama, Tsuyoshi; Suzuki, Atsushi; Oku, Takeo

    2017-01-01

    Insoluble fullerene-diamine adduct thin-films consisting of C60 and 1,2-diaminoethane were easily fabricated on an electrode by an alternate immersion process. Formation of the C60-diamine adduct films were confirmed using transmission absorption spectroscopy and atomic force microscopy. An inverted-type organic solar cells were fabricated by using the C60-diamine adduct film as the electron transport layer. The resultant photoelectric conversation performance of the solar cells suggested that photocurrent is generated via the photoexcitation of polythiophene. The result suggests that the present insoluble fullerene-diamine adduct films worked as buffer layer for organic thin-film solar cells.

  5. MOCVD growth of GaAs on Si using (Al,In) GaAs/GaAs buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K.; Shiba, Y.; Asai, K. (Advanced Tech. Research Labs., Sumitomo Metal Industries, Ltd., Hyogo (Japan))

    1991-01-01

    GaAs was grown on Si using an (Al,In)GaAs/GaAs buffer layer. The etch pit density (EPD) revealed by molten KOH could be reduced by adding Al{sub x}Ga{sub 1-x}As or In{sub x}Ga{sub 1-x}As to the GaAs buffer layer, depending on the composition (x); the lowest EPD, 4x10{sup 6} cm{sup -2} was obtained when x was 0.3 in Al{sub x}Ga{sub 1-x}As. To understand the results, the initial growth stage of GaAs on Si was investigated by scanning electron microscopy. GaAs growth using an Al{sub 0.3}Ga{sub 0.7}As layer produced small islands at a sufficiently high density that the islands coalesced, unlike those without the layer. The dependence of EPD and island density on the composition (x) were almost the same. This result indicates that improvement of the quality of the GaAs layer is related to the coalescence of the GaAs island at an early stage of the growth of GaAs on Si. (orig.).

  6. Enhancement of perpendicular magnetic anisotropy and coercivity in ultrathin Ru/Co/Ru films through the buffer layer engineering

    Science.gov (United States)

    Kolesnikov, Alexander G.; Stebliy, Maxim E.; Ognev, Alexey V.; Samardak, Alexander S.; Fedorets, Aleksandr N.; Plotnikov, Vladimir S.; Han, Xiufeng; Chebotkevich, Ludmila A.

    2016-10-01

    We present results on a study of the interplay between microstructure and the magnetic properties of ultrathin Ru/Co/Ru films with perpendicular magnetic anisotropy (PMA). To induce PMA in the Co layer, we experimentally determined thicknesses of the buffer and capping layers of Ru. The maximum value of PMA was observed for the Co thickness of 0.9 nm with the 3 nm thick capping layer. The effective anisotropy field (H eff) and coercive force (H c) of the Co layer are very sensitive to the Ru buffer layer thickness (t b). The values of H eff and H c increase approximately by two and ten times, correspondingly, when t b changes from 6 to 20 nm, owing to an increase in volume fraction of the crystalline phase as a result of the grains’ growth. PMA is found to be mainly enhanced by elastic strains induced by the lattice mismatch on the Ru/Co and Co/Ru interfaces, leading to the deformation of the Co lattice. The surface impact is determined to be less than 10% of the magneto-elastic contribution to the effective anisotropy. Observation of the magnetic domain structure by means of polar Kerr microscopy reveals that out-of-plane magnetization reversal occurs through the nucleation, growth, and annihilation of domains, where the average size drastically rises with the increasing t b.

  7. Influence of SiO{sub 2} buffer layer on the crystalline quality and photoluminescence of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L H; Chen, Y L; Xu, F [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, 210044 (China); Li, X Y [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China); Hua, S, E-mail: congyu3256@sina.com [Institute of Electronic Engineering and Photoelectric Technology, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2011-02-01

    In this work, a SiO{sub 2} buffer layer was first grown on Si substrate by thermal oxidation, and then ZnO thin films were deposited on SiO{sub 2} buffer layer and Si substrate by electron beam evaporation and sol-gel method. The influence of SiO{sub 2} buffer layer on the crystalline quality and photoluminescence of the films was investigated. The analyses of X-ray diffraction (XRD) showed that all the ZnO thin films had a hexagonal wurtzite structure and were preferentially oriented along the c-axis perpendicular to the substrate surface. The SiO{sub 2} buffer layer improved the crystalline quality and decreased the stress in ZnO thin films. The surface morphology analyses of the samples indicated that ZnO thin films deposited on SiO{sub 2} buffer layers had densely packed grains which obviously increased compared with those grown on bare Si substrate. The photoluminescence spectra of the samples showed that the ZnO thin films deposited on SiO{sub 2} buffer layers had stronger ultraviolet emission performance. The results suggest that SiO{sub 2} buffer layer can improve the crystalline quality and ultraviolet emission of ZnO thin films.

  8. High rate buffer layer for IBAD MgO coated conductors

    Science.gov (United States)

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  9. Development of Co-evaporated In2S3 Buffer Layer for Cu2ZnSnSe4 Thin Film Solar Cells

    OpenAIRE

    Buffiere, Marie; Barreau, Nicolas; Brammertz, Guy; Sahayaraj, Sylvester; Meuris, Marc; Poortmans, Jef

    2015-01-01

    In this work, we focus on the replacement of the commonly used but toxic Cd-based buffer layer by In2S3 thin films deposited by co-evaporation for application in Cu2ZnSnSe4 (CZTSe) solar cells. The impact of the deposition conditions of the buffer layer on the electrical behavior of CZTSe/In2S3 devices is first investigated. The best solar cell efficiencies were obtained for relatively thick In2S3 buffer layers (similar to 100 nm) deposited at low temperature (

  10. Impact of thickness of GaN buffer layer on properties of AlN/GaN distributed Bragg reflectors grown by metalorganic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.

  11. Superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on GaAs with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; Gauzzi, A.; James, J.H.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institut de Micro et Optoelectronique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (CH))

    1990-12-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 m{Omega} cm.

  12. Preparation of SmBiO3 buffer layer on YSZ substrate by an improved chemical solution deposition route

    Science.gov (United States)

    Zhu, Xiaolei; Pu, Minghua; Zhao, Yong

    2016-12-01

    A quick route for chemical solution deposition (CSD) has been developed to prepare SmBiO3 (SBO) layers on yttria stabilized zirconia (YSZ) substrates rapidly by using of solid state decomposition (SSD) technique. The proper conditions for volatilization of lactic acid, which as solvent in precursor coated layer, and SBO growth are 115°C for 30 min and 794°C for 60 min in flowing Ar gas. The coated layers are amorphous structure of mixture oxides and quasi-crystal structure of SBO before and after growth, respectively. The total time by this quick CSD route for organic solvent volatilization, salts decomposed and layer growth is not up to 2 h, which are much less than that needed for traditional CSD of over 10 h. SBO layer is directly epitaxial growth on YSZ substrate without any lattice rotation. SBO layer prepared by this quick route as well as that by traditional route are suitable for the growth of YBCO. The superconducting transition temperature and critical current density of the coated YBCO layer on SBO/YSZ obtained by this quick route are up to 90 K and 1.66 MA/cm2. These results may be the usable reference for continuous preparation of SBO buffer layer on IBAD-YSZ/Ni-based alloy tapes.

  13. Reel-to-reel deposition of epitaxial double-sided MgO buffer layers for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yan, E-mail: xueyanuestc@126.com [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Xiong, Jie, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Yahui; Zhang, Fei; Zhao, Rui-Peng [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hui, Wang; Wang, Quiling [Applied Research Laboratory of Superconduction and New Material, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Guo; Zhao, Xiao-Hui; Tao, Bo-Wan [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-06-15

    Highlights: • Growth of biaxially textured MgO films on flexible substrates. • Double-sided IBAD buffer template for the first time. • Studying the influence of ion energy and film thickness on the texture. • Demonstrating double-sided YBCO films with overall critical current of 300 A/cm. - Abstract: We have successfully employed a double-sided process to deposit MgO buffer layers on both sides of amorphous Y{sub 2}O{sub 3} surface for double-sided YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) coated conductors (CCs) for the first time, the structure of which is of great prospect to improve the performance and cut the production cost. The biaxial textures of MgO buffer layer are noticeably affected by the ion energy and film thickness, which is demonstrated by X-ray diffraction. The best biaxial texture of double-sided MgO films shows ω-scan of (002) MgO and Φ-scan of (220) MgO yield full width at half maximum values of 4° and 7.8° for one side, respectively, as well as 3.5° and 6.7° for the other side. The subsequent double-sided YBCO films are deposited on the as-prepared MgO template with entire critical current of over 300 A/cm for both sides.

  14. The influence of impurity on the critical thickness of the CeO2 buffer layer for coated conductors

    Institute of Scientific and Technical Information of China (English)

    PAN Min; HUANG Zheng; MA HuanFeng; QIANG WeiRong; WEI LianFu; WANG Long; ZHAO Yong

    2009-01-01

    The lattice parameters, band structure, density of state and elastic constant of RE-doped CeO2 (RE=Sm, Gd, Dy), the buffer material for coated HTS conductors, are calculated using the plane-wave method with paeudopotentials based on the density functional theory (DFT) of first-principle. The rule and mechanism of the effect of rare earth impurity on the critical thickness of the CeO2 buffer layer are in-vestigated. It is found that, in the range of the calculation, the changes of the lattice volume Ⅴ and elastic constant E* of CeO2 with the impurity are mainly determined by the increased electrons △ne of the system. The relationship of the elastic constant E* and increased electrons △ne is established. It is indicated that the critical thickness of the CeO2 single buffer layer doped with Sm, Gd, and Dy may be enhanced by 22%, 43% and 33%, respectively.

  15. Effects of CdS Buffer Layers on Photoluminescence Properties of Cu2ZnSnS4 Solar Cells

    Directory of Open Access Journals (Sweden)

    A. Le Donne

    2015-01-01

    Full Text Available Cu2ZnSnS4 (CZTS absorber layers grown by sputtering were investigated by photoluminescence before and after the chemical bath deposition of CdS in order to evaluate the possible passivation of point defects by Cd atoms at the absorber/buffer layer interface. According to the literature, a broad emission around 1.21 eV was observed at low temperature under above bandgap excitation of the as-grown CZTS samples. Broad bands at 1.075 eV and 0.85 eV were detected for the first time under below bandgap excitation of the as-grown CZTS samples at low temperature, which were explained in terms of radiative transitions involving point defect-related levels determined in the literature by first-principles calculations. The emissions observed in the as-grown samples were monitored by both above and below bandgap excitations also in standard CZTS solar cells produced on the same layers. The obtained results suggest that, as in the case of Cu(In, GaSe2, Cd atoms passivate point defects at the absorber/buffer layer interface also in CZTS.

  16. Effect of por-SiC buffer layer on the parameters of thin Er2O3 layers on silicon carbide substrates

    Science.gov (United States)

    Bacherikov, Yu Yu; Konakova, R. V.; Okhrimenko, O. B.; Berezovska, N. I.; Kapitanchuk, L. M.; Svetlichnyi, A. M.; Svetlichnaya, L. A.

    2015-04-01

    Using optical absorption and Auger spectrometry techniques, we studied the effect of rapid thermal annealing (RTA) on the properties of erbium oxide films deposited onto a porous silicon carbide buffer layer formed on 4H-SiC substrates. An analysis of atomic composition of the films under investigation as a function of RTA duration was performed. It is shown that phase composition of erbium oxide films on silicon carbide substrates with a porous SiC layer can be changed by varying RTA duration.

  17. Effects of Antimony Doping in Polycrystalline CdTe Thin-Film Solar Cells

    Science.gov (United States)

    Okamoto, Tamotsu; Ikeda, Shigeyuki; Nagatsuka, Satsuki; Hayashi, Ryoji; Yoshino, Kaoru; Kanda, Yohei; Noda, Akira; Hirano, Ryuichi

    2012-10-01

    The effects of antimony (Sb) doping of the CdTe layer in the CdTe solar cells were investigated using Sb-doped CdTe powders as source materials for CdTe deposition by the close-spaced sublimation (CSS) method. Conversion efficiency increased with increasing Sb concentration below 1×1018 cm-3, mainly owing to the improvement of the fill factor. Secondary ion microprobe mass spectrometry (SIMS) depth profile revealed that the Sb impurities at a concentration of approximately 1×1016 cm-3 were incorporated into the CdTe layer when using the Sb-doped CdTe source of 1×1018 cm-3. The observation of surface morphology showed that the grain sizes were improved by Sb addition. Therefore, the improved performance upon Sb addition to CdTe solar cells was probably due to the improvements in crystallinity, such as increased grain size.

  18. X-ray photoelectron spectroscopy and Auger electron spectroscopy analyses of the initial growth mechanism of CdTe layers on (100) GaAs by metalorganic vapor phase epitaxy

    OpenAIRE

    1990-01-01

    X‐ray photoelectron spectroscopy and Auger electron spectroscopy measurements were performed to investigate the initial growth mechanism and the selection of growth orientations of CdTe layers grown on (100) GaAs by metalorganic vapor phase epitaxy (MOVPE). The surface stoichiometry of the GaAs substrate was found to recover when annealed in a H2 flow atmosphere (500°C, 5 min), although the surface was initially in an As‐rich condition after chemical etching by H2SO4@B:H2O2@B:H2O=5@B:1@B:1. N...

  19. The effect of employing the p/i buffer layers and in-situ hydrogen treatment for transparent a-Si:H solar cells.

    Science.gov (United States)

    Lee, Da Jung; Yun, Sun Jin; Park, Min A; Lim, Jung Wook

    2014-05-01

    In this study, we describe the effects of various thicknesses of triple p/i buffer layers and hydrogen treatment on various performances in the fabrication of transparent a-Si:H solar cells. For the increment of buffer layer thickness, V(oc) increases steadily and J(sc) firstly increases and then decreases. The triple buffer layers also enhance the transmittance as well as conversion efficiency. For hydrogen plasma treatment, overall performances were enhanced with plasma power due to the passivation of dangling bonds at p/i interface. Therefore, the usage of triple buffer layers with proper treatment is beneficial to obtaining transparent a-Si:H solar cells with high quality.

  20. Microstructures of GaN Buffer Layers Grown on Si(111) Using Rapic Thermal Process Low-Pressure Metalorganic Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Peng; ZHENG You-Dou; JIANG Shu-Sheng; FENG Duan; Z. C. Huang; SHEN Bo; ZHU Jian-Min; CHEN Zhi-Zhong; ZHOU Yu-Gang; XIE Shi-Yong; ZHANG Rong; HAN Ping; GU Shu-Lin

    2000-01-01

    Microstructures of GaN buffer layers grown on Si (111) substrates using rapid thermal process low-pressure metalorganic chemical vapor deposition are investigated by an atomic force microscope (AFM) and a high resolution transmission electron microscope (HRTEM). AFM images show that the islands appear in the GaN buffer layer after annealing at high temperature. Cross-sectional HRTEM micrographs of the buffer region of these samples indicate that there are bunched steps on the surface of the Si substrate and a lot of domains in GaN misorienting each other with small angles. The boundaries of those dowains locate near the bunched steps,and the regions of the film on a terrace between steps have the same crystal orientation. An amorphous-like layer, about 3 nm thick, can also be observed between the GaN buffer layer and the Si substrate.

  1. Studies of key technologies for CdTe solar modules

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, CdS thin films, which act as the window layer and n-type partner to the p-type CdTe layer, were prepared by chemical bath deposition (CBD). CdTe thin films were deposited by the close-spaced sublimation (CSS) method. To obtain high-quality back contacts, a Te-rich layer was created with chemical etching and back contact materials were applied after CdTe annealing. The results indicate that the ZnTe/ZnTe:Cu complex layers show superior performance over other back contacts. Finally, by using laser scribing and mechanical scribing, the CdTe mini-modules were fabricated, in which a glass/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni solar module with a PWQC-confirmed total-area efficiency of 7.03% (54 cm2) was achieved.

  2. Hierarchical rendering of trees from precomputed multi-layer z-buffers

    Energy Technology Data Exchange (ETDEWEB)

    Max, N. [California Univ., Davis, CA (United States)

    1996-02-01

    Chen and Williams show how precomputed z-buffer images from different fixed viewing positions can be reprojected to produce an image for a new viewpoint. Here images are precomputed for twigs and branches at various levels in the hierarchical structure of a tree, and adaptively combined, depending on the position of the new viewpoint. The precomputed images contain multiple z levels to avoid missing pixels in the reconstruction, subpixel masks for anti-aliasing, and colors and normals for shading after reprojection.

  3. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; Jong, de M.P.; Wiel, van der W.G.; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3/Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 (1.4 at. % Co). Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  4. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  5. Luminescent borate glass for efficiency enhancement of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steudel, Franziska, E-mail: franziska.steudel@iwmh.fraunhofer.de [Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM, Lübecker Ring 2, 59494 Soest (Germany); Loos, Sebastian [Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany); Ahrens, Bernd; Schweizer, Stefan [Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Mechanics of Materials IWM, Lübecker Ring 2, 59494 Soest (Germany); Department of Electrical Engineering, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest (Germany)

    2015-08-15

    Rare-earth (RE) doped borate glasses are investigated for their potential as photon down-shifting cover glass for CdTe solar cells. The barium borate base glass is doped with trivalent rare-earth ions such as Sm{sup 3+}, Eu{sup 3+}, and Tb{sup 3+} showing an intense luminescence in the red (Sm{sup 3+}, Eu{sup 3+}) and green (Tb{sup 3+}) spectral range upon excitation in the ultraviolet and blue. Additionally, the glasses are double-doped with two RE ions for a broad-band absorption. The gain in short-circuit current density of CdTe solar cells with different thicknesses of the CdS buffer layer is calculated. Though the single-doped glasses already reveal a slight increase in short-circuit current density, the double-doped glasses allow for higher efficiency gains since a significant broader spectral range is covered for absorption. For a Tb{sup 3+}/Eu{sup 3+} double-doped glass with a RE doping level of 1 at% each, an efficiency increase of 1.32% can be achieved. - Highlights: • Rare-earth doped front glass for high efficiency CdTe solar cells were prepared. • Double-doping allows for higher efficiency gains than single-doping. • Efficiency enhancement of 1.32% can be achieved with Tb{sup 3+}/Eu{sup 3+} doped front glass.

  6. Chitosan-assisted buffer layer incorporated with hydroxypropyl methylcellulose-coated silver nanowires for paper-based sensors

    Science.gov (United States)

    Xu, Duohua; Qiu, Jingshen; Wang, Yucheng; Yan, Jiajun; Liu, Gui-Shi; Yang, Bo-Ru

    2017-06-01

    Fabricating flexible sensors on paper is intriguing. Here, we exploited chitosan as a buffer layer to facilitate the fabrication of silver nanowire (AgNW) networks and flexible devices on commercial paper. We found that the AgNW networks exhibited uniform distribution, smooth surface, and strong adhesion. The enhanced adhesion of AgNWs was attributed to the intermolecular hydrogen bonding between chitosan and hydroxypropyl methylcellulose (HPMC), which can be tailored by tuning the pH of the chitosan aqueous solution. This facile fabrication method utilizing biodegradable polymers and cost-effective AgNW ink holds great promise for portable, wearable, and disposable paper-based electronics.

  7. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    Science.gov (United States)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  8. A Numerical Simulation of the Effect of Buffer Layer Band Gap on the Performances of nc-Si : H Based Solar Cells

    Directory of Open Access Journals (Sweden)

    H. Touati

    2016-06-01

    Full Text Available This paper describes an investigation, by using numerical simulation, into the impacts of i-nc-Si : H buffer layer band gap on the photovoltaic parameters of n-i-p hydrogenated nanocrystalline silicon (nc-Si : H solar cells. The output external cell parameters, like, the short-circuit current (JSC, the open circuit voltage (VOC, the fill factor (FF and efficiency (Eff are simulated by varying the mobility band gap (Eg of i-nc-Si : H buffer layer. Also, the band diagram of nc-Si : H n-i-p solar cell, the electric field and the traped hole density at i/p interface, and the external quantum efficiency, with different values of buffer layer band gap where optimized. The simulation result shows that in valence band and for both interfaces, the band offsets ΔEV1 at p-nc-Si : H (window layer / i-nc-Si : H (buffer layer and ΔEV2 at i-nc-Si : H (buffer layer / i-nc-Si : H (absorber layer can be affected by varying Eg. It is obtained that the values efficiency are 10.89 % and 11.33 % when the value of i-nc-Si : H buffer layer band gap are 1.4 eV and 1.55 eV, respectively. However, the i-nc-Si : H buffer layer band gap of 1.55 eV was optimized for obtaining a better efficiency for n-i-p solar cell based on hydrogenated nanocrystalline silicon.

  9. Effects of TiO{sub 2} buffer layer on the photoelectrochemical properties of TiO{sub 2} Nano rods grown by modified chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae-hyun; Ha, Jin-wook; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-08-15

    In this study, we grew TiO{sub 2} nano rods on TiO{sub 2}-film buffered FTO substrate using modified chemical bath deposition (M-CBD). The TiO{sub 2} buffer layer was grown by spin coating method with different RPM (revolutions per minute) values and deposition cycles. We investigated the effects of the RPM values and the deposition cycles on the morphological, structural and photoelectrochemical properties of TiO{sub 2} nano rods. In this work, we have also found that the morphological and structural properties of TiO{sub 2} nano rods affected the photoelectrochemical properties of TiO{sub 2} nano rods. And the maximum photocurrent density of 0.34 mA/cm{sup 2} at 0.6V (vs.SCE) was obtained from the buffer layer deposition process condition of 4,000 RPM and two-times buffer layer depositions.

  10. Enhanced performance of C60 organic field effect transistors using a tris(8-hydroxyquinoline) aluminum buffer layer

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong; Cheng Xiaoman; Tian Haijun; Zhao Geng

    2011-01-01

    We have investigated the properties of C60-based organic field effect transistors (OFETs) with a tris(8-hydroxyquinoline) aluminum (Alq3) buffer layer inserted between the source/drain electrodes and the active material.The electrical characteristics of OFETs are improved with the insertion of Aiq3 film.The peak field effect mobility is increased to 1.28 × 10-2 cm2/(V.s) and the threshold voltage is decreased to 10 V when the thickness of the Alq3 is 10 nm.The reason for the improved performance of the devices is probably due to the prevention of metal atoms diffusing into the C60 active layer and the reduction of the channel resistance in Alq3 films.

  11. Magnetization reversal dynamics in Au/Co/Au(111) ultrathin films: Effect of roughness of the buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Adanlete Adjanoh, A. [Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire le Belvedere, Tunis 1060 (Tunisia); Belhi, R., E-mail: Rachid.Belhi@fst.rnu.t [Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire le Belvedere, Tunis 1060 (Tunisia); Vogel, J.; Fruchart, O. [Institut Neel (CNRS and UJF), 25 rue des Martyrs, B.P. 166, 38042 Grenoble cedex 9 (France); Ayadi, M.; Abdelmoula, K. [Departement de Physique, Faculte des Sciences de Tunis, Campus Universitaire le Belvedere, Tunis 1060 (Tunisia)

    2010-09-15

    We present a study of the magnetization reversal dynamics in ultrathin Au/Co/Au films with perpendicular magnetic anisotropy, for a Co thickness of 0.5, 0.7 and 1 nm. In these films, the magnetization reversal is dominated by domain nucleation for t{sub Co}=0.5, 0.7 nm and by domain wall propagation for t{sub Co}=1 nm. The prevalence of domain nucleation for the thickness range 0.5-0.7 nm is different from results reported in the literature, for the same system and for the same thickness range, where the magnetization reversal took place mainly by domain wall motion. We attribute this difference to the effect of roughness of the Au buffer layer on the morphology of the magnetic layer.

  12. Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al 2 O 3 Buffer Layer

    KAUST Repository

    Guarnera, Simone

    2015-02-05

    © 2015 American Chemical Society. Hybrid perovskites represent a new paradigm for photovoltaics, which have the potential to overcome the performance limits of current technologies and achieve low cost and high versatility. However, an efficiency drop is often observed within the first few hundred hours of device operation, which could become an important issue. Here, we demonstrate that the electrode\\'s metal migrating through the hole transporting material (HTM) layer and eventually contacting the perovskite is in part responsible for this early device degradation. We show that depositing the HTM within an insulating mesoporous "buffer layer" comprised of Al2O3 nanoparticles prevents the metal electrode migration while allowing for precise control of the HTM thickness. This enables an improvement in the solar cell fill factor and prevents degradation of the device after 350 h of operation. (Graph Presented).

  13. Fabrication of NiO Buffer Layer for YBCO Coated Conductors by Combining Sputtering and SOE Method

    Institute of Scientific and Technical Information of China (English)

    Liu Huizhong; Yang Jian; Yang Haitao; Wang Xiaohua; Gu Hongwei; Yuan Guansen

    2004-01-01

    In research of YBCO coated conductors, the development of a oxide template for epitaxial growth of YBCO is very important. Matsumoto et al have demonstrated the potential of the surface oxidation epitaxial (SOE) route for formation a cube textured NiO layer on nickel tapes. The epitaxial NiO functions as a buffer layer of chemical reaction between YBCO and nickel, and as a template for the epitaxial growth of YBCO. However, the surface quality of NiO is difficult to control and defects such as crack, spall and deep grooves exist in SOE NiO layer. A new approach combining sputtering and SOE method to obtain crack-free and cube textured NiO layer were reported. Ni tapes prepared by the combination of rolling and recrystallization were used for this work. A coating of Ni was first deposited on the tapes via magnetron sputtering. Then on the coating tapes, continuous and textured NiO layer were achieved by SOE technology.

  14. Impact of buffer layer and Pt thickness on the interface structure and magnetic properties in (Co/Pt) multilayers

    Science.gov (United States)

    Bersweiler, M.; Dumesnil, K.; Lacour, D.; Hehn, M.

    2016-08-01

    The influence of Pt thickness on the interface structure (roughness / intermixing) and magnetic properties has been investigated for (Co / Pt) multilayers sputtered on a Pt or a thin oxide (MgO or AlO x ) buffer layer. When Pt thickness increases from 1.2 nm-2.2 nm, we observe that the effective anisotropy increases with the Pt thickness, simultaneously with the decrease of roughness, i.e. the occurrence of sharper interfaces. Perpendicular magnetic anisotropy (PMA) is still achieved on the oxide buffer layers, but with a lower effective anisotropy correlated to more perturbed interfaces. The detailed analysis of the saturation magnetization shows that: (i) M s is significantly enhanced in the case of rough/intermixed interfaces, which is attributed to and discussed in the framework of Pt induced polarization, (ii) the change in volume dipolar anisotropy is the main factor responsible for the reduction of K eff for systems grown on oxides. Beyond the major role of volume dipolar contribution that reduces PMA, a supplemental positive contribution promoting PMA can be invoked for rough interfaces and large M s (deposit on oxide). This contribution is consistent with a dipolar surface anisotropy term and increases for rough interfaces, in contrast to the Néel surface anisotropy. These opposite variations may interestingly lead to an enhanced anisotropy in (Co / Pt) stackings grown on oxides compared to systems deposited on Pt, i.e. with sharper interfaces.

