WorldWideScience

Sample records for cdse semiconductor nanocrystals

  1. Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits

    Science.gov (United States)

    Stinner, F. Scott

    As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.

  2. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  3. Laser-induced luminescence of multilayer structures based on polyimides and CdSe and CdSe/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Chistyakov, A A; Dayneko, S V; Zakharchenko, K V; Kolesnikov, V A; Tedoradze, M G; Mochalov, K E; Oleinikov, V A

    2009-01-01

    Laser-induced luminescence of multilayer structures based on the solids of CdSe and CdSe/ZnS nanocrystals, different organic semiconductors and on the layers of organic semiconductors with embedded nanocrystals has been investigated. Drastic decrease of luminescence quantum yield is observed in the films of CdSe nanocrystals on organic semiconductors compared to those on optical glasses. The luminescence of the nanocrystals in the matrices of organic semiconductors and in multilayer structures is shown to be suppressed. The effects observed are explained by the transfer of photogenerated carriers from the nanocrystals to the molecules of organic semiconductors. The presence of the charge transfer is confirmed by a drastic increase in the conductivity (by 2 – 4 orders of magnitude) and in photovoltaic effect at the presence of CdSe and CdSe/ZnS nanocrystals in the structures under investigation. The prospects of using the multilayer structures for development new materials for solar cells are discussed

  4. Phase transitions and doping in semiconductor nanocrystals

    Science.gov (United States)

    Sahu, Ayaskanta

    impurities (or doping) allows further control over the electrical and optical properties of nanocrystals. However, while impurity doping in bulk semiconductors is now routine, doping of nanocrystals remains challenging. In particular, evidence for electronic doping, in which additional electrical carriers are introduced into the nanocrystals, has been very limited. Here, we adopt a new approach to electronic doping of nanocrystals. We utilize a partial cation exchange to introduce silver impurities into cadmium selenide (CdSe) and lead selenide (PbSe) nanocrystals. Results indicate that the silver-doped CdSe nanocrystals show a significant increase in fluorescence intensity, as compared to pure CdSe nanocrystals. We also observe a switching from n- to p-type doping in the silver-doped CdSe nanocrystals with increased silver amounts. Moreover, the silver-doping results in a change in the conductance of both PbSe and CdSe nanocrystals and the magnitude of this change depends on the amount of silver incorporated into the nanocrystals. In the bulk, silver chalcogenides (Ag2E, E=S, Se, and Te) possess a wide array of intriguing properties, including superionic conductivity. In addition, they undergo a reversible temperature-dependent phase transition which induces significant changes in their electronic and ionic properties. While most of these properties have been examined extensively in bulk, very few studies have been conducted at the nanoscale. We have recently developed a versatile synthesis that yields colloidal silver chalcogenide nanocrystals. Here, we study the size dependence of their phase-transition temperatures. We utilize differential scanning calorimetry and in-situ X-ray diffraction analyses to observe the phase transition in nanocrystal assemblies. We observe a significant deviation from the bulk alpha (low-temperature) to beta (high-temperature) phase-transition temperature when we reduce their size to a few nanometers. Hence, these nanocrystals provide great

  5. Photoemission studies of semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Hamad, K.S.; Roth, R.; Alivisatos, A.P.

    1997-01-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface

  6. Semiconductor nanocrystals formed in SiO2 by ion implantation

    International Nuclear Information System (INIS)

    Zhu, J.G.; White, C.W.; Budai, J.D.; Withrow, S.P.; Chen, Y.

    1994-11-01

    Nanocrystals of group IV (Si, Ge and SiGe), III-V (GaAs), and II-VI (CdSe) semiconductor materials have been fabricated inside SiO 2 by ion implantation and subsequent thermal annealing. The microstructure of these nanocrystalline semiconductor materials has been studied by transmission electron microscopy (TEM). The nanocrystals form in near-spherical shape with random crystal orientations in amorphous SiO 2 . Extensive studies on the nanocrystal size distributions have been carried out for the Ge nanocrystals by changing the implantation doses and the annealing temperatures. Remarkable roughening of the nanocrystals occurs when the annealing temperature is raised over the melting temperature of the implanted semiconductor material. Strong red photoluminescence peaked around 1.67 eV has been achieved in samples with Si nanocrystals in SiO 2

  7. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  8. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    International Nuclear Information System (INIS)

    Gross, Dieter Konrad Michael

    2013-01-01

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  9. Size-selective precipitation in colloidal semiconductor nanocrystals of CdTe and CdSe: a study by UV-VIS spectroscopy; Precipitacao seletiva de tamanhos em nanoparticulas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    Energy Technology Data Exchange (ETDEWEB)

    Viol, Livia Cristina de Souza; Silva, Fernanda Oliveira; Ferreira, Diego Lourenconi; Alves, Jose Luiz Aarestrup; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.b [Universidade Federal de Sao Joao del Rei, MG (Brazil). Dept. de Ciencias Naturais

    2011-07-01

    The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well. (author)

  10. Z-Contrast STEM Imaging and EELS of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces

    International Nuclear Information System (INIS)

    Erwin, M.; Kadavanich, A.V.; Kippeny, T.; Pennycook, S.J.; Rosenthal, S.J.

    1999-01-01

    We have applied Atomic Number Contract Scanning Transmission Electron Microscopy (Z-Contrast STEM) and STEM/EELS (Electron Energy Loss Spectroscopy) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. Unlike the case of conventional phase-contrast High Resolution TEM, Z-Contrast images are direct projections of the atomic structure. Hence they can be interpreted without the need for sophisticated image simulation and the image intensity is a direct measure of the thickness of a nanocrystal. Our thickness measurements are in agreement with the predicted faceted shape of these nanocrystals. Our unique 1.3A resolution STEM has successfully resolve3d the sublattice structure of these CdSe nanocrystals. In [010] projection (the polar axis in the image plane) we can distinguish Se atom columns from Cd columns. Consequently we can study the effects of lattice polarity on the nanocrystal morphology. Furthermore, since the STEM technique does not rely on diffraction, it is superbly suited to the study of non-periodic detail, such as the surface structure of the nanocrystals. EELS measurements on individual nanocrystals indicate a significant amount (equivalet to 0.5-1 surface monolayers) of oxygen on the nanocrystals, despite processing in an inert atmosphere. Spatially resolved measurements at 7A resolution suggest a surface oxide layer. However, the uncertainty in the measurement precludes definitive assignment at this time. The source of the oxygen is under investigation as well

  11. Stability studies of CdSe nanocrystals in an aqueous environment

    DEFF Research Database (Denmark)

    Xi, Lifei; Lek, Jun Yan; Liang, Yen Nan

    2011-01-01

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH − ) while photo......-generated holes oxidize CdSe to Cd2 + and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments...

  12. Adsorption behavior and current-voltage characteristics of CdSe nanocrystals on hydrogen-passivated silicon

    DEFF Research Database (Denmark)

    Walzer, Karsten; Quaade, Ulrich; Ginger, D.S.

    2002-01-01

    Using scanning tunneling microscopy and spectroscopy we have studied both the geometric distribution and the conduction properties of organic shell capped CdSe nanocrystals adsorbed on hydrogen-passivated Si(100). At submonolayer concentrations, the nanocrystal distribution on the surface was found...... found that the current through the MIS junction is limited by the nanocrystals only in one bias direction, while in the other bias direction the current is limited by the semiconducting substrate. This property may be of relevance for the construction of hybrid electronic devices combining semiconductor...

  13. Stability studies of CdSe nanocrystals in an aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Xi Lifei; Lek, Jun Yan; Liang, Yen Nan; Zhou Wenwen; Yan Qingyu; Hu Xiao; Chiang, Freddy Boey Yin; Lam, Yeng Ming [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore); Boothroyd, Chris, E-mail: ymlam@ntu.edu.sg [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2011-07-08

    In this paper, CdSe nanocrystal dissolution in an aqueous solution was studied. It was found that light is a key factor affecting the dissolution of nanocrystals. In the presence of light, the electrons generated from CdSe nanocrystals reduce water to hydrogen and hydroxide ions (OH{sup -}) while photo-generated holes oxidize CdSe to Cd{sup 2+} and elemental Se. The dissolution was accelerated in an acidic medium while moderate alkalinity (pH = 10.3) can slow down the dissolution possibly due to precipitation of nanocrystals. This study has strong implications for the use of these crystals in aqueous environments (bioimaging and dye-sensitized solar cells).

  14. The structure and morphology of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kadavanich, Andreas V. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  15. Study of the photodissociation of a CdSe nanocrystal beam by means of photoluminescence and Raman scattering

    CERN Document Server

    Orii, T; Onari, S; Kaito, S I; Arai, T

    1997-01-01

    We developed an apparatus that enables us to perform optical measurements of nanocrystals suspended in vacuum. CdSe nanocrystals were produced by a gas evaporation method, and nanocrystal beams were then formed using an inert-gas flow with differential pumping. We measured photoluminescence spectra of the nanocrystal beams with excitations of various photon energies and powers. For a low excitation power, edge emission of the CdSe nanocrystal beam was observed. With increase of the laser power, Raman lines of Se dimers emitted due to the photodissociation of CdSe nanocrystals were observed. It was found that the thresholds of the excitation laser fluence for the photodissociation of CdSe nanocrystals were much smaller than the thresholds of laser fluence for the laser-induced emission of Se atoms from bulk CdSe. The electronic process is dominant in the photodissociation of CdSe nanocrystals whose surfaces are completely free. We suggest that the effective supply of carriers confined in nanocrystals to the su...

  16. Annealing effects on the photoresponse properties of CdSe nanocrystal thin films

    International Nuclear Information System (INIS)

    Lou Shiyun; Zhou Changhua; Wang Hongzhe; Shen Huaibin; Cheng Gang; Du Zuliang; Zhou, Shaomin; Li Linsong

    2011-01-01

    Highlights: → The as-prepared CdSe nanocrystal films were treated at 500 deg. C for 3 h under continuous N 2 . → Annealing process removed the organic capping completely and eliminated oxide on the CdSe surface. → Thermal annealing resulted the increase of the crystallite sizes and necking the NCs. → The photoresponse speed of the CdSe nanocrystal films was improved. - Abstract: The photoresponse properties of the as-prepared and annealed close-packed CdSe nanocrystal (NC) films were investigated under laser illumination by Kelvin probe force microscopy. The annealing process improved the photoresponse speed of the CdSe NC films. The work function of the annealed CdSe NC films changed more rapidly than that of the non-annealed film in air at room temperature. Combined with X-ray photoelectron spectroscopy measurements and thermogravimetric analysis, the observed phenomena can be interpreted that annealing process removed the organic capping agents completely and eliminated oxide on the CdSe surface, which formed the tunnel barrier between NCs in the CdSe NC films. Consequently, it improved the separation rate of photoelectric charges and thus provided high speed photoresponse.

  17. Green synthesis of water soluble semiconductor nanocrystals and their applications

    Science.gov (United States)

    Wang, Ying

    II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as

  18. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...... of nanocrystals. STS measurements showed rectifying behaviour, with high currents at the opposite sample bias to that previously observed for CdSe nanocrystals adsorbed on Si substrates. We explain the rectifying behaviour by considering the interaction between the electronic states of the nanocrystals...

  19. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  20. Resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers, E-mail: amkelley@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States); Dai, Quanqin; Jiang, Zhong-jie; Baker, Joshua A.; Kelley, David F. [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States)

    2013-08-30

    Highlights: ► Very similar resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals. ► First absolute resonance Raman cross-sections reported for CdSe nanocrystals. ► LO overtones suggest slightly stronger electron–phonon coupling in wurtzite form. - Abstract: Resonance Raman spectra and absolute differential Raman cross-sections have been measured for CdSe nanocrystals in both the wurtzite and zincblende crystal forms at four excitation wavelengths from 457.9 to 514.5 nm. The frequency and bandshape of the longitudinal optical (LO) phonon fundamental is essentially identical for both crystal forms at each excitation wavelength. The LO phonon overtone to fundamental intensity ratio appears to be slightly higher for the wurtzite form, which may suggest slightly stronger exciton–phonon coupling from the Fröhlich mechanism in the wurtzite form. The LO fundamental Raman cross-sections are very similar for both crystal forms at each excitation wavelength.

  1. Designing Selectivity in Metal-Semiconductor Nanocrystals: Synthesis, Characterization, and Self-Assembly

    Science.gov (United States)

    Pavlopoulos, Nicholas George

    This dissertation contains six chapters detailing recent advances that have been made in the synthesis and characterization of metal-semiconductor hybrid nanocrystals (HNCs), and the applications of these materials. Primarily focused on the synthesis of well-defined II-VI semiconductor nanorod (NR) and tetrapod (TP) based constructs of interest for photocatalytic and solar energy applications, the research described herein discusses progress towards the realization of key design rules for the synthesis of functional semiconductor nanocrystals (NCs). As such, a blend of novel synthesis, advanced characterization, and direct application of heterostructured nanoparticles are presented. The first chapter is a review summarizing the design, synthesis, properties, and applications of multicomponent nanomaterials composed of disparate semiconductor and metal domains. By coupling two compositionally distinct materials onto a single nanocrystal, synergistic properties can arise that are not present in the isolated components, ranging from self-assembly to photocatalysis. For semiconductor nanomaterials, this was first realized in the ability to tune nanomaterial dimensions from 0-D quantum dot (QD) structures to cylindrical (NR) and branched (TP) structures by exploitation of advanced colloidal synthesis techniques and understandings of NC facet reactivities. The second chapter is focused on the synthesis and characterization of well-defined CdSe-seeded-CdS (CdSe CdS) NR systems synthesized by overcoating of wurtzite (W) CdSe quantum dots with W-CdS shells. 1-dimensional NRs have been interesting constructs for applications such as solar concentrators, optical gains, and photocatalysis. Through synthetic control over CdSe CdS NR systems, materials with small and large CdSe seeds were prepared, and for each seed size, multiple NR lengths were prepared. Through transient absorption studies, it was found that band alignment did not affect the efficiency of charge localization

  2. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernà ndez-Altable, Ví ctor; Dalmases, Mariona; Falqui, Andrea; Casu, Alberto; Torruella, Pau; Estradé , Sò nia; Peiró , Francesca; Figuerola, Albert

    2015-01-01

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  3. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernàndez-Altable, Víctor

    2015-03-10

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  4. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lan, E-mail: lwang322@yahoo.com.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Medical University, Harbin 150081 (China); Sun Xiudong, E-mail: xdsun@hit.edu.cn [Department of Applied Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu Wenjing [Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001 (China); Liu Bingyi [Laboratory Center for the School of Pharmacy, Harbin Medical University, Harbin 150081 (China)

    2010-03-15

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  5. High quality zinc-blende CdSe nanocrystals synthesized in a hexadecylamine-oleic acid-paraffin liquid mixture

    International Nuclear Information System (INIS)

    Wang Lan; Sun Xiudong; Liu Wenjing; Liu Bingyi

    2010-01-01

    Safe, common, and low-cost compounds were used as solvents for the non-tri-n-octylphosphine (TOP) synthesis of high quality CdSe nanocrystals (NCs) in open air. In oleic acid-paraffin liquid system, CdSe nanocrystals in the less common zinc-blende (ZB, cubic) crystal structure have been obtained. The effects of adding n-hexadecylamine (HDA) to different solutions were discussed. Stable, highly homogeneous and luminescent CdSe nanocrystals were formed by adding n-hexadecylamine to Cd solution rather than to Se solution. Without any size sorting, the size distribution of the nanocrystals can be readily controlled and the highest photoluminescence (PL) quantum efficiency (QE) of the nanocrystals was up to 20-30%.

  6. Colloidal nanocrystals in epitactical semiconductor structures; Kolloidale Nanokristalle in epitaktischen Halbleiterstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Arens, C.

    2007-10-15

    in this thesis for the first time a new method for the fabrication of semiconductor quantum-dot structures was successfully applied. thereby colloidal CdSe nanocrystals have been imbedded by means of molecular-beam epitaxy into an epitactical ZnSe crystal matrix. The properties of the epitactically overgrown nanocrystals are elaborated in this thesis. The distribution of the nanocrystals on ZnSe surfaces dependes on the stressed state of the ZnSe layer. Nanocrystals on stressed ZnSe grow in agglomerates on its surface. Individual nanocrystals however can only be deposited on relaxed ZnSe. In-situ studies by means of reflection of high-energetically diffracted electrons show in both cases that under stoichiometrical conditions the ZnSe covering layer grows two-dimensionally. It is epitactic what is proved by means of highly resolving X-ray diffraction and transmission electron microscopy. The nanocrystals are after the overgrowth with ZnSe optically activ.

  7. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  8. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Emory Ming-Yue [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro

  9. Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, Fakher, E-mail: fakher8laatar@gmail.com [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Science faculty of Bizerte–Carthage University (Tunisia); Hassen, Mohamed [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Amri, Chohdi [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Laatar, Fekri [Laboratory of Physical Chemistry of Minerals and Materials Applications, National Research Center for Materials Science, Technopole Borj Cedria (Tunisia); Smida, Alia; Ezzaouia, Hatem [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Center for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-10-15

    In this paper, Porous anodic alumina (PAA) template with highly ordered nanopores structure was synthesized on aluminum foils by two step anodization process. PAA template has hexagonal pores with average size between 30 and 180 nm. L-cysteine (L-Cys) functionalized cadmium selenide nanocrystals (CdSe NCs) were successfully embedded inside PAA layers by simple immersion in aqueous solution. The effect of pore diameter enlargement on the microstructure of CdSe NCs/PAA films was systematically studied by FE-SEM, XRD, EDX, Raman, UV–VIS absorbance and PL analysis. FE-SEM microscopy was used to investigate the surface morphology of PAA templates before and after CdSe NCs deposition. XRD investigation demonstrates that CdSe NCs into PAA templates were cubic in nature with zinc-blende structure. Raman measurements exhibit the characteristic modes of CdSe on the PAA layers as well as the films crystallinity as function of widening pores diameter. Optical properties of deposited CdSe NCs on PAA templates have been investigated using optical absorption and PL techniques. Photoluminescence spectroscopy has been used to determine the bandgap energy and the average size of CdSe NCs deposited on PAA layer. This method involves fitting the experimental spectra, using a model based on quantum confinement of electrons in CdSe nanocrystals having spherical and cylindrical forms (Quantum Dots (QDs) and Quantum Wires (QWs)). This model allows correlation between the PL spectra and the microstructure of the CdSe/PAA. Both photoluminescence and optical absorption show that the PL peak energy and the optical absorption edge of CdSe NCs/PAA exhibit similar behavior with changes in nanostructure size. The spectral behaviors of optical absorption and PL are consistent with a quantum confinement model throughout the sizes and shapes of the CdSe nanocrystals of the luminescent films. The effective bandgap energies determined from the PL peaks position are in good agreement with those

  10. Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties

    International Nuclear Information System (INIS)

    Laatar, Fakher; Hassen, Mohamed; Amri, Chohdi; Laatar, Fekri; Smida, Alia; Ezzaouia, Hatem

    2016-01-01

    In this paper, Porous anodic alumina (PAA) template with highly ordered nanopores structure was synthesized on aluminum foils by two step anodization process. PAA template has hexagonal pores with average size between 30 and 180 nm. L-cysteine (L-Cys) functionalized cadmium selenide nanocrystals (CdSe NCs) were successfully embedded inside PAA layers by simple immersion in aqueous solution. The effect of pore diameter enlargement on the microstructure of CdSe NCs/PAA films was systematically studied by FE-SEM, XRD, EDX, Raman, UV–VIS absorbance and PL analysis. FE-SEM microscopy was used to investigate the surface morphology of PAA templates before and after CdSe NCs deposition. XRD investigation demonstrates that CdSe NCs into PAA templates were cubic in nature with zinc-blende structure. Raman measurements exhibit the characteristic modes of CdSe on the PAA layers as well as the films crystallinity as function of widening pores diameter. Optical properties of deposited CdSe NCs on PAA templates have been investigated using optical absorption and PL techniques. Photoluminescence spectroscopy has been used to determine the bandgap energy and the average size of CdSe NCs deposited on PAA layer. This method involves fitting the experimental spectra, using a model based on quantum confinement of electrons in CdSe nanocrystals having spherical and cylindrical forms (Quantum Dots (QDs) and Quantum Wires (QWs)). This model allows correlation between the PL spectra and the microstructure of the CdSe/PAA. Both photoluminescence and optical absorption show that the PL peak energy and the optical absorption edge of CdSe NCs/PAA exhibit similar behavior with changes in nanostructure size. The spectral behaviors of optical absorption and PL are consistent with a quantum confinement model throughout the sizes and shapes of the CdSe nanocrystals of the luminescent films. The effective bandgap energies determined from the PL peaks position are in good agreement with those

  11. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  12. The synthesis of CdSe quantum dots with carboxyl group and study on their optical characteristics

    International Nuclear Information System (INIS)

    Ye, Chen; Park, Sangjoon; Kim, Jongsung

    2009-01-01

    Quantum dots are nanocrystal semiconductors which attract lots of research interests due to their peculiar optical properties. CdSe/ZnS quantum dots have been synthesized via pyrolysis of organometallic reagents. The color of the quantum dot changes from yellow-green to red as their size increases with reaction time. Photoluminescence quantum efficiency of CdSe quantum dots have been enhanced by passivating the surface of CdSe quantum dots with ZnS layers. Quantum dots are nanocrystal semiconductors which attract lots of research interests due to their peculiar optical properties. CdSe/ZnS quantum dots have been synthesized via pyrolysis of organometallic reagents. The color of the quantum dot changes from yellow-green to red as their size increases with reaction time. Photoluminescence quantum efficiency of CdSe quantum dots have been enhanced by passivating the surface of CdSe quantum dots with ZnS layers. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: Production and optical properties

    Directory of Open Access Journals (Sweden)

    Maroof A. Hegazy

    2014-06-01

    Full Text Available Semiconductor nanocrystals (NC’s are the materials with dimensions less than 10 nm. When the dimensions of nanocrystals are reduced the bulk bohr diameter, the photo generated electron-hole pair becomes confined and nanocrystal exhibits size dependent upon optical properties. This work is focused on the studying of CdSe semiconductor nanocrystals. These nanocrystals are considered as one of the most widely studies semiconductors because of their size – tunable optical properties from the visible spectrum. CdSe-nanocrystals are produced and obtained throughout the experimental setup initiated at Nano-NRIAG Unit (NNU, which has been constructed and assembled at NRIAG institute. This unit has a specific characterization for preparing chemical compositions, which may be used for solar cell fabrications and space science technology. The materials prepared included cadmium oxide and selinid have sizes ranging between 2.27 nm and 3.75 nm. CdSe-nanocrystals are synthesized in “TOP/TOPO (tri–octyl phosphine/tri–octyl phosphine oxide. Diagnostic tools, include UV analysis, TEM microscope, and X-ray diffraction, which are considered for the analytical studies of the obtained materials. The results show that, in this size regime, the generated particles have unique optical properties, which is achieved from the UV analysis. Also, the TEM image analysis shows the size and shape of the produced particles. These studies are carried out to optimize the photoluminescent efficiency of these nanoparticles. Moreover, the data revealed that, the grain size of nanocrystals is dependent upon the growth time in turn, it leads to a change in the energy gap. Some applications of this class of materials are outlined.

  14. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface.

    Science.gov (United States)

    Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng

    2014-11-12

    Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.

  15. Novel red-emission of ternary ZnCdSe semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Shu-Ru, E-mail: srchung@nfu.edu.tw [National Formosa University, Graduate Institute of Materials Science and Green Energy Engineering (China); Wang, Kuan-Wen [National Central University, Institute of Materials Science and Engineering (China); Chen, Hong-Shuo; Chen, Hong-Hong [National Formosa University, Graduate Institute of Materials Science and Green Energy Engineering (China)

    2015-02-15

    The effect of chain lengths of fatty acids on the physical properties of CdSe and ZnCdSe semiconductor nanocrystals (NCs) synthesized by the colloidal chemistry procedure is investigated. The fatty acids, lauric acid (LA), and stearic acid (SA), with different lengths of carbon chains, are used to prepare CdSe and ZnCdSe NCs when hexyldecylamine (HDA) is applied as the sole surfactant. For CdSe–SA and ZnCdSe–SA, they have the same emission wavelength at 592 nm and the same particle size of 3.3 nm; however, their quantum yield (QY) is 75 and 16 %, respectively. In contrast, the emission wavelength of CdSe–LA and ZnCdSe–LA NCs is 609 and 615 nm, the particle size is about 3.5 and 4 nm under the same reaction time, and the QY of them are 33 and 59 %, respectively. The X-ray diffraction pattern shows that ZnCdSe NCs all have the wurtzite structure, and their main peaks are located between those of pure CdSe and ZnSe materials. The main phase of ZnCdSe–SA and ZnCdSe–LA is ZnSe and CdSe, respectively, implying that alloyed ZnCdSe NC can be prepared and ZnSe and CdSe phase can be promoted by SA and LA, respectively. Moreover, the QY of red-emission ZnCdSe–LA is higher than 50 %. These results suggest that the growth rate of CdSe as well as ZnCdSe NC can be enhanced by using LA as complex reagent and HDA as sole surfactant. It is expected that the reported effective synthetic strategy can be developed as a very practical, easy and not time-consuming approach to prepare red emissive NCs with high QY and high reproducibility.

  16. Novel red-emission of ternary ZnCdSe semiconductor nanocrystals

    Science.gov (United States)

    Chung, Shu-Ru; Wang, Kuan-Wen; Chen, Hong-Shuo; Chen, Hong-Hong

    2015-02-01

    The effect of chain lengths of fatty acids on the physical properties of CdSe and ZnCdSe semiconductor nanocrystals (NCs) synthesized by the colloidal chemistry procedure is investigated. The fatty acids, lauric acid (LA), and stearic acid (SA), with different lengths of carbon chains, are used to prepare CdSe and ZnCdSe NCs when hexyldecylamine (HDA) is applied as the sole surfactant. For CdSe-SA and ZnCdSe-SA, they have the same emission wavelength at 592 nm and the same particle size of 3.3 nm; however, their quantum yield (QY) is 75 and 16 %, respectively. In contrast, the emission wavelength of CdSe-LA and ZnCdSe-LA NCs is 609 and 615 nm, the particle size is about 3.5 and 4 nm under the same reaction time, and the QY of them are 33 and 59 %, respectively. The X-ray diffraction pattern shows that ZnCdSe NCs all have the wurtzite structure, and their main peaks are located between those of pure CdSe and ZnSe materials. The main phase of ZnCdSe-SA and ZnCdSe-LA is ZnSe and CdSe, respectively, implying that alloyed ZnCdSe NC can be prepared and ZnSe and CdSe phase can be promoted by SA and LA, respectively. Moreover, the QY of red-emission ZnCdSe-LA is higher than 50 %. These results suggest that the growth rate of CdSe as well as ZnCdSe NC can be enhanced by using LA as complex reagent and HDA as sole surfactant. It is expected that the reported effective synthetic strategy can be developed as a very practical, easy and not time-consuming approach to prepare red emissive NCs with high QY and high reproducibility.

  17. Novel red-emission of ternary ZnCdSe semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Chung, Shu-Ru; Wang, Kuan-Wen; Chen, Hong-Shuo; Chen, Hong-Hong

    2015-01-01

    The effect of chain lengths of fatty acids on the physical properties of CdSe and ZnCdSe semiconductor nanocrystals (NCs) synthesized by the colloidal chemistry procedure is investigated. The fatty acids, lauric acid (LA), and stearic acid (SA), with different lengths of carbon chains, are used to prepare CdSe and ZnCdSe NCs when hexyldecylamine (HDA) is applied as the sole surfactant. For CdSe–SA and ZnCdSe–SA, they have the same emission wavelength at 592 nm and the same particle size of 3.3 nm; however, their quantum yield (QY) is 75 and 16 %, respectively. In contrast, the emission wavelength of CdSe–LA and ZnCdSe–LA NCs is 609 and 615 nm, the particle size is about 3.5 and 4 nm under the same reaction time, and the QY of them are 33 and 59 %, respectively. The X-ray diffraction pattern shows that ZnCdSe NCs all have the wurtzite structure, and their main peaks are located between those of pure CdSe and ZnSe materials. The main phase of ZnCdSe–SA and ZnCdSe–LA is ZnSe and CdSe, respectively, implying that alloyed ZnCdSe NC can be prepared and ZnSe and CdSe phase can be promoted by SA and LA, respectively. Moreover, the QY of red-emission ZnCdSe–LA is higher than 50 %. These results suggest that the growth rate of CdSe as well as ZnCdSe NC can be enhanced by using LA as complex reagent and HDA as sole surfactant. It is expected that the reported effective synthetic strategy can be developed as a very practical, easy and not time-consuming approach to prepare red emissive NCs with high QY and high reproducibility

  18. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  19. Storage of optical excitations in colloidal semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Kraus, Robert

    2009-01-01

    In the present theis it is described, how colloidal semiconductor nanocrystals can be used under influence of an electric field to store optical excitation energy at room temperature, to alter, and to supply controlledly. For this the photoluminescence emission of an ensemble of heterogeneous nanocrystals was manipulated and spectroscopically studied. The applied od-shaped particles consist of a spherical core of CdSe, on which an elongated shell of CdS is monocrystallinely be grown. The electron is in such an asymmetric geometry delocalized over the hole nanorod, whereas the hole because of the high potential barrier remains bound in the CdSe core. The wave-function overlap of the charge carriers can therefore be influenced both by the length of the nanorod and by an external electric field. In the regime of prompt fluorescence the manipulation of the charge-carrier separation by an electric field led to a suppression of the radiative recombination. As consequence a fluorescence suppression of about 40% could be observed. After the removal of the electric field the separation was reduced and the stored energy is in an fluorescence increasement directedly liberated again. The strength of the storage efficiency lies with the strength of the electric field in a linear connection. Furthermore in this time range a quantum-confined Stark effect of upt o 14 meV could be detected at room temperature, although the effect is complicated by the different orientations and sizes of the nanorods in the ensemble. Hereby it is of advance to can adress with the applied detection technique a subensemble of nanocrystals. Furthermore a significant storage of the ensmble emission by up to 100 μs conditioned by the electric electric fieldcould be demonstrated, which exceeds the fluorescence lifetime of these particles by the 10 5 fold. As also could be shown by experiments on CdSe/ZnS nanocrystals surface states play a relevent role for the emission dynamics of nanocrystals. The

  20. Colloidal CdSe Quantum Rings.

    Science.gov (United States)

    Fedin, Igor; Talapin, Dmitri V

    2016-08-10

    Semiconductor quantum rings are of great fundamental interest because their non-trivial topology creates novel physical properties. At the same time, toroidal topology is difficult to achieve for colloidal nanocrystals and epitaxially grown semiconductor nanostructures. In this work, we introduce the synthesis of luminescent colloidal CdSe nanorings and nanostructures with double and triple toroidal topology. The nanorings form during controlled etching and rearrangement of two-dimensional nanoplatelets. We discuss a possible mechanism of the transformation of nanoplatelets into nanorings and potential utility of colloidal nanorings for magneto-optical (e.g., Aharonov-Bohm effect) and other applications.

  1. Rapid synthesis of CdSe nanocrystals in aqueous solution at room ...

    Indian Academy of Sciences (India)

    Administrator

    Water-soluble thioglycolic acid-capped CdSe nanocrystals (NCs) were prepared in aqueous solu- tion at room temperature. We investigated the ... NCs dispersed in buffer solution (pH = 4⋅0). FTIR spectra were recorded on a ... the theory of acid-base equilibrium, the initial pH value of original solution determines the ...

  2. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  3. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-12-01

    Full Text Available We present the results of an investigation of surface-enhanced Raman scattering (SERS by optical phonons in colloidal CdSe nanocrystals (NCs homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm, confirming the formation of SERS “hot spots”.

  4. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  5. СHIRAL RECOGNITION OF CYSTEINE MOLECULES BY CHIRAL CdSe AND CdS QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    M. V. Mukhina

    2015-11-01

    Full Text Available Here, we report the investigation of mechanism of chiral molecular recognition of cysteine biomolecules by chiral CdSe and CdS semiconductor nanocrystals. To observe chiral recognition process, we prepared enantioenriched ensembles of the nanocrystals capped with achiral ligand. The enantioenriched samples of intrinsically chiral CdSe quantum dots were prepared by separation of initial racemic mixture of the nanocrystals using chiral phase transfer from chloroform to water driven by L- and D-cysteine. Chiral molecules of cysteine and penicillamine were substituted for achiral molecules of dodecanethiol on the surfaces of CdSe and CdS samples, respectively, via reverse phase transfer from water to chloroform. We estimated an efficiency of the hetero- (d-L or l-D and homocomplexes (l-L formation by comparing the extents of corresponding complexing reactions. Using circular dichroism spectroscopy data we show an ability of nanocrystals enantiomers to discriminate between left-handed and right-handed enantiomers of biomolecules via preferential formation of heterocomplexes. Development of approaches for obtaining chiral nanocrystals via chiral phase transfer offers opportunities for investigation of molecular recognition at the nano/bio interfaces.

  6. Electronic structure and self-assembly of cross-linked semiconductor nanocrystal arrays

    International Nuclear Information System (INIS)

    Steiner, Dov; Azulay, Doron; Aharoni, Assaf; Salant, Assaf; Banin, Uri; Millo, Oded

    2008-01-01

    We studied the electronic level structure of assemblies of InAs quantum dots and CdSe nanorods cross-linked by 1,4-phenylenediamine molecules using scanning tunneling spectroscopy. We found that the bandgap in these arrays is reduced with respect to the corresponding ligand-capped nanocrystal arrays. In addition, a pronounced sub-gap spectral structure commonly appeared which can be attributed to unpassivated nanocrystal surface states or associated with linker-molecule-related levels. The exchange of the ligands by the linker molecules also affected the structural array properties. Most significantly, clusters of close-packed standing CdSe nanorods were formed

  7. Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals

    International Nuclear Information System (INIS)

    Bowers, Michael J.; McBride, James; Garrett, Maria Danielle; Sammons, Jessica A.; Dukes, Albert; Schreuder, Michael A.; Watt, Tony L.; Lupini, Andrew R.; Pennycook, Stephen J.; Rosenthal, Sandra

    2009-01-01

    White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM). With subangstrom resolution, Z-STEM is one of the few available methods that can be used to directly image the nanocrystal's structure. The initial images suggest that they are crystalline and approximately four lattice planes in diameter. In addition to the structure, for the first time, the exciton dynamics were measured at different wavelengths of the white-light spectrum using ultrafast fluorescence upconversion spectroscopy. The data suggest that a myriad of trap states are responsible for the broad-spectrum emission. It is hoped that the information presented here will provide a foundation for the future development and improvement of white-light-emitting nanocrystals.

  8. Anisotropy in CdSe quantum rods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liang-shi [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough

  9. Investigation of the surface chemical and electronic states of pyridine-capped CdSe nanocrystal films after plasma treatments using H2, O2, and Ar gases

    International Nuclear Information System (INIS)

    Wang, Seok-Joo; Kim, Hyuncheol; Park, Hyung-Ho; Lee, Young-Su; Jeon, Hyeongtag; Chang, Ho Jung

    2010-01-01

    Surface chemical bonding and the electronic states of pyridine-capped CdSe nanocrystal films were evaluated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy before and after plasma treatments using H 2 , O 2 , and Ar gases from the viewpoint of studying the effects of surface capping organic molecules and surface oxidation. Surface capping organic molecules could be removed during the plasma treatment due to the chemical reactivity, ion energy transfer, and vacuum UV (VUV) of the plasma gases. With O 2 plasma treatment, surface capping organic molecules were effectively removed but substantial oxidation of CdSe occurred during the plasma treatment. The valence band maximum energy (E VBM ) of CdSe nanocrystal films mainly depends on the apparent size of pyridine-capped CdSe nanocrystals, which controls the interparticle distance, and also on the oxidation of CdSe nanocrystals. Cd-rich surface in O 2 and H 2 plasma treatments partially would compensate for the decrease in E VBM . After Ar plasma treatment, the smallest value of E VBM resulted from high VUV photon flux, short wavelength, and ion energy transfer. The surface bonding states of CdSe had a strong influence on the electronic structure with the efficient strip of capping molecules as well as different surface oxidations and surface capping molecule contents.

  10. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  11. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  12. Construction of vesicle CdSe nano-semiconductors photocatalysts with improved photocatalytic activity: Enhanced photo induced carriers separation efficiency and mechanism insight.

    Science.gov (United States)

    Wen, Jiangsu; Ma, Changchang; Huo, Pengwei; Liu, Xinlin; Wei, Maobin; Liu, Yang; Yao, Xin; Ma, Zhongfei; Yan, Yongsheng

    2017-10-01

    Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle CdSe nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle CdSe nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of 78.824% was achieved by vesicle CdSe, which exhibited an increase of 31.779% compared to granular CdSe. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle CdSe nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle CdSe nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h + and O 2 - are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle CdSe nano-semiconductor had high efficiency and stability. Copyright © 2017. Published by Elsevier B.V.

  13. Radiative Properties of Carriers in Cdse-Cds Core-Shell Heterostructured Nanocrystals of Various Geometries

    Science.gov (United States)

    Zhou, S.; Dong, L.; Popov, S.; Friberg, A. T.

    2013-07-01

    We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band Schrödinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the nanocrystal size and electron-hole recombination energy is also examined.

  14. Developing New Nanoprobes from Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  15. Photoconductivity of composite structures based on porous SnO2 sensitized with CdSe nanocrystals

    International Nuclear Information System (INIS)

    Drozdov, K. A.; Kochnev, V. I.; Dobrovolsky, A. A.; Vasiliev, R. B.; Babynina, A. V.; Rumyantseva, M. N.; Gaskov, A. M.; Ryabova, L. I.; Khokhlov, D. R.

    2013-01-01

    The introduction of CdSe nanocrystals (colloidal quantum dots) into a porous SnO 2 matrix brings about the appearance of photoconductivity in the structures. Sensitization is a consequence of charge exchange between the quantum dots and the matrix. Photoconductivity spectral measurements show that the nanocrystals embedded into the matrix are responsible for the optical activity of the structure. The photoconductivity of the structures sensitized with different-sized quantum dots is studied in the temperature range from 77 to 300 K. It is shown that the maximum photoconductivity is attained by introducing nanocrystals of the minimum size (2.7 nm). The mechanisms of charge-carrier transport in the matrix and the charge-exchange kinetics are discussed.

  16. Studies on II-VI and III-V semiconductor nanostructures. Introduction of the core/shell/shell structure and development of CdSe nanocrystals in an automatized procedure; Untersuchungen an II-VI und III-V Halbleiternanostrukturen. Einfuehrung der Core/shell/shell-Struktur und Darstellung von CdSe-Nanokristallen in einem automatisierten Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Mekis, I.

    2005-11-15

    The work in this dissertation is focused on the development and characterization of fluorescent II-VI and III-V-Nanomaterials. Highly luminescent and photostable Nanocrystals with narrow size distributions were prepared. It was shown that nearly monodisperse CdSe-Nanocrystals could be prepared from Cd(Ac){sub 2} and TOPSe in a mixture of TOPO/TOP/HDA/TDPA. Nearly monodisperse CdSe/CdS-Core/shell-Nanocrystals have been prepared in a one-pot-synthesis by injection of H{sub 2}S-Gas into a freshly prepared crude solution of CdSe. The passivation of the CdSe-core with an inorganic shell of CdS resulted in the drastic improvement of the photoluminescence-efficiency of the colloidal solution. Reproducible room-temperature quantum yields reached up to a value of 85%. Photostability investigations have proved the enhanced stability of CdSe/CdS-Nanocrystals compared to CdSe-Nanocrystals under illumination with UV-Light. A novel type of luminescent semiconductor nanocrystal structure has been developed, consisting of a CdSe core and two anorganic shells. Highly fluorescent and nearly monodisperse CdSe/CdS/ZnS- and CdSe/ZnSe/ZnS-Core/shell/shell-nanocrystals have been prepared via organometallic- and acetate-precursors. The Core/she ll/shell particles reached reproducible room-temperature quantum yields up to 85%. Photostability investigations among CdSe-core, CdSe/CdS-Core/shell- and CdSe/CdS/ZnS- Core/shell/-shell-nanocrystals under illumination with UV-light have proved the highest photostability of the Core/shell/shell-particles. The photostabilities of CdSe/ZnSe/ZnS-and CdSe/ZnS-nanocrystals were compared under illumination with intense laser-beam in air. Another part of this work focused on the development of an automated synthesis procedure of CdSe-nanocrystals by constructing and implementing a flow-reactor system. The size and structure of prepared nanocrystals depended considerably on the Cd:Se-precursorratio and the flow-rate. The preparation of CdSe using Cd(Ac)2

  17. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  18. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    International Nuclear Information System (INIS)

    Lu, Y. F.; Cao, X. A.

    2014-01-01

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions

  19. Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy

    International Nuclear Information System (INIS)

    Hamad, K.S.; Hamad, K.S.; Roth, R.; Roth, R.; Rockenberger, J.; Rockenberger, J.; Alivisatos, A.P.; Alivisatos, A.P.; Buuren, T. van

    1999-01-01

    We report the observation of size dependent structural disorder by x-ray absorption near-edge spectroscopy (XANES) in InAs and CdSe nanocrystals 17 - 80 Angstrom in diameter. XANES of the In and Cd M 4,5 edges yields features that are sharp for the bulk solid but broaden considerably as the size of the particle decreases. FEFF7 multiple-scattering simulations reproduce the size dependent broadening of the spectra if a bulklike surface reconstruction of a spherical nanocrystal model is included. This illustrates that XANES is sensitive to the structure of the entire nanocrystal including the surface. copyright 1999 The American Physical Society

  20. Composition-controlled optical properties of colloidal CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ayele, Delele Worku [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Department of Chemistry, Bahir Dar University, Bahir Dar (Ethiopia); Su, Wei-Nien, E-mail: wsu@mail.ntust.edu.tw [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chou, Hung-Lung [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Chun-Jern [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Hwang, Bing-Joe, E-mail: bjh@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China)

    2014-12-15

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties.

  1. Composition-controlled optical properties of colloidal CdSe quantum dots

    International Nuclear Information System (INIS)

    Ayele, Delele Worku; Su, Wei-Nien; Chou, Hung-Lung; Pan, Chun-Jern; Hwang, Bing-Joe

    2014-01-01

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties

  2. Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals

    International Nuclear Information System (INIS)

    Zhou Yi; Li Yunchao; Zhong Haizheng; Hou Jianhui; Ding Yuqin; Yang Chunhe; Li Yongfang

    2006-01-01

    A series of ternary tetrapodal nanocrystals of CdSe x Te 1-x with x = 0 (CdTe), 0.23, 0.53, 0.78, 1 (CdSe) were synthesized and used to fabricate hybrid nanocrystal/polymer solar cells. Herein, the nanocrystals acted as electron acceptors, and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) was used as an electron donor. It was found that the open circuit voltage (V oc ), short-circuit current (J sc ) and power conversion efficiency (η) of the devices all increased with increasing Se content in the CdSe x Te 1-x nanocrystals under identical experimental conditions. The solar cell based on the blend of tetrapodal CdSe nanocrystals and MEH-PPV (9:1 w/w) showed the highest power conversion efficiency of 1.13% under AM 1.5, 80 mW cm -2 , and the maximum incident photon to converted current efficiency (IPCE) of the device reached 47% at 510 nm. The influence of nanocrystal composition on the photovoltaic properties of the hybrid solar cells was explained by the difference of the band level positions between MEH-PPV and the nanocrystals

  3. Fabrication and electronic transport studies of single nanocrystal systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, David Louis [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  4. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    Science.gov (United States)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  5. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  6. Storage of optical excitations in colloidal semiconductor nanocrystals; Speicherung optischer Anregungen in kolloidalen Halbleiter-Nanokristallen

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Robert

    2009-07-22

    In the present theis it is described, how colloidal semiconductor nanocrystals can be used under influence of an electric field to store optical excitation energy at room temperature, to alter, and to supply controlledly. For this the photoluminescence emission of an ensemble of heterogeneous nanocrystals was manipulated and spectroscopically studied. The applied od-shaped particles consist of a spherical core of CdSe, on which an elongated shell of CdS is monocrystallinely be grown. The electron is in such an asymmetric geometry delocalized over the hole nanorod, whereas the hole because of the high potential barrier remains bound in the CdSe core. The wave-function overlap of the charge carriers can therefore be influenced both by the length of the nanorod and by an external electric field. In the regime of prompt fluorescence the manipulation of the charge-carrier separation by an electric field led to a suppression of the radiative recombination. As consequence a fluorescence suppression of about 40% could be observed. After the removal of the electric field the separation was reduced and the stored energy is in an fluorescence increasement directedly liberated again. The strength of the storage efficiency lies with the strength of the electric field in a linear connection. Furthermore in this time range a quantum-confined Stark effect of upt o 14 meV could be detected at room temperature, although the effect is complicated by the different orientations and sizes of the nanorods in the ensemble. Hereby it is of advance to can adress with the applied detection technique a subensemble of nanocrystals. Furthermore a significant storage of the ensmble emission by up to 100 {mu}s conditioned by the electric electric fieldcould be demonstrated, which exceeds the fluorescence lifetime of these particles by the 10{sup 5} fold. As also could be shown by experiments on CdSe/ZnS nanocrystals surface states play a relevent role for the emission dynamics of nanocrystals

  7. Precipitação seletiva de tamanhos em nanopartículas semicondutoras coloidais de CdTe e CdSe: um estudo por espectroscopia UV-VIS

    Directory of Open Access Journals (Sweden)

    Lívia Cristina de Souza Viol

    2011-01-01

    Full Text Available The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis. It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well.