  15. Reel-to-reel deposition of epitaxial double-sided MgO buffer layers for coated conductors

    Science.gov (United States)

    Xue, Yan; Xiong, Jie; Zhang, Yahui; Zhang, Fei; Zhao, Rui-Peng; Hui, Wang; Wang, Quiling; Cheng, Guo; Zhao, Xiao-Hui; Tao, Bo-Wan

    2016-06-01

    We have successfully employed a double-sided process to deposit MgO buffer layers on both sides of amorphous Y2O3 surface for double-sided YBa2Cu3O7-δ (YBCO) coated conductors (CCs) for the first time, the structure of which is of great prospect to improve the performance and cut the production cost. The biaxial textures of MgO buffer layer are noticeably affected by the ion energy and film thickness, which is demonstrated by X-ray diffraction. The best biaxial texture of double-sided MgO films shows ω-scan of (002) MgO and Φ-scan of (220) MgO yield full width at half maximum values of 4° and 7.8° for one side, respectively, as well as 3.5° and 6.7° for the other side. The subsequent double-sided YBCO films are deposited on the as-prepared MgO template with entire critical current of over 300 A/cm for both sides.

  16. Optical properties of PZT thin films deposited on a ZnO buffer layer

    OpenAIRE

    Schneider, T.; Leduc, D; Cardin, J.; LUPI, C; Barreau, N; Gundel, H.

    2007-01-01

    International audience; The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model allows us to relate the observed changes in the PZT refractive index to the ...

  17. Optical properties of PZT thin films deposited on a ZnO buffer layer

    OpenAIRE

    Schneider, T.; Leduc, D; Cardin, J.; LUPI, C; Barreau, N; Gundel, H.

    2015-01-01

    The optical properties of lead zirconate titanate (PZT) thin films deposited on ZnO were studied by m-lines spectroscopy. In order to retrieve the refractive index and the thickness of both layers from the m-lines spectra, we develop a numerical algorithm for the case of a two-layer system and show its robustness in the presence of noise. The sensitivity of the algorithm of the two-layer model allows us to relate the observed changes in the PZT refractive index to the PZT structural change du...

  18. Device performance and lifetime of polymer:fullerene solar cells with UV-ozone-irradiated hole-collecting buffer layers.

    Science.gov (United States)

    Lee, Seungsoo; Nam, Sungho; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2011-11-18

    We report the influence of UV-ozone irradiation of the hole-collecting buffer layers on the performance and lifetime of polymer:fullerene solar cells. UV-ozone irradiation was targeted at the surface of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layers by varying the irradiation time up to 600 s. The change of the surface characteristics in the PEDOT:PSS after UV-ozone irradiation was measured by employing optical absorption spectroscopy, photoelectron yield spectroscopy, and contact angle measurements, while Raman and X-ray photoelectron spectroscopy techniques were introduced for more microscopic analysis. Results showed that the UV-ozone irradiation changed the chemical structure/composition of the surface of the PEDOT:PSS layers leading to the gradual increase of ionization potential with irradiation time in the presence of up-and-down variations in the contact angle (polarity). This surface property change was attributed to the formation of oxidative components, as evidenced by XPS and Auger electron images, which affected the sheet resistance of the PEDOT:PSS layers. Interestingly, device performance was slightly improved by short irradiation (up to 10 s), whereas it was gradually decreased by further irradiation. The short-duration illumination test showed that the lifetime of solar cells with the UV-ozone irradiated PEDOT:PSS layer was improved due to the protective role of the oxidative components formed upon UV-ozone irradiation against the attack of sulfonic acid groups in the PEDOT:PSS layer to the active layer.

  19. Physical-Layer Security of a Buffer-Aided Full-Duplex Relaying System

    KAUST Repository

    El Shafie, Ahmed

    2016-07-07

    This letter proposes a novel hybrid half-/full-duplex relaying scheme to enhance the relay channel security. A source node (Alice) communicates with her destination node (Bob) in the presence of a buffer-aided full-duplex relay node (Rooney) and a potential eavesdropper (Eve). Rooney adopts two different relaying, namely randomize-and-forward and decode-andforward relaying strategies, to improve the security of the legitimate system. In the first relaying strategy, Rooney uses a codebook different from that used at Alice. In the second relaying strategy, Rooney and Alice use the same codebooks. In addition, Rooney switches between half-duplex and full-duplex modes to further enhance the security of the legitimate system. The numerical results demonstrate that our proposed scheme achieves a significant average secrecy end-to-end throughput improvement relative to the conventional bufferless full-duplex relaying scheme.

  20. Efficient red-emission InGaN/GaN multilayered structure on Si with surface-nitrified HfO{sub 2} film as buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Zhang, Xuehua; Hu, Fangren [Nanjing University of Posts and Telecommunications, School of Optoelectronic Engineering, Nanjing (China); Nanjing University of Posts and Telecommunications, Peter Grunberg Research Center, Nanjing (China); Wang, Yongjin [Nanjing University of Posts and Telecommunications, Peter Grunberg Research Center, Nanjing (China); Hane, K. [Tohoku University, Department of Nanomechanics, Sendai (Japan)

    2016-03-15

    A four-period InGaN/GaN (8 nm/48 nm) layered structure was deposited on a Si substrate with a surface-nitrified HfO{sub 2} film as a buffer layer (5 nm). A high In concentration of In{sub 0.36}Ga{sub 0.64}N was obtained in the InGaN layers. Red photoluminescence of 648 nm was observed from the layered structure. The internal quantum efficiency of the red emission from the InGaN layers on the surface-nitrified HfO{sub 2}/Si was 52 %, which was more than 18 times larger than that on the Si substrate without HfO{sub 2}. The surface-nitrified HfO{sub 2} provides another effective buffer layer to grow the InGaN/GaN layered structure on the Si substrate. (orig.)

  1. Tailoring the magnetic anisotropy of CoFeB/MgO stacks onto W with a Ta buffer layer

    Science.gov (United States)

    Kaidatzis, Andreas; Bran, Cristina; Psycharis, Vasilios; Vázquez, Manuel; García-Martín, José Miguel; Niarchos, Dimitrios

    2015-06-01

    The emergence of perpendicular magnetic anisotropy (PMA) in CoFeB/MgO stacks deposited on W using a Ta buffer layer is studied as a function of Ta and CoFeB layer thickness and annealing temperature. It is shown that very thin Ta "dusting" layers (thickness between 0.3 and 1 nm) enhance PMA of CoFeB layers grown on top of W. We find that Ta thickness is a crucial factor affecting magnetic anisotropy and it needs to be scaled proportionally to CoFeB thickness for obtaining PMA. Stacks without Ta have in-plane anisotropy, verifying the "PMA-enhancing" role of Ta. The maximum effective PMA energy ( 3.6 ×106 erg/cm3) is obtained for a stack with 1.4 nm of CoFeB and 1 nm of Ta and after annealing at 350 °C . Besides, PMA can be obtained even at the as-deposited state for certain thicknesses. This W-based CoFeB/MgO system could enable the development of low power consumption, high density, and non-volatile magnetic memories.

  2. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    Science.gov (United States)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  3. Environmental Modeling, The Buffer Priority layers for Nitrogen Removal identify priority forest/grass buffer sites by subwatershed. Land use, hydrology, soil, and landscape characteristics were analyzed to rank opportunities with high nitrogen removal potential., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Buffer Priority layers for Nitrogen Removal identify priority forest/grass buffer sites by subwatershed. Land...

  4. Synthesis and characterization of (Cd,Zn)S buffer layer for Cu2ZnSnSe4 solar cells

    Science.gov (United States)

    Ben Messaoud, Khaled; Buffière, Marie; Brammertz, Guy; Lenaers, Nick; Boyen, Hans-Gerd; Sahayaraj, Sylvester; Meuris, Marc; Amlouk, Mosbah; Poortmans, Jef

    2017-07-01

    In order to improve the electrical performances of Cu2ZnSnSe4 (CZTSe) based solar cells, the standard CdS buffer layer was replaced by (Cd,Zn)S processed by chemical bath deposition. The morphology and composition of the (Cd,Zn)S thin films were studied as a function of [Zn]/([Zn]  +  [Cd]) ratio in the chemical bath (80, 85 and 90%). The CZTSe/(Cd,Zn)S solar cells with and without Cd partial electrolyte (Cd PE) treatment were compared to CZTSe/CdS reference devices using current-voltage and external quantum efficiency measurements. The (Cd,Zn)S thin films show a non-homogeneity of Zn distribution and phase formation, with a shift from Zn(O,OH) x to ZnS phase when increasing the deposition time and a decrease of the layers thicknesses when increasing the Zn concentration in chemical bath. A model for the growth of (Cd,Zn)S thin films is proposed. The resulting CZTSe/(Cd,Zn)S devices show an important reduction of the barrier at the hetero-interface, which is attributed to the lower density of O contamination in (Cd,Zn)S compared to CdS, inducing a lower density of deep p-type recombination centers. Despite the reduced compensation of the buffer layer, CZTSe/(Cd,Zn)S devices show a deterioration of the open circuit voltage and the fill factor with the increase of Zn content in (Cd,Zn)S. These electrical losses were avoided by Cd PE treatment prior to the deposition of (Cd,Zn)S.

  5. Simulation studies on the effect of a buffer layer on the external parameters of hydrogenated amorphous silicon –– solar cells

    Indian Academy of Sciences (India)

    K Rajeev Kumar; M Zeman

    2008-10-01

    Device modeling of –– junction amorphous silicon solar cells has been carried out using the amorphous semiconductor analysis (ASA) simulation programme. The aim of the study was to explain the role of a buffer layer in between the - and -layers of the –– solar cell on the external parameters such as dark current density and open circuit voltage. Investigations based on the simulation of dark – characteristics revealed that as the buffer layer thickness increases the dark current for a given voltage decreases.

  6. Physical properties and interface studies of YBa2Cu3O7 thin films deposited by laser ablation on S1 (111) with buffer layer

    NARCIS (Netherlands)

    Blank, D.H.A.; Aarnink, W.A.M.; Flokstra, J.; Rogalla, H.; Silfhout, van A.

    1990-01-01

    The physical properties of laser-deposited YBaCuO on Si using a single buffer layer of ZrO2 and a double layer of NiSi2 and ZrO2 have been studied. The influence of the deposition temperature has been investigated. Interface studies were performed by RBS and SAM. SEM pictures, resistivity and critic

  7. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    Science.gov (United States)

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  8. Quantum transport modeling of the symmetric Fe/FeO0.5/MgO magnetic tunnel junction: the effects of correlations in the buffer layer.

    Science.gov (United States)

    Timoshevskii, Vladimir; Hu, Yibin; Marcotte, Étienne; Guo, Hong

    2014-01-08

    We report ab initio simulations of quantum transport properties of Fe/MgO/Fe trilayer structures with FeO0.5 buffer iron oxide layer, where on-site Coulomb interaction is explicitly taken into account by local density approximation + Hubbard U approach. We show that on-site Coulomb repulsion in the iron-oxygen layer can cause a dramatic drop of the tunnel magnetoresistance of the system. We present an understanding of microscopic details of this phenomenon, connecting it to localization of electronic states of particular symmetry, which takes place in the buffer Fe-O layer, when on-site Coulomb repulsion is introduced. We further study the possible influence of the symmetry reduction in the buffer Fe-O layer on the transport properties of the Fe/MgO/Fe interface.

  9. Evaluation of methods for application of epitaxial buffer and superconductor layers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-30

    The recent achievements of critical currents exceeding million amperes per square centimeter at 77K in YBCO deposited over suitably textured substrate have stimulated interest in the potential applications of coated conductors at high temperatures and in high magnetic fields. Currently, ion-beam assisted deposition (IBAD), and rolling assisted bi-axially textured substrate (RABiTS), represent two available options for obtaining textured substrates. For applying suitable coatings of buffer and high temperature superconductor (HTS) material over textured substrates, several options are available which include sputtering, electron-beam evaporation, laser ablation, electrophoresis, chemical vapor deposition (including metal organics chemical vapor deposition), sol-gel, metal organics decomposition, electrodeposition and aerosol/spray pyrolysis. A commercial continuous long-length wire/tape manufacturing scheme developed out of any suitable combination of the above techniques would consist of operations involving preparation of the substrate and application of buffer, HTS and passivation/insulation materials and special treatment steps such as post-annealing. These operations can be effected by various process parameters that can be classified into chemistry, materials, engineering and environmental related parameters. Under the DOE-sponsored program, to carry out an engineering evaluation, first, the process flow schemes were developed for various candidate options identifying the major operating steps, process conditions, and process streams. Next, to evaluate quantifiable parameters such as process severity (e.g. temperature and pressure), coating thickness and deposition rate for HTS material, achieved maximum J{sub c} value (for films >1{micro}m thick) and cost of chemical and material utilization efficiency, the multi-attribute method was used to determine attributes/merits for various parameters and candidate options. To determine similar attribute values for the

  10. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cerio, Frank

    2013-09-14

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance

  11. Effects of BaTiO3 and SrTiO3 as the buffer layers of epitaxial BiFeO3 thin films

    Science.gov (United States)

    Feng, Yu; Wang, Can; Tian, ShiLu; Zhou, Yong; Ge, Chen; Guo, HaiZhong; He, Meng; Jin, KuiJuan; Yang, GuoZhen

    2017-06-01

    BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.

  12. Photoluminescence and Electroluminescence Properties of CdTe Nanoparticles in Conjugated Polymer Hosts

    Institute of Scientific and Technical Information of China (English)

    GUO, Fengqi; XIE, Puhui

    2009-01-01

    The photoinduced energy transfer process from conjugated polymer (PPE4+) to CdTe nanocrystals was found both in solutions and in thin films by a fluorescence spectroscopic technique. Films of PPE4+ blended with CdTe-2 nanocrystals were formed by an electrostatic layer-by-layer assembly technique. Light emitting diodes were fabricated using CdTe-2 as an emitter in PPE4+ host. PPE4+ works as a molecular wire in the energy transfer process from the polymer to the CdTe-2 nanocrystals.

  13. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    Science.gov (United States)

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination.

  14. Recombination-current suppression in GaAs p-n junctions grown on AlGaAs buffer layers by molecular-beam epitaxy

    Science.gov (United States)

    Rancour, D. P.; Melloch, M. R.; Pierret, R. F.; Lundstrom, M. S.; Klausmeier-Brown, M. E.; Kyono, C. S.

    1987-08-01

    n+pp+GaAs and n+pP+ GaAs/GaAs/Al0.3Ga0.7As mesa diodes have been fabricated from films grown by molecular-beam epitaxy. The diodes made from films employing an AlGaAs buffer layer show marked improvements (a factor of 5 reduction) in recombination current densities. Deep level transient spectroscopy measurements moreover indicate that deep level concentrations are reduced by the AlGaAs buffer.

  15. Finding the lost open-circuit voltage in polymer solar cells by UV-ozone treatment of the nickel acetate anode buffer layer.

    Science.gov (United States)

    Wang, Fuzhi; Sun, Gang; Li, Cong; Liu, Jiyan; Hu, Siqian; Zheng, Hua; Tan, Zhan'ao; Li, Yongfang

    2014-06-25

    Efficient polymer solar cells (PSCs) with enhanced open-circuit voltage (Voc) are fabricated by introducing solution-processed and UV-ozone (UVO)-treated nickel acetate (O-NiAc) as an anode buffer layer. According to X-ray photoelectron spectroscopy data, NiAc partially decomposed to NiOOH during the UVO treatment. NiOOH is a dipole species, which leads to an increase in the work function (as confirmed by ultraviolet photoemission spectroscopy), thus benefitting the formation of ohmic contact between the anode and photoactive layer and leading to increased Voc. In addition, the UVO treatment improves the wettability between the substrate and solvent of the active layer, which facilitates the formation of an upper photoactive layer with better morphology. Further, the O-NiAc layer can decrease the series resistance (Rs) and increase the parallel resistance (Rp) of the devices, inducing enhanced Voc in comparison with the as-prepared NiAc-buffered control devices without UVO treatment. For PSCs based on the P3HT:PCBM system, Voc increases from 0.50 to 0.60 V after the NiAc buffer layer undergoes UVO treatment. Similarly, in the P3HT:ICBA system, the Voc value of the device with a UVO-treated NiAc buffer layer increases from 0.78 to 0.88 V, showing an enhanced power conversion efficiency of 6.64%.

  16. Influence of double AlN buffer layers on the qualities of GaN films prepared by metal-organic chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Lin Zhi-Yu; Hao Yue; Zhang Jin-Cheng; Zhou Hao; Li Xiao-Gang; Meng Fan-Na; Zhang Lin-Xia; Ai Shan; Xu Sheng-Rui; Zhao Yi

    2012-01-01

    In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double AlN buffer layers.The buffer layer consists of a low-temperature (LT) AlN layer and a high-temperature (HT) AlN layer that are grown at 600 ℃ and 1000 ℃,respectively.It is observed that the thickness of the LT-AlN layer drastically influences the quality of GaN thin film,and that the optimized 4.25-min-LT-AlN layer minimizes the dislocation density of GaN thin film.The reason for the improved properties is discussed in this paper.

  17. Synthesis, Characterization and Photoluminescence of Well-Ordered ZnO Micropillars Grown on ZnO Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    LU Hongbing; TIAN Yu; HU Meifeng; SHUAI Min; LI Jinchai

    2007-01-01

    Using ZnO buffer layers prepared by simply thermaloxidation of ion beam sputtered Zn films, highly oriented anduniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporation of Zn powder with free catalysts at low temperature of 430 ℃. The ZnO micropillars show sharp hexagonal umbrella-like tips with thin ZnO nanowire grown on the tips. The umbrella-like tips grow in a layer-by-layer mode along the direction of [001]. The growth mechanism has been discussed. The formation of the micropillars basically depends on the gradually decreasing Zn vapor pressure and subse-quently cooling process. The photo1luminescence (PL) spectrum indicates a moderately good crystal quality of the ZnO micropillars. Our results may reinforce the understanding of the formation mechanism of different ZnO nano/microstructures. This kind of complex microstructures may find potential applications in multi-functional microdevices, optoelectronic and field emission devices.

  18. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    Science.gov (United States)

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  19. Magnetic anisotropy of crystalline Fe films grown on (001 GaAs substrates using Ge buffer layers

    Directory of Open Access Journals (Sweden)

    Seul-Ki Bac

    2016-05-01

    Full Text Available Magnetic anisotropy of Fe films grown on (001 GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude, they survive up to room temperature.

  20. Magnetic anisotropy of crystalline Fe films grown on (001) GaAs substrates using Ge buffer layers

    Science.gov (United States)

    Bac, Seul-Ki; Lee, Hakjoon; Lee, Sangyeop; Choi, Seonghoon; Yoo, Taehee; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2016-05-01

    Magnetic anisotropy of Fe films grown on (001) GaAs substrates using Ge buffer layers were investigated by planar Hall effect measurements. In addition to phenomena arising from dominant cubic symmetry of the Fe specimen, the study of angular dependence of magnetization reversal revealed breaking of this symmetry in the form of systematic asymmetric shifts of magnetic hysteresis loops around the crystallographic directions. We ascribe such symmetry breaking to an admixture of uniaxial anisotropy associated with the [100] direction in the Fe film. To determine the parameters associated with this uniaxial anisotropy, we quantitatively analyze the asymmetric shifts of the hysteresis loop centers from the directions. Even though the value of these parameters turns out to be relatively small compared to that of the cubic anisotropy (by about two orders of magnitude), they survive up to room temperature.

  1. Stress Analysis of ZnO Film with a GaN Buffer Layer on Sapphire Substrate

    Institute of Scientific and Technical Information of China (English)

    CUI Jun-Peng; WANG Xiao-Feng; DUAN Yao; HE Jin-Xiao; ZENG Yi-Ping

    2008-01-01

    A 5.35-μm-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) w-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction θ - 2θ scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.

  2. Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for carbon Nanotube Growth

    Institute of Scientific and Technical Information of China (English)

    万青; 王太宏; 林成鲁

    2003-01-01

    Vacuum electron-beam evaporated iron nanocrystal is used for the growth of carbon nanotubes. Atomic force microscopy and Raman scattering studies reveal the formation of beta-iron silicide islands on bare silicon substrate after annealing at 700°C in N2 ambient. In order to eliminate the influence of iron-silicon interaction, Si3N4 buffer layer with the thickness of 80 nm is used. This technical route prevents effectively the formation of iron silicide and improves the quality of the iron nanocrystals. Using these iron nanocrystals with high density (about 7 × 1010/cm2) as catalyst, high-density multiwall carbon nanotubes are synthesized on Si3N4/Si substrate.

  3. Thin-film CdTe cells: Reducing the CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, V.; Liu, X.; Paudel, N.; Kwon, D.; Wieland, K.A.; Compaan, A.D., E-mail: alvin.compaan@utoledo.edu

    2011-08-31

    Polycrystalline thin-film CdTe is currently the dominant thin-film technology in world-wide PV manufacturing. With finite Te resources world-wide, it is appropriate to consider the limits to reducing the thickness of the CdTe layer in these devices. In our laboratory we have emphasized the use of magnetron sputtering for both CdS and CdTe achieving AM1.5 efficiency over 13% on 3 mm soda-lime glass with commercial TCO and 14% on 1 mm aluminosilicate glass. This deposition technique is well suited to good control of very thin layers and yields relatively small grain size which also facilitates high performance with ultra-thin layers. This paper describes our magnetron sputtering studies for fabrication of very thin CdTe cells. Our thinnest cells had CdTe thicknesses of 1 {mu}m, 0.5 {mu}m and 0.3 {mu}m and yielded efficiencies of 12%, 9.7% and 6.8% respectively. With thinner cells Voc, FF and Jsc are reduced. Current-voltage (J-V), temperature dependent J-V (J-V-T) and apparent quantum efficiency (AQE) measurements provide valuable information for understanding and optimizing cell performance. We find that the stability under light soak appears not to depend on CdTe thickness from 2.5 to 0.5 {mu}m. The use of semitransparent back contacts allows the study of bifacial response which is particularly useful in understanding carrier collection in the very thin devices.

  4. Effects of ZnO Buffer Layer Thickness on Properties of MgxZn1-xO Thin Films Deposited by MOCVD

    Institute of Scientific and Technical Information of China (English)

    DONG Xin; LIU Da-li; DU Guo-tong; ZHANG Yuan-tao; ZHU Hui-chao; YAN Xiao-long; GAO Zhong-min

    2005-01-01

    High-quality MgxZn1-xO thin films were grown on sapphire(0001) substrates with a ZnO buffer layer of different thicknesses by means of metal-organic chemical vapor deposition. Diethyl zinc, bis-cyclopentadienyl-Mg and oxygen were used as the precursor materials. The crystalline quality, surface morphologies and optical properties of the MgxZn1-xO films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence spectrometry. It was shown that the quality of the MgxZn1-xO thin films depends on the thickness of the ZnO buffer layer and an MgxZn1-xO thin film with a ZnO buffer layer whose thickness was 20 nm exhibited the best crystal-quality, optical properties and a flat and dense surface.

  5. A Novel Super-Junction Lateral Double-Diffused Metal-Oxide-Semiconductor Field Effect Transistor with n-Type Step Doping Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    CHENG Jian-Bing; ZHANG Do; DUAN Bao-Xing; LI Zhao-Ji

    2008-01-01

    A novel super-junction lateral double-diffused metal-nxide-semiconductor field effect transistor(SJ-LDMOSFET)with n-type step doping buffer layer is proposed.The step doping buffer layer almost completely eliminates the substrate-assisted depletion effect.modulates lateral electric field and achieves nearly uniform surface field.On the other hand,the buffer layer also provides another conductive path and reduces on-state resistance.In short,the proposed LDMOSFET improves trade-off performance between breakdown voltage (BV)and specific on-state resistance Ron,sp.Compared with the conventional SJ-LDMOSFET,the simulation results indicate that the BV of the SSJ-LDMOSFET is increased from saturation voltage 121.7 V to 644.9 V;at the same time,the specific when the drift region length and the step number are taken as 48μm and 3,respectively.

  6. Temperature dependent electroreflectance study of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Raadik, T., E-mail: taavi.raadik@ttu.ee [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krustok, J.; Josepson, R.; Hiie, J. [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Potlog, T.; Spalatu, N. [Moldova State University, A. Mateevici str. 60, MD-2009 Chisinau (Moldova, Republic of)

    2013-05-01

    Cadmium telluride is a promising material for large scale photovoltaic applications. In this paper we study CdS/CdTe heterojunction solar cells with electroreflectance spectroscopy. Both CdS and CdTe layers in solar cells were grown sequentially without intermediate processing by the close-space sublimation method. Electroreflectance measurements were performed in the temperature range of T = 100–300 K. Two solar cells were investigated with conversion efficiencies of 4.1% and 9.6%. The main focus in this work was to study the temperature dependent behavior of the broadening parameter and the bandgap energy of CdTe thin film in solar cells. Room temperature bandgap values of CdTe were E{sub g} = 1.499 eV and E{sub g} = 1.481 eV for higher and lower efficiency solar cells, respectively. Measured bandgap energies are lower than for single crystal CdTe. The formation of CdTe{sub 1−x}S{sub x} solid solution layer on the surface of CdTe is proposed as a possible cause of lower bandgap energies. - Highlights: ► Temperature dependent electroreflectance measurements of CdS/CdTe solar cells ► Investigation of junction properties between CdS and CdTe ► Formation of CdTe{sub 1−} {sub x}S{sub x} solid solution layer in the junction area.

  7. Research on the adhesive ability between ITO anode and PET substrate improved by polyimide buffer layer

    Institute of Scientific and Technical Information of China (English)

    WANG Liduo; LI Yang; CHANG Chun; DUAN Lian; QIU Yong

    2005-01-01

    A layer of polyimide is adopted to improve the adhesive ability between common flexible PET (poly(ethylene terephthalate)), generally used in the FOLEDs (flexible organic light-emitting diodes), and ITO anode. It has been demonstrated by the scrape method that great improvement of the critical load value of flexible conductive substrate and lots of melioration of the substrate's flexibility has been made. Moreover, using such a complex substrate the current density and luminescence of the OLED device are approximately four times as much as those by using common PET substrate.

  8. Improved breakdown voltage of AlGaN/GaN HEMTs grown on Si substrates using partially Mg-doped GaN buffer layer by MOCVD

    Institute of Scientific and Technical Information of China (English)

    LAU; KeiMay

    2010-01-01

    AlGaN/GaN high electron mobility transistors(HEMTs) were grown on Si substrates by MOCVD.In the HEMT structure,a 1 μm GaN buffer layer was partially doped with Mg in an attempt to increase the resistivity and minimize the buffer leakage.The AlGaN/GaN HEMTs grown on undoped and partially Mg-doped GaN buffer layers were processed and the DC characteristics of the devices were characterized for comparing the effect of Mg doping.For the device with the partially Mg-doped GaN buffer layer,a lower drain leakage current density of 55.8 nA/mm,a lower gate leakage current density of 2.73 μA/mm,and a higher off-state breakdown voltage of 104 V were achieved with device dimensions Lg/Wg/Lgs/Lgd=1/10/1/1 μm,better than the device with the undoped GaN buffer layer,which has a higher drain leakage current density of 9.2 μA/mm,a higher gate leakage current density of 91.8 μA/mm,and a lower off-state breakdown voltage of 87 V with the same device dimensions.