  8. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  9. Low Temperature Synthesis of CdSe Quantum Dots with Amine Derivative and Their Chemical Kinetics

    Science.gov (United States)

    Seongmi Hwang,; Youngmin Choi,; Sunho Jeong,; Hakyun Jung,; Chang Gyoun Kim,; Teak-Mo Chung,; Beyong-Hwan Ryu,

    2010-05-01

    The chemical kinetics of growing CdSe nanocrystals was studied in order to investigate the effects of amine capping agents on the size of resulting quantum dots (QDs). CdSe QDs were prepared in phenyl ether, and the amine ligand dependence of QD size was determined. The results show that the size of CdSe nanocrystals can be regulated by controlling reaction rate, with smaller QDs being formed in slower processes. The results of photoluminescence (PL) studies show that the emission wavelengths of the QDs well correlate with particle size. This simple process for forming different-sized QDs, which uses a cheap solvent and various capping agents, has the potential for preparing CdSe nanocrystals more economically.

  10. Layer-by-layer assembled composite films of side-functionalized poly(3-hexylthiophene) and CdSe nanocrystals: electrochemical, spectroelectrochemical and photovoltaic properties

    NARCIS (Netherlands)

    de Girolamo, Julia; Reiss, Peter; Zagorska, Malgorzata; de Bettignies, Remi; Bailly, Severine; Mevellec, Jean-Yves; Lefrant, Serge; Travers, Jean-Pierre; Pron, Adam

    2008-01-01

    Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary

  11. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  12. The effect of Pb addition on the morphology of CdSe quantum dot

    Science.gov (United States)

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin

    2010-08-01

    CdSe quantum dots had been synthesized with a hot injection method. It was shown that the addition of Pb ions in the initial precursor solution changed the morphology of CdSe nanocrystals from slightly prolate ellipsoid to branched rod. Photoluminescence (PL) of the branched nanocrystals showed rapid depression of emission intensity due to the morphological development to the branched nanocrystal induced by Pb addition. Low temperature PL spectrum indicated that the surface recombination of charge carrier resulted in the large depression of emission from the branched nanocrystal.

  13. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    Science.gov (United States)

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  14. Plasmon-induced carrier polarization in semiconductor nanocrystals

    Science.gov (United States)

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.

    2018-06-01

    Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  15. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Joseph Robert [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  16. Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: Spectroscopic and structural examination

    International Nuclear Information System (INIS)

    Prudnikau, Anatol; Artemyev, Mikhail; Molinari, Michael; Troyon, Michel; Sukhanova, Alyona; Nabiev, Igor; Baranov, Alexandr V.; Cherevkov, Sergey A.; Fedorov, Anatoly V.

    2012-01-01

    Highlights: ► We studied cadmium-by-mercury chemical substitution in CdSe nanocrystals. ► Zinc blende CdSe quantum dots can be easily converted to isostructural Cd x Hg 1−x Se. ► Wurtzite CdSe QDs require longer time to convert to a zinc blende Cd x Hg 1−x Se. ► Wurtzite CdSe nanorods transform to nanoheterogeneous luminescent Cd x Hg 1−x Se rods. - Abstract: The chemical substitution of cadmium by mercury in colloidal CdSe quantum dots (QDs) and nanorods has been examined by absorption, photoluminescence and Raman spectroscopy. The crystalline structure of original CdSe QDs used for Cd/Hg substitution (zinc blende versus wurtzite) shows a strong impact on the optical and structural properties of resultant Cd x Hg 1−x Se nanocrystals. Substitution of Cd by Hg in isostructural zinc blende CdSe QDs converts them to ternary Cd x Hg 1−x Se zinc blende nanocrystals with significant NIR emission. Whereas, the wurtzite CdSe QDs transformed first to ternary nanocrystals with almost no emission followed by slow structural reorganization to a NIR-emitting zinc blende Cd x Hg 1−x Se QDs. CdSe nanorods with intrinsic wurtzite structure show unexpectedly intense NIR emission even at early Cd/Hg substitution stage with PL active zinc blende Cd x Hg 1−x Se regions.

  17. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S.

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  18. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  19. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation

    CERN Document Server

    Turtos, R.M.; Polovitsyn, A.; Christodoulou, S.; Salomoni, M.; Auffray, E.; Moreels, I.; Lecoq, P.; Grim, J.Q.

    2016-01-01

    Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/...

  20. Magneto-optical transitions in multilayer semiconductor nanocrystals

    CERN Document Server

    Climente, J; Jaskolski, W; Aliaga, J I

    2003-01-01

    Absorption spectra of chemically synthesized uniform and multilayer semiconductor nanocrystals in a magnetic field are investigated theoretically. The nanocrystals are modelled by spherical barrier/well potentials. The electron states are calculated within the effective mass model. A four-band k centre dot p Hamiltonian, accounting for the valence subband mixing, is used to obtain the hole states. The magneto-optical transition spectrum depends strongly on the size and composition of the nanocrystals. In the case of small uniform quantum dots, only the linear Zeeman splitting of the electron and hole energy levels is observed even for very strong magnetic fields. In larger nanocrystals, the quadratic magnetic interaction turns out to be important and the transition spectrum becomes complicated. The most complicated influence of the magnetic field is found in quantum dot-quantum well systems in which the lowest electron and hole states are localized in a thin spherical layer. It is shown that transitions that ...

  1. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials

    NARCIS (Netherlands)

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-01-01

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive

  2. Structural and optical properties of CdSe nanosheets

    Science.gov (United States)

    Solanki, Rekha Garg; Rajaram, P.; Arora, Aman

    2018-04-01

    Nanosheets of CdSe have been synthesized using a solvothermal route using citric acid as an additive. It is found that the citric acid effectively controls the structural and optical properties of CdSe nanostructures. XRD studies confirm the formation of hexagonal wurtzite phase of CdSe. The FESEM micrographs show that the obtained CdSe nanocrystals are in the form of very thin sheets (nanosheets). Optical absorption studies as well as Photoluminescence spectra show that the optical gap is around 1.76 eV which is close to the reported bulk value of 1.74 eV. The prepared CdSe nanosheets because of large surface area may be useful for catalytic activities in medicine, biotechnology and environmental chemistry and in biomedical imaging for in vitro detection of a breast cancer cells.

  3. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  4. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  5. Semiconductor nanocrystals for novel optical applications

    Science.gov (United States)

    Moon, Jong-Sik

    Inspired by the promise of enhanced spectral response, photorefractive polymeric composites photosensitized with semiconductor nanocrystals have emerged as an important class of materials. Here, we report on the photosensitization of photorefractive polymeric composites at visible wavelengths through the inclusion of narrow band-gap semiconductor nanocrystals composed of PbS. Through this approach, internal diffraction efficiencies in excess of 82%, two-beam-coupling gain coefficients in excess of 211 cm-1, and response times 34 ms have been observed, representing some of the best figures-of-merit reported on this class of materials. In addition to providing efficient photosensitization, however, extensive studies of these hybrid composites have indicated that the inclusion of nanocrystals also provides an enhancement in the charge-carrier mobility and subsequent reduction in the photorefractive response time. Through this approach with PbS as charge-carrier, unprecedented response times of 399 micros were observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency and with internal diffraction efficiencies of 72% and two- beam-coupling gain coefficients of 500 cm-1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of the enhanced charge mobility without the accompaniment of superfluous traps. Finally, water soluble InP/ZnS and CdSe/ZnS quantum dots interacted with CPP and Herceptin to apply them as a bio-maker. Both of quantum dots showed the excellent potential for use in biomedical imaging and drug delivery applications. It is anticipated that these approaches can play a significant role in the eventual commercialization of these classes of materials.

  6. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  7. Evolution of biofunctional semiconductor nanocrystals: a calorimetric investigation.

    Science.gov (United States)

    Ghosh, Debasmita; Mondal, Somrita; Roy, Chandra Nath; Saha, Abhijit

    2013-12-14

    Semiconductor nanomaterials have found numerous applications in optoelectronic device fabrication and in platforms for drug delivery and hyperthermia cancer treatment, and in various other biomedical fields because of their high photochemical stability and size-tunable photoluminescence (PL). However, little attention has been paid to exploring the energetics of formation of these semiconductor nanoparticles. We demonstrate that formation of nanocrystals with biofunctionalization supported by widely used groups, BSA and cysteine, is an exothermic spontaneous process driven by enthalpy. The whole energetics of the reaction shows that formation of smaller particles is favored with lower synthesis temperature. Further, it is shown that the thermodynamics of nanoparticle formation is strongly influenced by the conformation of the protein matrix. We also demonstrate that protein supported formation of nanocrystals is thermodynamically more favorable compared to that involving smaller organic thiol groups. The favorable enthalpy of formation compensates unfavorable entropy, resulting in favorable Gibbs free energy. Thus, this study can open up new avenues for establishing a thermodynamic basis for the design of nanosystems with new and tunable properties.

  8. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-01-01

    . Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective

  9. Preparation of ZnS semiconductor nanocrystals using pulsed laser ablation in aqueous surfactant solutions

    International Nuclear Information System (INIS)

    Choi, S-H; Sasaki, T; Shimizu, Y; Yoon, J-W; Nichols, W T; Sung, Y-E; Koshizaki, N

    2007-01-01

    Cubic ZnS semiconductor nanocrystals with the size of 2 to 5 nm were prepared by pulsed laser ablation in aqueous surfactant solutions of sodium dodecyl sulfate and cetyltrimethylammonium bromide without any further treatments. The obtained suspensions of the nanocrystals have broad photoluminescence emission from 375 to 600 nm. The abundance and emission intensity of the nanocrystals depend on the concentration of the surfactant in solution

  10. Optical properties of P3HT:tributylphosphine oxide-capped CdSe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Benchaabane, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Universite Arabe des Sciences, Ecole Superieure d' Ingenieurs et des Etudes Technologiques, Tunis (Tunisia); Ben Hamed, Z.; Kouki, F.; Bouchriha, H. [Universite Tunis El-Manar, Laboratoire de Materiaux avances et phenomenes quantiques, Faculte des Sciences de Tunis El Manar, Tunis (Tunisia); Lahmar, A.; Zellama, K.; Zeinert, A. [Faculte des Sciences d' Amiens, Laboratoire de Physique de la Matiere Condensee, Amiens (France); Sanhoury, M.A. [Laboratoire de Chimie Organique Structurale, Synthese et Etudes Physicochimiques, Tunis (Tunisia)

    2016-08-15

    The optical properties of nanocomposite layers prepared by incorporation of tributylphosphine oxide (TBPO)-capped CdSe nanocrystals (NCs) in a P3HT polymer matrix are studied using different nanocrystal concentrations. Reflection spectra analyzed through Kim oscillator model lead to the determination of optical constants such as refractive index n, extinction coefficient k, dielectric permittivity ε and absorption coefficient α. Using the common Cauchy, Drude-Lorentz, Tauc and single-effective-oscillator theoretical models, we have determined the values of static refractive index n{sub s} and permittivity ε{sub s}, plasma frequency ω{sub p}, carrier density N, optical band gap E{sub g} and oscillator and dispersion energies E{sub 0} and E{sub d}, respectively. It is found that TBPO-capped CdSe NCs concentration affects the optoelectronic parameters of the nanocomposite thin films. Moreover, the disorder of this hybrid system is also studied by the determination of Urbach energy, which increases with TBPO-capped CdSe concentration. (orig.)

  11. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    Science.gov (United States)

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  12. X-ray investigations for determining the aspect ratio in CdSe nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Ullrich; Kurtulus, Oezguel [Festkoerperphysik, Universitaet Siegen (Germany)

    2008-07-01

    Semiconductor based 1D nanostructures are of high technological interest due to potential application in 1D conductivity measurements and optical devices. Catalyst assisted solution-liquid-solid synthesis is a new method where nanocrystal catalysts are used to grow CdSe nanorods (NR) from solution. The aim of this study is to investigate CdSe samples prepared with this new method by means of X-ray diffraction. The measurements have been performed at DELTA synchrotron using a beam of wavelength 1.127A and an image plate system. It is found that the CdSe NRs have a crystal structure of wurtzite with an aspect ratio changing between 2 and 10. This is in contradiction with the results obtained from TEM measurements, according to which the lengths of the NRs are in the order of 1 {mu} and the widths are around 20 nm. Presently the results are interpreted by the appearance of stacking faults which separate uniformly stacked AB, AB layers from each other. It is planned to measure an individual NR using a nanofocused X-ray beam. Once an individual NR could be observed, the next step is to measure the powder spectrum using a CCD as a function of the position of the beam spot along the nanorod. Depending on this information, the parameters affecting the structure of the NRs would be clear by making experiments with samples prepared in different conditions.

  13. Photoinduced transformations of optical properties of CdSe and Ag-In-S nanocrystals embedded in the films of polyvinyl alcohol

    Directory of Open Access Journals (Sweden)

    Tetyana Kryshtab

    2016-06-01

    Full Text Available The results of investigation of photostability of the composites of CdSe and Ag-In-S nanocrystals (NCs embedded in the films of polyvinyl alcohol (PVA are presented. The films were studied by photoluminescence (PL, optical absorption, micro-Raman and X-ray diffraction methods. It is found that heating of the films to 100 °C promotes PVA crystallization and stimulates an increase of the PL intensity for the NCs of both types. The latter effect is ascribed mainly to the improvement of NC surface passivation by functional groups of PVA. The illumination with the 409-nm LED’s light enhances PL intensity for CdSe NCs and decreases it for Ag-In-S NCs as well as results in the darkening of the films. The color of the Ag-In-S-PVA film restores with time, while the change of the optical properties of the CdSe-PVA composite is irreversible. The possible mechanisms of the revealed effects, such as structural transformations at NC/PVA interface as well as the formation of new light-absorbing species are discussed.

  14. From Large-Scale Synthesis to Lighting Device Applications of Ternary I-III-VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters.

    Science.gov (United States)

    Chen, Bingkun; Pradhan, Narayan; Zhong, Haizheng

    2018-01-18

    Quantum dots with fabulous size-dependent and color-tunable emissions remained as one of the most exciting inventories in nanomaterials for the last 3 decades. Even though a large number of such dot nanocrystals were developed, CdSe still remained as unbeatable and highly trusted lighting nanocrystals. Beyond these, the ternary I-III-VI family of nanocrystals emerged as the most widely accepted greener materials with efficient emissions tunable in visible as well as NIR spectral windows. These bring the high possibility of their implementation as lighting materials acceptable to the community and also to the environment. Keeping these in mind, in this Perspective, the latest developments of ternary I-III-VI nanocrystals from their large-scale synthesis to device applications are presented. Incorporating ZnS, tuning the composition, mixing with other nanocrystals, and doping with Mn ions, light-emitting devices of single color as well as for generating white light emissions are also discussed. In addition, the future prospects of these materials in lighting applications are also proposed.

  15. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    Science.gov (United States)

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  16. Probing the exciton density of states in semiconductor nanocrystals using integrated photoluminescence spectroscopy

    CERN Document Server

    Filonovich, S A; Vasilevskiy, M I; Rolo, A G; Gomes, M J M; Artemiev, M V; Talapin, D V; Rogach, A L

    2002-01-01

    We present the results of a comparative analysis of the absorption and photoluminescence excitation (PLE) spectra vs. integrated photoluminescence (IPL) measured as a function of the excitation wavelength for a number of samples containing II-VI semiconductor nanocrystals (NCs) produced by different techniques. The structure of the absorption and PL spectra due to excitons confined in NCs and difficulties with the correct interpretation of the transmittance and PLE results are discussed. It is shown that, compared to the conventional PLE, the IPL intensity plotted against the excitation wavelength (IPLE spectra) reproduce better the structure of the absorption spectra. Therefore, IPLE spectroscopy can be successfully used for probing the quantized electron-hole (e-h) transitions in semiconductor nanocrystals. (author)

  17. CdSe Nanoparticles with Clean Surfaces: Gas Phase Synthesis and Optical Properties

    Directory of Open Access Journals (Sweden)

    Zhang Hongwei

    2015-01-01

    Full Text Available CdSe nanoparticles (NPs were generated in gas phase with a magnetron plasma gas aggregation cluster beam source. Coagulation-free CdSe nanocrystals with very clean particle surface and interface, as well as a fairly uniform spatial distribution were obtained. The deposited NPs have a good dispersity with a mean diameter of about 4.8nm. A strong photoluminescence band corresponding to the near- band-edge transition of the CdSe NPs was observed. The CdSe NP films show a significant photoconductance induced by laser irradiation. With an applied bias voltage of 10V, the photo- induced current can be as high as 0.4mA under 0.01mW/mm2 405nm laser illumination. Our approach offers an alternative method for CdSe NP synthesis, which has the advantages such as high purity, good process and product control, as well as mass production, as compared to the existing methods.

  18. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    Science.gov (United States)

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  19. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan [Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130023 (China); Shen Qihui; Shi Weiguang; Li Jixue; Liu Xiaoyang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yu Dongdong [1st Hopstail affiliated to Jilin University, Jilin University, Changchun 130023 (China); Zhou Jianguang [Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310058 (China)], E-mail: liuxy@jlu.edu.cn, E-mail: jgzhou70@126.com

    2008-06-18

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  20. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    International Nuclear Information System (INIS)

    Liu Yan; Shen Qihui; Shi Weiguang; Li Jixue; Liu Xiaoyang; Yu Dongdong; Zhou Jianguang

    2008-01-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals

  1. Electronic structures and magnetism for carbon doped CdSe: Modified Becke–Johnson density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.W., E-mail: fansw1129@126.com; Song, T.; Huang, X.N.; Yang, L.; Ding, L.J.; Pan, L.Q.

    2016-09-15

    Utilizing the full potential linearized augment plane wave method, the electronic structures and magnetism for carbon doped CdSe are investigated. Calculations show carbon substituting selenium could induce CdSe to be a diluted magnetic semiconductor. Single carbon dopant could induce 2.00 μ{sub B} magnetic moment. Electronic structures show the long-range ferromagnetic coupling mainly originates from the p–d exchange-like p–p coupling interaction. Positive chemical pair interactions indicate carbon dopants would form homogeneous distribution in CdSe host. The formation energy implies the non-equilibrium fabricated technology is necessary during the samples fabricated. - Highlights: • The C{sub Se} defects could induce the CdSe to be typical diluted magnetic semiconductor. • Electronic structures show ferromagnetism come from p-d exchange-like p-p coupling. • Chemical pair interactions indicate C{sub Se} prefer homogenous distribution in CdSe host.

  2. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    KAUST Repository

    Abulikemu, Mutalifu

    2015-12-26

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  3. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    KAUST Repository

    Abulikemu, Mutalifu; Del Gobbo, Silvano; Anjum, Dalaver H.; Malik, Mohammad A; Bakr, Osman

    2015-01-01

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  4. Exciton diamagnetic shift and optical properties in CdSe nanocrystal quantum dots in magnetic fields

    Science.gov (United States)

    Wu, Shudong; Cheng, Liwen

    2018-04-01

    The magnetic field dependence of the optical properties of CdSe nanocrystal quantum dots (NQDs) is investigated theoretically using a perturbation method within the effective-mass approximation. The results show that the magnetic field lifts the degeneracy of the electron (hole) states. A blue-shift in the absorption spectra of m ≥ 0 exciton states is observed while the absorption peak of m attributed to the interplay of the orbital Zeeman effect and the additive confinement induced by the magnetic field. The excitonic absorption coefficient is almost independent of B in the strong confinement regime. The applied magnetic field causes the splitting of degenerated exciton states, resulting in the new absorption peaks. Based on the first-order perturbation theory, we propose the analytical expressions for the exciton binding energy, exciton transition energy and exciton diamagnetic shift of 1s, 1p-1, 1p0, 1p1, 1d-2, 1d-1, 1d0, 1d1, 1d2 and 2s exciton states on the applied magnetic field in the strong confinement regime.

  5. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants.

    Science.gov (United States)

    Pinchetti, Valerio; Di, Qiumei; Lorenzon, Monica; Camellini, Andrea; Fasoli, Mauro; Zavelani-Rossi, Margherita; Meinardi, Francesco; Zhang, Jiatao; Crooker, Scott A; Brovelli, Sergio

    2018-02-01

    Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag + is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag + is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag + . This optical activation process and the associated modification of the electronic configuration of Ag + remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag + to paramagnetic Ag 2+ . The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

  6. Optimizing Two-Color Semiconductor Nanocrystal Immunoassays in Single Well Microtiter Plate Formats

    Directory of Open Access Journals (Sweden)

    W. Russ Algar

    2011-08-01

    Full Text Available The simultaneous detection of two analytes, chicken IgY (IgG and Staphylococcal enterotoxin B (SEB, in the single well of a 96-well plate is demonstrated using luminescent semiconductor quantum dot nanocrystal (NC tracers. The NC-labeled antibodies were prepared via sulfhydryl-reactive chemistry using a facile protocol that took

  7. Synthesis of Colloidal Nanocrystal Heterostructures for High-Efficiency Light Emission

    Science.gov (United States)

    Lu, Yifei

    Group II-VI semiconductor nanocrystals, particularly those based on ZnCdS(Se), can be synthesized using well established chemical colloidal processes, and have been a subject of extensive research over the past decade. Their optical properties can be easily tuned through size and composition variations, making them very attractive for many optoelectronic applications including light-emitting diodes (LEDs) and solar cells. Incorporation of diverse internal heterostructures provides an additional means for tuning the optical and electronic properties of conventional ZnCdS(Se) nanocrystals. Extensive bandgap and strain engineering may be applied to the resultant nanocrystal heterostructures to achieve desirable properties and enhanced performance. Despite the high scientific and practical interests of this unique class of nanomaterials, limited efforts have been made to explore their synthesis and potential device applications. This thesis focuses on the synthesis, engineering, characterization, and device demonstration of two types of CdSe-based nanocrystal heterostructures: core/multishell quantum dots (QDs) and QD quantum wells (QDQWs). Their optical properties have been tuned by bandgap and strain engineering to achieve efficient photoluminescence (PL) and electroluminescence (EL).Firstly, yellow light-emitting CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and the effects of the shell on the luminescent properties were investigated. The core/shell/shell QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell, and exhibited 40% stronger PL and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD-LEDs had a luminance of 558 cd/m2 at 20 mA/cm 2, 28% higher than that of CdSe/ZnCdS/ZnS QD

  8. Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage over cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self

  9. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  10. Synthesis, characterization and spectral temperature-dependence of thioglycerol-CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Brahim, Nassim, E-mail: nassim.benbrahim.fsm@gmail.com [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia); Poggi, Mélanie [Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Haj Mohamed, Naim Bel; Ben Chaâbane, Rafik; Haouari, Mohamed [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia); Negrerie, Michel, E-mail: michel.negrerie@polytechnique.fr [Laboratoire d' Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Ben Ouada, Hafedh [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Boulevard de l’Environnement, 5019 Monastir (Tunisia)

    2016-09-15

    Water-soluble CdSe quantum dots (QDs) have been synthesized with thioglycerol as a stabilizer through a novel hydrothermal route. The obtained thioglycerol capped CdSe (TG-CdSe) nanocrystals were characterized regarding their morphology and structural, thermal and optical properties. The resulting nanocrystals were synthesized in the cubic structure with a near spherical shape, as confirmed by X-ray diffraction and transmission electron microscopy. Combining transmission electron microscopy imaging and calculations using UV–visible absorption spectrum and X-ray diffraction pattern, the diameter of the synthesized nanocrystals was estimated to 2.26 nm. As confirmed by its Fourier transform IR spectrum, thioglycerol was successfully liganded on the surface of the resulting nanocrystals. Band structure parameters of the TG-CdSe nanoparticles were determined and quantum confinement effect was evidenced by optical absorption, fluorescence and Raman measurements. The thermal properties of the TG-CdSe were explored by thermal gravimetric analysis and differential scanning calorimetry. The temperature dependence of both the absorption and fluorescence spectra in the physiological range makes the TG-CdSe nanocrystals sensitive temperature markers, a property that must be taken into account when developing any probing applications, especially for cellular imaging.

  11. Semiconductor nanocrystals dispersed in imidazolium-based ionic liquids: a spectroscopic and morphological investigation

    International Nuclear Information System (INIS)

    Panniello, Annamaria; Binetti, Enrico; Ingrosso, Chiara; Curri, M. Lucia; Agostiano, Angela; Tommasi, Raffaele; Striccoli, Marinella

    2013-01-01

    A growing interest is devoted to the study of imidazolium-based ionic liquids as innovative materials to combine with functional elements for advanced technological applications. Materials based on semiconductor and oxide nanocrystals in ionic liquids can be promising for their integration in lithium batteries, as well as in innovative solar cells. Although the physical chemical properties and the solvation dynamics of bare ionic liquids have been extensively studied, their combination with colloidal nanocrystals still remains almost unexplored. Here, the optical properties of organic-capped luminescent cadmium selenide nanocrystals coated by a shell of zinc sulfide (CdSe(ZnS)) dispersed in 1,3-dialkyl imidazolium ionic liquids have been investigated, also in dependence of the alkyl chain length on the imidazolium ring and of the anion nature, by using both time-integrated and time-resolved optical spectroscopy. The observed variations in decay profiles of the ionic liquid in presence of colloidal nanocrystals suggest that the dispersion of the nanostructures induces modifications in the ionic liquid structural order. Finally, atomic force microscopy analysis has provided insight into the topography of the investigated dispersions deposited as film, confirming the organization of the ionic liquids in super-structures, also upon nanocrystal incorporation.

  12. Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation.

    Science.gov (United States)

    Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin

    2016-07-14

    Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.

  13. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Longo, Paolo; Buha, Joka; Botton, Gianluigi A.; Lazar, Sorin; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo; Prato, Mirko; Li, Hongbo; Ghosh, Sandeep; Palazon, Francisco; De Donato, Francesco; Lentijo Mozo, Sergio; Zuddas, Efisio; Falqui, Andrea

    2016-01-01

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  14. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto

    2016-01-27

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  15. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-01

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.

  16. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    NARCIS (Netherlands)

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were

  17. Dilute Magnetic Semiconductor Cu2FeSnS4 Nanocrystals with a Novel Zincblende Structure

    Directory of Open Access Journals (Sweden)

    Xiaolu Liang

    2012-01-01

    Full Text Available Diluted magnetic semiconductor Cu2FeSnS4 nanocrystals with a novel zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+ ions occupy the same position in the zincblende unit cell, and their occupancy possibilities are 1/2, 1/4, and 1/4, respectively. The nanocrystals were characterized by means of X-ray diffraction (XRD, transmission electron microscopy (TEM, selected area electron diffraction (SAED, energy-dispersive spectroscopy (EDS, and UV-vis-NIR absorption spectroscopy. The nanocrystals have an average size of 7.5 nm and a band gap of 1.1 eV and show a weak ferromagnetic behavior at low temperature.

  18. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce F [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  19. Structural, optical and magnetic properties of cobalt-doped CdSe ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Pure and Co-doped CdSe nanoparticles have been synthesized by hydrothermal technique. The ... Keywords. Nanoparticles; dilute magnetic semiconductor; ferromagnetism. ... dium dodecyl sulfate (SDS) was used as a surfactant in.

  20. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-05

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Annamaria Panniello

    2014-01-01

    Full Text Available Polymeric ionic liquids (PILs are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

  2. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya; Ahmed, Ghada H.; Alarousu, Erkki; Parida, Manas R.; Abdelhady, Ahmed L.; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class

  3. Structural and optical properties of electron beam evaporated CdSe ...

    Indian Academy of Sciences (India)

    WINTEC

    ECMS Division, Central Electrochemical Research Institute, Karaikudi 630 006, India. † ... (0 0 2) direction of films has been confirmed by the X-ray diffraction analysis. The films ... CdSe is a direct band gap semiconductor belonging to the.

  4. Gas-phase synthesis of semiconductor nanocrystals and its applications

    Science.gov (United States)

    Mandal, Rajib

    Luminescent nanomaterials is a newly emerging field that provides challenges not only to fundamental research but also to innovative technology in several areas such as electronics, photonics, nanotechnology, display, lighting, biomedical engineering and environmental control. These nanomaterials come in various forms, shapes and comprises of semiconductors, metals, oxides, and inorganic and organic polymers. Most importantly, these luminescent nanomaterials can have different properties owing to their size as compared to their bulk counterparts. Here we describe the use of plasmas in synthesis, modification, and deposition of semiconductor nanomaterials for luminescence applications. Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications in several areas. To date, however, luminescent silicon nanocrystals (NCs) have been used exclusively in traditional rigid devices. For the field to advance towards new and versatile applications for nanocrystal-based devices, there is a need to investigate whether these NCs can be used in flexible and stretchable devices. We show how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (Si NCs) change when they are deposited on stretchable substrates made of polydimethylsiloxane (PDMS). Synthesis of these NCs was performed in a nonthermal, low-pressure gas phase plasma reactor. To our knowledge, this is the first demonstration of direct deposition of NCs onto stretchable substrates. Additionally, in order to prevent oxidation and enhance the luminescence properties, a silicon nitride shell was grown around Si NCs. We have demonstrated surface nitridation of Si NCs in a single step process using non?thermal plasma in several schemes including a novel dual-plasma synthesis/shell growth process. These coated NCs exhibit SiNx shells with composition depending on process parameters. While measurements including

  5. Non-injection and one-pot approach to CdSe: Eu3+ hybrid nanocrystals with tunable photoluminescence from green to red

    International Nuclear Information System (INIS)

    Kong, Lingcan; Chu, Xuefeng; Wang, Chuanxi; Yang, Xiaotian; Zhou, Lei

    2017-01-01

    Europium ion-doped CdSe hybrid nanocrystals (CdSe:Eu 3+ NCs) as a class of new luminescent materials have drawn increasing attention in recent years owing to their remarkable optical properties. In this paper, we report a facile method to prepare CdSe:Eu 3+ NCs using oleic acid (OA) as the capping agent. With this non-injection and one-pot synthesized approach, the formation and surface passivation of CdSe:Eu 3+ NCs are performed simultaneously and result in intrinsic luminescence. The as-prepared CdSe:Eu 3+ NCs are characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy (EDX). Their optical properties are also studied by UV–vis and photoluminescence spectra. Moreover, the effects of feed ratios and reaction temperatures on the optical properties are further investigated. The results show that the luminescent spectra of CdSe:Eu 3+ NCs are tunable from green (490 nm) to red (630 nm) and gradually redshift with the increase of the nanoparticle size from 2.5 to 4.4 nm. Upon decoration with 2-thenoyltrifluoroacetone (TTA), the luminescence of europium ion drastically increases and efficient energy transfer from CdSe host to the europium ion is proposed. In addition, an MTT and apoptosis assay show CdSe:Eu 3+ NCs have low cellular toxicity and could be used as fluorescence imaging for human epithelial type 2 (Hep-2) cells. These properties make CdSe:Eu 3+ NCs a potential candidate for biological labeling, immunoassays, and optical sensing.

  6. Quantum chemistry of the minimal CdSe clusters

    Science.gov (United States)

    Yang, Ping; Tretiak, Sergei; Masunov, Artëm E.; Ivanov, Sergei

    2008-08-01

    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding

  7. Non-injection and one-pot approach to CdSe: Eu{sup 3+} hybrid nanocrystals with tunable photoluminescence from green to red

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingcan, E-mail: konglingcan2010@163.com [Wuxi Center for Disease Control and Prevention (China); Chu, Xuefeng [Jilin Jianzhu University, Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, School of Electrical and Electronic Information Engineering (China); Wang, Chuanxi, E-mail: wangcx@jiangnan.edu.cn [Jiangnan University, China-Australia Joint Research Centre for Functional Molecular Materials, School of Chemical & Material Engineering (China); Yang, Xiaotian [Jilin Jianzhu University, Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, School of Electrical and Electronic Information Engineering (China); Zhou, Lei [Wuxi Center for Disease Control and Prevention (China)

    2017-01-15

    Europium ion-doped CdSe hybrid nanocrystals (CdSe:Eu{sup 3+} NCs) as a class of new luminescent materials have drawn increasing attention in recent years owing to their remarkable optical properties. In this paper, we report a facile method to prepare CdSe:Eu{sup 3+} NCs using oleic acid (OA) as the capping agent. With this non-injection and one-pot synthesized approach, the formation and surface passivation of CdSe:Eu{sup 3+} NCs are performed simultaneously and result in intrinsic luminescence. The as-prepared CdSe:Eu{sup 3+} NCs are characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy (EDX). Their optical properties are also studied by UV–vis and photoluminescence spectra. Moreover, the effects of feed ratios and reaction temperatures on the optical properties are further investigated. The results show that the luminescent spectra of CdSe:Eu{sup 3+} NCs are tunable from green (490 nm) to red (630 nm) and gradually redshift with the increase of the nanoparticle size from 2.5 to 4.4 nm. Upon decoration with 2-thenoyltrifluoroacetone (TTA), the luminescence of europium ion drastically increases and efficient energy transfer from CdSe host to the europium ion is proposed. In addition, an MTT and apoptosis assay show CdSe:Eu{sup 3+} NCs have low cellular toxicity and could be used as fluorescence imaging for human epithelial type 2 (Hep-2) cells. These properties make CdSe:Eu{sup 3+} NCs a potential candidate for biological labeling, immunoassays, and optical sensing.

  8. Photoluminescence of colloidal CdSe nano-tetrapods and quantum dots in oxygenic and oxygen-free environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lijuan [Donghua University, Applied Physics Department, Shanghai (China); Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Pang, Qi; Ge, Weikun; Wang, Jiannong [Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Yang, Shihe [Hong Kong University of Science and Technology, Chemistry Department and the Institute of Nano-Science and Technology, Hong Kong (China)

    2011-05-15

    The effects of oxygenic versus oxygen-free environments on colloidal CdSe nano-tetrapods and quantum dots (QDs) were studied using both continuous and time-resolved photoluminescence (PL) measurements. The decays of PL intensities for tetrapods and QDs in oxygen-free solution (chloroform) and in air (on silicon) can be well fitted by a bi-exponential function. Based on the emission-energy dependence of carrier lifetimes and the amplitude ratio of the fast-decay component to the slow-decay component, the fast and slow PL decays of CdSe nanocrystals are attributed to the recombination of delocalized carriers in the core states and localized carriers in the surface states, respectively. The PL intensities of CdSe nano-tetrapods and QDs were found to be five times and an order of magnitude higher in air than in vacuum, respectively, which is explained by the passivation of surface defects by the polar gas (oxygen) absorption. The lower enhancement in PL intensities of CdSe nano-tetrapods is explained by the special morphology of the tetrapods. (orig.)

  9. Rationally Controlled Synthesis of CdSexTe1-x Alloy Nanocrystals and Their Application in Efficient Graded Bandgap Solar Cells.

    Science.gov (United States)

    Wen, Shiya; Li, Miaozi; Yang, Junyu; Mei, Xianglin; Wu, Bin; Liu, Xiaolin; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Xu, Wei; Wang, Dan

    2017-11-08

    CdSe x Te 1-x semiconductor nanocrystals (NCs), being rod-shaped/irregular dot-shaped in morphology, have been fabricated via a simple hot-injection method. The NCs composition is well controlled through varying molar ratios of Se to Te precursors. Through changing the composition of the CdSe x Te 1-x NCs, the spectral absorption of the NC thin film between 570-800 nm is proved to be tunable. It is shown that the bandgap of homogeneously alloyed CdSe x Te 1-x active thin film is nonlinearly correlated with the different compositions, which is perceived as optical bowing. The solar cell devices based on CdSe x Te 1-x NCs with the structure of ITO/ZnO/CdSe/CdSe x Te 1-x /MoO x /Au and the graded bandgap ITO/ZnO/CdSe( w / o )/CdSe x Te 1-x /CdTe/MoO x /Au are systematically evaluated. It was found that the performance of solar cells degrades almost linearly with the increase of alloy NC film thickness with respect to ITO/ZnO/CdSe/CdSe 0.2 Te 0.8 /MoO x /Au. From another perspective, in terms of the graded bandgap structure of ITO/ZnO/CdSe/CdSe x Te 1-x /CdTe/MoO x /Au, the performance is improved in contrast with its single-junction analogues. The graded bandgap structure is proved to be efficient when absorbing spectrum and the solar cells fabricated under the structure of ITO/ZnO/CdSe 0.8 Te 0.2 /CdSe 0.2 Te 0.8 /CdTe/MoO x /Au indicate power conversion efficiency (PCE) of 6.37%, a value among the highest for solution-processed inversely-structured CdSe x Te 1-x NC solar cells. As the NC solar cells are solution-processed under environmental conditions, they are promising for fabricating solar cells at low cost, roll by roll and in large area.

  10. Electrodeposition of nanocrystalline CdSe thin films from dimethyl sulfoxide solution: Nucleation and growth mechanism, structural and optical studies

    International Nuclear Information System (INIS)

    Henriquez, R.; Badan, A.; Grez, P.; Munoz, E.; Vera, J.; Dalchiele, E.A.; Marotti, R.E.; Gomez, H.

    2011-01-01

    Highlights: → Electrodeposition of CdSe nanocrystalline semiconductor thin films. → Polycrystalline wurtzite structure with a slight (1010) preferred orientation. → Absorption edge shifts in the optical properties due to quantum confinement effects. - Abstract: Cadmium selenide (CdSe) nanocrystalline semiconductor thin films have been synthesized by electrodeposition at controlled potential based in the electrochemical reduction process of molecular selenium in dimethyl sulfoxide (DMSO) solution. The nucleation and growth mechanism of this process has been studied. The XRD pattern shows a characteristic polycrystalline hexagonal wurtzite structure with a slight (1 0 1 0) crystallographic preferred orientation. The crystallite size of nanocrystalline CdSe thin films can be simply controlled by the electrodeposition potential. A quantum size effect is deduced from the correlation between the band gap energy and the crystallite size.

  11. Mobility lifetime product in doped and undoped nanocrystalline CdSe

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Al-Kabbi, Alaa S.; Sharma, Kriti; Saini, G.S.S.

    2013-01-01

    This paper reports the effect of doping on the charge transport in nanocrystalline CdSe thin film. The X-ray study confirms that the doping is achieved and the physical properties are improved. The energy resolution of a semiconductor radiation detector depends on the charge transport properties of the semiconductor and the mobility-lifetime (μτ) product is a key figure of merit for the charge transport. μτ product in nanocrystalline CdSe, CdSe:In and CdSe:Zn thin films has been estimated from temperature dependence of the photoconductivity, which increases with increase in temperature and doping. Also, μτ product of electrons in pure and doped nanocrystalline CdSe thin films has been determined by spectral photoconductivity at different applied voltages. Both the μτ and photoconductivity increase linearly with the bias voltage but the wavelength dependence remains qualitatively similar in all samples. The μτ products increase at photon energies > energy gap, which indicates that the recombination process depends on the excitation energy. The doped CdSe thin films have higher drift length in comparison with undoped films which suggest that these thin films can be used in charge collecting devices. - Highlights: • The structure of thin films has been studied using X-ray diffraction. • Spectral dependence of μτ product in pure and doped nc-CdSe thin films is studied. • The mobility-lifetime product shows dependence on temperature and doping type. • The drift length increases linearly with increasing applied field and doping. • The transport properties of nc-CdSe thin films are enhanced with doping

  12. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O.

    Science.gov (United States)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V; Pillai, Vijayamohanan K

    2014-08-07

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, "as grown" CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ∼ 470 μA cm(-2)) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.

  13. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.

    Science.gov (United States)

    Li, Shu; Steigerwald, Michael L; Brus, Louis E

    2009-05-26

    We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines the excited electron within the nanocrystal. Despite the high luminescence quantum yield, photoionization varies substantially among the CdSe/CdS nanocrystals. We have studied the nanocrystal photoionization with both UV (396 nm) and green (532 nm) light, and we have found that the magnitude of the charge due to photoionization per absorbed photon is greater for UV excitation than for green excitation. A fraction of the photoionization occurs directly via a "hot electron" process, using trap states that are either on the particle surface, within the ligand sphere, or within the silicon oxide layer. This must occur without relaxation to the thermalized, lowest-energy, emitting exciton. We discuss the occurrence of hot carrier processes that are common to photoionization, luminescence blinking, and the fast transient optical absorption that is associated with multiple exciton generation MEG studies.

  14. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    OpenAIRE

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5...

  15. Elaboration and characterization of a KCl single crystal doped with nanocrystals of a Sb2O3 semiconductor

    International Nuclear Information System (INIS)

    Bouhdjer, L.; Addala, S.; Halimi, O.; Boudine, B.; Sebais, M.; Chala, A.

    2013-01-01

    Undoped and doped KCl single crystals have been successfully elaborated via the Czochralski (Cz) method. The effects of dopant Sb 2 O 3 nanocrystals on structural and optical properties were investigated by a number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDAX) analysis, UV-visible and photoluminescence (PL) spectrophotometers. An XRD pattern of KCl:Sb 2 O 3 reveals that the Sb 2 O 3 nanocrystals are in the well-crystalline orthorhombic phase. The broadening of diffraction peaks indicated the presence of a Sb 2 O 3 semiconductor in the nanometer size regime. The shift of absorption and PL peaks is observed near 334 nm and 360 nm respectively due to the quantum confinement effect in Sb 2 O 3 nanocrystals. Particle sizes calculated from XRD studies agree fairly well with those estimated from optical studies. An SEM image of the surface KCl:Sb 2 O 3 single crystal shows large quasi-spherical of Sb 2 O 3 crystallites scattered on the surface. The elemental analysis from EDAX demonstrates that the KCl:Sb 2 O 3 single crystal is slightly rich in oxygen and a source of excessive quantities of oxygen is discussed. (semiconductor materials)

  16. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kgobudi Frans Chepape

    2017-01-01

    Full Text Available Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM analysis of the samples showed that 50% PVP-capped CdSe nanoparticles were uniformly distributed in size with an average of 2.7 nm and shape which was spherical-like. The photocatalytic degradation of methyl blue (MB in water showed efficiencies of 31% and 48% when using uncapped and 50% PVP-capped CdSe nanoparticles as photocatalysts, respectively. The efficiency of PVP-capped CdSe nanoparticles indicated that a complete green process can be utilized for photocatalytic treatment of water and waste water.

  17. Hole transfer from CdSe nanoparticles to TQ1 polymer in hybrid solar cell device

    Science.gov (United States)

    Sohail, Muhammad; Shah, Zawar Hussain; Saeed, Shomaila; Bibi, Nasreen; Shahbaz, Sadia; Ahmed, Safeer; Shabbir, Saima; Siddiq, Muhammad; Iqbal, Azhar

    2018-05-01

    In view of realizing the economic viability, we fabricate a solar cell device containing low band gap and easily processable polymer 5-yl-8-(thiophene-2,5-diyl)-2,3-bis(3-(octyloxy)phenyl) quinoxaline (TQ1) and CdSe nanoparticles (NPs) and investigate its charge transport properties. When the TQ1 is combined with the CdSe NPs a strong photoluminescence quenching and shortening of photoluminescence lifetime of the TQ1 is observed indicating exciton transfer from TQ1 to the CdSe NPs. The time-resolved photoluminescence further reveals that the exciton transfer from the polymer to CdSe NPs is very efficient (68%) and it occurs in solar cell as compared to polymer only device. These observations suggest the importance of other II-VI semiconductor NPs to achieve higher efficiency for photovoltaic devices containing TQ1 polymer.

  18. Fundamentals and Applications of Semiconductor Nanocrystals : A study on the synthesis, optical properties, and interactions of quantum dots

    NARCIS (Netherlands)

    Koole, R.