  9. High quality Ge epilayer on Si (1 0 0) with an ultrathin Si1-x Ge x /Si buffer layer by RPCVD

    Science.gov (United States)

    Chen, Da; Guo, Qinglei; Zhang, Nan; Xu, Anli; Wang, Bei; Li, Ya; Wang, Gang

    2017-07-01

    The authors report a method to grow high quality strain-relaxed Ge epilayer on a combination of low temperature Ge seed layer and Si1-x Ge x /Si superlattice buffer layer by reduced pressure chemical vapor deposition system without any subsequent annealing treatment. Prior to the growth of high quality Ge epilayer, an ultrathin Si1-x Ge x /Si superlattice buffer layer with the thickness of 50 nm and a 460 nm Ge seed layer were deposited successively at low temperature. Then an 840 nm Ge epilayer was grown at high deposition rate with the surface root-mean-square roughness of 0.707 nm and threading dislocation density of 2.5  ×  106 cm-2, respectively. Detailed investigations of the influence of ultrathin low-temperature Si1-x Ge x /Si superlattice buffer layer on the quality of Ge epilayer were performed, which indicates that the crystalline quality of Ge epilayer can be significantly improved by enhancing the Ge concentration of Si1-x Ge x /Si superlattice buffer layer.

  10. Study of Back Contacts for CdTe Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    ZnTe/ZnTe∶Cu layer is used as a complex back contact. The parameters of CdTe solar cells with and without the complex back contacts are compared. The effects of un-doped layer thickness, doped concentration and post-deposition annealing temperature of the complex layer on solar cells performance are investigated.The results show that ZnTe/ZnTe∶Cu layer can improve back contacts and largely increase the conversion efficiency of CdTe solar cells. Un-doped layer and post-deposition annealing of high temperature can increase open voltage. Using the complex back contact, a small CdTe cell with fill factor of 73.14% and conversion efficiency of 12.93% is obtained.

  11. Comparative study of trap densities of states in CdTe /CdS solar cells

    Science.gov (United States)

    Proskuryakov, Y. Y.; Major, J. D.; Durose, K.; Barrioz, V.; Irvine, S. J. C.; Jones, E. W.; Lamb, D.

    2007-10-01

    Density of deep and shallow states has been investigated in three different kinds of CdTe /CdS samples, two of which were grown by metal-organic chemical vapor deposition (MOCVD) and one by close-space sublimation (CSS) methods. The MOCVD samples were p doped by As and grown either with or without a ZnO buffer layer between the transparent conductor and CdS layers. Capacitance-voltage, admittance spectroscopy, and quantum efficiency measurements show pronounced effects of As doping and ZnO incorporation. It is found that A centers and vacancies of Cd, usually observed in CSS devices, are absent in the defect spectra of MOCVD samples.

  12. Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.

    Science.gov (United States)

    Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan

    2015-07-29

    The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a

  13. Improved performance of organic light-emitting diodes fabricated on Al-doped ZnO anodes incorporating a homogeneous Al-doped ZnO buffer layer grown by atomic layer deposition.

    Science.gov (United States)

    Choi, Yong-June; Gong, Su Cheol; Park, Chang-Sun; Lee, Hong-Sub; Jang, Ji Geun; Chang, Ho Jung; Yeom, Geun Young; Park, Hyung-Ho

    2013-05-01

    In this work, we investigated the use of a homogeneous Al-doped zinc oxide (AZO) buffer layer to improve the performance of an organic light-emitting diode (OLED) device fabricated on an AZO anode. For this, 10-nm-thick AZO buffer layers with Al doping concentrations of 3.1, 4.1, and 5.1 at % were grown on 140-nm-thick AZO anode films containing 2.1 at % Al by atomic layer deposition. The electrical resistivity of the AZO anode with a homogeneous AZO buffer layer decreased with an increase in Al doping concentration up to 4.1 at %; however, the resistivity increased at higher doping concentrations in the AZO buffer layer. On the other hand, the work functions of the AZO anode with the AZO buffer layer containing various Al doping concentrations gradually increased with an increase in Al doping concentration from 3.1 to 5.1 at %. Therefore, the best film properties were obtained for an AZO anode with an AZO buffer layer containing 4.1 at % Al, and the work function value for this film was 4.64 eV. The highest luminance and current efficiency values were optimized to be 20290 cd/m(2) and 13.4 cd/A, respectively, with the OLED device composed of a DNTPD/TAPC/Bebq2:10% doped RP-411/Bphen/LiF/Al structure on an AZO anode with an AZO buffer layer containing 4.1 at % Al.

  14. X-ray photoelectron spectroscopy studies of initial growth mechanism of CdTe layers grown on (100)GaAs by organometallic vapor phase epitaxy

    OpenAIRE

    1990-01-01

    Variations of the GaAs surface conditions and the adsorption of the precursor elements of Cd and Te on the (100)GaAs substrate were studied by x‐ray photoelectron spectroscopy at the initial stage of CdTe growth by organometallic vapor phase epitaxy. The stoichiometry of GaAs substrates was found to recover by annealing in the H2 environment (500°C, 5 min), while the surface was initially in an As‐rich condition after etching with H2SO4:H2O2:H2O (5:1:1). The preferential adsorption of Te on t...

  15. Cube Texture Formation of Cu-33at.%Ni Alloy Substrates and CeO2 Buffer Layer for YBCO Coated Conductors

    DEFF Research Database (Denmark)

    Tian, Hui; Li, Suo Hong; Ru, Liang Ya

    2014-01-01

    Cube texture formation of Cu-33 at.%Ni alloy substartes and CeO2 buffer layer prepared by chemical solution deposition on the textured substrate were investigated by electron back scattered diffraction (EBSD) and XRD technics systematically. The results shown that a strong cube textured Cu-33at.%...... of epitaxially grown CeO2 buffer layer was 95 % (omega-scan being 6.98° and 5.92°, respectively........%Ni alloy substrate with the cube texture fraction of 99.8 % (omega-scan in this substrate were 7.31° and 5.51°, respectively. Furthermore, the cube texture fraction...

  16. In situ growth of superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on Si with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; James, J.H.; Gauzzi, A.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institute of Micro and Optoelectronics, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland))

    1990-09-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on Si with conducting indium-tin-oxide (ITO) buffer layers. ITO allows YBCO to be electrically connected to the underlying Si substrate. Both the YBCO film and ITO buffer layer, grown by ion beam sputtering, are textured and polycrystalline with a combined room- temperature resistivity of about 2 m{Omega} cm. Superconducting onsets are 92 K with zero resistance at 68 K.

  17. Effects of Varied Cleaning Methods on Ni-5% W Substrate for Dip-Coating of Water-based Buffer Layers: An X-ray Photoelectron Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Isabel Van Driessche

    2012-08-01

    Full Text Available This work describes various combinations of cleaning methods involved in the preparation of Ni-5% W substrates for the deposition of buffer layers using water-based solvents. The substrate has been studied for its surface properties using X-ray photoelectron spectroscopy (XPS. The contaminants in the substrates have been quantified and the appropriate cleaning method was chosen in terms of contaminants level and showing good surface crystallinity to further consider them for depositing chemical solution-based buffer layers for Y1Ba2Cu3Oy (YBCO coated conductors.

  18. Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2014-01-01

    In this report, we demonstrate that solution-processed amorphous zinc oxide (a-ZnO) interlayers prepared at low temperatures (∼100 °C) can yield inverted bulk-heterojunction (BHJ) solar cells that are as efficient as nanoparticle-based ZnO requiring comparably more complex synthesis or polycrystalline ZnO films prepared at substantially higher temperatures (150-400 °C). Low-temperature, facile solution-processing approaches are required in the fabrication of BHJ solar cells on flexible plastic substrates, such as PET. Here, we achieve efficient inverted solar cells with a-ZnO buffer layers by carefully examining the correlations between the thin film morphology and the figures of merit of optimized BHJ devices with various polymer donors and PCBM as the fullerene acceptor. We find that the most effective a-ZnO morphology consists of a compact, thin layer with continuous substrate coverage. In parallel, we emphasize the detrimental effect of forming rippled surface morphologies of a-ZnO, an observation which contrasts with results obtained in polycrystalline ZnO thin films, where rippled morphologies have been reported to improve efficiency. After optimizing the a-ZnO morphology at low processing temperature for inverted P3HT:PCBM devices, achieving a power conversion efficiency (PCE) of ca. 4.1%, we demonstrate inverted solar cells with low bandgap polymer donors on glass/flexible PET substrates: PTB7:PC71BM (PCE: 6.5% (glass)/5.6% (PET)) and PBDTTPD:PC71BM (PCE: 6.7% (glass)/5.9% (PET)). Finally, we show that a-ZnO based inverted P3HT:PCBM BHJ solar cells maintain ca. 90-95% of their initial PCE even after a full year without encapsulation in a nitrogen dry box, thus demonstrating excellent shelf stability. The insight we have gained into the importance of surface morphology in amorphous zinc oxide buffer layers should help in the development of other low-temperature solution-processed metal oxide interlayers for efficient flexible solar cells. This journal is

  19. Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin cerium fluoride buffer layer

    Science.gov (United States)

    Lu, Hsin-Wei; Kao, Po-Ching; Chu, Sheng-Yuan

    2016-09-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3 film as an ultra-thin buffer layer between the ITO and NPB hole transport layer, with the structure configuration ITO/CeF3 (1 nm)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The work function increased from 4.8 eV (standard ITO electrode) to 5.2 eV (1-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The turn-on voltage decreased from 4.2 V to 4.0 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 10820 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.5 cd/A when the 1-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  20. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  1. Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties

    Science.gov (United States)

    Cui, W.; Zhao, X. L.; An, Y. H.; Guo, D. Y.; Qing, X. Y.; Wu, Z. P.; Li, P. G.; Li, L. H.; Cui, C.; Tang, W. H.

    2017-04-01

    Conductive Ga2O3 thin films with an In2O3 buffer layer have been prepared on c-plane sapphire substrates using a laser molecular beam epitaxy technique. The effects of the In2O3 buffer layer on the structure and optical, electrical and surface state properties of the Ga2O3 films have been studied. The change in conductivity of the thin films is attributed to different thicknesses of the In2O3 buffer layer, which determine the concentration of charge carriers injected into the upper Ga2O3 layer from the interface of the bilayer thin films. In addition, the increase in flat band voltage shift and capacitance values as the In2O3 buffer layer thickens are attributed to the increase in surface state density, which also contributes to the rapid shrinkage of the optical band gap of the Ga2O3. With transparency to visible light, high n-type conduction and the ability to tune the optical band gap and surface state density, we propose that Ga2O3/In2O3 bilayer thin film is an ideal n-type semiconductor for fabrication of transparent power devices, solar cell electrodes and gas sensors.

  2. Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations

    Science.gov (United States)

    Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.

    2016-11-01

    AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1‑xN}/AlN, (b) Thin-GaN/3 × {AlxGa1‑xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V•s) and 2DEG carrier concentration (>1.0 × 1013 cm‑2) on Si(111) substrates.

  3. Investigation of CdZnS Buffer Layers on the Performance of CuInGaSe2 and CuGaSe2 Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.; Li, S. S.; Chen, L.; Noufi, R.; Anderson, T. J.; Crisalle, O. D.

    2006-01-01

    Cu(In,Ga)Se{sub 2} (CIGS) and CuGaSe{sub 2} (CGS) solar cells were fabricated using Cd{sub 1-x}Zn{sub x}S (CdZnS) buffer layers prepared by chemical bath deposition (CBD) with relative Zn compositions in the CBD bath values of X{sub bath} = 0 (i.e., pure CdS), 0.1, 0.2, 0.3, 0.4, and 0.5. The cell performance parameters of CIGS and CGS films treated with a KCN solution were investigated and compared to cells without KCN treatment. It was found that absorber films treated with KCN etching prior to the buffer CBD step show an improved cell performance for both the CIGS and CGS cells deposited with either CdS or CdZnS buffer layer. A CIGS cell with CdZnS buffer layer of X{sub bath} = 0.2 produced a 13% AM1.5G conversion efficiency with higher V{sub oc}, J{sub sc}, and FF values as compared to the CdZnS/CIGS cells with different Zn contents. Results of photo- J-V and quantum efficiency (QE) measurements reveal that the CGS cell with CdZnS buffer layer of X{sub bath} = 0.3 performed better than the CGS cell deposited with a pure CdS buffer layer. This result is suggested as a result of an increased photocurrent at shorter wavelengths and a more favorable conduction band-offset at the CdZnS/CGS junction.

  4. Catalytic growth of CdTe nanowires by closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gwangseok; Jung, Younghun [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Chun, Seungju; Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-11-01

    CdTe nano-/micro-structures with various morphologies were grown by using the closed space sublimation (CSS) method on a sapphire substrate by Au-catalyzed vapor–liquid–solid (VLS) mechanism. Length, diameter, and morphology of the CdTe nano-/micro-structures depended on the growth time and temperature gradient between the substrate and powdered CdTe source. Scanning electron microscopy images showed that an Au catalyst droplet existed at the tips of CdTe nanowires, which confirms that CdTe nanowires were grown by an Au-catalyzed VLS mechanism. Also, we observed that the two-dimensional CdTe film layer initially formed before the growth of the CdTe nano-/micro-wires. The optical and structural properties of CdTe nano-/micro-structures were characterized by X-ray diffraction technique and micro-Raman spectroscopy. Our study demonstrates that diverse CdTe nano-/micro-structures can be fabricated by using Au-catalyzed VLS growth process in a simple CSS chamber by controlling the temperature gradient and growth time. - Highlights: • We demonstrated CdTe nanowires using closed space sublimation method. • Au-catalyst droplets at the tips confirmed vapor–liquid–solid mechanism. • Diameters and lengths increased with increasing temperature gradient and time.

  5. Interaction of porphyrins with CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei, E-mail: weichen@uta.edu [Department of Physics, University of Texas at Arlington, Box 19059 Arlington, TX 76019 (United States)

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  6. High-quality CdTe films from nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.L.; Pehnt, M.; Urgiles, E. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  7. Effect of a ZnO buffer layer on the properties of epitaxial ZnO:Ga films deposited on c-sapphire substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyun, E-mail: zhangzhiyun01@163.com [School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi Province 710054 (China); Bao, Chonggao [State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049 (China); Yi, Dawei [School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi Province 710054 (China); Yang, Bo [No. 95 Binhai Road, Jiaojiang, Taizhou, Zhejiang Province 318000 (China); Li, Qun; Hou, Shuzeng [State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049 (China); Han, Z.H. [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi Province 710068 (China)

    2014-09-01

    Highlights: • The lowest resistivity of 1.2 × 10{sup –4} Ω cm was obtained at a ZnO buffered substrate. • The characteristic of c-axis oriented texture grows up at different substrates. • Two kinds of stacking faults were observed at Fourier-filtered images. • Origin and consequences of stacking faults were discussed. • Lower defect density of film has a benefit effect on the resistivity. - Abstract: Bi-layer ZnO films with 2 wt.% Al (AZO; ZnO:Al) and 4 wt.% Ga-doped (GZO; ZnO:Ga) were deposited on the non-buffered and buffered c(0 0 0 1)-sapphire(Al{sub 2}O{sub 3}) substrates respectively by Pulsed Laser Deposition (PLD). The effect of a ZnO buffer layer on the crystallinity and electrical properties of the GZO thin films was investigated. X-ray Diffraction (XRD) peaks and High Resolution Transmission Electron Microscopy (HRTEM) studies showed that the GZO thin film on a buffered substrate was epitaxially grown with an orientation relationship of (0 0 0 1) [112{sup ¯}0]{sub GZO}||(0001)[112{sup ¯}0]{sub Al{sub 2O{sub 3}}}. However, GZO thin film on a non-buffered substrate was grown as a monocrystalline hexagonal wurtzite phase with c-axis preferred, out-of-plane orientation, and random in-plane orientation. The electrical resistivity of the GZO thin films was improved by introducing a ZnO buffer layer from 2.2 × 10{sup -4} Ω cm to 1.2 × 10{sup -4} Ω cm, respectively. In a word, it was found in the films that more preferred c-axis orientation texture and reduction of the defects such as stacking faults and dislocations, with introducing a ZnO buffer layer. It was seen that the ZnO buffer layer had a great influence on the orientation and defect density of GZO thin films from X-ray Diffraction (XRD) peaks and High Resolution Transmission Electron Microscopy (HRTEM) images.

  8. EXAMINATION OF DISLOCATIONS IN LATTICE-MISMATCHED GaInAs/BUFFER LAYER/GaAs FOR III-V PHOTOVOLTAICS

    Energy Technology Data Exchange (ETDEWEB)

    Levander, A.; Geisz, J.

    2007-01-01

    Dislocations act as sites for nonradiative electron/hole pair recombination, which reduces the effi ciency of photovoltaics. Lattice-matched materials can be grown on top of one another without forming a high density of dislocations. However, when the growth of lattice-mismatched (LMM) materials is attempted, many dislocations result from the relaxation of strain in the crystal structure. In an attempt to reduce the number of dislocations that propagate into a solar device when using LMM materials, a compositionally step-graded buffer is placed between the two LMM materials. In order to confi ne the dislocations to the buffer layer and therefore increase material quality and device effi ciency, the growth temperature and thickness of the buffer layer were varied. A GaInP compositionally graded buffer and GaInAs p-n junction were grown on a GaAs substrate in a metal-organic chemical vapor deposition (MOCVD) system. A multibeam optical stress sensor (MOSS) and X-ray diffraction (XRD) were used to characterize the strain in the epilayers. Electrical and optoelectronic properties were measured using a probe station and multimeter setup, solar simulator, and a quantum effi ciency instrument. It was determined that device functionality was highly dependent on the growth temperature of the graded buffer. As growth temperature increased, so did the dislocation density in the device despite an increase in the dislocation velocity, which should have increased the dislocation annihilation rate and the diffusion of dislocations to the edge of the crystal. The thickness of the graded buffer also affected device effi ciency with thinner samples performing poorly. The thinner graded buffer layers had high internal resistances from reduced carrier concentrations. In terms of effi ciency, the empirically derived recipe developed by the scientists at the National Renewable Energy Laboratory (NREL) produced the highest quality cells.

  9. Improved performance of 4H-SiC metal-semiconductor field-effect transistors with step p-buffer layer

    Institute of Scientific and Technical Information of China (English)

    Deng Xiao-Chuan; Zhang Bo; Zhang You-Run; Wang Yi; Li Zhao-Ji

    2011-01-01

    An improved 4H-SiC metal-semiconductor field-effect transistors (MESFETs) with step p-buffer layer is proposed,and the static and dynamic electrical performances are analysed in this paper. A step p-buffer layer has been applied not only to increase the channel current, but also to improve the transconductance. This is due to the fact that the variation in p-buffer layer depth leads to the decrease in parasitic series resistance resulting from the change in the active channel thickness and modulation in the electric field distribution inside the channel. Detailed numerical simulations demonstrate that the saturation drain current and the maximum theoretical output power density of the proposed structure are about 30% and 37% larger than those of the conventional structure. The cut-off frequency and the maximum oscillation frequency of the proposed MESFETs are 14.5 and 62 GHz, respectively, which are higher than that of the conventional structure. Therefore, the 4H-SiC MESFETs with step p-buffer layer have superior direct-current and radio-frequency performances compared to the similar devices based on the conventional structure.

  10. Characterization of a strongly textured non-ferromagnetic Cu-33 at%Ni substrate coated with a CeO2 buffer layer

    DEFF Research Database (Denmark)

    Tian, Hui; Suo, H.L.; Yue, Zhao

    2013-01-01

    the fraction of the cube {001}〈100〉 texture is 99.8% and the fraction of boundary misorientations with angles greater than 10 is only 5%. The material is shown to be non-ferromagnetic at typical operating temperatures for coated conductors. Furthermore, it is shown that a CeO2 buffer layer can be successfully...

  11. Effect of InSb/In0.9Al0.1Sb superlattice buffer layer on the structural and electronic properties of InSb films

    Science.gov (United States)

    Zhao, Xiaomeng; Zhang, Yang; Guan, Min; Cui, Lijie; Wang, Baoqiang; Zhu, Zhanping; Zeng, Yiping

    2017-07-01

    The effect of InSb/In0.9Al0.1Sb buffer layers on InSb thin films grown on GaAs (0 0 1) substrate by molecular beam epitaxy (MBE) is investigated. The crystal quality and the surface morphology of InSb are characterized by XRD and AFM. The carrier transport property is researched through variable temperature hall test. The sharp interface between InSb/In0.9Al0.1Sb is demonstrated important for the high quality InSb thin film. We try different superlattice buffer layers by changing ratios, 2-0.5, thickness, 300-450 nm, and periods, 20-50. According to the function of the dislocation density to the absolute temperature below 150 K with different periods of SL buffers, we can find that the number of periods of superlattice is a major factor to decrease the density of threading dislocations. With the 50 periods SL buffer layer, the electron mobility of InSb at the room temperature and liquid nitrogen cooling temperature is ∼63,000 and ∼4600 cm2/V s, respectively. We deduce that the interface in the SL structure works as a filter layer to prevent the dislocation propagating to the upper InSb thin films.

  12. Mechanism insight into the effect of I/P buffer layer on the performance of NIP-type hydrogenated microcrystalline silicon solar cells

    Science.gov (United States)

    Bai, Lisha; Liu, Bofei; Zhao, Jing; Suo, Song; Hou, Guofu; Zhang, Dekun; Sun, Jian; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2015-05-01

    A simulation and experimental study on the effect of the buffer layer at the I/P interface on the performance of NIP-type hydrogenated microcrystalline silicon (μc-Si:H) single-junction solar cells is presented. Device-quality hydrogenated amorphous silicon (a-Si:H) material as a buffer layer at the I/P interface obviously improves the performance of NIP-type μc-Si:H single-junction solar cells. In addition to the well-known mechanism that an a-Si:H I/P buffer layer can reduce the recombination current density at I/P interfaces, the optically and electrically calibrated simulations and supporting experimental results in this study illustrate that the performance improvement also originates from the mitigation of the electric screening effect due to the reduced defect density at the I/P interfaces, which reinforces the bulk electric field. Integrating an optimized hydrogen profiling strategy and adding a-Si:H I/P buffer layer yielded an initial efficiency of 9.20% for μc-Si:H single-junction solar cells with an active area of 0.27 cm2. This study may provide new ideas of further improving the performance of NIP-type μc-Si:H single-junction solar cells by mitigating the electric screening effect.

  13. Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2Buffer Layers in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jiang Chunhua

    2009-01-01

    Full Text Available Abstract This paper reports the effects of the seed layers prepared by spin-coating and dip-coating methods on the morphology and density of ZnO nanowire arrays, thus on the performance of ZnO nanowire-based dye-sensitized solar cells (DSSCs. The nanowire films with the thick ZnO buffer layer (~0.8–1 μm thick can improve the open circuit voltage of the DSSCs through suppressing carrier recombination, however, and cause the decrease of dye loading absorbed on ZnO nanowires. In order to further investigate the effect of TiO2buffer layer on the performance of ZnO nanowire-based DSSCs, compared with the ZnO nanowire-based DSSCs without a compact TiO2buffer layer, the photovoltaic conversion efficiency and open circuit voltage of the ZnO DSSCs with the compact TiO2layer (~50 nm thick were improved by 3.9–12.5 and 2.4–41.7%, respectively. This can be attributed to the introduction of the compact TiO2layer prepared by sputtering method, which effectively suppressed carrier recombination occurring across both the film–electrolyte interface and the substrate–electrolyte interface.

  14. Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2 Buffer Layers in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yang, Weiguang; Wan, Farong; Chen, Siwei; Jiang, Chunhua

    2009-12-01

    This paper reports the effects of the seed layers prepared by spin-coating and dip-coating methods on the morphology and density of ZnO nanowire arrays, thus on the performance of ZnO nanowire-based dye-sensitized solar cells (DSSCs). The nanowire films with the thick ZnO buffer layer (~0.8-1 μm thick) can improve the open circuit voltage of the DSSCs through suppressing carrier recombination, however, and cause the decrease of dye loading absorbed on ZnO nanowires. In order to further investigate the effect of TiO2 buffer layer on the performance of ZnO nanowire-based DSSCs, compared with the ZnO nanowire-based DSSCs without a compact TiO2 buffer layer, the photovoltaic conversion efficiency and open circuit voltage of the ZnO DSSCs with the compact TiO2 layer (~50 nm thick) were improved by 3.9-12.5 and 2.4-41.7%, respectively. This can be attributed to the introduction of the compact TiO2 layer prepared by sputtering method, which effectively suppressed carrier recombination occurring across both the film-electrolyte interface and the substrate-electrolyte interface.

  15. Improvement of photovoltaic efficiency of dye-sensitized solar cell by introducing highly transparent nanoporous TiO2 buffer layer.

    Science.gov (United States)

    Kim, Yong Joo; Kim, Hark Jin; Lee, Mi Hyeon; Lim, Goo Il; Song, Hye Young; Choi, Young Sik; Park, Nam-Gyu; Lee, Chongmu; Lee, Wan In

    2010-01-01

    13 nm-sized highly-dispersible TiO2 nanoparticle was synthesized by solvothermal reaction of titanium isopropoxide in a basic condition with tetrabutylammonium hydroxide (TBAH). The prepared TiO2 nanoparticle was applied to fabrication of the transparent nanoporous TiO2 layer with 1.2 microm-thickness. By introducing this buffer layer between FTO and main TiO2 layer in the dye-sensitized solar cell (DSSC), the photovoltaic conversion efficiency was improved from 5.92% to 7.13%. Due to the excellent antireflective role of nanoporous TiO2 buffer layer, the transmittance of FTO glass was increased by 9.2%, and this seemed to be one of the major factors in enhancing photovoltaic conversion efficiency. Moreover, the presence of nanoporous TiO2 buffer layer induces excellent adhesion between FTO and main TiO2 layer, as well as it suppresses the back reaction by blocking direct contact between I3- and FTO electrode.

  16. Fabrication of the structures with autocatalytic CdTe nanowires using magnetron sputtering deposition

    Science.gov (United States)

    Soshnikov, I. P.; Semenov, A. A.; Belyavskii, P. Yu.; Shtrom, I. V.; Kotlyar, K. P.; Lysak, V. V.; Kudryashov, D. A.; Pavlov, S. I.; Nashchekin, A. V.; Cirlin, G. E.

    2016-12-01

    We report the possibility of autocatalytic synthesis of highly crystalline perfect CdTe nanowires by magnetron presputtering deposition through the windows in ultrathin layers of SiO2. The photoluminescence spectra of obtained CdTe nanowires exhibit an emission band in the 1.4-1.7 eV region, indicating crystalline perfection of the nanowires.