    2008-01-01

    This thesis focuses on both the fundamental aspects as well as applications of colloidal semiconductor nanocrystals, also called quantum dots (QDs). Due to the unique size-dependent optical and electronic properties of QDs, they hold great promise for a wide range of applications like solar cells,

  19. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    Science.gov (United States)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic

  20. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya

    2015-02-12

    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class of nanocrystals are major factors limiting their applicability. To remove these undesirable defect states which considerably shorten the lifetimes of photogenerated excited carriers, a detailed understanding about their origin and nature is required. In this report, we monitor the ultrafast charge carrier dynamics of CuInS2 (CIS), CuInSSe (CISSe), and CuInSe2 (CISe) nanocrystals, before and after ZnS shelling, using state-of-the-art time-resolved laser spectroscopy with broadband capabilities. The experimental results demonstrate the presence of both electron and hole trapping intra-bandgap states in the nanocrystals which can be removed significantly by ZnS shelling, and the carrier dynamics is slowed down. Another important observation remains the reduction of carrier lifetime in the presence of Se, and the shelling strategy is observed to be less effective at suppressing trap states. This study provides quantitative physical insights into the role of anion composition and shelling on the charge carrier dynamics in ternary CIS, CISSe, and CISe nanocrystals which are essential to improve their applicability for photovoltaics and optoelectronics.

  1. Doping effect in Si nanocrystals

    Science.gov (United States)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  2. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    Science.gov (United States)

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  3. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun

    2016-03-14

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. © 2016 Macmillan Publishers Limited. All rights reserved.

  4. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    International Nuclear Information System (INIS)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi; Liu Baoting

    2009-01-01

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  5. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu Baoting, E-mail: xyzh66@ysu.edu.c [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2009-10-21

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  6. Exciton fine structure in CdSe nanoclusters

    International Nuclear Information System (INIS)

    Leung, K.; Pokrant, S.; Whaley, K.B.

    1998-01-01

    The fine structure in the CdSe nanocrystal absorption spectrum is computed by incorporating two-particle electron-hole interactions and spin-orbit coupling into a tight-binding model, with an expansion in electron-hole single-particle states. The exchange interaction and spin-orbit coupling give rise to dark, low-lying states that are predominantly triplet in character, as well as to a manifold of exciton states that are sensitive to the nanocrystal shape. Near the band gap, the exciton degeneracies are in qualitative agreement with the effective mass approximation (EMA). However, instead of the infinite lifetimes for dark states characteristic of the EMA, we obtain finite radiative lifetimes for the dark states. In particular, for the lowest, predominantly triplet, states we obtain radiative lifetimes of microseconds, in qualitative agreement with the experimental measured lifetimes. The resonant Stokes shifts obtained from the splitting between the lowest dark and bright states are also in good agreement with experimental values for larger crystallites. Higher-lying states exhibit significantly more complex behavior than predicted by EMA, due to extensive mixing of electron-hole pair states. copyright 1998 The American Physical Society

  7. Self-aggregation of magnetic semiconductor EuS nanocrystals

    International Nuclear Information System (INIS)

    Tanaka, Atsushi; Hasegawa, Yasuchika; Kamikubo, Hironari; Kataoka, Mikio; Kawai, Tsuyoshi

    2009-01-01

    Controlled formation of aggregates having organized structure of cube-shaped EuS nanocrystals is reported. The EuS aggregates in liquid media (methanol) were obtained by means of van der Waals interaction between EuS nanocrystals. The packing structure of the EuS aggregates is characterized with transmission electron microscopy (TEM) and small angle X-ray scattering measurements (SAXS). TEM image indicates the EuS nanocrystals form self-aggregated 2D orthogonal lattice structure. The diffraction peak of (111) of SAXS profile shows that the cube-shaped EuS form 3D cubic superlattice. We successfully demonstrated that the aggregates of cube-shaped EuS nanocrystals formed cubic stacking structure.

  8. Metal complexes of alkyl-aryl dithiocarbamates: Structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals

    Science.gov (United States)

    Andrew, Fartisincha P.; Ajibade, Peter A.

    2018-03-01

    Dithiocarbamates are versatile ligands able to stabilize wide range of metal ions in their various oxidation states with the partial double bond character of Csbnd N and Csbnd S of thioureide moiety. Variation of the substituents attached to the nitrogen atom of dithiocarbamate moiety generates various intermolecular interactions, which lead to different structural arrangement in the solid state. The presence of bulky substituents on the N atom obviates the supramolecular aggregation via secondary Msbnd S interactions whereas smaller substituents encourage such aggregation that results in their wide properties and applications. Over the past decades, the synthesis and structural studies of metal complexes of dithiocarbamates have received considerable attention as potential anticancer agents with various degree of DNA binding affinity and cytotoxicity and as single molecule precursors for the preparation of semiconductor nanocrystals. In this paper, we review the synthesis, structural studies, anticancer potency and the use of alkyl-phenyl dithiocarbamate complexes as precursors for the preparation of semiconductor nanocrystals. The properties of these compounds and activities are ascribed to be due to either the dithiocarbamate moieties, the nature or type of the substituents around the dithiocarbamate backbone and the central metal ions or combination of these factors.

  9. Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires

    KAUST Repository

    Chakraborty, Ritun; Greullet, Fanny; George, Chandramohan; Baranov, Dmitry; Di Fabrizio, Enzo M.; Krahne, Roman

    2013-01-01

    Metal-semiconductor hybrid nanostructures promise improved photoconductive performance due to plasmonic properties of the metal portions and intrinsic electric fields at the metal-semiconductor interface that possibly enhance charge separation. Here we report gold decorated CdSe nanowires as a novel functional material and investigate the influence of gold decoration on the lateral facets on the photoconductive properties. Gold decorated nanowires show typically an at least ten-fold higher photocurrent as compared to their bare counterparts. Interestingly, the photocurrent enhancement is wavelength independent, although the plasmon resonance related to the gold particles appears in the absorption spectra. Our experiments show that light scattering and Schottky fields associated with the metal-semiconductor interface are at the origin of the photocurrent enhancement. © 2013 The Royal Society of Chemistry.

  10. Optically Active CdSe-Dot/CdS-Rod Nanocrystals with Induced Chirality and Circularly Polarized Luminescence.

    Science.gov (United States)

    Cheng, Jiaji; Hao, Junjie; Liu, Haochen; Li, Jiagen; Li, Junzi; Zhu, Xi; Lin, Xiaodong; Wang, Kai; He, Tingchao

    2018-05-30

    Ligand-induced chirality in semiconductor nanocrystals (NCs) has attracted attention because of the tunable optical properties of the NCs. Induced circular dichroism (CD) has been observed in CdX (X = S, Se, Te) NCs and their hybrids, but circularly polarized luminescence (CPL) in these fluorescent nanomaterials has been seldom reported. Herein, we describe the successful preparation of l- and d-cysteine-capped CdSe-dot/CdS-rods (DRs) with tunable CD and CPL behaviors and a maximum anisotropic factor ( g lum ) of 4.66 × 10 -4 . The observed CD and CPL activities are sensitive to the relative absorption ratio of the CdS shell to the CdSe core, suggesting that the anisotropic g-factors in both CD and CPL increase to some extent for a smaller shell-to-core absorption ratio. In addition, the molar ratio of chiral cysteine to the DRs is investigated. Instead of enhancing the chiral interactions between the chiral molecules and DRs, an excess of cysteine molecules in aqueous solution inhibits both the CD and CPL activities. Such chiral and emissive NCs provide an ideal platform for the rational design of semiconductor nanomaterials with chiroptical properties.

  11. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  12. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  13. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    International Nuclear Information System (INIS)

    Liu, Haitao

    2007-01-01

    In the last two decades, the field of nanoscience and nanotechnology has witnessed tremendous advancement in the synthesis and application of group II-VI colloidal nanocrystals. The synthesis based on high temperature decomposition of organometallic precursors has become one of the most successful methods of making group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later extended by others to prepare other group II-VI quantum dots as well as anisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on the chemistry of this type of nanocrystal synthesis. The synthesis of group II-VI nanocrystals was studied by characterizing the molecular structures of the precursors and products and following their time evolution in the synthesis. Based on these results, a mechanism was proposed to account for the 2 reaction between the precursors that presumably produces monomer for the growth of nanocrystals. Theoretical study based on density functional theory calculations revealed the detailed free energy landscape of the precursor decomposition and monomer formation pathway. Based on the proposed reaction mechanism, a new synthetic method was designed that uses water as a novel reagent to control the diameter and the aspect ratio of CdSe and CdS nanorods

  14. Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology.

    Science.gov (United States)

    Cunningham, Patrick D; Souza, João B; Fedin, Igor; She, Chunxing; Lee, Byeongdu; Talapin, Dmitri V

    2016-06-28

    Semiconductor nanorods can emit linear-polarized light at efficiencies over 80%. Polarization of light in these systems, confirmed through single-rod spectroscopy, can be explained on the basis of the anisotropy of the transition dipole moment and dielectric confinement effects. Here we report emission polarization in macroscopic semiconductor-polymer composite films containing CdSe/CdS nanorods and colloidal CdSe nanoplatelets. Anisotropic nanocrystals dispersed in polymer films of poly butyl-co-isobutyl methacrylate (PBiBMA) can be stretched mechanically in order to obtain unidirectionally aligned arrays. A high degree of alignment, corresponding to an orientation factor of 0.87, was achieved and large areas demonstrated polarized emission, with the contrast ratio I∥/I⊥ = 5.6, making these films viable candidates for use in liquid crystal display (LCD) devices. To some surprise, we observed significant optical anisotropy and emission polarization for 2D CdSe nanoplatelets with the electronic structure of quantum wells. The aligned nanorod arrays serve as optical funnels, absorbing unpolarized light and re-emitting light from deep-green to red with quantum efficiencies over 90% and high degree of linear polarization. Our results conclusively demonstrate the benefits of anisotropic nanostructures for LCD backlighting. The polymer films with aligned CdSe/CdS dot-in-rod and rod-in-rod nanostructures show more than 2-fold enhancement of brightness compared to the emitter layers with randomly oriented nanostructures. This effect can be explained as the combination of linearly polarized luminescence and directional emission from individual nanostructures.

  15. Composite material including nanocrystals and methods of making

    Science.gov (United States)

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  16. Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots)

    International Nuclear Information System (INIS)

    Yu, Peter Y; Gardner, Grat; Nozaki, Shinji; Berbezier, Isabelle

    2006-01-01

    We review the study of nanocrystals or quantum dots using inelastic light scattering spectroscopies. In particular recent calculations of the phonon density of states and low frequency Raman spectra in Ge nanocrystals are presented for comparison with experimental results

  17. Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays.

    Science.gov (United States)

    Generalova, Alla N; Sizova, Svetlana V; Zdobnova, Tatiana A; Zarifullina, Margarita M; Artemyev, Michail V; Baranov, Alexander V; Oleinikov, Vladimir A; Zubov, Vitaly P; Deyev, Sergey M

    2011-02-01

    This study aimed to design a panel of uniform particulate biochemical reagents and to test them in specific bioassays. These reagents are polymer particles of different sizes doped with semiconductor nanocrystals and conjugated with either full-size antibodies or recombinant mini-antibodies (4D5 scFv fragment) designed by genetic engineering approaches. A panel of highly fluorescent polymer particles (150-800 nm) were formed by embedding CdSe/ZnS nanocrystals (quantum dots) into preformed polyacrolein and poly(acrolein-co-styrene) particles. Morphology, content and fluorescence characteristics of the prepared materials were studied by laser correlation spectroscopy, spectrophotometry, optical and fluorescent microscopy and fluorimetry. The obtained fluorescent particles sensitized by anti-Yersinia pestis antibodies were used for rapid agglutination glass test suitable for screening analysis of Y. pestis antigen and for microtiter particle agglutination, which, owing to its speed and simplicity, is very beneficial for diagnostic detection of Y. pestis antigen. Recombinant 4D5 scFv antibodies designed and conjugated with polymer particles containing quantum dots provide multipoint highly specific binding with cancer marker HER2/neu on the surface of SKOV-3 cell.

  18. Synthesis of nanocrystals and nanocrystal self-assembly

    Science.gov (United States)

    Chen, Zhuoying

    compared with other less polar solvents) in order to determine optimized conditions for self-assembly, for which relatively large (> 1 mum2) areas of superlattices could be routinely formed. Depending on appropriate selection of the radius ratio, AuCu or CaCu 5 binary superlattices of CdSe-Au nanoparticles were generated. Chapter 4. The preparation of binary nanoparticle superlattices obtained by self-assembly of two different semiconductor quantum dots is presented. Such a system is a means to include two discretized, quantum-confined, and complimentary semiconductor units in close proximity, which might exhibit interesting charge transport properties for applications such as solar cells. From a range of possible structures predicted, we observe an exclusive preference for the formation of Cuboctahedral AB13 (Cuboctahedral modification of NaZn13) and AB5 (isostructural with CaCu5) structures in the system of 8.1 nm CdTe and 4.4 nm CdSe nanoparticles. To understand further the principles of superlattice formation, space-filling curves for binary component hard spheres over the full range of radius ratio are constructed. In addition, the pair interaction energies due to core-core and ligand-ligand van der Waals forces are estimated. The real structures are believed to form under a major influence of entropic driving forces (following the hard-sphere space filling principle) and combined with other influence from the surface (as nanoparticle deviates from hard spheres). Chapter 5. A nanoparticle radius ratio dependent study of the formation of binary nanoparticle superlattices (BNSLs) of CdTe and CdSe quantum dots is reported. While keeping all other parameters identical in the system, the effective nanoparticle radius ratio, gammaeff, was tuned to allow the formation of five different BNSL structures, AlB 2, cub-NaZn13, ico-NaZn 13, CaCu5, and MgZn2. For each structure, gamma eff is located close to a local maximum of its space-filling factor, based on a model following the

  19. Study on growth kinetics of hexadecylamine capped CdSe nanoparticles using its electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Oluwafemi, S.O., E-mail: tobi_55@yahoo.co [Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa 3886 (South Africa); Revaprasadu, N. [Department of Chemistry, University of Zululand, Private Bag X1001, Kwadlangezwa 3886 (South Africa)

    2009-05-01

    The growth kinetics of hexadecylamine (HDA) capped CdSe synthesised via a novel, mild, effective, and facile non-organometallic route was studied using its electronic properties. The emission and optical maxima of all the nanoparticles synthesised are blue-shifted as the reaction time increases indicating decrease in particle size. The UV spectra show distinct excitonic features which can be attributed to the first electronic transition [1S{sub 3/2}(h)-1S(e)] occurring in CdSe nanoparticles with band-edge luminescence in their emission spectra. The extinction coefficient was determined for convenient and accurate measurements of the concentration of the nanocrystals. Nucleation is very fast and well separated from particle growth under this reaction condition. Two distinguishable stages of growth were observed: an early stage 0-10 min characterised by fast growth, with narrow size distribution and the late stage characterised by slow growth with slight defocusing of size distribution and large particle sizes. The diameter of the size ranges from 2.2 to 3.0 nm. About 94% of the available monomer concentration was consumed during the growth and the solubility of 3.0 nm CdSe in hexadecylamine is measured to be 9.216x10{sup -7} M{sup 2} at 433 deg. K.

  20. Optimizing colloidal nanocrystals for applications

    International Nuclear Information System (INIS)

    Sytnyk, M.

    2015-01-01

    In the scientific literature colloidal nanocrystals are presented as promising materials for multiple applications, in areas covering optoelectronics, photovoltaics, spintronics, catalysis, and bio-medicine. On the marked are, however, only a very limited number of examples found, indeed implementing colloidal nanocrystals. Thus the scope of this thesis was to modify nanocrystals and to tune their properties to fulfill specific demands. While some modifications could be achieved by post synthetic treatments, one key problem of colloidal nanocrystals, hampering there widespread application is the toxicity of their constituents. To develop nanocrystals from non-toxic materials has been a major goal of this thesis as well. Roughly, the results in this thesis could be subdivided into three parts: (i) the development of ion exchange methods to tailor the properties of metallic and metal-oxide based nanocrystal heterostructures, (ii), the synthesis of semiconductor nanocrystals from non-toxic materials, and (iii) the characterization of the nanocrystals by measurements of their morphology, chemical composition, magnetic-, optical-, and electronic properties. In detail, the thesis is subdivided into an introductory chapter, 4 chapters reporting on scientific results, a chapter reporting the used methods, and the conclusions. The 4 chapters devoted to the scientific results correspond to manuscripts, which are either currently in preparation, or have been published in highly ranked scientific journals such as NanoLetters (chapter 2), ACS Nano (chapter 4), or JACS (chapter 5). Thus, these chapters provide also an extra introduction and conclusion section, as well as separate reference lists. Chapter 2 describes a cation exchange process which is used to tune and improve the magnetic properties of different iron-oxide based colloidal nanocrystal-heterostructures. The superparamagnetic blocking temperature, magnetic remanence, and coercivity is tuned by replacing Fe2+ by Co2

  1. One pot synthesis, growth mechanism and optical properties of Zn{sub 1-x}Cd{sub x}Se graded core/shell and alloy nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, Kiran G. [Department of Physics, University of Pune, Pune 411 007 (India); Patil, K.R. [Centre for Materials Characterization, National Chemical Laboratory, Pune 411 008 (India); Mahamuni, Shailaja, E-mail: shailajamahamuni@yahoo.co.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2013-03-15

    Comparatively higher photoluminescence yield along with robustness of core/shell semiconductor nanocrystals make them attractive candidates for studying intricate quantum size effects. Here, we report, one pot synthesis of Zn{sub 1-x}Cd{sub x}Se graded core/shell structures by exploiting change in the reactivity of precursors. Optical and structural measurements indicate formation of graded structure. Growth mechanism probed by inductively coupled plasma atomic emission spectroscopy shows formation of graded core/shell structure, with CdSe rich core and ZnSe rich shell. Annealing these nanocrystals, in chemical bath, leads to diffusion of Cd from core to shell region. Formation of Zn{sub 1-x}Cd{sub x}Se alloy is also observed in X-ray photoelectron spectroscopic measurements, confirming the diffusion of Cd from core to shell region. Substantially high photoluminescence quantum efficiency of 60% with narrow line width of about 27 nm, was observed and is attributable to the reduced strain due to graded core/shell structure. - Highlights: Black-Right-Pointing-Pointer Graded CdSe/ZnSe core-shell nanocrystals are synthesized exploiting reactivity of precursors. Black-Right-Pointing-Pointer Growth mechanism is probed using ICP-AES spectroscopy. Black-Right-Pointing-Pointer Reduced strain leads to luminescence efficiency as high as 60%. Black-Right-Pointing-Pointer Alloy formation by annealing in chemical bath is probed using XPS.

  2. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    Science.gov (United States)

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  3. Analysis of the electrodeposition and surface chemistry of CdTe, CdSe, and CdS thin films through substrate-overlayer surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Gu, Junsi; Fahrenkrug, Eli; Maldonado, Stephen

    2014-09-02

    The substrate-overlayer approach has been used to acquire surface enhanced Raman spectra (SERS) during and after electrochemical atomic layer deposition (ECALD) of CdSe, CdTe, and CdS thin films. The collected data suggest that SERS measurements performed with off-resonance (i.e. far from the surface plasmonic wavelength of the underlying SERS substrate) laser excitation do not introduce perturbations to the ECALD processes. Spectra acquired in this way afford rapid insight on the quality of the semiconductor film during the course of an ECALD process. For example, SERS data are used to highlight ECALD conditions that yield crystalline CdSe and CdS films. In contrast, SERS measurements with short wavelength laser excitation show evidence of photoelectrochemical effects that were not germane to the intended ECALD process. Using the semiconductor films prepared by ECALD, the substrate-overlayer SERS approach also affords analysis of semiconductor surface adsorbates. Specifically, Raman spectra of benzenethiol adsorbed onto CdSe, CdTe, and CdS films are detailed. Spectral shifts in the vibronic features of adsorbate bonding suggest subtle differences in substrate-adsorbate interactions, highlighting the sensitivity of this methodology.

  4. Synthesis, spectroscopy and simulation of doped nanocrystals

    NARCIS (Netherlands)

    Suyver, Jan Frederik

    2003-01-01

    This thesis deals with the properties of semiconductor nanocrystals (ZnS or ZnSe) in the size range (diameter) of 2 nm to 10 nm. The nanocrystals under investigation are doped with the transition metal ions manganese or copper. The goal is to study photoluminescence and electroluminescence from

  5. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  6. Photophysical Properties of II-VI Semiconductor Nanocrystals

    Science.gov (United States)

    Gong, Ke

    As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in

  7. A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles

    Science.gov (United States)

    Sukanya, D.; Sagayaraj, P.

    2015-06-01

    II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).

  8. A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles

    International Nuclear Information System (INIS)

    Sukanya, D.; Sagayaraj, P.

    2015-01-01

    II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM)

  9. Engineering of Semiconductor Nanocrystals for Light Emitting Applications

    Directory of Open Access Journals (Sweden)

    Francesco Todescato

    2016-08-01

    Full Text Available Semiconductor nanocrystals are rapidly spreading into the display and lighting markets. Compared with liquid crystal and organic LED displays, nanocrystalline quantum dots (QDs provide highly saturated colors, wide color gamut, resolution, rapid response time, optical efficiency, durability and low cost. This remarkable progress has been made possible by the rapid advances in the synthesis of colloidal QDs and by the progress in understanding the intriguing new physics exhibited by these nanoparticles. In this review, we provide support to the idea that suitably engineered core/graded-shell QDs exhibit exceptionally favorable optical properties, photoluminescence and optical gain, while keeping the synthesis facile and producing QDs well suited for light emitting applications. Solid-state laser emitters can greatly profit from QDs as efficient gain materials. Progress towards fabricating low threshold, solution processed DFB lasers that are optically pumped using one- and two-photon absorption is reviewed. In the field of display technologies, the exploitation of the exceptional photoluminescence properties of QDs for LCD backlighting has already advanced to commercial levels. The next big challenge is to develop the electroluminescence properties of QD to a similar state. We present an overview of QLED devices and of the great perspectives for next generation display and lighting technologies.

  10. Measuring the Valence of Nanocrystal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan Scharle [Columbia Univ., New York, NY (United States)

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystal with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.

  11. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  12. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  13. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5 nm have the high-pressure rock-salt structure and are in a cube-on-cube orientation relation with MgO, whereas clusters larger than 5 nm adopt the stable wurtzite crystal structure and were observed in two different orientation relations with MgO

  14. Structural and optical properties of nanocrystalline CdSe and Al:CdSe thin films for photoelectrochemical application

    Energy Technology Data Exchange (ETDEWEB)

    Gawali, Sanjay A. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004 (India); Bhosale, C.H., E-mail: bhosale_ch@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004 (India)

    2011-10-03

    Highlights: {yields} The CdSe and Al:CdSe thin films have been successfully deposited by SPT. {yields} Hexagonal cubic structured CdSe and Al: CdSe thin films are observed. {yields} Large number of fine grains, Uniform and compact growth morphology. {yields} Hydrophilic surface nature. {yields} Al:CdSe have better PEC performance than CdSe. - Abstract: Nanocrystalline CdSe and Al:CdSe semiconductor thin films have been successfully synthesized onto amorphous and FTO glass substrates by spray pyrolysis technique. Aqueous solutions containing precursors of Cd and Se have been used to obtain good quality films. The optimized films have been characterized for their structural, morphological, wettability and optical properties. X-ray diffraction (XRD) studies show that the films are polycrystalline in nature with hexagonal crystal structure. Scanning electron microscopy (SEM) studies show that the film surface is smooth, uniform and compact in nature. Water wettability study reveals that the films are hydrophilic behavior. The formation of CdSe and Al:CdSe thin film were confirmed with the help of FTIR spectroscopy. UV-vis spectrophotometric measurement showed a direct allowed band gap lying in the range 1.673-1.87 eV. Output characteristics were studied by using cell configuration n- CdSe/Al:CdSe |1 M (NaOH + Na{sub 2} + S)|C. An efficient solar cell having a power conversion efficiency of 0.38% at illumination 25 mW cm{sup -2} was fabricated.

  15. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    Science.gov (United States)

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  16. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  17. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    International Nuclear Information System (INIS)

    Yu, William W; Chang, Emmanuel; Sayes, Christie M; Drezek, Rebekah; Colvin, Vicki L

    2006-01-01

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals

  18. Cathodic deposition of CdSe films from dimethyl formamide solution at optimized temperature

    Energy Technology Data Exchange (ETDEWEB)

    Datta, J. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India)]. E-mail: jayati_datta@rediffmail.com; Bhattacharya, C. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India); Visiting Research Associate, School of Materials Science and Engineering, UNSW (Australia); Bandyopadhyay, S. [School of Materials Science and Engineering, UNSW, Sydney 2052 (Australia)

    2006-12-15

    In the present paper, thin film CdSe compound semiconductors have been electroplated on transparent conducting oxide coated glass substrates from nonaqueous dimethyl formamide bath containing CdCl{sub 2}, KI and Se under controlled temperature ranging from 100 to 140 deg. C. Thickness of the deposited films as obtained through focussed ion beam technique as well as their microstructural and photoelectrochemical properties have been found to depend on temperature. The film growth was therefore optimized at a bath temperature {approx}125 deg. C. The formation of crystallites in the range of 100-150 nm size has been ascertained through atomic force microscopy and scanning electron microscopy. Energy dispersive analysis of X-rays for the as deposited film confirmed the 1:1 composition of CdSe compound in the matrix exhibiting band-gap energy of 1.74 eV. Microstructural properties of the deposited films have been determined through X-ray diffraction studies, high-resolution transmission electron microscopy and electron diffraction pattern analysis. Electrochemical impedance spectroscopy and current-potential measurements have been performed to characterize the electrochemical behavior of the semiconductor-electrolyte interface. The photo-activity of the films have been recorded in polysulphide solution under illumination and solar conversion efficiency {>=}1% was achieved.

  19. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-01-01

    -performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a

  20. Plasmonic light-sensitive skins of nanocrystal monolayers

    Science.gov (United States)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  1. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

    Science.gov (United States)

    Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred

    2016-03-22

    We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.

  2. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    OpenAIRE

    Chepape, Kgobudi Frans; Mofokeng, Thapelo Prince; Nyamukamba, Pardon; Mubiayi, Kalenga Pierre; Moloto, Makwena Justice

    2017-01-01

    Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP) in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM) analysis of the samples showed that 50% PVP-capped Cd...

  3. Effect of impurity inhomogeneity of CdS and CdSe monocrystalline semiconductors on electron absorption of piezoactive ultrasonic waves

    International Nuclear Information System (INIS)

    Ketis, B.P.; Krivka, I.

    1986-01-01

    Relation of observed anomalies (deviations from predictions of theory for homogeneous piezosemiconductor) of electronic absorption coefficient (EAC) of volume, piezoactive acoustic waves (with 15 MHz frequency) in CdS and CdSe hexagonal crystals with electrical heterogeneity is shown experimentally. Results of electron microanalysis of CdS and CdSe piezosemiconductors confirmed their impurity heterogeneity are presented as well as data of investigations into high-frequency conduction and electronic absorption of ultrasonic waves pointing out to volume nature of impurity and electric heterogeneities of monocrystals investigated. Correlation between EAC anomalies and surface density of impurity aggregates (IA) is noted as well as coincidence of impurity and electrical heterogeneities in CdS and CdSe crystals. In CdS crystals the observed anisotropy of high-frequency conduction and volume radioactive ultrasonic waves EAC is attributed to high density and anisotropy of IA space distribution and shape. To explain EAC anomalies, a crystal is simulated with heterogeneous grid of resistances and condensators

  4. Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Steven Michael [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability to finely tune the size and shape of inorganic semiconducting nanocrystals is an area of great interest, as the more control one has, the more applications will be possible for their use. The first two basic shapes develped in nanocrystals were the sphere and the anistropic nanorod. the II_VI materials being used such as Cadmium Selenide (CdSe) and Cadmium Telluride (CdTe), exhibit polytypism, which allows them to form in either the hexagonally packed wurtzite or cubically packed zinc blende crystalline phase. The nanorods are wurtzite with the length of the rod growing along the c-axis. As this grows, stacking faults may form, which are layers of zinc blende in the otherwise wurtzite crystal. Using this polytypism, though, the first generation of branched crystals were developed in the form of the CdTe tetrapod. This is a nanocrystal that nucleates in the zincblend form, creating a tetrahedral core, on which four wurtzite arms are grown. This structure opened up the possibility of even more complex shapes and applications. This disseration investigates the advancement of branching control and further understanding the materials polytypism in the form of the stacking faults in nanorods.

  5. Tuning optoelectronic properties of small semiconductor nanocrystals through surface ligand chemistry

    Science.gov (United States)

    Lawrence, Katie N.

    Semiconductor nanocrystals (SNCs) are a class of material with one dimension wave function 1) into the ligand monolayer using metal carboxylates and 2) beyond the ligand monolayer to provide strong inter-SNC electronic coupling using poly(ethylene) glycol (PEG)-thiolate was explored. Passivation of the Se sites of metal chalcogenide SNCs by metal carboxylates provided a two-fold outcome: (1) facilitating the delocalization of exciton wave functions into ligand monolayers (through appropriate symmetry matching and energy alignment) and (2) increasing fluorescence quantum yield (through passivation of midgap trap states). An ˜240 meV red-shift in absorbance was observed upon addition of Cd(O2CPh)2, as well as a ˜260 meV shift in emission with an increase in PL-QY to 73%. Through a series of control experiments, as well as full reversibility of our system, we were able to conclude that the observed bathochromic shifts were the sole consequence of delocalization, not a change in size or relaxation of the inorganic core, as previously reported. Furthermore, the outstanding increase in PL-QY was found to be a product of both passivation and delocalization effects. Next we used poly(ethylene) glycol (PEG)-thiolate ligands to passivate the SNC and provide unique solubility properties in both aqueous and organic solvents as well as utilized their highly conductive nature to explore inter-SNC electronic coupling. The electronic coupling was studied: 1) as a function of SNC size where the smallest SNC exhibited the largest coupling energy (170 meV) and 2) as a function of annealing temperature, where an exceptionally large (˜400 meV) coupling energy was observed. This strong electronic coupling in self-organized films could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device applications. Strong inter-SNC electronic coupling together with high solubility, such as that provided by PEG-thiolate-coated CdSe SNCs

  6. Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.

    Science.gov (United States)

    Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V

    2018-04-19

    Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.

  7. Memory characteristics of Au nanocrystals embedded in metal-oxide-semiconductor structure by using atomic-layer-deposited Al2O3 as control oxide

    International Nuclear Information System (INIS)

    Wang, C.-C.; Chiou, Y.-K.; Chang, C.-H.; Tseng, J.-Y.; Wu, L.-J.; Chen, C.-Y.; Wu, T.-B.

    2007-01-01

    The nonvolatile memory characteristics of metal-oxide-semiconductor (MOS) structures containing Au nanocrystals in the Al 2 O 3 /SiO 2 matrix were studied. In this work, we have demonstrated that the use of Al 2 O 3 as control oxide prepared by atomic-layer-deposition enhances the erase speed of the MOS capacitors. A giant capacitance-voltage hysteresis loop and a very short erase time which is lower than 1 ms can be obtained. Compared with the conventional floating-gate electrically erasable programmable read-only memories, the erase speed was promoted drastically. In addition, very low leakage current and large turn-around voltage resulting from electrons or holes stored in the Au nanocrystals were found in the current-voltage relation of the MOS capacitors

  8. Excitons in semiconducting quantum filaments of CdS and CdSe with dielectric barriers

    CERN Document Server

    Dneprovskij, V S; Shalygina, O A; Lyaskovskij, V L; Mulyarov, E A; Gavrilov, S A; Masumoto, I

    2002-01-01

    The peculiarities of the luminescence spectra obtained by different polarization and intensity of the pumping excitation and luminescence kinetics of the CdS and CdSe nanocrystals are explained by the exciton transitions in the semiconducting quantum threads with dielectric barriers. The exciton transition energies correspond to the calculated ones with an account of both their dimensional quantization and the effect of the excitons dielectric intensification. It is shown that the excitons transition energies do not change by the change in the quantum threads diameter within the wide range, while the increase in the one-dimensional forbidden zone width of quantum thread by the decrease in its diameter is compensated through the decrease in the excitons binding energy

  9. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N S [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Wong, K W [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Li, Q [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Zheng, Z [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Lau, W M [Surface Science Western, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2007-10-17

    Thinning of CdSe nanowires (NWs) with controllable size was achieved by a simple acid treatment and subsequent annealing on thick CdSe NWs synthesized from vapour phase growth. During acid treatment, not only the undesired impurities such as native oxides of Cd and Se could be etched, but surface reactions of CdSe NWs were also observed, resulting in the formation of a layer of elemental Se around a thinner CdSe core. As a result, a heterostructure of Se - CdSe nanostructure formed after acid treatment of CdSe NWs. Upon thermal annealing, the Se shell was effectively removed and thinned stoichiometric single-crystalline CdSe NWs could be obtained. It was observed that NWs could be thinned by up to {approx}60% in diameter by acid treatment and subsequent Se thermal desorption. The degree of thinning was controllable by adjusting the duration of acid treatment. The success of the thinning of CdSe NWs by simple acid treatment and the annealing process reported here opens a new processing route for obtaining stoichiometric CdSe NWs with controllable size reduction and improved aspect ratio. This can undoubtedly broadly improve the range of applications of 1D CdSe nanostructures and allow more exploration of their uni-directional properties. A correction was made to the last paragraph of section 3 on 18 September 2007. The corrected electronic version is identical to the print version.

  10. Controllable size reduction of CdSe nanowires through the intermediate formation of Se-coated CdSe nanowires using acid and thermal treatment

    International Nuclear Information System (INIS)

    Lam, N S; Wong, K W; Li, Q; Zheng, Z; Lau, W M

    2007-01-01

    Thinning of CdSe nanowires (NWs) with controllable size was achieved by a simple acid treatment and subsequent annealing on thick CdSe NWs synthesized from vapour phase growth. During acid treatment, not only the undesired impurities such as native oxides of Cd and Se could be etched, but surface reactions of CdSe NWs were also observed, resulting in the formation of a layer of elemental Se around a thinner CdSe core. As a result, a heterostructure of Se - CdSe nanostructure formed after acid treatment of CdSe NWs. Upon thermal annealing, the Se shell was effectively removed and thinned stoichiometric single-crystalline CdSe NWs could be obtained. It was observed that NWs could be thinned by up to ∼60% in diameter by acid treatment and subsequent Se thermal desorption. The degree of thinning was controllable by adjusting the duration of acid treatment. The success of the thinning of CdSe NWs by simple acid treatment and the annealing process reported here opens a new processing route for obtaining stoichiometric CdSe NWs with controllable size reduction and improved aspect ratio. This can undoubtedly broadly improve the range of applications of 1D CdSe nanostructures and allow more exploration of their uni-directional properties. A correction was made to the last paragraph of section 3 on 18 September 2007. The corrected electronic version is identical to the print version

  11. Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Deqian; Qiu, Yulong; Chen, Yuanzhi, E-mail: yuanzhi@xmu.edu.cn; Zhang, Qinfu; Liu, Xiang; Peng, Dong-Liang, E-mail: dlpeng@xmu.edu.cn [Xiamen University, Department of Materials Science and Engineering, Fujian Provincial Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials (China)

    2017-04-15

    Magnetic metal-semiconductor hybrid nanocrystals containing ferromagnetic Ni and semiconductor ZnO have been prepared via a hot-injection route. The Ni-ZnO hybrid nanocrystals have a flower-like morphology that consists of Ni inner cores and ZnO petal shells. In spite of their large lattice mismatch, ZnO nanocrystals can still grow on faceted Ni nanocrystals to form stable interfaces. The composition of Ni-ZnO hybrid nanocrystals is readily controlled, and the average size of Ni core is tunable from 25 to 50 nm. Room temperature ferromagnetic properties are observed in these hybrid nanocrystals, and tunable magnetic properties also can be achieved by varying the size of Ni core. The as-prepared Ni-ZnO hybrid nanocrystals exhibit enhanced photocatalytic performance under ultraviolet light illumination as compared to pure ZnO nanocrystals. Furthermore, the superior reusability of hybrid nanocrystals for photocatalytic application is achieved by virtue of their magnetic properties. The facile and efficient seed-mediate strategy is particularly attractive to construct hybrid magnetic-semiconducting heterostructures. The as-obtained Ni-ZnO hybrid nanocrystals offer great potential for various applications due to their combined magnetic and semiconducting properties and low-cost earth-abundant availability.

  12. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  13. Getting Across the Plasma Membrane and Beyond: Intracellular Uses of Colloidal Semiconductor Nanocrystals

    Directory of Open Access Journals (Sweden)

    Camilla Luccardini

    2007-01-01

    Full Text Available Semiconductor nanocrystals (NCs are increasingly being used as photoluminescen markers in biological imaging. Their brightness, large Stokes shift, and high photostability compared to organic fluorophores permit the exploration of biological phenomena at the single-molecule scale with superior temporal resolution and spatial precision. NCs have predominantly been used as extracellular markers for tagging and tracking membrane proteins. Successful internalization and intracellular labelling with NCs have been demonstrated for both fixed immunolabelled and live cells. However, the precise localization and subcellular compartment labelled are less clear. Generally, live cell studies are limited by the requirement of fairly invasive protocols for loading NCs and the relatively large size of NCs compared to the cellular machinery, along with the subsequent sequestration of NCs in endosomal/lysosomal compartments. For long-period observation the potential cytotoxicity of cytoplasmically loaded NCs must be evaluated. This review focuses on the challenges of intracellular uses of NCs.

  14. Blue-green luminescent CdZnSeS nanocrystals synthesized with activated alkyl thiol

    International Nuclear Information System (INIS)

    Xia Xing; Liu Zuli; Du Guihuan; Li Yuebin; Ma Ming; Yao Kailun

    2012-01-01

    Semiconductor nanocrystals with blue-green luminescence are potentially useful in various applications, but the preparation has not been easy compared to regular semiconductor nanocrystals with emission in the orange-red range. In this research alloyed CdZnSeS nanocrystals with luminescence covering the wavelength range from 430 to 560 nm are obtained by a one-step method with the assistance of alkyl thiol compound 1-dodecanethiol, which serves both as the sulfur source and surface ligand. The luminescence of CdZnSeS nanocrystals can be tuned from blue to green by altering the Cd:Zn molar ratio. Besides, the amount of 1-dodecanethiol in the reaction mixture can influence the emission wavelength by restricting the growth of nanocrystals. The dual control of both particle composition and size has enabled the tuning of luminescence to cover the blue-green spectral window. This research presents a convenient method to synthesize nanocrystals with tunable blue-green emission; these materials can be useful in advanced technologies such as photovoltaics, lighting and display. - Highlights: → Obtained blue-green luminescent nanocrystals by a one-step process. → Alkyl thiol used as a sulfur source and a surface stabilizer to control particle size. → Luminescence color of NCs could be easily tuned by changing their composition and particle size simultaneously.

  15. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals.

    Science.gov (United States)

    Chen, Lan; Li, Bin; Zhang, Chunfeng; Huang, Xinyu; Wang, Xiaoyong; Xiao, Min

    2018-03-14

    Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.

  16. Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites

    International Nuclear Information System (INIS)

    Hsieh, Y-P; Liang, C-T; Chen, Y-F; Lai, C-W; Chou, P-T

    2007-01-01

    Based on the enhanced electron-hole recombination rate generated by surface plasmon (SP) waves of Au nanoparticles (NPs) and electrons transferred from CdSe quantum dots (QDs) to Au NPs, we propose a mechanism to elucidate the luminescent behavior in Au and CdSe nanocomposites. With our proposed model, the enhancement of the spectrally integrated PL intensity can be manipulated by up to a factor of ∼33, the largest value ever reported. Our study can be used to clarify the ambiguity in controlling the light emission enhancement and quenching of semiconductor nanocrystals coupled with the SP waves of metal NPs. It should be very useful for the creation of highly efficient solid-state emitters

  17. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Takaaki Yamaguchi

    2016-10-01

    Full Text Available CdSe quantum dots are often used in industry as fluorescent materials. In this study, CdSe quantum dots were synthesized using Fusarium oxysporum. The cadmium and selenium concentration, pH, and temperature for the culture of F. oxysporum (Fusarium oxysporum were optimized for the synthesis, and the CdSe quantum dots obtained from the mycelial cells of F. oxysporum were observed by transmission electron microscopy. Ultra-thin sections of F. oxysporum showed that the CdSe quantum dots were precipitated in the intracellular space, indicating that cadmium and selenium ions were incorporated into the cell and that the quantum dots were synthesized with intracellular metabolites. To reveal differences in F. oxysporum metabolism, cell extracts of F. oxysporum, before and after CdSe synthesis, were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The results suggested that the amount of superoxide dismutase (SOD decreased after CdSe synthesis. Fluorescence microscopy revealed that cytoplasmic superoxide increased significantly after CdSe synthesis. The accumulation of superoxide may increase the expression of various metabolites that play a role in reducing Se4+ to Se2− and inhibit the aggregation of CdSe to make nanoparticles.

  18. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Science.gov (United States)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  19. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  20. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.

    Science.gov (United States)

    Giansante, Carlo; Infante, Ivan

    2017-10-19

    Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.

  1. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    International Nuclear Information System (INIS)

    Simurda, M.; Nemec, P.; Formanek, P.; Nemec, I.; Nemcova, Y.; Maly, P.

    2006-01-01

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film

  2. The hydrodynamic size of polymer stabilized nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Karl M; Al-Somali, Ali M; Mejia, Michelle; Colvin, Vicki L [Department of Chemistry, Rice University, MS-60 6100 Main Street, Houston, TX 77005 (United States)

    2007-11-28

    For many emerging applications, nanocrystals are surface functionalized with polymers to control self-assembly, prevent aggregation, and promote incorporation into polymer matrices and biological systems. The hydrodynamic diameter of these nanoparticle-polymer complexes is a critical factor for many applications, and predicting this size is complicated by the fact that the structure of the grafted polymer at a nanocrystalline interface is not generally established. In this work we evaluate using size-exclusion chromatography the overall hydrodynamic diameter of nanocrystals (Au, CdSe, d<5 nm) surface coated with polystyrene of varying molecular weight. The polymer is tethered to the nanoparticles via a terminal thiol to provide strong attachment. Our data show that at full coverage the polymer assumes a brush conformation and is 44% longer than the unbound polymer in solution. The brush conformation is confirmed by comparison with models used to describe polymer brushes at flat interfaces. From this work, we suggest an empirical formula which predicts the hydrodynamic diameter of polymer coated nanoparticles based on the size of the nanoparticle core and the size of the randomly coiled unbound polymer in solution.

  3. Novel mechanical behaviors of wurtzite CdSe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Bing [Shanghai Normal University, Department of Physics (China); Chen, Li [MCPHS University, School of Arts and Sciences (United States); Xie, Yiqun; Feng, Jie; Ye, Xiang, E-mail: yexiang@shnu.edu.cn [Shanghai Normal University, Department of Physics (China)

    2015-09-15

    As an important semiconducting nanomaterial, CdSe nanowires have attracted much attention. Although many studies have been conducted in the electronic and optical properties of CdSe NWs, the mechanical properties of Wurtzite (WZ) CdSe nanowires remain unclear. Using molecular dynamics simulations, we have studied the tensile mechanical properties and behaviors of [0001]-oriented Wurtzite CdSe nanowires. By monitoring the stretching processes of CdSe nanowires, three distinct structures are found: the WZ wire, a body-centered tetragonal structure with four-atom rings (denoted as BCT-4), and a structure that consists of ten-atom rings with two four-atom rings (denoted as TAR-4) which is observed for the first time. Not only the elastic tensile characteristics are highly reversible under unloading, but a reverse transition between TAR-4 and BCT-4 is also observed. The stretching processes also have a strong dependence on temperature. A tubular structure similar to carbon nanotubes is observed at 150 K, a single-atom chain is formed at 300, 350 and 450 K, and a double-atom chain is found at 600 K. Our findings on tensile mechanical properties of WZ CdSe nanowires does not only provide inspiration to future study on other properties of CdSe nanomaterials but also help design and build efficient nanoscale devices.

  4. Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand

    Directory of Open Access Journals (Sweden)

    Yang Hongwei

    2009-01-01

    Full Text Available Abstract Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM of PL (26 nm. Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.% of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585 was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26–31 nm and high QY of PL (35–55%.

  5. Sample-averaged biexciton quantum yield measured by solution-phase photon correlation.

    Science.gov (United States)

    Beyler, Andrew P; Bischof, Thomas S; Cui, Jian; Coropceanu, Igor; Harris, Daniel K; Bawendi, Moungi G

    2014-12-10

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.