  17. Characterization of Cr(V)-induced genotoxicity using CdTe nanocrystals as fluorescent probes.

    Science.gov (United States)

    Zhang, Wen-Hao; Sui, Chao-Xia; Wang, Xie; Yin, Gong-Ju; Liu, Ying-Fan; Zhang, Ding

    2014-12-21

    CdTe nanocrystals capped by cysteamine were synthesized to study Cr(V)-induced genotoxicity. On the surface of TiO2 thin films, the stepwise process of DNA breakage induced by Cr(V)-GSH complexes was vividly observed by using CdTe-DNA self-assembled fluorescent probes; in acetate buffer solution, an analytical method was developed to detect Cr(V)-induced genotoxicity with CdTe fluorescent probes.

  18. Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Shiino, Tatsuya; Shiba, Shoichi; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamakura, Tetsuya [Institute of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-nodai, Tsukuba, Ibaraki 305-8577 (Japan); Jiang, Ling [College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu (China); Uzawa, Yoshinori [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Maezawa, Hiroyuki, E-mail: shiino@taurus.phys.s.u-tokyo.ac.j [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8602 (Japan)

    2010-04-15

    Thin superconducting NbTiN and NbN films with a few nm thickness are used in various device applications including in hot electron bolometer mixers. Such thin films have lower critical temperature (T{sub c}) and higher resistivity than corresponding bulk materials. In an effort to improve them, we have investigated an effect of the AlN buffer layer between the film and the substrate (quartz or soda lime glass). The AlN film is deposited by DC magnetron sputtering, and the process condition is optimized so that the x-ray diffraction intensity from the 002 surface of wurtzite AlN becomes the highest. By use of this well-characterized buffer layer, T{sub c} and the resistivity of the NbTiN film with a few nm thickness are remarkably increased and decreased, respectively, in comparison with those without the buffer layer. More importantly, the AlN buffer layer is found to be effective for NbN. With the AlN buffer layer, T{sub c} is increased from 7.3 to 10.5 K for the 8 nm NbN film. The improvement of T{sub c} and the resistivity originates from the good lattice matching between the 002 surface of AlN and the 111 surface of NbTiN or NbN, which results in better crystallization of the NbTiN or NbN film. This is further confirmed by the x-ray diffraction measurement.

  19. Influence of HEPES buffer on the local pH and formation of surface layer during in vitro degradation tests of magnesium in DMEM

    Institute of Scientific and Technical Information of China (English)

    S. Naddaf Dezfuli; Zhigang Huan; J.M.C. Mol; M.A. Leeflang; Jiang Chang; Jie Zhou

    2014-01-01

    The human body is a buffered environment where pH is effectively maintained. HEPES is a biological buffer often used to mimic the buffering activity of the body in in vitro studies on the degradation behavior of magnesium. However, the influence of HEPES on the degradation behavior of magnesium in the DMEM pseudo-physiological solution has not yet been determined. The research aimed at elucidating the degradation mechanisms of magnesium in DMEM with and without HEPES. The morphologies and compositions of surface layers formed during in vitro degradation tests for 15–3600 s were characterized. The effect of HEPES on the electrochemical behavior and corrosion tendency was determined by performing electrochemical tests. HEPES indeed retained the local pH, leading to intense intergranular/interparticle corrosion of magnesium made from powder and an increased degradation rate. This was attributed to an interconnected network of cracks formed at the original powder particle boundaries and grain boundaries in the surface layer, which provided pathways for the corrosive medium to interact continuously with the internal surfaces and promoted further dissolution. Surface analysis revealed significantly reduced amounts of precipitated calcium phosphates due to the buffering activity of HEPES so that magnesium became less well protected in the buffered environment.

  20. Influence of HEPES buffer on the local pH and formation of surface layer during in vitro degradation tests of magnesium in DMEM

    Directory of Open Access Journals (Sweden)

    S. Naddaf Dezfuli

    2014-10-01

    Full Text Available The human body is a buffered environment where pH is effectively maintained. HEPES is a biological buffer often used to mimic the buffering activity of the body in in vitro studies on the degradation behavior of magnesium. However, the influence of HEPES on the degradation behavior of magnesium in the DMEM pseudo-physiological solution has not yet been determined. The research aimed at elucidating the degradation mechanisms of magnesium in DMEM with and without HEPES. The morphologies and compositions of surface layers formed during in vitro degradation tests for 15–3600 s were characterized. The effect of HEPES on the electrochemical behavior and corrosion tendency was determined by performing electrochemical tests. HEPES indeed retained the local pH, leading to intense intergranular/interparticle corrosion of magnesium made from powder and an increased degradation rate. This was attributed to an interconnected network of cracks formed at the original powder particle boundaries and grain boundaries in the surface layer, which provided pathways for the corrosive medium to interact continuously with the internal surfaces and promoted further dissolution. Surface analysis revealed significantly reduced amounts of precipitated calcium phosphates due to the buffering activity of HEPES so that magnesium became less well protected in the buffered environment.

  1. Study on CexLa1-xO2 Buffer Layer used in Coated Conductors by Chemical Solution Method

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, Hongli; Grivel, Jean-Claude

    2009-01-01

    Developing multi-functional single buffer layer is one of the most important challenges for simplification of coated conductors configuration. Ladoped CeO2 films were prepared by chemical solution method. And surface morphology and texture quality of the La-doped CeO2 films were investigated...... method. It suggects that Ce0.9La0.1O2 film prepared by chemical solution route have a promising prospect for the simplification of coated conductors configuration....... in details. The results show that the as-obtained pore-free Ce0.9La0.1O2 film are epitaxially deposited on the textured NiW substrate. The 120nm thickness Ce0.9La0.1O2 film is obtained though multi-coating route. The YBCO film with Tco=90.5K, which is deposited on Ce0.9La0.1O2/NiW metallic template by PLD...

  2. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer

    Science.gov (United States)

    Huang, Jun; Niu, Mu Tong; Zhang, Ji Cai; Wang, Wei; wang, Jian Feng; Xu, Ke

    2017-02-01

    Crystalline qualities of three AlN films grown by cold-wall high temperature hydride vapor phase epitaxy (CW-HT-HVPE) on c-plane sapphire substrates, with different AlN buffer layers (BLs) deposited either by CW-HT-HVPE or by hot-wall low temperature hydride vapor phase epitaxy (HW-LT-HVPE), have been studied. The best film quality was obtained on a 500-nm-thick AlN BL grown by HW-LT-HVPE at 1000 ℃. In this case,the AlN epilayer has the lowest full-width at half-maximum (FWHM) values of the (0002) and (10-12) x-ray rocking curve peaks of 295 and 306 arcsec, respectively, corresponding to the screw and edge threading dislocation (TD) densities of 1.9×108 cm-2 and 5.2×108 cm-2. This improvement in crystal quality of the AlN film can be attributed to the high compressive-stress of BL grown by HW-LT-HVPE,which facilitate the inclination and annihilation of TDs.

  3. Effects of Hole-Collecting Buffer Layers and Electrodes on the Performance of Flexible Plastic Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Sungho Woo

    2013-01-01

    Full Text Available Here we report the influences of the sheet resistance (Rsheet of a hole-collecting electrode (indium tin oxide, ITO and the conductivity of a hole-collecting buffer layer (poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate, PEDOT:PSS on the device performance of flexible plastic organic photovoltaic (OPV devices. The series resistance (RS of OPV devices steeply increases with increasing Rsheet of the ITO electrode, which leads to a significant decrease of short-circuit current density (JSC and fill factor (FF and power conversion efficiency, while the open-circuit voltage (VOC was almost constant. By applying high-conductivity PEDOT:PSS, the efficiency of OPV devices with high Rsheet values of 160 Ω/□ and 510 Ω/□ is greatly improved, by a factor of 3.5 and 6.5, respectively. These results indicate that the conductivities of ITO and PEDOT:PSS will become more important to consider for manufacturing large-area flexible plastic OPV modules.

  4. Theoretical and experimental study of highly textured GaAs on silicon using a graphene buffer layer

    Science.gov (United States)

    Alaskar, Yazeed; Arafin, Shamsul; Lin, Qiyin; Wickramaratne, Darshana; McKay, Jeff; Norman, Andrew G.; Zhang, Zhi; Yao, Luchi; Ding, Feng; Zou, Jin; Goorsky, Mark S.; Lake, Roger K.; Zurbuchen, Mark A.; Wang, Kang L.

    2015-09-01

    A novel heteroepitaxial growth technique, quasi-van der Waals epitaxy, promises the ability to deposit three-dimensional GaAs materials on silicon using two-dimensional graphene as a buffer layer by overcoming the lattice and thermal expansion mismatch. In this study, density functional theory (DFT) simulations were performed to understand the interactions at the GaAs/graphene hetero-interface as well as the growth orientations of GaAs on graphene. To develop a better understanding of the molecular beam epitaxy-grown GaAs films on graphene, samples were characterized by x-ray diffraction (θ-2θ scan, ω-scan, grazing incidence XRD and pole figure measurement) and transmission electron microscopy. The realizations of smooth GaAs films with a strong (111) oriented fiber-texture on graphene/silicon using this deposition technique are a milestone towards an eventual demonstration of the epitaxial growth of GaAs on silicon, which is necessary for integrated photonics application.

  5. Zigzag and Helical AlN Layer Prepared by Glancing Angle Deposition and Its Application as a Buffer Layer in a GaN-Based Light-Emitting Diode

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2012-01-01

    Full Text Available This study investigates an aluminum nitride (AlN nanorod structure sputtered by glancing angle deposition (GLAD and its application as a buffer layer for GaN-based light-emitting diodes (LEDs that are fabricated on sapphire substrates. The ray tracing method is adopted with a three-dimensional model in TracePro software. Simulation results indicate that the zigzag AlN nanorod structure is an optimal buffer layer in a GaN-based LED. Furthermore, the light output power of a GaN-based LED with a zigzag AlN nanorod structure improves to as much as 28.6% at a forward current of 20 mA over that of the GaN-based LED with a normal AlN buffer layer.

  6. CdTe Photovoltaics for Sustainable Electricity Generation

    Science.gov (United States)

    Munshi, Amit; Sampath, Walajabad

    2016-09-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  7. Capacitance-voltage and retention characteristics of Pt/SrBi2Ta2O9/HfO2/Si structures with various buffer layer thickness

    Science.gov (United States)

    Tang, M. H.; Sun, Z. H.; Zhou, Y. C.; Sugiyama, Y.; Ishiwara, H.

    2009-05-01

    The metal-ferroelectric-insulator-semiconductor (MFIS) structure diodes with SrBi2Ta2O9 (SBT) as ferroelectric thin film and HfO2 as insulating buffer layer were fabricated. The electrical properties of MFIS structure were investigated for different HfO2 buffer layer thickness. The experimental results show that the memory window extended significantly as the HfO2 layer thickness increased from 6 to 10 nm. It is also observed that the leakage current was reduced to about 10-10 A at applied voltage of 4 V, and the high and low capacitances remained distinguishable for over 8 h even if we extrapolate the measured data to 10 years.

  8. Realization of high quality epitaxial current- perpendicular-to-plane giant magnetoresistive pseudo spin-valves on Si(001 wafer using NiAl buffer layer

    Directory of Open Access Journals (Sweden)

    Jiamin Chen

    2016-05-01

    Full Text Available In this letter, we report a NiAl buffer layer as a template for the integration of epitaxial current-perpendicular-plane-giant magnetoresistive (CPP-GMR devices on a Si(001 single crystalline substrate. By depositing NiAl on a Si wafer at an elevated temperature of 500 °C, a smooth and epitaxial B2-type NiAl(001 layer was obtained. The surface roughness was further improved by depositing Ag on the NiAl layer and applying subsequent annealing process. The epitaxial CPP-GMR devices grown on the buffered Si(001 substrate present a large magnetoresistive output comparable with that of the devices grown on an MgO(001 substrate, demonstrating the possibility of epitaxial spintronic devices with a NiAl templated Si wafer for practical applications.

  9. Effect of maleic anhydride-aniline derivative buffer layer on the properties of flexible substrate heterostructures: Indium tin oxide/nucleic acid base/metal

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, A., E-mail: sanca@infim.ro [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125, Bucharest-Magurele (Romania); Socol, M. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125, Bucharest-Magurele (Romania); Socol, G.; Mihailescu, I.N. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, 077125, Bucharest-Magurele (Romania); Girtan, M. [Laboratoire de Photonique d' Angers, Universite d' Angers, 2, Bd. Lavoisier, 49045, Angers (France); Preda, N. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125, Bucharest-Magurele (Romania); Albu, A.-M. [Department of Polymer Science, University ' Politehnica' of Bucharest, Bucharest (Romania); Stanculescu, F. [University of Bucharest, Faculty of Physics, Str. Atomistilor nr.405, P.O. Box MG-11, Bucharest-Magurele, 077125 (Romania)

    2011-12-01

    This paper presents some investigations on the properties of guanine (G) and cytosine (C) based heterostructures deposited on flexible substrates. The effects of two types of maleic anhydride-aniline derivatives (maleic anhydride-cyano aniline or maleic anhydride-2,4 dinitroaniline) buffer layer, deposited between indium tin oxide and (G) or (C) layer, on the optical and electrical properties of the heterostructures have been identified. The heterostructures containing a film of maleic anhydride-2,4 dinitroaniline have shown a good transparency and low photoluminescence in visible range. This buffer layer has determined an increase in the conductance only in the heterostructures based on (G) and (C) deposited on biaxially-oriented polyethylene terephthalate substrate.

  10. Effect of double AlN buffer layer on the qualities of GaN films grown by radio-frequency molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Li Xin-Hua; Zhong Fei; Qiu Kai; Yin Zhi-Jun; Ji Chang-Jian

    2008-01-01

    This paper reports that the GaN thin films with Ga-polarity and high quality were grown by radio-frequency molecular beam epitaxy on sapphire (0001) substrate with a double A1N buffer layer. The buffer layer consists of a high-temperature (HT) AlN layer and a low-temperature (LT) AlN layer grown at 800℃ and 600℃, respectively. It is demonstrated that the HT-AlN layer can result in the growth of GaN epilayer in Ga-polarity and the LT-AlN layer is helpful for the improvement of the epilayer quality. It is observed that the carrier mobility of the GaN epilayer increases from 458 to 858cm2/V.s at room temperature when the thickness of LT-AlN layer varies from 0 to 20nm. The full width at half maximum of x-ray rocking curves also demonstrates a substantial improvement in the quality of GaN epilayers by the utilization of LT-AlN layer.

  11. Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode.

    Science.gov (United States)

    Bush, Kevin A; Bailie, Colin D; Chen, Ye; Bowring, Andrea R; Wang, Wei; Ma, Wen; Leijtens, Tomas; Moghadam, Farhad; McGehee, Michael D

    2016-05-01

    A sputtered oxide layer enabled by a solution-processed oxide nanoparticle buffer layer to protect underlying layers is used to make semi-transparent perovskite solar cells. Single-junction semi-transparent cells are 12.3% efficient, and mechanically stacked tandems on silicon solar cells are 18.0% efficient. The semi-transparent perovskite solar cell has a T 80 lifetime of 124 h when operated at the maximum power point at 100 °C without additional sealing in ambient atmosphere under visible illumination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. EE&RE, Session: CdTe - Progress and Roadmap Alignment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, T.

    2008-04-01

    This project supports the Solar America Initiative by: (1) assistance to SAI Incubators (Primestar Solar, AvA Solar); (2) providing industry with baseline understanding of CdS/CdTe device formation and reliability--incorporation of low-cost, high quality TCOs, functionality and options for buffer layers, effect of various CdS options, effect of and importance CdSTe alloy formation, effect and options for CdCl{sub 2} treatment, effect and options for back contact, and effect of residual impurities during all stages of device formation; (3) understanding modes and mechanisms of cell-level stability; and (4) establishment of CdTe PDIL Tool for rapid material and process screening.

  13. Reduced dislocation density in GaxIn1-xP compositionally graded buffer layers through engineered glide plane switch

    Science.gov (United States)

    Schulte, K. L.; France, R. M.; McMahon, W. E.; Norman, A. G.; Guthrey, H. L.; Geisz, J. F.

    2017-04-01

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter η decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  14. Reduced Dislocation Density in GaxIn1-xP Compositionally Graded Buffer Layers through Engineered Glide Plane Switch

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Norman, Andrew G.; Guthrey, Harvey L.; Geisz, John F.

    2016-11-17

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  15. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs.

    Science.gov (United States)

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-09-02

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

  16. Simple O2 Plasma-Processed V2O5 as an Anode Buffer Layer for High-Performance Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bao, Xichang; Zhu, Qianqian; Wang, Ting

    2015-01-01

    a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under...... plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge...... the illumination of AM 1.5G (100 mW/cm2). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PEDOT:PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2...

  17. High-power SiC MESFET using a dual p-buffer layer for an S-band power amplifier

    Institute of Scientific and Technical Information of China (English)

    Deng Xiao-Chuan; Sun He; Rao Cheng-Yuan; Zhang Bo

    2013-01-01

    A silicon carbide (SiC) based metal semiconductor field effect transistor (MESFET) is fabricated by using a standard SiC MESFET structure with the application of a dual p-buffer layer and a multi-recessed gate to the process for an S-band power amplifier.The lower doped upper-buffer layer serves to maintain the channel current,while the higher doped lowerbuffer layer is used to provide excellent electron confinement in the channel layer.A 20-mm gate periphery SiC MESFET biased at a drain voltage of 85 V demonstrates a pulsed wave saturated output power of 94 W,a linear gain of 11.7 dB,and a maximum power added efficiency of 24.3% at 3.4 GHz.These results are improved compared with those of the conventional single p-buffer MESFET fabricated in this work using the same process.A radio-frequency power output greater than 4.7 W/mm is achieved,showing the potential as a high-voltage operation device for high-power solid-state amplifier applications.

  18. Identification of the Chemical Bonding Prompting Adhesion of a-C:H Thin Films on Ferrous Alloy Intermediated by a SiCx:H Buffer Layer.

    Science.gov (United States)

    Cemin, F; Bim, L T; Leidens, L M; Morales, M; Baumvol, I J R; Alvarez, F; Figueroa, C A

    2015-07-29

    Amorphous carbon (a-C) and several related materials (DLCs) may have ultralow friction coefficients that can be used for saving-energy applications. However, poor chemical bonding of a-C/DLC films on metallic alloys is expected, due to the stability of carbon-carbon bonds. Silicon-based intermediate layers are employed to enhance the adherence of a-C:H films on ferrous alloys, although the role of such buffer layers is not yet fully understood in chemical terms. The chemical bonding of a-C:H thin films on ferrous alloy intermediated by a nanometric SiCx:H buffer layer was analyzed by X-ray photoelectron spectroscopy (XPS). The chemical profile was inspected by glow discharge optical emission spectroscopy (GDOES), and the chemical structure was evaluated by Raman and Fourier transform infrared spectroscopy techniques. The nature of adhesion is discussed by analyzing the chemical bonding at the interfaces of the a-C:H/SiCx:H/ferrous alloy sandwich structure. The adhesion phenomenon is ascribed to specifically chemical bonding character at the buffer layer. Whereas carbon-carbon (C-C) and carbon-silicon (C-Si) bonds are formed at the outermost interface, the innermost interface is constituted mainly by silicon-iron (Si-Fe) bonds. The oxygen presence degrades the adhesion up to totally delaminate the a-C:H thin films. The SiCx:H deposition temperature determines the type of chemical bonding and the amount of oxygen contained in the buffer layer.

  19. Single-Crystal CdTe Homojunction Structures for Solar Cell Applications

    Science.gov (United States)

    Su, Peng-Yu; Dahal, Rajendra; Wang, Gwo-Ching; Zhang, Shengbai; Lu, Toh-Ming; Bhat, Ishwara B.

    2015-09-01

    We report two different CdTe homojunction solar cell structures. Single-crystal CdTe homojunction solar cells were grown on GaAs single-crystal substrates by metalorganic chemical vapor deposition. Arsenic and iodine were used as dopants for p-type and n-type CdTe, respectively. Another homojunction solar cell structure was fabricated by growing n-type CdTe directly on bulk p-type CdTe single-crystal substrates. The electrical properties of the different layers were characterized by Hall measurements. When arsine was used as arsenic source, the highest hole concentration was ~6 × 1016 cm-3 and the activation efficiency was ~3%. Very abrupt arsenic doping profiles were observed by secondary ion mass spectrometry. For n-type CdTe with a growth temperature of 250°C and a high Cd/Te ratio the electron concentration was ~4.5 × 1016 cm-3. Because of the 300 nm thick n-type CdTe layer, the short circuit current of the solar cell grown on the bulk CdTe substrate was less than 10 mA/cm2. The open circuit voltage of the device was 0.86 V. According to a prediction based on measurement of short circuit current density ( J sc) as a function of open circuit voltage ( V oc), an open circuit voltage of 0.92 V could be achieved by growing CdTe solar cells on bulk CdTe substrates.

  20. Effect of growth interruption and strain buffer layer on PL performance of AlGaAs/GaAs/InGaAs quantum well for 1065 nm wavelength lasers

    Institute of Scientific and Technical Information of China (English)

    PAN Jiaoqing; HUANG Baibiao; ZHANG Xiaoyang; YUE Jinshun; YU Yongqin; WEI Jiyong

    2004-01-01

    Strained InGaAs/GaAs quantum well (QW) was grown by low-pressure metallorganic chemical vapor deposition (MOCVD). Growth interruption and strain buffer layer were introduced to improve the photoluminescence (PL) performance of the InGaAs/GaAs quantum well. Good PL results were obtained under condition of growth an interruption of 10 s combined with a moderate strain buffer layer. Wavelength lasers of 1064 nm using the QW were grown and processed into devices. Broad area lasers (1130 μm × 500 μm) show very low threshold current densities (43 A/cm2) and high slop efficiency (0.34 W/A, per facet).

  1. Thirty-Day-Long Data Retention in Ferroelectric-Gate Field-Effect Transistors with HfO2 Buffer Layers

    Science.gov (United States)

    Takahashi, Kazuhiro; Aizawa, Koji; Park, Byung-Eun; Ishiwara, Hiroshi

    2005-08-01

    Metal-ferroelectric-insulator-semiconductor (MFIS) diodes and p-channel MFIS field-effect transistors (FETs) were fabricated and their electrical properties were characterized. These MFIS structures were formed using HfO2 as an insulating buffer layer, and SrBi2Ta2O9 (SBT) and (Bi,La)4Ti3O12 (BLT) as ferroelectric films. HfO2 buffer layers of about 8 nm physical thickness were deposited by ultrahigh-vacuum (UHV) electron-beam evaporation, then ferroelectric films of about 400 nm thickness were deposited by sol-gel spin coating. The fabricated p-channel MFIS-FETs with the SBT/HfO2 gate structure exhibited a drain current on/off ratio larger than 103 even after 30 days had elapsed. It was also found that the degradation of ferroelectricity was not pronounced even after applying 2.2× 1011 bipolar pulses.

  2. Improving efficiency by hybrid TiO(2) nanorods with 1,10-phenanthroline as a cathode buffer layer for inverted organic solar cells.

    Science.gov (United States)

    Sun, Chunming; Wu, Yulei; Zhang, Wenjun; Jiang, Nianquan; Jiu, Tonggang; Fang, Junfeng

    2014-01-22

    We reported a significant improvement in the efficiency of organic solar cells by introducing hybrid TiO2:1,10-phenanthroline as a cathode buffer layer. The devices based on polymer thieno[3,4-b]thiophene/benzodithiophene:[6,6]-phenyl C71-butyric acid methyl ester (PTB7:PC71BM) with hybrid buffer layer exhibited an average power conversion efficiency (PCE) as high as 8.02%, accounting for 20.8% enhancement compared with the TiO2 based devices. The cathode modification function of this hybrid material could also be extended to the poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) system. We anticipate that this study will stimulate further research on hybrid materials to achieve more efficient charge collection and device performance.

  3. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Directory of Open Access Journals (Sweden)

    Tetsuro Hori

    2010-11-01

    Full Text Available Organic thin-film solar cells with a conducting polymer (CP/fullerene (C60 interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene (PAT6/Au have been improved by the insertion of molybdenum trioxide (VI (MoO3 and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  4. Fabrication of Ni-5 at. %W Long Tapes with CeO2 Buffer Layer by Reel-to-Reel Method

    DEFF Research Database (Denmark)

    Ma, Lin; Tian, Hui; Yue, Zhao

    2015-01-01

    A 10-m-long homemade textured Ni-5at.%W (Ni5W) long tape with a CeO2 buffer layer has been prepared successfully by means of rolling-assisted biaxially textured substrate (RABiTS) route followed by a chemical solution deposition method in a reel-to-reel manner. Globally, the Ni5W substrate and CeO2...... film exhibit high homogeneity in terms of biaxial texture over the tape. The average values of full width at half maximum of in-plane and out-of-plane texture are 7.2° and 6.1° in Ni5W substrate, 7.6° and 6.1° in CeO2 buffer layer, respectively, all of those with a small standard deviation...

  5. Effects of CdTe growth conditions and techniques on the efficiency limiting defects and mechanisms in CdTe solar cells

    Science.gov (United States)

    Rohatgi, A.; Chou, H. C.; Jokerst, N. M.; Thomas, E. W.; Ferekides, C.; Kamra, S.; Feng, Z. C.; Dugan, K. M.

    1996-01-01

    CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates using close-spaced sublimation (CSS) and metalorganic chemical vapor deposition (MOCVD). Te/Cd mole ratio was varied in the range of 0.02 to 6 in the MOCVD growth ambient in an attempt to vary the native defect concentration. Polycrystalline CdTe layers grown by MOCVD and CSS both showed average grain size of about 2 μm. However, the CdTe films grown by CSS were found to be less faceted and more dense compared to the CdTe grown by MOCVD. CdTe growth techniques and conditions had a significant impact on the electrical characteristics of the cells. The CdTe solar cells grown by MOCVD in the Te-rich growth condition and by the CSS technique gave high cell efficiencies of 11.5% and 12.4%, respectively, compared to 6.6% efficient MOCVD cells grown in Cd-rich conditions. This large difference in efficiency is explained on the basis of (a) XRD measurements which showed a higher degree of atomic interdiffusion at the CdS/CdTe interface in high performance devices, (b) Raman measurements which endorsed more uniform and preferred grain orientation by revealing a sharp CdTe TO mode in the high efficiency cells, and (c) carrier transport mechanism which switched from tunneling/interface recombination to depletion region recombination in the high efficiency cells. In this study, Cu/Au layers were evaporated on CdTe for the back contact. Lower efficiency of the Te-rich MOCVD cells, compared to the CSS cells, was attributed to contact related additional loss mechanisms, such as Cd pile-up near Cu/CdTe interface which can give rise to Cd-vacancy defects in the bulk, and higher Cu concentration in the CdTe layer which can cause shunts in the device. Finally, SIMS measurements on the CdTe films of different crystallinity and grain size confirmed that grain boundaries are the main conduits for Cu migration into the CdTe film. Thus larger CdTe grain size or lower grain boundary area per unit volume

  6. Approaches to improve the Voc of CDTE devices: Device modeling and thinner devices, alternative back contacts

    Science.gov (United States)

    Walkons, Curtis J.