  6. Synthesis of diluted magnetic semiconductor Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals in a host glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.S. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Mikhail, H.D., E-mail: ricardosilva@fisica.uftm.edu.br [Instituto de Ciências Tecnológicas e Exatas (ICTE), Departamento de Engenharia Mecânica, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, Minas Gerais (Brazil); Pavani, R. [Instituto de Ciências Exatas, Naturais e Educação (ICENE), Departamento de Física, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais (Brazil); Cano, N.F. [Departamento de Ciências do Mar, Universidade Federal de São Paulo, 11030-400 Santos, São Paulo (Brazil); Silva, A.C.A.; Dantas, N.O. [Instituto de Física, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Universidade Federal de Uberlândia, 38400-902 Uberlândia, Minas Gerais (Brazil)

    2015-11-05

    Diluted magnetic semiconductors of manganese doped in bismuth-telluride nanocrystals (Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs) were grown in a glass matrix and investigated by Transmission Electron Microscopy, X-Ray Diffraction, Atomic Force Microscopy/Magnetic Force Microscopy, and Electron Paramagnetic Resonance. TEM images showed that the nanocrystals formed within the glass matrix were nearly spherical, with average sizes between 4 and 5 nm, and d{sub 015}-spacing of approximately 0.322 nm, which corresponds to the (015) interplanar distance in Bi{sub 2}Te{sub 3} bulk. The diffraction patterns showed that the diffraction peak associated with the (015) plane of the Bi{sub 2−x}Mn{sub x}Te{sub 3} nanocrystals shifts to larger diffraction angles as manganese (Mn) concentration increases, suggesting that the Mn{sup 2+} ions are substitutional defects occupying Bi sites (Mn{sub Bi}). AFM and MFM measurements showed magnetic phase contrast patterns, providing further evidence of Mn{sup 2+} ion incorporation in the nanocrystal structure. EPR signal of manganese ion incorporation and valence states in the crystalline structure of the Bi{sub 2}Te{sub 3} nanocrystals confirmed the presence of the Mn{sup 2+} state. - Highlights: • Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs were synthesized in a glass matrix by fusion method. • Transmission Electronic Microscopy shows the formation of Bi{sub 2−x}Mn{sub x}Te{sub 3} NCs. • The sp-d exchange interaction in DMS NCs can be evidenced by X Ray-Diffraction and Magnetic Force Microscopy. • Electron Paramagnetic Resonance spectra confirmed that Mn{sup 2+} ions are located in two distinct Bi{sub 2}Te{sub 3} NCs sites.

  7. Seed-mediated direct growth of CdSe nanoclusters on substrates

    International Nuclear Information System (INIS)

    Pan Shangke; Ebrahim, Shaker; Soliman, Moataz; Qiao Qiquan

    2013-01-01

    Different shapes of CdSe nanostructures were obtained by hydrothermal method with varied Se sources and buffer layers. Hexagonal nanoparticles of CdSe with Wurtzite structure were synthesized from Se powder resource, while CdSe nanoclusters with Wurtzite structure were grown from Na 2 SeO 3 aqueous solution resources at 165 °C using cetyltrimethylammonium bromide as surfactant. Using ZnO nanoparticles as a seed layer, CdSe nanostructures only partially covered the indium tin oxide (ITO) substrates. With ZnO/CdSe quantum dots composite seed layer, CdSe nanostructures fully covered the ITO substrates.

  8. Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells.

    Science.gov (United States)

    Chen, Wei-Ta; Lin, Yin-Kai; Yang, Ting-Ting; Pu, Ying-Chih; Hsu, Yung-Jung

    2013-10-04

    Au/ZnS core/shell nanocrystals with controllable shell thicknesses were synthesized using a cysteine-assisted hydrothermal method. Incorporating Au/ZnS nanocrystals into the traditional Pt-catalyzed half-cell reaction led to a 43.3% increase in methanol oxidation current under light illumination, demonstrating their promising potential for metal/semiconductor hybrid nanocrystals as the anode photocatalyst in direct methanol fuel cells.

  9. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells.

    Science.gov (United States)

    Becker, Matthew A; Radich, James G; Bunker, Bruce A; Kamat, Prashant V

    2014-05-01

    Successive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films. The film characteristics interestingly show dependence on the order in which the Cd and Se are deposited, and the CdSe-TiO2 interface is affected only during the first few cycles of deposition. Development of a SeO2 passivation layer in the SILAR-prepared films to form a TiO2/SeO2/CdSe junction facilitates an increase in photocurrents and power conversion efficiencies of quantum dot solar cells when these films are integrated as photoanodes in a photoelectrochemical solar cell.

  10. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  11. Effect of dielectric confinement on optical properties of colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodina, A. V., E-mail: anna.rodina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Efros, Al. L., E-mail: efros@nrl.navy.mil [Naval Research Laboratory (United States)

    2016-03-15

    We review the effects caused by a large difference in the dielectric constants of a semiconductor and its surrounding in colloidal semiconductor nanostructures (NSs) with various shapes, e.g., nanocrystals, nanorods, and nanoplatelets. The difference increases the electron–hole interaction and consequently the exciton binding energy and its oscillator transition strength. On the other hand, this difference reduces the electric field of a photon penetrating the NS (the phenomenon is called the local field effect) and reduces the photon coupling to an exciton. We show that the polarization properties of the individual colloidal NSs as well as of their randomly oriented ensemble are determined both by the anisotropy of the local field effect and by the symmetry of the exciton states participating in optical transitions. The calculations explain the temperature and time dependences of the degree of linear polarization measured in an ensemble of CdSe nanocrystals.

  12. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  13. Reversible ultrafast melting in bulk CdSe

    International Nuclear Information System (INIS)

    Wu, Wenzhi; He, Feng; Wang, Yaguo

    2016-01-01

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm 2 , ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe

  14. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.

    Science.gov (United States)

    Epps, Robert W; Felton, Kobi C; Coley, Connor W; Abolhasani, Milad

    2017-11-21

    Colloidal organic/inorganic metal-halide perovskite nanocrystals have recently emerged as a potential low-cost replacement for the semiconductor materials in commercial photovoltaics and light emitting diodes. However, unlike III-V and IV-VI semiconductor nanocrystals, studies of colloidal perovskite nanocrystals have yet to develop a fundamental and comprehensive understanding of nucleation and growth kinetics. Here, we introduce a modular and automated microfluidic platform for the systematic studies of room-temperature synthesized cesium-lead halide perovskite nanocrystals. With abundant data collection across the entirety of four orders of magnitude reaction time span, we comprehensively characterize nanocrystal growth within a modular microfluidic reactor. The developed high-throughput screening platform features a custom-designed three-port flow cell with translational capability for in situ spectral characterization of the in-flow synthesized perovskite nanocrystals along a tubular microreactor with an adjustable length, ranging from 3 cm to 196 cm. The translational flow cell allows for sampling of twenty unique residence times at a single equilibrated flow rate. The developed technique requires an average total liquid consumption of 20 μL per spectra and as little as 2 μL at the time of sampling. It may continuously sample up to 30 000 unique spectra per day in both single and multi-phase flow formats. Using the developed plug-and-play microfluidic platform, we study the growth of cesium lead trihalide perovskite nanocrystals through in situ monitoring of their absorption and emission band-gaps at residence times ranging from 100 ms to 17 min. The automated microfluidic platform enables a systematic study of the effect of mixing enhancement on the quality of the synthesized nanocrystals through a direct comparison between single- and multi-phase flow systems at similar reaction time scales. The improved mixing characteristics of the multi-phase flow

  15. Efficient color-tunable multiexcitonic dual wavelength emission from Type II semiconductor tetrapods.

    Science.gov (United States)

    Wu, Wen-Ya; Li, Mingjie; Lian, Jie; Wu, Xiangyang; Yeow, Edwin K L; Jhon, Mark H; Chan, Yinthai

    2014-09-23

    We synthesized colloidal InP/ZnS seeded CdS tetrapods by harnessing the structural stability of the InP/ZnS seed nanocrystals at the high reaction temperatures needed to grow the CdS arms. Because of an unexpected Type II band alignment at the interface of the InP/ZnS core and CdS arms that enhanced the occurrence of radiative excitonic recombination in CdS, these tetrapods were found to be capable of exhibiting highly efficient multiexcitonic dual wavelength emission of equal intensity at spectrally distinct wavelengths of ∼485 and ∼675 nm. Additionally, the Type II InP/ZnS seeded CdS tetrapods displayed a wider range of pump-dependent emission color-tunability (from red to white to blue) within the context of a CIE 1931 chromaticity diagram and possessed higher photostability due to suppressed multiexcitonic Auger recombination when compared to conventional Type I CdSe seeded CdS tetrapods. By employing time-resolved spectroscopy measurements, we were able to attribute the wide emission color-tunability to the large valence band offset between InP and CdS. This work highlights the importance of band alignment in the synthetic design of semiconductor nanoheterostructures, which can exhibit color-tunable multiwavelength emission with high efficiency and photostability.

  16. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics

    Science.gov (United States)

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant

    2014-11-01

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in

  17. Effects of increasing number of rings on the ion sensing ability of CdSe quantum dots: a theoretical study

    Science.gov (United States)

    Malik, Pragati; Kakkar, Rita

    2018-04-01

    A computational study on the structural and electronic properties of a special class of artificial atoms, known as quantum dots, has been carried out. These are semiconductors with unique optical and electronic properties and have been widely used in various applications, such as bio-sensing, bio-imaging, and so on. We have considered quantum dots belonging to II-VI types of semiconductors, due to their wide band gap, possession of large exciton binding energies and unique optical and electronic properties. We have studied their applications as chemical ion sensors by beginning with the study of the ion sensing ability of (CdSe) n ( n = 3, 6, 9 which are in the size range of 0.24, 0.49, 0.74 nm, respectively) quantum dots for cations of the zinc triad, namely Zn2+, Cd2+, Hg2+, and various anions of biological and environmental importance, and studied the effect of increasing number of rings on their ion sensing ability. The various structural, electronic, and optical properties, their interaction energies, and charge transfer on interaction with metal ions and anions have been calculated and reported. Our studies indicate that the CdSe quantum dots can be employed as sensors for both divalent cations and anions, but they can sense cations better than anions.

  18. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qinyi; Guest, Jeffrey R. [Center; Thimsen, Elijah

    2017-07-12

    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), and experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.

  19. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Lin, Zhiqun [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2012-08-22

    Semiconductor organic-inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low-cost fabrication. The CP-based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution-processability of CPs, combined with high electron mobility and size-dependent optical properties of NCs. Recent research has witnessed rapid advances in an emerging field of directly tethering CPs on the NC surface to yield an intimately contacted CP-NC nanocomposite possessing a well-defined interface that markedly promotes the dispersion of NCs within the CP matrix, facilitates the photoinduced charge transfer between these two semiconductor components, and provides an effective platform for studying the interfacial charge separation and transport. In this Review, we aim to highlight the recent developments in CP-NC nanocomposite materials, critically examine the viable preparative strategies geared to craft intimate CP-NC nanocomposites and their photovoltaic performance in hybrid solar cells, and finally provide an outlook for future directions of this extraordinarily rich field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. CdSe nanoparticles grown via radiolytic methods in aqueous solutions

    International Nuclear Information System (INIS)

    Singh, Shalini; Rath, M.C.; Singh, A.K.; Mukherjee, T.; Jayakumar, O.D.; Tyagi, A.K.; Sarkar, S.K.

    2011-01-01

    Cadmium selenide, CdSe, nanoparticles have been synthesized in aqueous solution containing equimolar ammoniated CdSO 4 and Na 2 SeSO 3 as the starting materials without any capping agents, using gamma and electron beam irradiation under a reducing condition. The radiolytic processes occurring in water result in the formation of CdSe nanoparticles through the reactions mediated by hydrated electrons, e aq - . TEM measurements revealed that the CdSe nanoparticles were found to exist in agglomerates of dimension of about 100 nm, consisting of primary nanoparticles of dimensions within 5 nm. The as-grown nanoparticles were of cubic crystalline phase as supported by the XRD measurements. These bare CdSe nanoparticles exhibit room temperature ferromagnetic (RTFM) behavior. However, the RTFM behavior was found to be 30% higher in the case of CdSe nanoparticles prepared on electron beam irradiation as compared to those obtained by gamma irradiation, which was attributed to their relatively smaller size (2-3 nm) and disordered structures as compared to those obtained in the later case (3-5 nm). -- Research highlights: → CdSe nanoparticles could be synthesized in aqueous solutions containing equimolar ammoniated CdSO 4 and Na 2 SeSO 3 as the starting materials using gamma and electron beam irradiation under a reducing condition. → CdSe nanoparticles were found to exist in agglomerates of dimension of about 100 nm, consisting of primary nanoparticles of dimensions within 5 nm. → CdSe nanoparticles exhibit room temperature ferromagnetic (RTFM) behavior. → The RTFM behavior was found to be 30% higher in the case of CdSe nanoparticles prepared on electron beam irradiation as compared to those obtained by gamma irradiation.

  1. Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.

    Science.gov (United States)

    Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A

    2014-04-01

    Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.

  2. New self-assembled nanocrystal micelles for biolabels and biosensors.

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  3. Observation of spin-selective tunneling in SiGe nanocrystals.

    Science.gov (United States)

    Katsaros, G; Golovach, V N; Spathis, P; Ares, N; Stoffel, M; Fournel, F; Schmidt, O G; Glazman, L I; De Franceschi, S

    2011-12-09

    Spin-selective tunneling of holes in SiGe nanocrystals contacted by normal-metal leads is reported. The spin selectivity arises from an interplay of the orbital effect of the magnetic field with the strong spin-orbit interaction present in the valence band of the semiconductor. We demonstrate both experimentally and theoretically that spin-selective tunneling in semiconductor nanostructures can be achieved without the use of ferromagnetic contacts. The reported effect, which relies on mixing the light and heavy holes, should be observable in a broad class of quantum-dot systems formed in semiconductors with a degenerate valence band.

  4. CdSe nanoparticles grown via radiolytic methods in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shalini [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Rath, M.C., E-mail: madhab@barc.gov.i [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, A.K. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Jayakumar, O.D.; Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sarkar, S.K. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-06-15

    Cadmium selenide, CdSe, nanoparticles have been synthesized in aqueous solution containing equimolar ammoniated CdSO{sub 4} and Na{sub 2}SeSO{sub 3} as the starting materials without any capping agents, using gamma and electron beam irradiation under a reducing condition. The radiolytic processes occurring in water result in the formation of CdSe nanoparticles through the reactions mediated by hydrated electrons, e{sub aq}{sup -}. TEM measurements revealed that the CdSe nanoparticles were found to exist in agglomerates of dimension of about 100 nm, consisting of primary nanoparticles of dimensions within 5 nm. The as-grown nanoparticles were of cubic crystalline phase as supported by the XRD measurements. These bare CdSe nanoparticles exhibit room temperature ferromagnetic (RTFM) behavior. However, the RTFM behavior was found to be 30% higher in the case of CdSe nanoparticles prepared on electron beam irradiation as compared to those obtained by gamma irradiation, which was attributed to their relatively smaller size (2-3 nm) and disordered structures as compared to those obtained in the later case (3-5 nm). -- Research highlights: {yields} CdSe nanoparticles could be synthesized in aqueous solutions containing equimolar ammoniated CdSO{sub 4} and Na{sub 2}SeSO{sub 3} as the starting materials using gamma and electron beam irradiation under a reducing condition. {yields} CdSe nanoparticles were found to exist in agglomerates of dimension of about 100 nm, consisting of primary nanoparticles of dimensions within 5 nm. {yields} CdSe nanoparticles exhibit room temperature ferromagnetic (RTFM) behavior. {yields} The RTFM behavior was found to be 30% higher in the case of CdSe nanoparticles prepared on electron beam irradiation as compared to those obtained by gamma irradiation.

  5. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    Science.gov (United States)

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  6. Electrodeposition of epitaxial CdSe on (111) gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Cachet, H.; Cortes, R.; Froment, M. [Universite Pierre et Marie Curie, Paris (France). Phys. des Liquides et Electrochimie; Etcheberry, A. [Institut Lavoisier (IREM) UMR CNRS C0173, Universite de Versailles- St Quentin en Yvelynes, 45 Avenue des Etats Unis, 78035, Versailles (France)

    2000-02-21

    Epitaxial growth of CdSe has been achieved on GaAs(111) by electrodeposition from an aqueous electrolyte. The structure of the film corresponds to the cubic modification of CdSe. The quality of epitaxy has been investigated by reflection high energy electron diffraction, transmission electron microscopy and X-ray diffraction techniques. By XPS measurements the chemistry of the CdSe/GaAs interface and the composition of CdSe are determined. (orig.)

  7. Charge transport in nanoscale "all-inorganic" networks of semiconductor nanorods linked by metal domains.

    Science.gov (United States)

    Lavieville, Romain; Zhang, Yang; Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Di Fabrizio, Enzo; Krahne, Roman

    2012-04-24

    Charge transport across metal-semiconductor interfaces at the nanoscale is a crucial issue in nanoelectronics. Chains of semiconductor nanorods linked by Au particles represent an ideal model system in this respect, because the metal-semiconductor interface is an intrinsic feature of the nanosystem and does not manifest solely as the contact to the macroscopic external electrodes. Here we investigate charge transport mechanisms in all-inorganic hybrid metal-semiconductor networks fabricated via self-assembly in solution, in which CdSe nanorods were linked to each other by Au nanoparticles. Thermal annealing of our devices changed the morphology of the networks and resulted in the removal of small Au domains that were present on the lateral nanorod facets, and in ripening of the Au nanoparticles in the nanorod junctions with more homogeneous metal-semiconductor interfaces. In such thermally annealed devices the voltage dependence of the current at room temperature can be well described by a Schottky barrier lowering at a metal semiconductor contact under reverse bias, if the spherical shape of the gold nanoparticles is considered. In this case the natural logarithm of the current does not follow the square-root dependence of the voltage as in the bulk, but that of V(2/3). From our fitting with this model we extract the effective permittivity that agrees well with theoretical predictions for the permittivity near the surface of CdSe nanorods. Furthermore, the annealing improved the network conductance at cryogenic temperatures, which could be related to the reduction of the number of trap states.

  8. SYNTHESIS AND CHARACTERIZATION OF CdSe COLLOIDAL QUANTUM DOTS IN ORGANIC SOLVENT

    Directory of Open Access Journals (Sweden)

    Ion Geru

    2014-06-01

    Full Text Available In this paper we present experimental results on preparation and characterization of colloidal CdSe quantum dots in organic solvent. CdSe QDs were synthesized following a modified literature method. CdSe QDs were isolated by adding acetone to the cooled solution followed by centrifugation. CdSe QDs have been characterized by UV-Vis absorption and photoluminescent (PL spectroscopy. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28-2.92 nm which is in good agreement with PL measurements.

  9. Semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Marstein Erik Stensrud

    2003-07-01

    This thesis presents a study of two material systems containing semiconductor nanocrystals, namely porous silicon (PSi) films and germanium (Ge) nanocrystals embedded in silicon dioxide (SiO2) films. The PSi films were made by anodic etching of silicon (Si) substrates in an electrolyte containing hydrofluoric acid. The PSi films were doped with erbium (Er) using two different doping methods. electrochemical doping and doping by immersing the PSi films in a solution containing Er. The resulting Er concentration profiles were investigated using scanning electron microscopy (SEN1) combined with energy dispersive X-ray analysis (EDS). The main subject of the work on PSi presented in this thesis was investigating and comparing these two doping methods. Ge nanocrystals were made by implanting Ge ions into Si02 films that were subsequently annealed. However. nanocrystal formation occurred only for certain sets of processing parameters. The dependence of the microstructure of the Ge implanted Si02 films on the processing parameters were therefore investigated. A range of methods were employed for these investigations, including transmission electron microscopy (TEM) combined with EDS, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The observed structures, ranging from Ge nanocrystals to voids with diameters of several tens of nanometers and Ge rich Si02 films without any nanocrystals is described. A model explaining the void formation is also presented. For certain sets of processing parameters. An accumulation of Ge at the Si-Si02 interface was observed. The effect of this accumulation on the electrical properties of MOS structures made from Ge implanted SiO2 films was investigated using CV-measurements. (Author)

  10. 'Green' synthesis of starch capped CdSe nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Li Jinhua; Ren Cuiling; Liu Xiaoyan; Hu Zhide; Xue Desheng

    2007-01-01

    The nearly monodisperse starch capped CdSe nanoparticles were successfully synthesized by a simple and 'green' route at room temperature. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis absorption and photoluminescence (PL) spectra. The XRD analysis showed that the starch capped CdSe nanoparticles were of the cubic structure, the average particle size was calculated to be about 3 nm according to the Debye-Scherrer equation. TEM micrographs exhibited that the starch capped CdSe nanoparticles were well dispersed than the uncapped CdSe nanoparticles, the mean particles size of the capped CdSe was about 3 nm in the TEM image, which was in good agreement with the XRD

  11. CdSe/AsS core-shell quantum dots: preparation and two-photon fluorescence.

    Science.gov (United States)

    Wang, Junzhong; Lin, Ming; Yan, Yongli; Wang, Zhe; Ho, Paul C; Loh, Kian Ping

    2009-08-19

    Arsenic(II) sulfide (AsS)-coated CdSe core-shell nanocrystals can be prepared by a cluster-complex deposition approach under mild conditions. At 60 degrees C, growth of an AsS shell onto a CdSe nanocrystal can be realized through the crystallization of a cluster complex of AsS/butylamine in a mixed solvent of isopropanol/chloroform. The new, type I core-shell nanocrystal exhibits markedly enhanced one-photon fluorescence as well two-photon upconversion fluorescence. The nanocrystals can be used for infrared-excited upconversion cellular labeling.

  12. Charge separation in contact systems with CdSe quantum dot layers

    Energy Technology Data Exchange (ETDEWEB)

    Zillner, Elisabeth Franziska

    2013-03-06

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO{sub 2} and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer ({approx} 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  13. Charge separation in contact systems with CdSe quantum dot layers

    International Nuclear Information System (INIS)

    Zillner, Elisabeth Franziska

    2013-01-01

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO 2 and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer (∼ 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  14. A dual-colored bio-marker made of doped ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y L; Zeng, X T [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Fu, S; Kwek, L C [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616 (Singapore); Tok, A I Y; Boey, F C Y [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Lim, C S [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2008-08-27

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  15. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    TECS

    Thin films of CdSe were deposited by potentiostatic mode on different substrates such as ... trodeposited from aqueous acidic baths, but very few ... washed with liquid detergent (labolene) followed by ul- .... increases the ionic mobilities and hence the conductivity ... A PEC cell of configuration, CdSe/1 M polysulphide/.

  16. Magnetic study of Fe-doped CdSe nanomaterials

    International Nuclear Information System (INIS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-01-01

    Nanoparticles of pure and iron (50 %) doped cadmium selenide (CdSe) have been synthesized by soft chemical route. EDAX analysis supports the inclusion of Fe into CdSe nanoparticles. The average particle size of pure and doped CdSe is found to be ∼50 nm from scanning electron microscopy (SEM). Magnetization of the samples are measured under the field cooled (FC) and zero field cooled (ZFC) modes in the temperature range from 5K to 300K applying a magnetic field of 500Oe. Field dependent magnetization (M-H) measurement indicates presence of room temperature (RT) paramagnetism and low temperature (5K) ferromagnetism of the sample.

  17. Ultranarrow and widely tunable Mn2+-Induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys.

    Science.gov (United States)

    Hazarika, Abhijit; Layek, Arunasish; De, Suman; Nag, Angshuman; Debnath, Saikat; Mahadevan, Priya; Chowdhury, Arindam; Sarma, D D

    2013-06-28

    Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width ≤150  meV in the orange-red region and a surprisingly large spectral width (≥180  meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (∼370  meV) covering the deep green--deep red region and (ii) exhibit widths substantially lower (∼60-75  meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

  18. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The potential cytotoxicity of cadmium selenide (CdSe quantum dots (QDs presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM increased cell viability in response to CdSe QDs (20 μM from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h, followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.

  19. Environmental friendly InP/ZnS nanocrystals

    OpenAIRE

    Coşkun, Yasemin

    2012-01-01

    Ankara : The Department of Materials Science and Nanotechnology, Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 80-89. Semiconductor nanocrystals are nanometer scale fluorescent crystallites with tunable optical properties, which can be controlled by the material composition and particle size. They can be prepared using various synthesis techniques and find applications in many different areas ranging from...

  20. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine

    Science.gov (United States)

    2012-01-01

    Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352

  1. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

    Science.gov (United States)

    2017-01-01

    This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II–VI and III–V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessity to improve their stability in environmental conditions. The defect tolerance of lead halide perovskites offers an impetus to search for similar attributes in other related heavy metal-free compounds. We discuss the origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum, which are related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations. We conclude with the view on perspectives of use of the colloidal perovskite nanocrystals for applications in backlighting of liquid-crystal TV displays. PMID:28920080

  2. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    CERN Multimedia

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  3. Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films

    International Nuclear Information System (INIS)

    Chiang, Ming-Hung; Fu, Yaw-Shyan; Shih, Cheng-Hung; Kuo, Chun-Cheng; Guo, Tzung-Fang; Lin, Wen-Tai

    2013-01-01

    The effects of hydrazine on the synthesis of Cu 2 ZnSnSe 4 (CZTSe) and Cu 2 CdSnSe 4 (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu 2 Se, and Cu 2 SnSe 3 , and Cu 2 SnSe 3 and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. - Highlights: • Hydrazine enhances the growth of pure Cu 2 ZnSnSe 4 and Cu 2 CdSnSe 4 nanocrystals. • The nanocrystals can be fabricated to films by spin coating without annealing. • This solvothermal processing is promising for the fabrication of thin film devices

  4. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    Science.gov (United States)

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  5. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    Science.gov (United States)

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  6. Passivation effects in B doped self-assembled Si nanocrystals

    International Nuclear Information System (INIS)

    Puthen Veettil, B.; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-01-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes

  7. Electrical and optical properties of spray - deposited CdSe thin films

    International Nuclear Information System (INIS)

    Bedir, M.; Oeztas, M.; Bakkaloglu, O. F.

    2002-01-01

    The CdSe thin films were developed by using spray-deposition technique at different substrate temperatures of 380C, 400C and, 420C on the glass substrate. All spraying processes involved CdCI 2 (0.05 moles/liter) and SeO 2 (0.05 moles/liter ) and were carried out in atmospheric condition. The CdSe thin film samples were characterized using x-ray diffractometer and optical absorption measurements. The electrical properties of the thin film samples were investigated via Wander Pauw method. XRD patterns indicated that the CdSe thin film samples have a hexagonal structure. The direct band gap of the CdSe thin film samples were determined from optical absorption and spectral response measurements of 1.76 eV. The resistivity of the CdSe thin film samples were found to vary in the range from 5.8x10''5 to 7.32x10''5 Ωcm depending to the substrate temperature

  8. Molten-droplet synthesis of composite CdSe hollow nanoparticles

    KAUST Repository

    Gullapalli, Sravani; Grider, Jason M.; Bagaria, Hitesh G.; Lee, Kyusung; Cho, Minjung; Colvin, Vicki L.; Jabbour, Ghassan E.; Wong, Michael

    2012-01-01

    Many colloidal synthesis routes are not scalable to high production rates, especially for nanoparticles of complex shape or composition, due to precursor expense and hazards, low yields, and the large number of processing steps. The present work describes a strategy to synthesize hollow nanoparticles (HNPs) out of metal chalcogenides, based on the slow heating of a low-melting-point metal salt, an elemental chalcogen, and an alkylammonium surfactant in octadecene solvent. The synthesis and characterization of CdSe HNPs with an outer diameter of 15.6 ± 3.5 nm and a shell thickness of 5.4 ± 0.9 nm are specifically detailed here. The HNP synthesis is proposed to proceed with the formation of alkylammonium-stabilized nano-sized droplets of molten cadmium salt, which then come into contact with dissolved selenium species to form a CdSe shell at the droplet surface. In a reaction-diffusion mechanism similar to the nanoscale Kirkendall effect it is speculated that the cadmium migrates outwardly through this shell to react with more selenium, causing the CdSe shell to thicken. The proposed CdSe HNP structure comprises a polycrystalline CdSe shell coated with a thin layer of amorphous selenium. Photovoltaic device characterization indicates that HNPs have improved electron transport characteristics compared to standard CdSe quantum dots, possibly due to this selenium layer. The HNPs are colloidally stable in organic solvents even though carboxylate, phosphine, and amine ligands are absent; stability is attributed to octadecene-selenide species bound to the particle surface. This scalable synthesis method presents opportunities to generate hollow nanoparticles with increased structural and compositional variety. © 2012 IOP Publishing Ltd.

  9. Molten-droplet synthesis of composite CdSe hollow nanoparticles

    KAUST Repository

    Gullapalli, Sravani

    2012-11-16

    Many colloidal synthesis routes are not scalable to high production rates, especially for nanoparticles of complex shape or composition, due to precursor expense and hazards, low yields, and the large number of processing steps. The present work describes a strategy to synthesize hollow nanoparticles (HNPs) out of metal chalcogenides, based on the slow heating of a low-melting-point metal salt, an elemental chalcogen, and an alkylammonium surfactant in octadecene solvent. The synthesis and characterization of CdSe HNPs with an outer diameter of 15.6 ± 3.5 nm and a shell thickness of 5.4 ± 0.9 nm are specifically detailed here. The HNP synthesis is proposed to proceed with the formation of alkylammonium-stabilized nano-sized droplets of molten cadmium salt, which then come into contact with dissolved selenium species to form a CdSe shell at the droplet surface. In a reaction-diffusion mechanism similar to the nanoscale Kirkendall effect it is speculated that the cadmium migrates outwardly through this shell to react with more selenium, causing the CdSe shell to thicken. The proposed CdSe HNP structure comprises a polycrystalline CdSe shell coated with a thin layer of amorphous selenium. Photovoltaic device characterization indicates that HNPs have improved electron transport characteristics compared to standard CdSe quantum dots, possibly due to this selenium layer. The HNPs are colloidally stable in organic solvents even though carboxylate, phosphine, and amine ligands are absent; stability is attributed to octadecene-selenide species bound to the particle surface. This scalable synthesis method presents opportunities to generate hollow nanoparticles with increased structural and compositional variety. © 2012 IOP Publishing Ltd.

  10. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  11. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    International Nuclear Information System (INIS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-01-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)

  12. Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells

    Science.gov (United States)

    Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong

    2017-10-01

    In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.

  13. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  14. Optics of colloidal quantum-confined CdSe nanoscrolls

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, R B; Sokolikova, M S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Vitukhnovskii, A G; Ambrozevich, S A; Selyukov, A S; Lebedev, V S [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-09-30

    Nanostructures in the form of 1.2-nm-thick colloidal CdSe nanoplatelets rolled into scrolls are investigated. The morphology of these scrolls is analysed and their basic geometric parameters are determined (diameter 29 nm, longitudinal size 100 – 150 nm) by TEM microscopy. Absorption and photoluminescence spectra of these objects are recorded, and the luminescence decay kinetics is studied. It is shown that the optical properties of CdSe nanoscrolls differ significantly from the properties of CdSe quantum dots and that these nanoscrolls are attractive for nanophotonic devices due to large oscillator strengths of the transition, small widths of excitonic peaks and short luminescence decay times. Nanoscrolls can be used to design hybrid organic–inorganic pure-color LEDs with a high luminescence quantum yield and low operating voltages. (optics and technology of nanostructures)

  15. Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment.

    Science.gov (United States)

    Koscher, Brent A; Swabeck, Joseph K; Bronstein, Noah D; Alivisatos, A Paul

    2017-05-17

    We demonstrate postsynthetic modification of CsPbBr 3 nanocrystals by a thiocyanate salt treatment. This treatment improves the quantum yield of both freshly synthesized (PLQY ≈ 90%) and aged nanocrystals (PLQY ≈ 70%) to within measurement error (2-3%) of unity, while simultaneously maintaining the shape, size, and colloidal stability. Additionally, the luminescence decay kinetics transform from multiexponential decays typical of nanocrystalline semiconductors with a distribution of trap sites, to a monoexponential decay, typical of single energy level emitters. Thiocyanate only needs to access a limited number of CsPbBr 3 nanocrystal surface sites, likely representing under-coordinated lead atoms on the surface, in order to have this effect.

  16. Raman Spectroscopy of SiO{sub 2}–Na{sub 2}O–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} glass doped with Nd{sup 3+} and CdS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Serqueira, E.O.; Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902 (Brazil); Anjos, V. [Grupo de Espectroscopia de Materiais, Departamento de Física, ICE – UFJF, Campus Universitário, Juiz de Fora, MG 36036-330 (Brazil); Bell, M.J.V., E-mail: mjvbell@yahoo.com.br [Grupo de Espectroscopia de Materiais, Departamento de Física, ICE – UFJF, Campus Universitário, Juiz de Fora, MG 36036-330 (Brazil)

    2014-01-05

    Highlights: • The formation of CdS nanocrystals in the glassy host is shown by Raman measurements. • Nd{sub 2}O{sub 3} modifies the growth of CdS nanocrystals in the SNAB glass. • Nd{sup 3+} ions are not incorporated inside the semiconductor nanocrystals. -- Abstract: We report the Raman spectroscopic characterization of a SNAB glass system doped with neodymium and CdS nanocrystals and fabricated by the fusion process. Raman spectra revealed CdS nanocrystals in the glass host and bands associated with Si–O vibrational modes with five structural configurations, boroxol modes of B{sub 2}O{sub 3}, Al–O and Cd–S vibrational modes. Additionally, Nd{sub 2}O{sub 3} modifies the growth of CdS nanocrystals in the SNAB glass and Nd{sup 3+} ions are not incorporated inside the semiconductor nanocrystals.

  17. A study of the conjugation of CdSe nanoparticles with functional polyoxometalates involving aminoacids

    International Nuclear Information System (INIS)

    Gutul, T.

    2013-01-01

    CdSe nanoparticles (CdSe NPs) are regarded as nano markers and an important component for biomedical applications. In this study, CdSe NPs and polyoxometalates were synthesized; surface modification with 1-thioglycerol and (β-Ala) was carried out. Polyoxometalates, which cause an inhibitory effect on cancer cells, were conjugated to the nanoparticles. UV- VIS, IR, XRD, and TEM studies were performed to characterize the resulting CdSe NPs, polyoxometalates, and conjugates. (author)

  18. Modeling and simulation of floating gate nanocrystal FET devices and circuits

    Science.gov (United States)

    Hasaneen, El-Sayed A. M.

    The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to

  19. Calculation of the Huang-Rhys parameter in spherical quantum dots: the optical deformation potential effect

    International Nuclear Information System (INIS)

    Hamma, M; Miranda, R P; Vasilevskiy, M I; Zorkani, I

    2007-01-01

    An accurate calculation of the exciton-phonon interaction matrix elements and Huang-Rhys parameter for nearly spherical nanocrystals (NCs) of polar semiconductor materials is presented. The theoretical approach is based on a continuum lattice dynamics model and the effective mass approximation for electronic states in the NCs. A strong confinement regime is considered for both excitons and optical phonons, taking into account both the Froehlich-type and optical deformation potential (ODP) mechanisms of the exciton-phonon interaction. The effects of exchange electron-hole interaction and possible hexagonal crystal structure of the underlying material are also taken into account. The theory is applied to CdSe and InP quantum dots. It is shown that the ODP mechanism, almost unimportant for CdSe, dominates the exciton-phonon coupling in small InP dots. The effect of the non-diagonal interaction, not included in the Huang-Rhys parameter, is briefly discussed

  20. Electrochemiluminescence Biosensor Based on Thioglycolic Acid-Capped CdSe QDs for Sensing Glucose

    Directory of Open Access Journals (Sweden)

    Eun-Young Jung

    2016-01-01

    Full Text Available In order to detect low level glucose concentration, an electrochemiluminescence (ECL biosensor based on TGA-capped CdSe quantum dots (QDs was fabricated by the immobilization of CdSe QDs after modifying the surface of a glassy carbon electrode (GCE with 4-aminothiophenol diazonium salts by the electrochemical method. For the detection of glucose concentration, glucose oxidase (GOD was immobilized onto the fabricated CdSe QDs-modified electrode. The fabricated ECL biosensor based on TGA-capped CdSe QDs was characterized using a scanning electron microscope (SEM, UV-vis spectrophotometry, transmission electron microscopy (TEM, a fluorescence spectrometer (PL, and cyclic voltammetry (CV. The fabricated ECL biosensor based on TGA-capped CdSe QDs is suitable for the detection of glucose concentrations in real human blood samples.

  1. Parameterization of the dielectric function of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, P., E-mail: petrik@mfa.kfki.hu

    2014-11-15

    Optical methods like spectroscopic ellipsometry are sensitive to the structural properties of semiconductor films such as crystallinity or grain size. The imaginary part of the dielectric function is proportional to the joint density of electronic states. Consequently, the analysis of the dielectric function around the critical point energies provides useful information about the electron band structure and all related parameters like the grain structure, band gap, temperature, composition, phase structure, and carrier mobility. In this work an attempt is made to present a selection of the approaches to parameterize and analyze the dielectric function of semiconductors, as well as some applications.

  2. Molecular limit of a bulk semiconductor: size dependent optical spectroscopy study of CdSe cluster molecules

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.N.; Banin, U. [Hebrew Univ., Jerusalem (Israel). Dept. of Physical Chemistry; Eichhoefer, A. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Fenske, D. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Steady state and time-resolved photoluminescence measurements of a homologous series of CdSe cluster molecules were performed over a broad temperature range (T = 5-200 K). The absorption and low temperature PLE onset of the clusters shifts systematically to the blue in smaller clusters, manifesting the quantum confinement effect. The emission in all cluster molecules is observed only at low temperatures and is red-shifted significantly from the absorption onset. It is assigned to optically forbidden transitions involving surface states, as substantiated by the {mu}s range of lifetimes and by the involvement of low frequency vibrations of capping selenophenol ligands in the nonradiative relaxation of excited cluster molecules. (orig.)

  3. Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan

    2011-01-01

    Germanium nanocrystals are being extensively examined. Their unique optical properties (brought about by the quantum confinement effect) could potentially be applied in wide areas of nonlinear optics, light emission and solid state memory etc. In this paper, Ge nanocrystals embedded in a SiO2...... matrix were formed by complementary metal-oxide-semiconductor compatible technology, e.g. plasma enhanced chemical vapour deposition and annealing. Different sizes of the Ge nanocrystals were prepared and analyzed by transmission electron microscopy with respect to their size, distribution...... and crystallization. The samples of different size Ge nanocrystals embedded in the SiO2 matrix were characterized by Raman spectroscopy and photoluminescence. Interplayed size and strain effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect with proper excitation laser...

  4. Observation of melting in 30 angstrom diameter CdS nanocrystals

    International Nuclear Information System (INIS)

    Goldstein, A.N.; Colvin, V.L.; Alivisatos, A.P.

    1991-01-01

    In this paper temperature dependent electron diffraction studies on 30 Angstrom diameter CdS nanocrystals are described. The linear thermal expansion coefficient of the nanocrystals is 2.75 * 10 -5 Angstrom/K, and the melting point is 575 K. These data are in contrast to bulk CdS which has a melting point of 1750 K and a linear expansion coefficient of 5.5 * 10 -6 Angstrom/K. The observed depression in the melting point of these semiconductor clusters is similar to effects observed in metals and molecular crystals, indicating that the phenomenon of reduced melting point in small systems is a general one regardless of the type of material. The observation of melting point depression in these clusters also has far reaching implications for the preparation of highly crystalline clusters of CdS, as well as for the use of these nanocrystals as precursors to thin films

  5. Connecting the dots : shedding light on the self-assembly of semiconductor nanocrystals with synchrotron X-ray scattering techniques

    NARCIS (Netherlands)

    Geuchies, J.J.

    2017-01-01

    We studied the formation of two-dimensional crystals from nanocrystals using X-ray scattering techniques. Inside these nanocrystals, with sizes between 5-10 nm, the atoms are ordered in an atomic lattice. We use the nanocrystals as building blocks to create larger lattices in two dimensions. By

  6. Evidence for molecular N2 bubble formation in a (Ga,Fe)N magnetic semiconductor

    DEFF Research Database (Denmark)

    Kovács, András; Schaffer, B.; Moreno, M. S.

    2011-01-01

    Fe-doped GaN semiconductors are of interest for combining the properties of semiconductors and magnetic materials [1]. Depending on the growth temperature used, Fe can either be distributed homogenously in the GaN host lattice or it can accumulate in the form of Fe-N nanocrystals. As a result of ...

  7. Visualization of nanocrystal breathing modes at extreme strains

    Science.gov (United States)

    Szilagyi, Erzsi; Wittenberg, Joshua S.; Miller, Timothy A.; Lutker, Katie; Quirin, Florian; Lemke, Henrik; Zhu, Diling; Chollet, Matthieu; Robinson, Joseph; Wen, Haidan; Sokolowski-Tinten, Klaus; Lindenberg, Aaron M.

    2015-03-01

    Nanoscale dimensions in materials lead to unique electronic and structural properties with applications ranging from site-specific drug delivery to anodes for lithium-ion batteries. These functional properties often involve large-amplitude strains and structural modifications, and thus require an understanding of the dynamics of these processes. Here we use femtosecond X-ray scattering techniques to visualize, in real time and with atomic-scale resolution, light-induced anisotropic strains in nanocrystal spheres and rods. Strains at the percent level are observed in CdS and CdSe samples, associated with a rapid expansion followed by contraction along the nanosphere or nanorod radial direction driven by a transient carrier-induced stress. These morphological changes occur simultaneously with the first steps in the melting transition on hundreds of femtosecond timescales. This work represents the first direct real-time probe of the dynamics of these large-amplitude strains and shape changes in few-nanometre-scale particles.

  8. Controlling the magic and normal sizes of white CdSe quantum dots

    Science.gov (United States)

    Su, Yu-Sheng; Chung, Shu-Ru

    2017-08-01

    In this study, we have demonstrated a facile chemical route to prepare CdSe QDs with white light emission, and the performance of white CdSe-based white light emitting diode (WLED) is also exploded. An organic oleic acid (OA) is used to form Cd-OA complex first and hexadecylamine (HDA) and 1-octadecene (ODE) is used as surfactants. Meanwhile, by varying the reaction time from 1 s to 60 min, CdSe QDs with white light can be obtained. The result shows that the luminescence spectra compose two obvious emission peaks and entire visible light from 400 to 700 nm, when the reaction time less than 10 min. The wide emission wavelength combine two particle sizes of CdSe, magic and normal, and the magic-CdSe has band-edge and surface-state emission, while normal size only possess band-edge emission. The TEM characterization shows that the two different sizes with diameter of 1.5 nm and 2.7 nm for magic and normal size CdSe QDs can be obtained when the reaction time is 4 min. We can find that the magic size of CdSe is produced when the reaction time is less than 3 min. In the time ranges from 3 to 10 min, two sizes of CdSe QDs are formed, and with QY from 20 to 60 %. Prolong the reaction time to 60 min, only normal size of CdSe QD can be observed due to the Ostwald repining, and its QYs is 8 %. Based on the results we can conclude that the two emission peaks are generated from the coexistence of magic size and normal size CdSe to form the white light QDs, and the QY and emission wavelength of CdSe QDs can be increased with prolonging reaction time. The sample reacts for 2 (QY 30 %), 4 (QY 32 %) and 60 min (QY 8 %) are choosing to mixes with transparent acrylic-based UV curable resin for WLED fabrication. The Commission International d'Eclairage (CIE) chromaticity, color rendering index (CRI), and luminous efficacy for magic, mix, and normal size CdSe are (0.49, 0.44), 81, 1.5 lm/W, (0.35, 0.30), 86, 1.9 lm/W, and (0.39, 0.25), 40, 0.3 lm/W, respectively.

  9. Synthesis and charge storage properties of double-layered NiSi nanocrystals

    International Nuclear Information System (INIS)

    Yoon, Jong-Hwan

    2010-01-01

    Based on bidirectional diffusion of Ni atoms, double-layered nickel silicide (NiSi) nanocrystals (NCs) for multilevel charge storage were fabricated, and their charge storage properties were examined. The double layer was produced by long-term thermal annealing (for 4 h at 900 o C) of a sandwich structure comprised of a thin Ni film of 0.3 nm sandwiched between two silicon-rich oxide (SiO 1.36 ) layers. Transmission electron microscopic image clearly exhibits a distinct NiSi nanocrystal double layer with a gap of about 7 nm between the mean positions of particle distribution in each NC layer. Capacitance-voltage measurements on the metal/oxide/semiconductor (MOS) capacitors with the double-layered NiSi nanocrystals are shown to have the apparent two plateaus of charge storage, the large memory window of about 9 V and the improved charge retention stability.