    An existing commercial process to develop thin film CdTe superstrate cells with a lifetime tau=1-3 ns results in Voc= 810-850 mV which is 350 mV lower than expected for CdTe with a bandgap EG = 1.5 eV. Voc is limited by 1.) SRH recombination in the space charge region; and 2.) the Cu2Te back contact to CdTe, which, assuming a 0.3 eV CdTe/Cu2Te barrier, exhibits a work function of phi Cu2Te= 5.5 eV compared to the CdTe valence band of Ev,CdTe=5.8 eV. Proposed solutions to develop CdTe devices with increased Voc are: 1.) reduce SRH recombination by thinning the CdTe layer to ≤ 1 mum; and 2.) develop an ohmic contact back contact using a material with phi BC≥5.8 eV. This is consistent with simulations using 1DSCAPS modeling of CdTe/CdS superstrate cells under AM 1.5 conditions. Two types of CdTe devices are presented. The first type of CdTe device utilizes a window/CdTe stack device with an initial 3-9 mum CdTe layer which is then chemically thinned resulting in regions of the CdTe film with thickness less than 1 mum. The CdTe surface was contacted with a liquid junction quinhydrone-Pt (QH-Pt) probe which enables rapid repeatable Voc measurements on CdTe before and after thinning. In four separate experiments, the window/CdTe stack devices with thinned CdTe exhibited a Voc increase of 30-170 mV, which if implemented using a solid state contact could cut the Voc deficit in half. The second type of CdTe device utilizes C61 PCBM as a back contact to the CdTe, selected since PCBM has a valence band maximum energy (VBM) of 5.8 eV. The PCBM films were grown by two different chemistries and the characterization of the film properties and device results are discussed. The device results show that PCBM exhibits a blocking contact with a 0.6 eV Schottky barrier and possible work function of phiPCBM = 5.2 eV.

  7. Growth of thick La{sub 2}Zr{sub 2}O{sub 7} buffer layers for coated conductors by polymer-assisted chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin, E-mail: xzhang@my.swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Xia, Yudong [State Key Lab of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Chunsheng [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhang, Yong [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity and New Energy Center (SNEC), Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Han [Department of Physics, Peking University, Beijing 100871 (China)

    2015-06-15

    Highlights: • We develops a low-cost and high-efficient technology of fabricating LZO buffer layers. • Sufficient thickness LZO buffer layers have been obtained on NiW (2 0 0) alloy substrate. • Highly biaxially textured YBCO thin film has been deposited on LZO/NiW. - Abstract: La{sub 2}Zr{sub 2}O{sub 7} (LZO) epitaxial films have been deposited on LaAlO{sub 3} (LAO) (1 0 0) single-crystal surface and bi-axially textured NiW (2 0 0) alloy substrate by polymer-assisted chemical solution deposition, and afterwards studied with XRD, SEM and AFM approaches. Highly in-plane and out-of-plane oriented, dense, smooth, crack free and with a sufficient thickness (>240 nm) LZO buffer layers have been obtained on LAO (1 0 0) single-crystal surface; The films deposited on NiW (2 0 0) alloy substrate are also found with high degree in-plane and out-of-plane texturing, good density with pin-hole-free, micro-crack-free nature and a thickness of 300 nm. Highly epitaxial 500 nm thick YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film exhibits the self-field critical current density (Jc) reached 1.3 MA/cm{sup 2} at 77 K .These results demonstrate the LZO epi-films obtained with current techniques have potential to be a buffer layer for REBCO coated conductors.

  8. Effects of the AlN buffer layer thickness on the properties of ZnO films grown on c-sapphire substrate by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, H. [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Dai, J.N., E-mail: daijiangnan@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Hui, Xiong; Fang, Y.Y.; Tian, W.; Fu, D.X. [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, C.Q., E-mail: cqchen@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Mingkai; He, Yunbin [Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2013-03-25

    Highlights: ► High-quality c-plane ZnO films can be achieved by PLD. ► The rocking curve with FWHM of 0.09° by using 150 nm-thickness AlN/c-sapphire template. ► The properties of ZnO films were studied by AFM, XRD, PL and Raman measurements. ► We report on the fabrication of ZnO films with different thicknesses of AlN buffer layers. -- Abstract: In this work, ZnO films with high crystal quality were grown by pulsed laser deposition (PLD) on different c-plane AlN/c-sapphire template thereby the thicknesses of AlN buffer layers varied from 150 to 300 nm. The properties of ZnO thin films were studied by using high-resolution X-ray diffraction, atomic force microscopy, photoluminescence spectroscopy, and Raman measurement. The comparative investigation results show that inserting an AlN buffer layer is an effective way to improve the crystal quality of ZnO films. Furthermore, the thickness of the AlN buffer layer plays an important role on the quality of ZnO films. The result of (0 0 0 2) ω-rocking curve with the full width at half maximum (FWHM) of 0.09° indicates that high-quality c-plane ZnO films can be achieved by using a 150 nm-thickness AlN/c-sapphire template. In the best knowledge of the authors, this is the minimum value reported at present for ZnO films grown on AlN/c-sapphire templates by PLD.

  9. Effects of AlN buffer layers on the structural and the optical properties of GaN epilayers grown on Al{sub 2}O{sub 3} substrates by using plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Heechang; Lee, Seungjoo; Kumar, Sunil; Kang, Taewon [Dongguk University, Seoul (Korea, Republic of); Lee, Namhyun; Kim, Taewhan [Hanyang University, Seoul (Korea, Republic of)

    2014-04-15

    GaN epilayers on AlN buffer layers with various thicknesses were grown on sapphire substrates by using plasma-assisted molecular-beam epitaxy. The GaN epilayer with an AlN buffer layer was much smaller than the GaN epilayer without an AlN buffer layer. The crystal quality of the GaN active layer was improved by utilizing an AlN layer, which acted as a nucleation layer. The reduced defect density promoted GaN coalition. The double-crystal rocking curves and the photoluminescence spectra showed that the GaN epilayer grown on a 4-nm AlN buffer layer had the best quality among the several kinds of samples. The photoluminescence intensity of the GaN epilayer which is related to the density of the crystal defects was lower when an AlN buffer layer was used the thin AlN nucleation layer protected against stain propagation. These results indicate that GaN epilayers grown on AIN buffer layers hold promise for applications in short-wavelength optoelectronic devices.

  10. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS sub 2 thin film solar cells

    CERN Document Server

    Kaufmann, C A

    2002-01-01

    different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS sub 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) sub x S sub y or In(OH,O) sub x S sub y. In the case of In(OH,O) sub x S sub y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell characteristics could be developed. A CulnS sub 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS sub 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering...

  11. Impact of NiOx Buffer Layers on the Dielectric Properties of BaTiO3 Thin Films on Nickel Substrates Fabricated by Polymer Assisted Deposition

    Directory of Open Access Journals (Sweden)

    Hui Du

    2015-01-01

    Full Text Available Structural health monitoring with piezoelectric thin films integrated on structural metals shows great advantages for potential applications. However, the integration of piezoelectric thin films on structure metals is still challenged. In this paper, we report the piezoelectric barium titanate [BaTiO3 (BTO] thin films deposited on polycrystalline Ni substrates by the polymer assisted deposition (PAD method using NiOx as the buffer layers. The NiOx buffer layers with different thicknesses were prepared by varying immersing time from 5 minutes to 4 hours in H2O2 solution. The dielectric and leakage current properties of the thin films have been studied by general test systems. The BTO/Ni heterostructure with 2-hour immersing time exhibits better dielectric properties with a dielectric constant over 1500 and a 34.8% decrease of the dielectric loss compared to that with 5-minute immersing time. The results show that the leakage current density is strongly affected by the thickness of the NiOx buffer layer. The conduction mechanisms of the BTO/Ni heterostructure have been discussed according to the J-V characteristic curves.

  12. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  13. Pure UV photoluminescence from ZnO thin film by thermal retardation and using an amorphous SiO{sub 2} buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Shi Linxing, E-mail: slxopt@hotmail.co [School of Sciences, Huaihai Institute of Technology, Lianyungang 222005 (China); Li Xiangyin [Department of Physics, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-05-15

    ZnO/SiO{sub 2} thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 {sup o}C in the temperature range 400-800 {sup o}C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 {mu}mx1 {mu}m), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO{sub 2} buffer layer. - Research highlights: {yields} ZnO/SiO{sub 2} thin films on Si substrates were fabricated by E-beam evaporation. {yields} The SiO{sub 2} buffer layer is amorphous. {yields} PL spectroscopy showed that UV luminescence at only 374 nm is observed for all samples. {yields} The optical quality of the ZnO film has been improved by thermal retardation and by using an amorphous SiO{sub 2} buffer layer.

  14. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    Science.gov (United States)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  15. Control of stress and threading dislocation density in the thick GaN/AlN buffer layers grown on Si (111) substrates by low- temperature MBE

    Science.gov (United States)

    Zolotukhin, D.; Nechaev, D.; Kuznetsova, N.; Ratnikov, V.; Rouvimov, S.; Jmerik, V.; Ivanov, S.

    2016-08-01

    We report on successful growth by plasma-assisted molecular beam epitaxy on a Si(111) substrate crack-free GaN/AlN buffer layers with a thickness more than 1 μm. The layers fabricated at relatively low growth temperature of 780°C have at room temperature the residual compressive stress of -97 MPa. Intrinsic stress evolution during the GaN growth was monitored in situ with a multi-beam optical system. Strong dependence of a stress relaxation ratio in the growing layer vs growth temperature was observed. The best-quality crack-free layers with TDs density of ∼⃒109 cm-2 and roughly zero bowing were obtained in the sample with sharp 2D-GaN/2D-AlN interface.

  16. Influence of homo-buffer layers and post-deposition rapid thermal annealing upon atomic layer deposition grown ZnO at 100 °C with three-pulsed precursors per growth cycle

    Science.gov (United States)

    Cheng, Yung-Chen; Yuan, Kai-Yun; Chen, Miin-Jang

    2017-10-01

    ZnO main epilayers are deposited with three-pulsed precursors in every growth cycle at 100 °C on various thicknesses of 300 °C-grown homo-buffer layers by atomic layer deposition (ALD) on sapphire substrate. Samples are treated without and with post-deposition rapid thermal annealing (RTA). Two different annealing temperatures 300 and 1000 °C are utilized in the ambience of oxygen for 5 min. Extremely low background electron concentration 8.4 × 1014 cm-3, high electron mobility 62.1 cm2/V s, and pronounced enhancement of near bandgap edge photoluminescence (PL) are achieved for ZnO main epilayer with sufficient thickness of buffer layer (200 ALD cycles) and post-deposition RTA at 1000 °C. Effective block and remove of thermally unstable mobile defects and other crystal lattice imperfections are the agents of quality promotion of ZnO thin film.

  17. Study of High Quality Indium Nitride Films Grown on Si(100 Substrate by RF-MOMBE with GZO and AlN Buffer Layers

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chen

    2012-01-01

    Full Text Available Wurtzite structure InN films were prepared on Si(100 substrates using radio-frequency metal-organic molecular beam epitaxy (RF-MOMBE system. Ga-doped ZnO (GZO and Amorphous AlN (a-AlN film were used as buffer layers for InN films growth. Structural, surface morphology and optical properties of InN films were investigated by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, and photoluminescence (PL. XRD results indicated that all InN films exhibited preferred growth orientation along the c-axis with different intermediate buffers. TEM images exhibit the InN/GZO growth by two-dimensional mode and thickness about 900 nm. Also, the InN films can be obtained by growth rate about ~1.8 μm/h. Optical properties indicated that the band gap of InN/GZO is about 0.79 eV. These results indicate that the control of buffer layer is essential for engineering the growth of InN on silicon wafer.

  18. Recent advances in thin film CdTe solar cells

    Science.gov (United States)

    Ferekides, Chris S.; Ceekala, Vijaya; Dugan, Kathleen; Killian, Lawrence; Oman, Daniel; Swaminathan, Rajesh; Morel, Don

    1996-01-01

    CdTe thin film solar cells have been fabricated on a variety of glass substrates (borosilicate and soda lime). The CdS films were deposited to a thickness of 500-2000 Å by the chemical bath deposition (CBD), rf sputtering, or close spaced sublimation (CSS) processes. The CdTe films were deposited by CSS in the temperature range of 450-625 °C. The main objective of this work is to fabricate high efficiency solar cells using processes that can meet low cost manufacturing requirements. In an attempt to enhance the blue response of the CdTe cells, ZnS films have also been prepared (CBD, rf sputtering, CSS) as an alternative window layer to CdS. Device behavior has been found to be consistent with a recombination model.

  19. Self-Assembly of 1-Pyrenemethanol on ZnO Surface toward Combined Cathode Buffer Layers for Inverted Polymer Solar Cells.

    Science.gov (United States)

    Cai, Xiang; Yuan, Tao; Liu, Xiangfu; Tu, Guoli

    2017-10-09

    Solid alcohol 1-pyrenemethanol (PyM) was first introduced to modify the zinc oxide (ZnO) layer which is used in the inverted polymer solar cells (PSCs) as a cathode buffer layer (CBL). As a low-cost industrial product, the PyM can modify the surface defects and improve the electron mobility of ZnO CBL, which can be attributed to the self-assembly of PyM on the ZnO surface due to the hydrogen bonds and the conjugated structure in PyM. With a blend of PTB7:PC71BM as active layer, the device with ZnO/PyM CBL exhibited a notable power conversion efficiency (PCE) of 8.26%, which is better than that of control devices based on bare ZnO CBL (7.26%). With the addition of PyM, the device based on PTB7-Th:PC71BM showed a higher PCE of 9.10%, an obvious improvement from the 7.79% of control devices. There was no obvious change in device performance with the increase of PyM solution concentration, indicating that the device fabrications are thickness-insensitive. These results could be particularly useful in solution processing of buffer layer materials to high-efficiency organic solar cells.

  20. Enhanced efficiency of inverted polymer solar cells by using solution-processed TiOx/CsOx cathode buffer layer.

    Science.gov (United States)

    Zhou, Xiaodong; Fan, Xi; Sun, Xianke; Zhang, Yunli; Zhu, Ziqiang

    2015-01-01

    In this work, a double-buffer film of TiOx coated with CsOx (TiOx/CsOx) was solution prepared to be applied in poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:ICBA) and P3HT:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) inverted polymer solar cells (PSCs). Compared with TiOx films and CsOx films, the TiOx/CsOx double-buffer film exhibited a favorable energy-level alignment among TiOx, CsOx, and the electron acceptor of PCBM or ICBA a better surface morphology; and an enhanced wetting and adhesion property with a contact angle of 21.0°, leading to a higher electron mobility of 5.52 × 10(-3) cm(2) V(-1)·s(-1). Moreover, the P3HT:ICBA and P3HT:PCBM photovoltaic devices with the double-buffer film showed the best power conversion efficiency up to 5.65% and 3.76%, respectively. Our results not only present that the double-buffer film is superior than the single film of TiOx and CsOx, but also imply that the solution-processed film has a potential to be generally used in roll-to-roll processed organic photovoltaic devices.

  1. Enhanced performance in inverted polymer solar cells with D-π-A-type molecular dye incorporated on ZnO buffer layer.

    Science.gov (United States)

    Song, Chang Eun; Ryu, Ka Yeon; Hong, Seong-Jin; Bathula, Chinna; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Choi, Si Kyung; Kim, Joo Hyun; Moon, Sang-Jin

    2013-08-01

    We report the superior characteristics of a ZnO buffer layer covered with a phenothiazine-based, π-conjugated donor-acceptor (D-π-A)-type organic dye (called "d-ZnO"). The use of this system for the performance enhancement of inverted bulk heterojunction polymer solar cells (PSCs) with the configuration of indium tin oxide/d-ZnO/polymer:PC71 BM/MoO3 /Ag (PC71 BM=[6,6]-phenyl C71 butyric acid methyl ester) is investigated. The layer of organic dyes anchored on the ZnO surface through carboxylate bonding reduces the shunt path on bare ZnO surface and provides better interfacial contacts and energy level alignments between the ZnO layer and the photoactive layer. This phenomenon consequently leads to highly enhanced photovoltaic parameters (fill factor, open-circuit voltage, and short-circuit current density) and power conversion efficiencies (PCEs). Inverted solar cells containing the d-ZnO layer not only revealed about 34% (PCE: 4.37%) and 18% (PCE: 7.11%) improvement in the PCEs of the representative poly-3(hexylthiophene) (P3HT) and low-band-gap poly{[4,8-bis-(2-ethyl-hexyl-thiophene-5-yl)-benzo[1,2-b:4,5-b']dithiophene-2,6-diyl]-alt-[2-(2'-ethylhexanoyl)-thieno[3,4-b]thiophen-4,6-diyl]} (PBDTTT-C-T) polymer systems, respectively, but also showed 2-4 times longer device lifetimes than their counterparts without the organic dye layer. These results demonstrate that this simple approach used in inverted PSCs with a metal oxide buffer layer could become a promising procedure to fabricate highly efficient and stable PSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organic Solar Cells Based on WO2.72 Nanowire Anode Buffer Layer with Enhanced Power Conversion Efficiency and Ambient Stability.

    Science.gov (United States)

    You, Longzhen; Liu, Bin; Liu, Tao; Fan, Bingbing; Cai, Yunhao; Guo, Lin; Sun, Yanming

    2017-04-12

    Tungsten oxide as an alternative to conventional acidic PEDOT:PSS has attracted much attention in organic solar cells (OSCs). However, the vacuum-processed WO3 layer and high-temperature sol-gel hydrolyzed WOX are incompatible with large-scale manufacturing of OSCs. Here, we report for the first time that a specific tungsten oxide WO2.72 (W18O49) nanowire can function well as the anode buffer layer. The nw-WO2.72 film exhibits a high optical transparency. The power conversion efficiency (PCE) of OSCs based on three typical polymer active layers PTB7:PC71BM, PTB7-Th:PC71BM, and PDBT-T1:PC71BM with nw-WO2.72 layer were improved significantly from 7.27 to 8.23%, from 8.44 to 9.30%, and from 8.45 to 9.09%, respectively compared to devices with PEDOT:PSS. Moreover, the photovoltaic performance of OSCs based on small molecule p-DTS(FBTTh2)2:PC71BM active layer was also enhanced with the incorporation of nw-WO2.72. The enhanced performance is mainly attributed to the improved short-circuit current density (Jsc), which benefits from the oxygen vacancies and the surface apophyses for better charge extraction. Furthermore, OSCs based on nw-WO2.72 show obviously improved ambient stability compared to devices with PEDOT:PSS layer. The results suggest that nw-WO2.72 is a promising candidate for the anode buffer layer materials in organic solar cells.

  3. Optimization of n/i and i/p buffer layers in n-i-p hydrogenated microcrystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    Yuan Yujie; Hou Guofu; Zhang Jianjun; Xue Junming; Cao Liran; Zhao Ying; Geng Xinhua

    2009-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells with n-i-p configuration were prepared by plasma enhanced chemical vapor deposition (PECVD). The influence of n/i and i/p buffer layerson the μc-Si:H cell performance was studied in detail. The experimental results demonstrated that the efficiency is much improved when there is a higher crystallinity at n/i interface and an optimized a-Si:H buffer layer at i/p interface. By combining the above methods, the performance ofμc-Si:H single-junction and a-Si:H/μc-Si:H tandemsolar ceils has been significantly improved.

  4. Buffer layers for growth of the YBa sub 2 Cu sub 3 O sub 7 sub - sub x films on silicon

    CERN Document Server

    Razumov, S V

    2001-01-01

    The results of the studies on the structural characteristics of the SrTiO sub 3 , NdGaO sub 3 and CeO sub 2 buffer layers, obtained through the ion-plasma spraying on the silicon substrates, are presented. It is shown that the phase composition and internal stresses in the films are strongly dependent on the deposition temperature. The technological conditions of growth of primarily oriented SrTiO sub 3 , NdGaO sub 3 and CeO sub 2 films are dortmund. The structural quality of the obtained buffer films is sufficient for further growth of the YBa sub 2 Cu sub 3 O sub 7 sub - sub x high-quality films on the silicon substrates

  5. Electro deposited In{sub 2}S{sub 3} buffer layers for CuInS{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, T.; Carda, J.; Escribano, P. [Departamento de Quimica Inorganica y Organica, Universidad Jaime I, Campus Riu Sec, 12071Castellon de la Plana 12071 (Spain); Grimm, A.; Klaer, J.; Klenk, R. [Hahn-Meitner-Institut, Glienickerstr. 100, D14109 Berlin (Germany)

    2008-10-15

    We report the electro deposition of In{sub 2}S{sub 3} buffer layers for CuInS{sub 2} solar cells. All materials and deposition conditions were selected taking into account environmental, economic and technological aspects of a potential transfer to large volume industrial production. Different bath compositions and electro deposition parameters were studied. The obtained films exhibited complete substrate coverage, confirmed by SEM and XPS. In/S ratio close to 2/3 was obtained. XPS measurements detected the presence of indium hydroxide, transforming into oxide upon anneal at 200 C. Maximum photoelectric conversion efficiency of 7.1% was obtained, limited mainly by a low fill factor (51%). Further process optimization is expected to lead to efficiencies comparable to CdS buffers. So far, open-circuit voltages as high as 660 mV were demonstrated. (author)

  6. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hsin-Wei [Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan (China); Tsai, Cheng-Che [Department of Electronics Engineering and Computer Science, Tung Fang Design Institute, Kaohsiung, 82941, Taiwan (China); Hong, Cheng-Shong [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung, 824, Taiwan (China); Kao, Po-Ching [Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan (China); Juang, Yung-Der [Department of Materials Science, National University of Tainan, Tainan, 70005, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, 70101, Taiwan (China)

    2016-11-01

    Highlights: • OLEDs were enhanced efficiency by depositing CeF{sub 3} buffer layer. • The surface roughness was smoother of the CeF{sub 3} buffer layer. • The surface energy and polarity were increased of the CeF{sub 3} buffer layer. • Admittance spectroscopy showed that increased capacitance. • The carrier injection was enhanced in the space charge region. - Abstract: In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF{sub 3}film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF{sub 3} (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq{sub 3}) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF{sub 3} film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF{sub 3} film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF{sub 3} film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF{sub 3} film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm{sup 2}, the luminance increased from 7588 cd/m{sup 2} to 24760 cd/m{sup 2}, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF{sub 3} film was inserted into the OLEDs.

  7. Development and application of a green-chemistry solution deposition technique for buffer layer coating on cube-textured metal substrates in view of further deposition of rare-earth based superconductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P

    , allowing the epitaxial growth of the superconducting layer. State-of-the-art coated conductor hetero structures are mainly based on CeO2 based buffer stacks that consist of a sequence of several different buffer layers. Buffer layers deposited by continuous chemical deposition techniques, which...... and hazardous chemicals such as 2-methoxyethanol, and trifluroacetic acid (TFA). Therefore, in our research the main focus was on the development of SrTiO3 single buffer layers based on environmentally safe chemicals, to reach the engineering requirements for continuous coating of long substrate tapes. A new......Superconductor based energy production has been thoroughly researched by many scientists all over the world, due to the advantage of zero electric resistance that will contribute to the energy saving capabilities. Recently successful developments have been reported in coated conductor architectures...

  8. Solution-Processed, Ultrathin Solar Cells from CdCl3(-)-Capped CdTe Nanocrystals: The Multiple Roles of CdCl3(-) Ligands.

    Science.gov (United States)

    Zhang, Hao; Kurley, J Matthew; Russell, Jake C; Jang, Jaeyoung; Talapin, Dmitri V

    2016-06-22

    Solution-processed CdTe solar cells using CdTe nanocrystal (NC) ink may offer an economically viable route for large-scale manufacturing. Here we design a new CdCl3(-)-capped CdTe NC ink by taking advantage of novel surface chemistry. In this ink, CdCl3(-) ligands act as surface ligands, sintering promoters, and dopants. Our solution chemistry allows obtaining very thin continuous layers of high-quality CdTe which is challenging for traditional vapor transport methods. Using benign solvents, in air, and without additional CdCl2 treatment, we obtain a well-sintered CdTe absorber layer from the new ink and demonstrate thin-film solar cells with power conversion efficiency over 10%, a record efficiency for sub-400 nm thick CdTe absorber layer.

  9. Improvement in the Lifetime of Planar Organic Photovoltaic Cells through the Introduction of MoO3 into Their Cathode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Linda Cattin

    2014-03-01

    Full Text Available Recently, MoO3, which is typically used as an anode buffer layer in organic photovoltaic cells (OPVCs, has also been used as a cathode buffer layer (CBL. Here, we check its efficiency as a CBL using a planar heterojunction based on the CuPc/C60 couple. The CBL is a bi-layer tris-(8-hydroxyquinoline aluminum (Alq3/MoO3. We show that the OPVC with MoO3 in its CBL almost immediately exhibits lower efficiency than those using Alq3 alone. Nevertheless, the OPVCs increase their efficiency during the first five to six days of air exposure. We explain this evolution of the efficiency of the OPVCs over time through the variation in the MoO3 work function due to air contamination. By comparison to a classical OPVC using a CBL containing only Alq3, if it is found that the initial efficiency of the latter is higher, this result is no longer the same after one week of exposure to ambient air. Indeed, this result is due to the fact that the lifetime of the cells is significantly increased by the presence of MoO3 in the CBL.

  10. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells

    Science.gov (United States)

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-03-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.

  11. Reduction of the dark current in a P3HT-based organic photodiode with a ytterbium-fluoride buffer layer for electron transport

    Science.gov (United States)

    Lim, Seong Bin; Ji, Chan Hyuk; Kim, Kee Tae; Oh, Se Young

    2016-08-01

    Photodiodes are widely used to convert light into electrical signals. The conventional silicon (Si) based photodiodes boast high photoelectric conversion efficiency and detectivity. However, in general, inorganic-based photodiodes have low sensitivity at visible wavelengths due to their absorption of infrared wavelengths. Recently, electrical conducting polymer-based photodiodes have received significant attention due to their flexibility, low cost of production and high sensitivity at visible wavelength ranges. In the present work, we fabricated an organic photodiode (OPD) with a consisting of ITO/ NiO x / P3HT:PC60BM/ YbF3/Al structure. In the OPD, a yitterbium fluoride (YbF3) buffer layer was used as the electron transport layer. The OPD was analyzed by using optical-electrical measurements to determine its J-V, detectivity, and dynamic characteristics. We investigated the physical effects of the YbF3 buffer layer on the performance of OPD such as its carrier extraction, leakage current and ohmic characteristics.