  10. Colloidal nanocrystals for quality lighting and displays: milestones and recent developments

    Directory of Open Access Journals (Sweden)

    Erdem Talha

    2016-06-01

    Full Text Available Recent advances in colloidal synthesis of nanocrystals have enabled high-quality high-efficiency light-emitting diodes, displays with significantly broader color gamut, and optically-pumped lasers spanning the whole visible regime. Here we review these colloidal platforms covering the milestone studies together with recent developments. In the review, we focus on the devices made of colloidal quantum dots (nanocrystals, colloidal quantum rods (nanorods, and colloidal quantum wells (nanoplatelets as well as those of solution processed perovskites and phosphor nanocrystals. The review starts with an introduction to colloidal nanocrystal photonics emphasizing the importance of colloidal materials for light-emitting devices. Subsequently,we continue with the summary of important reports on light-emitting diodes, in which colloids are used as the color converters and then as the emissive layers in electroluminescent devices. Also,we review the developments in color enrichment and electroluminescent displays. Next, we present a summary of important reports on the lasing of colloidal semiconductors. Finally, we summarize and conclude the review presenting a future outlook.

  11. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  12. Chemical bath deposition of Hg doped CdSe thin films and their characterization

    International Nuclear Information System (INIS)

    Bhuse, V.M.

    2005-01-01

    The deliberate addition of Hg in CdSe thin film have been carried out using a simple, modified, chemical bath deposition technique with the objective to study the effect of Hg doping on properties of CdSe thin films. Synthesis was initiated at 278 K temperature using complexed cadmium sulphate, mercuric nitrate and sodium selenosulphate in an aqueous ammonical medium at pH 10. Films were characterized by XRD, SEM, optical absorption, electrical and thermoelectric techniques. The 'as deposited' films were uniform, well adherent, nearly stoichiometric and polycrystalline in a single cubic phase (zinc blende). Crystallite size determined from XRD and SEM was found to increase slightly with addition of Hg. The optical band gap of CdSe remains constant upto 0.05 mol% Hg doping, while it decreases monotonically with further increase in mercury content. Dark dc electrical resistivity and conduction activation energy of CdSe were found to decrease initially upto 0.05 mol% of Hg, thereafter increased for higher values of Hg but remains less than those of CdSe. All the films showed n-type of conductivity. A CdSe film containing 0.05 mol% of Hg showed higher absorption coefficient, and conductivity

  13. Synthesis of CdS nanocrystals with different morphologies via an ultraviolet irradiation route

    International Nuclear Information System (INIS)

    Yao Suwei; Han Yuxin; Liu Weixing; Zhang Weiguo; Wang Hongzhi

    2007-01-01

    A simple ultraviolet photochemical reduction synthetic approach to preparing CdS nanocrystals with different morphologies is described. Sodium dodecyl sulfate (SDS) was used as soft template for the chemical synthesis of CdS nanocrystals in a mixture solution at room temperature. It was found that the magnetic force stirring and the volume proportions of C 2 H 5 OH and H 2 O had marked influences on the morphology of CdS nanocrystals (such as spherical, acicular-like, rod-like and worm-like shapes). The formation of CdS is via precipitation of Cd 2+ ions with the homogeneously released S 2- ions from decomposition of thioacetamide under ultraviolet irradiation source. X-ray diffraction (XRD), scanning electron microscopy (SEM) and the ultraviolet-visible (UV-vis) absorption spectra were employed to characterize the products. This novel method is expected to produce various semiconductor nanocrystals with potential applications in the fields of materials science and photovoltaic cells, etc

  14. Composition and performance of thin film CdSe electrodeposited from selenosulfite solution

    International Nuclear Information System (INIS)

    Szabo, J.P.; Simms, D.; Cocivera, M.

    1985-01-01

    Cathodic electrodeposition of thin film CdSe from aqueous selenosulfite solution has been studied as function of solution composition and electrode potential. The Cd/Se ratio has been analyzed using polarography and Rutherford backscattering spectroscopy. Polarography gives a compostion averaged over the whole film (2cm 2 ) while RBS gives local surface composition (1 mm 2 ). The average Cd/Se ratio is 1.1, but some variation was found to occur across the surface of film (0.82 to 1.2)

  15. Simple model for the power-law blinking of single semiconductor nanocrystals

    NARCIS (Netherlands)

    Verberk, Rogier; Oijen, Antoine M. van; Orrit, Michel

    2002-01-01

    We assign the blinking of nanocrystals to electron tunneling towards a uniform spatial distribution of traps. This naturally explains the power-law distribution of off times, and the power-law correlation function we measured on uncapped CdS dots. Capped dots, on the other hand, present extended on

  16. Direct observation of triplet energy transfer from semiconductor nanocrystals.

    Science.gov (United States)

    Mongin, Cédric; Garakyaraghi, Sofia; Razgoniaeva, Natalia; Zamkov, Mikhail; Castellano, Felix N

    2016-01-22

    Triplet excitons are pervasive in both organic and inorganic semiconductors but generally remain confined to the material in which they originate. We demonstrated by transient absorption spectroscopy that cadmium selenide semiconductor nanoparticles, selectively excited by green light, engage in interfacial Dexter-like triplet-triplet energy transfer with surface-anchored polyaromatic carboxylic acid acceptors, extending the excited-state lifetime by six orders of magnitude. Net triplet energy transfer also occurs from surface acceptors to freely diffusing molecular solutes, further extending the lifetime while sensitizing singlet oxygen in an aerated solution. The successful translation of triplet excitons from semiconductor nanoparticles to the bulk solution implies that such materials are generally effective surrogates for molecular triplets. The nanoparticles could thereby potentially sensitize a range of chemical transformations that are relevant for fields as diverse as optoelectronics, solar energy conversion, and photobiology. Copyright © 2016, American Association for the Advancement of Science.

  17. Effects of hydrazine on the solvothermal synthesis of Cu{sub 2}ZnSnSe{sub 4} and Cu{sub 2}CdSnSe{sub 4} nanocrystals for particle-based deposition of films

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ming-Hung [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Fu, Yaw-Shyan, E-mail: ysfu@mail.nutn.edu.tw [Department of Greenergy, National University of Tainan, Tainan, Taiwan 700 (China); Shih, Cheng-Hung; Kuo, Chun-Cheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Guo, Tzung-Fang [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan 701 (China); Lin, Wen-Tai, E-mail: wtlin@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2013-10-01

    The effects of hydrazine on the synthesis of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) and Cu{sub 2}CdSnSe{sub 4} (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu{sub 2}Se, and Cu{sub 2}SnSe{sub 3}, and Cu{sub 2}SnSe{sub 3} and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. - Highlights: • Hydrazine enhances the growth of pure Cu{sub 2}ZnSnSe{sub 4} and Cu{sub 2}CdSnSe{sub 4} nanocrystals. • The nanocrystals can be fabricated to films by spin coating without annealing. • This solvothermal processing is promising for the fabrication of thin film devices.

  18. Photoinduced interaction of CdSe quantum dot with coumarins

    Energy Technology Data Exchange (ETDEWEB)

    El-Kemary, Maged, E-mail: elkemary@sci.kfs.edu.eg [Nanotechnology Center, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh (Egypt); Gaber, Mohamed; El-Sayed, Y.S. [Chemistry Department, Faculty of Science, University of Tanta, Tanta (Egypt); Gheat, Youssef [Nanotechnology Center, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh (Egypt); Chemistry Department, Faculty of Science, University of Tanta, Tanta (Egypt)

    2015-03-15

    Cadmium selenide (CdSe) quantum dots (QDs) were synthesized with a cubic shape having a diameter of ∼5.24 nm. The prepared CdSe QDs were characterized by using UV–visible, Fourier transform infrared (FTIR), powder X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The UV–visible absorption spectra indicate that the optical band gap of CdSe QDs is ∼622 nm and the peak shift can mainly be due to the quantum size effects. The fluorescence decay kinetics for the synthesized QDs was followed by time-resolved fluorescence spectroscopy, and the spectra were analyzed in regard to a bi-exponential model to identify two lifetime values, that is, shorter-lifetime 1.37 ns (55%) and longer-lifetime 6.58 ns (45%). The interaction of coumarin 152 (C152) and coumarin 153 (C153) with QDs surface brings about further considerable changes in the absorption and fluorescence patterns. The calculated binding constant from fluorescence quenching method matches well with that determined from the absorption spectral changes. The static quenching mechanism was confirmed by large magnitude of K{sub SV} and unaltered fluorescence lifetime. - Highlights: • CdSe QDs were synthesized with a cubic shape having a diameter of ∼5.24 nm. • The UV–visible absorption spectra indicate that the optical band gap of CdSe QDs is ∼622 nm. • Picosecond fluorescence measurements of the QDs suggest bi-exponential function. • The calculated binding constant from fluorescence quenching method matches well with that determined from the absorption spectral changes. • The static quenching mechanism was confirmed by large magnitude of K{sub SV} and unaltered fluorescence lifetime.

  19. Synthesis and optical spectroscopy of (hetero)-nanocrystals: An exciting interplay between Chemistry and Physics

    NARCIS (Netherlands)

    Groeneveld, E.

    2012-01-01

    This thesis describes the synthesis and study of the optical properties of various colloidal semiconductor (hetero)nanocrystals ((H)NCs). Before the experimental results are discussed in detail, the essential theoretical background on the chemical and physical aspects of this work is provided in

  20. Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals.

    Science.gov (United States)

    Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R

    2018-05-09

    Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.

  1. Photoluminescence intermittency of semiconductor quantum dots in dielectric environments

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, A.

    2006-08-11

    The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. (orig.)

  2. Study on the optical properties of CdSe QDs with different ligands in specific matrix

    International Nuclear Information System (INIS)

    Lin Wei; Zou Wei; Du Zhongjie; Li Hangquan; Zhang Chen

    2013-01-01

    Different ligand structures of CdSe quantum dots were designed and synthesized for the specific matrix and the effect of the ligands on the photoluminescence and optical properties were further investigated. Ligand exchange reaction was used to synthesize thioglycolic acid-capped CdSe QDs and the process was characterized by FT-IR and titration. The influence of environmental pH value and storing time on the properties of thioglycolic acid-capped CdSe QDs in aqueous solution were studied by absorption and photoluminescence spectra. It was found that alkaline environment was more beneficial for the application of CdSe QDs. Therefore, the amino ligands with different molecular weight were grafted onto CdSe QDs for improving the compatibility with epoxy matrix and then amino-capped CdSe QDs/epoxy nanocomposites were fabricated. The morphologies and properties of the nanocomposites were characterized by DLS, HR-TEM, UV–Vis spectra, and photoluminescence spectra. As a result, amino ligands with short-molecular chain-capped CdSe QDs/epoxy nanocomposites exhibited good dispersion, high transparency and photoluminescence, and would be suitable for potential application in light-emitting diode device.

  3. Density-controllable nonvolatile memory devices having metal nanocrystals through chemical synthesis and assembled by spin-coating technique

    International Nuclear Information System (INIS)

    Wang Guangli; Chen Yubin; Shi Yi; Pu Lin; Pan Lijia; Zhang Rong; Zheng Youdou

    2010-01-01

    A novel two-step method is employed, for the first time, to fabricate nonvolatile memory devices that have metal nanocrystals. First, size-averaged Au nanocrystals are synthesized chemically; second, they are assembled into memory devices by a spin-coating technique at room temperature. This attractive approach makes it possible to tailor the diameter and control the density of nanocrystals individually. In addition, processes at room temperature prevent Au diffusion, which is a main concern for the application of metal nanocrystal-based memory. The experimental results, both the morphology characterization and the electrical measurements, reveal that there is an optimum density of nanocrystal monolayer to balance between long data retention and a large hysteresis memory window. At the same time, density-controllable devices could also feed the preferential emphasis on either memory window or retention time. All these facts confirm the advantages and novelty of our two-step method. (semiconductor devices)

  4. Effect of CdS/Mg-Doped CdSe Cosensitized Photoanode on Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Yingxiang Guan

    2015-01-01

    Full Text Available Quantum dots have emerged as a material platform for low-cost high-performance sensitized solar cells. And doping is an effective method to improve the performance of quantum dot sensitized solar cells (QDSSCs. Since Kwak et al. from South Korea proved the incorporation of Mg in the CdSe quantum dots (QDs in 2007, the Mg-doped CdSe QDs have been thoroughly studied. Here we report a new attempt on CdS/Mg-doped CdSe quantum dot cosensitized solar cells (QDCSSC. We analyzed the performance of CdS/Mg-doped CdSe quantum dot cosensitized solar cells via discussing the different doping concentration of Mg and the different SILAR cycles of CdS. And we studied the mechanism of CdS/Mg-doped CdSe QDs in detail for the reason why the energy conversion efficiency had been promoted. It is a significant instruction on the development of Mg-doped CdSe quantum dot sensitized solar cells (QDSSCs.

  5. Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production

    Science.gov (United States)

    Cogan, Nicole M. B.; Liu, Cunming; Qiu, Fen; Burke, Rebeckah; Krauss, Todd D.

    2017-05-01

    Artificial conversion of sunlight to chemical fuels has attracted attention for several decades as a potential source of clean, renewable energy. We recently found that CdSe quantum dots (QDs) and simple aqueous Ni2+ salts in the presence of a sacrificial electron donor form a highly efficient, active, and robust system for photochemical reduction of protons to molecular hydrogen. Ultrafast transient absorption spectroscopy studies of electron transfer (ET) processes from the QDs to the Ni catalysts reveal extremely fast ET, and provide a fundamental explanation for the exceptional photocatalytic H2 activity. Additionally, by studying H2 production of the Ni catalyst with CdSe/CdS nanoparticles of various structures, it was determined that surface charge density plays an important role in charge transfer and ultimately H2 production activity.

  6. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  7. Hydrothermal assisted growth of CdSe nanoparticles and study on its dielectric properties

    Science.gov (United States)

    Jamble, Shweta N.; Ghoderao, Karuna P.; Kale, Rohidas B.

    2017-11-01

    In this work, we have synthesized cadmium selenide (CdSe) nanoparticles by using cadmium chloride (CdCl2) as cadmium ion and sodium selenosulfate (Na2SeSO3) as selenium ion sources through a simple, convenient and cost-effective hydrothermal route at 180 °C temperature for 24 h. Aqueous ammonia was employed as a complex reagent to adjust the pH of the solution. Structural analysis of the obtained product was carried out by using x-ray diffractometer, which revealed that the final product has a cubic structure of CdSe with average crystallite size 13.15 nm. The cauliflower-like CdSe nanostructures were confirmed from the scanning electron microscopy and high-resolution transmission electron microscopy. EDS analysis indicates that the obtained product has a good elemental stoichiometric ratio. The electron diffraction pattern reveals the polycrystalline nature of CdSe. From UV-visible absorption spectral analysis, the optical energy bandgap of CdSe nanoparticles was found to be 1.90 eV. XPS spectra presented Cd 3d3/2, Cd 3d5/2 and Se 3d3/2 peaks at 411.04, 404.29 and 53.52 eV respectively. The CdSe nanoparticles exhibit photoluminescence with two distinct emission bands at 632 nm and 720 nm. FTIR study was used towards the understanding of the formation mechanism and bonding on the surface of the resulting nanoparticles. The dielectric properties of a pelletized sample of CdSe nanoparticles were carried out at room temperature.

  8. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells; Architectures hybrides auto-assemblees a base de systemes polyconjugues et de nanocristaux de semi-conducteurs pour le photovoltaique plastique

    Energy Technology Data Exchange (ETDEWEB)

    Girolamo, J. de

    2007-11-15

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  9. A novel fluorescent assay for edaravone with aqueous functional CdSe quantum dots

    Science.gov (United States)

    Liao, Ping; Yan, Zheng-Yu; Xu, Zhi-Ji; Sun, Xiao

    2009-06-01

    Aqueous thiol-capped CdSe QDs with a narrow, symmetric emission were prepared under a low temperature. Based on the fluorescence enhancement of thiol-stabilized CdSe quantum dots (QDs) caused by edaravone, a simple, rapid and specific quantitative method was proposed to the edaravone determination. The concentration dependence of fluorescence intensity followed the binding of edaravone to surface of the thiol-capped CdSe QDs was effectively described by a modified Langmuir-type binding isotherm. Factors affecting the fluorescence detection for edaravone with thiol-stabilized CdSe QDs were studied, such as the effect of pH, reaction time, the concentration of CdSe QDs and so on. Under the optimal conditions, the calibration plot of C/( I - I0) with concentration of edaravone was linear in the range of (1.45-17.42) μg/mL (0.008-0.1 μmol/L) with correlation coefficient of 0.998. The limit of detection (LOD) (3 σ/ κ) was 0.15 μg/mL (0.0009 μmol/mL). Possible interaction mechanism was discussed.

  10. Air annealing induced transformation of cubic CdSe microspheres into hexagonal nanorods and micro-pyramids

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400032, M.S. (India); Lu, Shih-Yuan, E-mail: sylu@mx.nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30013, Taiwan (China)

    2015-08-15

    Highlights: • Nanocrystalline CdSe thin films were deposited using inexpensive CBD method. • Air annealing induced structural and interesting morphological transformation. • The as-deposited CdSe thin films showed a blue shift in its optical spectra. • The films showed a red shift in their optical spectra after annealing. - Abstract: CdSe thin films have been deposited onto glass substrates using a chemical bath deposition method at relatively low temperatures (40 °C). The precursors used for the deposition of the thin films are cadmium nitrate hexahydrate, freshly prepared sodium selenosulfate solution and aqueous ammonia solution as a complex as well as pH adjusting reagent. In order to study the influence of air annealing on their physicochemical properties, the as-deposited CdSe thin films were further annealed at 200 °C and 400 °C for 3 h in air atmosphere. Significant changes in the morphology and photonic properties were clearly observed after the thermal annealing of the CdSe thin films. The as-deposited CdSe films grow with the cubic phase that transforms into mixed cubic and hexagonal wurtzite phase with improved crystalline quality of the films after the air annealing. Morphological observation reveals that the as-deposited thin films grow with multilayer that consists of network or mesh like structure, uniformly deposited on the glass substrate over which microspheres are uniformly distributed. After air annealing, CdSe nanorods emerged from the microspheres along with conversion of few microspheres into micro-pyramids. The UV–visible study illustrates that the as-deposited thin film shows blue shifts in its optical spectrum and the spectrum was red-shifted after annealing the CdSe thin films. The band gap of the CdSe thin films were found to be decreased after the thermal treatment.

  11. Spontaneous emission enhancement of colloidal perovskite nanocrystals

    Science.gov (United States)

    Yang, Zhili; Waks, Edo

    Halide perovskite semiconductors have emerged as prominent photovoltaic materials since their high conversion efficiency and promising light emitting materials in optoelectronics. In particular, easy-to-fabricated colloidal perovskite nanocrystals based on CsPbX3 quantum dots has been intensively investigated recently. Their luminescent wavelength could be tuned precisely by their chemical composition and size of growth. This opens new applications including light-emitting diodes, optical amplifiers and lasing since their promising performance as emitters. However, this potentially high-efficient emitter and gain material has not been fully investigated and realized in integrated photonic structures. Here we demonstrate Purcell enhancement effect of CsPbBr3 perovskite nanocrystals by coupling to an optimized photonic crystal nanobeam cavity as a first crucial step towards realization of integrated on-chip coherent light source with low energy consumption. We show clearly highly-enhanced photoluminescent spectrum and an averaged Purcell enhancement factor of 2.9 is achieved when they are coupled to nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our lifetime measurement. Our success in enhancement of emission from CsPbX3 perovskite nanocrystals paves the way towards the realization of efficient light sources for integrated optoelectronic devices with low energy consumption.

  12. Absorption properties of metal-semiconductor hybrid nanoparticles.

    Science.gov (United States)

    Shaviv, Ehud; Schubert, Olaf; Alves-Santos, Marcelo; Goldoni, Guido; Di Felice, Rosa; Vallée, Fabrice; Del Fatti, Natalia; Banin, Uri; Sönnichsen, Carsten

    2011-06-28

    The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.

  13. Investigating the Effect of Nanoscale Changes on the Chemistry and Energetics of Nanocrystals with a Novel Photoemission Spectroscopy Methodology

    Science.gov (United States)

    Liao, Michael W.

    This dissertation explores the effect of nanometer-scale changes in structure on the energetics of photocatalytic and photovoltaic materials. Of particular interest are semiconductor nanocrystals (NCs), which have interesting chemical properties that lead to novel structures and applications. Chief among these properties are quantum confinement and the high surface area-to-volume ratio, which allow for chemical tuning of the energetics and structure of NCs. This tunable energetic landscape has led to increasing application of NCs in various areas of research, including solar energy conversion, light-emitting diode technologies, and photocatalysis. However, spectroscopic methods to determine the energetics of NCs have not been well developed, due to chemical complexities of relevant NCs such as polydispersity, capping ligand effects, core-shell structures, and other chemical modifications. In this work, we demonstrate and expand the utility of photoelectron spectroscopy (PES) to probe the energetics of NCs by considering the physical processes that lead to background and secondary photoemission to enhance photoemission from the sample of interest. A new methodology for the interpretation of UP spectra was devised in order to emphasize the minute changes to the UP spectra line shape that arise from nanoscopic changes to the NCs. We applied various established subtractions that correct for photon source satellites, secondary photoelectrons, and substrate photoemission. We then investigated the effect of ligand surface coverage on the surface chemistry and density of states at the top of valence band (VB). We systematically removed ligands by increasing numbers of purification steps for two diameters of NCs and found that doing so increased photoemission density at the top of the VB, which is due to undercoordinated surface atoms. Deeper VB structure was also altered, possibly due to reorganization of the atoms in the NC. Using the new UPS interpretation methodology

  14. Investigation of the structural, optical and electrical transport properties of n-doped CdSe thin films

    Science.gov (United States)

    Ali, H. M.; Abd El-Ghanny, H. A.

    2008-04-01

    Thin films of (CdSe)90(In2O3)10, (CdSe)90(SnO2)10 and (CdSe)90(ZnO)10 have been grown on glass substrates by the electron beam evaporation technique. It has been found that undoped and Sn or In doped CdSe films have two direct transitions corresponding to the energy gaps Eg and Eg+Δ due to spin-orbit splitting of the valence band. The electrical resistivity for n-doped CdSe thin films as a function of light exposure time has been studied. The influence of doping on the structural, optical and electrical characteristics of In doped CdSe films has been investigated in detail. The lattice parameters, grain size and dislocation were determined from x-ray diffraction patterns. The optical transmittance and band gap of these films were determined using a double beam spectrophotometer. The DC conductivity of the films was measured in vacuum using a two-probe technique.

  15. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    Science.gov (United States)

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  16. Efficient Steplike Carrier Multiplication in Percolative Networks of Epitaxially Connected PbSe Nanocrystals

    NARCIS (Netherlands)

    Kulkarni, A.; Evers, W.H.; Tomić, Stanko; Beard, Matthew C.; Vanmaekelbergh, Daniel; Siebbeles, L.D.A.

    2018-01-01

    Carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum

  17. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    Science.gov (United States)

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  18. Optical absorption of CdSe quantum dots on electrodes with different morphology

    Directory of Open Access Journals (Sweden)

    Witoon Yindeesuk

    2013-10-01

    Full Text Available We have studied the optical absorption of CdSe quantum dots (QDs adsorbed on inverse opal TiO2 (IO-TiO2 and nanoparticulate TiO2 (NP-TiO2 electrodes using photoacoustic (PA measurements. The CdSe QDs were grown directly on IO-TiO2 and NP-TiO2 electrodes by a successive ionic layer adsorption and reaction (SILAR method with different numbers of cycles. The average diameter of the QDs was estimated by applying an effective mass approximation to the PA spectra. The increasing size of the QDs with increasing number of cycles was confirmed by a redshift in the optical absorption spectrum. The average diameter of the CdSe QDs on the IO-TiO2 electrodes was similar to that on the NP-TiO2 ones, indicating that growth is independent of morphology. However, there were more CdSe QDs on the NP-TiO2 electrodes than on the IO-TiO2 ones, indicating that there were different amounts of active sites on each type of electrode. In addition, the Urbach parameter of the exponential optical absorption tail was also estimated from the PA spectrum. The Urbach parameter of CdSe QDs on IO-TiO2 electrodes was higher than that on NP-TiO2 ones, indicating that CdSe QDs on IO-TiO2 electrodes are more disordered states than those on NP-TiO2 electrodes. The Urbach parameter decreases in both cases with the increase of SILAR cycles, and it tended to move toward a constant value.

  19. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    Science.gov (United States)

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-07

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  20. Direct synthesis of II-VI compound nanocrystals in polymer matrix

    International Nuclear Information System (INIS)

    Antolini, F.; Di Luccio, T.; Laera, A.M.; Mirenghi, L.; Piscopiello, E.; Re, M.; Tapfer, L.

    2007-01-01

    The production of II-VI semiconductor compound - polymer matrix nanocomposites by a direct in-situ thermolysis process is described. Metal-thiolate precursor molecules embedded in a polymer matrix decompose by a thermal annealing and the nucleation of semiconductor nanocrystals occurs. It is shown that the nucleation of nanoparticles and the formation of the nanocomposite can be also achieved by laser beam irradiation; this opens the way towards a ''lithographic'' in-situ nanocomposite production process. A possible growth and nanocomposite formation mechanism, describing the structural and chemical transformation of the precursor molecules, their decomposition and the formation of the nanoparticles, is presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Center for Development of Security Excellence (CDSE) 2013 Year End Report

    Science.gov (United States)

    2013-01-01

    Humphrey Deputy Director, CDSE CDSE STATEMENT Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc bibendum dapibus dui, at porta nunc. In eget...accumsan odio. Donec rutrum varius purus, vitae venenatis urna porttitor eget. Mauris lorem dolor , facilisis eget purus quis, adipiscing tincidunt...ac quam at gravida. Cras a ligula suscipit, lobortis dolor vel, feugiat diam. Proin mattis lectus sit amet pellentesque interdum. Cras porttitor

  2. Nanocrystals in the glass and centers of localization of free charge carriers in the thick-film resistors

    International Nuclear Information System (INIS)

    Abdurakhmanov, G.

    2012-01-01

    Conduction mechanism of doped silicate glass (DSG) based on existence of nanocrystals in the glass is proposed. These nanocrystals act as localization centers of free charge carriers. Random distribution of the nanocrystal's sizes and distances between them leads to charge transport by variable length hopping. It is shown that dopant atoms generate the narrow impurity subband of 0.03 eV in width. This subband joins close to the glass valence band top or slightly (less than 0.01 eV) separated from the last. What is why the hopping mechanism coexists with thermal activation one and at low temperatures (T -n ), 0.25 800 K) structure transitions of nanocrystals take place and conductivity of DSG decreases sharply. Beyond of the minimum of conductivity (above 1000 K) energy gap is formed between the impurity subband and the valence band top of glass, so DSG behaves like a typical semiconductor. (author)

  3. CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties

    International Nuclear Information System (INIS)

    Prabakar, K; Minkyu, S; Inyoung, S; Heeje, K

    2010-01-01

    Cadmium selenide (CdSe) quantum dots (QDs) with different particle sizes have been used as an inorganic co-sensitizer in addition to organic dye for large band gap mesoporous TiO 2 dye sensitized solar cells. The QDs co-sensitized solar cells exhibited overall highest conversion efficiency of 3.65% at 1 sun irradiation for 3.3 nm particle size corresponding to a visible light absorption wavelength of 528 nm. The photovoltaic characteristics of CdSe QDs co-sensitized cells depend on the particle sizes rather than broad spectral light absorption as compared with CdSe QDs alone sensitized and standard dye-sensitized solar cells. Correlation between CdSe QDs adsorption on mesoporous TiO 2 surfaces and photoelectron injection into TiO 2 has been demonstrated. (fast track communication)

  4. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. (Abstract shortened by ProQuest.).

  5. Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

    KAUST Repository

    Davis, Nathaniel J. L. K.

    2017-01-24

    Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs.

  6. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

    Directory of Open Access Journals (Sweden)

    Fakher Laatar

    2017-12-01

    Full Text Available CdSe nanorods (NRs with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO2 nanoparticles (Aeroxide® P25 by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV–visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO2 particles. The UV–visible spectra demonstrate that the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity, the CdSe/TiO2 heterostructured catalysts show high potential for real water decontamination.

  7. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.

    Science.gov (United States)

    Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.

  8. Nonlinear optical effect and excited electron dynamics of semiconductor nanocrystals; Handotai nano kessh no hisenkei kogaku koka to reiki denshi dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T. [Tohoku University, Sendai (Japan)

    1996-08-20

    Investigations were given on nanocrystals of CuCl and CdTe with regard to their nonlinear optical mechanism. The experiment used a femto-second pump probe spectroscope. The experiment on CuCl nanocrystals revealed the following facts: in the case where one photon is absorbed into one nanocrystal, cascade mitigation occurs to the pair of electrons and holes, and exciters; and in the case where two photons are absorbed into one nanocrystal, exciter molecules are made via the pair of electrons and holes and the exciters. Thus, it was found that the optical nonlinearity occurs when more than two photons are absorbed into one nanocrystal, and inter-exciter interactions and formation of the exciter molecules are the physical causes thereof. The experiment on CdTe nanocrystals indicated that electrons and holes produced by laser beam are distributed instantaneously between the size-quantized discrete levels, and that temperature in the electron system drops with lapse of time. 9 refs., 6 figs.

  9. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials.

    Science.gov (United States)

    Creutz, Sidney E; Crites, Evan N; De Siena, Michael C; Gamelin, Daniel R

    2018-02-14

    Concerns about the toxicity and instability of lead-halide perovskites have driven a recent surge in research toward alternative lead-free perovskite materials, including lead-free double perovskites with the elpasolite structure and visible bandgaps. Synthetic approaches to this class of materials remain limited, however, and no examples of heterometallic elpasolites as nanomaterials have been reported. Here, we report the synthesis and characterization of colloidal nanocrystals of Cs 2 AgBiX 6 (X = Cl, Br) elpasolites using a hot-injection approach. We further show that postsynthetic modification through anion exchange and cation extraction can be used to convert these nanocrystals to new materials including Cs 2 AgBiI 6 , which was previously unknown experimentally. Nanocrystals of Cs 2 AgBiI 6 , synthesized via a novel anion-exchange protocol using trimethylsilyl iodide, have strong absorption throughout the visible region, confirming theoretical predictions that this material could be a promising photovoltaic absorber. The synthetic methodologies presented here are expected to be broadly generalizable. This work demonstrates that nanocrystal ion-exchange reactivity can be used to discover and develop new lead-free halide perovskite materials that may be difficult or impossible to access through direct synthesis.

  10. Probing the interaction of flower-like CdSe nanostructure particles targeted to bovine serum albumin using spectroscopic techniques

    International Nuclear Information System (INIS)

    Ju Peng; Fan Hai; Liu Tao; Cui Lin; Ai Shiyun

    2011-01-01

    The interaction between flower-like CdSe nanostructure particles (CdSe NP) and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, CdSe NP could effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constant (K A ) was 6.38, 3.27, and 1.90x10 4 M -1 at 298, 304, and 310 K, respectively and the number of binding sites was 1.20. According to the Van't Hoff equation, the thermodynamic parameters (ΔH o =-77.48 kJ mol -1 , ΔS o =-168.17 J mol -1 K -1 ) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA-CdSe complex. Besides, UV-vis and circular dichroism (CD) results showed that the addition of CdSe NP changed the secondary structure of BSA and led to a decrease in α-helix. These results suggested that BSA underwent substantial conformational changes induced by flower-like CdSe nanostructure particles. - Highlights: → Estimate the binding of flower-like CdSe NP to BSA by spectroscopic methods. → Hydrogen bonds and van der Waals forces were the major forces. →Addition of CdSe changed the micro-environmentl of BSA. → Decrease in α-helix of BSA secondary structure induced by CdSe.

  11. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    Science.gov (United States)

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH 3 NH 3 PbI 3 red/near-infrared LEDs and CH 3 NH 3 PbBr 3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  12. Effect of ligand self-assembly on nanostructure and carrier transport behaviour in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Xue, Zhenjie

    2014-11-14

    Adjustment of the nanostructure and carrier behaviour of CdSe quantum dots (QDs) by varying the ligands used during QD synthesis enables the design of specific quantum devices via a self-assembly process of the QD core–shell structure without additional technologies. Surface photovoltaic (SPV) technology supplemented by X-ray diffractometry and infrared absorption spectroscopy were used to probe the characteristics of these QDs. Our study reveals that while CdSe QDs synthesized in the presence of and capped by thioglycolic acid, 3-mercaptopropionic acid, mercaptoethanol or α-thioglycerol ligands display zinc blende nanocrystalline structures, CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures, because different end groups in these ligands induce distinctive nucleation and growth mechanisms. Carboxyl end groups in the ligand served to increase the SPV response of the QDs, when illuminated by hν ≥ E{sub g,nano-CdSe}. Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit photo-generated free charge carrier (FCC) transfer transitions of CdSe QDs illuminated by photon energy of 4.13 to 2.14 eV. The terminal hydroxyl group might better accommodate energy released in the non-radiative de-excitation process of photo-generated FCCs in the ligand's lowest unoccupied molecular orbital in the 300–580 nm wavelength region, when compared with other ligand end groups. - Highlights: • CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures. • Carboxyl end groups in the ligand serve to increase the SPV response of CdSe QDs. • Terminal hydroxyl group in the ligand might accommodate non-radiative de-excitation process in CdSe QDs. • Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit carriers transport of CdSe QDs.

  13. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  14. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia

    2015-01-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  15. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Hasti [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States); Baxter, Jason B., E-mail: jbaxter@drexel.ed [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States)

    2011-02-15

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size {approx}5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of {approx}2 mA cm{sup -2} for nanowires with roughness factor of {approx}10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  16. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    International Nuclear Information System (INIS)

    Majidi, Hasti; Baxter, Jason B.

    2011-01-01

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size ∼5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of ∼2 mA cm -2 for nanowires with roughness factor of ∼10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  17. Enhancement of the photoelectric performance in inverted bulk heterojunction solid solar cell with inorganic nanocrystals

    International Nuclear Information System (INIS)

    Luan, Weiling; Zhang, Chengxi; Luo, Lingli; Yuan, Binxia; Jin, Lin; Kim, Yong-Sang

    2017-01-01

    Highlights: • Solid solar cells based on FeS_2 or PbS NCs showed power conversion efficiency (PCE) of 3.0% and 3.11%, respectively. • The FeS_2 NCs/polymer solar cells showed good time and thermal stability when exposed in air condition. • Ternary solid solar cells based on PbS NCs exhibited a higher short circuit current density (J_s_c). - Abstract: Nanocrystal/polymer solid solar cells have the advantages of low-cost, simple process, and flexible manufacture. In this work, ternary solid solar cells based on FeS_2 and PbS nanocrystals exhibited photovoltaic conversion efficiency of 3.0% and 3.1%, respectively. As a kind of semiconductor with optical absorption in the visible and near-infrared regions, FeS_2 nanocrystals matched well with the solar radiation spectrum. Furthermore, PbS Nanocrystals could increase the number of electrons, due to its multiple exciton effect. Additionally, the FeS_2 nanocrystals solar cells showed high stability, with 83.3% of its initial efficiency remained after 15 weeks of exposure in air, and kept good stable performance at 20–80 °C. The photovoltaic conversion efficiency fluctuation magnitudes were also found to be smaller than quantum-dot sensitized solar cell under the same conditions.

  18. Transparent high-performance CDSE thin-film solar cells

    International Nuclear Information System (INIS)

    Mahawela, P.; Jeedigunta, S.; Vakkalanka, S.; Ferekides, C.S.; Morel, D.L.

    2005-01-01

    Simulations indicate that 25-30% efficiency can be achieved with a four-terminal thin-film tandem structure. The bottom low band gap cell can be CuIn 1-x Ga x Se 2 , and CdSe is proposed as the top cell, as it has an ideal band gap of 1.7 eV. In addition to the efficiency requirements, the top cell must also be transparent to effectively transmit sub band gap light to the bottom cell. We have developed CdSe devices that meet many of the requirements of this tandem structure. High electronic quality CdSe has been deposited on SnO 2 and ZnO, which serve as the transparent n-type contact. The p-type transparent contact is ZnSe/Cu. Voc's of 475 mV have been achieved and can be further improved with better contacts. However, record Jsc's in excess of 17 mA/cm 2 have been achieved. This is close to the target 18 mA/cm 2 to meet the efficiency objectives. Transmission of 80% of the sub band gap radiation has been demonstrated for 2-no. muno. m-thick absorber layers. This is also close to the 85% target to achieve the overall tandem efficiency objectives. Improvement of the contact layers to achieve the Voc target is the final challenge

  19. On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals

    NARCIS (Netherlands)

    Houtepen, Arjan J.; Hens, Zeger; Owen, Jonathan S.; Infante, Ivan

    2017-01-01

    One of the greatest challenges in the field of semiconductor nanomaterials is to make trap-free nanocrystalline structures to attain a remarkable improvement of their optoelectronic performances. In semiconductor nanomaterials, a very high number of atoms is located on the surface and these atoms

  20. Direct growth of CdSe nanorods on ITO substrates by co-anchoring of ZnO nanoparticles and ethylenediamine

    International Nuclear Information System (INIS)

    Pan Shangke; Xu Tingting; Venkatesan, Swaminathan; Qiao Qiquan

    2012-01-01

    To grow CdSe nanorods directly onto indium tin oxide (ITO) substrates, a ZnO buffer layer composed of nanoparticles with diameter of ∼30–40 nm was prepared by spin coating ZnO sol–gel solution onto the ITO substrates. CdSe nanorods were then successfully in situ grown onto ITO substrates with diameter of ∼30–40 nm and length of ∼120–160 nm using solvothermal method in which CdSe·0.5en (en = ethylenediamine) acted as solution precursor. The in situ synthesized CdSe nanorods were conformed and characterized by atomic force microscope and electron microscopy. The mechanism of such in situ CdSe growth was understood as ZnO nanoparticles anchored en onto ITO substrates, while en linked CdSe with ZnO.

  1. Rigid Biopolymer Nanocrystal Systems for Controlling Multicomponent Nanoparticle Assembly and Orientation in Thin Film Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer [Univ. of Colorado, Boulder, CO (United States)

    2016-10-31

    We have discovered techniques to synthesize well-defined DN conjugated nanostructures that are stable in a wide variety of conditions needed for DNA mediated assembly. Starting from this, we have shown that DNA can be used to control the assembly and integration of semiconductor nanocrystals into thin film devices that show photovoltaic effects.

  2. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  3. Heterojunction PbS Nanocrystal Solar Cells with Oxide Charge-Transport Layers

    KAUST Repository

    Hyun, Byung-Ryool

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Roomerature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures. © 2013 American Chemical Society.

  4. MnFe2O4/CdSe magneto-fluorescent nanocomposite for possible biomedical applications

    Science.gov (United States)

    Chandunika, R. K.; Vijayaraghavan, R.; Sahu, Niroj Kumar

    2018-04-01

    Acombined superparamagnetic and fluorescent MnFe2O4/CdSe multifunctional nanocompositehas been prepared by suitable surface functionalizationswith citric acid, polyethyleneimine(PEI) and thioglycolic acid (ThA).and the samples were characterized by XRD, FT-IR, TEM, Zeta Potential, VSM, UV-Vis and PL spectroscopy. MnFe2O4 crystalizes with average size of 38.6 nm whereas CdSe with average size of 2.03 nm. In composite, the CdSe quantum dots (QD) are homogeneously distributed in the matrix of porous MnFe2O4 nanoparticles. Thenanocomposites are well dispersed in aqueous solvent and possess significant magnetic and luminescence properties which may be utilised for magnetic resonance imaging and luminescence tagging of biomolecules.

  5. Poly(3-hexylthiophene) - CdSe quantum dot bulk heterojunction solar cells: Influence of the functional end-group of the polymer

    KAUST Repository

    Palaniappan, Kumaranand

    2009-06-23

    The synthesis of H/thiol terminated P3HT from Br/allyl-terminated P3HT precursor was analyzed. The photovoltaic response of blends were prepared of H/thiol terminated P3HT with spherical CdSe quantum dots(QD) and compares the results with regioregular H/Br and Br/aryl-terminated P3HT. Phase segregation was carried by mixing relatively polar pyridine treated CdSe QD with nonpolar P3HT. The experiment revealed that a high loading of CdSe is necessary for an efficient charge transport and different loading ratios of CdSe has been investigated to correlate the photovoltaic response as a function of ration between donor H/thiol-P3ht polymer and acceptor Cdse QD. The results show that H/Br-P3HT, H/thiol- and Br/allyl-terminated P3HT exhibits better performance and Cdse quantum dots were used to obtain results.

  6. Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection

    Directory of Open Access Journals (Sweden)

    Zhu Chang-Qing

    2008-01-01

    Full Text Available AbstractA new simple method for synthesis of core/shell CdSe/ZnS nanocrystals (NCs is present. By adapting the use of cadmium stearate, oleylamine, and paraffin liquid to a non-injection synthesis and by applying a subsequent ZnS shelling procedure to CdSe NCs cores using Zinc acetate dihydrate and sulfur powder, luminescent CdSe/ZnS NCs with quantum yields of up to 36% (FWHM 42–43 nm were obtained. A seeding-growth technique was first applied to the controlled synthesis of ZnS shell. This method has several attractive features, such as the usage of low-cost, green, and environmentally friendlier reagents and elimination of the need for air-sensitive, toxic, and expensive phosphines solvent. Furthermore, due to one-pot synthetic route for CdSe/ZnS NCs, the approach presented herein is accessible to a mass production of these NCs.

  7. CdSe white quantum dots-based white light-emitting diodes with high color rendering index

    Science.gov (United States)

    Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru

    2016-09-01

    A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.

  8. Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie [University of Pennsylvania; Murray, Christopher [University of Pennsylvania; Kikkawa, James [University of Pennsylvania; Engheta, Nader [University of Pennsylvania

    2017-06-14

    Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemical methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.

  9. Colloidal CuInSe2 nanocrystals thin films of low surface roughness

    International Nuclear Information System (INIS)

    Kergommeaux, Antoine de; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter

    2013-01-01

    Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe 2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. (paper)

  10. Water-Soluble CdTe/CdS Core/Shell Semiconductor Nanocrystals: How Their Optical Properties Depend on the Synthesis Methods

    Directory of Open Access Journals (Sweden)

    Brener R. C. Vale

    2016-10-01

    Full Text Available We conducted a comparative synthesis of water-soluble CdTe/CdS colloidal nanocrystalline semiconductors of the core/shell type. We prepared the CdS shell using two different methods: a one-pot approach and successive ionic layer adsorption and reaction (SILAR; in both cases, we used 3-mercaptopropionic acid (MPA as the surface ligand. In the one-pot approach, thiourea was added over the freshly formed CdTe dispersion, and served as the sulfur source. We achieved thicker CdS layers by altering the Cd:S stoichiometric ratio (1:1, 1:2, 1:4, and 1:8. The Cd:S ratios 1:1 and 1:2 furnished the best optical properties; these ratios also made the formation of surface defects less likely. For CdTe/CdS obtained using SILAR, we coated the surface of three differently sized CdTe cores (2.17, 3.10, and 3.45 nm with one to five CdS layers using successive injections of the Cd2+ and S2– ions. The results showed that the core size influenced the optical properties of the materials. The deposition of three to five layers over the surface of smaller CdTe colloidal nanocrystals generated strain effects on the core/shell structure.

  11. Radiative d–d transitions at tungsten centers in II–VI semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, V. V., E-mail: ushakov@lebedev.ru; Krivobok, V. S.; Pruchkina, A. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    The luminescence spectra of W impurity centers in II–VI semiconductors, specifically, ZnSe, CdS, and CdSe, are studied. It is found that, if the electron system of 5d (W) centers is considered instead of the electron system of 3d (Cr) centers, the spectral characteristics of the impurity radiation are substantially changed. The electron transitions are identified in accordance with Tanabe–Sugano diagrams of crystal field theory. With consideration for the specific features of the spectra, it is established that, in the crystals under study, radiative transitions at 5d W centers occur between levels with different spins in the region of a weak crystal field.

  12. Detection of CdSe quantum dot photoluminescence for security label on paper

    Energy Technology Data Exchange (ETDEWEB)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok [Research Center for Physics, Indonesian Institute of Science, Building 442 Puspiptek Serpong, South Tangerang, Banten, Indonesia 15314 (Indonesia); Bilqis, Ratu; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. Soedarto, Tembalang, Semarang, Indonesia 50275 (Indonesia)

    2016-02-08

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  13. The dispersion of the refractive index of semiconductors at the edge of their intrinsic absorption

    International Nuclear Information System (INIS)

    Kudykina, T.A.; Lisitsa, M.P.

    1986-01-01

    The authors discuss the frequency dependence of the refractive index of various semiconductors near the edge of their intrinsic absorption in both theory and experiment. Beginning with random phase approximation, equations are presented which include all possible excitations and result in values for the width of the forbidden energy gap, the oscillator strengths, and spectral functions for the absorption coefficients. Data are presented for the following materials: CdS, CdSe, CdTe, GaSb, InP, GaAs, ZnTe, PbTe, InAs, InSb, and ZnSe

  14. Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath

    International Nuclear Information System (INIS)

    Pawar, S.M.; Moholkar, A.V.; Rajpure, K.Y.; Bhosale, C.H.

    2007-01-01

    The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH 3 COO) 2 .Cd.2H 2 O, SeO 2 , and FeCl 3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, E g from 1.95 to 1.65 eV

  15. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell.

    Science.gov (United States)

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-07

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  16. Surface-enhanced Raman effect in hybrid metal–semiconductor nanoparticle assemblies

    International Nuclear Information System (INIS)

    Lughi, Vanni; Bonifacio, Alois; Barbone, Matteo; Marsich, Lucia; Sergo, Valter

    2013-01-01

    Hybrid metal–semiconductor nanoparticles consisting of silver nanoparticle cores (AgNPs) coated with a layer of CdSe quantum dots (QDs) have been studied by Raman spectroscopy. The hybrid nanoparticles were prepared via electrostatic interaction by mixing aqueous suspensions of QDs and AgNPs, where opposite charges on the AgNPs and QDs surfaces were induced by opportunely selected capping agents. Assemblies of such hybrid nanoparticles show an increased intensity of the Raman spectrum of up to 500 times, when compared to that of the sole QDs. This enhancement is attributed to the SERS effect (Surface-enhanced Raman scattering). Such enhancement of the Raman modes suggests several opportunities for further research, both in imaging and sensing applications.

  17. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model

    International Nuclear Information System (INIS)

    Alaraby, Mohamed; Demir, Esref; Hernández, Alba; Marcos, Ricard

    2015-01-01

    Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl 2 . Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl 2 suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects. - Highlights: • CdSe QDs were able to cross the intestinal barrier of Drosophila. • Elevated ROS induction was detected in larval hemocytes. • Changes in the expression of Hsps and p53 genes were observed. • Primary DNA damage was induced by CdSe QDs in hemocytes. • Overall, CdSe QD effects were milder than those induced by CdCl 2

  18. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model

    Energy Technology Data Exchange (ETDEWEB)

    Alaraby, Mohamed [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag (Egypt); Demir, Esref [Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya (Turkey); Hernández, Alba [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-10-15

    Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl{sub 2}. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl{sub 2} suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects. - Highlights: • CdSe QDs were able to cross the intestinal barrier of Drosophila. • Elevated ROS induction was detected in larval hemocytes. • Changes in the expression of Hsps and p53 genes were observed. • Primary DNA damage was induced by CdSe QDs in hemocytes. • Overall, CdSe QD effects were milder than those induced by CdCl{sub 2}.

  19. Exploring ultrafast dynamics of excitons and multiexcitons in "giant" nanocrystal quantum dots

    Science.gov (United States)

    Sampat, Siddharth

    In this work, we have performed extensive time resolved photoluminescence (PL) studies to further the understanding of charge dynamics in semiconductor nanocrystal quantum dots (QDs). Recent developments in QD synthesis have introduced a new set of QD known as "giant" quantum dots (gQDs) that consist of a CdSe core coated with up to 19 monolayers of a CdS shell. The thick shell layer is grown using a SILAR method resulting in a defect free, alloyed CdSe/CdS interface. This has been attributed to gQDs exhibiting excellent optical properties such as high excitonic quantum yield (QY), prolonged photostability and inhibition of flourescence intermittency ("blinking"), which is regularly observed in conventional QDs. In gQDs, however, owing to unique fabrication methods and material selection, the Auger process is strongly suppressed resulting in efficient radiative recombination of photogenerated excitons as well as high PL QY of charged excitonic and multiexcitonic species. We perform extensive single gQDs studies that establish the role played by gQD shell thickness and core size in governing their optical properties. It is found that both the core and shell dimensions can be tuned in order to achieve the smallest gQDs with the highest vii Auger suppression resulting in photostable dots with high QYs. Next, we perform a study of multiexcitonic species in gQDs that are encapsulated in an insulating SiO2shell. These silica-coated gQDs exhibit strong PL from charged excitons, biexcitons as well as triexcitons. This observation has led to an accurate description of excitonic and multiexcitonic behavior which is modeled using a statistical scaling approach. As a demonstration of the practical applicability of gQDs, energy transfer of excitons as well as multiexcitons to different substrates is studied. Finally, a back gated silicon nanomembrane FET device is discussed that exhibits a large photocurrent increase when sensitized with QDs.

  20. Enhancement of electron transfer from CdSe core/shell quantum dots to TiO2 films by thermal annealing

    International Nuclear Information System (INIS)

    Shao, Cong; Meng, Xiangdong; Jing, Pengtao; Sun, Mingye; Zhao, Jialong; Li, Haibo

    2013-01-01

    We demonstrated the enhancement of electron transfer from CdSe/ZnS core/shell quantum dots (QDs) to TiO 2 films via thermal annealing by means of steady-state and time-resolved photoluminescence (PL) spectroscopy. The significant decrease in PL intensities and lifetimes of the QDs on TiO 2 films was clearly observed after thermal annealing at temperature ranging from 100 °C to 300 °C. The obtained rates of electron transfer from CdSe core/shell QDs with red, yellow, and green emissions to TiO 2 films were significantly enhanced from several times to an order of magnitude (from ∼10 7 s −1 to ∼10 8 s −1 ). The improvement in efficiencies of electron transfer in the TiO 2 /CdSe QD systems was also confirmed. The enhancement could be considered to result from the thermal annealing reduced distance between CdSe QDs and TiO 2 films. The experimental results revealed that thermal annealing would play an important role on improving performances of QD based optoelectronic devices. -- Highlights: • Annealing-induced enhancement of electron transfer from CdSe to TiO 2 is reported. • CdSe QDs on TiO 2 and SiO 2 films are annealed at various temperatures. • Steady-state and time-resolved PL spectroscopy of CdSe QDs is studied. • The enhancement is related to the reduced distance between CdSe QDs and TiO 2

  1. A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    H. K. Jun

    2013-01-01

    Full Text Available A polysulfide liquid electrolyte is developed for the application in CdSe quantum dot-sensitized solar cells (QDSSCs. A solvent consisting of ethanol and water in the ratio of 8 : 2 by volume has been found as the optimum solvent for preparing the liquid electrolytes. This solvent ratio appears to give higher cell efficiency compared to pure ethanol or water as a solvent. Na2S and S give rise to a good redox couple in the electrolyte for QDSSC operation, and the optimum concentrations required are 0.5 M and 0.1 M, respectively. Addition of guanidine thiocyanate (GuSCN to the electrolyte further enhances the performance. The QDSSC with CdSe sensitized electrode prepared using 7 cycles of successive ionic layer adsorption and reaction (SILAR produces an efficiency of 1.41% with a fill factor of 44% on using a polysulfide electrolyte of 0.5 M Na2S, 0.1 M S, and 0.05 M GuSCN in ethanol/water (8 : 2 by volume under the illumination of 100 mW/cm2 white light. Inclusion of small amount of TiO2 nanoparticles into the electrolyte helps to stabilize the polysulfide electrolyte and thereby improve the stability of the CdSe QDSSC. The CdSe QDs are also found to be stable in the optimized polysulfide liquid electrolyte.

  2. White light emission from organic-inorganic hererostructure devices by using CdSe quantum dots as emitting layer

    International Nuclear Information System (INIS)

    Tang Aiwei; Teng Feng; Gao Yinhao; Li Dan; Zhao Suling; Liang Chunjun; Wang Yongsheng

    2007-01-01

    In this paper, white light emission was obtained from organic-inorganic heterostructure devices by using CdSe quantum dots as emitting layer, in which CdSe quantum dots were synthesized via a colloidal chemical approach by using CdO and Se powder as precursors. Photoluminescence of CdSe quantum dots demonstrated a white emission with a full wavelength at half maximum (FWHM) of about 200 nm under ambient conditions, and the white emission could be observed in both multilayer device ITO/PEDOT:PSS/CdSe/BCP/Alq 3 /Al and single-layer device: ITO/PEDOT:PSS/CdSe/Al. The broad emission was attributed to the inhomogeneous broadening. The CIE coordinates of the multilayer device were x=0.35 and y=0.40. The white-light-emitting diodes with CdSe quantum dots as the emitting layer are potentially useful in lighting applications

  3. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    International Nuclear Information System (INIS)

    Laatar, F.; Harizi, A.; Smida, A.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E_o), dispersion energy (E_d), and static refractive index (n_o) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ_e) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  4. Luminescence studies of molecular materials

    International Nuclear Information System (INIS)

    Miller, P.F.

    2000-01-01

    Molecular materials have been widely studied for their potential uses in novel semiconductor devices. They occupy the intellectually interesting area between molecular and bulk descriptions of matter, and as such often have unique and useful characteristics. The design and engineering of these structures is inter-disciplinary in its nature, embracing the fields of physics, electrical engineering and both synthetic and physical chemistry. In this thesis luminescence studies of molecular materials will be presented that probe the nature of the excited states in two promising semiconductor systems. Luminescence techniques provide a powerful and sensitive tool in the investigation of kinetic pathways of radiative and non-radiative emission from these samples. This is particularly appropriate here, as the materials being studied are of potential use in electroluminescent devices. The suitability of photoluminescence techniques comes from both the electroluminescence and photoluminescence sharing the same emitting state. The first class of material studied here is an organic semiconducting polymer, cyano-substituted polyphenylenevinylene (CN-PPV). Conjugated polymers combine semiconducting electronic properties with favourable processing properties and offer the possibility of tuning their optical and electronic properties chemically. The cyanosubstitution increases the electron affinity of the polymer backbone, facilitating electron injection in light-emitting diodes. The polymers are soluble in solvents such as toluene and chloroform due the presence of alkoxy sidegroups. CdSe semiconductor nanocrystals are the other class of material characterised in this work. Semiconductor nanocrystals exhibit interesting size-tunable optical properties due to the confinement of the electronic wave functions. Characterisation of samples produced by different synthetic routes has been carried out to demonstrate the advantages of a novel synthetic method in terms of physical and

  5. Layer-by-layer assembled porous CdSe films incorporated with plasmonic gold and improved photoelectrochemical behaviors

    International Nuclear Information System (INIS)

    Liu, Aiping; Ren, Qinghua; Yuan, Ming; Xu, Tao; Tan, Manlin; Zhao, Tingyu; Dong, Wenjun; Tang, Weihua

    2013-01-01

    Highlights: • A 3D porous CdSe film with plasmonic gold was fabricated by electrodeposition. • A prominent light absorption enhancement of CdSe films was attained by gold plasmon. • The photoelectrochemical response of CdSe was tunable by Au–CdSe bilayer number. • The porous Au–CdSe films had a potential application in energy conversion devices. -- Abstract: A simple method for creating three-dimensional porous wurtzite CdSe films incorporated with plasmonic gold by the electrochemical layer-by-layer assembly was proposed. A prominent enhancement in light absorption of CdSe films was attained by the efficient light scattering of gold plasmons as sub-wavelength antennas and concentrators and the near-field coupling of gold plasmons with the neighboring porous CdSe films. The broadband photocurrent enhancement of Au–CdSe composite systems in the visible light range and the local current maximum between 600 and 700 nm suggested the cooperative action of antenna effects and electromagnetic field enhancement resulting from localized surface plasmon excitation of gold. Furthermore, the photoelectrochemical response of porous Au–CdSe composite films was highly tunable with respect to the number of Au–CdSe bilayer. The optimal short-circuit current and open-circuit potential were obtained in a four-layer Au–CdSe system because the thicker absorber layer with less porous structure might limit the electrolyte diffusion into the hybrid electrode and impose a barrier for electron tunneling and transferring. The highly versatile and tunable properties of assembled porous Au–CdSe composite films demonstrated their potential application in energy conversion devices

  6. Self-assembly of charged microclusters of CdSe/ZnS core/shell nanodots and nanorods into hierarchically ordered colloidal arrays

    International Nuclear Information System (INIS)

    Sukhanova, Alyona; Baranov, Alexander V; Klinov, Dmitriy; Oleinikov, Vladimir; Berwick, Kevin; Cohen, Jacques H M; Pluot, Michel; Nabiev, Igor

    2006-01-01

    A thermodynamically driven self-organization of microclusters of semiconductor nanocrystals with a narrow size distribution into periodic two-dimensional (2D) arrays is an attractive low-cost technique for the fabrication of 2D photonic crystals. We have found that CdSe/ZnS core/shell quantum dots or quantum rods, transferred in aqueous phase after capping with the bifunctional surface-active agent DL-cysteine, form on a poly-L-lysine coated surface homogeneously sized micro-particles, droplet-like spheroid clusters and hexagon-like colloidal crystals self-organized into millimetre-sized 2D hexagonal assemblies. The presence of an organic molecular layer around the micro-particles prevents immediate contact between them, forming an interstitial space which may be varied in thickness by changing the origin of the molecular layer capping nanocrystals. Due to the high refractive index of CdSe and the low refractive index of the interstitial spaces, these structures are expected to have deep gaps in their photonic band, forming hierarchically ordered 2D arrays of potentially photonic materials

  7. Concentration dependent carriers dynamics in CsPbBr3 perovskite nanocrystals film with transient grating

    Science.gov (United States)

    Wang, Yinghui; Wang, Yanting; Dev Verma, Sachin; Tan, Mingrui; Liu, Qinghui; Yuan, Qilin; Sui, Ning; Kang, Zhihui; Zhou, Qiang; Zhang, Han-Zhuang

    2017-05-01

    The concentration dependence of the carrier dynamics is a key parameter to describe the photo-physical properties of semiconductor films. Here, we investigate the carrier dynamics in the CsPbBr3 perovskite nanocrystal film by employing the transient grating (TG) technique with continuous bias light. The concentration of initial carriers is determined by the average number of photons per nanocrystals induced by pump light (⟨N⟩). The multi-body interaction would appear and accelerate the TG dynamics with ⟨N⟩. When ⟨N⟩ is more than 3.0, the TG dynamics slightly changes, which implies that the Auger recombination would be the highest order multi-body interaction in carrier recombination dynamics. The concentration of non-equilibrium carriers in the film is controlled by the average number of photons per nanocrystals excited by continuous bias light (⟨nne⟩). Increasing ⟨nne⟩ would improve the trapping-detrapping process by filling the trapping state, which would accelerate the carrier diffusion and add the complexity of the mono-molecular recombination mechanism. The results should be useful to further understand the mechanism of carrier dynamics in the CsPbBr3 perovskite nanocrystal film and of great importance for the operation of the corresponding optoelectronic devices.

  8. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    International Nuclear Information System (INIS)

    Isnaeni,; Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-01-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  9. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    Energy Technology Data Exchange (ETDEWEB)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha [Research Center for Physics, Indonesian Institute of Sciences, Building 442, Kawasan Puspiptek, South Tangerang,Banten 15314 Indonesia (Indonesia)

    2016-03-11

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  10. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    Science.gov (United States)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se

  11. Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [Department; Center; Fedin, Igor [Department; Diroll, Benjamin T. [Center; Liu, Yuzi [Center; Talapin, Dmitri V. [Center; Department; Schaller, Richard D. [Department; Center

    2018-01-03

    Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology up to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.

  12. Morphological and luminescent evolution of near-infrared-emitting CdTe{sub x}Se{sub 1-x} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ruili; Yang Ping, E-mail: mse_yangp@ujn.edu.cn [University of Jinan, School of Material Science and Engineering (China)

    2012-08-15

    A facile organic route has been developed to synthesize CdTe{sub x}Se{sub 1-x} nanocrystals (NCs) using stearic acid as a capping agent. Because of growth kinetics of CdTe and CdSe, the molar ratio of Te/Se enables CdTe{sub x}Se{sub 1-x} NCs with various morphologies. By increasing the Te/Se ratio, the morphology of the NCs can be adjusted from tetrahedron to tetrapod. This is ascribed to the energy difference between wurtzite and the zinc-blende structures, which determines the nucleation and growth processes of the NCs. The diameters of the branches of tetrapod were 4-6 nm and their lengths were 7-20 nm. The CdTe{sub x}Se{sub 1-x} NCs revealed near-infrared (NIR) range (700-800 nm) photoluminescence (PL). The PL properties of the resulting NCs are strongly dependent on preparation conditions such as the molar ratio of Te/Se as well as the reaction temperature and time. In the cases of various reaction temperature (120-260 Degree-Sign C), the NCs revealed adjusted PL peak wavelength from visible to NIR range and narrow PL spectra. In addition, even though a high Te/Se molar ratio (0.67) was used, the CdTe{sub x}Se{sub 1-x} NCs revealed improved stability compared with CdTe NCs. Being coated with a composite Cd{sub y}Zn{sub 1-y}S shell, the PL intensity was drastically enhanced. The approach described here is utilizable to the fabrication of other semiconductor NCs with various morphologies. Because of the adjusted morphologies, tunable NIR range emission, and high stability of these composite NCs, we will focus on their applications such as solar cell and biolabeling.

  13. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Masadeh, A S; Bozin, E S; Farrow, C L; Paglia, G; Juhas, P; Billinge, S J. L.; Karkamkar, A; Kanatzidis, M G [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1116 (United States)

    2007-09-15

    The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2 to 4 nm, has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is {approx}50%. The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2 nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach.

  14. Studies of interaction of amines with TOPO/TOP capped CdSe quantum dots: Role of crystallite size and oxidation potential

    International Nuclear Information System (INIS)

    Sharma, Shailesh N.; Sharma, Himani; Singh, Gurmeet; Shivaprasad, S.M.

    2008-01-01

    This work reports the interaction of aliphatic (triethyl amine, butyl amine) and aromatic amines (PPD, aniline) with CdSe quantum dots of varied sizes. The emission properties and lifetime values of CdSe quantum dots were found to be dependent on the oxidation potential of amines and crystallite sizes. Smaller CdSe quantum dots (size ∼5 nm) ensure better surface coverage of amines and hence higher quenching efficiency of amines could be realized as compared to larger CdSe quantum dots (size ∼14 nm). Heterogeneous quenching of amines due to the presence of accessible and inaccessible set of CdSe fluorophores is indicated. PPD owing to its lowest oxidation potential (∼0.26 V) has been found to have higher quenching efficiency as compared to other amines TEA and aniline having oxidation potentials ∼0.66 and >1.0 V, respectively. Butyl amine on the other hand, plays a dual role: its post-addition acts as a quencher for smaller and enhances emission for larger CdSe quantum dots, respectively. The beneficial effect of butyl amine in enhancing emission intensity could be attributed to enhance capping effect and better passivation of surface-traps

  15. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  16. Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells

    International Nuclear Information System (INIS)

    Sun, Y H; Liu, Y S; Vernier, P T; Liang, C H; Chong, S Y; Marcu, L; Gundersen, M A

    2006-01-01

    Photophysical properties of semiconductor nanocrystal quantum dots (QDs) are primary determinants of their efficacy as fluorescence probes in biological systems. Our minimally passivated core/shell/shell QDs are smaller than the QDs with thick polymer coats that are often used for cellular probes, permitting less restricted access to intracellular compartments and at the same time a greater sensitivity to environmental conditions. We report here a reversible photoinduced fluorescence enhancement (photoactivation) of endocytosed mercaptoacetic-acid-capped CdSe quantum dots (MAA QDs) and the pH dependence of MAA QD photoluminescence in SKOV-3 human ovarian cancer cells. The fluorescence emission of MAA QDs taken up directly by SKOV-3 cells without the need for extra capping ligands or permeabilization steps remains bright and stable for at least 14 days. These intracellular fluorescent nanocrystals do not colocalize with low-pH lysosomes, and the emission of the MAA QDs in fixed cell preparations is quenched by acidic buffer, suggesting that a low-pH environment in cellular vesicles quenches QD fluorescence. Photoactivation of intracellular MAA QD luminescence is dependent on the excitation energy and is related to the metabolic activity of the cells. These active interactions between cells and nanocrystals demonstrate the potential of MAA QDs as intracellular environmental sensors

  17. Determination of absorption cross-section of Si nanocrystals by two independent methods based on either absorption or luminescence

    Czech Academy of Sciences Publication Activity Database

    Valenta, J.; Greben, M.; Remeš, Zdeněk; Gutsch, S.; Hiller, D.; Zacharias, M.

    2016-01-01

    Roč. 102, č. 2 (2016), 1-5, č. článku 023102. ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011 Institutional support: RVO:68378271 Keywords : photoluminescence * absorption spectroscopy * photothermal spectroscopy * semiconductors * nanocrystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.411, year: 2016

  18. Temporal correlation of blinking events in CdSe/ZnS and Si/SiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, Benjamin, E-mail: b.bruhn@uva.nl [Materials and Nanophysics, KTH Royal Institute of Technology, 164 40 Kista (Sweden); Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Qejvanaj, Fatjon [Materials and Nanophysics, KTH Royal Institute of Technology, 164 40 Kista (Sweden); Gregorkiewicz, Tom [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Linnros, Jan [Materials and Nanophysics, KTH Royal Institute of Technology, 164 40 Kista (Sweden)

    2014-11-15

    Well passivated single Si/SiO{sub 2} nanoparticles obey mono-exponential blinking statistics, whereas CdSe/ZnS quantum dots follow an apparent (truncated) power-law. Log-normal distributions are found to describe the interval length histograms at least as well as power-laws, while at the same time being more physically feasible and significantly easing the determination of the exponential cutoff in the ON-time distribution. The correlation of an ON- (OFF-)interval with its temporally displaced ON (OFF) neighbors, as well as that of intermixed intervals (ON with OFF and OFF with ON neighbors) has been studied. As expected from purely random processes, the correlation coefficients for events in silicon nanocrystals equal zero, whereas positive correlations between the pure and negative correlations between the mixed states in CdSe quantum dots hint at a switching process between two distinct blinking regimes that are slower than the blinking itself.

  19. Optical properties and ensemble characteristics of size purified Silicon nanocrystals

    Science.gov (United States)

    Miller, Joseph Bradley

    Nanotechnology is at the forefront of current scientific research and nanocrystals are being hailed as the 'artificial' atoms of the 21st century. Semiconducting silicon nanocrystals (SiNCs) are prime candidates for potential commercial applications because of silicon's already ubiquitous presence in the semiconductor industry, nontoxicity and abundance in nature. For realization of these potential applications, the properties and behavior of SiNCs need to be understood and enhanced. In this report, some of the main SiNC synthesis schemes are discussed, including those we are currently experimenting with to create our own SiNCs and the one utilized to create the SiNCs used in this study. The underlying physics that governs the unique behavior of SiNCs is then presented. The properties of the as-produced SiNCs are determined to depend strongly on surface passivation and environment. Size purification, an important aspect of nanomaterial utilization, was successfully performed on our SiNCs though density gradient ultracentrifugation. We demonstrate that the size-purified fractions exhibit an enhanced ability for colloidal self-assembly, with better aligned nanocrystal energy levels which promotes greater photostability in close-packed films and produces a slight increase in photoluminescence (PL) quantum yield. The qualities displayed by the fractions are exploited to form SiNC clusters that exhibit photostable PL. An analysis of SiNC cluster (from individual nanocrystals to collections of more than one thousand) blinking and PL shows an improvement in their PL emitting 'on' times. Pure SiNC films and SiNC-polymer nanocomposites are created and the dependence of their PL on temperature is measured. For such nanocomposites, the coupling between the 'coffee-ring' effect and liquid-liquid phase separation is also examined for ternary mixtures of solvent, polymer and semiconducting nanocrystal. We discover that with the right SiNC-polymer concentration and polymer

  20. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, F., E-mail: fakher8laatar@gmail.com [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Harizi, A. [Photovoltaic and Semiconductor Materials Laboratory, Engineering Industrial Department, ENIT, Tunis El Manar University, BP 37, Le Belvédère, 1002 Tunis (Tunisia); Smida, A. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  1. An insight into the optical properties of CdSe quantum dots during their growth in bovine serum albumin solution

    International Nuclear Information System (INIS)

    Singh, Avinash; Ahmed, M.; Guleria, A.; Singh, A.K.; Adhikari, S.; Rath, M.C.

    2016-01-01

    Bovine serum albumin (BSA) assisted synthesis of cadmium selenide (CdSe) quantum dots (QDs) exhibits remarkable changes in the optical properties of the QDs as well as BSA during their growth. The growth of these QDs was investigated by recording the UV–visible absorption spectra and room temperature steady state fluorescence at different time intervals after the mixing of the precursors. The growth of these QDs was associated with a quenching of the fluorescence from BSA. The fluorescence from these QDs was found to be associated with several features: (1) a gradual red-shift in its peak position, (2) increase in intensity with an isoemissive point up to few minutes from the time of mixing of the two precursors, and (3) subsequent decrease in intensity reaching a minimum value, which remains almost unchanged thereafter. The decrease and increase in the fluorescence from BSA and CdSe QDs, respectively have been explained on the basis of Förster resonance energy transfer (FRET) as well as the simultaneous growth of these QDs. - Highlights: • CdSe quantum dots were synthesized in the presence of bovine serum albumin (BSA). • Fluorescence from BSA was quenched by during the growth of CdSe quantum dots. • There was an energy transfer from BSA to CdSe quantum dots during their growth. • The emission from CdSe quantum dots was associated with a red-shift.

  2. Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals

    KAUST Repository

    Zhang, Yang

    2013-01-01

    Semiconductor nanocrystals, especially their ordered assemblies, are promising materials for various applications. In this paper, we investigate the photoconductive behavior of sub-micron size, ordered three-dimensional (3D) assemblies of octapod-shaped CdSe/CdS nanocrystals that are contacted by overlay electron-beam lithography. The regular structure of the assemblies leads to photocurrent-voltage curves that can be described by the cold field electron emission model. Mapping of the photoconductivity versus excitation wavelength and bias voltage allows the extraction of the band gap and identification of the photoactive region in the voltage and spectral domain. These results have important implications for the understanding of photoconductive transport in similar systems. © 2013 The Royal Society of Chemistry.

  3. One-pot size-controlled growth of graphene-encapsulated germanium nanocrystals

    Science.gov (United States)

    Lee, Jae-Hyun; Lee, Eun-Kyung; Kang, Seog-Gyun; Jung, Su-Ho; Son, Seok-Kyun; Nam, Woo Hyun; Kim, Tae-Hoon; Choi, Byong Lyong; Whang, Dongmok

    2018-05-01

    To realize graphene-encapsulated semiconductor nanocrystals (NCs), an additional graphene coating process, which causes shape destruction and chemical contamination, has so far been inevitable. We report herein one-pot growth of uniform graphene-germanium core-shell nanocrystals (Ge@G NCs) in gram scale by the addition of methane as a carbon source during the thermal pyrolysis of germane. The methane plays a critical role in the growth of the graphene shell, as well as in the determination of the nucleation density and diameter of the NCs, similar to a surfactant in the liquid-phase growth of monodisperse NCs. By adjusting the gas ratio of precursors, a mixture of germane and methane, we can control the size of the Ge@G NCs in the range of ∼5-180 nm. The Ge@G NCs were characterized by various microscopic and spectroscopic tools, which indicated that the Ge core is single crystalline, and is completely covered by the graphene shell. We further investigated the merits of the graphene shell, which can enhance the electrical conductivity of nanocrystalline materials.

  4. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells

    Science.gov (United States)

    Akkerman, Quinten A.; Gandini, Marina; di Stasio, Francesco; Rastogi, Prachi; Palazon, Francisco; Bertoni, Giovanni; Ball, James M.; Prato, Mirko; Petrozza, Annamaria; Manna, Liberato

    2016-12-01

    Lead halide perovskite semiconductors have recently gained wide interest following their successful embodiment in solid-state photovoltaic devices with impressive power-conversion efficiencies, while offering a relatively simple and low-cost processability. Although the primary optoelectronic properties of these materials have already met the requirement for high-efficiency optoelectronic technologies, industrial scale-up requires more robust processing methods, as well as solvents that are less toxic than the ones that have been commonly used so successfully on the lab-scale. Here we report a fast, room-temperature synthesis of inks based on CsPbBr3 perovskite nanocrystals using short, low-boiling-point ligands and environmentally friendly solvents. Requiring no lengthy post-synthesis treatments, the inks are directly used to fabricate films of high optoelectronic quality, exhibiting photoluminescence quantum yields higher than 30% and an amplified spontaneous emission threshold as low as 1.5 μJ cm-2. Finally, we demonstrate the fabrication of perovskite nanocrystal-based solar cells, with open-circuit voltages as high as 1.5 V.

  5. Elucidation of the enhanced ferromagnetic origin in Mn-doped ZnO nanocrystals embedded into a SiO₂ matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sejoon; Lee, Youngmin; Kim, Deukyoung [Dongguk University, Seoul (Korea, Republic of)

    2013-01-01

    The origin of the enhanced room temperature ferromagnetism in Mn-doped ZnO (ZnO:Mn) nanocrystals is investigated. ZnO:Mn nanocrystals, which were fabricated by using a laser irradiation method with a 248-nm KrF excimer laser, exhibited two-times increase in the spontaneous magnetization (∼0.4 emu/cm³ at 300 K) compared to the ZnO:Mn thin film (∼0.2 emu/cm³ at 300 K). The increased exchange integral of J₁/k{sub B} = 51.6 K in ZnO:Mn nanocrystals, in comparison with the ZnO:Mn thin film (J₁/k{sub B} = 46.9 K), is indicative of the enhanced ferromagnetic exchange interaction. This is attributed to the large number of acceptor defects in the SiO₂-capped ZnO:Mn nanocrystals. Namely, the holes bound to the acceptor defects form microscopic bound-magnetic-polarons with Mn ions; hence, long-range ferromagnetic coupling is enhanced. The results suggest that ferromagnetism in ZnO-based dilute magnetic semiconductors can be controlled by modulating the density of native point defects, which can be chemically and thermodynamically modified during the material synthesis or preparation.

  6. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

    Science.gov (United States)

    Akkerman, Quinten A.; Rainò, Gabriele; Kovalenko, Maksym V.; Manna, Liberato

    2018-05-01

    Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a `soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.

  7. Nanocrystals Technology for Pharmaceutical Science.

    Science.gov (United States)

    Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng

    2018-05-17

    Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Elucidating the role of surface passivating ligand structural parameters in hole wave function delocalization in semiconductor cluster molecules.

    Science.gov (United States)

    Teunis, Meghan B; Nagaraju, Mulpuri; Dutta, Poulami; Pu, Jingzhi; Muhoberac, Barry B; Sardar, Rajesh; Agarwal, Mangilal

    2017-09-28

    This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) 34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS 2 - ), carboxylate (-COO - ), and amine (-NH 2 )], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) 34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.

  9. Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskite

    KAUST Repository

    Zhang, Yuhai

    2018-02-23

    Although ligands of long carbon chains are very crucial to form stable colloidal perovskite nanocrystals (NCs), they create a severe barrier for efficient charge injection or extraction in quantum-dot-based optoelectronics, such as light emitting diode or solar cell. Here, we report a new approach to preparing ligand-free perovskite NCs of CsPbBr, which retained high photoluminescence quantum yield (44%). Such an approach involves a polar solvent (acetonitrile) and two small molecules (ammonium acetate and cesium chloride), which replace the organic ligand and still protect the nanocrystals from dissolution. The successful removal of hydrophobic long ligands was evidenced by Fourier transform infrared spectroscopy, ζ potential analysis, and thermogravimetric analysis. Unlike conventional perovskite NCs that are extremely susceptible to polar solvents, the ligand-free CsPbBr NCs show robust resistance to polar solvents. Our ligand-free procedure opens many possibilities not only from a material hybridization perspective but also in optimizing charge injection and extraction in semiconductor quantum-dot-based optoelectronics applications.

  10. Colloidal CuInSe2 nanocrystals thin films of low surface roughness

    Science.gov (United States)

    de Kergommeaux, Antoine; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter

    2013-03-01

    Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.

  11. Final Report: DOE Award Number: DE-SC0006398, University of CA, San Diego

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer [Univ. of California, San Diego, CA (United States)

    2015-05-27

    , it is envisioned that single or mixed nanoparticles can be packed to adopt uniform crystal orientation in two and three dimensions from simple mixing and annealing of biomolecule-nanoparticle conjugates with biomolecule-stamped surfaces. To control the crystallographic alignment of each particle with its neighbors, the nanoparticles will be assembled using a mixture of non-covalent biomolecular interactions. To create solar cells in which layers of donor and acceptor nanocrystals that are not only oriented normal to the top and bottom electrodes but are also arranged in a checkerboard pattern, multicomponent nanocrystals (e.g. CdSe, CdTe) will be conjugated with biochemical linkers such that only interactions between the CdTe and CdSe promote particle packing within the array. The proposed research will: (1) elucidate the role of single and binary cooperative particle-DNA interactions in influencing nanoparticle crystallographic orientation in two and three dimensions; (2) understand how confinement of nanoparticles on patterned arrays of biomolecules and modification of the surrounding substrate can nucleate long-range order over macroscopic areas via predefined grain boundaries; and (3) synthesize and characterize DNA conjugated semiconductor nanocrystals and assemble them into 2- and 3-D binary superlattice arrays for photovoltaics.

  12. Passivating ligand and solvent contribution to the electronics properties of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tretiak, Sergei [Los Alamos National Laboratory; Crotty, Angela [Los Alamos National Laboratory; Fischer, Sean [Los Alamos National Laboratory; Kilina, Svetlana [NON LANL

    2010-10-04

    Expanding on previous work, we examine in detail the impact passivating ligands have on the electronic properties of CdSe quantum dots (QDs). We also explore the importance of the inclusion of solvent in simulating passivated QDs. Most ligand states are found well removed from the band edges, with pyridine being the exception and contributing states that sit right on the conduction band edge. Localized trap states are found for trimethylphosphine and pyridine capped QDs, with solvent helping to eliminate these. The effect of losing a ligand on the electronic properties of the system is observed to vary in proportion with the binding energy and steric bulk of the ligand. More disruption of the electronic properties is seen for tight-binding, sterically large ligands. We also look at the validity of using the single-particle Kohn-Sham (KS) representation to approximate optical absorption spectra. Besides a systematic blue-shift relative to the time-dependent density functional theory spectra, the KS spectra are in very good agreement with the more accurate method for these systems. Such agreement here justifies the use of the KS approach for calculating absorption spectra of QD systems.

  13. Comparison of discrete-storage nonvolatile memories: advantage of hybrid method for fabrication of Au nanocrystal nonvolatile memory

    International Nuclear Information System (INIS)

    Wang Qin; Jia Rui; Guan Weihua; Li Weilong; Liu Qi; Hu Yuan; Long Shibing; Chen Baoqin; Liu Ming; Ye Tianchun; Lu Wensheng; Jiang Long

    2008-01-01

    In this paper, the memory characteristics of two kinds of metal-oxide-semiconductor (MOS) capacitors embedded with Au nanocrytals are investigated: hybrid MOS with nanocrystals (NCs) fabricated by chemical syntheses and rapid thermal annealing (RTA) MOS with NCs fabricated by RTA. For both kinds of devices, the capacitance versus voltage (C-V) curves clearly indicate the charge storage in the NCs. The hybrid MOS, however, shows a larger memory window, as compared with RTA MOS. The retention characteristics of the two MOS devices are also investigated. The capacitance versus time (C-t) measurement shows that the hybrid MOS capacitor embedded with Au nanocrystals has a longer retention time. The mechanism of longer retention time for hybrid MOS capacitor is qualitatively discussed

  14. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Paulo, Pedro M.R. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Merchán, M.D. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Garcia-Fernandez, Emilio; Costa, Sílvia M.B. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Velázquez, M.M., E-mail: mvsal@usal.es [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain)

    2017-03-15

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  15. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    International Nuclear Information System (INIS)

    Alejo, T.; Paulo, Pedro M.R.; Merchán, M.D.; Garcia-Fernandez, Emilio; Costa, Sílvia M.B.; Velázquez, M.M.

    2017-01-01

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  16. Tunable fluorescence emission of ternary nonstoichiometric Ag-In-S alloyed nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jian, E-mail: dhjfeng@ciac.jl.cn; Yang Xiurong, E-mail: xryang@ciac.jl.cn [Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry (China)

    2012-08-15

    Low toxic, nonstoichiometric colloidal Ag-In-S ternary quantum dots with different Ag content were synthesized by a one-pot hot-injection method based on the reaction of metal acetylacetonates with sulfur dissolved in octadecene. X-ray diffraction (XRD), transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to characterize the size, structure, and morphology of these samples. ICP-MS was employed to analyze the compositions of Ag-In-S nanocrystals. The optical properties were characterized by UV-Vis absorption, photoluminescence (PL) spectroscopy, and time-resolved photoluminescence. Varying the fraction of cationic and capping agents, the compositions of Ag-In-S nanocrystals were precisely controlled. XRD and HRTEM results indicate the compositional homogeneity of Ag-In-S. The emission spectra across the different compositions exhibiting a single bandgap feature further confirm the formation of Ag-In-S alloy NCs, rather than phase separated Ag{sub 2}S and In{sub 2}S{sub 3}. Composition-dependent tunable PL emissions have been observed. The relative PL quantum yield is up to 16 %, which exhibited substantially enhanced comparing with the stoichiometric AgInS{sub 2} semiconductor core QDs reported in previous literature. The PL decay curve of Ag-In-S has a biexponential characteristic, which indicates that the recombination of an electron and a hole is dominated by the surface defect and the recombination process associated with internal traps is reduced significantly. The large Stokes shift between the absorption peaks and their emissions should inhibit the reabsorption and Foerster energy transfer between Ag-In-S nanocrystals, which provides the alternative in the further applications where high-concentrations of nanocrystals are needed.

  17. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    Science.gov (United States)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  18. One dimensional well-aligned CdO nanocrystal by solvothermal method

    International Nuclear Information System (INIS)

    Kaviyarasu, K.; Manikandan, E.; Paulraj, P.; Mohamed, S.B.; Kennedy, J.

    2014-01-01

    Graphical abstract: - Highlights: • Cadmium oxide (CdO) emerged as one of the important semiconducting materials. • Iodine concentration increases intensity of the peak around 300 cm −1 becomes stronger. • Surface morphology of these crystals has been modified by varying complexing agent. • Nanofibers structure like CdO crystals first time achieved. • The diameters of these nanofibers range mostly between 40 nm and 70 nm. - Abstract: Cadmium oxide (CdO) is a category of the practical semiconductor metal oxides, which is widely applied in various scientific and industrial fields because of its catalytic, optical, and electrical properties. CdO nanocrystal was successfully synthesized by a virtue of a single source precursor method at mild reaction conditions between cadmium oxide, and element iodine by a solvothermal route. X-ray powder diffraction (XRD), ultraviolet spectroscopy studies (UV–vis), Fourier Transform Infrared analysis (FTIR), scanning electron microscopy (SEM), μ-Raman spectroscopy and cyclic voltammogram (CV) were used to characterize the CdO nanocrystals. The ultra-violet visible absorption peaks of CdO exhibited a large blue shift and the luminescent spectra had a strong and broad emission band centered at 228 nm. The various functional groups present in the CdO nanocrystals were identified by FTIR analysis. Intense PL was also observed with some spectral tuning possibly giving a range of emission photon energies approximately spanning from 2.5 to 3.4 eV. Scanning electron microscopy and μ-Raman microscopy images indicated that the morphology of the product is spherical nanoparticles with an average particle size of 46 nm with standard deviation. The electrochemical response of CdO which is proved the nano-cadmium has high functionality due to the small size and it has higher electrochemical activity without any modifications. The above studies demonstrate the potential for the utilization of cadmium nitrite nanocrystal in visible

  19. Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study

    International Nuclear Information System (INIS)

    Petrella, Andrea; Cosma, Pinalysa; Lucia Curri, M.; Rochira, Sergio; Agostiano, Angela

    2011-01-01

    Heterostructures formed of films of organic-capped ZnO and TiO 2 nanocrystals (both with the size of ca. 6 nm) and photosynthetic pigments were prepared and characterized. The surface of optically transparent electrodes (Indium Tin Oxide) was modified with nanocrystals and prepared by colloidal synthetic routes. The nanostructured electrodes were sensitized by a mixture of chlorophyll a and carotenoids. The characterization of the hybrid structures, carried out by means of steady-state optical measurements, demonstrated such class of dyes able to extend the photoresponse of the large band-gap semiconductors. The charge-transfer processes between the components of the heterojunction were investigated, and photoelectrochemical measurements taken on the sensitized ZnO and TiO 2 nanocrystals electrodes elucidated the photoactivity of the heterojunctions as a function of the dyes and of the red–ox mediator used in solution. The effect of methyl viologen as different red–ox mediator was also evaluated in order to show its effect on the heterojunction photoactivity. The overall results contributed to describe the photoelectrochemical potential of the investigated heterojunctions, highlighting a higher response of the dye-sensitized ZnO nanocrystals, and then provided the TiO 2 -modified counterparts.

  20. Elucidation of the enhanced ferromagnetic origin in Mn-doped ZnO nanocrystals embedded into a SiO2 matrix

    International Nuclear Information System (INIS)

    Lee, Sejoon; Lee, Youngmin; Kim, Deukyoung

    2013-01-01

    The origin of the enhanced room temperature ferromagnetism in Mn-doped ZnO (ZnO:Mn) nanocrystals is investigated. ZnO:Mn nanocrystals, which were fabricated by using a laser irradiation method with a 248-nm KrF excimer laser, exhibited two-times increase in the spontaneous magnetization (∼0.4 emu/cm 3 at 300 K) compared to the ZnO:Mn thin film (∼0.2 emu/cm 3 at 300 K). The increased exchange integral of J 1 /k B = 51.6 K in ZnO:Mn nanocrystals, in comparison with the ZnO:Mn thin film (J 1 /k B = 46.9 K), is indicative of the enhanced ferromagnetic exchange interaction. This is attributed to the large number of acceptor defects in the SiO 2 -capped ZnO:Mn nanocrystals. Namely, the holes bound to the acceptor defects form microscopic bound-magnetic-polarons with Mn ions; hence, long-range ferromagnetic coupling is enhanced. The results suggest that ferromagnetism in ZnO-based dilute magnetic semiconductors can be controlled by modulating the density of native point defects, which can be chemically and thermodynamically modified during the material synthesis or preparation.

  1. Properties of CdSe quantum dots coated with silica fabricated in a facile way

    International Nuclear Information System (INIS)

    Liao Yufeng; Li Wenjiang; He Sailing

    2007-01-01

    High quality quantum dots (QDs) CdSe were prepared using a novel and non-TOP method. Quantum dots of different sizes ranging from 2 to 4 nm could be obtained by removing aliquots of the reaction solution at different time intervals or by adjusting some reaction conditions. The CdSe quantum dots (core) were directly coated with silica (shell) using a microemulsion method. The design and preparation of a model QD/silica was described and characterized using transmission electron microscopy (TEM), UV-vis absorption, photoluminescence and laser confocal scanning microscopy. TEM images confirmed the well-monodispersed QDs and the silica shell around the CdSe core, respectively; laser confocal microscope images, UV-vis absorption and photoluminescence spectra clearly indicated that both the original QDs and the silica-coated QDs had good fluorescence properties. The quantum dots coated with silica shells were stable, water-soluble and less toxic (due to the silica shells), and are anticipated to be used as fluorescent probes for biosensing and imaging applications

  2. Characterization of CdSe polycrystalline films by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Brasil, M.J.S.P.

    1985-01-01

    The characterization of CdSe polycristalline films were done by photoluminescence spectroscopy, X-ray diffraction analysis, diagrams IxV, and efficiency of solar energy conversion for cells done by these films. The experimental data shown strong temperature dependence of annealing, and the optimum temperature around 650 0 C was determined. The films did not present photoluminescence before heat treatment, but the annealed sample spectrum showed fine structures in the excitonic region, crystal phase transformation, enhancement of grain size, and better efficiency of the cell. Measurements of photoluminescence between 2 and 300 K, showed two bands of infrared emission, width and intense enough. The shape, at half-width, and the integrated intensity of one these bands were described by a configuration coordinate model for deep centers. Based on obtained results, some hypothesis about the origin of these bands and its correlation with efficiency of cells done with CdSe polycrystalline films, are proposed. (M.C.K.) [pt

  3. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  4. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.

    Science.gov (United States)

    Etgar, Lioz

    2013-02-04

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  5. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  6. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Science.gov (United States)

    Etgar, Lioz

    2013-01-01

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318

  7. Biosynthesis of fluorescent CdS nanocrystals with semiconductor properties: Comparison of microbial and plant production systems.