  12. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    Science.gov (United States)

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-07-01

    We demonstrate the high structural and optical properties of InxGa1‑xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm‑2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1‑xN epilayers can be achieved with high optical quality of InxGa1‑xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  13. The structural transition from epitaxial Fe/Pt multilayers to an ordered FePt film using low energy ion beam sputtering deposition with no buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chih-Hao, E-mail: chlee@mx.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yu-Sheng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Liu, Li-Jung [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Huang, J.C.A. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    An epitaxial L1{sub 0} FePt thin film grown from an [Fe(10 Å)/Pt(10 Å)]{sub 15} multilayer with the orientation of (001) was prepared by an ion beam sputtering deposition method without buffer layer. From the measurement data of X-ray diffraction and X-ray reflectivity, the multilayer structure was totally disappeared and a uniform FePt alloy thin film was formed at temperatures higher than 600 °C. For the as-deposited thin film grown at 100 °C, the multilayer already possesses an epitaxial structure. The epitaxial relation is FePt(001)[100]//MgO(001)[100] and this epitaxial relation persists after sequential high temperature annealing. An epitaxial L1{sub 0} ordered FePt(001) film with order parameter of 0.95 was obtained when the annealing temperature reached 650 °C. The ordered FePt(001) thin film has a perpendicular magnetic anisotropy with a squareness of 0.95 ± 0.03 on the magnetic hysteresis loop. This experiment demonstrates that the low energy ion beam sputtering deposition will preserve the epitaxial relation with no buffer layer between multilayer and substrate. - Highlights: • The Fe/Pt films using ion sputtering deposition with no buffer layer is epitaxial. • Multilayer structure was totally disappeared at temperatures higher than 600 °C. • Order parameter reach 0.95 after annealing at 650 °C. • Interfacial epitaxial FePt alloy already formed at 100 °C.

  14. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    KAUST Repository

    Mumthaz Muhammed, Mufasila

    2016-07-14

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  15. Plasma-assisted MBE growth of ZnO on GaAs substrate with a ZnSe buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Kuaile; Ye, Lijia; Shen, A. [Department of Electrical Engineering, City College of New York, New York, NY (United States); Tamargo, M.C. [Department of Chemistry, City College of New York, New York, NY (United States)

    2012-08-15

    ZnO thin films were grown by plasma-assisted MBE on GaAs substrates with ZnSe buffer layers. GaAs with different orientations: (001), (111) A, and (111) B were investigated. X-ray diffraction measurements showed that ZnO grown on (111) B GaAs substrates have the best structural quality. All the samples showed good optical qualities as indicated by room temperature photoluminescence measurements. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Improvement of quantum efficiency of P3HT:PCBM-based organic photovoltaic cells using DMDCNQI as an N-type dopant and buffer layer.

    Science.gov (United States)

    Lee, Joo Hyung; Yang, Eui Yeol; Oh, Se Young

    2013-03-01

    In previous work, we have reported that a P3HT:PCBM-based organic photovoltaic cell using a thermally evaporated DMDCNQI buffer layer shows a high power conversion efficiency. In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM:DMDCNQI/DMDCNQI/Al using an all-solution process. A thin, uniform DMDCNQI film was obtained in a methanol solution with high solubility and low viscosity. The prepared device shows a high power conversion efficiency of 2.9%. In particular, a maximum external quantum efficiency of 81% was obtained.

  17. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    OpenAIRE

    Tetsuro Hori; Hiroki Moritou; Naoki Fukuoka; Junki Sakamoto; Akihiko Fujii; Masanori Ozaki

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced p...

  18. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    OpenAIRE

    Tetsuro Hori; Hiroki Moritou; Naoki Fukuoka; Junki Sakamoto; Akihiko Fujii; Masanori Ozaki

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced p...

  19. Spin polarized transports through a narrow-gap semiconductor wire with ferromagnetic contacts formed on InAlAs step-graded buffer layers

    OpenAIRE

    Akabori, M; Yamada, S.

    2004-01-01

    We investigated the transport properties of ferromagnetic/semiconductor hybrid structures utilizing an InAs/In_Al_As modulation-doped heterostructures formed on a GaAs (001) substrate with In_xAl_As step-graded buffer layers. We used NiFe as ferromagnetic electrodes for injection/detection of spin-polarized electrons, which were formed on side walls of the semiconductor mesa to contact electron channel directly. We measured magneto-transport properties of the samples with current flow between...

  20. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr [Microelectronics Research Group, IESL, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1385, GR-71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete (Greece); Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G. [Microelectronics Research Group, IESL, Foundation for Research and Technology-Hellas (FORTH), P.O. Box 1385, GR-71110 Heraklion, Crete (Greece)

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as the AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.

  1. Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer

    Science.gov (United States)

    Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli

    2016-12-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.

  2. Graphene ultrathin film electrodes modified with bismuth nanoparticles and polyaniline porous layers for detection of lead and cadmium ions in acetate buffer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaomeng; Li, Lin; Liu, Erjia, E-mail: mejliu@ntu.edu.sg

    2013-10-01

    Graphene ultrathin films were synthesized by means of solid-state carbon diffusion from amorphous carbon (a-C) thin layers deposited on silicon substrates, which was catalyzed by nickel layers coated on the top of the a-C layers. The graphene films were used as working electrodes that were modified by a polyaniline (PANI) porous layer together with in-situ deposited bismuth (Bi) nanoparticles for the detection of trace heavy metal ions (Pb{sup 2+} and Cd{sup 2+}) in acetate buffer solutions (pH 5.3) with square wave anodic stripping voltammetry. The graphene electrodes modified with PANI porous layers and Bi nanoparticles had excellent repeatability, ultrahigh sensitivity (as low as 0.33 nM) and good resistance to passivation caused by the surface active species adsorbed on the electrode surfaces. - Highlights: • Graphene fabricated by nickel-catalyzed carbon diffusion in solid state • Graphene electrodes modified by bismuth nanoparticles and polyaniline layers • High resistance of modified graphene electrodes to passivation in acetate solutions • Ultra-low detection limits of lead and cadmium ions by modified graphene electrodes.

  3. Growth and characterization of CdTe on GaAs/Si substrates

    Science.gov (United States)

    Radhakrishnan, G.; Nouhi, A.; Liu, J.

    1988-01-01

    Epitaxial CdTe has been grown on both (100) GaAs/Si and (111) GaAs/Si substrates. A combination of molecular beam epitaxy and metal organic chemical vapor deposition have been employed to achieve this growth. The GaAs layers are grown in Si substrates by molecular beam epitaxy, followed by the growth of CdTe on GaAs/Si substra by metalorganic chemical vapor deposition. X-ray diffraction, photoluminescence, and scanning electron microscopy have been used to characterize the CdTe films.

  4. Metalorganic Vapor Phase Epitaxial Growth of (211)B CdTe on Nanopatterned (211)Si

    Science.gov (United States)

    2012-05-15

    respectively. X-ray analysis of thin CdTe films grown on these substrates gave wider full-width half-maximum (FWHM) values when compared to the layers grown...obtained in the temperature range of 575-675 °C and 505-520 °C respectively. X-ray analy- sis of thin CdTe films grown on these substrates gave wider...An effort was also made to grow thin uniformly merged ~0.6 µm (211)B CdTe film on nanopatterned (211)Si by

  5. Improvement of electron mobility in La:BaSnO3 thin films by insertion of an atomically flat insulating (Sr,BaSnO3 buffer layer

    Directory of Open Access Journals (Sweden)

    Junichi Shiogai

    2016-06-01

    Full Text Available One perovskite oxide, ASnO3 (A = Sr, Ba, is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO3 substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO3 / (Sr,BaSnO3 for buffering this large lattice mismatch between La:BaSnO3 and SrTiO3 substrate. The insertion of 200-nm-thick BaSnO3 on (Sr,BaSnO3 bilayer buffer structures reduces the number of dislocations and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO3 buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO3 shows that the highest obtained value of mobility is 78 cm2V−1s−1 because of its fewer dislocations. High electron mobility films based on perovskite BaSnO3 can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.

  6. Preparation of a Novel Ce0.9La0.1O2/Gd2Zr2O7 Buffer Layer Stack on NiW Alloy Substrates by the MOD Route

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; Abrahamsen, Asger Bech

    2011-01-01

    an excellent lattice match with the superconductor layer, and to employ 200 nm thick ${\\rm Gd}_{2}{\\rm Zr}_{2}{\\rm O}_{7}$ film as barrier layer. The effect of thermal cycling on the texture and morphology of the crystallized films and NiW substrate is discussed in detail. The texture quality and the epitaxial...... relationship between the buffer layer stack and the metallic substrate were studied by synchrotron x-ray diffraction. Well textured, smooth and crack-free ${\\rm Ce}_{0.9}{\\rm La}_{0.1}{\\rm O}_{2}/{\\rm Gd}_{2}{\\rm Zr}_{2}{\\rm O}_{7}$ buffer layer stacks are obtained, demonstrating the possibility of producing...

  7. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  8. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole

    Science.gov (United States)

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-01

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL-1 (3.4 ng mL-1) and the quantitative determination range was 0-2.8 μg mL-1 with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.

  9. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.

    Science.gov (United States)

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-15

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL(-1) (3.4 ng mL(-1)) and the quantitative determination range was 0-2.8 μg mL(-1) with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.

  10. The effect of SiO{sub 2} buffer layer on the electrical and structural properties of Al-doped ZnO films deposited on soda lime glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ri, K.H., E-mail: gangxianli@yahoo.cn [Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Y.B.; Zhou, W.L.; Gao, J.X.; Wang, X.J. [Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, J., E-mail: jyu@mail.hust.edu.cn [Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-04-15

    In this paper, the influence of SiO{sub 2} buffer layer on electrical and structural properties of AZO films on soda lime glasses has been investigated. The results showed that the Hall mobility and carrier concentration of AZO films deposited on soda lime glasses at high temperature could be enhanced by introducing SiO{sub 2} layers. The optical absorption edges of AZO films with SiO{sub 2} buffer layer are blue shifted compared with that of buffer layer free due to the increase of carrier concentration. SiO{sub 2} layers prepared at 400 deg. C more effectively suppress the diffusion of Na atoms into AZO films compared with that prepared at room temperature. On the other hand, the in-plane stress dependence of optical band gap is linear for AZO films deposited on quartz glass substrates, but is deviated from linearity in the case of soda lime glass substrates.

  11. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Thapa, S. B.; Haeberlen, M.; Storck, P. [SILTRONIC AG, Hanns-Seidel-Platz 4, 81737 München (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); BTU Cottbus, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  12. Effect of Buffer Layer on Epitaxial Growth of YSZ Deposited on Si Substrate by Slower Q-switched 266 nm YAG Laser

    Science.gov (United States)

    Kaneko, Satoru; Akiyama, Kensuke; Shimizu, Yoshitada; Ito, Takeshi; Yasaka, Shinji; Mitsuhashi, Masahiko; Ohya, Seishiro; Saito, Keisuke; Watanabe, Takayuki; Okamoto, Shoji; Funakubo, Hiroshi

    2004-04-01

    Yttria-stabilized zirconia (YSZ) was grown on Si(100) substrate by pulsed laser deposition (PLD). The laser used in this study was a 266 nm YAG laser with a second function generator modulating only the Q-switch while the primary generator modulated the flash lamp (slower Q-switch). Epitaxial growth was verified on YSZ film deposited without oxygen gas followed by primary deposition in oxygen atmosphere on Si substrate with a ˜0.4-nm-thin oxide layer. The crystallinity was strongly dependent on the thickness of the buffer layer deposited prior to the primary deposition of YSZ. The epitaxial growth was confirmed by φ scan, and ω scan (rocking curve) showed the full width at half maximum (FWHM) of 1.1 deg. The required oxygen pressure for epitaxial growth was quite high compared to that of excimer deposition.

  13. Surfactant-free synthesis of sub-stoichiometry tungsten oxide nanoparticles and their use as anode buffer layers in organic solar cells

    Science.gov (United States)

    Brütsch, Lennart; Czolk, Jens; Popescu, Radian; Gerthsen, Dagmar; Colsmann, Alexander; Feldmann, Claus

    2017-07-01

    A surfactant-free synthesis of small-sized tungsten trioxide is presented. Nanoparticles with an average size of 4.6 ± 1.5 nm are prepared via hot-injection techniques in ethanol. Due to the reducing properties of ethanol, a sub-stoichiometry composition WO3-x (x∼0.4) is obtained. The partial reduction of W+VI to W+V becomes visible in the bluish color of suspensions and powder samples and in optical spectroscopy (UV-Vis). The nanoparticles are further characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDXS) and infrared spectroscopy (FT-IR). Due to their small size, their high colloidal stability and the absence of surfactants, layers from the as-prepared WO3-x nanoparticles are ideally suited to form anode buffer layers in organic solar cells. Exemplary solar cells show good power conversion efficiency of 6.3%.

  14. Improved performances of CuPc/C60-based solar cell by using randomly and irregularly embossed PEDOT:PSS as anode buffer layer

    Science.gov (United States)

    Zhang, Haiqing; Hao, Yuying; Zhang, Fan; Sun, Qinjun; Li, Zhanfeng; Cui, Yanxia; Wang, Hua; Shi, Fang

    2015-07-01

    An unique organic solar cell (OSC) based on copper phthalocyanine (CuPc) and fullerene C60 as the electron donor and acceptor materials is demonstrated with randomly and irregularly embossed poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) as anode buffer layer. The effect of PEDOT:PSS nanostructure is characterized by optical and electrical measurements. The results indicate that introducing irregular nanostructure with random distribution into OSC leads to longer light paths by efficient scattering of the incident light and thus higher light absorption in active layer. Moreover, such a nanostructure increases the junction area, allowing more efficient exciton dissociation and charge carrier transfer/collection. These combined effects result in a prominent enhancement of 25.5% in average power conversion efficiency relative to the non-structured OSC due to the increases in short-circuit current and fill factor.

  15. Characterization of Sulfur Bonding in CdS:O Buffer Layers for CdTe-based Thin-Film Solar Cells.

    Science.gov (United States)

    Duncan, Douglas A; Kephart, Jason M; Horsley, Kimberly; Blum, Monika; Mezher, Michelle; Weinhardt, Lothar; Häming, Marc; Wilks, Regan G; Hofmann, Timo; Yang, Wanli; Bär, Marcus; Sampath, Walajabad S; Heske, Clemens

    2015-08-05

    On the basis of a combination of X-ray photoelectron spectroscopy and synchrotron-based X-ray emission spectroscopy, we present a detailed characterization of the chemical structure of CdS:O thin films that can be employed as a substitute for CdS layers in thin-film solar cells. It is possible to analyze the local chemical environment of the probed elements, in particular sulfur, hence allowing insights into the species-specific composition of the films and their surfaces. A detailed quantification of the observed sulfur environments (i.e., sulfide, sulfate, and an intermediate oxide) as a function of oxygen content is presented, allowing a deliberate optimization of CdS:O thin films for their use as alternative buffer layers in thin-film photovoltaic devices.

  16. Proximity Effects of Beryllium-Doped GaN Buffer Layers on the Electronic Properties of Epitaxial AlGaN/GaN Heterostructures

    Science.gov (United States)

    2010-05-17

    properties of AlGaN/ GaN HEMTs grown on SiC sub- strates [11,15], and that these effects may vary with the proximity of the doped layer to the two...properties of Al- GaN / GaN HEMTs grown by rf-MBE on native GaN substrates. 2. Experimental Seven AlGaN/ GaN heterostructures were grown by rf-plasma assisted...buffer needs to include Be-doped GaN isolation layers in MBE-grown AlGaN/ GaN HEMTs and must be separated from the 2DEG by 200 nm to 500 nm. Acknowledgments

  17. Impact of thermal stability of poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) used as buffer layer in organic solar cells

    Science.gov (United States)

    Dang, Minh Trung; Cantú-Valle, Jesus; Hirsch, Lionel; Wantz, Guillaume

    2013-09-01

    We compared the performances of polymer-based photovoltaic devices prepared from different formulations of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS). The PEDOT:PSS buffer layer is incorporated between the indium tin oxide (ITO) electrode and the active layer, which is composed of a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). A highest efficiency of 3.86% (under AM1.5 solar illumination) was achieved for device prepared from a PEDOT:PSS trade-named high conductivity grade. However, annealing devices at a temperature over 120 °C results in decreased photovoltaic performance. This study shows that attention has to be paid to chemicals used to formulate high conductive PEDOT:PSS to become compatible with the production of solar cells involving thermal processing.

  18. Comparison between the structural, morphological and optical properties of CdS layers prepared by Close Space Sublimation and RF magnetron sputtering for CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, E.M., E-mail: efeldmeier@surface.tu-darmstadt.de; Fuchs, A.; Schaffner, J.; Schimper, H.-J.; Klein, A.; Jaegermann, W.

    2011-08-31

    CdS layers deposited by radio frequency (RF) magnetron sputtering at different substrate temperatures and Close Space Sublimation (CSS) on SnO{sub 2}:F films have been investigated. Both types of films were prepared in the integrated ultra high-vacuum system known as DAISY-SOL and characterised with respect to crystal structure, texture, morphology, stoichiometry and optical properties. For this purpose, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction and optical transmittance measurements were used in this work. The results show that RF sputtering produces dense and pin-hole free CdS layers with a more pronounced crystallographic texture, a cadmium excess and a higher optical absorption than those prepared by CSS.

  19. Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells.

    Science.gov (United States)

    Tran, Van-Huong; Ambade, Rohan B; Ambade, Swapnil B; Lee, Soo-Hyoung; Lee, In-Hwan

    2017-01-18

    SnO2 recently has attracted particular attention as a powerful buffer layer for organic optoelectronic devices due to its outstanding properties such as high electron mobility, suitable band alignment, and high optical transparency. Here, we report on facile low-temperature solution-processed SnO2 nanoparticles (NPs) in applications for a cathode buffer layer (CBL) of inverted organic solar cells (iOSCs). The conduction band energy of SnO2 NPs estimated by ultraviolet photoelectron spectroscopy was 4.01 eV, a salient feature that is necessary for an appropriate CBL. Using SnO2 NPs as CBL derived from a 0.1 M precursor concentration, P3HT:PC60BM-based iOSCs showed the best power conversion efficiency (PCE) of 2.9%. The iOSC devices using SnO2 NPs as CBL revealed excellent long-term device stabilities, and the PCE was retained at ∼95% of its initial value after 10 weeks in ambient air. These solution-processed SnO2 NPs are considered to be suitable for the low-cost, high throughput roll-to-roll process on a flexible substrate for optoelectronic devices.

  20. Fast chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Buffiere, M., E-mail: Marie.Buffiere@cnrs-imn.fr; Harel, S.; Arzel, L.; Deudon, C.; Barreau, N.; Kessler, J.

    2011-08-31

    In order to decrease the deposition time of chemical bath deposited (CBD) Zn(O,S) buffer layers in CIGSe solar cell, the alternative CBD route using H{sub 2}O{sub 2} as additional oxygen source has been investigated. The morphology and the optical properties of the Zn(O,S) thin films grown with and without additive have been compared through scanning electron microscopy (SEM) observations and UV-visible transmission T({lambda}) and reflectivity R({lambda}) measurements, respectively. It is observed that deposition time shorter than 5 min is sufficient to achieve films with similar properties to those deposited following the standard recipe in 15 min. The characteristics of CIGSe/Zn(O,S) structures for which the Zn(O,S) growth has been interrupted after different bath immersion durations have been investigated by XPS measurements. The evolution of the In3d and Zn2p{sub 3/2} signals reveals that after 2 min of deposition, the Zn(O,S) layer grown by the alternative process completely covers the CIGSe and suggests that the increase of the Zn(O,S) growth rate is most probably due to the acceleration of cluster mechanism growth. A comparative study of devices buffered with the so-called fast and standard Zn(O,S) shows similar efficiencies in either case after light soaking.

  1. Reduction of the deposition temperature of high quality EuO films on Yttria Stabilized Zirconia by incorporating an MgO buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Moder, Iris [Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Torre C3-222, 08193 Bellaterra (Spain); Garcia, Gemma, E-mail: gemma.garcia@uab.cat [Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Torre C3-222, 08193 Bellaterra (Spain); Santiso, José [Centre d' Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC/ICN), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Moodera, Jagadeesh S.; Miao, Guoxing X. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lopeandía, Aitor F. [Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Torre C3-222, 08193 Bellaterra (Spain); Rodríguez-Viejo, Javier [Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Torre C3-222, 08193 Bellaterra (Spain); MATGAS Research Centre, Campus UAB, 08193 Bellaterra (Spain)

    2013-03-01

    High quality stoichiometric EuO ferromagnetic thin films have been grown by Molecular Beam Epitaxy (MBE) on MgO coated-Yttria Stabilized Zirconia (YSZ) (100) substrates. The proof is made that introducing an MgO buffer layer, that avoid oxygen transfer from YSZ to EuO, allows the preparation of high quality stoichiometric EuO films at reduced deposition temperature compared with films directly deposited onto YSZ, maintaining similar Eu flux and oxygen partial pressure. Structure and texture were characterized by X-ray diffraction showing out-of plane and in-plane ordering for films deposited onto MgO buffer layers. The crystallographic quality was corroborated by a Curie temperature around 69 K and a magnetization moment close or equal to 6.49 · 10{sup −23} J/T (7 μ{sub B}), corresponding to bulk EuO single crystal values. - Highlights: ► EuO films were epitaxially grown on MgO coated Yttria Stabilized Zirconia. ► Deposition temperature was reduced compared to bare Yttria Stabilized Zirconia. ► Epitaxial texture was confirmed by in-plane X-ray diffraction. ► Composition of the heterostructure was defined by X-ray Photoelectron Spectroscopy. ► Single crystal like EuO magnetic moment and coercive field were measured.

  2. Effect of process temperature on structure and magnetic properties of perpendicularly magnetized D022-Mn3Ge thin films on a Cr buffer layer

    Science.gov (United States)

    Sugihara, Atsushi; Suzuki, Kazuya; Miyazaki, Terunobu; Mizukami, Shigemi

    2015-08-01

    We investigated the effect of post-annealing on the perpendicular magnetic anisotropy constant (Ku) and surface roughness (Ra) of Mn3Ge thin films grown at comparatively low temperatures (room temperature, 150, 200, and 250 °C) on Cr buffer layers. The films grown at ≥200 °C exhibit a D022-ordered crystal structure in an as-deposited state. The post-annealing process demonstrates differences in trends between the 200-°C-grown film and the 250-°C-grown film. The 200-°C-grown film displays significant degradation of Ku and an increase in Ra upon annealing at >300 °C because of its poor thermal durability, while the 250-°C-grown film is still intact even at 500 °C. The 250-°C-grown film post-annealed at 300 °C displays relatively high Ku while Ra remains low. It may be possible to grow D022-Mn3Ge with higher Ku and low Ra using a buffer-layer material with a lattice-matched crystal structure with D022-Mn3Ge and higher thermal durability than Cr.

  3. α,α'-Diarylacenaphtho[1,2-c]phosphole P-oxides: divergent synthesis and application to cathode buffer layers in organic photovoltaics.

    Science.gov (United States)

    Matano, Yoshihiro; Saito, Arihiro; Suzuki, Yuto; Miyajima, Tooru; Akiyama, Seiji; Otsubo, Saika; Nakamoto, Emi; Aramaki, Shinji; Imahori, Hiroshi

    2012-10-01

    A divergent method for the synthesis of α,α'-diarylacenaphtho[1,2-c]phosphole P-oxides has been established; α,α'-dibromoacenaphtho[c]phosphole P-oxide, which was prepared through a Ti(II)-mediated cyclization of 1,8-bis(trimethylsilylethynyl)naphthalene, underwent a Stille coupling with three different kinds of aryltributylstannanes to afford the α,α'-diarylacenaphtho[c]phosphole P-oxides in moderate to good yields. X-ray crystallographic analyses and UV/Vis absorption/fluorescence measurements have revealed that the degree of π-conjugation, the packing motif, the electron-accepting ability, and the thermal stability of the acenaphtho[c]phosphole π-systems are finely tunable with the α-aryl substituents. All the P=O and P=S derivatives exhibited high stability in their electrochemically reduced state. To use this class of arene-fused phosphole π-systems as n-type semiconducting materials, we evaluated device performances of the bulk heterojunction organic photovoltaics (OPV) that consist of poly(3-hexylthiophene), an indene-C(70) bisadduct, and a cathode buffer layer. The insertion of the diarylacenaphtho[c]phosphole P-oxides as the buffer layer was found to improve the power conversion efficiency of the polymer-based OPV devices.

  4. Integration of ferroelectric BaTiO3 with Ge: The role of a SrTiO3 buffer layer investigated using aberration-corrected STEM

    Science.gov (United States)

    Wu, HsinWei; Lu, Sirong; Aoki, Toshihiro; Ponath, Patrick; Ekerdt, John G.; Demkov, Alexander A.; McCartney, Martha R.; Smith, David J.

    2017-06-01

    The integration of semiconductors with ferroelectrics having a controlled polarization direction is an ongoing and challenging topic of research. In this work, BaTiO3 (BTO)/SrTiO3 (STO) heterostructures were grown by molecular beam epitaxy either directly with STO substrates or by using 2-nm-thick STO buffer layers on Ge(001) substrates. Sharp, chemically abrupt interfaces and c-axis-oriented BTO films for both types of heterostructures were observed using aberration-corrected scanning transmission electron microscopy and elemental mapping. Anti-phase boundaries as well as ⟨100⟩ misfit dislocations were present in the BTO/STO samples, with the offsets of the dislocation cores varying by distances between 1 and 5 nm away from the BTO/STO interface. Conversely, misfit dislocations were not observed in the BTO/STO/Ge structure although vertical anti-phase boundaries were still common. Overall, the results emphasize the benefits of identifying a suitable buffer layer to ensure the growth of a high quality material having the desired out-of-plane ferroelectric polarization.

  5. Prominent electric properties of BiFeO₃ shells sputtered on ZnO-nanorod cores with LaNiO₃ buffer layers.

    Science.gov (United States)

    Chiu, Kuan-Chang; Yang, Tung-Han; Wu, Jenn-Ming

    2013-06-07

    In this work, template-assisted methods were adopted to grow BiFeO3 (BFO)-nanorod arrays on substrates. Well-aligned ZnO-nanorod arrays (ZNAs) grown hydrothermally were chosen as positive templates. It was found that perovskite BFO could not be radio frequency (RF)-magnetron sputtered directly on a ZNA at elevated temperatures. Only amorphous BFO was obtained. However, polycrystalline BFO shells could be fabricated by RF-magnetron sputtering on ZNA templates by the introduction of LaNiO3 (LNO) buffer layers. The LNO buffer layer deposited on the ZNA by RF-magnetron sputtering was demonstrated to improve the adhesion and crystallization of the sequentially sputtered BFO shells. The electrical properties were evaluated by conductive atomic force microscopy and piezoresponse force microscopy. Bulk-limited Poole-Frenkel emission dominates the conduction of BFO shells at positive bias, while barrier-limited Schottky emission accounts for the conduction at negative bias due to the interface between the Pt/Ir-coated tip and the BFO. The piezoelectric coefficient (d33) was estimated to be ∼32.93 pm V(-1) and a polarization of 133 μC cm(-2) was derived. These values are higher than those reported previously for BFO films.

  6. Degradation processes occur on the CdTe thin films solar elements

    CERN Document Server

    Mirsagatov, S A; Makhmudov, M; Muzapharova, S A

    1999-01-01

    It is shown the Cu in CdTe polycristalline films is diffusing on the complex mechanism. By bringing of W atoms in thin CdTe layers it is possible to operate diffusion's speed of Cu atoms. Initiation of the (Cu sup + W sub C sub d sup -) complexes under the conditions N(W sub C sub d sup -)>=N(Cu sub i sup +) hardly reduce the diffusion velocity of Cu atoms.

  7. Effects of annealing in Be/W and Be/C bilayers deposited on Si(0 0 1) substrates with Fe buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Schinteie, G. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Greculeasa, S.G., E-mail: simona.greculeasa@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Bucharest University, Faculty of Physics, 077125 Bucharest-Magurele (Romania); Palade, P.; Lungu, G.A. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania); Porosnicu, C.; Jepu, I.; Lungu, C.P. [National Institute for Laser, Plasma and Radiation Physics, 77125 Bucharest-Magurele (Romania); Filoti, G.; Kuncser, V. [National Institute of Materials Physics, P.O. Box MG-7, 77125 Bucharest-Magurele (Romania)

    2015-02-15

    Highlights: • Be/W, Be/C layers deposited by TVA on Si substrate with thin sputtered Fe buffers. • Fe films were hydrogenated (300 °C); Be/W and Be/C were annealed in vacuum (600 °C). • Increase of oxidation near the surface; the hydrogenation reduces oxidation. • The annealing induces high interatomic diffusion all over the structure. • Mixed phases are formed by annealing: Fe–Be, Fe–C; no Fe–W phases are evidenced. - Abstract: Atomic intermixing processes in relation to structural aspects and phase formation in Be based thin films subjected to different annealing treatments simulating the case of re-deposited layered structures on plasma facing components in nuclear fusion devices are reported. Accordingly, bilayers of Be/W and Be/C have been deposited on Si(0 0 1) substrates with Fe buffer layers. The Fe films have been prepared by radiofrequency sputtering and further processed by annealing in hydrogen atmosphere at 300 °C, for 90 min, at a pressure of 10 bars of H{sub 2}. After the Be/W and Be/C bilayer deposition by means of thermionic vacuum arc method, annealing in vacuum at 600 °C, for 10 min has been applied to the complex structures. The influence of annealing on the phase composition and atomic intermixing processes in the complex structures has been studied by means of X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The layered structures present an oxidation gradient with oxide phases in the uppermost layers and non-oxidized phases in the lower layers, as observed from the XPS data. The CEMS results revealed that the as-deposited structures contain a main metallic Fe phase and secondary superparamagnetic Fe oxide phases at the Fe/Be interface, while annealed samples present a large contribution of Fe–Be and Fe–C mixtures. The annealing treatment induces considerable atomic interdiffusion, strongly dependent on the nature of the upper layer. In the case of Be/W system, the annealing

  8. Ferroelectric BaTiO3 thin films on Ni metal tapes using NiO as buffer layer

    Science.gov (United States)

    Yuan, Z.; Liu, J.; Weaver, J.; Chen, C. L.; Jiang, J. C.; Lin, B.; Giurgiutiu, V.; Bhalla, A.; Guo, R. Y.

    2007-05-01

    Ferroelectric BaTiO3 (BTO) thin films were deposited on NiO buffered polycrystalline Ni tapes by pulsed laser deposition. Microstructural studies by x-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO films have the nanopillar structures with an average size of approximately 80nm in diameter and the good interface structures with no interdiffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. These excellent properties indicate that the as-fabricated BTO films are promising for the development of the structural health monitoring systems.

  9. Incorporation of La in epitaxial SrTiO3 thin films grown by atomic layer deposition on SrTiO3-buffered Si (001) substrates

    Science.gov (United States)

    McDaniel, Martin D.; Posadas, Agham; Ngo, Thong Q.; Karako, Christine M.; Bruley, John; Frank, Martin M.; Narayanan, Vijay; Demkov, Alexander A.; Ekerdt, John G.

    2014-06-01

    Strontium titanate, SrTiO3 (STO), thin films incorporated with lanthanum are grown on Si (001) substrates at a thickness range of 5-25 nm. Atomic layer deposition (ALD) is used to grow the LaxSr1-xTiO3 (La:STO) films after buffering the Si (001) substrate with four-unit-cells of STO deposited by molecular beam epitaxy. The crystalline structure and orientation of the La:STO films are confirmed via reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional transmission electron microscopy. The low temperature ALD growth (˜225 °C) and post-deposition annealing at 550 °C for 5 min maintains an abrupt interface between Si (001) and the crystalline oxide. Higher annealing temperatures (650 °C) show more complete La activation with film resistivities of ˜2.0 × 10-2 Ω cm for 20-nm-thick La:STO (x ˜ 0.15); however, the STO-Si interface is slightly degraded due to the increased annealing temperature. To demonstrate the selective incorporation of lanthanum by ALD, a layered heterostructure is grown with an undoped STO layer sandwiched between two conductive La:STO layers. Based on this work, an epitaxial oxide stack centered on La:STO and BaTiO3 integrated with Si is envisioned as a material candidate for a ferroelectric field-effect transistor.

  10. Influence of Weak Base Addition to Hole-Collecting Buffer Layers in Polymer:Fullerene Solar Cells

    Directory of Open Access Journals (Sweden)

    Jooyeok Seo

    2017-02-01

    Full Text Available We report the effect of weak base addition to acidic polymer hole-collecting layers in normal-type polymer:fullerene solar cells. Varying amounts of the weak base aniline (AN were added to solutions of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS. The acidity of the aniline-added PEDOT:PSS solutions gradually decreased from pH = 1.74 (AN = 0 mol% to pH = 4.24 (AN = 1.8 mol %. The electrical conductivity of the PEDOT:PSS-AN films did not change much with the pH value, while the ratio of conductivity between out-of-plane and in-plane directions was dependent on the pH of solutions. The highest power conversion efficiency (PCE was obtained at pH = 2.52, even though all devices with the PEDOT:PSS-AN layers exhibited better PCE than those with the pristine PEDOT:PSS layers. Atomic force microscopy investigation revealed that the size of PEDOT:PSS domains became smaller as the pH increased. The stability test for 100 h illumination under one sun condition disclosed that the PCE decay was relatively slower for the devices with the PEDOT:PSS-AN layers than for those with pristine PEDOT:PSS layers.

  11. Integration of epitaxial Pb(Zr0.52Ti0.48)O3 films on GaN/AlGaN/GaN/Si(111) substrates using rutile TiO2 buffer layers

    NARCIS (Netherlands)

    Elibol, K.; Elibol, K; Nguyen, Duc Minh; Hueting, Raymond Josephus Engelbart; Gravesteijn, Dirk J; Koster, Gertjan; Koster, G.; Rijnders, Augustinus J.H.M.

    2015-01-01

    The integration of ferroelectric layers on gallium nitride (GaN) offers a great potential for various applications. Lead zirconate titanate (PZT), in particular Pb (Zr0.52Ti0.48)O3, is an interesting candidate. For that a suitable buffer layer should be grown on GaN in order to prevent the reaction

  12. Deposition of Cl-doped CdTe polycrystalline films by close-spaced sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Tamotsu; Takahashi, Kohei; Akiba, Sho; Yasuda, Nao [Department of Electrical and Electronic Engineering, National Institute of Technology, Kisarazu College, 2-11-1 Kiyomidai-higashi, Kisarazu, Chiba 292-0041 (Japan); Tokuda, Satoshi; Kishihara, Hiroyuki; Ichioka, Akina; Doki, Takahiro; Sato, Toshiyuki [Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2015-06-15

    The effects of Cl-doping on the CdTe layers by the close-spaced sublimation (CSS) deposition were investigated. Cl-doped CdTe polycrystalline films were deposited on graphite substrates by CSS method using a mixture of CdTe and CdCl{sub 2} powder as a source. In X-ray diffraction (XRD) patterns of the obtained films with various deposition times, many diffraction peaks other than CdTe peaks were observed in the deposition times lower than 10 min. These diffraction peaks were probably due to the formation of chlorides of Cd, Te and C, such as CdCl{sub 2}, TeCl{sub 4}, Te{sub 3}Cl{sub 2} and C{sub 10}Cl{sub 8}. X-ray fluorescence (XRF) and secondary ion mass spectrometry (SIMS) analyses revealed that a large amount of chlorine was contained in the films with the deposition times lower than 10 min, and that Cl concentration decreased with increasing the deposition time above 3 min. These results indicate that the films containing the chlorides of Cd, Te and C in addition to CdTe are formed in the initial stage of the CSS deposition using a mixture of CdTe and CdCl{sub 2} powder as a source. Cross-sectional images revealed that the grain size was decreased by the effect of Cl-doping. Furthermore, current-voltage (I -V) characteristics of the CdTe/graphite structures were measured, and it was found that the resistivity of the Cl-doped CdTe layer was much higher than that of the undoped CdTe layer. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation

    Science.gov (United States)

    Okamoto, T.; Yamada, A.; Konagai, M.

    2000-06-01

    The effects of the Cu diffusion on the optical and electrical properties of CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage ( C- V) measurement and low-temperature photoluminescence (PL) measurement. C- V measurement revealed that the net acceptor concentration in the CdTe layer was independent of the heat treatment after screen printing of the Cu-doped graphite electrode for Cu diffusion into the CdTe layer, although it greatly affected the solar cell performance. Furthermore, the depth profile of PL spectrum of CdTe layer implies that the heat treatment for Cu diffusion facilitates the formation of low-resistance contact to CdTe through the formation of a heavily doped (p +) region in the CdTe adjacent to the back electrode, but Cu atoms do not act as effective acceptors in the CdTe layer except the region near the back electrode.

  14. Comparative Study of Zn(O,S) Buffer Layers and CIGS Solar Cells Fabricated by CBD, ALD, and Sputtering: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, K.; Mann, J.; Glynn, S.; Christensen, S.; Pankow, J.; Li, J.; Scharf, J.; Mansfield, L. M.; Contreras, M. A.; Noufi, R.

    2012-06-01

    Zn(O,S) thin films were deposited by chemical bath deposition (CBD), atomic layer deposition, and sputtering. Composition of the films and band gap were measured and found to follow the trends described in the literature. CBD Zn(O,S) parameters were optimized and resulted in an 18.5% efficiency cell that did not require post annealing, light soaking, or an undoped ZnO layer. Promising results were obtained with sputtering. A 13% efficiency cell was obtained for a Zn(O,S) emitter layer deposited with 0.5%O2. With further optimization of process parameters and an analysis of the loss mechanisms, it should be possible to increase the efficiency.

  15. High efficiency Cu(In,Ga)Se{sub 2} thin film solar cells without intermediate buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, K.; Wiesner, H.; Asher, S.; Niles, D.; Bhattacharya, R.N.; Keane, J.; Contreras, M.A.; Noufi, R. [National Renewable Energy Lab., Golden, CO (United States). Electronic Materials and Devices Div.

    1998-09-01

    The nature of the interface between CuInGaSe{sub 2} (CIGS) and the chemical bath deposited CdS layer has been investigated. The authors show that heat-treating the absorbers in Cd- or Zn-containing solutions in the presence of ammonium hydroxide sets up an interfacial reaction with the possibility of an ion exchange occurring between Cd and Cu. The characteristics of devices made in this manner suggest that the reaction generates a thin, n-doped region in the absorber. The authors suggest that this aspect might be more important than the CdS layer in the formation of the junction. It is quite possible that the CdS/CuInSe{sub 2} device is a buried, shallow junction with a CdS window layer, rather than a heterojunction between CdS and CIGS. The authors use these ideas to develop methods for fabricating diodes without CdS or Cd.

  16. Optimization of the front contact to minimize short-circuit current losses in CdTe thin-film solar cells

    Science.gov (United States)

    Kephart, Jason Michael

    . In this work numerous HRT layers were examined beginning with an empirical optimization to create a SnO2-based HRT which allows significantly reduced CdS thickness while maintaining diode quality. The role of this layer was explored through measurement of band alignment parameters via photoemission. These results suggest a negative correlation of work function to device open-circuit voltage, which implies that non-ideal band alignment at the front interface of CdTe is in large part responsible for the loss of electronic quality. Several scenarios explored through 1-dimensional modeling in the SCAPS program corroborate this theory. A sputter-deposited (Mg,Zn)O layer was tested which allows for complete elimination of the CdS window layer with an increase in open-circuit voltage and near complete transmission of all above-bandgap light. An additional window layer material---sputtered, oxygenated CdS---was explored for its transparency. This material was found only to produce high efficiency devices with an effective buffer layer such as the optimized SnO2-base HRT. The dependence of chemical, optical, electrical, and device properties on oxygen content was explored, and the stability of these devices was determined to depend largely on the minimization of copper in the device. Both sputter-deposited alloy window layers appeared to have tunable electron affinity which was critical to optimizing band alignment and therefore device efficiency. Several scenarios explored through 1-dimensional modeling in the SCAPS program corroborate this theory. Both window layers allowed an AM1.5G efficiency increase from a baseline of approximately 13% to 16%.

  17. Radiative and interfacial recombination in CdTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, C. H., E-mail: craig.swartz@txstate.edu; Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H. [Materials Science, Engineering, and Commercialization Program, Texas State University, 601 University Dr., San Marcos, Texas 78666 (United States); Zaunbrecher, K. N. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Mississippi RSF200, Golden, Colorado 80401 (United States)

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  18. Quantum and conversion efficiencies optimization of superstrate CIGS thin-films solar cells using In2Se3 buffer layer

    Science.gov (United States)

    Bouchama, Idris; Boudour, Samah; Bouarissa, Nadir; Rouabah, Zahir

    2017-10-01

    In this present contribution, AMPS-1D device simulator is employed to study the performances of superstrate SLG/TCO/p-Cu(In,Ga)Se2(CIGS)/n-ODC/n-In2Se3/Metal thin film solar cells. The impact of the TCO and Metal work functions on the cell performance has been investigated. The combination of optical transparency and electrical property for TCO front contact layer is found to yield high efficiency. The obtained results show that the TCO work function should be large enough to achieve high conversion efficiency for superstrate CIGS solar cell. Nevertheless, it is desirable for Metal back contact layer to have low work function to prevent the effect of band bending in the n-In2Se3/Metal interface. Several TCOs materials and metals have been tested respectively as a front and back contact layers for superstrate CIGS solar cells. An efficiency of 20.18%, with Voc ≈ 0.71 V, Jsc ≈ 35.36 mA/cm2 and FF ≈ 80.42%, has been achieved with ZnSn2O3-based as TCO front contact layer. In the case of SnO2:F front contact and indium back contact layers, an efficiency of 16.31%, with Voc ≈ 0.64 V, Jsc ≈ 31.4 mA/cm2 and FF ≈ 79.4%, has been obtained. The present results of simulation suggest an improvement of superstrate CIGS solar cells efficiency for feasible fabrication.

  19. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, W. C., E-mail: William.Mitchel.1@us.af.mil; Haugan, H. J.; Mou, Shin; Brown, G. J. [Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); Elhamri, S.; Berney, R. [University of Dayton, Department of Physics, Dayton, Ohio 45469 (United States)

    2015-09-15

    Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  20. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    Directory of Open Access Journals (Sweden)

    W. C. Mitchel

    2015-09-01

    Full Text Available Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  1. Reducing optical and resistive losses in graded silicon-germanium buffer layers for silicon based tandem cells using step-cell design

    Directory of Open Access Journals (Sweden)

    Evelina Polyzoeva

    2015-05-01

    Full Text Available Si solar cells with a SiGe graded buffer on top are fabricated as the initial step in GaAsP/Si tandem cell fabrication. Using this structure, the impact of the SiGe buffer layer on the Si solar cells is characterized. To mitigate the impact of the narrow-bandgap SiGe on the electrical and optical characteristics of the Si sub-cell, a portion of the underlying Si is exposed using a step-cell design. The step-cell design is demonstrated to increase the Jsc of the SiGe/Si stack from 5 to 20 mA/cm2. The layout of the top mesa is shown to have an impact on the device characteristics with the finger design giving better results than the rectangular mesa with respect to fill factor and series resistance. In addition, utilizing the step-cell design increases overall spectral response of the bottom cell, with significant improvements in the short wavelength range.

  2. Reducing optical and resistive losses in graded silicon-germanium buffer layers for silicon based tandem cells using step-cell design

    Science.gov (United States)

    Polyzoeva, Evelina; Abdul Hadi, Sabina; Nayfeh, Ammar; Hoyt, Judy L.

    2015-05-01

    Si solar cells with a SiGe graded buffer on top are fabricated as the initial step in GaAsP/Si tandem cell fabrication. Using this structure, the impact of the SiGe buffer layer on the Si solar cells is characterized. To mitigate the impact of the narrow-bandgap SiGe on the electrical and optical characteristics of the Si sub-cell, a portion of the underlying Si is exposed using a step-cell design. The step-cell design is demonstrated to increase the Jsc of the SiGe/Si stack from 5 to 20 mA/cm2. The layout of the top mesa is shown to have an impact on the device characteristics with the finger design giving better results than the rectangular mesa with respect to fill factor and series resistance. In addition, utilizing the step-cell design increases overall spectral response of the bottom cell, with significant improvements in the short wavelength range.

  3. Dark current reduction of small molecule organic photodetectors by controlling gap states of molybdenum oxide buffer layers

    Science.gov (United States)

    Kim, Seong Heon; Heo, Sung; Yun, Dong-Jin; Satoh, Ryu-ichi; Park, Gyeongsu; Kim, Kyu-Sik

    2016-09-01

    The gap states of the molybdenum-oxide (MoO x ) hole-extraction layer (HEL) in an organic photodetector (OPD) device, which originate from oxygen-vacancy defects, are controlled by appropriate plasma treatments on the MoO x layer. The density of MoO x gap states, investigated using X-ray photoelectron spectroscopy (XPS), is enhanced and depressed with Ar- and O2-plasma treatments, respectively. The dark current of an OPD with a MoO x HEL is considerably reduced by controlling the MoO x gap states using the plasma-treatment method. The mechanism of dark-current reduction may be interpreted by reduced gap states and by a suitable energy level bending and alignment.

  4. Effect of C{sub 60} as an electron buffer layer in polythiophene-methanofullerene based bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Elumalai, Naveen Kumar; Peining, Zhu [Department of Mechanical Engineering, National University of Singapore (Singapore); Yin, Leung Man; Chellappan, Vijila; Jie, Zhang [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore (Singapore); Ramakrishna, Seeram [Department of Mechanical Engineering, National University of Singapore (Singapore); Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore (Singapore); Faculty of Science, King Saud University, Riyadh (Algeria)

    2012-08-15

    The effect of C{sub 60} interlayer on charge transport and device performance in bulk heterojunction solar cells with active layer of poly3-hexylthiophene (P3HT) and l-3-methoxycarbonyl-propyl-l-phenyl-6,6 methanofullerene (PCBM) have been studied. The C{sub 60} layer of different thicknesses (5 nm, 10 nm, 15 nm, and 20 nm) was introduced between the cathode and the photoactive layer of the solar cell. The solar cell performance was found to be maximized at an optimum C{sub 60} thickness of about 5 nm. Subsequent increase in C{sub 60} interlayer thickness promotes charge transfer near the Al-C{sub 60} interface due to increased diffusion of Al atoms into the interstitials of C{sub 60}. This results in the formation of s-shaped kink in J-V spectra. To further investigate the cause of this detrimental effects, photoinduced charge extraction by linearly increasing voltage (PhotoCELIV) and CELIV studies were performed on the real solar cell devices. The CELIV transients obtained from the device with 5 nm C{sub 60} interlayer shows no charge extraction peak whereas the devices with C{sub 60} layer of thicknesses from 10 nm to 20 nm shows characteristic maxima due to the transferred charge carriers from the Al-C{sub 60} interface. The PhotoCELIV studies performed on the devices showed characteristic single peak for the device with 5 nm C{sub 60} interlayer whereas the other devices exhibited dual peaks due to charges generated from photo excitation and injection at the interface respectively. The charge mobility values calculated from the dual photoCELIV transients indicates the charge mobility imbalance between the carriers in the devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaodong; Zhou, Yi, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn; Song, Bo, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn [Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Lei, Ming [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Li, Yongfang, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn [Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-08-10

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH{sub 3}NH{sub 3}PbI{sub 3−X}Cl{sub X}. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (J{sub sc}). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  6. Photocurrent Property of GaN on the Si Photodetector with a Nearly Polycrystalline α-Al2O3 Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    江若琏; 王军转; 陈鹏; 赵作明; 梅永丰; 沈波; 张荣; 吴兴龙; 郑有料

    2002-01-01

    Using nearly polycrystalline α-Al2O3 as the buffer layer, GaN epilayers were grown on Si(111) substrates by low-pressure metal-oragnic chemical vapour deposition. The nearly polycrystalline α-Al2O3 was formed by anodicporous alumina annealed at high temperature. Prototype photoconductive detectors were fabricated with thesematerials. The spectral response of these detectors exhibits a relatively sharp cut-off near the wavelength of360nm and a peak at 340nm with a shoulder near 360nm. Under 5 V bias, the responsivities at 340nm and360nm were measured to be 3.3 A/W and 2.4A/W, respectively. The relationship between the responsivity andthe bias voltage shows that the responsivity is saturated when the bias voltage reaches 5 V.

  7. Effect of the Pt buffer layer on perpendicular exchange bias based on collinear/non-collinear coupling in a Cr2O3/Co3Pt interface.

    Science.gov (United States)

    Ashida, T; Sato, Y; Nozaki, T; Sahashi, M

    2013-05-07

    In this study, we fabricated a Cr2O3 (0001) film without and with a Pt buffer layer and investigated its effect on perpendicular exchange coupling in a Cr2O3/Co3Pt interface. The results showed that the exchange bias field (μ0Hex) and blocking temperature (TB) of a Cr2O3 film without and with Pt were very different. The Cr2O3 film without Pt had a lower μ0Hex of 176 Oe and a lower TB of 75 K, whereas that with Pt had a higher μ0Hex of 436 Oe and a higher TB of 150 K. We discussed this difference in μ0Hex and TB values based on collinear/non-collinear coupling in a ferromagnetic and antiferromagnetic interface using Meiklejohn and Bean's exchange anisotropy model.

  8. Superconducting YBa2Cu3O7 films on Si and GaAs with conducting indium tin oxide buffer layers

    Science.gov (United States)

    James, J. H.; Kellett, B. J.; Gauzzi, A.; Dwir, B.; Pavuna, D.

    1991-03-01

    Superconducting YBa2Cu3O7-delta (YBCO) thin films have been grown in situ by ion beam sputtering on Si and GaAs substrates with intermediate, conducting Indium Tin Oxide (ITO) buffer layers. Uniform, textured YBCO films on ITO exhibit Tc onset at 92K and Tc0 at 68K and 60K on Si and GaAs substrates respectively, the latter value is the highest Tc reported on GaAs. YBCO/ITO films exhibit metallic resistivity behavior. In situ YBCO films on SrTiO3 show Tc onset = 92K and Tc0 = 90.5K, transition widths are less than 1K. A simple optical bolometer has been constructed from YBCO films on SrTiO3. Tunnelling measurements have also been carried out using the first YBCO-Pb window-type tunnel junctions.

  9. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    Science.gov (United States)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  10. Impact of the deposition conditions of buffer and windows layers on lowering the metastability effects in Cu(In,Ga)Se2/Zn(S,O)-based solar cell

    Science.gov (United States)

    Naghavi, Negar; Hildebrandt, Thibaud; Bouttemy, Muriel; Etcheberry, Arnaud; Lincot, Daniel

    2016-02-01

    The highest and most reproducible (Cu(In,Ga)Se2 (CIGSe) based solar-cell efficiencies are obtained by use of a very thin n-type CdS layer deposited by chemical bath deposition (CBD). However because of both Cadmium's adverse environmental impact and the narrow bandgap of CdS (2.4-2.5 eV) one of the major objectives in the field of CIGSe technology remains the development and implementation in the production line of Cd-free buffer layers. The CBDZn( S,O) remains one the most studied buffer layer for replacing the CdS in Cu(In,Ga)Se2-based solar cells and has already demonstrated its potential to lead to high-efficiency solar cells up to 22.3%. However one of the key issue to implement a CBD-Zn(S,O) process in a CIGSe production line is the cells stability, which depends both on the deposition conditions of CBD-Zn(S,O) and on a good band alignment between CIGSe/Zn(S,O)/windows layers. The most common window layers applied in CIGSe solar cells consist of two layers : a thin (50-100 nm) and highly resistive i-ZnO layer deposited by magnetron sputtering and a transparent conducting 300-500 nm ZnO:Al layer. In the case of CBD-Zn(S,O) buffer layer, the nature and deposition conditions of both Zn(S,O) and the undoped window layer can strongly influence the performance and stability of cells. The present contribution will be specially focused on the effect of condition growth of CBD-Zn(S,O) buffer layers and the impact of the composition and deposition conditions of the undoped window layers such as ZnxMgyO or ZnxSnyO on the stability and performance of these solar cells.

  11. Work function control of interfacial buffer layers for efficient and air-stable inverted low-bandgap organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Worfolk, Brian J.; Hauger, Tate C.; Rider, David A.; Fordyce, Jordan A.M.; Buriak, Jillian M. [Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); National Institute for Nanotechnology, Edmonton, Alberta, T6G 2M9 (Canada); Harris, Kenneth D. [National Institute for Nanotechnology, Edmonton, Alberta, T6G 2M9 (Canada); Beaupre, Serge; Leclerc, Mario [Departement de Chimie, Universite Laval, Quebec City, Quebec, G1V 0A6 (Canada)

    2012-03-15

    A water-soluble cationic polythiophene derivative, poly[3-(6-{l_brace}4-tert-butylpyridiniumyl{r_brace}-hexyl)thiophene-2,5-diyl][P3(TBP)HT], is combined with anionic poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate) (PEDOT:PSS) on indium tin oxide (ITO) substrates via electrostatic layer-by-layer (eLbL) assembly. By varying the number of eLbL layers, the electrode's work function is precisely controlled from 4.6 to 3.8 eV. These polymeric coatings are used as cathodic interfacial modifiers for inverted-mode organic photovoltaics that incorporate a photoactive layer composed of either poly[(3-hexylthiophene)-2,5-diyl] (P3HT) and the fullerene acceptor [6,6-phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 61}BM)] or the low bandgap polymer [poly({l_brace}4,8-di(2-ethylhexyloxyl)benzo][1,2-b:4,5-b']dithiophene{r_brace}-2,6-diyl)-alt-({l_brace}5-octylthieno[3,4-c]pyrrole-4,6-dione{r_brace}-1,3-diyl)[(PBDTTPD)] and the electron acceptor 6,6-phenyl-C{sub 71}-butyric acid methyl ester (PC{sub 71}BM). The power conversion efficiency (PCE) of the resulting photovoltaic device is dependent on the composition of the eLbL-assembled interface and permits the fabrication of devices with efficiencies of 3.8% and 5.6% for P3HT and PBDTTPD donor polymers, respectively. Notably, these devices demonstrate significant stability with a P3HT:PC{sub 61}BM system maintaining 83% of its original PCE after 1 year of storage and a PBDTTPD:PC{sub 71}BM system maintaining 97% of its original PCE after over 1000 h of storage in air, according to the ISOS-D-1 shelf protocol. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Interdiffusion studies on high-Tc superconducting YBa2Cu3O7-δ thin films on Si(111) with a NiSi2/ZrO2 buffer layer

    DEFF Research Database (Denmark)

    Aarnink, W.A.M.; Blank, D.H.A.; Adelerhof, D.J.