    Science.gov (United States)

    Al-Shalabi, Zahwa; Doran, Pauline M

    2016-04-10

    This study investigated fission yeast (Schizosaccharomyces pombe) and hairy roots of tomato (Solanum lycopersicum) as in vitro production vehicles for biological synthesis of CdS quantum dots. Cd added during the mid-growth phase of the cultures was detoxified within the biomass into inorganic sulphide-containing complexes with the quantum confinement properties of semiconductor nanocrystals. Significant differences were found between the two host systems in terms of nanoparticle production kinetics, yield and quality. The much slower growth rate of hairy roots compared with yeast is a disadvantage for commercial scaled-up production. Nanoparticle extraction from the biomass was less effective for the roots: 19% of the Cd present in the hairy roots was recovered after extraction compared with 34% for the yeast. The overall yield of CdS quantum dots was also lower for the roots: relative to the amount of Cd taken up into the biomass, 8.5% was recovered in yeast gel filtration fractions exhibiting quantum dot properties whereas the result for hairy roots was only 0.99%. Yeast-produced CdS crystallites were somewhat smaller with diameters of approximately 2-6 nm compared with those of 4-10nm obtained from the roots. The average ratio of inorganic sulphide to Cd for the purified and size-fractionated particles was 0.44 for the yeast and 1.6 for the hairy roots. Despite the limitations associated with hairy roots in terms of culture kinetics and product yield, this system produced CdS nanoparticles with enhanced photostability and 3.7-13-fold higher fluorescence quantum efficiency compared with those generated by yeast. This work demonstrates that the choice of cellular host can have a significant effect on nanoparticle functional properties as well as on the bioprocessing aspects of biological quantum dot synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires

    International Nuclear Information System (INIS)

    Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2013-01-01

    The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.

  9. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Elimelech, Orian [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel; Liu, Jing [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Plonka, Anna M. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Frenkel, Anatoly I. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Banin, Uri [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel

    2017-07-19

    Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sized NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.

  10. Pulsed laser deposition of II-VI and III-V semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Mele, A.; Di Palma, T.M.; Flamini, C.; Giardini Guidoni, A. [Rome, Univ. `La Sapienza` (Italy). Dep. di Chimica

    1998-12-01

    Pulsed laser irradiation of a solid target involves electronic excitation and heating, followed by expansion from the target of the elliptical gas cloud (plume) which can be eventually condensed on a suitable substrate. Pulsed laser ablation has been found to be a valuable technique to prepare II-VI and III-V thin films of semiconductor materials. Pulsed laser ablation deposition is discussed in the light of the results of an investigation on CdS, CdSe, CdTe and CdSe/CdTe multilayers and AIN, GaN and InN together with Al-Ga-In-N heterostructures. [Italiano] L`irradiazione di un target solido, mediante un fascio laser impulsato, genera una serie di processi che possono essere schematizzati come segue: riscaldamento ed eccitazione elettronica del target, da cui consegue l`espulsione di materiale sotto forma di una nube gassosa di forma ellissoidale (plume), che espande e puo` essere fatta depositare su un opportuno substrato. L`ablazione lasersi e` rivelata una tecnica valida per preparare film sottili di composti di elementi del II-VI e del III-V gruppo della tavola periodica. La deposizione via ablazione laser viene discussa alla luce dei risultati ottenuti nella preparazione di film di CdS, CdSe, CdTe e di film multistrato di CdSe/CdTe, di film di AIN, GaN, InN e di eterostrutture di Al-Ga-In-N.

  11. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    In the present work, we report green synthesis of tartaric acid (TA) and triethanolamine (TEA) capped ... CdSe quantum dots; chemical bath deposition; capping; green chemistry; nanomaterials. 1. .... at high concentration of nanoparticles.

  12. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Effect of illumination on mobility has been studied from the photocurrent decay characteristics of thermally evaporated CdSe thin films deposited on suitably cleaned glass substrate held at elevated substrate temperatures. The study indicates that the mobilities of the carriers of different trap levels are activated due to the ...

  13. Synthesis and room-temperature ferromagnetic properties of single-crystalline Co-doped SnO2 nanocrystals via a high magnetic field

    International Nuclear Information System (INIS)

    Xu Yongbin; Tang Yongjun; Li Chuanjun; Cao Guanghui; Ren Weili; Xu Hui; Ren Zhongming

    2009-01-01

    The magnetic field-assisted approach has been used in the synthesis of Co-doped SnO 2 diluted magnetic semiconductor nanocrystals. By annealing under the condition with or without magnetic field, 1D growth of the nanostructures can be induced, and the magnetic properties of the obtained nanocrystals are improved. Various techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible spectrometry (UV-vis), Raman spectrometry and vibrating sample magnetometer (VSM) have been used to characterize the obtained products. The results show that the magnetic field holds important effects on the crystal growth of the Co-doped SnO 2 nanostructures, and improvement of magnetic properties. The intrinsic reasons are discussed.

  14. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Algarra, Manuel, E-mail: malgarra67@gmail.com [Centro de Geología da Universidade do Porto, Departamento de Geociências, Ambiente e Ordenamemto do Territorio do Porto, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Beograd (Serbia); Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071Málaga (Spain); Silva, Joaquim C.G. Esteves da [Centro de Investigação em Química (CIQ-UP). Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Guerrero-González, Juan José [Policía Científica, Cuerpo Nacional de Policía, Málaga (Spain)

    2014-02-17

    Graphical abstract: -- Highlights: •Fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures. •Characterized by FTIR, XRD and fluorescence spectroscopies. •Deconvolution of the emission spectra was confirmed by using multivariate curve resolution (MCR) method. •Application for fingerprint detection and analysis on different non-porous surfaces. -- Abstract: A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH{sub 2}@CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods.

  15. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces

    International Nuclear Information System (INIS)

    Algarra, Manuel; Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar; Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique; Silva, Joaquim C.G. Esteves da; Guerrero-González, Juan José

    2014-01-01

    Graphical abstract: -- Highlights: •Fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures. •Characterized by FTIR, XRD and fluorescence spectroscopies. •Deconvolution of the emission spectra was confirmed by using multivariate curve resolution (MCR) method. •Application for fingerprint detection and analysis on different non-porous surfaces. -- Abstract: A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH 2 @CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods

  16. Reassignment of oxygen-related defects in CdTe and CdSe

    International Nuclear Information System (INIS)

    Bastin, Dirk

    2015-01-01

    This thesis reassigns the O_T_e-V_C_d complex in CdTe and the O_S_e-V_C_d complex in CdSe to a sulfur-dioxygen complex SO_2*, and the O_C_d defect in CdSe to a V_C_dH_2 complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν_1) and 1108.3 cm"-"1 (ν_2) previously assigned to an O_T_e-V_C_d complex are detected in CdTe single crystals doped with CdSO_4 powder. Five weaker additional absorption lines accompanying ν_1 and ν_2 could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO_2* having two configurations labeled ν_1 and ν_2. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν_1 and ν_2, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ_1), 1107.5 (γ_2), and 1126.3 cm"-"1 (γ_3) previously attributed to an O_S_e-V_C_d complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO_2* having three configurations γ_1, γ_2, and γ_3. IR absorption measurements with uniaxial stress applied to the CdSe crystal yield a monoclinic C_1_h symmetry for γ_1 and γ_2. The SO_2* complex is stable up to 600 C. This thesis assigns the ν-lines in

  17. Photoluminescence study of CdSe nanorods embedded in a PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India)

    2013-03-15

    Nanometer-sized semiconductor CdSe nanorods have been successfully grown within polyvinyl alcohol (PVA) matrix by in situ technique. PVA:n-CdSe nanorods are characterized by X-ray diffraction, transmission electron microscopy, UV-vis spectrophotometer and photoluminescence spectroscopy. The photoluminescence spectra of PVA:n-CdSe nanorods are studied at different excitation wavelengths. PVA:n-CdSe nanorods have demonstrated to exhibit strong and well-defined green photoluminescence emission. The long-term stability of the PL properties of PVA:n-CdSe nanorods is also investigated in view of possible applications of polymer nanocomposites. The linear optical constants such as the extinction coefficient (k), real ({epsilon}{sub 1}) and imaginary ({epsilon}{sub 2}) dielectric constant, optical conductivity ({sigma}{sub opt}) are calculated for PVA:n-CdSe nanorods. The optical properties i.e. good photostability and larger stokes shift suggesting to apply PVA:n-CdSe nanorods in bioimaging applications. - Highlights: Black-Right-Pointing-Pointer In situ synthesis of PVA:n-CdSe via chemical bath method at room temperature. {open_square} From TEM image, the three arm nanorods morphology of PVA:n-CdSe is obtained. Black-Right-Pointing-Pointer The optical constants i.e. n, k, {epsilon}{sub 1}, {epsilon}{sub 2} and {sigma}{sub opt} are calculated. Black-Right-Pointing-Pointer Exhibiting green band photoemission peak at 540 nm.

  18. Facile synthesis, growth mechanism, and optical properties of CdSe nanoparticles in self-assembled micellar media and their efficient conjugation with proteins

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, S. K., E-mail: skmehta@pu.ac.in; Chaudhary, Savita; Kumar, Sanjay; Singh, Sukhjinder [Panjab University, Department of Chemistry and Centre of Advanced Studies in Chemistry (India)

    2010-06-15

    This article demonstrates the influence of various surfactants of different polarities-anionic, sodium dodecyl sulfate, cationic, hexadecyltrimethylammonium bromide and non-ionic, and polyoxyethylene iso-octyl phenyl ether (TX-100)-on the formation of CdSe nanoparticles in aqueous solutions. The surfactant-stabilizing effect has been monitored using transmission electron microscopy. Spectral properties of CdSe nanoparticles have been investigated; the structure of the long-wave edge of the fundamental absorption band of CdSe nanoparticles has been analyzed. It has been shown that the variation of the synthesizing conditions (stabilizer's nature and concentration, CdSe concentration, etc.) allows the tailoring of the CdSe nanoparticle size in the range of 8-17 nm. Lifshitz-Slyrzov-Wagner kinetic analysis has also been performed using the size variation according to ripening temperature and time period. The differences in the stabilization ability of tested substances are discussed with respect to their structure and possible mechanism of the surface interaction with the nanoparticles. The flexible surface chemistry of the CdSe-micelles causes them to be water soluble and allows their further conjugation with protein molecules through electrostatic attraction. The interaction between functionalized CdSe nanoparticles with protein molecules have been investigated using fluorescence spectroscopy.

  19. Fabrication of CdSe quantum dots/permutite luminescent materials

    Indian Academy of Sciences (India)

    Administrator

    tosuccinic acid-capped CdSe quantum dots (QDs) were prepared in aqueous solution by using SeO2 as selenium source and NaBH4 as reductant. Secondly, the commercial permutite was treated with acetic acid to induce a partial dealumnization, which can introduce a large number of intracrystal mesopores, and the.

  20. Space charge limited conduction in CdSe thin films

    Indian Academy of Sciences (India)

    Unknown

    of trap limited space charge limited conduction (SCLC) at higher voltage. The transition voltage (Vt ) from ohmic to SCLC is found to be quite independent of ambient temperature as well as intensity of illumination. SCLC is explained on the basis of the exponential trap distribution in CdSe films. Trap depths estimated from.

  1. SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect.

    Science.gov (United States)

    Nikam, Pratibha R; Baviskar, Prashant K; Majumder, Sutripto; Sali, Jaydeep V; Sankapal, Babasaheb R

    2018-08-15

    Controlled growth of different sizes of cadmium selenide (CdSe) nanoparticles over well aligned ZnO nanorods have been performed using successive ionic layer adsorption and reaction (SILAR) technique at room temperature (27 °C) in order to form nano heterostructure solar cells. Deposition of compact layer of zinc oxide (ZnO) by SILAR technique on fluorine doped tin oxide (FTO) coated glass substrate followed by growth of vertically aligned ZnO nanorods array using chemical bath deposition (CBD) at low temperature (SILAR cycles for CdSe and with use of different electrolytes have been recorded as J-V characteristics and the maximum conversion efficiency of 0.63% have been attained with ferro/ferri cyanide electrolyte for 12 cycles CdSe coating over 1-D ZnO nanorods. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin

    2012-01-01

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  3. Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Calink Indiara do Livramento; Carvalho, Melissa Souza; Raphael, Ellen; Ferrari, Jefferson Luis; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil). Grupo de Pesquisa em Quimica de Materiais; Dantas, Clecio [Universidade Estadual do Maranhao (LQCINMETRIA/UEMA), Caxias, MA (Brazil). Lab. de Quimica Computacional Inorganica e Quimiometria

    2016-11-15

    In this work a colloidal approach to synthesize water-soluble CdSe quantum dots (QDs) bearing a surface ligand, such as thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), glutathione (GSH), or thioglycerol (TGH) was applied. The synthesized material was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-Vis), and fluorescence spectroscopy (PL). Additionally, a comparative study of the optical properties of different CdSe QDs was performed, demonstrating how the surface ligand affected crystal growth. The particles sizes were calculated from a polynomial function that correlates the particle size with the maximum fluorescence position. Curve resolution methods (EFA and MCR-ALS) were employed to decompose a series of fluorescence spectra to investigate the CdSe QDs size distribution and determine the number of fraction with different particle size. The results for the MPA-capped CdSe sample showed only two main fraction with different particle sizes with maximum emission at 642 and 686 nm. The calculated diameters from these maximum emission were, respectively, 2.74 and 3.05 nm. (author)

  4. Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal

    Science.gov (United States)

    Wang, Jian; Yuan, Ligang; Zhang, Yingwu; Chen, Guo; Cheng, Hongjuan; Gao, Yanzhao

    2018-06-01

    CdSe single crystal, with the sizes of ∼54 mm in diameter and ∼25 mm in length, was grown by a high pressure vertical gradient freeze (HPVGF) technique using (0 0 1)-oriented seed. The CdSe crystal was characterized with transmission spectrophotometer. The transmission spectra showed that the infrared transmission was above 68% and the mean absorption coefficient was 0.041 cm-1 in the range of 2.5-20 μm. Using fabricated CdSe crystal with the dimensions of 6 mm × 10 mm × 44 mm, we demonstrated an optical parametric oscillator (OPO) pumped by a 2.05 μm Ho:YLF laser at a pulse repetition frequency of 5 kHz. Up to 320 mW output was obtained at the idler wavelength of 10.20 μm with a pump power of 18.06 W. 320 mW at 10.20 μm, to our knowledge, was the highest power obtained with a 2.05 μm laser-pumped CdSe OPO.

  5. Method to incorporate anisotropic semiconductor nanocrystals of all shapes in an ultrathin and uniform silica shell

    NARCIS (Netherlands)

    Hutter, Eline M.; Pietra, Francesca; Moes, Relinde; Mitoraj, Dariusz; Meeldijk, Johannes D.; De Mello Donegá, Celso; Vanmaekelbergh, Daniël

    2014-01-01

    In this work, we present a method for the incorporation of anisotropic colloidal nanocrystals of many different shapes in silica in a highly controlled way. This method yields a uniform silica shell, with thickness tunable from 3 to 17 nm. The silica shell perfectly adapts to the shape of the

  6. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene

    International Nuclear Information System (INIS)

    Hassan, Mohammad L.; Moorefield, Charles M.; Elbatal, Hany S.; Newkome, George R.; Modarelli, David A.; Romano, Natalie C.

    2012-01-01

    Highlights: ► Surfaces of cellulose nanocrystals were modified with terpyridine ligands. ► Fluorescent nanocrystals could be obtained via self-assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals. ► Further self-assembly of azide-functionalized terpyridine onto the fluorescent cellulose nanocrystals was possible to obtain nanocellulosic material with expected use in bioimaging. - Abstract: Due to their natural origin, biocompatibility, and non-toxicity, cellulose nanocrystals are promising candidates for applications in nanomedicine. Highly fluorescent nanocellulosic material was prepared via surface modification of cellulose nanocrystals with 2,2′:6′,2″-terpyridine side chains followed by supramolecular assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals (CTP) via Ru III /Ru II reduction. The prepared terpyridine-modified cellulose-Ru II -terpyridine-modified perylene (CTP-Ru II -PeryTP) fluorescent nanocrystals were characterized using cross-polarized/magic angle spin 13 C nuclear magnetic resonance (CP/MAS 13 C NMR), Fourier transform infrared (FTIR), UV–visible, and fluorescence spectroscopy. In addition, further self-assembly of terpyridine units with azide functional groups onto CTP-Ru II -PeryTP was possible via repeating the Ru III /Ru II reduction protocol to prepare supramolecular fluorescent nanocrystals with azide functionality (CTP-Ru II -PeryTP-Ru II -AZTP). The prepared derivative may have potential application in bio-imaging since the terminal azide groups can be easily reacted with antigens via “Click” chemistry reaction.

  7. Quantum confinement of lead titanate nanocrystals by wet chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyarasu, K., E-mail: kaviyarasuloyolacollege@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Manikandan, E., E-mail: maniphysics@gmail.com [Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital, Bharath University, Chrompet, Chennai, Tamil Nadu (India); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Maaza, M., E-mail: likmaaz@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa)

    2015-11-15

    Lead Titanate (PbTiO{sub 3)} is a category of the practical semiconductor metal oxides, which is widely applied in various scientific and industrial fields because of its catalytic, optical, and electrical properties. PbTiO{sub 3} nanocrystalline materials have attracted a wide attention due to their unique properties. PbTiO{sub 3} nanocrystals were investigated by X-ray diffraction (XRD) to identify the PbTiO{sub 3} nanocrystals were composed a tetragonal structure. The diameter of a single sphere was around 20 nm and the diameter reached up to 3 μm. The chemical composition of the samples and the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS) in detail. - Highlights: • Single crystalline NSs of PbTiO{sub 3} fabricated by wet chemical method. • PbTiO{sub 3} NSs were uniform and continuous along the long axis. • Tetragonal perovskite structure with the diameter 20 nm and length 3 μm. • XPS spectrum was fitted with Lorentzian function respectively. • The size of the images is also 10 μm × 10 μm.

  8. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    International Nuclear Information System (INIS)

    Vibin, Muthunayagam; Vinayakan, Ramachandran; John, Annie; Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie

    2011-01-01

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0–72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  9. Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Vibin, Muthunayagam [University of Kerala, Department of Biochemistry (India); Vinayakan, Ramachandran [National Institute for Interdisciplinary Science and Technology (CSIR), Photosciences and Photonics (India); John, Annie [Sree Chitra Tirunal Institute of Medical Sciences and Technology, Biomedical Technology Wing (India); Raji, Vijayamma; Rejiya, Chellappan S.; Vinesh, Naresh S.; Abraham, Annie, E-mail: annieab2@yahoo.co.in [University of Kerala, Department of Biochemistry (India)

    2011-06-15

    The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0-72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.

  10. Temperature profiles for laser-induced heating of nanocrystals embedded in glass matrices

    Science.gov (United States)

    Bhatnagar, Promod K.; Nagpal, Swati

    2001-05-01

    Quantum confined nanostructures are very important because of their application towards optoelectronic devices. Commercial colored glass filters, which have large semiconductor particles, are being used to manufacture nanocrystals by suitable heat treatments. The progress in this area has been hampered by high size dispersion of these dots in the glass matrix which leads to reduction in higher order susceptibility thereby reducing non-linearity. In the present paper attempt has been made to theoretically model the temperature profiles of a laser irradiated CdS doped Borosilicate sample. Laser being used has a beam diameter of 1.5 mm and energy for 10 nsec pulse is 10 mJ. Two different particle radii of 5 nm and 10 nm have been considered. It is found that larger particles reach higher temperatures for the same pulse characteristics. This is because smaller particles have larger surface to volume ratio and hence dissipates out heat faster to the surrounding. Hence bigger particles will reach dissolution temperature faster than smaller particle and particle beyond a certain size should dissolve in the glass matrix when a sample is heat treated by laser. This could lead to a reduction in size dispersion of the nanocrystals. Also photodarkening effect found in semiconductor doped glasses is a big handicap for practical application of these materials in fast optical switching and non-linear optical devices. Photodarkening effect has been established to be a photochemical effect and it is important to study the temperature profiles around a particle since it will effect the impurity migration.

  11. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  12. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  13. Assembly of CdSe onto mesoporous TiO{sub 2} films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Lai-Wan; Chien, Huei-Ting; Lee, Yuh-Lang [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101 (China)

    2010-08-01

    A self-assembled monolayer (SAM) of 3-mercaptopropyl-trimethyoxysilane (MPTMS) is pre-assembled onto a mesoporous TiO{sub 2} film and is used as a surface-modified layer to induce the growth of CdSe QDs in the successive ionic layer adsorption and reaction (SILAR) process. Due to the specific interaction of the terminal thiol groups to CdSe, the MPTMS SAM is found to increase the nucleation and growth rates of CdSe in the SILAR process, leading to a well covering and higher uniform CdSe layer which has a superior ability, compared with the electrode without MPTMS, in inhibiting the charge recombination at the electrode/electrolyte interface. Furthermore, the performance of the CdSe-sensitized TiO{sub 2} electrode can further be improved by an additional heat annealing after film deposition, attributable to a better interfacial connection between CdSe and TiO{sub 2}, as well as a better connection among CdSe QDs. The CdSe-sensitized solar cell prepared by the present strategy can achieve an energy conversion efficiency of 2.65% under the illumination of one sun (AM 1.5, 100 mW cm{sup -2}). (author)

  14. Electrodeposition of cadmium on n-type silicon single crystals of ...

    African Journals Online (AJOL)

    sea

    type silicon have been studied as a function of different potential steps. Within appropriate potential ... including progressive nucleation on active sites and diffusion controlled cluster growth. ..... al CdSe nanocrystals on {111} gold. Surf. Sci.

  15. Timely resolved measurements on CdSe nanoparticles; Zeitaufgeloeste Messungen an CdSe Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.E. von

    2006-06-06

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S{sub e} was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S{sub 3/2}-1S-e and 1P{sub 3/2}-1P{sub e} but not the intermediately lyingt transition 2S{sub 3/2}-1S{sub e} were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S{sub e} and 1P{sub e}. The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation

  16. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    Science.gov (United States)

    Ayvazian, Talin

    This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand

  17. Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meiyu Stella [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Globalfoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D, 738406 (Singapore); Suresh, Vignesh [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Agency for Science, Technology and Research - A*Star, Institute of Materials Research and Engineering (IMRE), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Chan, Mei Yin [School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 (Singapore); Ma, Yu Wei [Globalfoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D, 738406 (Singapore); Lee, Pooi See [School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798 (Singapore); Krishnamoorthy, Sivashankar [Agency for Science, Technology and Research - A*Star, Institute of Materials Research and Engineering (IMRE), #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore); Science et Analyse des Materiaux Unit (SAM), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux, 4422 (Luxembourg); Srinivasan, M.P., E-mail: srinivasan.madapusi@rmit.edu.au [Department of Chemical and Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); School of Engineering, RMIT University, Building 10, Level 11, Room 14, 376-392 Swanston Street, Melbourne, Victoria, 3001 (Australia)

    2017-01-15

    A simple and low-cost process of embedding metal nanocrystals as charge storage centers within a dielectric is demonstrated to address leakage issues associated with the scaling of the tunnelling oxide in flash memories. Metal nanocrystals with high work functions (nickel, platinum and palladium) were prepared as embedded species in methyl siloxane spin-on-glass (SOG) films on silicon substrates. Sub-10 nm-sized, well-isolated, uniformly distributed, multi-layered nanocrystals with high particle densities (10{sup 11}–10{sup 12} cm{sup −2}) were formed in the films by thermal curing of the spin-coated SOG films containing the metal precursors. Capacitance-Voltage measurements performed on metal-insulator-semiconductor capacitors with the SOG films show that the presence of metal nanocrystals enhanced the memory window of the films to 2.32 V at low operating voltages of ±5 V. These SOG films demonstrated the ability to store both holes and electrons. Capacitance-time measurements show good charge retention of more than 75% after 10{sup 4} s of discharging. This work demonstrates the applicability of the low-cost in-situ sol-gel preparation in contrast to conventional methods that involve multiple and expensive processing steps. - Highlights: • Sub-10 nm sized, well-isolated, uniformly distributed nanoparticle based charge trap memories. • Preparation of multi-layer high work function metal nanocrystals at low cost. • Large memory window of 2.32 V at low operating voltages of ±5 V. • Good charge retention of more than 90% and 75% after 10{sup 3} and 10{sup 4} s of discharging respectively. • Use of a 3 nm thick tunnelling oxide in compliance with ITRS specifications.

  18. Multi-layered metal nanocrystals in a sol-gel spin-on-glass matrix for flash memory applications

    International Nuclear Information System (INIS)

    Huang, Meiyu Stella; Suresh, Vignesh; Chan, Mei Yin; Ma, Yu Wei; Lee, Pooi See; Krishnamoorthy, Sivashankar; Srinivasan, M.P.

    2017-01-01

    A simple and low-cost process of embedding metal nanocrystals as charge storage centers within a dielectric is demonstrated to address leakage issues associated with the scaling of the tunnelling oxide in flash memories. Metal nanocrystals with high work functions (nickel, platinum and palladium) were prepared as embedded species in methyl siloxane spin-on-glass (SOG) films on silicon substrates. Sub-10 nm-sized, well-isolated, uniformly distributed, multi-layered nanocrystals with high particle densities (10"1"1–10"1"2 cm"−"2) were formed in the films by thermal curing of the spin-coated SOG films containing the metal precursors. Capacitance-Voltage measurements performed on metal-insulator-semiconductor capacitors with the SOG films show that the presence of metal nanocrystals enhanced the memory window of the films to 2.32 V at low operating voltages of ±5 V. These SOG films demonstrated the ability to store both holes and electrons. Capacitance-time measurements show good charge retention of more than 75% after 10"4 s of discharging. This work demonstrates the applicability of the low-cost in-situ sol-gel preparation in contrast to conventional methods that involve multiple and expensive processing steps. - Highlights: • Sub-10 nm sized, well-isolated, uniformly distributed nanoparticle based charge trap memories. • Preparation of multi-layer high work function metal nanocrystals at low cost. • Large memory window of 2.32 V at low operating voltages of ±5 V. • Good charge retention of more than 90% and 75% after 10"3 and 10"4 s of discharging respectively. • Use of a 3 nm thick tunnelling oxide in compliance with ITRS specifications.

  19. Surfaces of nanomaterials for sustainable energy applications: thin-film 2D-ACAR and PALS studies

    Science.gov (United States)

    Barbiellini, B.; Chai, L.; Al-Sawai, W.; Eijt, S. W. H.; Mijnarends, P. E.; Schut, H.; Gao, Y.; Houtepen, A. J.; Ravelli, L.; Egger, W.; van Huis, M. A.; Bansil, A.

    2013-03-01

    Positron (e+) annihilation spectroscopy is one of only a few techniques to probe the surfaces of nanoparticles. We investigated thin films of PbSe colloidal semiconductor nanocrystals (NCs) in the range 2-10 nm as prospective highly efficient absorbers for solar cells. We compare and contrast our findings with previous studies on CdSe NCs. Evidence obtained from our e+ lifetime spectroscopy study using the PLEPS spectrometer shows that 90-95% of the implanted positrons are effectively trapped and confined at the surfaces of these NCs. The remaining 5-10% of the e+ annihilate in the relatively large oleic acid ligands, in fair agreement with the estimated positron stopping power of the PbSe nanoparticle ``core'' relative to the ligand ``shell.'' 2D-ACAR measurements on the same set of films using the low-energy e+ beam POSH showed that the e+ wavefunction at the surfaces of the PbSe NCs is more localized than for the case of CdSe NCs. Comparison with calculated e+ - e- momentum densities indicates a Pb deficiency at the surfaces of the PbSe NCs, which correlates with e+ lifetime and the NCs morphology. Work supported in part by the US Department of Energy.

  20. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  1. Reassignment of oxygen-related defects in CdTe and CdSe

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, Dirk

    2015-05-22

    This thesis reassigns the O{sub Te}-V{sub Cd} complex in CdTe and the O{sub Se}-V{sub Cd} complex in CdSe to a sulfur-dioxygen complex SO{sub 2}*, and the O{sub Cd} defect in CdSe to a V{sub Cd}H{sub 2} complex using Fourier transformed infrared absorption spectroscopy. The publications of the previous complexes were investigated by theoreticians who performed first-principle calculations of theses complexes. The theoreticians ruled out the assignments and proposed alternative defects, instead. The discrepancy between the experimentally obtained and theoretically proposed defects was the motivation of this work. Two local vibrational modes located at 1096.8 (ν{sub 1}) and 1108.3 cm{sup -1} (ν{sub 2}) previously assigned to an O{sub Te}-V{sub Cd} complex are detected in CdTe single crystals doped with CdSO{sub 4} powder. Five weaker additional absorption lines accompanying ν{sub 1} and ν{sub 2} could be detected. The relative intensities of the absorption lines match a sulfur-dioxygen complex SO{sub 2}* having two configurations labeled ν{sub 1} and ν{sub 2}. A binding energy difference of 0.5±0.1 meV between the two configurations and an energy barrier of 53±4 meV separating the two configurations are determined. Uniaxial stress applied to the crystal leads to a splitting of the absorption lines which corresponds to an orthorhombic and monoclinic symmetry for ν{sub 1} and ν{sub 2}, respectively. In virgin and oxygen-doped CdSe single crystals, three local vibrational modes located at 1094.1 (γ{sub 1}), 1107.5 (γ{sub 2}), and 1126.3 cm{sup -1} (γ{sub 3}) previously attributed to an O{sub Se}-V{sub Cd} complex could be observed. The signals are accompanied by five weaker additional absorption features in their vicinity. The additional absorption lines are identified as isotope satellites of a sulfur-dioxygen complex SO{sub 2}* having three configurations γ{sub 1}, γ{sub 2}, and γ{sub 3}. IR absorption measurements with uniaxial stress applied to the

  2. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states

    DEFF Research Database (Denmark)

    Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.

    2009-01-01

    We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states LDOS. The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS, ...... with the measured radiative rates. Our results are relevant for applications of CdSe quantum dots in spontaneous emission control and cavity quantum electrodynamics.......We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states LDOS. The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS......, allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots...

  3. Synthesis of CdSe colloidal quantum dots and quantum transitions under action of low power optical excitation

    International Nuclear Information System (INIS)

    Geru, I.I.; Mirzac, A.V.; Tarabukin, A.B.

    2013-01-01

    CdSe colloidal quantum dots were synthesized at low temperature (80-85 0C) on the basis of chemical reactions in colloidal solutions using trioctylphosphine (TOP), pure Se, oleic acid and cadmium acetate Cd(CH 3 COO) 2 . The average size of the synthesized nanocrystals is 2.04 nm, that is less then exciton Bohr radius in the bulk material, which is equal to 5.6 nm. Therefore in such QDs the electron with spin ? and the hole with total angular momentum 3/2 are in localized or slightly delocalized states. In absorption spectra in the UV-VIS range the lines corresponding to quantum transitions between hole state 1S 3/2 (h), 2S 3/2 (h), 1P 3/2 (h) and electron state 1S 1/2 (e), 1P 1/2 (1S 3/2 (h)→1S 1/2 (e), 2S 3/2 (h)→1S 1/2 (e) and 1P 3/2 (h) →1P 1/2 (e)) are detected. The location of photoluminescence maxima of QDs in hexane and in powder state coincide in the limits of experimental errors (570 and 568 nm, respectively). In photoluminescence spectra of powder QDs a broad long-wavelength band of low intensity with maximum at 570 nm was detected. (authors)

  4. Optical sensing of triethylamine using CdSe aerogels

    International Nuclear Information System (INIS)

    Yao Qinghong; Brock, Stephanie L

    2010-01-01

    The photoluminescence (PL) response of highly porous CdSe aerogels to triethylamine (TEA) is investigated and compared to results from prior studies on single crystals and nanoparticle-polymer composites. As-prepared CdSe aerogels show significant and reversible enhancement of luminescence intensity upon exposure to TEA relative to the intensity in pure argon carrier gas. The enhancement in the PL response is dependent on the concentration and linear over the range of TEA concentration studied (4.7 x 10 3 -75 x 10 3 ppm). The sensing response of previously tested samples exhibits saturation behavior that is modeled using Langmuir adsorption isotherms, yielding adsorption equilibrium constants in the range 300-380 atm -1 . The response is sensitively affected by the surface characteristics of the aerogel; when the wet gels are treated with pyridine prior to aerogel formation, the response to TEA is diminished, and when as-prepared aerogels are heated in a vacuum, no subsequent response is observed. Deactivation is attributed to an increase in surface oxide (SeO 2 ) and decrease in surface Cd 2+ Lewis acid sites. Sensing runs of approximately one hour have little impact on the morphology or crystallinity of the aerogels, but do result in partial removal of residual thiolate ligands left over from the gelation process.

  5. Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    2016-09-01

    Full Text Available Colloidal cadmium selenide (CdSe and zinc selenide (ZnSe quantum dots with a hexagonal structure were synthesized by irradiating an aqueous solution containing metal precursors, poly (vinyl pyrrolidone, isopropyl alcohol, and organic solvents with 1.25-MeV gamma rays at a dose of 120 kGy. The radiolytic processes occurring in water result in the nucleation of particles, which leads to the growth of the quantum dots. The physical properties of the CdSe and ZnSe nanoparticles were measured by various characterization techniques. X-ray diffraction (XRD was used to confirm the nanocrystalline structure, energy-dispersive X-ray spectroscopy (EDX was used to estimate the material composition of the samples, transmission electron microscopy (TEM was used to determine the morphologies and average particle size distribution, and UV-visible spectroscopy was used to measure the optical absorption spectra, from which the band gap of the CdSe and ZnSe nanoparticles could be deduced.

  6. Optical performance evolutions of reductive glutathione coated CdSe quantum dots in different environments

    International Nuclear Information System (INIS)

    Wang Lili; Jiang Jisen

    2011-01-01

    Optical performances of reductive glutathione coated CdSe quantum dots were studied under different ageing conditions. The enhancements of luminescence were obviously occurred for the samples ageing under illumination. The quantum yield of CdSe was enhanced continuously over 44 days at room temperature, and reached as high as 36.6%. O 2 was proved to make a certain contribute to the enhancement. The evolutions of the systems during the ageing time were deduced according to the variations of pH values with ageing time and the XRD results of the samples ageing in air with illumination. We conferred that the reduction of surface defects resulted from the photo-induced decomposition of CdSe quantum dots was the main reason for the enhancement of fluorescence. The production of CdO as a result of the surface reaction with O 2 made contributions to the enhancement for a certain extent. The curves of quantum yield versus ageing time were fitted with a stretched exponential function. It was found that the course of fluorescence enhancement accorded with the dynamics of system with strongly coupled hierarchical degrees of freedom.

  7. Surface modification-a novel way of attaching cocatalysts on CdS semiconductors for photocatalytic hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-22

    Noble metals as cocatalysts for hydrogen evolution are widely investigated for semiconductor photocatalytic water splitting. In this paper, we present a novel way to attach not only noble metals, but also transitional metals onto CdS nanocrystals as cocatalysts for hydrogen evolution. The hydrogen evolution performances for each metal were compared and result shows that Pd attached CdS gives the highest hydrogen evolution rate of 250 μmol/h. The amounts of metal ions attached on the surface were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). This work confirms that surface modification is a promising way of attaching cocatalysts onto semiconductor photocatalysts.

  8. Surface modification-a novel way of attaching cocatalysts on CdS semiconductors for photocatalytic hydrogen evolution

    KAUST Repository

    Yu, Weili; Isimjan, Tayirjan; Lin, Bin; Takanabe, Kazuhiro

    2014-01-01

    Noble metals as cocatalysts for hydrogen evolution are widely investigated for semiconductor photocatalytic water splitting. In this paper, we present a novel way to attach not only noble metals, but also transitional metals onto CdS nanocrystals as cocatalysts for hydrogen evolution. The hydrogen evolution performances for each metal were compared and result shows that Pd attached CdS gives the highest hydrogen evolution rate of 250 μmol/h. The amounts of metal ions attached on the surface were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). This work confirms that surface modification is a promising way of attaching cocatalysts onto semiconductor photocatalysts.

  9. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    International Nuclear Information System (INIS)

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa; Fotakis, Costas; Laera, Anna Maria; Piscopiello, Emanuela; Tapfer, Leander

    2007-01-01

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS registered polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements

  10. Chemical role of amines in the colloidal synthesis of CdSe quantum dots and their luminescence properties

    International Nuclear Information System (INIS)

    Nose, Katsuhiro; Fujita, Hiroshi; Omata, Takahisa; Otsuka-Yao-Matsuo, Shinya; Nakamura, Hiroyuki; Maeda, Hideaki

    2007-01-01

    The role of organic amines in the colloidal synthesis of CdSe quantum dots (QDs) has been studied. CdSe QDs were synthesized from the source solutions containing 5 vol% of amines having various alkyl chain lengths, stereochemical sizes and electron donation abilities. The role of the additional amines was evaluated on the basis of the photoluminescence (PL) properties such as PL wavelength and intensity of the obtained CdSe QDs. The observed PL spectra were explained by the fact that the amines behaved as capping ligands on the surface of the QDs in the product colloidal solution and complex ligands for cadmium in the source solutions. It was shown that the particle size was controlled by the diffusion process depending on the mass and stereochemical shape of the amines, and the luminescence intensity increased with the increasing electron donation ability and capping density of the amines

  11. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanfen; Han Min [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Bai Hongyan [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); College of Biological and Chemical Engineering, Jiaxing College, Jiaxing 314001 (China); Wu Yong [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Dai Zhihui, E-mail: daizhihuii@njnu.edu.cn [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Bao Jianchun, E-mail: baojianchun@njnu.edu.cn [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China)

    2011-08-01

    A novel aptamer biosensor with easy operation and good sensitivity, specificity, stability and reproducibility was developed by immobilizing the aptamer on water soluble CdSe quantum dots (QDs) modified on the top of the glassy carbon electrode (GCE). Methylene blue (MB) was intercalated into the aptamer sequence and used as an electrochemical marker. CdSe QDs improved the electrochemical signal because of their larger surface area and ion centers of CdSe QDs may also had a major role on amplifying the signal. The higher ion concentration caused more combination of aptamer which caused larger signal. The thrombin was detected by differential pulse voltammetry (DPV) quantitatively. Under optimal conditions, the two linear ranges were obtained from 3 to 13 {mu}g mL{sup -1} and from 14 to 31 {mu}g mL{sup -1}, respectively. The detection limit was 0.08 {mu}g mL{sup -1} at 3{sigma}. The constructed biosensor had better responses compared with that in the absence of the CdSe QDs immobilizing. The control experiment was also carried out by using BSA, casein and IgG in the absence of thrombin. The results showed that the aptasensor had good specificity, stability and reproducibility to the thrombin. Moreover, the aptasensor could be used for detection of real sample with consistent results in comparison with those obtained by fluorescence method which could provide a promising platform for fabrication of aptamer based biosensors.

  12. Exploiting energy transfer in hybrid metal and semiconductor nanoparticle systems for biosensing and energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Mayilo, Sergiy

    2009-06-19

    In this work, gold and semiconductor nanoparticles are used as building blocks for nanostructures, in which energy transfer is investigated. Fluorescence quenching by gold nanoparticles is investigated and used to develop novel immunoassays for medically relevant molecules. The influence of gold nanoparticles on radiative and non-radiative rates of Cy3 and Cy3B dyes is studied here. A competitive, homogeneous immunoassay for digoxigenin and digoxin, a drug used to cure heart diseases, is developed. The assay has a limit of detection of 0.5 nM in buffer and 50 nM in serum. Time resolved spectroscopy reveals that the quenching is due to energy transfer with an efficiency of 70%. A homogeneous sandwich immunoassay for cardiac troponin T, an indicator of damage to the heart muscle, is developed. Gold nanoparticles and fluorophores are functionalized with anti-troponin T antibodies. In the presence of troponin T the nanoparticles and fluorophores form a sandwich structure, in which the dye fluorescence is quenched by a gold nanoparticle. The limit of detection of the immunoassay in buffer is 0.02 nM and 0.11 nM in serum. Energy transfer is demonstrated in clusters of CdTe nanocrystals assembled using three methods. In the first method, clusters of differently-sized water soluble CdTe nanocrystals capped by negatively charged mercaptoacid stabilizers are produced through electrostatic interactions with positively charged Ca{sup 2+} cations. The two other methods employ covalent binding through dithiols and thiolated DNA as linkers between nanocrystals. Energy transfer from smaller nanocrystals to larger nanocrystals in aggregates is demonstrated by means of steady-state and time-resolved photoluminescence spectroscopy, paving the way for nanocrystal-based light harvesting structures in solution. Multi-shell onion-like CdSe/ZnS/CdSe/ZnS nanocrystals are presented. The shade of the white light can be controlled by annealing the particles. Evidence for intra-nanocrystal

  13. Electrodeposition and characterization of CdSe x-Te 1- x semiconducting thin films

    Science.gov (United States)

    Benamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A.

    1999-07-01

    Thin polycrystalline films of cadmium chalcogenides CdSe xTe 1-x ( 0 ≤ x ≤ 1) have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 °C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSe xTe 1-x films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.

  14. Influence of the solvent environments on the spectral features of CdSe quantum dots with and without ZnS shell

    Energy Technology Data Exchange (ETDEWEB)

    Ibnaouf, K.H., E-mail: kheo90@gmail.com [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Physics Department, College of Science, P.O. Box 90905, Riyadh 11623 (Saudi Arabia); Prasad, Saradh; Al Salhi, M.S.; Hamdan, A. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Research Chair for Laser Diagnosis of Cancer, King Saud University (Saudi Arabia); Zaman, M.B. [CEREM, College of Engineering, King Saud University (Saudi Arabia); Advanced Medical Research Institute of Canada, Sudbury (Canada); El Mir, L. [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Physics Department, College of Science, P.O. Box 90905, Riyadh 11623 (Saudi Arabia)

    2014-05-01

    The spectral properties of 5 nm size of bare CdSe and (CdSe)ZnS core–shell quantum dots (QDs) have been recorded and investigated under different solvent environments with different polarities and different concentrations. The results showed that the spectral profile of absorption did not change for both quantum dots in different solvents under a wide range of concentrations. On the other hand, the photoluminescence (PL) spectra of (CdSe)ZnS core–shell quantum dots in non-polar solvents showed two bands; the primary around 420 nm and the secondary around 620 nm. In contrast, the PL spectra of bare CdSe in non-polar solvents, showed a very strong band around 590 nm, with a total absence of the primary wavelength band at 420 nm. Under high polar solvent environments, bare CdSe showed a new peak around 420 nm, which was totally absent in non-polar solvent. Therefore, the solvent plays an important role in the PL spectra of bare CdSe and (CdSe)ZnS core–shell quantum dots.

  15. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Administrator

    3. Mobility activation in CdSe thin films. The trap depths were calculated by using the following simple decay law. It = Ioexp(–pt),. (1) where p is the probability of escape of an electron from the trap per second and is given by (Randall and Wilkins 1945) p = S exp (–E/kT),. (2) where E is the trap depth for electrons below the ...

  16. Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms

    Science.gov (United States)

    Scarfiello, Riccardo; Nobile, Concetta; Cozzoli, P. Davide

    2016-12-01

    Colloidal inorganic nanocrystals, free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical-chemical properties can be controlled through synthetic tailoring of their compositional, structural and geometric features and the versatility with which they can be integrated in technological fields as diverse as optoelectronics, energy storage/ conversion/production, catalysis and biomedicine. In recent years, building upon mechanistic knowledge acquired on the thermodynamic and kinetic processes that underlie nanocrystal evolution in liquid media, synthetic nanochemistry research has made impressive advances, opening new possibilities for the design, creation and mastering of increasingly complex “colloidal molecules”, in which nanocrystal modules of different materials are clustered together via solid-state bonding interfaces into free-standing, easily processable multifunctional nanocomposite systems. This Review will provide a glimpse into this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of all-inorganic heterostructured nanocrystals (HNCs) in asymmetric non-onionlike geometries, inorganic analogues of polyfunctional organic molecules, in which distinct nanoscale crystalline modules are interconnected in hetero-dimer, hetero-oligomer and anisotropic multidomain architectures via epitaxial heterointerfaces of limited extension. The focus will be on modular HNCs entailing at least one magnetic material component combined with semiconductors and/or metals, which hold potential for generating enhanced or unconventional magnetic properties, while offering diversified or even new chemical-physical properties and functional capabilities. The available toolkit of synthetic strategies, all based on the manipulation of seeded-growth techniques, will be described

  17. Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms

    Directory of Open Access Journals (Sweden)

    Riccardo Scarfiello

    2016-12-01

    Full Text Available Colloidal inorganic nanocrystals, free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical–chemical properties can be controlled through synthetic tailoring of their compositional, structural and geometric features and the versatility with which they can be integrated in technological fields as diverse as optoelectronics, energy storage/ conversion/production, catalysis and biomedicine. In recent years, building upon mechanistic knowledge acquired on the thermodynamic and kinetic processes that underlie nanocrystal evolution in liquid media, synthetic nanochemistry research has made impressive advances, opening new possibilities for the design, creation and mastering of increasingly complex colloidal molecules, in which nanocrystal modules of different materials are clustered together via solid-state bonding interfaces into free-standing, easily processable multifunctional nanocomposite systems. This Review will provide a glimpse into this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of all-inorganic heterostructured nanocrystals (HNCs in asymmetric non-onionlike geometries, inorganic analogues of polyfunctional organic molecules, in which distinct nanoscale crystalline modules are interconnected in hetero-dimer, hetero-oligomer and anisotropic multidomain architectures via epitaxial heterointerfaces of limited extension. The focus will be on modular HNCs entailing at least one magnetic material component combined with semiconductors and/or metals, which hold potential for generating enhanced or unconventional magnetic properties, while offering diversified or even new chemical-physical properties and functional capabilities. The available toolkit of synthetic strategies, all based on the manipulation of seeded-growth techniques

  18. Magnetic and dielectric study of Fe-doped CdSe nanoparticles

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad

    2018-01-01

    Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.

  19. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters

    Science.gov (United States)

    Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli

    2018-04-01

    Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.

  20. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    Science.gov (United States)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  1. Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing.

    Science.gov (United States)

    Figuerola, Albert; van Huis, Marijn; Zanella, Marco; Genovese, Alessandro; Marras, Sergio; Falqui, Andrea; Zandbergen, Henny W; Cingolani, Roberto; Manna, Liberato

    2010-08-11

    The thermal evolution of a collection of heterogeneous CdSe-Au nanosystems (Au-decorated CdSe nanorods, networks, vertical assemblies) prepared by wet-chemical approaches was monitored in situ in the transmission electron microscope. In contrast to interfaces that are formed during kinetically controlled wet chemical synthesis, heating under vacuum conditions results in distinct and well-defined CdSe/Au interfaces, located at the CdSe polar surfaces. The high quality of these interfaces should make the heterostructures more suitable for use in nanoscale electronic devices.

  2. Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes

    International Nuclear Information System (INIS)

    Lu Liu; Xu Xiaoliang; Shi Chaoshu; Ming Hai

    2010-01-01

    Localized surface plasmon resonance (LSPR) enhanced photoluminescences (PL) from CdSe quantum dots (QDs) on worm-like or quasi-spherical silver colloids have been investigated. The shape of silver colloid film is controlled by annealing temperature (200 o C∼350 o C). Strong PL enhancements of CdSe QDs on both as-grown and annealed silver colloid films are observed. The results show that the PL enhancement factor of CdSe QDs on worm-like silver colloid film reaches as high as 15-fold. Moreover, the enhancement factor is 5 times larger than that obtained from the quasi-spherical silver colloids. The superiority of worm-like silver nanostructure on LSPR enhanced photoluminescence is attributed to its larger size, hot spots and multiple dipole resonance modes coupling, which are induced by aggregation effect.

  3. Cathodoluminescence of semiconductors in the scanning electron microscope

    International Nuclear Information System (INIS)

    Noriegas, Javier Piqueras de

    2008-01-01

    Full text: Cathodoluminescence (CL) in the scanning electron microscope (SEM) is a nondestructive technique, useful for characterization of optical and electronic properties of semiconductors, with spatial resolution. The contrast in the images of CL is related to the presence of crystalline defects, precipitates or impurities and provides information on their spatial distribution. CL spectra allows to study local energy position of localized electronic states. The application of the CL is extended to semiconductor very different characteristics, such as bulk material, heterostructures, nanocrystalline film, porous semiconductor, nanocrystals, nanowires and other nano-and microstructures. In the case of wafers, provides information on the homogeneity of their electronic characteristics, density of dislocations, grain sub frontiers, distribution of impurities and so on. while on the study of heterostructures CL images can determine, for example, the presence of misfit dislocations at the interface between different sheets, below the outer surface of the sample. In the study of other low dimensional structures, such as nanocrystalline films, nanoparticles and nano-and microstructures are observed elongated in some cases quantum confinement effects from the CL spectra. Moreover, larger structures, the order of hundreds of nanometers, with forms of wires, tubes or strips, is that in many semiconductor materials, mainly oxides, the behavior of luminescence is different from bulk material. The microstructures have a different structure of defects and a greater influence of the surface, which in some cases leads to a higher emission efficiency and a different spectral distribution. The presentation describes the principle of the CL technique and examples of its application in the characterization of a wide range of both semiconductor materials of different composition, and of different sizes ranging from nanostructures to bulk samples

  4. Light-gated single CdSe nanowire transistor: photocurrent saturation and band gap extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: yangzh08@gmail.com; Chakraborty, Ritun; Kudera, Stefan; Krahne, Roman, E-mail: roman.krahne@iit.it [Istituto Italiano di Tecnologia, Nanochemistry department (Italy)

    2015-11-15

    CdSe nanowires are popular building blocks for many optoelectronic devices mainly owing to their direct band gap in the visible range of the spectrum. Here we investigate the optoelectronic properties of single CdSe nanowires fabricated by colloidal synthesis, in terms of their photocurrent–voltage characteristics and photoconductivity spectra recorded at 300 and 18 K. The photocurrent is identified as the secondary photocurrent, which gives rise to a photoconductive gain of ∼35. We observe a saturation of the photocurrent beyond a certain voltage bias that can be related to the finite drift velocity of electrons. From the photoconductivity spectra, we determine the band gap energy of the nanowires as ∼1.728 eV, and we resolve low-energy peaks that can be associated with sub-bandgap states.Graphical Abstract.

  5. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  6. Ripening of Semiconductor Nanoplatelets.

    Science.gov (United States)

    Ott, Florian D; Riedinger, Andreas; Ochsenbein, David R; Knüsel, Philippe N; Erwin, Steven C; Mazzotti, Marco; Norris, David J

    2017-11-08

    Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.

  7. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C. [School of Physical Sciences, ITM University, Turari, Gwalior, MP 474001 (India); Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior MP 474011 (India)

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  8. Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Satoshi Suehiro

    2016-09-01

    Full Text Available ZnO nanocrystals (NCs were synthesized by heating Zn (II acetylacetonate in oleic acid/oleylamine in the presence of 1,2-hexadecanediol at 220 °C. Transmission electron microscopy (TEM and dynamic light scattering (DLS measurements revealed the formation of monodispersed ZnO NCs of ca. 7 nm. ZnO NC assembled films were fabricated on a glass substrate by deposition with the colloidal ZnO NCs dispersed in toluene. The film composed of the NCs showed good optical transparency in the visible to near-infrared region. A device coupling the ZnO NC film with a p-type Cu2ZnSnS4 (CZTS NC film exhibited an obvious diode-like current–voltage behavior. The results suggest that the transparent ZnO film has a potentiality to be used for an n-type window layer in some optoelectronic applications.

  9. Nanocrystal thin film fabrication methods and apparatus

    Science.gov (United States)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  10. Intense Visible Luminescence in CdSe Quantum Dots by Efficiency Surface Passivation with H2O Molecules

    Directory of Open Access Journals (Sweden)

    Hyeoung Woo Park

    2012-01-01

    Full Text Available We have investigated the effect of water (H2O cooling and heat treatment on the luminescence efficiency of core CdSe quantum dots (QDs. The photoluminescence (PL quantum yield of the CdSe QDs was enhanced up to ~85%, and some periodic bright points were observed in wide color ranges during the heat treatment of QDs mixed with H2O. The PL enhancement of QDs could be attributed to the recovery of QDs surface traps by unreacted ligands confined within the hydrophilic H2O molecule containers.

  11. In-Situ Growth and Characterization of Indium Tin Oxide Nanocrystal Rods

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-11-01

    Full Text Available Indium tin oxide (ITO nanocrystal rods were synthesized in-situ by a vapor-liquid-solid (VLS method and electron beam evaporation technique. When the electron-beam gun bombarded indium oxide (In2O3 and tin oxide (SnO2 mixed sources, indium and tin droplets appeared and acted as catalysts. The nanocrystal rods were in-situ grown on the basis of the metal catalyst point. The nanorods have a single crystal structure. Its structure was confirmed by X-ray diffraction (XRD and transmission electron microscopy (TEM. The surface morphology was analyzed by scanning electron microscopy (SEM. During the evaporation, a chemical process was happened and an In2O3 and SnO2 solid solution was formed. The percentage of doped tin oxide was calculated by Vegard’s law to be 3.18%, which was in agreement with the mixture ratio of the experimental data. The single crystal rod had good semiconductor switch property and its threshold voltage of single rod was approximately 2.5 V which can be used as a micro switch device. The transmission rate of crystalline nanorods ITO film was over 90% in visible band and it was up to 95% in the blue green band as a result of the oxygen vacancy recombination luminescence.

  12. Efficient n-type doping of zinc-blende III-V semiconductor nanowires

    Science.gov (United States)

    Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.

    2014-03-01

    We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.

  13. Optical studies of CdSe/PVA nanocomposite films

    Science.gov (United States)

    Kushwaha, Kamal Kumar; Ramrakhaini, Meera

    2018-05-01

    The nanocomposite films of CdSe nanocrystals in polyvinyl alcohol (PVA) matrix were synthesized by environmental friendly chemical method. These composites were characterized by X-ray diffraction which indicates the hexagonal crystalline structure of CdSe with crystal size up to a few nm. The crystal size is found to decrease by increasing PVA Concentration. The photoluminescence (PL) characteristics of these composite films with varying concentration of PVA as well as Cd2+ content have been investigated. The PL peak of CdSe was observed at 510 nm and higher intensity is observed by increasing PVA concentration without any change in position of PL peak. Due to proper passivation of surface states non-radiative transition are reduced which enhance the PL intensity. By increasing concentration of Cd2+ content in the CdSe/PVA nanocomposite films, smaller CdSe nanocrystals were obtained giving higher intensity and blue shift in the PL peak due to enhanced oscillator strength and quantum confinement effect. The PL peak in green and blue region makes these composite films promising materials for optical display devices. The Refractive index of these composites was also measured at sodium line with the help of Abee's refractometer and was found in the range of 2.20-2.45. It is seen that refractive index varies with polymer concentration. This may be useful for their potential application in anti-reflection coating, display devices and optical sensors.

  14. Electrochemiluminescent detection of Pb{sup 2+} by graphene/gold nanoparticles and CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan

    2016-12-01

    Highlights: • An ECL sensor was fabricated based on the distance dependent between CdSe QDs and gold nanoparticles. • The ssDNA strands rich in G bases adopt the G4 conformation when Pb{sup 2+} is present in detection system. • AuNPs/RGO composite improved the performance of electron transfer of sensor. • The ECL sensor was used to detect Pb{sup 2+} concentration in an actual water sample with high sensitivity and selectivity. - Abstract: A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold−sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb{sup 2+}. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10{sup −10} to 10{sup −8} mol/L (R = 0.9819) with a detection limit of 10{sup −10} mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.

  15. Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods.

    Science.gov (United States)

    Hughes, Steven M; Alivisatos, A Paul

    2013-01-09

    Nanocrystals of cadmium selenide exhibit a form of polytypism with stable forms in both the wurtzite and zinc blende crystal structures. As a result, wurtzite nanorods of cadmium selenide tend to form stacking faults of zinc blende along the c-axis. These faults were found to preferentially form during the growth of the (001) face, which accounts for 40% of the rod's total length. Since II-VI semiconductor nanorods lack inversion symmetry along the c-axis of the particle, the two ends of the nanorod may be identified by this anisotropic distribution of faults.

  16. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    Science.gov (United States)

    Jin, Hyung Dae

    Recent advances in nanocrystalline materials production are expected to impact the development of next generation low-cost and/or high efficiency solar cells. For example, semiconductor nanocrystal inks are used to lower the fabrication cost of the absorber layers of the solar cells. In addition, some quantum confined nanocrystals display electron-hole pair generation phenomena with greater than 100% quantum yield, called multiple exciton generation (MEG). These quantum dots could potentially be used to fabricate solar cells that exceed the Schockley-Queisser limit. At present, continuous syntheses of nanoparticles using microreactors have been reported by several groups. Microreactors have several advantages over conventional batch synthesis. One advantage is their efficient heat transfer and mass transport. Another advantage is the drastic reduction in the reaction time, in many cases, down to minutes from hours. Shorter reaction time not only provides higher throughput but also provide better particle size control by avoiding aggregation and by reducing probability of oxidizing precursors. In this work, room temperature synthesis of Au11 nanoclusters and high temperature synthesis of chalcogenide nanocrystals were demonstrated using continuous flow microreactors with high throughputs. A high rate production of phosphine-stabilized Au11 nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 mum thick was used to step up the production of phosphine-stabilized Au11 nanoclusters. Continuous production of highly monodispersed phosphine-stabilized Au 11 nanoclusters at a rate of about 11.8 [mg/s] was achieved using a microreactor with a size of 1.687cm3. This result is about 30,000 times over conventional batch synthesis according to production rate/per reactor volume. We have elucidated the

  17. Realization and field emission of CdSe nano-tetrapods with different arm lengths

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lijuan, E-mail: ljzhao@dhu.edu.c [Applied Physics Department, Donghua University, Shanghai 201620 (China); Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Pang Qi [Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Yang Shihe [Chemistry Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Ge Weikun; Wang Jiannong [Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2009-08-10

    The arms of CdSe nano-tetrapods can be greatly elongated with the core diameters and arm width unchanged by multiple injections. Room-temperature absorption and photoluminescence (PL) spectra of tetrapods with different arm lengths show that these tetrapods have almost the same core size, which is consistent with the high resolution TEM results. Field emission characteristics show that the onset field required drawing a current density of approx0.1 muAcm{sup -2} from CdSe nano-tetrapods with different arm lengths are 22 Vmum{sup -1}, 9 Vmum{sup -1}, and 4 Vmum{sup -1}, respectively, and the field enhancement factors are determined to be about 218, 554, and 946, respectively. Results show that the longer is the arm of the tetrapods, the lower the turn-on field and the higher the field enhancement factor.

  18. Study of sub band gap absorption of Sn doped CdSe thin films

    International Nuclear Information System (INIS)

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-01-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively

  19. Realization and field emission of CdSe nano-tetrapods with different arm lengths

    International Nuclear Information System (INIS)

    Zhao Lijuan; Pang Qi; Yang Shihe; Ge Weikun; Wang Jiannong

    2009-01-01

    The arms of CdSe nano-tetrapods can be greatly elongated with the core diameters and arm width unchanged by multiple injections. Room-temperature absorption and photoluminescence (PL) spectra of tetrapods with different arm lengths show that these tetrapods have almost the same core size, which is consistent with the high resolution TEM results. Field emission characteristics show that the onset field required drawing a current density of ∼0.1 μAcm -2 from CdSe nano-tetrapods with different arm lengths are 22 Vμm -1 , 9 Vμm -1 , and 4 Vμm -1 , respectively, and the field enhancement factors are determined to be about 218, 554, and 946, respectively. Results show that the longer is the arm of the tetrapods, the lower the turn-on field and the higher the field enhancement factor.

  20. Study of sub band gap absorption of Sn doped CdSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jagdish; Rani, Mamta [Department of Physics, Panjab University, Chandigarh- 160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Panjab University, Chandigarh- 160014 (India)

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  1. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  2. Synthesis and characterization of transition-metal-doped zinc oxide nanocrystals for spintronics

    Science.gov (United States)

    Wang, Xuefeng

    Spintronics (spin transport electr onics), in which both spin and charge of carriers are utilized for information processing, is believed to challenge the current microelectronics and to become the next-generation electronics. Nanostructured spintronic materials and their synthetic methodologies are of paramount importance for manufacturing future nanoscale spintronic devices. This thesis aims at studying synthesis, characterization, and magnetism of transition-metal-doped zinc oxide (ZnO) nanocrystals---a diluted magnetic semiconductor (DMS)---for potential applications in future nano-spintronics. A simple bottom-up-based synthetic strategy named a solvothermal technique is introduced as the primary synthetic approach and its crystal growth mechanism is scrutinized. N-type cobalt-doped ZnO-based DMS nanocrystals are employed as a model system, and characterized by a broad spectrum of advanced microscopic and spectroscopic techniques. It is found that the self-orientation growth mechanism, imperfect oriented attachment, is intimately correlated with the high-temperature ferromagnetism via defects. The influence of processing on the magnetic properties, such as compositional variations, reaction conditions, and post-growth treatment, is also studied. In this way, an in-depth understanding of processing-structure-property interrelationships and origins of magnetism in DMS nanocrystals are obtained in light of the theoretical framework of a spin-split impurity band model. In addition, a nanoscale spinodal decomposition phase model is also briefly discussed. Following the similar synthetic route, copper- and manganese-doped ZnO nanocrystals have been synthesized and characterized. They both show high-temperature ferromagnetism in line with the aforementioned theoretical model(s). Moreover, they display interesting exchange biasing phenomena at low temperatures, revealing the complexity of magnetic phases therein. The crystal growth strategy demonstrated in this work

  3. Design and geometry of hybrid white light-emitted diodes for efficient energy transfer from the quantum well to the nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Shirazi, Roza

    2013-01-01

    We demonstrate light color conversion in patterned InGaN light-emitting diodes (LEDs), which is enhanced via nonradiative exciton resonant energy transfer (RET) from the electrically driven diode to colloidal semiconductor nanocrystals (NCs). Patterning of the diode is essential for the coupling...... between a quantum well (QW) and NCs, because the distance between the QW and NCs is a main and very critical factor of RET. Moreover, a proper design of the pattern can enhance light extraction....

  4. Electrical manipulation of the light emission of single CdSe/CdS nanorods; Elektrische Manipulation der Lichtemission von einzelnen CdSe/CdS Nanostaebchen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.

    2005-09-14

    In the center of the present thesis lies the study and manipulation of the light emission of novel rod-shaped cadmium-selenide/cadmium-sulfide (CdSe/CdS) nanocrystals. These nanocrystals consist of a spherical CdSe nucleus, on which a CdS nanorod is grown monocrystallinely. By this grow spatially asymmetric semiconductor nanorods with an aspect ratio between 1.6 and 4.0. By the measurement of the radiation rate in this thesis it could be shown that the electron is delocalized over the whole nanorod, while the hole is localized in the CdSe nucleus. Therefore by the length of the cadmium-sulfide rod the wave-function overlap can be directly manipulated. The wave functions and by this the emission energies can be beside the geometry especially also controlled by external fields. Because the magnitude of the so-called ''Stark effect in quantum-bounded structures'' increases with the spatial extension of the nanostructure, in the nanorods an in comparison with spherical nanocrystals distinctly increased field effect could be observed. Experiments on single CdSe/CdS nanorods exhibit however not only a shift of the emission energy by the 50-fold of the line width, but simultaneously a field-induced decreasement of the emission intensity by one order of magnitude. The experimental results can be excellently compared with a theoretical model. For this the effective-mass model was supplemented by the Coulomb interaction and extended by a finite-element method for asymmetric geometries. By this it is possible to predict both the radiation rate, the Stark shift of the emission energy, and the intensity modulation by electric fields qualitatively and quantitatively and to describe the Stark effect in colloidal nanocrystal by a quantum-mechanical model. The emission characteristics is not only influenced by external fields, but also by fluctuations of local fields, which arise by diffunding surface charges. These local field changes induce also a Stark shift

  5. Electrical manipulation of the light emission of single CdSe/CdS nanorods

    International Nuclear Information System (INIS)

    Mueller, J.

    2005-01-01

    In the center of the present thesis lies the study and manipulation of the light emission of novel rod-shaped cadmium-selenide/cadmium-sulfide (CdSe/CdS) nanocrystals. These nanocrystals consist of a spherical CdSe nucleus, on which a CdS nanorod is grown monocrystallinely. By this grow spatially asymmetric semiconductor nanorods with an aspect ratio between 1.6 and 4.0. By the measurement of the radiation rate in this thesis it could be shown that the electron is delocalized over the whole nanorod, while the hole is localized in the CdSe nucleus. Therefore by the length of the cadmium-sulfide rod the wave-function overlap can be directly manipulated. The wave functions and by this the emission energies can be beside the geometry especially also controlled by external fields. Because the magnitude of the so-called ''Stark effect in quantum-bounded structures'' increases with the spatial extension of the nanostructure, in the nanorods an in comparison with spherical nanocrystals distinctly increased field effect could be observed. Experiments on single CdSe/CdS nanorods exhibit however not only a shift of the emission energy by the 50-fold of the line width, but simultaneously a field-induced decreasement of the emission intensity by one order of magnitude. The experimental results can be excellently compared with a theoretical model. For this the effective-mass model was supplemented by the Coulomb interaction and extended by a finite-element method for asymmetric geometries. By this it is possible to predict both the radiation rate, the Stark shift of the emission energy, and the intensity modulation by electric fields qualitatively and quantitatively and to describe the Stark effect in colloidal nanocrystal by a quantum-mechanical model. The emission characteristics is not only influenced by external fields, but also by fluctuations of local fields, which arise by diffunding surface charges. These local field changes induce also a Stark shift and lead to a time

  6. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Mthethwa, T.P. [University of Johannesburg, Department of Chemical Technology, P.O. Box 17011, Doornfontein 2028 (South Africa); Moloto, M.J., E-mail: mmoloto@uj.ac.za [University of Johannesburg, Department of Chemical Technology, P.O. Box 17011, Doornfontein 2028 (South Africa); De Vries, A.; Matabola, K.P. [CSIR Materials Science and Manufacturing, 4 Gomery avenue, Summerstrand, Port Elizabeth 6000 (South Africa)

    2011-04-15

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: {yields} TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. {yields} The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. {yields} The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. {yields} Both TEM images for nanoparticles and SEM for fibres shows the morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the

  7. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres

    International Nuclear Information System (INIS)

    Mthethwa, T.P.; Moloto, M.J.; De Vries, A.; Matabola, K.P.

    2011-01-01

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: → TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. → The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. → The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. → Both TEM images for nanoparticles and SEM for fibres shows the morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the polymer fibres at low

  8. Bright trions in direct-bandgap silicon nanocrystals revealed bylow-temperature single-nanocrystal spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Pelant, Ivan; Valenta, J.

    2015-01-01

    Roč. 4, Oct (2015), e336 ISSN 2047-7538 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * single-nanocrystal spectroscopy * luminescing trions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.600, year: 2015

  9. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-01-01

    We investigated CdSe-sensitized TiO 2 solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO 2 gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO 2 nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( 2 –CdSe core–shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO 2 and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions—100 mW cm −2 in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V oc = 485 mV, J sc = 4.26 mA cm −2 , ff=0.37). (paper)

  10. Development Considerations for Nanocrystal Drug Products.

    Science.gov (United States)

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  11. Characterization of size, anisotropy, and density heterogeneity of nanoparticles by sedimentation velocity

    KAUST Repository

    Demeler, Borries

    2014-08-05

    A critical problem in materials science is the accurate characterization of the size dependent properties of colloidal inorganic nanocrystals. Due to the intrinsic polydispersity present during synthesis, dispersions of such materials exhibit simultaneous heterogeneity in density ρ, molar mass M, and particle diameter d. The density increments ∂ρ/∂d and ∂ρ/∂M of these nanoparticles, if known, can then provide important information about crystal growth and particle size distributions. For most classes of nanocrystals, a mixture of surfactants is added during synthesis to control their shape, size, and optical properties. However, it remains a challenge to accurately determine the amount of passivating ligand bound to the particle surface post synthesis. The presence of the ligand shell hampers an accurate determination of the nanocrystal diameter. Using CdSe and PbS semiconductor nanocrystals, and the ultrastable silver nanoparticle (M4Ag 44(p-MBA)30), as model systems, we describe a Custom Grid method implemented in UltraScan-III for the characterization of nanoparticles and macromolecules using sedimentation velocity analytical ultracentrifugation. We show that multiple parametrizations are possible, and that the Custom Grid method can be generalized to provide high resolution composition information for mixtures of solutes that are heterogeneous in two out of three parameters. For such cases, our method can simultaneously resolve arbitrary two-dimensional distributions of hydrodynamic parameters when a third property can be held constant. For example, this method extracts partial specific volume and molar mass from sedimentation velocity data for cases where the anisotropy can be held constant, or provides anisotropy and partial specific volume if the molar mass is known. © 2014 American Chemical Society.

  12. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  13. Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xue, Jinbo; Shen, Qianqian; Yang, Fei; Liang, Wei; Liu, Xuguang

    2014-01-01

    Highlights: • There-dimensional CdSe-TiO 2 multijunction was fabricated by electrochemical method. • CdSe nanoparticles had a good bonding with the walls of TiO 2 nanotube. • pH value played an important role in the quality of CdSe-TiO 2 interfaces. - Abstract: In this work, we fabricated CdSe/TiO 2 nanotube arrays (NTAs) by electrochemical method. In electrodeposition, the pH value of the electrolyte played an important role in formation of CdSe nanoparticles. As the pH value decreased, more CdSe deposited on TiO 2 NTAs. Scanning electron microscopy and transmission electron microscopy characterization shows that the CdSe nanoparticles were uniformly deposited on and into TiO 2 nanotubes when the pH value was 3, and this structure fully utilized the three-dimensional (3D) space of TiO 2 nanotubes to form 3D multijunction heterostructures. According to the photoelectrochemical test, the CdSe/TiO 2 NTAs sample prepared at pH = 3 exhibited maximum photocurrent and open circuit potential. This is because that the deposited CdSe nanoparticles had better bond with the walls of TiO 2 nanotube than the samples deposited at other pH values, which facilitated the propagation and kinetic separation of photogenerated charges

  14. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  15. Direct Observation of Electron-to-Hole Energy Transfer in CdSe Quantum Dots

    NARCIS (Netherlands)

    Hendry, E.; Koeberg, M.; Wang, F.; Zhang, H.; de Mello Donega, C.; Vanmaekelbergh, D.; Bonn, M.

    2006-01-01

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This

  16. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  17. Charge transport in a CoPt3 nanocrystal microwire

    International Nuclear Information System (INIS)

    Beecher, P.; De Marzi, G.; Quinn, A.J.; Redmond, G.; Shevchenko, E.V.; Weller, H.

    2004-01-01

    The electrical characteristics of single CoPt 3 nanocrystal microwires formed by magnetic field-directed growth from colloidal solutions are presented. The wires comprise disordered assemblies of discrete nanocrystals, separated from each other by protective organic ligand shells. Electrical data indicate that the activated charge transport properties of the wires are determined by the nanocrystal charging energy, governed by the size and capacitance of the individual nanocrystals. Focused ion beam-assisted deposition of Pt metal at the wire-electrode junctions is employed to optimize the wire-electrode contacts, whilst maintaining the nanocrystal-dominated transport characteristics of these one-dimensional nanocrystal structures

  18. Formation and properties of epitaxial CdSe, ZnSe quantum dots. Conventional molecular beam epitaxy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Suddhasatta

    2008-01-16

    This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. it is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. While CdSe heteroepitaxy occurs in the multilayer-mode at T{sub G}=300 C, a reentrant recovery of the layer-by-layer mode is reported in this thesis, for growth at T{sub G}<{proportional_to}240 C. In the second variant technique, formation of large and distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (T{sub D}=230 C). The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. (orig.)

  19. Effects of reaction temperature on size and optical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    influential factors in shape control of CdSe nanocrystals by changing the ratio of .... four different temperatures (200, 220, 240 and 280°C). During the whole .... J, Wu A M, Gambhir S S and Weiss S 2005 Science 307 538. Murray C B, Norris ...

  20. A room-temperature-operated Si LED with β-FeSi2 nanocrystals in the active layer: μW emission power at 1.5 μm

    Science.gov (United States)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Balagan, S. A.; Dotsenko, S. A.; Galkin, K. N.; Galkin, N. G.; Shamirzaev, T. S.; Gutakovskii, A. K.; Latyshev, A. V.; Iinuma, M.; Terai, Y.

    2017-03-01

    This article describes the development of an Si-based light-emitting diode with β-FeSi2 nanocrystals embedded in the active layer. Favorable epitaxial conditions allow us to obtain a direct band gap type-I band alignment Si/β-FeSi2 nanocrystals/Si heterostructure with optical transition at a wavelength range of 1500-1550 nm at room temperature. Transmission electron microscopy data reveal strained, defect-free β-FeSi2 nanocrystals of diameter 6 and 25 nm embedded in the Si matrix. Intense electroluminescence was observed at a pumping current density as low as 0.7 A/cm2. The device reached an optical emission power of up to 25 μW at 9 A/cm2 with an external quantum efficiency of 0.009%. Watt-Ampere characteristic linearity suggests that the optical power margin of the light-emitting diode has not been exhausted. Band structure calculations explain the luminescence as being mainly due to radiative recombination in the large β-FeSi2 nanocrystals resulting from the realization of an indirect-to-direct band gap electronic configuration transformation arising from a favorable deformation of nanocrystals. The direct band gap structure and the measured short decay time of the luminescence of several tens of ns give rise to a fast operation speed for the device. Thus a method for developing a silicon-based photonic integrated circuit, combining complementary metal-oxide-semiconductor technology functionality and near-infrared light emission, is reported here.

  1. Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2 Nanorod Solar Cells

    Directory of Open Access Journals (Sweden)

    Yitan Li

    2012-01-01

    Full Text Available Large area rutile TiO2 nanorod arrays were grown on F:SnO2 (FTO conductive glass using a hydrothermal method at low temperature. CdSe quantum dots (QDs were deposited onto single-crystalline TiO2 nanorod arrays by a chemical bath deposition (CBD method to make a photoelectrode. The solar cell was assembled using a CdSe-TiO2 nanostructure as the photoanode and polysulfide solution as the electrolyte. The annealing effect on optical and photovoltaic properties of CdSe quantum-dots-sensitized TiO2 nanorod solar cells was studied systematically. A significant change of the morphology and a regular red shift of band gap of CdSe nanoparticles were observed after annealing treatment. At the same time, an improved photovoltaic performance was obtained for quantum-dots-sensitized solar cell using the annealed CdSe-TiO2 nanostructure electrode. The power conversion efficiency improved from 0.59% to 1.45% as a consequence of the annealing effect. This improvement can be explained by considering the changes in the morphology, the crystalline quality, and the optical properties caused by annealing treatment.

  2. Chemical synthesis and characterization of CdSe thin films deposited by SILAR technique for optoelectronic applications

    Directory of Open Access Journals (Sweden)

    K.B. Chaudhari

    2016-12-01

    Full Text Available CdSe thin films were deposited on the glass substrate by successive ionic layer adsorption and reaction (SILAR method. Different sets of the film are prepared by changing the number of immersion cycles as 30, 40, 50 and 60. Further the effect of a number of immersion cycles on the characteristic structural, morphological, optical and electrical properties of the films are studied. The XRD studies revealed that the deposited films showed hexagonal structure with most prominent reflection along (1 0 1 plane. Moreover, the peak intensity of (1 0 1 plane is found to be increased as the number of immersion cycles is increased. All the thin films look relatively smooth and homogeneous covering the entire surface area in FESEM image. Optical properties of the CdSe thin films for a different number of immersion cycles were studied, which indicates that the absorbance increases with the increase in the immersion cycles. Furthermore, the optical band-gap in conjunction with the electrical resistivity was found to get decreased with increase in the immersion cycles. A good correlation between the number of immersion cycles and the physical properties indicates a simple method to manipulate the CdSe material properties for optoelectronic applications.

  3. Highly photoluminescent and photostable CdSe quantum dot-nylon hybrid composites for efficient light conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Ying; Riehle, Frank-Stefan [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany); Nitschke, Roland [Life Imaging Center, Centre of Systems Biology, University of Freiburg Habsburgerstr. 49, D-79104 Freiburg (Germany); Centre for Biological Signalling Studies (BIOSS), University of Freiburg (Germany); Krueger, Michael, E-mail: michael.krueger@fmf.uni-freiburg.de [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A novel in situ synthesis approach for highly luminescent CdSe core QDs-nylon hybrid materials. Black-Right-Pointing-Pointer Potential applications for light and energy conversion are demonstrated. Black-Right-Pointing-Pointer Three dimensional structures out of this hybrid material are available. - Abstract: Highly photoluminescent hexadecylamine (HDA) capped core CdSe quantum dots (QDs) with fluorescent quantum yields (QYs) up to 60% were synthesized using a hot injection method and directly incorporated into nylon polymer. For the incorporation of crude CdSe QDs into nylon a simple reproducible and upscalable one pot approach was developed without the need of further purification steps. The photoluminescence (PL) properties of the core QDs and the resulting QD-polymer hybrid composites were investigated and compared. Red emitting hybrid materials exhibit a QY of 60% with a high potential for applications in direct light and energy conversion. The hybrid materials could be successfully utilized as LED conversion layers. By avoiding exposure to oxygen the hybrid films can be kept for a month without detecting a significant decrease in luminescence. Various three dimensional structures are easily available opening doors for further applications such as novel materials for fluorescence standard development in laser scanning microscopy (LSM).

  4. Applying analytical ultracentrifugation to nanocrystal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Jennifer A; Krueger, Karl M; Mayo, J T; Yavuz, Cafer T; Redden, Jacina J; Colvin, Vicki L, E-mail: colvin@rice.ed [Department of Chemistry, Rice University, 6100 Main Street, MS-60, Houston, TX 77005 (United States)

    2009-09-02

    While applied frequently in physical biochemistry to the study of protein complexes, the quantitative use of analytical ultracentrifugation (AUC) for nanocrystal analysis is relatively rare. Its application in nanoscience is potentially very powerful as it provides a measure of nanocrystal density, size and structure directly in the solution phase. Towards that end, this paper examines the best practices for applying data collection and analysis methods for AUC, geared towards the study of biomolecules, to the unique problems of nanoparticle analysis. Using uniform nanocrystals of cadmium selenide, we compared several schemes for analyzing raw sedimentation data. Comparable values of the mean sedimentation coefficients (s-value) were found using several popular analytical approaches; however, the distribution in sample s-values is best captured using the van Holde-Weischt algorithm. Measured s-values could be reproducibly collected if sample temperature and concentration were controlled; under these circumstances, the variability for average sedimentation values was typically 5%. The full shape of the distribution in s-values, however, is not easily subjected to quantitative interpretation. Moreover, the selection of the appropriate sedimentation speed is crucial for AUC of nanocrystals as the density of inorganic nanocrystals is much larger than that of solvents. Quantitative analysis of sedimentation properties will allow for better agreement between experimental and theoretical models of nanocrystal solution behavior, as well as providing deeper insight into the hydrodynamic size and solution properties of nanomaterials.

  5. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly.

    Science.gov (United States)

    Yu, Shan; Li, Zhi-Jun; Fan, Xiang-Bing; Li, Jia-Xin; Zhan, Fei; Li, Xu-Bing; Tao, Ye; Tung, Chen-Ho; Wu, Li-Zhu

    2015-02-01

    A visible-light-induced hydrogen evolution system based on a CdSe quantum dots (QDs)-TiO2 -Ni(OH)2 ternary assembly has been constructed under an ambient environment, and a bifunctional molecular linker, mercaptopropionic acid, is used to facilitate the interaction between CdSe QDs and TiO2 . This hydrogen evolution system works effectively in a basic aqueous solution (pH 11.0) to achieve a hydrogen evolution rate of 10.1 mmol g(-1)  h(-1) for the assembly and a turnover frequency of 5140 h(-1) with respect to CdSe QDs (10 h); the latter is comparable with the highest value reported for QD systems in an acidic environment. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and control experiments demonstrate that Ni(OH)2 is an efficient hydrogen evolution catalyst. In addition, inductively coupled plasma optical emission spectroscopy and the emission decay of the assembly combined with the hydrogen evolution experiments show that TiO2 functions mainly as the electron mediator; the vectorial electron transfer from CdSe QDs to TiO2 and then from TiO2 to Ni(OH)2 enhances the efficiency for hydrogen evolution. The assembly comprises light antenna CdSe QDs, electron mediator TiO2 , and catalytic Ni(OH)2 , which mimics the strategy of photosynthesis exploited in nature and takes us a step further towards artificial photosynthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Symmetry breaking during seeded growth of nanocrystals.

    Science.gov (United States)

    Xia, Xiaohu; Xia, Younan

    2012-11-14

    Currently, most of the reported noble-metal nanocrystals are limited to a high level of symmetry, as constrained by the inherent, face-centered cubic (fcc) lattice of these metals. In this paper, we report, for the first time, a facile and versatile approach (backed up by a clear mechanistic understanding) for breaking the symmetry of an fcc lattice and thus obtaining nanocrystals with highly unsymmetrical shapes. The key strategy is to induce and direct the growth of nanocrystal seeds into unsymmetrical modes by manipulating the reduction kinetics. With silver as an example, we demonstrated that the diversity of possible shapes taken by noble-metal nanocrystals could be greatly expanded by incorporating a series of new shapes drastically deviated from the fcc lattice. This work provides a new method to investigate shape-controlled synthesis of metal nanocrystal.

  7. Direct assembly of in situ templated CdSe quantum dots via crystalline lamellae structure of polyamide 66

    Energy Technology Data Exchange (ETDEWEB)

    Cheval, Nicolas; Brooks, Richard [University of Nottingham, Division of Materials, Mechanics and Structures, Faculty of Engineering (United Kingdom); Fahmi, Amir, E-mail: Amir.Fahmi@hochschule-Rhein-waal.de [Rhein-Waal University of Applied Sciences, Faculty of Technology and Bionics (Germany)

    2012-03-15

    A simple concept is proposed for templating in situ synthesised CdSe quantum dots (QDs) into an organised nano-pattern using the crystalline lamellae structure of polyamide 66 (PA66). The morphology obtained for PA66 and the hybrid material on Si/SiO{sub x} solid substrate was characterised by means of atomic force microscope. Controlling the PA66 concentration in solution and the organic-inorganic interactions are found to be the keys factors to direct the assembly of CdSe QDs along the PA66 linear crystalline structure. This simple approach could be opened a new avenue for a large spectrum of innovative high-tech applications.

  8. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    Science.gov (United States)

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-21

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  9. 2009 Clusters, Nanocrystals & Nanostructures GRC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng [Washington State Univ., Pullman, WA (United States)

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral

  10. Engineering Plasmonic Nanocrystal Coupling through Template-Assisted Self-Assembly

    Science.gov (United States)

    Greybush, Nicholas J.

    The construction of materials from nanocrystal building blocks represents a powerful new paradigm for materials design. Just as nature's materials orchestrate intricate combinations of atoms from the library of the periodic table, nanocrystal "metamaterials" integrate individual nanocrystals into larger architectures with emergent collective properties. The individual nanocrystal "meta-atoms" that make up these materials are themselves each a nanoscale atomic system with tailorable size, shape, and elemental composition, enabling the creation of hierarchical materials with predesigned structure at multiple length scales. However, an improved fundamental understanding of the interactions among individual nanocrystals is needed in order to translate this structural control into enhanced functionality. The ability to form precise arrangements of nanocrystals and measure their collective properties is therefore essential for the continued development of nanocrystal metamaterials. In this dissertation, we utilize template-assisted self-assembly and spatially-resolved spectroscopy to form and characterize individual nanocrystal oligomers. At the intersection of "top-down" and "bottom-up" nanoscale patterning schemes, template-assisted self-assembly combines the design freedom of lithography with the chemical control of colloidal synthesis to achieve unique nanocrystal configurations. Here, we employ shape-selective templates to assemble new plasmonic structures, including heterodimers of Au nanorods and upconversion phosphors, a series of hexagonally-packed Au nanocrystal oligomers, and triangular formations of Au nanorods. Through experimental analysis and numerical simulation, we elucidate the means through which inter-nanocrystal coupling imparts collective optical properties to the plasmonic assemblies. Our self-assembly and measurement strategy offers a versatile platform for exploring optical interactions in a wide range of material systems and application areas.

  11. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures.

    Science.gov (United States)

    Yang, Peng; Yang, Yingshu; Wang, Yinghui; Gao, Jiechao; Sui, Ning; Chi, Xiaochun; Zou, Lu; Zhang, Han-Zhuang

    2016-02-01

    The photoluminescence (PL) characteristics of CdSe quantum dots (QDs) infiltrated into inverse opal SiO2 photonic crystals (PCs) are systemically studied. The special porous structure of inverse opal PCs enhanced the thermal exchange rate between the CdSe QDs and their surrounding environment. Finally, inverse opal SiO2 PCs suppressed the nonlinear PL enhancement of CdSe QDs in PCs excited by a continuum laser and effectively modulated the PL characteristics of CdSe QDs in PCs at high temperatures in comparison with that of CdSe QDs out of PCs. The final results are of benefit in further understanding the role of inverse opal PCs on the PL characteristics of QDs. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    Energy Technology Data Exchange (ETDEWEB)

    Magaryan, K.A., E-mail: xmagaros@gmail.com [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Mikhailov, M.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Karimullin, K.R. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); E.K. Zavoyski Kazan Physical-Technical Institute of RAS, 10/7 Sibirski trakt Str., Kazan 420029 (Russian Federation); Knyazev, M.V.; Eremchev, I.Y. [Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Naumov, A.V. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Vasilieva, I.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Klimusheva, G.V. [Institute of Physics, NAS of Ukraine, 46 Prospect Nauki, Kiev 03028 (Ukraine)

    2016-01-15

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm{sup 2}. Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  13. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    International Nuclear Information System (INIS)

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  14. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  15. Comparative investigation of long-wave infrared generation based on ZnGeP{sub 2} and CdSe optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Gang, Li; Guo-Li, Zhu; Pei-Bei, Meng; You-Lun, Ju; Wang Yue-Zhu, E-mail: yaobq08@hit.edu.cn [National Key Laboratory of Tunable Laser Technology Harbin Institute of Technology Harbin 150001 (China)

    2012-03-15

    Long-wave infrared (IR) generation based on type-II (o{yields}e+o) phase matching ZnGeP{sub 2} (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05 {mu}m Tm,Ho:GdVO{sub 4} laser is reported. The comparisons of the bire-fringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 {mu}m is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 {mu}m. For the CdSe OPO, we demonstrate a 64 mW output at 8.9 {mu}m with a single crystal 28 mm in length. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Temporary Charge Carrier Separation Dominates the Photoluminescence Decay Dynamics of Colloidal CdSe Nanoplatelets

    NARCIS (Netherlands)

    Rabouw, F.T.; van der Bok, J.C.; Spinicelli, Piernicola; Mahler, B.; Nasilowski, M.; Pedetti, S.; Dubertret, B.; Vanmaekelbergh, Daniel

    2016-01-01

    Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few

  17. Solid-state chemiluminescence assay for ultrasensitive detection of antimony using on-vial immobilization of CdSe quantum dots combined with liquid–liquid–liquid microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2013-07-25

    Graphical abstract: -- Highlights: •Solid-state chemiluminescence based on CdSe QDs was developed. •QDs immobilization in a vial was achieved in a simple and fast way. •Antimony detection was achieved by inhibition of the CdSe QDs/H{sub 2}O{sub 2} CL reaction. •LLLME allowed improving the selectivity and sensitivity of the CL assay. •The capping ligand played a critical role in the selectivity of the CL system. -- Abstract: On-vial immobilized CdSe quantum dots (QDs) are applied for the first time as chemiluminescent probes for the detection of trace metal ions. Among 17 metal ions tested, inhibition of the chemiluminescence when CdSe QDs are oxidized by H{sub 2}O{sub 2} was observed for Sb, Se and Cu. Liquid–liquid–liquid microextraction was implemented in order to improve the selectivity and sensitivity of the chemiluminescent assay. Factors influencing both the CdSe QDs/H{sub 2}O{sub 2} chemiluminescent system and microextraction process were optimized for ultrasensitive detection of Sb(III) and total Sb. In order to investigate the mechanism by which Sb ions inhibit the chemiluminescence of the CdSe QDs/H{sub 2}O{sub 2} system, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV–vis absorption and fluorescence measurements were performed. The selection of the appropriate CdSe QDs capping ligand was found to be a critical issue. Immobilization of QDs caused the chemiluminescence signal to be enhanced by a factor of 100 as compared to experiments carried out with QDs dispersed in the bulk aqueous phase. Under optimized conditions, the detection limit was 6 ng L{sup −1} Sb and the repeatability expressed as relative standard deviation (N = 7) was about 1.3%. An enrichment factor of 95 was achieved within only 3 min of microextraction. Several water samples including drinking, spring, and river waters were analyzed. The proposed method was validated against CRM NWTM-27.2 fortified lake water, and a recovery study was

  18. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  19. Cellulose nanocrystal submonolayers by spin coating

    NARCIS (Netherlands)

    Kontturi, E.J.; Johansson, L.S.; Kontturi, K.S.; Ahonen, P.; Thune, P.C.; Laine, J.

    2007-01-01

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images,

  20. Liquid phase epitaxy of binary III–V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir; Bregolin, Felipe L.; Hübner, Rene; Voelskow, Matthias; Helm, Manfred; Skorupa, Wolfgang [Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2015-05-07

    The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of the III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.