    1991-01-01

    Interdiffusion studies on high-T(c) superconducting YBa2Cu3O7-delta thin films with thickness in the range of 2000-3000 angstrom, on a Si(111) substrate with a buffer layer have been performed. The buffer layer consists of a 400 angstrom thick epitaxial NiSi2 layer covered with 1200 angstrom...... x 10(4) A/cm2. With X-ray analysis (XRD), only c-axis orientation has been observed. The interdiffusion studies, using Rutherford backscattering spectrometry (RBS) and scanning Auger microscopy (SAM) show that the ZrO2 buffer layer prevents severe Si diffusion to the YBa2Cu3O7-delta layer, the Si...... substrate and Ni segregation to the surface of the ZrO2 layer may be expected. From the results we may conclude that, when using laser ablation, it is well possible to grow polycrystalline, c-axis-oriented high-T(c) superconducting YBa2Cu3O7-delta thin films on a Si(111) substrate with a NiSi2/ZrO2 buffer...

  13. 用ZnS薄膜作为空穴缓冲层的高效率有机发光二极管%Efficient Organic Light-Emitting Diodes with ZnS Thin Films as Hole Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    张靖磊; 仲飞; 刘彭义

    2008-01-01

    用磁控溅射方法制备的ZnS薄膜作为有机发光器件(OLEDs)的空穴缓冲层,使典型结构的 OLEDs(ITO/TPD/Alq/LiF/Al) 的发光性能得到改善.ZnS 缓冲层厚度对器件性能影响的实验结果表明,当ZnS缓冲层厚度为 5 nm 时,器件的亮度增加了2倍多;当ZnS缓冲层厚度为5、10 nm时,器件的发光电流效率增加40%.研究结果表明 ZnS 薄膜是一种好的缓冲层材料,它能够提高器件的发光效率,改善器件的稳定性.%An organic light-emitting diodes (OLEDs) using ZnS thin film by RF magnetron sputtering as a hole buffer layer were prepared. With the presence of the buffer layer, the devices using the typical struc-ture of ITO/TPD/Alq/LiF/Al performed a good electroluminescent properties compared with the devices without ZnS buffer layer. The investigation on the effects of the ZnS thickness showed that the device with 5 nm ZnS buffer layer double its luminance under driven voltage 20 V, and the current efficiency of the de-vices with 5 and 10 nm ZnS is improved by about a factor of forty percent compared with the devices with-out buffer layer. The results suggested that ZnS may be a good anode buffer layer material and can improve the efficiency and stability of OLEDs.

  14. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    Science.gov (United States)

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

  15. CdTe devices and method of manufacturing same

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  16. Optical modeling of graphene contacted CdTe solar cells

    Science.gov (United States)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  17. Growth and characterization of epitaxial anatase TiO{sub 2}(001) on SrTiO{sub 3}-buffered Si(001) using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, M.D. [University of Texas at Austin, Department of Chemical Engineering, Austin, TX 78712 (United States); Posadas, A. [University of Texas at Austin, Department of Physics, Austin, TX 78712 (United States); Wang, T. [University of Texas at Austin, Department of Chemical Engineering, Austin, TX 78712 (United States); Demkov, A.A. [University of Texas at Austin, Department of Physics, Austin, TX 78712 (United States); Ekerdt, J.G., E-mail: ekerdt@che.utexas.edu [University of Texas at Austin, Department of Chemical Engineering, Austin, TX 78712 (United States)

    2012-08-31

    Epitaxial anatase titanium dioxide (TiO{sub 2}) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO{sub 2} was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225-250 Degree-Sign C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 Degree-Sign C in vacuum (10{sup -7} Pa) for 1-2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO{sub 2} by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO{sub 2} growth. X-ray diffraction revealed that the TiO{sub 2} films were anatase with only the (004) reflection present at 2{theta} = 38.2 Degree-Sign , indicating that the c-axis is slightly reduced from that of anatase powder (2{theta} = 37.9 Degree-Sign ). Anatase TiO{sub 2} films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates. - Highlights: Black-Right-Pointing-Pointer Epitaxial anatase films are grown by atomic layer deposition (ALD) on Si(001). Black-Right-Pointing-Pointer Four unit cells of SrTiO{sub 3} on silicon create a stable template for ALD. Black-Right-Pointing-Pointer TiO{sub 2} thin films have a compressed c-axis and an expanded a-axis. Black-Right-Pointing-Pointer Up to 100 nm thick TiO{sub 2} films remain highly ordered in the (001) direction.

  18. New sulphide precursors for Zn(O,S) buffer layers in Cu(In,Ga)Se2 solar cells for faster reaction kinetics

    Science.gov (United States)

    Löckinger, Johannes; Nishiwaki, Shiro; Fuchs, Peter; Buecheler, Stephan; Romanyuk, Yaroslav E.; Tiwari, Ayodhya N.

    2016-08-01

    The development of a novel chemistry for the chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se2 (CIGS) solar cells is desired for a higher growth rate, hence reduced deposition time, while reducing simultaneously the required concentration of reactants. State-of-the-art recipes are based on thiourea as sulphide precursor requiring a high molarity of reactants and relatively long deposition times due to the slow decomposition rate of thiourea. In this contribution thioamide based sulphide precursors were investigated for their decomposition and growth behaviour. A co-solvent approach in an ethanolic/aqueous ammonia medium was evaluated omitting the need for additional complexants. By replacing thiourea with the investigated thioamides, homogeneous dense layers of around 30 nm were grown with a greatly decreased deposition time of 8 min compared to 25 min for thiourea. Likewise, the concentration of the sulphide precursor was 40-fold reduced. The photovoltaic performance as characterized by external quantum efficiency and current-voltage measurements, showed conversion efficiencies of 15% comparable to the thiourea based process.

  19. Peculiarities of strain relaxation in linearly graded InxGa1-xAs/GaAs(001) metamorphic buffer layers grown by molecular beam epitaxy

    Science.gov (United States)

    Sorokin, S. V.; Klimko, G. V.; Sedova, I. V.; Sitnikova, A. A.; Kirilenko, D. A.; Baidakova, M. V.; Yagovkina, M. A.; Komissarova, T. A.; Belyaev, K. G.; Ivanov, S. V.

    2016-12-01

    This paper presents a comprehensive study of structural, optical and electrical properties of heterostructures with linearly graded InxGa1-xAs metamorphic buffer layers (MBLs) grown by molecular beam epitaxy on GaAs (001) substrates. The low density of threading dislocations (well below 106 cm-2) in 1-μm-thick In0.3Ga0.7As layers grown atop of the linearly graded InxGa1-xAs/GaAs MBLs has been confirmed by using transmission electron microscopy (TEM). X-ray diffraction (XRD) data demonstrate good agreement between the experimentally measured In step-back and its calculations in the frames of existing models. Combining the XRD reciprocal space maps (RSM) of the structures and the spatially-resolved selective area electron diffraction measurements by cross-sectional TEM in depth-profiled RSM diagrams allowed direct visualization of the strain relaxation dynamics during the MBL growth. Strong effect of the azimuth angle and the value of an unintentional initial miscut of nominally (001) oriented GaAs substrate on the strain relaxation dynamics was observed.

  20. Polar-axis-oriented crystal growth of tetragonal PZT films on stainless steel substrate using pseudo-perovskite nanosheet buffer layer

    Directory of Open Access Journals (Sweden)

    Yoshiki Minemura

    2015-07-01

    Full Text Available Lead zirconate titanate (PZT film with polar axis orientation was grown on a SUS 316L stainless steel substrate with the help of a Ca2Nb3O10 nanosheet (ns-CN layer that had a pseudo-perovskite-type crystal structure. The ns-CN buffer layer was supported on a platinized SUS 316L (Pt/SUS substrate, followed by chemical solution deposition (CSD of the PZT films with tetragonal symmetry (Zr/Ti =40/60. The PZT films consisting of c-domain, with [001]-axis orientation of the perovskite unit cell, were deposited on the ns-CN/Pt/SUS substrate owing to (i epitaxial lattice matching between the unit cell of PZT and substrate surface and (ii in-plane thermal stress applied to the PZT film during cooling-down step of CSD procedure. The c-domain-oriented PZT film on ns-CN/Pt/SUS substrate exhibited enhanced remanent polarization of approximately 52 μC/cm2 and lowered dielectric permittivity of approximately 230, which are superior to those of conventional PZT films with random crystal orientation and comparable to those of epitaxial PZT films grown on (100SrRuO3//(100SrTiO3 substrates.

  1. The Effect of Sintering Oxygen Partial Pressure on a SmBiO3 Buffer Layer for Coated Conductors via Chemical Solution Deposition

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhu

    2016-10-01

    Full Text Available The application of high-temperature YBa2Cu3O7−δ (YBCO superconducting material is a considerable prospect for the growing energy shortages. Here, SmBiO3 (SBO films were deposited on (100-orientated yttrium-stabilized zirconia (YSZ simple crystal substrates via the chemical solution deposition (CSD approach for coated conductors, and the effects of sintering oxygen partial pressure on SBO films were studied. The crystalline structures and surface morphologies of SBO films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and atomic force microscope (AFM. The optimized growth temperature, the intensity ratios of the SBO (200 peak to the SBO (111 peak, and the crystallinities of SBO films increased with the sintering oxygen partial pressure. The SEM and AFM images displayed a smooth and well-distributed surface in the argon atmosphere. The subsequent YBCO films with superconducting transition temperatures (Tc = 89.5 K, 90.2 K, and 86.2 K and critical current densities (Jc = 0.88 MA/cm2, 1.69 MA/cm2, and 0.09 MA/cm2; 77 K, self-field were deposited to further check the qualities of the SBO layer. These results indicated that sintering oxygen partial pressure had an effect on the epitaxial growth of the SBO buffer layer and YBCO superconducting properties. The experimental results may be a usable reference for the epitaxial growth of YBCO-coated conductors and other oxides.

  2. Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer

    Directory of Open Access Journals (Sweden)

    T. Liu

    2012-09-01

    Full Text Available By systematically comparing the magnetic properties of the Ta/CoFeB/Ta and MgO/CoFeB/MgO structures with and without a submonolayer of MgO, Ta, V, Nb, Hf and W inserted in the middle of the CoFeB layer, we have proved that the observed perpendicular magnetic anisotropy (PMA in Ta/CoFeB/MgO sandwiches is solely originated from the CoFeB/MgO interface with the Ta buffer acting to enhance the CoFeB/MgO interface anisotropy significantly. Moreover, replacing Ta with Hf causes the CoFeB/MgO interfacial PMA further enhanced by 35%, and the CoFeB layer with perpendicular magnetization has a much larger critical thickness accordingly, leaving a wider thickness margin for the CoFeB/MgO-based perpendicular magnetic tunnel junction optimization. Also the sputter deposited thin Hf films are amorphous with low surface roughness. These results will ensure the Hf/CoFeB/MgO more promising material system for PMA device development.

  3. Influence of HEPES buffer on the local pH and formation of surface layer during in vitro degradation tests of magnesium in DMEM

    NARCIS (Netherlands)

    Naddaf Dezfuli, S.; Huan, Z.; Mol, J.M.C.; Leeflang, M.A.; Chang, J.; Zhou, J.

    2014-01-01

    The human body is a buffered environment where pH is effectively maintained. HEPES is a biological buffer often used to mimic the buffering activity of the body in in vitro studies on the degradation behavior of magnesium. However, the influence of HEPES on the degradation behavior of magnesium in t

  4. Graded-Bandgap Solar Cells Using All-Electrodeposited ZnS, CdS and CdTe Thin-Films

    Directory of Open Access Journals (Sweden)

    Obi K. Echendu

    2015-05-01

    Full Text Available A 3-layer graded-bandgap solar cell with glass/FTO/ZnS/CdS/CdTe/Au structure has been fabricated using all-electrodeposited ZnS, CdS and CdTe thin layers. The three semiconductor layers were electrodeposited using a two-electrode system for process simplification. The incorporation of a wide bandgap amorphous ZnS as a buffer/window layer to form glass/FTO/ZnS/CdS/CdTe/Au solar cell resulted in the formation of this 3-layer graded-bandgap device structure. This has yielded corresponding improvement in all the solar cell parameters resulting in a conversion efficiency >10% under AM1.5 illumination conditions at room temperature, compared to the 8.0% efficiency of a 2-layer glass/FTO/CdS/CdTe/Au reference solar cell structure. These results demonstrate the advantages of the multi-layer graded-bandgap device architecture over the conventional 2-layer structure. In addition, they demonstrate the effective application of the two-electrode system as a simplification to the conventional three-electrode system in the electrodeposition of semiconductors with the elimination of the reference electrode as a possible impurity source.

  5. K-edge EXAFS and XANES studies of Cu in CdTe thin-film solar cells

    Science.gov (United States)

    Liu, Xiangxin; Gupta, Akhlesh; Compaan, Alvin D.; Leyarovska, Nadia; Terry, Jeff

    2002-03-01

    Copper has been identified as a very important dopant element in CdTe thin-film solar cells. Cu is a deep acceptor in CdTe and is commonly used to obtain a heavily doped, low resistance back contact to polycrystalline CdTe. Cu also helps to increase the open circuit voltage of the cell. However, Cu is also a fast diffuser in CdTe, especially along grain boundaries, and can accumulate at the CdS/CdTe junction. It is suspected of leading to cell performance degradation in some cases. The present study is designed to help identify the lattice location of the Cu in CdTe. Cu K-edge, x-ray absorption (XAS) measurements were conducted on Cu in thin films of CdTe. Experiments were performed at the MR-CAT beamline at the Advanced Photon Source. The 3 mm CdTe layers were magnetron sputtered onto fused silica substrates. Some films were diffused with Cu from a 200 Å layer of evaporated Cu. XAS spectra were collected in fluorescence geometry with a 13 elements Ge detector. Quantitative fluorescence spectroscopy measurements were also performed. Details of the Cu environment and possible changes with time will be reported.

  6. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  7. Cu{sub 2}S as ohmic back contact for CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Türck, Johannes; Siol, Sebastian; Mayer, Thomas; Klein, Andreas; Jaegermann, Wolfram, E-mail: jaegermann@surface.tu-darmstadt.de

    2015-05-01

    We prepared a back contact for CdTe solar cells with Cu{sub 2}S as primary contact. Cu{sub 2}S was evaporated on CdCl{sub 2} treated CdTe solar cells in superstrate configuration. The CdTe and CdS layers were deposited by Closed Space Sublimation. Direct interface studies with X-ray photoelectron spectroscopy have revealed a strongly reactive interface between CdTe and Cu{sub 2}S. A valence band offset of 0.4-0.6 eV has been determined. The performance of solar cells with Cu{sub 2}S back contacts was studied in comparison to cells with an Au contact that deposited onto a CdCl{sub 2}-treated CdTe surface that was chemically etched using a nitric-phosphoric etch. The solar cells were analyzed by current-voltage curves and external quantum efficiency measurements. After several post deposition annealing steps, 13% efficiency was reached with the Cu{sub 2}S back contact, which was significantly higher than the ones obtained for the NP-etched back contacts. - Highlights: • A new back contact for CdTe solar out of Cu{sub 2}S has been tested. • With a direct interface experiment the valence band offset was determined. • Post deposition heat treatment has been carried out for the solar cells. • 13% efficiency has been reached with the Cu{sub 2}S back contact.

  8. Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ogedengbe, O. S.; Swartz, C. H.; Jayathilaka, P. A. R. D.; Petersen, J. E.; Sohal, S.; LeBlanc, E. G.; Edirisooriya, M.; Zaunbrecher, K. N.; Wang, A.; Barnes, T. M.; Myers, T. H.

    2017-06-06

    Iodine-doped CdTe and Cd1-xMgxTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 1018 cm-3 for CdTe and 3 x 1017 cm-3 for Cd0.65Mg0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTe samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd0.65Mg0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 1018 cm-3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 1016 cm-3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 degrees C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.

  9. Blanket and Patterned Growth of CdTe on (211)Si Substrates by Metal-Organic Vapor Phase Epitaxy

    Science.gov (United States)

    2012-05-15

    REPORT Blanket and Patterned Growth Of CdTE On (211)Si Substrates By Metal-Organic Vapor Phase Epitaxy 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Metalorganic vapor phase epitaxy (MOVPE) of (211)B CdTe on (211)Si using intermediate Ge and ZnTe layers has been achieved for use as substrates for the...growth of HgCdTe infrared detector materials. The best (211)B CdTe films grown in this study display a low X-ray diffraction (XRD) rocking-curve

  10. Structural and electrical properties of metal ferroelectric insulator semiconductor structure of Al/SrBi2Ta2O9/HfO2/Si using HfO2 as buffer layer

    Science.gov (United States)

    Roy, A.; Dhar, A.; Bhattacharya, D.; Ray, S. K.

    2008-05-01

    Ferroelectric SrBi2Ta2O9 (SBT) thin films have been deposited by the radio-frequency magnetron sputtering technique on bare p-Si as well as on HfO2 insulating buffer p-Si. XRD patterns revealed the formation of a well-crystallized SBT perovskite thin film on the HfO2 buffer layer. The electrical properties of the metal-ferroelectric-insulator-semiconductor (MFIS) structure were characterized by varying thicknesses of the HfO2 layer. The MFIS structure exhibits a maximum clockwise C-V memory window of 1.60 V when the thickness of the HfO2 layer was 12 nm with a lower leakage current density of 6.20 × 10-7 A cm-2 at a positive applied voltage of 7 V. However, the memory window reaches a maximum value of 0.7 V at a bias voltage of ±5 and then decreases due to charge injection in the case of the insulating buffer layer thickness of 3 nm. The density of oxide trapped charges at/near the buffer layer-ferroelectric interface is studied by the voltage stress method. Capacitance-voltage (C-V) and leakage current density (J-V) characteristics of the Al/SBT/HfO2/Si(1 0 0) capacitor indicate that the introduction of the HfO2 buffer layer prevents interfacial diffusion between the SBT thin film and the Si substrate effectively and improves the interface quality. Furthermore, the Al/SBT/HfO2/Si structures exhibit excellent retention characteristics, the high and low capacitance values clearly distinguishable for over 1 h and 30 min. This shows that the proposed Al/SrBi2Ta2O9/HfO2/Si structure is ideally suitable for high performance ferroelectric memories.

  11. Study of low-frequency excess noise transport in Ga-face and N-face GaN thin films grown on intermediate-temperature buffer layer by RF-MBE

    Energy Technology Data Exchange (ETDEWEB)

    Fong, W.K.; Leung, B.H.; Xie, J.Q.; Surya, C. [Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2002-08-16

    We report detailed investigations of low-frequency excess noise in both Ga-faced and N-faced GaN thin films grown by RF-plasma molecular beam epitaxy. The GaN epilayers were grown on double buffer layers, and consisted of a thick intermediate-temperature buffer layer (ITBL) deposited at 690 C and a conventional thin buffer layer. Deposition of the thin buffer layer is used to control the polarity of the GaN epilayer. Low-frequency excess noise was studied in detail to examine the effects on the ITBL on the noise. The low-frequency noise is attributed to the correlated fluctuations in number and mobility of carriers, arising from the capture and emission by localized states. Our experimental results show that the polarity of the GaN epilayer and the utilization of ITBL have strong influence on the defect density of the GaN material. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  12. Effect of the laser sputtering parameters on the orientation of a cerium oxide buffer layer on sapphire and the properties of a YBa2Cu3Ox superconducting film

    DEFF Research Database (Denmark)

    Mozhaev, P. B.; Ovsyannikov, G. A.; Skov, Johannes

    1999-01-01

    The effect of the laser sputtering parameters on the crystal properties of CeO2 buffer layers grown on a (1 (1) under bar 02) sapphire substrate and on the properties of superconducting YBa2Cu3Ox thin films are investigated. It is shown that (100) and (111) CeO2 growth is observed, depending...

  13. Effect of Initial Surface Quality on Final Roughness and Texture of Annealed Ni-5at.%W Tapes Coated with a Gd2Zr2O7 Buffer Layer

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Yue, Zhao; Mishin, Oleg;

    2012-01-01

    Surface roughness of Ni-5at.%W tapes in coldrolled and annealed conditions after subsequent deposition of a Gd2Zr2O7 buffer layer has been studied as a function of the polishing grade, taking grain boundary grooving into account. It is found that annealing decreases the initial mean surface rough...

  14. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Juan P Monrás

    Full Text Available The vast application of fluorescent semiconductor nanoparticles (NPs or quantum dots (QDs has prompted the development of new, cheap and safer methods that allow generating QDs with improved biocompatibility. In this context, green or biological QDs production represents a still unexplored area. This work reports the intracellular CdTe QDs biosynthesis in bacteria. Escherichia coli overexpressing the gshA gene, involved in glutathione (GSH biosynthesis, was used to produce CdTe QDs. Cells exhibited higher reduced thiols, GSH and Cd/Te contents that allow generating fluorescent intracellular NP-like structures when exposed to CdCl(2 and K(2TeO(3. Fluorescence microscopy revealed that QDs-producing cells accumulate defined structures of various colors, suggesting the production of differently-sized NPs. Purified fluorescent NPs exhibited structural and spectroscopic properties characteristic of CdTe QDs, as size and absorption/emission spectra. Elemental analysis confirmed that biosynthesized QDs were formed by Cd and Te with Cd/Te ratios expected for CdTe QDs. Finally, fluorescent properties of QDs-producing cells, such as color and intensity, were improved by temperature control and the use of reducing buffers.

  15. High efficiency thin film CdTe and a-Si based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10

  16. Aqueous synthesis of MPA-capped CdTe nanocrystals emitted in near infrared with high quantum yield.

    Science.gov (United States)

    Cao, Yongqiang; Liu, Ning; Yang, Ping; Zhu, Yuanna; Shi, Ruixia; Ma, Qian; Zhang, Aiyu

    2014-07-01

    The high luminescent near infrared (NIR)--emitting CdTe nanocrystals (NCs) with 3-mercaptopropionic acid (MPA) as the stabilized molecules had been sucessfully fabricated by a facile and simple water-reflux method. By virtue of the characterizations for the as-prepared MPA-capped CdTe NCs, such as UV-Vis absorption, steady-state photoluminescence (PL), time-resolved PL spectra and PL image, the optical properties, diameters and morphologies of the CdTe NCs were investigated detailedly. With the increase of reflux time, the PL peak wavelength of NCs gradually shifted from red light to NIR spectra range within 7 h, and the PL quantum yield (QY) was increased firstly and then decreased slightly. It was worth noted that the NCs still showed a relative high PL QY of 47% as well as a narrow full width at half maximum (FWHM) of PL spectra even when the NCs emitted at the NIR wavelength of 754 nm. In addition, the average PL lifetime also exhibited an obvious increase as the growth of CdTe NCs due to the formation of thin CdS shell on the surface of CdTe. The PL stabilities for these NIR-emitting NCs (754 nm) in phosphate-buffered saline (PBS) buffer solution with various concentrations ranged from 0.005 to 0.1 M were also checked accordingly, and the results indicated that the as-prepared NIR-emitting CdTe NCs had a satisfied PL stability, implying a potential application in the biological field. Hopefully, all the superiority of these NIR-emitting CdTe NCs, such as high PL QY and PL lifetime, narrow FWHM of PL spectra, high PL stability in PBS solution, would make them to be a good candidate for biological applications in future.

  17. Effect of CdTe Deposition Conditions by Close Spaced Sublimation on Photovoltaic Properties of CdS/CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.W.; Ahn, J.H.; Ahn, B.T. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-01

    CdTe films were deposited by close spaced sublimation with various substrate temperatures, cell areas, and thickness of CdTe and ITO layers and their effects on the CdS/CdTe solar cells were investigated. The resistivity of CdTe layers employed in this study was 3 X 10{sup 4} {Omega}.cm. For constant substrate temperature the optimum substrate temperature for CdTe deposition was 600 deg. C. To obtain larger grain size and more compact microstructure, CdTe film was initially deposited at 620 deg. C, and then deposited at 540 deg. C. The CdTe film was annealed at 620 deg. C and 600 deg. C sequentially to maintain the CdTe film quality. The photovoltaic cell efficiency improved by the two-wave process. For constant substrate temperature, the optimum thickness for CdTe was 5-6{mu}m. Above 6{mu}m CdTe thickness, the bulk resistance of CdTe film degraded the cell performance. As the cell area increased the V{sub oc} remained almost constant, while J{sub sc} and FF strongly decreased because of the increase of lateral resistance of the ITO layer. The optimum thickness of the ITO layer in this study was 300-450nm. In this experiment we obtained the efficiency of 9.4% in the 0.5cm{sup 2} cells. The series resistance of the cell should be further reduced to increase the fill factor and improve the efficiency. (author). 9 refs.,10 figs.

  18. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    Science.gov (United States)

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-01-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate. PMID:27756906

  19. Low-Temperature Preparation of Tungsten Oxide Anode Buffer Layer via Ultrasonic Spray Pyrolysis Method for Large-Area Organic Solar Cells.

    Science.gov (United States)

    Ji, Ran; Zheng, Ding; Zhou, Chang; Cheng, Jiang; Yu, Junsheng; Li, Lu

    2017-07-18

    Tungsten oxide (WO₃) is prepared by a low-temperature ultrasonic spray pyrolysis method in air atmosphere, and it is used as an anode buffer layer (ABL) for organic solar cells (OSCs). The properties of the WO₃ transition metal oxide material as well as the mechanism of ultrasonic spray pyrolysis processes are investigated. The results show that the ultrasonic spray pyrolysized WO₃ ABL exhibits low roughness, matched energy level, and high conductivity, which results in high charge transport efficiency and suppressive recombination in OSCs. As a result, compared to the OSCs based on vacuum thermal evaporated WO₃, a higher power conversion efficiency of 3.63% is reached with low-temperature ultrasonic spray pyrolysized WO₃ ABL. Furthermore, the mostly spray-coated OSCs with large area was fabricated, which has a power conversion efficiency of ~1%. This work significantly enhances our understanding of the preparation and application of low temperature-processed WO₃, and highlights the potential of large area, all spray coated OSCs for sustainable commercial fabrication.

  20. Low-Temperature Preparation of Tungsten Oxide Anode Buffer Layer via Ultrasonic Spray Pyrolysis Method for Large-Area Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Ran Ji

    2017-07-01

    Full Text Available Tungsten oxide (WO3 is prepared by a low-temperature ultrasonic spray pyrolysis method in air atmosphere, and it is used as an anode buffer layer (ABL for organic solar cells (OSCs. The properties of the WO3 transition metal oxide material as well as the mechanism of ultrasonic spray pyrolysis processes are investigated. The results show that the ultrasonic spray pyrolysized WO3 ABL exhibits low roughness, matched energy level, and high conductivity, which results in high charge transport efficiency and suppressive recombination in OSCs. As a result, compared to the OSCs based on vacuum thermal evaporated WO3, a higher power conversion efficiency of 3.63% is reached with low-temperature ultrasonic spray pyrolysized WO3 ABL. Furthermore, the mostly spray-coated OSCs with large area was fabricated, which has a power conversion efficiency of ~1%. This work significantly enhances our understanding of the preparation and application of low temperature-processed WO3, and highlights the potential of large area, all spray coated OSCs for sustainable commercial fabrication.